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Abstract 
 

Origami structures are found in mechanical technology more and more often. A less strict derivative of 
origami are Hinging Rigid Panel Structures, which are not bound to be developable from a single flat sheet of 
planar material. These Hinging Rigid Panel Structures can be applied to many fields of mechanical design, and 
moreover are interesting for their kinematic behaviour. The benefits of using a structure that originates from 
pieces of flat material include but are not limited to being able to surface treat uninterrupted sections of material 
that can subsequently be folded into part of the structure’s configuration. In order to describe and 
programmatically manipulate Hinging Rigid Panel Structures and their kinematics adequately and systematically, 
this research takes a new and specific approach on modelling them. The Hinging Rigid Panel Structures are 
modelled as 1-DOF mechanisms, consisting of a base pyramid, to which 2 arms of a variable amount of pairs of 
triangles are attached. To sufficiently test the versatility of this method of describing Hinging Rigid Panel 
Structures, a classification has been set up to cover a range of kinematic input-output relations, which will be 
used to test algorithms against. This classification differentiates by dimension and displacement distribution over 
both the input and output curves, and captures all kinematic transmissions in 1545 cases. With a sample size of 
np = 10 randomly generated versions of each of these input-output relations and a motion path resolution of rc 
= 25, a data set was generated using this classification method. An evolutionary algorithm was created to 
navigate the solution space more efficiently than using conventional algorithms like (gradient based) hill climber 
algorithms. The main variables of the evolutionary algorithm like generation size (sg = 60), amount of generations 
(ng = 75),  mutation rate amount (nm = 180) and parent splicing methods have empirically been determined. 
Running the optimisation for all the categories of the previously mentioned classification was done by adapting 
the code to be able to be run in crowd computational capacity across 17 contributors’ computers. The results 
show that Hinging Rigid Panel Structure mechanisms are to a certain extend able to be synthesised to generate 
requested transmissions, but some cases are harder to reach than others. Complex compound 3D paths are 
harder to optimise for than other categories, such as planar circular motions. This research lays out a valuable 
basis that contains all aspects to create a reasonable performing optimiser for 3-D Hinging Rigid Panel Structures 
that follow requested input-output relations. This research could for example be used as a starting point for 
developing a software package that allows designers to implement Hinging Rigid Panel Structures in their CAD 
designs for mechanical transmissions. 
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Literature Review 
 

Introduction 
 

The ancient art form of origami recently has been 
applied to scientific research more and more often. Origami 
offers more than the joy of creation out of a single flat sheet 
of paper. A novel topic of research concerns the ability of 
origami structures to serve mechanical purposes and possibly 
replace conventional mechanisms. 

An underexplored area of origami structures are 
kinematic transmissions. Kinematic transmissions find 
applications in a wide range of fields, including but not limited 
to space technology (deploying and reconfiguring structures 
from small stowage envelopes [1]) and medical technology 
[2], but also the packaging industry [3] and architecture design 
[4] can benefit from moving origami structures. To enable 
designers and engineers in the future to synthesise origami 
structures that couple certain user-specified motions, this 
literature review focuses on finding the research gaps that still 
exist in this area. Ultimately,  the review leads into the 
proposal of researching the development of a computer 
program that allows users to generate origami kinematic 
transmissions using computational heuristic algorithms as a 
dissertation topic. Kinematic transmissions that can be 
created from a planar base material can be beneficial over 
conventional kinematic transmission mechanisms for 
different reasons, amongst which the fact that planar 
methods of surface treatment are more widely (financially) 
available than comparable surface treatments for 3d 
structures with hard-to-reach areas like cavities. This benefit 
can be seen in for example medical applications where 
bone-growth is enhanced by certain microscopic surface 
treatments [5]. 

Another argument for using origami or hinging rigid 
panel structures is the robustness. When designed correctly, 
origami models can handle loads far larger than their base 
material without creases can handle, for example the Miura-
Ori tessellations in the form of zippered tubes [6]. The power 
of origami lies in the seemingly simple act of folding (or in 
more technical terms: hinging), a strategy that many 
structures found in nature have adopted. From plant leaves, 
insect wings, flower opening, proteins and therefore even the DNA, lots of natural mechanisms revolve around 
folding or hinging to create substructures. With its versatility, origami bridges gaps between many different 
research fields, since it is so widely applicable. 

 
Overview 
 

In this literature review the state of the art on 3 subtopics will be investigated. First, origami and its 
interesting features and existing applications will be explored (I). Then, available origami design software will be 
visited (II). Next, mechanism design using artificial intelligence strategies will be reviewed (II). Finally, an overview 
of the existing origami subcategories and possible research gaps will be identified. 

 

Figure 2: The origami space array as designed by Miura and 
Natori [8]. 

Figure 1: Origami flapping bird. In essence a simple 
origami kinematic transmission to transform a linear 

motion (pulling the tail) to a circular motion (rotating the 
wings). 
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I – Origami And Its Properties 
 
Introduction into Origami 
 

Origami is an originally ancient Japanese art form 
that studies the folding of paper into 3d shapes. One of the 
most common origami artefacts is the Japanese crane, see 
figure 1. The word origami finds its roots in Japanese; “ori” 
means folding, and “kami” is Japanese for paper. Origami 
traditionally focusses on creating complex three 
dimensional shapes out of one uncut piece of paper, for 
aesthetic reasons. Tearing, cutting and gluing are not 
allowed in this purest form of the art. The crux to origami is 
that every folded configuration has been folded from, and 
therefore can be folded back into, a planar surface which 
makes it mathematically interesting to investigate what 
shapes can be accomplished. Erik D. Demaine delivered the 
proof that any shape can be flat folded by approaching the 
origami structure to be developed out of a very long, 
narrow strip [9].  

The mechanical points of interest of origami main 
revolve around the fact that paper, which is the basis for the 
origami, has an incredibly small ratio of thickness versus size 
of the paper. Moreover, it has the property to bend along 
fold lines, but it has no stretch whatsoever in planar 
directions. If this principle is projected out into a theoretical 
description, origami can be considered to have no bending 
stiffness in the fold lines, and a very large (theoretically 
infinite) stretching stiffness. This is the reason that to 
describe origami mathematically, infinitely thin, rigid plates 
are being modelled that are linked along their edges using 
1 degree of freedom rotational hinges. This analogy is called 
“rigid origami”. 
 
Describing Origami 
 

The folds in any origami can be divided into two obvious categories: mountain folds and valley folds 
(respectively locally responsible for convex and concave shapes). According to D. Dureisseix [10], there are 2 
bases or starting points often used for conventional origami figures, which use these two type of folds to develop 
the origami into the desired shape. These bases are the so-called “waterbomb” and “preliminary” base, as can 
be seen in figure 3, where their so-called crease patterns are depicted. Relatively simple origami structures can 
also be stacked. This method of origami repetitive patterning is often referred to as origami tessellations [11]. 
Origami (periodic) tessellations are connected pieces of origami, representable as crease patterns that can be 
expanded infinitely in horizontal and vertical direction by translating unit cells. Note that the ratio between the 
paper size and the pattern cell size is of course the limiting 
factor to this expansion. When every unit cell is exactly the 
same, a regular pattern arises which may or may not 
possess curvature properties in specific states of 
developability, but when every unit cell is altered slightly 
in aspect ratio or size (cell distortion) to a certain extent, 
these tessellations can possess properties enabling it to 
follow certain reasonably large radius compound curves (a 
3d curve in more than 1 direction). This property is often 
being used in origami art, for example the scales of an 
origami fish, see figure 4, but one can imagine this 
property might also be of interest in creating curved 
surfaces in mechanical applications. 

Figure 3: Waterbomb and preliminary base with their crease 
pattern and folding steps. 

Figure 4: Covering compound curved surfaces with tessellations 
in the scales of the fish  (art by R. J. Lang). 

Figure 8: Curved origami shapes by Stanford University [13]. 
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Related to tessellations is modular origami, in which 
multiple separate origami-folded pieces interconnect 
without being folded from the same piece of material, and 
form a new, possibly kinematic structure, for example the 
ring in figure 5, which can move by sliding the pieces along 
each other. 

An extensively researched topic in origami is flat-
foldability and developability. Developability is a property 
that describes whether or not a certain folded configuration 
originates from a flat piece of unfolded paper. In order to 
check if a structure originates from a flat piece of material, 
for each angle around a vertex, this simple condition must be 
true: 

∑ 𝜃𝑖 = 2𝜋

𝑛

𝑖=0

 

 
Here, theta (θ) represent all the angles between sequential 
creases through this vertex point, see figure 6. 

The (local) flat-foldability however is described by 
Kawasaki’s theorem. Flat-foldability is a term used to 
describe a state in which the paper areas around an 
intersection of crease lines (a vertex) can be folded on top of 
each other, in such a way that they all end up parallel to each 
other, theoretically in one planar surface. Kawasaki’s 
theorem states that the sum of the alternating angles 
between the creases around the vertex should always equal 
to 180 degrees, or pi radians, so (see figure 7): 
 

𝛼1 + 𝑎3 + ⋯ = 𝛼2 + 𝑎4 + ⋯ = 𝜋 
 
Note however that Maekawa’s theorem requires that the 
difference between the number of mountain and valley 
folds that intersect at a vertex should always be equal to 
two, in formula form:  

|𝑀 − 𝑉| = 2 
 
Here, M denotes the amount of mountain creases, and V 
denotes the amount of valley creases meeting in the vertex. 
If this condition is not met, the local flat-foldability cannot 
be guaranteed. 

Origami does not only focus on sharp folds; the 
subcategory of origami that studies the art of curved 
surface origami is another topic of active research.  
However, for the scope of this research, this type of origami 
will not be further explored. An image can be seen in figure 
8. The subcategory of origami that this paper will revolve 
around largely is known as action origami. In this category 
belong the origami creations that can be animated. The 
most well-known traditional action origami object is the 
Japanese flapping bird, the crane, see figure 1. This model 
moves its wings when the tail is being pulled. A linear 
motion is converted to a rotational movement. This 
property of creating a kinetic transmission using nothing 
more than folds is a simple form of an origami transmission.  

In contrast to the traditional origami, another artform exists, the so-called “kirigami”, where one is 
allowed to cut the paper in order to create (moving pop up) shapes. 

Figure 10: Unfolding a ring into a large surface area, by Robert Lang 
and LLNL. 

Figure 5: modular origami ring/star. Pieces slide together to 
create a kinematic art piece [12]. 

Figure 6: Angles between creases intersecting in one vertex. 

Figure 7: Alternating angles add up to pi radians, according to 
Kawasaki's theorem. 



8 
 

As stated priorly, kinematic origami mechanisms have been mainly introduced in structural engineering 
in solutions regarding deployable structures [22]. Of course, theoretically, one could model origami structures as 
zero-energy storage mechanisms. However, the elasticity fold-lines in paper actually offers, can be used in certain 
cases to the advantage of a kinematic transmission design, for example to aid certain motions. To narrow down 
the scope of this paper however, the elasticity in hinges will not be included in the simulations. 

