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Abstract
In recent years, quantum Boltzmann methods have gained more and more interest as
they might provide a viable path toward solving fluid dynamics problems on quantum
computers once this emerging compute technology has matured and fault-tolerant
many-qubit systems become available. The major challenge in developing a start-
to-end quantum algorithm for the Boltzmann equation consists in encoding relevant
data efficiently in quantum bits (qubits) and formulating the streaming, collision and
reflection steps as one comprehensive unitary operation. The current literature on
quantumBoltzmannmethodsmostly proposes data encodings and quantum primitives
for individual phases of the pipeline, assuming that they can be combined to a full
algorithm. In this paper, we disprove this assumption by showing that for encodings
commonly discussed in the literature, either the collision or the streaming step cannot
be unitary. Building on this landmark result, we propose a novel encoding in which
the number of qubits used to encode the velocity depends on the number of time
steps one wishes to simulate, with the upper bound depending on the total number of
grid points. In light of the non-unitarity result established for existing encodings, our
encoding method is to the best of our knowledge the only one currently known that
can be used for a start-to-end quantum Boltzmann solver where both the collision and
the streaming step are implemented as a unitary operation.
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1 Introduction

Since the first quantum computing boom in the 1990s, quantum computational fluid
dynamics (QCFD) has been a field of interest to researchers worldwide. Due to the
high computational demands of classic CFD, the exponential potential of quantum
computers in combination with quantum parallelism and quantum indeterminacy has
caused interest in the application. The first QCFD algorithms were proposed by Yepez
and his co-workers around the turn of the century [1–5]. These algorithms are based on
a quantum distributed computing approach, assuming that many small-scale quantum
computers are more realistic than one large many-qubit system. The core idea of the
so-called quantum lattice-gas model is that each grid point of position-space gets its
own six-qubit quantum computer associated to it (which can also be groups of six
qubits of a future many-qubit quantum computer). The benefit of this approach is that
the possible quantum circuit depth and stable entanglement required remains very low,
making it a realistic and relatively near-term approach given the capabilities of current
quantum devices. Its downside is that to encode a grid of size N a total of 6N qubits
are required, which means that the amount of qubits required grows linearly with the
size of the grid. Given the limited amount of quantum devices available and the large
amount of grid points required for solving practical problems with modern Boltzmann
methods, this distributed approach proves a significant drawback. Furthermore, as we
will show below, the computational basis state encoding of the velocity vector adopted
in the aforementioned papers does not allow for implementing the streaming step as
a unitary operator, so that measurement and state re-initialization is mandatory after
each time step.

After these early results by Yepez et al., the QCFD field became stagnant for about
a decade until its recent resurgence, in particular, in the form of quantum Boltzmann
methods. Most recent are the methods presented in [6–11], that all have their own
strengths and weaknesses. Some papers include a streaming and specular reflection
mechanism, but no collision methods yet [6, 7, 10]. Other approaches have imple-
mented a collision method using the linear combination of unitary approach [12],
causing the algorithm to require a measurement-and-restart strategy after each time
step [8]. Due to the high costs of quantum-state preparation and the chance ofmeasure-
ment errors this ‘stop-and-go’ strategy is hardly usable in practice. Other algorithms
have managed to create a unitary collision operator, but have not yet been able to
combine this with a streaming step into one start-to-end algorithm [9, 11].

What remained an open problem is the development of a full-fledged quantum
Boltzmann method (QBM) that implements both the streaming and the collision step
as unitary operations. In this paper, we present the first-of-its-kind full-fledged QBM
building on a novel encoding scheme of the velocity vector that scales with the number
of time steps. Furthermore, we prove rigorously that for the encoding schemes con-
sidered for universal quantum computers in all previous publications, it is impossible
to implement both streaming and collision as a unitary, downgrading them as candi-
dates for any practical QBM. Taking both contributions of this paper together, our new
encoding and the theoretical (negative) result on existing encodings, we hope to stim-
ulate a paradigm shift in QBM research from focusing on encodings and algorithms
for individual steps of the pipeline to developing full-fledged QBM algorithms.
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2 Lattice Boltzmannmethod

