
 
 

Delft University of Technology

Similarity-driven topology finding of surface patterns for structural design

Oval, R.; Mesnil, R.; Van Mele, T.; Baverel, O.; Block, P.

DOI
10.1016/j.cad.2024.103751
Publication date
2024
Document Version
Final published version
Published in
CAD Computer Aided Design

Citation (APA)
Oval, R., Mesnil, R., Van Mele, T., Baverel, O., & Block, P. (2024). Similarity-driven topology finding of
surface patterns for structural design. CAD Computer Aided Design, 176, Article 103751.
https://doi.org/10.1016/j.cad.2024.103751

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.cad.2024.103751
https://doi.org/10.1016/j.cad.2024.103751


Computer-Aided Design 176 (2024) 103751

A
0

Contents lists available at ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

Research Paper

Similarity-driven topology finding of surface patterns for structural design
R. Oval a,b,c,∗, R. Mesnil b, T. Van Mele c, O. Baverel b, P. Block c

a Delft University of Technology, Faculty of Civil Engineering & Geosciences, Delft, The Netherlands
b Laboratoire Navier, UMR 8205, École des Ponts ParisTech, Université Gustave Eiffel, CNRS, Champs-sur-Marne, France
c ETH Zurich, Institute of Technology in Architecture, Block Research Group, Zurich, Switzerland

A R T I C L E I N F O

Keywords:
Architectural geometry
Structural topology
Computational design
Generative design
Multi-objective design
Surface structures
Discrete structures

A B S T R A C T

Structural design is a search for the best trade-off between multiple architecture, engineering, and construction
objectives, not only mechanical efficiency or construction rationality. Producing hybrid designs from single-
objective optimal designs to explore multi-objective trade-offs is common in the design of structural forms,
constrained to a single parametric design space. However, producing topological hybrids offers a more complex
challenge, as a combinatorial problem that is not encoded as a finite set of real numbers but as an unbonded
series of grammar rules. This paper presents a strategy for the generation of hybrid designs of quad-mesh
pattern topologies for surface structures. Based on a quad-mesh grammar, an algebra is introduced to measure
the distance between designs, find their similar features, and enumerate designs with different degrees of
topological similarity. Structural design applications are shown to highlight the use of topologically hybrid
designs as a surrogate for obtaining multi-objective trade-offs.
1. Introduction

1.1. Problem statement

Structural design is a challenging feat where multiple objectives
have to be met, stemming from architecture, engineering, and con-
struction. Beyond single-objective optimisation, structural designers are
after a design that offers a trade-off between the different project’s
requirements, which evolve along the design process. For instance,
between a design that is optimal for mechanical efficiency [1] and a
design that is optimal for construction rationality [2], hybrid designs
that offer performance compromises should be sought for [3]. Fig. 1
illustrates this challenge with the patterns of the waffle and isostatic
ribbed floor systems.

Parametric design allows for the production of hybrid designs by
combining the continuous-valued parameters that describe its geome-
try, as in state-of-the-art parametric shape multi-objective optimisation
strategies. Multi-objective search in architecture has been applied to
the optimisation of building physics [4] and structures [5], using
evolutionary [6] and data-driven [7] exploration. Evolutionary search
algorithms rely on operations recombining genes of the design’s geno-
type, i.e. the set of design parameters, in the search for hybrid designs
to propose different multi-objective trade-offs to the designer, forming
a Pareto front. A heuristic suggested by the study of rule-based topology
finding with self-organising maps based on design performance is that
designs with similar topologies have similar performances [8]. Finding

∗ Corresponding author at: Delft University of Technology, Faculty of Civil Engineering & Geosciences, Delft, The Netherlands.
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designs with different degrees of topological similarity should offer
different degrees of performance similarity for multi-objective design.
This assumption relaxes the problem from the downstream performance
space to the upstream topological space. However, the generation of
topologically hybrid designs is not as clearly defined as for paramet-
rically defined geometries. Indeed, topological exploration requires a
different design approach, like grammatical generative design, using a
grammar of rules [9–11], resulting in a combinatorial design space that
is challenging to explore, let alone for merging design options based
on their similarity. In continuum mechanical topology optimisation,
similarity has been integrated into solvers to inform the search [12].
Developments include reverse engineering to obtain a specific similar-
ity with regression models [13], Generative Adversarial Networks [14],
or Convolutional Neural Networks [15], informed by an input design,
potentially drawn [16], using different similarity metrics [17], and
domain clustering for modularity [18–20]. However, this approach of
topological design does not apply to structural patterns represented by
meshes as structured graphs, as opposed to surfaces or bitmaps, which
can be computed as lightweight objects independently from density
tuning and geometrical exploration.