To assess motion, an often used analysis is modelling origami as conventional 3d linkage mechanisms. 
One of the most famous folds is the so-called Miura-Ori fold, which can be tessellated as cells, as described 
earlier. In figure 9, as seen and described in [10] we can better understand how this famous fold works in its 
proposed mechanism form. It is important to note that some hinges have been replaced by multiple degree of 
freedom hinges, to prevent an overconstrained system. Figure 11 shows the origami version of this Miura-Ori 
tessellation. Note that modelling the origami structure like in figure 9, using mechanical hinges with appropriate 
amounts of degrees of freedom,  does not change any of the kinematics. It is just a way to convert origami into 
some mechanism that has been studied for decades, and therefore is easier to comprehend. 

 
 
 

 

Figure 9: Miura-Ori fold in mechanism representation. In the top left, one unit cell of this fold. The others are 
tessellations of this cell. 

Figure 11: Miura-Ori folding state. Being used for stowage of membranes and the simplest, most well-known application is folding of maps. 
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Applications of Origami 
 

Origami has increasingly been applied in novel mechanical technology recently. In his paper [14], Y. 
Nishiyama explains how Miura folds [15] are constructed and how they are used in deployable solar structures 
in space as shown in figure 2. For the space industry, minimal stowage envelopes are of great importance and 
foldable solar panels therefore have an advantage over conventional solar panels since they tend to take up way 
less space in stowed configuration. However, this often does add complexity to the system, and with complexity 
often comes weight and/or loss of robustness. Therefore, exploration of effectiveness and determining 
disadvantages of deploying origami-inspired panels has been studied more frequent the past decades, to be able 
to identify in what exact conditions origami related benefits outweigh the disadvantages it inevitably brings. 
Another space-related example is the in 2021 to be launched James Webb Space Telescope [16], which will have 
a foldable main mirror construction, which unfolds once the satellite is positioned in its orbit. It has simple folds 
to again minimise stowage space. 

One of the most active origami researchers 
is Robert J. Lang [17], an American physicist but also 
well-known origami artist and theorist. In 2002, he 
and the Lawrence Livermore National Laboratory 
(LLNL) of California designed a new way to stow a 100 
m diameter polygonal surface into a ring, as can be 
seen in figure 10, as part of a concept for a new space 
telescope known as the Eyeglass. The main challenge 
was to prevent permanent marks or creases when 
unfolded. Another area where moving origami is 
adopted is healthcare engineering. Studying buckling 
behaviour of cylinders, a novel type of tubular heart 
stent was created by Zhong You from Oxford 
University [18]. This new type of stent was able to be 
shrunken, so it would fit through veins easier, and 
was able to be inserted in the body in a minimal invasive manner, see figure 12. 

Another interesting example is the quick-folding protection shield for law enforcement, by from Brigham 
Young University [21], which unfolds swiftly under a certain input motion. 

A final example of an application of action origami, or perhaps a better way to call it: kinematic origami, 
is in car air bags. The way airbags are folded largely determine the swiftness with which they are able to deploy 
[19]. For this airbag research, Robert J. Lang was again closely involved, to help in the development and 
assessment of this project, also specifically with the finite element modelling used [20]. 

 
II – Computer Aided Origami Design 
 
Existing Origami Design Software 

 
A few computer applications exist to aid origami 

design using software. There is a very well-known design 
tool by Robert J. Lang, called TreeMaker [23], that enables 
the user to create tree-like structures, which is helpful for 
creating layouts for developable origami pieces, see figure 
13. More programs exist, including ReferenceFinder Online 
by Robert J. Lang [24], OrigamiDraw by Akira Terao [25] and 
Origamizer and FreeForm Origami by Tomohiro Tachi [26]. 
These programs all focus on finding crease patterns for 
developing flat sheets into specified objects, but none of 
them have options to explore kinematics of the model once 
they are folded or while being developed into a folded state. 

There are however a few less known programs that 
do explore kinematics to a certain extend. Extending work 
from T. Tachi [27] and M. Schenk and S. D. Guest [28], A. 
Ghassaei created an online webpage [29] that interactively 
tries to fold origami crease patterns. The unique feature 

Figure 12: Zhong You's origami heart stent design, in deployed and 
stowed state. 

Figure 13: Robert Lang's TreeMaker 5, displaying a full crease 
pattern, the folded form and an inspector for editing the design. 
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about this simulation is that rather than trying to fold the 
origami in sequence of steps, it tries to fold all folds at the 
same time [30]. It does this by iteratively solving a small 
displacements problem, using the forces exerted by 
creases as input source. This simulator uses the FOLD-file 
extension format [31], created by E. D. Demaine to 
standardise origami crease patterns and enabling 
programs and functions in programs to exchange and 
quantify information easily. The principles of this simulator 
program are being used by universities around the world 
to aid them in their research, for example by Florida 
International University, where M. Khan et al. used it to 
model reconfigurable antenna applications [32]. 

Next to these few standalone programs, a few 
plugins exist for large software packages that aid origami 
design and touch on kinematics. An obvious drawback from using these plugins might be (apart from it not doing 
exactly what this research focusses on) the fact that they require external (expensive) digital products. For 
example, another project by Robert J. Lang, called Tessellatica [33] is capable of analysing many origami routines, 
however it is a plugin for Mathematica by Wolfram [34]. Another powerful plugin tool is created by K. Fuchi at 
the United States Air Force Research Laboratory. It is called OMTO [35], and offers a graphical user interface 
(GUI) for ease of use. It solves displacement objective problems where the user can specify force input nodes, 
displacement output nodes and boundary conditions on a grid. Then, it determines the fold lines that produce 
the largest displacement in the directions and locations that were specified. This plugin is made for MATLAB plus 
its optimisation toolbox. A screen capture can be seen in figure 14. Although this program has potential, it still 
does not allow for more complicated kinematics in origami to be synthesised. 
 
Software selection for programming Kinematic Origami Transmissions 
 
To explore the possibilities of the graphics 
programming and the basics of displaying origami 
while still being able to perform significant amounts 
of iterative calculations in the background, a quick test 
program was written on how this origami Miura-Ori 
zippered tubes configuration [6] would behave when 
increasing the volume (see figure 15). The aim of this 
program was to identify obstacles in the (less 
important) graphics part of the project. With the 
excellent libraries included in Processing [36], written 
in Java, 3 dimensional shapes could be displayed, 
altered by using custom knobs, graphs could be 
displayed, 3d geometry could be exported as .obj files, 
and the entire application could be exported as an 
.exe file, cross-platform executable, which might 
come in handy at a later stage when a large test would have to be run by computers on various locations 
simultaneously, a process called crowd computing. The Processing programming environment therefore seems 
very suitable for the early-stage development of the program. 
 

 
III – Mechanism Design Using AI 
 
Optimising mechanisms 
 

Designing mechanisms that are capable of following user-defined trajectories can quickly become a 
complex task. If done without any computer aid, it involves quite some experience from the designer to prevent 
a time consuming iterative design process. Recently however, reinforcement learning has been applied to 
different engineering fields, and proven quite effective to synthesise two-dimensional kinematic mechanisms 
[37]. To be able to implement these kind of optimisation strategies, a new framework had to be developed, which 

Figure 14: Screenshot of OPTO, showing the GUI that allows 
users for a more intuitive workflow. 

Figure 15: The Miura-Ori zippered-tubes tessellation analyser test 
program. Merely a check to test the feasibility of Processing as a 

development environment. 
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defined the mechanisms in a game-like manner, in order to be able to apply reinforcement learning. This 
approach needed a reward system, which has been done before in the gaming sector more often [38]. This type 
of learning has been incorporated in researches recently more and more, since it yields promising results with 
tasks of which the optimum solution is not known, or problems with a very large solution space. This same 
analogy applies to origami mechanisms; to optimise properties of an origami structure to make it behave as 
wanted in a certain developability range, one needs to have a computer generate patterns, rank them and learn 
from their behaviour. This means scoring a solution, and altering it in a certain way. This can be done as previously 
mentioned, using reinforcement learning of some sort (think of neural networks for example), or using a heuristic 
approach, for example gradient based optimisation or an evolutionary algorithm to traverse the solution space 
fast and efficient. 

 
A closely related research topic concerns mechanical bar linkage problems, these too have recently been 

approached using AI methods. Again, synthesising these mechanical linkages to generate specified motion paths 
proved to be a difficult problem, since even the simplest curves are of high polynomial degree, and relationship 
between these curves and the link properties is very nonlinear [39]. In their paper, J. C. Hoskins and G. A. Kramer 
examined the problem of selecting the parameters describing a four-bar, planar linkage, such that the linkage 
generates a coupler curve which optimally approximates the user-specified curve. This problem is strategically 
very close to the one as described to be the topic of this research. As they describe it, there is no exact inversion 
possible from the curve back to a 4 bar linkage, so the best fit is sought. In their paper, they use neural networks 
in combination with post-refinement using gradient based numerical optimisation techniques, to show that 
ANN’s (artificial neural networks) in conjunction with optimisation are capable of inverse modelling of multi-
dimensional, highly nonlinear systems. Of course, their basis is of greater simplicity than a full-on origami crease 
pattern, since they use the four-bar mechanism, but the paper distinguishes three different main purposes that 
are applicable to the origami problem as well: path, motion and function generation. For creating a path, the 
orientation of the object does not matter, while for motion, the orientation has a specified prescription along its 
movement. For the function generation, the approach is different; a desired functional relationship between 
input and output cranks of the four-bar linkage is being approximated. 

The neural network they proposed to use is a so-called Radial Basis Function (RBF) ANN. RBF ANN’s are 
known to be able to generate approximations to unknown (non-linear) functions by using a series of examples 
of input-output mappings. They are usually single hidden-layer, feedforward networks. These terms are 
explained in more detail in Appendix A1, where a short research on neural networks is presented, performed to 
learn if a neural network approach would be the route to take for this research. It however is too lengthy to 
include in this literature review. 

In order to enable a computer to work with origami to synthesize them, score them and ultimately 
optimise them, a numeric representation is necessary. For mechanisms, this has been done before using various 
methods, using truss models or building blocks, but the crease patterns that are the basis for origami work a little 
different. In 2016, Eric Demaine et all. introduced the FOLD (Flexible Origami List Datastructure) format [31]. This 
format is different from available vector formats, since it supports coplanar facet layer ordering. It is based on 
the JSON (JavaScript Object Notation) format, a format of which parsers exist in all major programming 
languages. The FOLD format is designed in such a way that the object tree is of a very flat nature, which makes 
it very easily adjustable. The FOLD format could be a good starting point to use for a kinematic mechanism 
synthesis program, since apart from enabling the computer to manipulate and evaluate crease patterns in a 
numeric way, it is of use as well to convey information between projects or programs, for example to share 
projects or setups between users. 
 