In the Boltzmann method, the macroscopic behavior of a fluid is simulated by con-
sidering the microscopic behavior of the fluid particles as they move through space
and deriving the macroscopic quantities via averaging-based post-processing, instead
of encoding the macroscopic variables directly, as is commonly done in other CFD
methods like the finite volume method. In recent years, the lattice Boltzmann method
has gained popularity as it is particularly suited for parallel execution on massively
parallel supercomputers. This has led to the development of several open-source pack-
ages such as waLBerla [13, 14] and openLB [15] packages. An inclusive overview
of the important recent advances in the Lattice Boltzmann method is given in the
review paper by Li et al. [16]. The easy parallelizability of the Boltzmann method also
makes it potentially interesting to apply to quantum computers, as the latter allow to
efficiently work in a high-dimensional space by exploiting quantum parallelism.

In this paper, we consider the discrete lattice Boltzmann method, where a particle
can only move with specific velocities taken from a finite set of discrete velocities.
We define the structure of the method using the DnQm system, where n represents
the amount of spatial dimensions and m the amount of discrete velocities considered.
Figure1 gives examples of the commonly used D1Q2, D1Q3, D2Q5 and D2Q9 sys-
tems, respectively, in standard Boltzmann convention. For an in-depth review of the
lattice Boltzmann method, we refer to the book [17].

Boltzmann methods simulate the macroscopic behavior of a fluid or gas by imple-
menting a streaming step followed by particle collision on the microscopic level in

Fig. 1 Four examples of different types of DnQm possible. a Portrays the D1Q2 setting and b portrays the
D1Q3 setting (where a stationary particle can be included). c Portrays the D2Q5 setting and d the D2Q9
setting

123



   20 Page 4 of 19 M. A. Schalkers, M. Möller

Fig. 2 Illustration of the
streaming step for the D1Q3
case. a The velocity vectors at
position x at time t . b The same
after configuration at time t + 1
after particles have moved to
positions x − 1 and x + 1,
respectively. Red and blue colors
identify the different streaming
directions and their propagation
pattern (Color figure online)

each time step. When obstacles are present an additional reflection step is performed
in each time step. For brevity, we omit a detailed description of the latter and refer the
interested reader to our recent work [10] on this topic.

The streaming step is implemented by letting the particles move by one grid point
per time step in the direction they are traveling currently. Figure2 illustrates how the
particles travel in one time step from the point x to x ± 1, respectively, for the D1Q3
case. Similar illustrations can be constructed for two- and three-dimensional cases but
are omitted here for brevity reasons.

To implement the collision step, we define so-called equivalence classes of stream-
ing patterns which have the same total mass andmomentum and are thus considered to
be equivalent. A combination of colliding particles can therefore be transformed into
any combination from the same equivalence class upon collision without changing
the total mass and momentum. Figure3 shows an example of two equivalent velocity
combinations for the D2Q5 (and D2Q4) case.

In Sect. 3, we provide rigorous mathematical proofs that show that such a unitary
treatment of both streaming and collision is impossible with the encodings adopted
in current literature, thereby underpinning the uniqueness and urgent need of our
proposed space-timeencoding. Subsequently, inSect. 4,wepresent a latticeBoltzmann
encoding for which both the collision and the streaming step can be performed through
unitary operations and thus admit a straightforward implementation on a sufficiently
large fault-tolerant quantum computer.

3 Data encoding

As in any computational field, data encoding is pivotal for reaching a good result.More
than five decades of classical CFD research and application have established ‘good
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Fig. 3 Illustration of two velocity combinations of the D2Q5 (and D2Q4) velocity spectrum that belong
to the same equivalence class with total momentum 0 and mass 2: a particles streaming in the q1 and q3
direction, and b particles streaming in the q2 and q4 direction

practices’ for storing field data such as densities and velocities at, e.g., the grid points
or cell centers as floating-point numbers following the IEEE-754 standard. Every now
and then new hardware developments stimulate research into nonstandard formats,
like reduced or mixed-precision [18], but, in general, data encoding is not considered
to be an open problem.