1.2. Research objectives

This search for topological hybrids is applied to topology finding
of structured quad meshes for structural surfaces [21]. Quad meshes
vailable online 24 June 2024
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Fig. 1. The challenge of finding hybrid topological pattern designs offering
multi-objective trade-offs based on input designs derived for single-objective
performance.

Fig. 2. Approaching exploration of singularities in quad meshes via a coarse quad
mesh in black decouples topology from density and geometry. The boundaries are in
red, the singularities in pink, and the dense quad mesh in grey.

Fig. 3. The strip structure, in blue, completely defines the topology of a quad mesh
and its singularities, with nine strips from A to I here. The strip data is collected as
the lists of topologically opposite edges across the quad faces.

are natural parameterisations for the design of 2D surface patterns,
for shells, gridshells, vaults, or nets. The singularities, the irregular
vertices of the pattern, have the most significant influence on the
qualitative flow of mesh elements, and therefore on the structural
components that they represent. Topological exploration is performed
on the design space of singularities, described with coarse quad meshes,
independently from later densification and geometrical processing, a
common approach in computer graphics, as shown with the workflow
in Fig. 2.

Rule-based topology finding allows for the comprehensive explo-
ration of the singularity design space of quad meshes [22]. The gram-
mar is based on a pair of reciprocal rules that modify the topology of the
strips in the quad mesh. These strips are formed by a continuous series
of quad faces, which fully describe the topology of the quad mesh, as
shown in Fig. 3. Strip-based modelling already found applications for
digital [23,24] or physical [25,26] approaches, also referred to as loops,
rings, or chords.

These strips are modified through polyedges, their dual counterpart,
which consist of a continuous series of mesh edges. Through the
addition of strips, by inserting it along a polyedge, and deletion of
strips, by collapsing them into a polyedge, as the examples shown in
Fig. 4, the topology of the quad mesh can be modified, editing its set of
singularities and the flow of mesh elements. Other structured patterns
can be obtained by applying Conway operators or other transformations
2

Fig. 4. Adding a strip along the blue polyedge and deleting the two green strips using
the two-rule grammar changes the connectivity of the singularities of the coarse mesh.

by considering the quad mesh as a parameterisation of the surface, not
the pattern itself [27–29].

Through open exploration, the designer can search for the rules that
yield topologies with strips that improve performance, however, relying
on the designer’s experience [30]. Through the generation of hybrid
designs based on the strip description of quad meshes and the editing
grammar rules, design space exploration can be informed by initial
designs, stemming from intuition, experience, or any other exploration
and optimisation strategies.

1.3. Contributions

This paper introduces similarity-driven topology finding, focusing on
uad-mesh patterns for surface structures, as a strategy to produce topo-
ogical hybrids with different degrees of similarity with input designs,
esulting in an algebra with novel mesh operators. Section 2 develops
he methodology: clarifies the topological equality between two quad
eshes based on their strip structure; defines a topological distance

etween two quad meshes to assess their similarity; implements an
lgorithm for computing the distance along with the dissimilar strips
o modify; introduces the intersection submesh and union supermesh

objects; and develops a strategy to generate hybrid quad meshes sharing
different degrees of similarity with a set of input quad meshes to
combine. Section 3 illustrates how to apply this approach to similarity-
driven topology finding of designs based on single-objective heuristic
or optimal quad meshes to perform multi-objective design.

2. Methodology

In this section, the methodology for producing topological hybrid
quad meshes based on input meshes is presented, based on quad-mesh
similarity.

2.1. Mesh isomorphism

Mesh equality, in the topological sense, is assessed based on graph
isomorphism. The algorithm of [31] for graph isomorphism is used
through its implementation in NetworkX [32].