AI Strategies 
 

An important topic in this research focusses on the different ways to tackle optimisation problems in 
general, and specifies which strategy to use for this exploration of origami kinematics synthesis. The term 
Artificial Intelligence (AI) is the overarching term for the science of creating (computer) artefacts that possess 
some form of intelligence. An exact definition is hard to give: the border between a (heuristic) algorithm and AI 
is often very vague. Some people claim that any optimisation program can be labelled as artificially intelligent, 
others think a system should make decisions that are not predictable by human beings anymore. Artificial 
intelligence is often thought of being very closely related to neural networks. Neural networks try to solve 
problems using a brain-like analogy, with neurons, synapses and connections. Since the brain is being associated 
with intelligence, some think neural networks are a requirement to label a system as artificially intelligent, but 
this is not necessarily the case. Again, a strict border of artificial intelligence is very hard to draw. 
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Optimisation problems are often solved using heuristics and algorithms. A very well-known example is the 
hillclimber algorithm. This algorithm starts with an initial guess, scores this solution, and then alters the solution 
slightly. It is then tested again, and the new solution is kept if the score result is better than the score of the old 
solution. If it is worse, the old solution will be kept. Then again, the solution is randomly altered and tested 
against its unaltered version. The altering happens with random mutations to the solution. This way, a solution 
gets better and better over time. It however is very well possible that the solution space has local maxima where 
this hillclimber algorithm will get stuck. To prevent this, many different tricks are being applied.  

One of the most well-known is simulated annealing. In simulated annealing, the chance of the solution 
performing a random mutation changes over time. First, it mutates a lot, but in the end, it does not mutate at all 
anymore. This is a strategy to prevent being stuck in a local maximum. Without going too far in-depth on this 
topic, there exist a lot more similar but clever algorithms like the two mentioned to search through a solution 
space and prevent getting stuck with local maxima. 

Another promising heuristic approach is the use of an evolutionary algorithm. Nature has been using 
this approach in evolution of the world and all species that live on it. When the solution space is very large, an 
evolutionary algorithm might be of interest, since it explores multiple routes through the solution space at once. 
In an evolutionary algorithm, a set of solutions is bundled in a population. All individual solutions in such a 
generation are scored, and based on these scores they get a chance to reproduce to the next generation. This 
reproduction is done by combining multiple solutions from a generation (parents) to result in a new unit (child). 
This solution then can be mutated slightly as is done in nature, and a new generation gets filled with these new 
units. The beauty of this system is that inferior solutions still get the chance to propagate, and therefore could 
influence the final solution still or turn out to become superior. The drawback to an evolutionary algorithm is 
that the problem needs to be setup in such a way that solutions can be combined into offspring. 
 

There is another way to tackle optimisation problems as mentioned before: neural networks. Neural 
networks are so-called universal approximators [40]. This means they work very well for problems where 
associations need to be captured, regularities need to be discovered, or for problems where the relationships 
between variables are hard to understand or describe with conventional approaches. Also, neural networks are 
great in handling a large amount of data, or if the volume, number of variables or diversity of the data is large. 
In general, one can say that for dynamic or non-linear relationships, neural networks are strong when it comes 
to capturing relationships between model phenomena that are difficult or impossible to explain otherwise. In 
comparison to conventional computing techniques, neural networks are not sequential nor necessarily 
deterministic [40]. The tasks that the computer has to do is very simple, simply taking some weighted sums and 
putting them through a simple formula. Neural networks do not execute instructions in the conventional way, 
they work in parallel to the pattern of inputs which it is exposed to. 

There however is a major drawback to using neural networks, which is that the problem to optimise 
needs to be made suitable for a neural network to interface with it. Some optimisation problems do not have an 
easy way to do this. In this paper, this problem will be explored. 
 

Concluding, we can say that neural networks are ideally suited to solve complex, hard to describe 
problems, they can learn to model relationships between inputs and outputs that are nonlinear and complex. 
Neural networks can recognise patterns, make predictions and generalisations. All of these come in handy when 
trying to design a mechanism. The features the mechanism possess might not be identified yet, but the neural 
network possibly finds groupings of creases that can be responsible for certain motions and stack these features 
to create complex motions. However, neural networks do have a complexity in interfacing with the problem, 
which is not as hard when using more conventional optimisation techniques like evolutionary algorithms. 
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Discussion 
 

When reviewing the state of the art of the 
three topics, origami and its features, existing 
design software and artificial intelligence 
strategies, it becomes clear that there is a research 
gap when it comes to origami transmission 
synthesis. In table 1, an overview is given of all 
relevant subcategories of origami, plotted against 
the different types of mechanisms that are possible 
to quantify and calculate the motion of 
mechanisms. We can see that cell C3 has the focus 
of this thesis, a combination of modular origami 
(not bound to developability from a single sheet) 
and heuristics to search through the solution space.  
 

Quite a bit of work on kinematic behaviour 
of folding has been done, where mostly perfectly 
rigid panels and perfectly strain-free frictionless 
hinges are assumed. In this thesis, this will be 
assumed as well, to narrow down the scope. 
However, in almost all real-world folding 
mechanisms, the behaviour is strongly affected by the issues of panel bending, stiffness of panels and hinges and 
friction. All of these factors will be complicating accurate modelling a lot. Moreover, in direct correspondence 
with Robert J. Lang via email, it became clear that the use of neural networks, or AI in general can introduce quite 
some problems. The feasible subspaces of parameter space tends to be quite sparse, typically of much lower 
dimensionality than the parameter space of the problem. This might result in the algorithms returning merely 
infeasible solutions. Therefore, a few clear pre-determined compromises for the program need to be set, to make 
sure the parameter space that is being explored by the program is not so large that finding feasible solutions 
becomes virtually impossible. 

Considering all of this, the optimising mechanism proposed is using an evolutionary algorithm. This 
decision was made with regards to the authors knowledge of object oriented programming, but moreover the 
interfacing problems between neural networks and origami structures and the concerns raised by Robert J. Lang. 
 

Thesis proposal 
 

The thesis proposal that has been hinted on heavily in this literature review can be formally written 
down as being: 
 

“The aim of this thesis is to set up the fair principles of a computer aided design tool that allows users to 
synthesise hinging rigid panel kinematic transmissions coupling user-specified input and output motions, using 
an evolutionary algorithm to optimise these.” 
 

The thesis has some aspects that are to the authors knowledge not combined before, especially the use 
of evolutionary algorithms to approach origami kinematics analysis. To develop this into a tool that people could 
use in their designing progress would be something that feels like could help many people in many fields of 
research and work. Moreover, I hope it will inspire people to rethink existing solutions for mechanisms, and 
actually bring new ideas to live. 

  

Table 1: Research gap matrix 
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Introduction 
 
Research Overview 
 

Following the recommendations that resulted from the literature review, this research will focus on 
synthesising hinging rigid panel structures using evolutionary algorithms to connect defined input and output 
paths. It is important to note that rather than sticking to classical origami, which can always be developed from 
a single sheet of planar material, this research deliberately lets go of that property. This restriction could prevent 
good kinematic transmissions to be created, as it limits the solution space significantly. If good solutions can be 
found that do require some assembly of different sub-structures if they would be built physically, or if more than 
2 planes need to hinge together in 1 edge, this is still of value for reaching the goal this research focusses on. 
Therefore, another, possibly better covering description of the structures this research revolves around is: 
Hinging Rigid Panel Structures, from now onwards referred to as HRPS. By Hinging Rigid Panel Structures, 
structures are meant that are created out of triangular planes that hinge together over the full length of their 
sides. In this study, the thickness of the panels are considered zero. In contrast to classical origami structures, 
Hinging Rigid Panel Structures can have edges where more than two planes hinge together, introducing a large 
area of the solution space of kinematic transmissions. 
 First, the methodology will be presented, to give the reader an overview of how the problem was 
tackled. The methodology comprises the largest novel work in this research, and should be seen as the main 
work done in this study. The methodology is relatively concise, but many more detailed problems are further 
elaborated upon in the appendices, so for further reading please follow the references in the text. Also, a brief 
overview will be given of the crowd computation strategy that was followed to generate the data set during this 
research. After that, a section with results will be presented. Next, the discussion section will further interpret 
the results, and a few interesting cases will be highlighted that are of special interest for mechanical applications. 
Thereafter, a section will present an overview of steps that might need further work or revisiting. Finally, a 
conclusion will be given to summarise the work. 

Note that the results are interesting and teach us about how the methodology worked out, and the 
results should be seen as a validation of the method section, where the novelty lies, the approach to how the 
origami structures can be described and altered. 

During this thesis process, a computer aiding tool to enable (product) designers and researchers to 
create kinematic mechanisms using flat sheets as starting points has been developed, but it is in a researching 
state, not finalised for active use in designing processes. I want to emphasise that the authors intention with this 
research is for it to serve as a starting point for further work in this direction, to try to kickstart development and 
use of origami structures in motion. A possible follow-up project on this study would consist of implementing all 
principles and methods from this study, and transform it into an actual software package that can be rolled out 
to use in mechanical design, or other fields. Kinematic transmissions created out of origami can find their 
application in many fields where origami is slowly being introduced, from packaging and stowage problems 
(aerospace) [1] to medical purposes [2], material sciences, forming steel, chemical engineering for 3D structures 
[5], architecture [4] and even art. Moreover, applications can be found in fields not considered here since it is 
not conventional (yet) to apply origami mechanisms in many fields of engineering or research. 
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Methodology 

 

Introduction 
 

To easily handle Hinging Rigid Panel Structures and display information in a concise way, a graphical 
interface has been created using Processing [36]. With its JAVA backend, it is a relatively fast, efficient and easily 
accessible programming environment to develop graphical projects in for engineering students. It also allows for 
easy distribution of the program in .exe format, which proved handy when crowd computing large data sets, as 
has been done during this research. Using Processing the algorithm has be created that drives the synthesis of 
the Hinging Rigid Panel Structures, but it needed a thorough  method to model the Hinging Rigid Panel Structures, 
which will be described in this section. Once this method was created, a first approach of an evolutionary 
algorithm to evolve and optimise solutions for input-output relations has been applied.  

In order to adequately analyse the system, as well as test and compare the performance of various 
algorithms attempting to optimise the shape of hinging rigid-panel structures (HRPS), a thorough and accessible 
coding approach has been adopted, to accommodate tests and iterations easily and modularly. Various methods 
and structures have been explored, and this section will summarise the main strategies and approaches used 
within the code, which comprises the basis for this research. It will allow the reader to reproduce the structure 
of the program, although it will not go in detail on code level problems. 

Firstly, the HRPS model itself and its accompanying functionalities will be discussed and elaborated 
upon. Then, an overview and explanation about the motion paths and their classification will be presented. 
Finally, the working principles of the algorithm used will be elucidated. 
 
 

Describing Hinging Rigid Panel Structures 
 
Strategy overview of describing an HRPS 
 

It is important to understand what 
strategy this research follows to build up HRPS’s. 
Although there is a very strict and simple set of 

rules an HRPS has to follow in order for it to be 

physically constructed (not intersect with itself or 

needs to be stretched to construct), the HRPS is a 

structure that cannot necessarily be prescribed by 
any fixed plan for its construction. This however is 
necessary to enable an algorithm to easily modify 
the HRPS properties later on, even if the complete 
structure is already generated. In creating such a 
building method however, it is of great importance 
that the system still includes as much of the 
parameter space of HRPS as possible, to prevent disregarding possible solutions in an early stage of the 
algorithmic process. The building method that was used in this research will be described below. 