Not so in QCFD and, in particular, quantum Boltzmann methods where different
encoding methods are used in different papers. The two mainstream encodings of the
velocity vector are the amplitude-based encoding [6–8, 10] and the computational basis
state encoding [1–5, 9, 11]. In this section, we will review the main data encodings
currently used for QBM and show that in all of them either the streaming step or
the collision step cannot be unitary. This result, though discouraging at first sight,
should be interpreted as wake-up call that novel quantum encodings for CFD states
are imperative for devising full-fledged QCFD applications in the future. We propose
one such novel encoding in Sect. 4 and discuss its potential and limitations.

The two mainstream encodings of the velocity vector are the amplitude-based
encoding [6–8, 10] and the computational basis state encoding [1–5, 9, 11]. In what
follows, we will consider both approaches separately and show how they both lead to
a contradiction in the unitarity of either the collision or the streaming operation.

3.1 Amplitude-based encoding

The first type of encodingwe consider is the so-called amplitude-based encoding, used
for several quantum Boltzmann methods [6–8, 10]. The amplitude-based encoding of
the velocity vector is such that at each location |x〉 there can be multiple particles with
different velocities, for instance |v0〉, |v1〉, |v2〉 and |v3〉 for D2Q4. Here and below,
|i〉 denotes the representation of i as bit string. The state of the system at this point x
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can then be encoded as1

|x〉 (α0|v0〉 + α1|v1〉 + α2|v2〉 + α3|v3〉) , (1)

where α0, α1, α2 and α3 are complex numbers that simply represent the relative weight
or amount of particles traveling at the given velocity at grid point x . For simplicity, we
will assume that |α0|2 + |α1|2 + |α2|2 + |α3|2 = 1, and so in this example there are
only particles at grid point x but the proof extends trivially to the general case with
particles spread around the grid.

In order to show that this encoding of the velocity vector inevitably leads to non-
unitary collision operators, let us first take a close look at what is required from a
collision operator. A collision operatorUcol needs tomap the velocities of the incoming
particles to a so-called equivalent outgoing state. Two states are equivalent if the total
mass and momentum of all particles combined are the same. For example having one
particle ofmass 1 traveling in the positive x direction and one in the negative x direction
is equivalent to 1 particle of mass 1 traveling in the positive y direction and 1 particle
of mass 1 in the negative y direction, as for both states the total momentum is 0 and
the mass is the same. This means that if there is only one particle with one direction at
a specific point in space, the collision operator cannot change this as there is no other
direction this one particle could be traveling at that has the same total momentum.
Using these requirements, we can set up a generic collision operation Ucol that solely
meets the basic requirements of behavior it needs to portray. The first requirement
is that there should be at least a combination of incoming velocity states that leads
to a new combination containing at least one velocity state that was previously not
present. Let the state |ψ1〉 be an example of an incoming state for which a state in its
equivalence class includes at least some velocity which is not included in the original
state. Without loss of generality assume that |ψ1〉 consists of two different velocity
states |v0〉 and |v1〉, meaning that |α0|, |α1| > 0 and α2 = α3 = 0. Then, we can write
the state of the system as

|ψ1〉 = |x〉 (α0|v0〉 + α1|v1〉) . (2)

Now assume that an equivalent velocity combination exists consisting of particles
travelingwith velocities β2|v2〉+β3|ψ3〉, wherewe have |β2|, |β3| > 0 andwe let |ψ3〉
be any combination of all basis states except |v2〉. To realize this potential outcome of
a collision as a quantum algorithm, we need to implement the transformation between
both equivalent states as a unitary operation Ucol which changes the states of the
velocity encodings as follows

|ψ ′
1〉 = I ⊗Ucol|ψ1〉

= |x〉 ⊗Ucol (α0|v0〉 + α1|v1〉)
= |x〉 (γ0(α0|v0〉 + α1|v1〉) + γ1(β2|v2〉 + β3|ψ3〉)) .

(3)

1 Note that we distinguish in our notation between the grid point x and its representation |x〉 as part of the
quantum register.
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Here, if γ0 = 1 and γ1 = 0 no collision is taking place (and we simply implement
an identity operation) and if γ1 = 1 we fully change from the original velocities to
its alternative representative from the same equivalence class.2 Note that to preserve
unitarity |γ0|2 + |γ1|2 = 1 must hold.