Two graphs are isomorphic if a bijection exists that maps the
vertices of one graph to the other while preserving the edge connec-
tivity. Several bijections may exist, which will be leveraged to enrich
topological combination (Section 2.3). Fig. 5 illustrates this concept
with a graph that is isomorphic to another, through two bijections,
while not being isomorphic to another one.

The isomorphism of the meshes is based on the isomorphism of
the graphs using the mesh edges. The following approach is limited
to manifold meshes with a genus of zero, so that the graphs are planar,
i.e. can be embedded in the plane without edge crossing. First, for
a given mesh, a graph is built with the edges of the mesh. The face
connectivity data from the mesh is integrated into the graph by adding
a ‘boundary’ attribute to graph edges that correspond to boundary
mesh edges. Therefore, two meshes are isomorphic if their graphs are

isomorphic with matching ‘boundary’ edge attributes. Fig. 6 illustrates
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Fig. 5. Two graphs are isomorphic if at least one bijection exists between the vertices
that preserves the edge connectivity.

Fig. 6. Two meshes are isomorphic if their edge graphs with ‘boundary’ edge attributes,
in red, are isomorphic.

the necessity to include boundary labels, shown in red, for valid mesh
isomorphism through graph isomorphism.

For meshes with pseudo quads, i.e. faces that are geometrically like
triangles but topologically like quads with double vertices to mark the
pole singularity, the pole vertices are given a ‘pole’ attribute in the
graph that needs to be matched, like the ‘boundary’ edge attribute.

2.2. Topological similarity

The evaluation of mesh isomorphism, or equality, serves as a basis
for defining and computing the topological similarity between two quad
meshes, using a distance, or metric.

2.2.1. Definition
The distance defined is not only based on topology (like the set

of singularities in the mesh) but also on the grammar of addition and
deletion strip rules, which informs how to obtain a mesh from another.
The distance is defined as the minimal number of strips to add and delete
to go from one quad mesh to another. The proposed distance has already
been used for finding two-colour quad meshes [33].

A parallel exists with string metrics that measure the distance
between two strings as the minimum number of character modifications
to apply. The Levenshtein distances uses character insertions, deletions,
and substitutions [34], whereas the Hamming distance only uses sub-
stitutions [35], for instance. However, the two-rule grammar does not
consider direct modifications of the strips, only deletions and additions.

This distance 𝑑 applies to two elements of the space 𝐸 = 𝐸𝑔,𝑁 of
quad meshes with the same number of handles 𝑔 and boundaries 𝑁
and yields a positive integer in N+: 𝑑 ∶ 𝐸 → N+. The three distance
properties are verified. The distance is symmetric, as the same minimal
number of rules apply from a topology 𝐴 to a topology 𝐵 and from 𝐵 to
𝐴, as for each addition or deletion strip rule there is a reciprocal one:

∀(𝐴,𝐵) ∈ 𝐸2, 𝑑(𝐴,𝐵) = 𝑑(𝐵,𝐴). (1)
3

The distance from a topology to itself is null because no rules need
to be applied and if no rules need to be applied then two topologies are
the same:

∀(𝐴,𝐵) ∈ 𝐸2, 𝑑(𝐴,𝐵) = 0 ⟺ 𝐴 = 𝐵. (2)

The triangle inequality is satisfied as the same or a lower number of
rules have to be applied to go directly from a topology 𝐴 to a topology
𝐶 than going through an intermediary topology 𝐵:

∀(𝐴,𝐵, 𝐶) ∈ 𝐸3, 𝑑(𝐴,𝐶) ≤ 𝑑(𝐴,𝐵) + 𝑑(𝐵,𝐶). (3)

Equality occurs if no rules between 𝐴 and 𝐵 and between 𝐵 and 𝐶 are
reciprocal and can compensate each other.

During rule-based exploration, successive application of strip rules
generally increases by one the distance and therefore decreases by one
the topological similarity with the initial design. Only the application of
a reciprocal rule cancelling a previous rule reduces by one the distance.
Fig. 7 shows the application of two addition rules and two deletion
rules, not reciprocal ones, resulting in a distance of four between the
initial and final quad meshes.