All information to define the geometry of one enclosed HRPS and the interconnections within this set is 
contained in one programmatic class. The chosen construction method always uses a base pyramid, to which 
two branches of additional planes can be added, one for the input side of the kinematic transmission, and one 
for the output side of the kinematic transmission. These branches consist out of pairs of triangular planes, and 
as many pairs can be added to either branch, which will be elaborated upon shortly. This specific method ensures 
the entire system always maintains a single degree of freedom. These pairs are called tristructs throughout this 
paper. For a visual representation, see figure 16. 
 In essence, the structure transforms a multi-variable input path through the input branch into a single 
rotation in the base structure, definable by angle theta as depicted in figure 17. The other branch is connected 
to this same base structure and transforms it back into the desired output motion. By doing this, instinctively it 
seems like we are disregarding certain very low-end, robust solutions for certain input-output relations. But be 

Figure 16: One possible HRPS, with input branch and output branch 

both 3 tristructs long. The emphasized lines represent the current 

input and output loop. The purple and yellow planes are the ends of 

the branches, The red plane is the fixed plane. 
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reminded that it is not always necessary to add very long input 
and output branches, so simple (possibly more robust) models 
are still within the parameter space. 
 
The HRPS model 
 
 Any HRPS in this research is constructed with at its 
base a set of 4 triangles that are connected into a pyramid with 
a non-planar base. One of these triangular sides of the pyramid 
is the plane that is fixed to the world frame, to the ground. The 
four triangles come together in 1 vertex, therefore forming a 
four-vertex. The relative configuration of this pyramid shape is 
fully definable with 8 lengths, as depicted in figure 17. The 
reason this shape was chosen as a basis is its limited degrees of 
freedom. It is a structure that possesses a single degree of 
freedom only when 1 plane is locked to the world ground. This 
degree of freedom can be set by angle theta in figure 17. Theta can vary from 0 degrees to 180 degrees, and this 
value theta will be from now on referenced to as the “development angle” of the HRPS. The development angle 
of an HRPS will always be set between 0 and 180 degrees. 
  

After a base has been set up, planes will 
be added to the structures earlier mentioned 
branches. To maintain the single degree of 
freedom, this has to be done in a specific 
manner. Firstly, 2 loops are defined that will 
form the base of these input and output 
branches. They consist of 4 adjacent edges of the 
structure. Since the base pyramid only possesses 
a single degree of freedom, these loops will 
always be fully defined by setting the 
development angle. These two loops are in 
further reading referenced to as the input loop 
and the output loop. They will change when a set 
of triangles is added, as will be described below. 
One can imagine that there are multiple 
possibilities to choose from when assigning these loops. As depicted in figure 18, the most obvious loop is the 
loop around the non-planar quadrilateral bottom, simply framing the open side of the pyramid (closed loop BCDE 
in figure 17 or figure 18a). The second loop can be chosen to be any of the other possibilities in figure 18. To 
these loops, sets of  triangles can be added. 
 By adding these triangle sets (the tristructs), the input or output loop will change, and the 2 edges that 
were chosen to build the new tristruct on will be replaced by the 2 newly created open edges. For a visual 
clarification, please see figure 19, in which sub image A-D demonstrates a possible branch synthesis with at its 
basis loop A from figure 18, and sub image E-H demonstrates a possible branch generation with at its basis loop 
E from figure 18. It is clear that displaying states of the model quickly gets very unclear, as can be seen in figure 
16, where figures 19d and 19h are combined to create one full HRPS. 
 

Throughout the rest of the construction of various hinging panel structures, this one degree of freedom 
condition is always maintained, since the scope of this research focusses on single-input/single-output relations. 
It does not matter how many tristructs (n) are added to the system (see appendix B1 for further explanation): 
 

𝐷𝑂𝐹 = 6 • (5 + 3 • 𝑛) − 3 • (8 + 5 • 𝑛)  − (5 + 3 • 𝑛) = 1  
 

Figure 18: A: Open loop that frames the non-planar bottom of the 

pyramid. B-E: Open loops that do not frame any opening in the 

pyramid. 

Figure 17: the system of 4 triangles that forms the 

basis of a hinged rigid panel system. It can be 

considered a pyramid with a non-planar base (i.e. 

points B, C, D and E are not restricted to be 

contained in one single plane.) 
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 All geometry described in the system is build up using trilateration. Trilateration is very frequently used 
in the code, since it describes the location of a point when 3 other reference points and 3 corresponding distances 
to the unknown point are given. By keeping track of which tristruct originates from what edges, the full structure 
is easily defined. In order to do this, lists with connection information are stored within the programmatical HRPS 
class. There are separate lists for the input branch and for the output branch, in which the information of the 
tristructs is stored as well. Important to note is that the tristruct (which is contained in a class too) also stores a 
number related to which side of the previous loop it is connected to. 

For more information about this tristruct class and how the trilateration problem was solved, see 
appendix B2. To read more about how solvability was checked and how collision detection was used to prevent 
impossible solutions, see appendices B3 and B4. 

 
 
Classification of Hinging Rigid Panel Structures 
 
Describing motion paths 
 

A classification of the infinitely large solution space of kinematic transmissions of path generation 
mechanisms has been set up in such a way that the computer program can systematically cycle through it. 
Moreover, we can clearly demarcate which part of the solution space has been covered and how, and where 
possible future research could continue. 
All transmissions are in essence nothing more than an input motion path, and an output motion path, both 
discretised as a set of points, the amount of which is called the path resolution (rc). In If a set of n paths exist that 
are separately classifiable, a set of n2 transmissions exist, since every input path can be combined with every 
path as an output path. Therefore, the classification focuses on single paths, and with some exceptions to narrow 
down the duplicate options that arise (which will be elaborated upon), these single paths can be combined with 
each other to create a set of 1545 different transmission cases. An exact explanation of this number is given in 
appendix B8. For a graphical overview of this classification (that will be discussed below), please see figure 20.  

Distinction is made between 1D, 2D and 3D paths with various subclasses, and in addition to these, every 
path can have a different motion distribution over it. A short explanation of this will be provided in the next 
section. 
 
1D Motion Paths 
 

In this research, a 1D path is not confined to a singular axle in the global coordinate system, but it rather 
constitutes all the rectilinear motions, no matter their 3D orientation in space. Within this 1D subclass however, 
a subdivision is made for a few important cases, which are the three principal origin directions, so a rectilinear 
motion parallel to the x, y and z axes, and a fourth case which is a randomly orientated rectilinear motion. 
 
 

Figure 19: 2 possible branch generation patterns. A-D demonstrates generating a branch with 3 additional tristructs on 

figure 18 loop A. E-H demonstrates generating a branch with 3 additional tristructs on figure 18 loop E. Combining figure 

D and H will result in a full HRPS as depicted in figure 16. The green planes represent the added tristructs in each step. 
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2D Motion Paths 

The 2D subdivision is more comprehensive. It comprises a 2-step subclassification, where the first step 
is setting a plane in space (XY, YZ, ZX or randomly oriented), and the second step is creating a curve on this plane. 
Five distinct function groups are chosen to be the most common paths and therefore have their own subclass, 
which are: 

 

• A circular path with an angle less than 2π radians, from which the diameter and angle can be set 
(randomly if required). 

• A circular path with an angle larger than 2π radians, from which the diameter and angle can be set 
(randomly if required). 

• A spiral from which the amount of circulations and the radial spacing can be set (randomly if required). 

Figure 20: Graphical overview of the classification used to describe transmissions. 
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• A static single point (which can only be used in an output path). 

• A polynomial with an order of 6 from which each orders magnitude can be set (randomly if required). 
Within this polynomial group, a subdivision is made for polynomials that are oriented with a horizontal 
x axes, a vertical x axes or a randomly oriented axes. 

 
3D Motion Paths 
 

The 3D subdivision consists out of just 2 subclasses: 
 

• A 3D Bezier curve (see appendix B6 on more information about the exact shape of Bezier curves), from 
which all 4 anchor and control points can be set in 3d space. 

• A helix that uses a 2d plane as its base plane, from which its diameter and height and amount of 
rotations can be set (randomly if required). 

 
Describing path distribution 
 

Not only does this research focus on kinematic transmissions that link two motion paths together using 
a HRPS structure, also different path distribution spacings are taken into consideration on top of the previously 
described shape classification of the paths. This heavily increases the amount of possible transmissions. Four 
displacement distributions are distinguished (see figure 21), these are: 

 

• Constant distribution (all points over the curve are equal distance spaced along the curve) 

• Accelerating distribution (the spacing between each set of points increases over distance along the 
curve) 

• Decelerating distribution (the spacing between each set of points decreases over distance along the 
curve). 

• Reciprocal distribution (the path is not unidirectionally used, but the motion may go back over itself 
multiple times in a sinusoidal manner). This last distribution will only be applied to output curves, which 
limits the amount of options significantly again. 

 

Of course, more standardised distribution curves can be used, but in order to limit the amount of 
categories in the general classification and keep the scope concise, these four were chosen. Spacing points with 
a prescribed distribution pattern over certain curves is not always a trivial problem, please see appendix B5 on 
how this problem was approached. To get an insight over how to intuitively manipulate all these factors in the 
program using a GUI, please see appendix B7. 

Each of the motion paths is combined with each of the path distributions and each of the in the above 
section described motion and distribution parameters can be randomised in the program, in order to generate a 
set of np = 10 different versions of each of the transmissions. Using a set of samples rather than using a single 

Figure 21: The four different path distribution shown as graphs and as distributions 

over a 2d open circle. With a low path resolution and a 
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sample for each transmission would eliminate outliers, taking the averages of scores of the final solutions over 
these 10 samples. This however results in a data set of 15450 input-output relations, which all had to be 
optimised using the evolutionary algorithm. 

 
Naming conventions 
 

To analyse how cases are performing and how their overarching categories from the classification as 
shown in figure 20 are performing against each other, a solid naming convention was needed. The naming 
convention used exists out of 2 parts, linked with a hyphen. The two parts represent the input and output path 
of the transmission. An example could be 2AD3B-3BC, which happens to be case number 1230 of 1545. It means 
2AD3B is the input path, 3BC is the output path. As described in figure 20, 2AD3B represents a 2d motion on a 
plane parallel to the XY plane. The letter D makes it a polynomial, oriented with a random orientation (3). The 
last B states it is using an accelerating motion along this path. The output side, 
3BC, describes a helix with a decelerating motion path. 
 
 

Evolutionary algorithm 

 
Tuning the algorithms parameters 
 

In order to run the entire simulation of 15450 optimisations, the 
evolutionary algorithm needed to be coded efficiently, to keep the run time 
down. Of course, runtime could heavily be reduced by reducing the motion path 
resolution to rc = 25 instead of a larger number which would return more precise 
results. 

The main variables of the evolutionary algorithm are generation size (sg 
= 60), amount of generations (ng = 75) and mutation rate amount (nm = 180). 
These numbers will be explained in the section below. Also, parent splicing have 
empirically been determined, which will be elaborated upon. Running the 
optimisation for all the categories swiftly was done by setting up the code to be 
able to be run in crowd computational capacity across 17 contributors’ 
computers, which will be explained below as well. 
 
.HRPS files 
 

In order to save, mutate, recombine and copy data regarding the 
properties of an origami structure, a solid file format was needed. Although the 
literature review suggested using Eric Demaines FOLD (Flexible Origami List 
Datastructure) format [31], this research moved away from solely optimising 
fully developable origami structures from crease patterns. The underlying JSON 
format however was used, and a new format was created, see figure 22. A brief 
note on sections 5 and 6 of the file format (figure 22) is needed. These sections 
describe the input and output arm of the system, using tristructs. Each tristruct 
contains one integer, and three floats. The three floats describe the three 
lengths of the tristructs (trilateration is used to calculate where they form a new 
vertex), and the integer describes how it is connected to the previous input- or 
output loop. 