Let us now consider another system in state |ψ2〉 = |x〉|v2〉. Applying the unitary
operationUcol should not effect the state at all as a single speed is only in an equivalence
class with itself, and so the required behavior for Ucol is

|ψ ′
2〉 = I ⊗Ucol|ψ2〉

= |x〉Ucol|v2〉
= eiθ |x〉|v2〉,

(4)

with θ ∈ (0, 2π ]. That is, the collision operator must preserve the single-velocity state
except for changes in the phase factor eiθ that can be neglected.

Now that we have identified the required behavior forUcol to implement a collision
operation, we can prove that any Ucol that meets both requirements simultaneously
cannot be unitary. Here, we resort to the characterization U †

colUcol = I of unitary
operators, with superscript † denoting the adjoint operator.

Proof To reach a contradiction, assume that Ucol is a unitary operator. Then, it must
preserve the inner product for all possible states |φ1〉 and |φ2〉

〈φ1|φ2〉 = 〈φ1|U †
colUcol|φ2〉. (5)

However, for a collision operation Ucol that behaves as expected on the system
states described in Equations (2) to (4), it follows that

0 = 〈ψ1|ψ2〉
= 〈ψ1| (I ⊗Ucol)

† (I ⊗Ucol) |ψ2〉
= eiθ (γ0(α0〈v0| + α1〈v1|) + γ1(β2〈v2| + β3〈ψ3|)) 〈x ||x〉|v2〉
= eiθ γ1β2.

(6)

The first equality follows from the fact that |ψ1〉 and |ψ2〉 are orthogonal by con-
struction. The second one holds under the assumption of Ucol being unitary, which is
disproved by the fact that the entire equality chain only holds for the trivial case γ1 = 0
(as |β2| > 0 by definition of the state |ψ1〉), that is, whenUcol does not implement the
collision operation. From this we can conclude that an amplitude-based encoding of
the velocity does not allow for a unitary implementation of the collision operation. ��
Notice that this proof works for any amplitude-based encoding of v where the different
possible velocities at a position are all represented by their own basis state as there

2 Here, γ0, γ1 are chosen to reflect the fact that a collision operation should switch weight of a combination
of velocities in an equivalent class to another combination of velocities in the same equivalence class. This
equation could be written in a less restrictive way by splitting γ0 and γ1 up into separate amplitudes γi for
all the basis states |vi 〉, the same contradiction of unitarity as presented below however could be reached.
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Fig. 4 Illustration of the
computational basis state
encoding for the D2Q4 lattice.
For each grid point x , we set the
respective qubit q j to one if and
only if there is a particle
streaming in that direction, i.e.,
|v〉 = |q0q1q2q3〉 = |0110〉

will always be a case with only a single incoming velocity, for which an identity
operation up to a phase shift should take place, while at the same time there will be
combinations of velocities for which we want some weight of the system to change
from one combination of velocities to another combination of velocities in the same
equivalence class. These two antagonizing requirements will always lead to the same
contradiction of unitarity proven above and we further expand on this intuition in
Sect. 3.3.

3.2 Computational basis state encoding

The second type of encoding of a quantum state considered is the computational basis
encoding, used in several quantum lattice Boltzmann papers such as [1–5, 9, 11]. Using
this encoding, the contradiction of unitarity in the collision operation can be avoided
by encoding the velocity of the qubits at a position |x〉 in space by identifying each
direction particles could be streamed from with its own qubit, which will be set to one
if and only if there is a particle streaming from that direction.

As an example consider the D2Q4 lattice depicted in Fig. 4. In this case, the velocity
can be encoded using four qubits q0, q1, q2 and q3 where the state

|x〉|v〉 = |x〉|q0q1q2q3〉 = |x〉|0110〉 (7)

is such that from the center point (1, 1), there is a particle streaming to (1, 2) and a
particle streaming to (0, 1) but not to (2, 1) or (1, 0).

Using this encoding, the collision step can be defined quite naturally as unitary
operation. However, we run into trouble when attempting to define a unitary streaming
step Ustr as we demonstrate in what follows.