Deleting some strips can cause collateral deletion of other strips
whose faces are all included in the deleted strips. In Fig. 8, deleting
the strip in pink in a four-strip quad mesh results in a two-strip quad
mesh at a distance of two due to the secondary deletion of the strip in
green. Although one rule is applied, the distance is not one but two.
Therefore, the application of a deletion rule counts as the application
of multiple deletion rules, equal to one plus the number of collateral
deletions.

The distance could be measured on a lighter object like the strip
graph of the quad mesh [33] with a modified Graph Edit Distance
[36] to include additions and deletions of graph nodes and/or edges.
However, the space of strip graphs is not isomorphic to the space of
quad meshes, flawing this alternative, which necessitates refinement.

2.2.2. Approach
The computation of the topological distance is based on mesh

isomorphism check while trying combinations of an increasing number
of strip deletions. Along with the distance, tracking the similar and
dissimilar strips will provide the rules to go from one topology to
another for topological combination (Section 2.3).

The distance between two quad meshes is defined as the minimum
number of strips to add and delete to go from one to another. Searching
for combinations of addition and deletion rules to apply on one quad
mesh involves infinite combinatorial possibilities for strip additions.
However, the number of strip deletions is bounded by 2𝑛 for a quad
mesh with 𝑛 strips. Therefore, the distance results from finding the
two minimum sets of strip deletions to apply on the two quad meshes
𝑀1 and 𝑀2 that yield the same submesh 𝑀 , up to an isomorphism.
In Fig. 9, the deletion of the strips in pink yields two non-isomorphic
submeshes 𝑀 ′ and 𝑀 ′′, as the submesh is not necessarily unique. A
submesh represents the largest similar structure of strips in common
between the two quad meshes in terms of number of strips. As strip
deletion rules are not reciprocal and cannot compensate each other,
processing only with deletion rules guarantees having the minimum
number of strips to modify. Therefore, finding such a submesh yields
the equality case of the triangle inequality:

𝑑(𝑀1,𝑀2) = 𝑑(𝑀1,𝑀) + 𝑑(𝑀,𝑀2). (4)

Let 𝑛1 and 𝑛2 be the number of strips of the two quad meshes 𝑀1
and 𝑀2, respectively, and supposedly 𝑛1 ≥ 𝑛2. To find the submesh, an
increasing number of strips are deleted on both meshes in parallel. The
meshes have a minimum distance:

𝑑𝑚𝑖𝑛 = 𝑛1 − 𝑛2, (5)

due to a potentially different number of strips. Starting with 𝑘 = 0,
all pairs of combinations to delete 𝑘+𝑑 strips in mesh 𝑀 and 𝑘 strips
𝑚𝑖𝑛 1
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Fig. 7. Applying addition and deletion rules that modify different strips on a quad mesh increases the distance 𝑑 by one, and decreases the topological similarity by one.
Fig. 8. Collateral strip deletion occurs when deleting one or several strips, like the
one in pink, results in the deletion of other strips, the one in green. Applying such a
deletion rule counts as multiple deletion rules.

in mesh 𝑀2 are tested. If a pair of combinations yields two isomorphic
quad meshes after deletion of the respective combinations of strips,
then the process stops. Otherwise, 𝑘 is incremented by one, and the
rocess is repeated to find the submesh.

If there is no such submesh, then the largest similar structure is a
egenerated single strip. The distance between the two quad meshes is
hen the maximum:

𝑚𝑎𝑥 = (𝑛1 − 1) + (𝑛2 − 1) = 𝑛1 + 𝑛2 − 2. (6)

When the search finds such a submesh, summing the two distances
o the submesh yields the distance between the input meshes, as the
quality case of the triangle inequality. Indeed, the enumeration of
ombinations of rules in an increasing order guarantees finding the
argest mesh, resulting from the minimum number of rules needed. If
he submesh 𝑀 has 𝑛0 strips, then the distance equals:

(𝑀1,𝑀2) = 𝑑(𝑀1,𝑀) + 𝑑(𝑀,𝑀2)

= 𝑛1 − 𝑛0 + 𝑛2 − 𝑛0
= 𝑛1 + 𝑛2 − 2𝑛0.