The .HRPS file is easily exchangeable with the program, as JSON arrays 
are supported by JAVA. 
 
Recombination 
 
 Recombining 2 or more structures into 1 new structure is essential for 
an evolutionary algorithm. Various options have been explored, where 2 HRPS 
information arrays were merged with different methods. Ultimately, a method 
has been adopted where the base pyramid information will always entirely 
come from 1 parent, and only the input and output arm data will be recombined. 

Figure 22: The .HRPS file format. 1 is the 

development state of the origami and is 

not a number that is subject of 

optimization. 2 is the angle of the 

grounded triangle, 3 are the 

coordinates of the grounded triangle on 

the ground plane. 4 contains the 8 base 

lengths to define the base pyramid. 5 

contains a list with (in this case 2) 

tristructs that represent the input arm. 

6 contains a list with (in this case 2) 

tristructs that represent the output 

arm. 7 contains a number that 

determines how the output arm is 

connected to the base pyramid, in other 

words which of cases B-E is chosen from 

figure 18. 
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This was done by choosing a random amount of tristructs from one parents input arm from the base outwards, 
and a random amount of tristructs from the other parent from the end of the input arm inwards. The same was 
done for the output arm. This way, there is the possibility of just copying the already existing arm entirely, but 
also of adding features from the other parent, or even entirely adopting the arm from the other parent. 
 
Mutation 
 

After recombination, the entire generation was submitted to mutation. For the entire generation of 
HRPS systems, a fixed amount of total mutations was empirically determined (nm = 180). For each of the 
mutations, first one of the HRPS systems was chosen randomly (therefore mutations could be happening to a 
single HRPS multiple times), and then a random value in the HRPS array was randomly slightly altered with a 
given range of change. Moreover, the chance of the mutations actually happening depends on which variables 
are randomly selected for change, and how many generations already have been generated. Namely, the 
dimensions of the main pyramid and its position have a larger chance of not being mutated if selected for 
mutation as more generations have passed. The underlying idea is that changes to the base coordinates and the 
base pyramid dimensions are of such great influence that ending up in a totally different area of the solution 
space is easily achieved. While this is great in the beginning of the algorithm, when the solution spaced needs to 
be explored quickly, it can cause overmutation that leads away from good solutions near the end of the 
optimising process. Note that the chance of the mutations being performed to the base coordinates and base 
pyramid lengths decrease linearly over time, from 1 to 0, if chosen to be mutated. So the chance will not be 100% 
in the beginning, but if the base coordinates or base pyramid lengths are chosen to be mutated, this is not blocked 
in the beginning of the algorithm, and always blocked in the very end. 
 
Score function 
 

The score function is of great importance; it determines 
how good a certain solution is. It is a very straightforward process. 
It follows the output and input point on the HRPS, and for each 
point compares it with the desired output and input path points 
set to be optimised for. It calculates the distance between each 
corresponding point, and sums these distances. This means that a 
path that is far away from the desired path gets a high value, which 
is a worse score than a path with a low value. Note that this 
distance is used directly for the score, so it uses a linear distance 
function. Please see the Discussion section of this paper to learn 
how this could be changed or how non-linear score functions 
might be beneficial to use. Due to the already quite large scope of 
this research, the linear function was kept for sake of progress. 
 
Crowd computing 

 
 The algorithm was estimated to take around 40 seconds per generation on a standard high-end laptop. 
Optimising all 15450 cases would therefore take just over 7 times 24 hours. In order to bring this down 
significantly, the program was made suitable for 
crowd computation, splitting tasks up in chunks of 
20 cases (see figure 23). 17 volunteers were found 
to perform this task, and in only 14 hours, the 
entire simulation was completed. The results of all 
the optimisations were stored in 2 files. One file 
containing the information about the 
optimisation (figure 24) process and one 
containing the HRPS that was the final solution of 
the optimisation. Not only the result of each 
generation was stored, but also information about 
the runtime (depending on the computer it was 
run on), the uniqueness of solutions in the 
generation (duplicates can happen when some 

Figure 23: The contributors were notified about the 

process on their computer by this information screen. 

Figure 24: The information file about one optimization. 
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HRPS’es are much better than the rest in the generation and therefore will be chosen very often for reproduction 
to the next generation), and the average score of a generation. This information is used in the results section of 
this research to compare sections of the classification. 

 
Analysing the results 
 

In order to adequately analyse all results, a program was created that cycles through all the result files 
and stores all information in a instance of a programmatical class. Another class was created to store 10 results 
at once, in order to analyse average results per case number. On some results, some low-pass filtering has been 
done to reduce noise, using a moving average filter with an empirically determined filter extent of 18 in both 
directions. 
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Results 
 

Classification simulation results 
 

Iterating through all the result files, point cloud graphs have been produced to give a quick overview of 
the results. Figure 25 presents all the 15450 cases best scores against their average scores in the last generation. 
A centroid can be seen towards the left bottom of the graph, where both scores and average scores are relatively 

good. Also, a clear diagonal split can be seen, beneath which 
no points are plotted. This is a result of the average score of 
a generation never being able to be lower than the best score 
of a generation. Figure 26 gives an overview of the spread of 
the uniqueness of solutions in the last generation. Again, a 
centroid can be observed, this time towars the left top of the 
cloud. 

Figure 27 presents the run time for each case versus 
the (best) score. Important to note for this graph is that the 
results are influenced by which computer ran the cases, as 
some computer systems proved to be faster in finalising a set 
than others, this graph might be skewed. However, a 
centroid towards the left bottom can be observed, and an 
average absence of solutions that both have a large score 
and a large run time. 

 
Figure 28  shows all the score of all 15450 cases against their 
case number index, 0 to 1544 (1545 total). Groups with 
similar scores or similar spread can be observed.  

Figure 29 shows the same set, but with a black line 
following the average of the 10 subcases per category. 

Figure 25: Average score versus best score. The clear 

diagonal line split can be explained by the fact that the 

average score can never be better (lower) than the best 

score from a generation. For visual reference, the 

diagonal is depicted as well. 

Figure 26: Uniqueness of the generation versus best 

score. 

Figure 27: Runtime of the versus best score. 
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Figure 30 displays information regarding the filtered average of the scores, and the red line through it is 

a low-pass filtered version, to emphasise trends. The red vertical bars represent areas of heavy change of score, 
therefore demarcating batches of equally scoring cases.  

Figure 31 depics the same filtered average line, but also shows the spread range of the scores in the last 
generation per case. One point of interested is marked, where the spread is relatively narrow around case 
number 570. Also, a relatively bad scoring area can be seen around case 1180. Moreover, the overal trend seems 
to be that the low-indexed cases seem to perform better or at least less inconsistent than the higher cases 
(remember that low values indicate better scores). 

Figure 28: All cases best score against their case number. 

Groups can clearly be seen. 

Figure 29: Average of al 10 subcases per case against 

their case number. 

Figure 30: The average of all 10 subcases versus the case 

number, but with an applied moving average filter width 

of 18 (to both sides). Areas of heavy increase or decrease 

are demarcated with red vertical bars. These are border 

batches of cases with similar results. 

Figure 31: The average of all 10 subcases versus the case 

number, but with an applied moving average filter width 

of 18 (to both sides). The green area shows the height of 

the score range in which scores were found in the last 

generation. 
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For this following section, please 
refer back to figure 20, as the same 
symbols and terms have been used to 
indicate cases and subsets. Figure 32 to 
figure 38 show comparisons between 
different subsets of the full dataset of 
15450 cases.  

The orange bars represent the 
input paths, purple represents the output 
paths. The numbers  under the zero-line 
represent the amount of cases processed 
with the condition stated. The 
height of the bars represent the 
average score of all the particular 
subsets. In figure 32, all cases are 
summarised by their dimension. 
The difference in amount of 
subcases in the 2-D category in 
comparison to the 1-D or 3-D 
cases can clearly be 
distinguished. 

Figure 33 displays how 
the subcategories of the different 
path spacings compare to each 
other. A relatively good score 
average has been found for 

accelerating curves, while decelerating 
curves on average have a worse score. The 
accelerating curves have a better score than 
the constant spaced curves. Note that for 
reciprocal spacings, only an output bar is 
given, as in this research, input paths with a 
reciprocal nature have not been considered. 

 
The 5 subcases for the 2-D domain 

are shown in figure 34. The subcategory of 
the circular paths (B) with a circle angle of 
more than 2π has a significantly worse score, 
both for the input and the output situations. 
Also,  the subcategory of the static points 

Figure 32: Comparison graph to analyse the differences between the sets of the 

dimensionally different paths. Orange for input, purple for output. The number under the line represents 

amount of cases (linked to bar width). The bar height represents average score of this case. 

Figure 33: Comparison graph to analyse the differences between the sets of the distributional-

wise different paths. Orange for input, purple for output. The number under the line represents amount of cases 

(linked to bar width). The bar height represents average score of this case. 

Figure 34: Comparison graph to analyse the differences between the sets of the different 2 dimensional paths. Orange for input, purple for 

output. The number under the line represents amount of cases (linked to bar width). The bar height represents average score of this case. 

Figure 35: Comparison graph to analyse the differences between the 

sets of the different oriented high-order polynomial paths. Orange for 

input, purple for output. The number under the line represents amount of cases (linked 

to bar width). The bar height represents average score of this case. 
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only has an output bar, since there are no cases with a static point as an input point for this research. In figure 
35, a deeper subcategory is explored, that of the differently oriented polynomials within the 2-D category. They 
do seem to perform relatively equal, although a slight advantage for horizontally developing polynomials seems 
to be present. 

 Figure 36 summarises how the 
different 1 dimensional cases compare. 
Note that for the y-axis, there are 
neither input cases nor output cases. 
This is the result of the selective 
classification, where duplicates were 
removed as much as possible. Please 
see appendix B8 to read more about 
this. Figure 37 shows the two 3 
dimensional subsets, where the output 
curves have a slight improvement over 
the input curves. 
 Finally, figure 38 displays how the 
2 dimensional cases compare. Again, no 
data was generated for the XZ plane, as 
a result of eliminating duplicate cases. 
  

Figure 36: Comparison graph to analyse the differences between the 1 

dimensional paths. Orange for input, purple for output. The number under the line 

represents amount of cases (linked to bar width). The bar height represents average 

score of this case. 

Figure 37: Comparison graph to analyse the 

differences between the 3 dimensional paths. 
Orange for input, purple for output. The number under 

the line represents amount of cases (linked to bar 

width). The bar height represents average score of this 

case. 

Figure 38: Comparison graph to analyse the differences between the 2 

dimensionally oriented paths. Orange for input, purple for output. The number 

under the line represents amount of cases (linked to bar width). The bar height 

represents average score of this case. 
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Discussion 

In this section, the results will be discussed and interpreted. First, the graphs as shown in the results 

section will be reviewed. Then, some more detailed information about some interesting cases will be 

highlighted. Finally, recommendations and suggestions for follow-up work will be given. 