To simplify notation, let us restrict ourselves to the D1Q2 lattice and consider the
two settings at time t from Figs. 5 and 6, which can be encoded as

|ψ1〉 =
3∑

x=0

|x〉|v〉 (8)
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Fig. 5 D1Q2 example setting 1. The binary encoding above the arrows indicates whether or not a particle is
flowing there in that time step. 1 indicates that there is a particle streaming there and 0 indicates that there
is no particle. In the example setting, we consider periodic boundary conditions. The top figure shows the
state of the system at time t . The figure below shows the state of the system at time t + 1

Fig. 6 D1Q2 example setting 2. The binary encoding above the arrows indicates whether or not a particle is
flowing there in that time step. 1 indicates that there is a particle streaming there and 0 indicates that there
is no particle. In the example setting, we consider periodic boundary conditions. The top figure shows the
state of the system at time t . The figure below shows the state of the system at time t + 1

= 1

2
(|00〉|00〉 + |01〉|11〉 + |10〉|10〉 + |11〉|10〉) , (9)

and

|ψ2〉 = 1

2
(|00〉|01〉 + |01〉|01〉 + |10〉|00〉 + |11〉|11〉) , (10)
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respectively. It then follows directly that

〈ψ1|ψ2〉 = 0. (11)

Upon streaming, the systems from Figs. 5 and 6 change from their state at time t
(top lattice) to that at time t + 1 (bottom lattice), i.e.,

|ψ ′
1〉 = 1

2
(|00〉|11〉 + |01〉|00〉 + |10〉|10〉 + |11〉|10〉) , (12)

and

|ψ ′
2〉 = 1

2
(|00〉|11〉 + |01〉|00〉 + |10〉|01〉 + |11〉|01〉) , (13)

respectively. As in the previous section, we will show by contradiction that any oper-
ation Ustr for which Ustr|ψ1〉 = |ψ ′

1〉 and Ustr|ψ2〉 = |ψ ′
2〉 cannot be unitary.

Proof Let us assume that Ustr is unitary, i.e., it preserves the inner product

〈φ1|φ2〉 = 〈φ1|U †
strUstr|φ2〉, (14)

for all states |φ1〉, |φ2〉. Substituting the states (9) and (10) on the left side and (12)
and (13) into the right inner product, we arrive at the contradiction

0 = 〈ψ1|ψ2〉 = 〈ψ1|U †
strUstr|ψ2〉 = 〈ψ ′

1|ψ ′
2〉 = 1

2
. (15)

The first equality follows from the orthogonality property (11), and the second one
from the assumption that Ustr is a unitary operator, which we just disproved. ��

As in Sect. 3.1, this proof extends to any computational basis encoding where each
possible combination of velocities at a specific lattice point is encoded using its own
basis state, as one can always construct two situations with no overlap at time t that
will have nonzero overlap after streaming at time t+1. This proof also extends trivially
to any other DnQm setting as the streaming possibilities of D1Q2 are essentially a
subset of any other system and thus the same example can be used by setting the other
streaming directions to 0.

3.3 Intuition and extension of non-unitarity proofs

In this section, we expand on our non-unitarity proofs by providing physical intuition
behind the proofs presented above. It is intended to give insight into what types of
encodings our non-unitarity proof extends to, and what physical features of the system
necessarily lead to the non-unitarity for these encodings.

Consider the proof from Sect. 3.1 that shows that the amplitude-based encoding,
where each velocity direction is identified through its own basis state leaving the total
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velocity at a position x to be a superposition of such basis states, prevents the colli-
sion operator Ucol from being unitary. Since it encodes each streaming direction as a
different basis state, the quantum encodings of the velocity directions are all orthog-
onal to one another. This is also necessary, since if the basis states of the possible
streaming directions are not orthogonal, we cannot fully distinguish between them.
However, this orthogonality of the different velocity directions leads directly to the
non-unitarity of Ucol. Since a collision operator that will rotate a given linear com-
bination of basis states into a linear combination of other basis states in such a way
that the represented streaming patterns belong to the same equivalence class, it will
also rotate ‘pure’ velocities represented by a single basis state into another basis state,
leading to a nonphysical and undesired change of velocities.