(7)

The distance can be expressed by the number of iterations 𝑘 as well
as:

𝑛0 = 𝑛2 − 𝑘, (8)

therefore:

𝑑(𝑀1,𝑀2) = 𝑛1 − 𝑛2 + 2𝑘. (9)

Fig. 9 shows the computation of the distance between two meshes
with five strips each, finding two non-isomorphic submeshes 𝑀 ′ and

′′ with four strips, so a distance of two. Finding a single sub-
esh is sufficient to compute the distance, however, collecting all

f the non-isomorphic submeshes enriches topological combination
Section 2.3).

Deletion rules with collateral deletions are discarded to prevent
verestimation of the distance, as they are equivalent to multiple
eletion rules that should appear only for a higher value of 𝑘.

2.2.3. Implementation
The implementation of the computation of the topological distance
4

between two quad meshes is detailed in Algorithm 1. It is still assumed
𝑛1 > 𝑛2 for the input quad meshes 𝑀1 and 𝑀2. The algorithm returns
the distance; all the non-isomorphic submeshes; and the strip deletions
to apply between each pair of input mesh and submesh.
start empty list of results
𝑛1 and 𝑛2 = number of strips in 𝑀1 and 𝑀2
assume 𝑛1 > 𝑛2
for 𝑘 from 0 to 𝑛1 − 2 do

for combinations of 𝑛1 − 𝑛2 + 𝑘 strips 𝑆1 in 𝑀1 do
copy 𝑀1 as 𝑀10
delete strips 𝑆1 in 𝑀10
if collateral strip deletion in 𝑀10 then

skip this combination
end
for combinations of 𝑘 strips 𝑆2 in 𝑀2 do

copy 𝑀2 as 𝑀20
delete strips 𝑆2 in 𝑀20
if collateral strip deletion in 𝑀20 then

skip this combination
end

end
if meshes 𝑀10 and 𝑀20 are isomorphic then

if 𝑀10 is not isomorphic to any submesh in results then
𝑀 = 𝑀10
𝑑 = 𝑛1 − 𝑛2 + 2𝑘
add to results 𝑑, 𝑆1, 𝑆2, and 𝑀

end
end

end
if results are not empty then

return results
end
return max distance = 𝑛1 + 𝑛2 − 2

end
Algorithm 1: Pseudo-code for computing the topological distance
and the dissimilar strips between two quad meshes 𝑀1 and 𝑀2
through their submesh.

2.2.4. Verification
The examples in Fig. 10 are used to verify the distance com-

putation, with numerical results in Table 1 including the different
number of strips, the distance, as well as the computation time. The
examples highlight all potential outcomes, multiple (Fig. 10(a)), single
(Fig. 10(b)), or no (Fig. 10(c)) submeshes. The example in Fig. 10(e)
highlights the increase in computation time, from under a second to a
dozen seconds for larger distances, due to a combinatorial increase of
isomorphism checks to perform.

Several improvements can be considered regarding computation
efficiency. First, using parallel computing with multi-threading for the
enumeration of rules and isomorphism checks. Second, performing a
preliminary isomorphism check on the strip graph of quad meshes [33],
as a necessary but not sufficient condition, as the strip graph describes
part of the connectivity of the quad mesh with a lighter though partial
data structure.
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Fig. 9. Finding the distance between two quad meshes 𝑀1 and 𝑀2 via a common submesh 𝑀 using strip deletion rules only. Multiple submeshes, 𝑀 ′ and 𝑀 ′′, that are
non-isomorphic and have the same number of strips and at the same distance of input quad meshes 𝑀1 and 𝑀2 can exist due to the deletion of different combinations of strips,
esulting from the deletion of the pink or green strips.
Fig. 10. Verification examples for computing the topological distance between two
quad meshes. The distances between the meshes 𝑀1, 𝑀2, and their submeshes 𝑀 are
provided along with one of the possible combinations of strips to delete in blue. Pole
singularities are marked with black vertices.
5

Table 1
Numerical results for the verification examples for the computation of the topological
distance between two quad meshes.