Discussion about the results 
 

 In figure 25, the centroid clearly lies within the bottom left side of the point cloud. This indicates 
that relatively more good to average solutions were found than average to bad solutions. At the far left bottom, 
a larger space between the diagonal and the cloud can be seen. This means that for really good scores, the 
average stayed a bit higher and didn’t come down as well. Figure 27 shows similar results, but one interesting 
fact here is that the best scores were on average found with lower run times. This could be explained by the fact 
that with a relatively well-scoring random starting generation, the optimiser can iterate through the generations 
more easily, which is substantiated by the fact that relatively more low uniqueness was found near better scoring 
functions (figure 26). On the other hand, there are more low scoring solutions than there are high scoring ones, 
so naturally more density is expected towards the low end of the scores in the uniqueness graph. 

In figure 28, some clearly different bands can be observed. Upon inspection of the indices of these 
bands, the well scoring cases seem be grouped around 3 cases, polynomials, semicircular shapes and spirals. In 
figure 34, this is also seen from the bars. Only the circular shapes with an angle larger than 2π seemed to be 
scoring significantly worse. From figure 30 and 31 however, the worse scoring cases seemed to be also grouped 
around 3d shapes. 

The fact that circular shapes or round shapes in 
general seem to perform good, makes sense. The nature of 
the origami structures as approached in this paper all 
contain a rotating planes in the base pyramid. One can 
imagine that transforming this motion with multiple 
additions into another rotating motion could be easier than 
making straight line mechanisms out of them. In figure 39, 
we can see a solution for a linear input motion with a linear 
path distribution and a semicircular output motion with a 
linear path distribution, with its plane perpendicular to the 
input paths direction. With a result of 72.44, the optimiser 
approached the curved output relatively well, but the input 
motion still is a circular shape, although located in the 
middle of the input line, as that is where this path would get 
the highest score. We do see though that the algorithm 
tried to make the circular shape a compound shape, by 
using 2 tristructs for the input arm, and a single one for the output arm. This is quite interesting, as we know that 
with more tristructs, more compound and complex shapes can be achieved. 

 
Moreover, figures 32 to 38 show us that there is quite some distinction between cases, but that mostly 

it doesn’t matter too much if a shape is an input or an output path, as most of the bars have a similar height 
within one case compared to other cases. This can be seen in figure 33 for example, where it becomes clear that 
accelerating curves were significantly easier to solve for than for decelerating curves. Accelerating curves 
performed even better than constant curves. 

Figure 32 shows us that the bigger the data set, the closer the input and output scores for one subcase 
seem to become. The large amount of cases in the 2-D domain originates from the fact that there are 5 subcases 
for each of the plane orientations (see figure 20), and for the high order polynomial subcase, there are 3 more 
subcategories. In other words, the 2-D domain, and specifically polynomials might have been a bit overpopulated 
in the dataset. This might explain why the bars for 2-D situations always seem to be more equal than in the other 
cases, where more difference between input and output variants of the same curve can be seen. The 3 
subcategories for polynomials however seem to perform quite equal, which means that no matter the 
orientation of the polynomial, the optimiser handles it equally well. 

Figure 39: Linear input to a semi-circular output, 

both with a linear path distribution. Score of 72.44. 
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Highlighted cases 
 
 An interesting case that has been quite well optimised 
is the one where 2 half-circles were placed on perpendicular 
intersecting planes, see figure 40 and figure 41. With a score of 
43.94, this solution is quite good, as can be seen from the fact 
that both the input line and output line are followed quite 
closely. Also, note that in figure 40, a highly elegant solution is 
found using only a singular tristruct for both the input and the 
output side, which makes this solution quite robust.  

The same problem has been solved differently in figure 
41, where bye eye the curve seems to be followed more closely, 
but the score is almost 20% worse. Note that in this solution, 
the algorithm used 2 tristructs for the output curve, and still a 
single tristruct for the input curve. Also note that for both 
solutions, the range of the development angle as indicated by 
the bar on the right, covers quite a large portion of the total 
movement range. Some solutions only use a very small portion 
of this range, to almost generate a singular point that is quite 
close to the average shape of the input and/or output path. The 
examples from figure 40 and 41 therefore are quite elegant and 
physically well-constructable. 

 
In figure 42, a different transmission was optimised for 

using, and in figure 43, the algorithm process is visualised. 
Interesting to note is that the final generation apparently did 
not contain the overall best solution, which can be seen in 
figure 43C to be found around 3/4th of the process. But due to 
the recombination and mutation in every step, sometimes 
worse scores are the result. In general, the shapes seem to 
follow a asymptotical shape. 

 

Recommendations and future work 
 
 There are some factors and strategies used in the 
optimiser that could be revisited for further improvement. For 
example, the linear decrease of the mutation rate for the base 
pyramid and base coordinates could be changed to a different 
shape decrease, or even increase after long periods of minimal 
change. This simulated annealing type of strategy could further 
improve the evolutionary algorithm. 
 Another large influence is the score function. As 
described in the method section, the score function is based on 
the absolute distance of each point in the path with respect of 
each point in the path that is optimised towards. The distance 
however could be used in a non-linear way, for example with 
an exponential relation. This way, further away solutions will 
be punished harder than closeby solutions. Although this might improve optimisation speed, it might reduce 
precision solutions. Also, a hybrid score function could be adapted, where this relation within the score function 
changes over time or depends on the score that was previously found. 
 Also, various methods could be further explored to refine the way the solution are recombined and 
mutated. The principles shown in this research could be seen as a feasibility study that could lead into creating 
an actual software tool that creates kinematic transmissions using hinging rigid panel structures. 
 
  

Figure 42: Score of 36.4. 

Figure 41: Score of 52.7. 

Figure 40: Score of 43.94. 
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Figure 43: Optimisation process for a 1000 generations, population size of 200, 200 mutations per generation evolutionary algorithm. Graph A 

represents the average score versus the amount of iterations. Graph B shows the uniqueness of the population, and graph C displays the final score. 
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Conclusion 

This research focuses on optimizing Hinging Rigid Panel Structures (HRPS) to be used as kinematic 
transmissions between various input and output relations, using an evolutionary algorithm. Hinging Rigid Panel 
Structures were chosen over conventional origami, because the latter is restricted to be always developable from 
a single flat sheet of planar material. A method was created using units which properties could later easily be 
programmatically altered by an algorithm. The HRPS consisted out of a base with a pyramid that has one side 
fixed to the world reference frame, and to specific places on this pyramid, sets of triangles called tristructs were 
placed. Using this method, a HRPS was modularly built up, and could be easily altered. A file format was created 
that allowed the software to easily work with these HRPS’s. 

To adequately analyse the effectiveness of the evolutionary algorithm, a classification was created 
(figure 20) that enabled the results to be split out in their different subclasses and to analyse which subclasses 
performed better. The evolutionary algorithm made use of generations with a set size, that were filled with 
HRPS’s that attempted to solve the problem at hand, and were given a score each. From this generation, new 
HRPS’s were created by selecting parents, recombining their properties and mutating them with a random 
chance and a random amount, also depending on how many generations already had passed. After a set amount 
of generations the best result was selected to be the final solution of the optimisation. The large data set that 
resulted from the classification earlier mentioned, was computed using crowd computation, where 17 
contributors worked together to run the entire dataset in under 14 hours. 

Found was that certain input-output relations were approached better than others, and interpretations 
were given on why these specific cases were easier to optimise for. Curved paths seemed to be easier approached 
by HRPS’s than straight lines, which is a conclusion backed by literature and previous research. Circular motions 
or curved motions within a plane were better approached. 

This research could certainly be used as a basis for further investigation into the field of kinematic 
origami. The results are promising, and with more research into optimising strategies and further work into 
subproblems like alternative parent recombination, the exact results can be improved even further. Hopefully, 
this research will lower the threshold for future researchers to start investigating the field of origami in motion 
more and more. It is not just the factual results that look promising and make this topic one that needs more 
active research. The beauty and simplicity of origami in motion is something that should have already been widely 
adopted in mechanical engineering.  
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Appendix A: Exploring Neural Networks 

 

1. Neural Networks – a brief introduction 
 

To gain understanding on how to implement neural network reinforcement learning to this study, 
research was performed into how neural networks function in general, with an evolutionary algorithm to evolve 
them as focal point. 

Neural networks are build up out of unit 
elements, called neurons. Each neuron is part of a 
(often vertically depicted) layer. The first layer is 
called the input layer, the last one the output layer. 
All layers in between are called hidden layers. Each 
layer can have a different amount of neurons, and 
the choice of the amount of neurons in each layer 
is critical. According to J. Heaton [41],  from the 
Sever Institute at Washington University, there are 
two rules of thumb about how many hidden layers 
one should use to prevent underfitting (using too 
little neurons and not being able to detect signals 
in complicated data sets) and overfitting (having so 
much information capacity that the amount of 
training data is not sufficient to train all neurons 
adequately). These two rules state: 

 
The size of every hidden layer should: 

• be in between the size of the input layer and the size of the output layer. 

• be less than twice the size of the input layer. 
 

The amount of hidden layers is another interesting property. According to J. Heaton, single hidden layer 
neural networks are capable of universal approximations, being able of approximating continuous functions. 
Since there was no good way to train multi-hidden-layer neural networks at that time, this was the standard up 
till 2006, when Hinton, Osindero and Teh proposed that using 
multiple hidden layers could be done, creating so-called deep 
neural networks, with their new “fast, greedy algorithm”. They 
showed examples of being able to read handwritten digits using 
a three hidden layered neural network [42]. 

In short, one can conclude that using zero hidden layers, 
a neural network can only be able to represent linear separable 
functions or decisions. With one hidden layer, it will be able to 
approximate any function that contains continuous mapping in 
between two finite states. With 2 hidden layers, it will be able to 
represent any smooth mapping to any accuracy, and with more 
than two hidden layers, it is able to learn even complex 
representations, by J. Heaton described as automatic feature 
engineering. This is something that is attractive to use when 
dealing with the complexity of three-dimensional origami 
kinematics. 
 

Now, a brief explanation will follow on how neural 
networks work in detail. Please use figure 44 and 45 as a visual 
reference. In a neural network, the neurons in column 0 are the 
so-called input neurons. They are assigned a quantified value 

Figure 44: Graphical representation of a neural network with r rows and 

k columns. 

Figure 45: Graphical representation of a single 

neuron in a neural network. Bias value b and input 

connection values c are depicted. 
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from the physical problem. Every neuron stores one value, for 
the non-input neurons that is calculated as the sum of all input 
connections multiplied by their respective source neurons 
values. Every neuron has r inputs which are to be multiplied with 
their corresponding connection values c, but also, every neuron 
has a bias value b that is added to this sum before its value is 
calculated by putting this result in a so-called activation function. 
Often, a Sigmoid function (figure 46) is used, a curve to map all 
values back into a reach from 0 to 1. The neuron value, which will 
be the output for the next layer, can therefore be described by: 
 

𝑛𝑥,𝑦 =  
1

1 + 𝑒∑ (𝑛𝑥−1,𝑖∗𝑐𝑥,𝑖)+𝑏𝑥,𝑦
𝑟
𝑖=0

 

 
The entire network is calculated in a forward manner 

like this, starting at the input layers and calculating all layers 
consequently until everything is updated. Once this is done, the 
output layer neurons will have values between 0 and 1. The highest valued neuron in the output layer will 
represent the decision that the neural network makes. 
 