Following this line of argumentation, it can be seen that the non-unitarity of Ucol
is not so much a result of a specific choice of encoding but an inherent non-unitarity
of the collision step itself that directly leads to the idea of computational basis state
encoding, where each velocity pattern (i.e., the combination of velocities) at a grid
point is encoded as its own basis state, and not as a unitary combination of all the basis
states representing a nonzero contribution.

When encoding the velocity pattern at each grid point as a basis state, naturally,
the non-unitarity of collision falls away and we can find a straightforward unitary
operator to implement the collision step. However, such an encoding will always lead
to non-unitarity of streaming due to the non-local nature of a streaming operation.
Consider an arbitrary point in space x and imagine two different scenarios with two
different combinations of speeds |v1〉 and |v2〉 at this point. Then, the inner product
between |x〉|v1〉 and |x〉|v2〉 must be 0, as these are different basis states. However,
the velocity states of the systems at position x in the next time step do not depend on
the current velocity states in the lattice point. In fact, they only depend on the velocity
states of the neighboring lattice points. Since the inner product of the states at the point
x at the next time step does not depend on the current states at the point x , in the next
time step the velocity at the point x of the two systems could be identical, and hence,
the inner product could be one. There is no way of ensuring that this can only happen
when the inner product at some other point x ′ of the systems was nonzero before as
each grid point has velocity vectors in multiple directions determining its associated
velocity basis state.

This shows that any quantum encoding that successfully implements both streaming
and collision as a unitary operationmust belong to one of the following three types. The
first type is an amplitude-based type encoding, where the different velocities are not
orthogonal and thus not entirely distinguishable. The second type is a computational
basis state encoding where the non-locality of streaming is somehow avoided. The last
type is a completely novel encoding method that avoids both non-unitarity problems
entirely. In the next section, we will present precisely one such idea.

4 Space-time data encoding

In this section, we propose a novel space-time data encoding that enables unitary
collision and streaming at the same time. To the best of our knowledge, this is the
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first-of-its-kind start-to-end quantum Boltzmann algorithm that does not require mea-
surement and quantum-state re-initialization after each time step.

In what follows, we adopt an extended computational basis state encoding, where
at each location x we take into account the velocities at all grid points in the vicinity
of x . Here, ‘in the vicinity of x’ means that a particle can theoretically reach the grid
point x within the number of time steps still to be performed before measurement.
Mathematically speaking being ‘in the vicinity of x’ means being, respectively, in the
so-called extended von Neumann, Moore or hexagonal neighborhood of the point x ,
depending on the lattice structure.3

This leads to a trade-off between the number of time steps that can be performed
between measurements and the number of qubits required to encode the velocity at
each grid point x . The more time steps one wishes to take between measurement-
and-re-initialization cycles, the more qubits are required for our space-time encoding.
Obviously the maximum number of qubits required to implement the velocity without
any in-betweenmeasurementsmust be such that the entire grid is spanned. For aDnQm
lattice, this will be mNg , where Ng is the total number of grid points. When encoding
the proposedmethod on a classical computermNg bitswould also be required, sowhen
encoding the full domain there is no quantum benefit in terms of (qu)bit numbers. The
quantum improvement comes from exploiting quantum parallelism, which is done as
long as we do not encode the whole space.

In what follows, let Nt denote the number of streaming steps to be performed
between (re-)initialization and measurement. We extend the computational basis state
encoding of velocity directions from Sect. 3.2 to take into account all the speed states
from grid points in the neighborhood of x that can (at least theoretically) reach x within
Nt streaming steps. This takes away the non-locality of the streaming operator, which
led to the non-unitarity of Ustr for the ‘regular’ computational basis state encoding at
the cost of increasing the number of qubits required to encode all required velocity
data.