Figure 10(a) 10(b) 10(c) 10(d) 10(e)

𝑛1 8 10 4 6 8
𝑛2 4 8 2 5 6
𝑛0 4 8 – 4 3
𝑘 0 0 2 1 3
𝑑 4 2 4 3 8
# submeshes 15 1 – 1 2
# iso. checks 55 41 5 62 1516
comp. time [s] 0.58 0.52 0.025 0.30 12.4

2.3. Quad-mesh combination

Based on the computation of the distance between two meshes along
with the identification of their similar and dissimilar strips, hybrid
quad meshes can be generated to produce an interpolation between the
input meshes at different distances with varying degrees of topological
similarity.

2.3.1. Approach
The approach for the generation of hybrid meshes is as follows:

1. the input meshes 𝑀1 and 𝑀2 are obtained by any generation
means;

2. the submeshes 𝑀 are computed, which comprise the largest
sets of common strips of the input meshes. A submesh is the
intersection of the sets of strips;

3. the supermeshes𝑀 are computed, which comprise the smallest
set of all the strips of the input meshes. A supermesh is the union
of the sets of strips;

4. the intermediary meshes are enumerated, which comprise dif-
ferent combinations of sets of strips of the input meshes.

Fig. 11 illustrates these steps. In this example, two input meshes
with respectively three and four strips yield seven hybrid meshes that
are not isomorphic and therefore offer different design options. These
hybrid meshes include one submesh with two strips, three supermeshes
with five strips, and three intermediary meshes with three to four strips.
Each hybrid mesh can result from different combinations of input strips,
due to symmetry, for instance, but only one of these combinations is
shown here. The coloured strips highlight the similarity between each
hybrid mesh and the input meshes, provided as the similarity 𝑠, based
on the distance 𝑑 to the input meshes. They respectively correspond
to the number of strips present in the common strip structure, and the
absent ones, related to a given input mesh 𝑀𝑖 with 𝑛𝑖 strips as:

𝑠𝑖 = 𝑛𝑖 − 𝑑𝑖. (10)

2.3.2. Implementation
The generation of the hybrid meshes proceeds first with the in-

tersection submeshes, then the union supermeshes, and finally the
intermediary meshes.
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Fig. 11. Generating hybrid quad meshes with different degrees of topological similarity
with input quad meshes. The colours correspond to similar strips, supporting the values
on the similarity 𝑠 and dissimilarity/distance 𝑑 with the input meshes.

Intersection submeshes. Computing the distance between the input
meshes also yields the submeshes (Section 2.2). All non-isomorphic
submeshes with the largest number of strips are collected. This process
is extended to multiple input meshes as follows:

1. the submeshes 𝑀1,2 between two input meshes 𝑀1 and 𝑀2 are
computed;

2. new submeshes 𝑀1,2,3 between each submesh 𝑀1,2 and another
input mesh 𝑀3 are computed;

3. new submeshes 𝑀1,…,𝑖 between each submesh 𝑀1,…,𝑖−1 and an-
other input mesh 𝑀𝑖 are computed;

4. the final submeshes are 𝑀1,…,𝑁 , which are the non-isomorphic
meshes that share the largest strip structure in common between
the 𝑁 input meshes 𝑀1 to 𝑀𝑁 are computed.

The submeshes contain all the similar strips. The reciprocal
polyedges of the dissimilar strips serve as input for an addition rule to
obtain these dissimilar strips. When deleting a strip 𝑆𝑗 in a mesh 𝑀𝑖,
the resulting polyedge 𝑃 𝑗

𝑖 is stored. This polyedge is updated during
the deletion of the other strips. For each submesh, there is a set of
polyedges that correspond to the addition rules to apply to revert the
applied deletion rules. These rules are used to obtain supermeshes from
the submeshes. Let 𝑛0 be the number of strips in a submesh 𝑀 between
two meshes 𝑀1 and 𝑀2 with 𝑛1 and 𝑛2 strips, respectively. Exploring
all combinations of strip deletions from two input meshes to a submesh
provides a sum for the number of the combination of rules 𝑟𝑀1,2→𝑀 to
btain potential submeshes:

𝑀1,2→𝑀 = 2𝑛1−𝑛0 + 2𝑛2−𝑛0 . (11)

Union supermeshes. Supermeshes are the non-isomorphic meshes that
contain the strip structure of each input mesh. For each submesh, strip
6

Fig. 12. Maps for vertex relabelling, in red and green, after strip addition and strip
deletion rules, in blue.

additions are applied to all stored polyedges. After each strip addition,
the polyedges for the remaining addition rules is updated. The addition
rules on the longest polyedges are applied first as some polyedges may
initially correspond to a single vertex.