Now the basics of a neural network are understood better, it is important to know how to potentially 
deploy these neural networks to reach our goal if this strategy is choosen: enabling the program to optimise 
origami structures to reach certain input-output motion relations, in other words, function generation. It is 
important to note that all learning of a neural network boils down to nothing more than deciding what the exact 
numbers in all the thousands of connections should be. Neural networks are designed to be able to learn how to 
solve problems by finding the best possible values for all these thousands of properties. There are generally three 
different ways to approach neural network learning [43]: Supervised learning, Unsupervised learning and 
Reinforcement learning.  

In supervised learning, one needs to feed a neural network with examples and solutions that correspond 
to these examples. This enables the computer to compare the result from its network to the actual solution. An 
often used strategy to adjust values in a neural network using these example solutions is called back propagation. 
This set of known solutions with problems, the so-called training data, is not available in the case of the origami 
transmission generation, since the best solutions are not known analytically. 

For unsupervised learning, there simply is no solution and no feedback [43]. The neural network must 
organise its connections and outputs itself, based on random decisions.  

Reinforcement learning is a special case of supervised learning. Where the supervised learning normally 
uses training data, the reinforcement learning uses a score function, which in fact is some sort of numerical 
feedback to evaluate how good the networks output is with a certain input. 
 
One of the ways to evolve the neural network and train it, is using an evolutionary. A generation should be 
created with a set amount of neural networks. They all should be used to generate an origami structure to 
attempt solving the problem at hand. Next, they all should be given a numerical score using a to be determined 
metric that represents how good a solution is (some numerical comparison of the output motion of an origami 
generated by the neural network and the asked output motion). Based on the output score, every neural network 
in the generation gets a chance to propagate, a chance to live on in the next generation. The better the output 
score, the larger the chance it gets to be selected to propagate. Next, a to be determined number of neural 
networks will be selected (the chance of being selected being the chance every neural network got from the 
scoring) to be the parent of a new neural network. Conventionally, two parents are selected for each offspring 
neural network, but this can also be a different number. From the connection values and bias values these neural 
networks store, a recombination will be generated and a new offspring neural network is created. It is important 
that there must be a chance for the new neural networks to have random mutations as well, just like in nature.  

This process of creating a new neural networks is repeated until the generation size is met. Once the 
entire new generation is created, the entire process will repeat itself. The amount of generations would have to 
be determined empirically, and investigation will have to be performed in order to choose adequate generation 
sizes, mutation rates, amount of parents and maybe most importantly: an algorithm that determines how 
multiple neural networks are recombined into one new neural network. An advantage of using an evolutionary 
algorithm to develop neural networks that are good in creating origamis to couple motions is that there can be 

Figure 46: Sigmoid function, squeezes values back 

into a range of [0, 1]. 
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solutions that cannot be easily transformed into each other. In other words, their solution space might not be 
connected through conventional heuristic approaches. With an evolutionary algorithm, solution approaches that 
seem inferior in early generations are still able to propagate through their lower chance of being selected, and 
in later generations might be of critical influence into a final neural network that could solve the problem. The 
downside of this strategy is the computational complexity it requires and the relatively architecture. 

 

2. Neural Networks – programmatical setup 
 

To explore the complexity of programming 
neural networks in Processing, a test program was 
written to setup the infrastructure behind neural 
networks and discover possible problems in an early 
stage. In this section a brief explanation of the classes 
and methods to do this will be presented. 

A class called Neuron was created to store the 
value of the neuron, its bias value, a list of input 
connection values and information about the amount of 
input connections and the layer which this neuron is 
part of. Instances of this neuron-class were used in a 
matrix within another class called NeuralNetwork. This 
class also stores information about the amount of input 
neurons it has, the amount of output neurons it has, the 
amount of neurons per hidden layer and the amount of 
hidden layers. While setting up this matrix, which is a 
direct representation of the neural network as depicted 
in figure 47, the neural network is being calculated 
through, using the activation function (squeeze 
function) as described earlier. This calculation is done in 
a loop, and done “chronologically”, top-down and from 
left to right, in order to guarantee correct use of all the 
previous layers. The entire class structure as described 
above, including graphical methods to display the network as depicted, takes up a total of 160 lines of code, 
which seems quite compact. 

Concluding, it is quite simple to get the neural network to be characterised programmatically, which 
means it could be used in the research. 
 

 
 

 

  

Figure 47: Graphical representation of a neural 

network with 20 input neurons, 7 output neurons, 

5 hidden layers and 10 neurons per hidden layer. 

The yellow-red gradient represents the value of the 

connections between -1 and 1. 



36 
 

 
 

Appendix B: Details about HRPS  
 

1. Degrees of freedom of an HRPS 
 

An important property of the chosen structure addition method is that the single degree of freedom is 
always preserved, no matter how many TriStructs are added. In this appendix, the reasoning behind the formula 
that was given in the method section will be elaborated upon in more detail: 
 

𝐷𝑂𝐹 = 6 • (5 + 3 • 𝑛) − 3 • (8 + 5 • 𝑛)  − (5 + 3 • 𝑛) = 1  
 

This formula can easily be understood 
when an explanatory image is used, see figure 48. 
The model is built-up out of rods that are 
connected together via ball-joints, which all have 3 
degrees of freedom (all rotations but no 
translations), and therefore also 3 constraints. 
When only the base pyramid (gray) is considered, 
the structure has 1 base plate (GND) and 5 bodies. 
Each of these 5 bodies has 6 degrees of freedom 
when unconstrained, so a total of 30 degrees of 
freedom are counted. In the system, there are 8 
ball joint connections visible (some ball joints 
connect to multiple rods, each of these connections 
counts as one joint), and therefore degrees of 
freedom are taken away. Subtracting these from 
the amount of degrees of freedom results in a 
system with 6 degrees of freedom. Using this 
method however, all the rods can still rotate freely 
around their own longitudinal axes, which in the real system is not the case. The last term in the formula accounts 
for these free motions that have to be ignored, ending up with a single degree of freedom. When adding arms 
with several tristructs to the system, the mechanism still holds the single degree of freedom. Each tristructs 
brings 3 bodies, but also brings 5 joints to the equation, as is represented with the n-terms in the formula. For a 
total of 2 additions as depicted in figure 48, the formula equates back to 6*11 – 3*18 – 11 = 1. Also, if you simply 
work out the equation, n disappears altogether and the equation always equals 1: 
 

𝐷𝑂𝐹 = 6 • (5 + 3 • 𝑛) − 3 • (8 + 5 • 𝑛)  − (5 + 3 • 𝑛) 
= 30 + 18 • 𝑛 − 24 − 15 • 𝑛 − 5 − 3 • 𝑛 
= 30 − 24 − 5 + 0 • 𝑛 
= 1 

 

2. Multilateration in code 
 

Performing multilateration in code is done using a vectoral procedure, following a well-known method by 
Fang [44], which boils down to finding the intersections of three spheres, which always results in 2 or less points. 
The fact that 2 points will often be found means that the code needed a way to decide which point to return. 
This is programmatically done using an extra statement when the trilateration is requested. A simple boolean 
value switches the method to return the first or the second solution. In case of the base pyramid, which is built 
up using 1 base triangle (and after finding the second triangle with the developability angle, the third and fourth 
triangles can be found using a single trilateration), the return point is always the same one, i.e. the boolean is 
always in the same state. For the input arm, after observation, it was found that this boolean should always be 
set to true, the output arm always needs the opposite state for it to work. This results out of the way the 
coordinate systems were set up and the order of points that are being fed in the trilateration method. Figure 49 
provides a graphical overview of what a trilateration using 3 spheres looks like. 

Figure 48: A possible HRPS with a base pyramid (gray) and two arms, 

each 1 tristruct long. Filling in the formula presented, proves the 

structure will always be restricted to 1 degree of freedom. 
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3. Checking solvability of the HRPS 
 

The programmatical HRPS class also contains functionality to remove the latest added tristructs, to deep 
copy the system, to recalculate the structure in case any length value in the system has been changed, and a set 
of methods to change to different view options. One of the most important functions however is the option to 
generate the paths all planes endpoints travel along when iterating through the development of the HRPS. By 
setting the developability to 0 and increasing it step-wise with a set amount of steps (the movement resolution), 
every step generates a set of points that are the midpoints of all the planes and the endpoint of the 2 arms. These 
points can be stored in lists. 
 

It is important to note that some developabilities for certain HRPSs result in unsolvable geometries. More 
specifically, the trilateration of certain tristructs, which happens through finding the common points of 3 spheres 
(see figure 49) will be unsolvable. If this trilateration fails while recalculating one of the developability steps, a 
programmatic flag is raised and a list is created that indicates for which developability steps the structure is 
physically possible. Physically, this would mean the system can be created without stretching any of the planes 
out of its exact shape as defined. This (un)creatability does not take into account collisions of different planes 
however. Collision detection is built in the program as well, see appendix B4. 
 

In order to display and calculate the motion, the program needs to find where the longest continuous list of 
solvable development steps is. In order to do this, first, the entire development range is tested. Then, the longest 
range of solvable steps is taken, and again run in a higher resolution. Note that this operation will be performed 
thousands of times while optimising the structure using algorithms, therefore it is of utmost importance that the 
algorithm filtering out the longest continuous section of developable steps is coded very efficiently. See figure 
50 for more information about how this was done. 

 
 
 
 
 

Figure 49: It can be quite hard to see where the intersection points of 3 spheres lie (A). By first finding the intersection circle between 

two of them (B), it becomes more obvious what is happening, and why there are almost always 2 intersection points (C). 

Figure 50: In order to minimize time it takes to find the longest continuous section of possible developability steps, a special method 

is applied. In this figure, the letters represent the search order the code applies to the array with booleans that represent the various 

developability step solvabilities. It starts by checking the first element, and once it has found a section with continuous positive 

values, it will step through the array by that amount. If it finds a negative value at the landing position, it will just skip one, but if it 

finds a positive value, the section will be explored, as depicted above. This way, large sections can be skipped, and only a fraction of 

the array needs to be analysed. Obviously, in the image above the sections are very short and so the efficiency benefits are small, but 

if the array contains large sections that are still too small, they will be skipped entirely. 
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4. Collision detection triangles and line sections in 3D space 
 

To represent an actual physically possible structure, 
collision detection was implemented, to prevent triangles from 
glitching through each other and creating infeasible solutions. 
This was done by checking each side of every triangle against 
each triangle in the system, excluding cases where a line is part 
of the triangle or a line directly connects to a corner of the 
triangle. 
 

It was done by using a series of vector calculations to 
first find the intersection point of the extended line and the 
extended plane, then check if the point on the plane that has 
been found lies within the triangle that is being checked. See 
figure 51 for a graphical explanation of this method. To simply 
do this, vectors are being created between the found point and 
the corners of the triangle, called point k. The 3d line equation 
for line AB is used to check if this point lies between A and B, 
and if so, the check is performed if the summation of the three 
angles between the three vectors from each point of the 
triangle to the newly created point k is less than 2π radians. 
 