We will give a detailed description of this encoding for the D2Q4 lattice, but want
to note that it can be extended naturally to any other choice of DnQm. Consider the
D2Q4 lattice given in Fig. 7 with qubit q j set to one if and only if there is a particle
traveling with velocity direction j from grid point x into a neighboring grid point in
the current time step. We now extend this encoding to include all possible velocities
at positions ‘in the vicinity of x’ for the total of Nt time steps in order to obtain a
unitarily streamable encoding. This is illustrated in Fig. 8 for a single time step, i.e.,
Nt = 1 yielding the encoding

|x〉|q19q18 . . . q0〉. (16)

For D2Q4, the number of qubits encoding the possible velocity states per grid location
x grows with the number of time steps (still) to be taken as

3 The von Neumann neighborhood of extent r defines the diamond-shaped set of points at a Manhattan
distance of up to r from the point x . It applies to, e.g., D2Q4, D2Q5, D3Q6 and D3Q7. The Moore distance
extends the former one by diagonal directions and applies to, e.g., D2Q8, D2Q9, D3Q26 and D3Q27. As
its name suggests, the hexagonal neighborhood applies to D2Q6 and its extension to its three-dimensional
counterpart.
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Fig. 7 Illustration of the
computational basis state
encoding for D2Q4

nv = 4 +
Nt∑

i=1

16i = 8N 2
t + 8Nt + 4, (17)

where the maximum number of qubits required to encode all velocity directions over
the entire grid equals 4Ng as stated before.4 Similarly it can be shown that for d
dimensions the growth rate is of the order O (

Nd
t

)
.

We can now encode the collision step by first identifying the equivalence class
for the D2Q4 lattice. We note that at each grid point x as represented in Fig. 7 the
states |q0q1q2q3〉 = |1010〉 and |q0q1q2q3〉 = |0101〉 belong to the same equivalence
class (cf. Figure3), as they have the same total mass and momentum.5 We implement
the collision step by defining a unitary operator Ucol which performs the following
mappings

Ucol|1010〉 = α|1010〉 + β|0101〉, (18)

Ucol|0101〉 = −β|1010〉 + α|0101〉, (19)

with α, β ∈ C and |α|2 + |β|2 = 1, while acting as the identity operation on any
other basis state.6 With the so-defined Ucol ∈ C

24⊗24 , we can write the total collision

4 Note that the growth rate of qubit numbers per time step depends on the choice of DnQm. The number
of qubits required is equal to the number of points in the extended Von Neumann, Moore or hexagonal
neighborhood, depending on which choice of n and m considered.
5 The other equivalence classes are |q0q1q2q3〉 = |1000〉 and |q0q1q2q3〉 = |1100〉 and all cyclic shifts
of these patterns, and |q0q1q2q3〉 = |1111〉. However, they all have just a single representative so that we
define the collision operator based on the ambiguous case.
6 This operation is unitary, as can be verified by writing it as

Ucol = 	0000,1010	0000,0101

⎡

⎢⎢⎢⎣

α β 0 . . . 0
−β α 0 . . . 0
0 0 1 . . . 0
. . . . . . . . . . . . . . .

0 0 0 0 1

⎤

⎥⎥⎥⎦	0000,0101	0000,1010. (20)
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Fig. 8 Illustration of the space-time encoding for D2Q4 for a single time step

operation for an encoding of the velocities states v consisting of nv = 4k qubits
as k-fold Kronecker products of Ucol operations, i.e., U tot

col = Ucol ⊗ · · · ⊗ Ucol.
Since each Ucol requires a few CNOT and a single triple controlled rotation gate, see

Footnote 6 continued
Here, the matrices 	i, j represent permutation matrices between the basis states i and j which are trivially
unitary. Since the product of unitary matrices is a unitary matrix, we only need to show the unitarity of the
matrix

M =

⎡

⎢⎢⎢⎣

α β 0 . . . 0
−β α 0 . . . 0
0 0 1 . . . 0
. . . . . . . . . . . . . . .

0 0 0 0 1

⎤

⎥⎥⎥⎦ , (21)

to show the unitarity of Ucol. The unitarity of M follows directly from writing out M†M and finding I .
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Fig. 9 An example of an implementation of the collision operation Ucol for the D2Q4 example with
|α| = |β| = 1√

2

Fig. 9, the total collision operator can be efficiently implemented even on near-term
devices.7

In practice the total collision operator U tot
col differs per time step, since its local

counterpartUcol only needs to be applied to velocity states ‘in the vicinity of x .’ In the
first out of the Nt time steps, it is important for all qubits representing velocity states
‘in the vicinity of x’ to be updated correctly. In the very last time step, however, it is
only important for the qubits q0, q1, q2 and q3 to end up in the correct state. The more
time steps t have been taken, the less time steps Nt − t are still to be taken and so the
four-qubit local collision operatorUcol only needs to be applied to the remaining qubits
relevant for encoding the ‘directly connected’ velocity states as given in Equation (17).