A supermesh 𝑀 is obtained by adding the missing strips on a
submesh 𝑀 . Exploring all combinations of strip deletions through their
reciprocal strip additions provides a product for the number of the
combination of rules 𝑟𝑀→𝑀 to obtain potential supermeshes:

𝑟𝑀→𝑀 = 2𝑛1−𝑛0 ⋅ 2𝑛2−𝑛0 = 2𝑛1+𝑛2−2𝑛0 ; (12)

Full combination increases the potential number of hybrid meshes.
In the general case of 𝑁 input meshes, the number of combinations is:
𝑁
∏

𝑖=1
2𝑛𝑖−𝑛0 = 2

∑𝑁
𝑖=1(𝑛𝑖−𝑛0). (13)

The supermesh combines all the strips before exploring its combi-
nations of strips.

Intermediary meshes. The intermediary meshes result from the com-
bination of deletions of dissimilar strips on supermeshes. Deleting no
strips yields the supermesh with the maximum number of strips 𝑛𝑚𝑎𝑥 =
∑

𝑖(𝑛𝑖−𝑛0). Deleting all the strips yields the submesh with the minimum
number of strips 𝑛𝑚𝑖𝑛 = 𝑛0. Other deletion combinations yield the
intermediary meshes with 𝑛𝑚𝑖𝑛 to 𝑛𝑚𝑎𝑥 strips, strictly. For 𝛥𝑛 = 𝑛𝑚𝑎𝑥 −
𝑛𝑚𝑖𝑛 strips to delete in a supermesh, the combinations to apply equals:
𝛥𝑛
∑

𝑘=0

(

𝛥𝑛
𝑘

)

= 2𝛥𝑛. (14)

2.3.3. Data structure
During the generation process, strip rules are transposed and re-

versed from one mesh to another using the input and output polyedges
thanks to specific management of the polyedge and strip data.

Updating polyedges. Applying strip rules modifies the topology, the
number of elements and their connectivity in the quad mesh. As a
result, the labelling of the vertices changes, as shown in Fig. 12.
Therefore, polyedges must be updated to apply multiple rules.

Adding a strip duplicates the vertices of the input polyedge. The
new edges of a polyedge must be selected to rebuild a new continuous
polyedge. Moreover, the polyedge must have its extremities on the
boundary, unless the corresponding strip is closed or has pole extremi-
ties. The polyedge update considers the shortest edge path to rebuild a
polyedge out of the several possibilities, found using an A* search [37].
On the other hand, deleting a strip merges the vertices of the edges of
the input strip.

Mapping strips. The strips are mapped from one mesh to another
by mapping polyedges for rule application. From the input meshes,
strips are deleted to obtain the submesh. From the submeshes, strips
are added to obtain the supermeshes. Fig. 13 shows this process
for two input meshes yielding two non-isomorphic submeshes, four
non-isomorphic supermeshes, and two non-isomorphic intermediary
meshes. The strip structure of one of the input meshes is coloured in
all meshes to highlight the similarity with this input mesh.

Fig. 14 details the mapping process of the polyedges from the input
meshes to the submeshes, along which strips can be added to obtain the
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Fig. 13. Deleting the dissimilar strips between input meshes yields the submeshes.
Adding the dissimilar strips to the submeshes yields the supermeshes. Deleting com-
binations of dissimilar strips to the supermeshes yields the intermediary meshes. The
strip structure of one of the input meshes is coloured in all hybrid meshes to highlight
the similarity with this input mesh.

supermeshes, all shown in Fig. 13. As the input meshes have two non-
isomorphic submeshes, the polyedge-mapping process applies to each.