5. Prescribed Displacement Patterns Over Prescribed Curves 

 
As described in the Method section of this paper, the displacement pattern over the to be followed 

paths is not always equal to the one that would naturally follow from the formula or method that underlies the 
various motion curves. While most shapes (line, circle, spiral, helix) have an analytical way to find equally spaced 
points, Bezier curves and high order polynomials are more difficult.  

Using Casteljaus method, one can determine the length of a Bezier curve using infinitesimal small 
sections. If this full length of a path is known, it is not difficult to find a distribution over this curve by first 
calculating how large each piece of the distribution should be (depending on the distribution and the just found 
path length), and then another iteration can be performed to find a piece of the path with requested length. 
Doing this for each of the points of the distribution, the location of all points over this curve can be found. For 
polynomials the same strategy can be applied, only using an integral to determine path length. 

 
6. Bezier Curves 

 
One of the subclasses of the 3d category of the classification comprises the widely used quadratic Bezier 

curves were used. These type of curves are defined by two anchor points and two control points. To get the exact 
shape of the spline that is defined by them, one can use Casteljaus method. This method describes a way to get 
an exact point on the spline, and is even applicable for 3D situations, as explained in figure 53. However, for 
defining the entire spline as a set of a set amount of points, an iteration needs to be performed, to get all the 
points through Casteljau constructions, as depicted in figure 52.  

Figure 51: Line AB and triangle PQR in 3d space 

intersect if and only if 2 conditions are met. First, 

the variable that represent position along line AB 

needs to be within the range of 0 to 1, i.e. the 

plane intersects the line between point A and B, 

and secondly, the sum of α1, α2 and α3 has to be 

smaller than 360 degrees or 2π. In this case, the 

first condition is not met, but the second is. 

Therefore the line section does not intersect with 

the plane. 
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One might want to add more construction 
points, to create more complex paths. To allow this, 
multiple quadratic Bezier segments can be connected, 
and their order and connectivity is stored in a list. To 
guarantee continuity, the two control points on either 
side of the connecting point, need to be mirrored 
through the point that connects the two segments. 
More precisely, the direction needs to be mirrored but 
the distance to the control point doesn’t influence 
continuity. As the spline always is tangent to the line 
between the control point and the end point, it is 
always continuous as long as the connection point and 
the two control points on either side lie in one line. 

In order to compare a spline with a set of 
points that the midpoint of a plane of the HRPS has 
moved through, this compound Bezier curve set needs 
to be split into an equal amount of points as the planes 
movement point list contains. This is done with 
Casteljau over the various segments a compound Bezier 
curve exists out of. Note that the distance between the 
consecutive points found using Casteljaus method in 
figure 53 are not spaced equal-distance along the 
spline. Since X in figure 52b is increased linearly from 0 
to 1 and there is no linear coupling between this 
variable X and the position on the Bezier curve, the 
distance between the points will never be equally 
spaced over the curve. This is an issue since the points 
will be used to compare the HRPSs movement paths to. 
The distance between them corresponds to the velocity 
the HRPS planes midpoint moves with. To solve this 
problem, the spline can be heavily oversampled, then 
this samples can be selectively erased again, to end up 
with samples that are all equal distance away, or at least 
substantially more equally spaced. Of course resolution 
trade-offs have to be made here to keep the efficiency 
of the code high. 
  

Figure 52: Splitting lines A, B and C in equal ratios gives 3 new 

control points. Connect these, and split them in the same ratio 

again, and again connecting these 2 points up gives a single 

line, that, if being split again in the same ratio returns a point 

exactly on the spline. In more exact terms, choosing value X in 

image B to be anywhere between 0 and 1 returns a point on 

the spline. In subfigure C, point P is a mirror of point Q, through 

point O. The direction is important, but the length of OP can be 

any length. 

Figure 53: A spline consisting of three quadratic Bezier curve 

splines in 3D, divided in 60 pieces. In this case, 57 Casteljau 

constructions are drawn, since the 4 start and end points of the 

3 curves are known. Continuity is guaranteed since the 

connecting point and the surrounding control points lie on a 

straight line. 
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7. Editing Curves With A GUI 
 

To accommodate all options and sliders for adjusting the curves, a collapsible menu structure was used. 
First, one chooses the Shape or the Velocity (displacement distribution) button, depending on what needs 
adjustment. If one chooses the Velocity option, a second selection menu appears (Figure 54a), in which the type 

of distribution curve can be chosen, with an adequate slider to provide adjustability. If however the Shape button 
is selected, one gets to choose from a dimension menu, and under the different menus are different options and 
sliders to set and adjust all necessary parameters. Near the top of this pop up menu, there is the option to Set 
the currently created motion path and distribution to either the input or output curve, again depending on which 
of the Input and Output buttons is currently selected. Also, there are some visual options and saving/loading 
options. 

 

8. Breakdown of the 1545 cases 
 

The classification as shown in figure 20 has 136 subcategories. If this number would be squared, you 
end up with over 18 thousand cases. This would result in a very big data set, and a lot of duplicates being 
introduced. For example, the kinematic transmission of a straight line in x direction to a straight line in x direction 
would be the same as a straight line in y direction to a straight line in y direction, if the paths were followed in 
relatively the same direction with respect to each other. This minefield of duplicates and unnecessary 
combinations has carefully been navigated, and a reduction was applied, leaving less than 10% of the original 
amount of cases necessary, while still fully exploring all mentioned transmissions. The full dataset was 
approached as being 11 separate cases. These are explained in the section below: 

 

• 1d to 1d transmissions (36 cases) 
- For the input path, only a line along the x axis is considered. This has 3 possible path distributions, 

as a reciprocal distribution is used for outputs only. 
- For the output path, three options are possible. A line parallel to the input, perpendicular to the 

input (so either along the y axis or the z axis), and a line on a random plane. Each of these three 
options has 4 possible displacement distributions, so 12 possible output lines are considered. 

- Multiplying the 3 input options with the 12 output options results in 36 options. 

Figure 54: A: Manipulating the curves displacement distribution to be of decelerating nature. B: A randomised parameter adjustment 

slider deck to set a Bezier curve by its 4 anchor and control points in 3D space (see appendix B6). C: A randomised parameter 

adjustment slider deck for polynomials. 
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• 1d to 2d transmissions (153 cases) 
- For the input path, only a line along the x axis is considered. This has 3 possible path distributions, 

as a reciprocal distribution is used for outputs only. 
- For the output path, 3 planes are considered, each plane being able to carry 4 output motions (semi-

circular, rotational, spiral, polynomial) with 4 distributions, and the static option has only 1 motion, 
as different displacement options do not change that single point. This results in 3 times 16 plus 3 
times 1 equals 51 options. 

- Multiplying the 3 input options with the 51 output options results in 153 options. 
 

• 1d to 3d transmissions (24 cases) 
- For the input path, only a line along the x axis is considered. This has 3 possible path distributions, 

as a reciprocal distribution is used for outputs only. 
- For the output path, 2 shapes are considered, each having 4 possible distribution functions. This 

results in 8 possibilities. 
- Multiplying the 3 input options with the 8 output options results in 24 options. 

 

• 2d non-polynomial to 2d non-polynomial transmissions (351 cases) 
- For the input path, only a single plane parallel to the XY plane is considered. On this plane there are 

the 3 options that are non-polynomial and not static as it is an input. Each of this 3 options has 3 
possible displacement distributions, so a total of 9 input paths is possible. 

- For the output path, 3 planes are considered, each plane being able to carry 3 output motions (semi-
circular, rotational, spiral) with 4 distributions, and the static option has only 1 motion, as different 
displacement options do not change that single point. This results in 3 times 12 plus 3 times 1 equals 
39 options. 

- Multiplying the 9 input options with the 39 output options results in 351 options. 
 

• 2d non-polynomial to 2d polynomial transmissions (324 cases) 
- For the input path, only a single plane parallel to the XY plane is considered. On this plane there are 

the 3 options that are non-polynomial and not static as it is an input. Each of this 3 options has 3 
possible displacement distributions, so a total of 9 input paths is possible. 

- For the output path, 3 planes are considered, each plane being able to carry 3 output motions (the 
three different orientations for the polynomials). Each has the option of the 4 displacement 
distributions. This results in 3 times 12 equals 36 options. 

- Multiplying the 9 input options with the 36 output options results in 324 options. 
 

• 2d polynomial to 2d non-polynomial transmissions (351 cases) 
- For the input path, only a single plane parallel to the XY plane is considered. On this plane there are 

the 3 options that are the three different orientations for the polynomials. Each of this 3 options 
has 3 possible displacement distributions, so a total of 9 input paths is possible. 

- For the output path, 3 planes are considered, each plane being able to carry 3 output motions (semi-
circular, rotational, spiral) with 4 distributions, and the static option has only 1 motion, as different 
displacement options do not change that single point. This results in 3 times 12 plus 3 times 1 equals 
39 options. 

- Multiplying the 9 input options with the 39 output options results in 351 options. 
 

• 2d polynomial to 2d polynomial transmissions (108) 
- For the input path, only a single plane parallel to the XY plane is considered. On this plane, there is 

only 1 necessary polynomial to consider, because otherwise duplicates would be introduces. It has 
3 possible displacement distributions, so a total of 3 input paths is possible. 

- For the output path, 3 planes are considered, each plane being able to carry 3 output motions (the 
three different orientations for the polynomials). Each has the option of the 4 displacement 
distributions. This results in 3 times 12 equals 36 options. 

- Multiplying the 3 input options with the 36 output options results in 108 options. 
 

• 2d non-polynomial to 3d transmissions (72 cases) 
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- For the input path, only a single plane parallel to the XY plane is considered. On this plane there are 
the 3 options that are non-polynomial and not static as it is an input. Each of this 3 options has 3 
possible displacement distributions, so a total of 9 input paths is possible. 

- For the output path, 2 shapes are considered, each having 4 possible distribution functions. This 
results in 8 possibilities. 

- Multiplying the 9 input options with the 8 output options results in 72 options. 
 

• 2d polynomial to 3d transmissions (72 cases) 
- For the input path, only a single plane parallel to the XY plane is considered. On this plane there are 

the 3 options that are the three different orientations for the polynomials. Each of this 3 options 
has 3 possible displacement distributions, so a total of 9 input paths is possible. 

- For the output path, 2 shapes are considered, each having 4 possible distribution functions. This 
results in 8 possibilities. 

- Multiplying the 9 input options with the 8 output options results in 72 options. 
 

• 3d to 3d transmissions (48 cases) 
- For the input path, 2 shapes are considered, each having 3 possible distribution functions, as a static 

point is not considered for inputs. This results in 6 possibilities. 
- For the output path, 2 shapes are considered, each having 4 possible distribution functions. This 

results in 8 possibilities. 
- Multiplying the 6 input options with the 8 output options results in 48 options. 

 

• 3d to 2d static transmissions (6) cases 
- For the input path, 2 shapes are considered, each having 3 possible distribution functions, as a static 

point is not considered for inputs. This results in 6 possibilities. 
- For the output points, only a single option is possible, a static point. 
- Multiplying the 6 input options with the single output option results in 6 options. 

 
This brings the total amount of kinematic transmissions to 1545 cases. 