With this logic, we can define a collision operator per time step t as

U tot
col,t = Ucol ⊗ · · · ⊗Ucol︸ ︷︷ ︸

c collision operations

⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
identity operations

, (22)

where c = 2(Nt − t)2 + 2(Nt − t) + 1 and the identity operations are added to avoid
dimensionality issues. In practice no operation will be applied on the qubits encoding
velocity states not ‘in the vicinity of x’ within Nt − t time steps, Fig. 10 shows what
this looks like as a quantum circuit.

Our space-time encoding enables different manners of implementing the streaming
step. It can easily be seen that the way the streaming method should be implemented
differs per time step t depending on which positions will be ‘in the vicinity of x’ in the
next time step as well. At the first time step, it is important for (almost) all qubits to be
streamed to a very specific position, whereas in the last time step, it is only important
for the qubits q0, q1, q2 and q3 to end up in the correct state. For the example shown
below, we are only considering a total of one step to be taken (i.e., Nt = 1) and so
we only need to consider the speeds that will stream to location x in one time step. In
this case that means that streaming consists of performing a swap operation between
the following qubit pairs q0 and q12, q1 and q17, q2 and q6 as well as q3 and q11, see
Fig. 11.

7 We can implement the described collision operator by first applying three CNOT operations to the system
turning the states into |1010〉 
→ |1110〉 and |0101〉 
→ |1111〉. Subsequently a triple controlled rotation
operation of choice is applied to the right-most qubit (controlled on the three left-most qubits). Finally, the
initial three CNOT operations are applied in reverse order to reset all velocity states correctly.
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Fig. 10 The collision operation
applied in the i-th time step for
the D2Q4 example

Also in general (i.e., Nt > 1), the streaming step can be implemented by a combi-
nation of swap gates. Following the same in-the-vicinity-of-x argument as was used
for the collision step, a total of

nswap(t) = 4 +
Nt−t∑

i=1

16i = 8 (Nt − t)2 + 8 (Nt − t) + 4 (23)

swap gates are required to update as many velocity-encoding qubits in time step t ,
whereby these swap operations can be performed largely in parallel.8 The depth of

8 In each time step, the swap operations in the four (or generally speaking m) different directions can be
performed in parallel. Furthermore, the swap operations for the velocities in the same direction but not in
the same ‘line of streaming’ can all be performed in parallel. Therefore, we only need to take into account
the velocities in the same line of streaming and the depth of the circuit is determined by the longest ‘line
of streaming,’ which is equal to T − t . In each layer of the swap operations, at least half of the T − t
velocities can be swapped to the correct position. Therefore, a total of log2 (T − t) swap operations needs
to be performed in the t-th time step.
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Fig. 11 An example of an
implementation of streaming in
the D2Q4 case with t = 1

the streaming circuit at time t will amount to

dstr(t) = log2 (T − t) (24)

swap operations at time t . When combining the state preparation with the streaming
and collision operations as described, the total algorithm can be expressed as in Fig. 12.
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Fig. 12 The full space-time data encoding quantum Boltzmann algorithm where S.P. stands for state prepa-
ration, Si andCi are the i th streaming and collision operations, respectively, andM stands for measurement

5 Conclusion

In this paper, we have shown that current data encoding methods considered for quan-
tum Boltzmann methods do not allow for treating both streaming and collision as
unitary quantum operations.We have provided both amathematical proof of its impos-
sibility, and insight into the physical properties of the system and encodings that lead
to this behavior. Using this insight, we subsequently developed a new space-time data
encoding method that does allow for both streaming and collision to be implemented
as a unitary operation. This paper should serve as a guideline on where (not) to look
for successful quantum encodings of the lattice Boltzmann and other QCFDmethods.
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