Deleting the dissimilar strips on each input mesh 𝑀𝑖 results in
a submesh 𝑀𝑖 that is isomorphic to the other ones 𝑀𝑗 . These sub-

eshes 𝑀𝑖 and 𝑀𝑗 are isomorphic, but there can be multiple bijections
that map one submesh to another. In Fig. 14 for instance, the red
polyedge in 𝑀𝑖 from 𝑀𝑖 and the blue polyedge in 𝑀𝑗 from 𝑀𝑗 can
be combined in two ways. This situation results from the four possible
bijections between the twofold symmetrical submeshes, two of which
are not isomorphic. The deleted strips provide reciprocal polyedges
to apply the addition rule to obtain the supermesh. However, several
possibilities exist to map the polyedges, two in this case. The multiple
strips are added, while updating the other polyedges, resulting in the
supermeshes. In Fig. 14, the two submeshes have two polyedge maps
each, resulting in the four supermeshes shown in Fig. 13. Deleting strips
in the supermeshes yields the intermediary meshes shown in Fig. 13.
Here, only one strip is deleted, to obtain intermediary meshes with five
strips, between the four-strip submeshes and the six-strip supermeshes.
Most are isomorphic to the other meshes, except for two intermediary
meshes.

3. Structural design application

This section shows how to perform similarity-driven topology find-
ing to search for hybrid topological designs offering different multi-
objective trade-offs using the previous generation methodology. Ex-
7

amples show the potential of hybrid topology search for enumeration
based on a single design (Section 3.1) and combination from multiple
designs (Section 3.2). Different workflows, state-of-the-art form-finding
and shape-optimisation strategies, and performance analyses and met-
rics are considered to highlight the flexibility and complementarity of
topology finding within various design workflows.

3.1. Enumeration from a single design

In this example, 2𝑛 potential designs are enumerated by deleting
the different combinations of strips from an input design with 𝑛 strips.
By applying 𝑛 rules on a design, 𝑛 other designs are generated. This
set of designs, reduced as some are isomorphic, provides a gradient of
similarities with the input design.

3.1.1. Design problem
Let us consider the design of a quad-mesh pattern for a form-found

gridshell on an elliptic boundary of 15 m by 10 m. First, a compression-
only geometry is found using the Force Density Method [38]. The load
path 𝐿𝑃 is used to assess structural performance as a metric to minimise
𝐿𝑃 =

∑

𝑒∈𝐸 𝑓𝑒𝑙𝑒 with 𝐸 the set of edges in the mesh, 𝑓𝑒 and 𝑙𝑒 the
orce and length of edge 𝑒, respectively. Then, the faces are planarised
or fabrication rationality, which induces a deviation from the initial
ompression-only geometry, assessed with the deviation metric 𝐷 equal

to the average movement of the vertices when enforcing planarisation.
The remaining average curvature 𝐶 of the panels is assessed, as well
as the skewness 𝑆 of the panels, to minimise material loss during the
cutting process. Curvature is measured as 𝐶 = 1∕𝐴𝑚

∑

𝑓 𝐴𝑓𝐶𝑓 with 𝐴𝑚
the mesh area, 𝐴𝑓 the area of face 𝑓 , and 𝐶𝑓 the curvature of face 𝑓 as
𝐶𝑓 = 2𝑑𝐿∕(𝐿1 + 𝐿2) where 𝐿1 and 𝐿2 are the lengths of the diagonals
of the quad face and 𝑑𝐿 the shortest distance between them. Skewness
is measured as 𝑆 = 1∕𝐴𝑚

∑

𝑓 𝐴𝑓𝑆𝑓 with 𝑆𝑓 the skewness of face 𝑓
as 𝑆𝑓 = max((𝜃𝑚𝑎𝑥 − 90)∕90, (90 − 𝜃𝑚𝑖𝑛)∕90) where 𝜃𝑚𝑖𝑛 and 𝜃𝑚𝑎𝑥 are the
minimal and maximal angles in degrees between two consecutive edges
in the quad face.

3.1.2. Pattern design
A couple of heuristics informed the rule-based design of the input

topology of the coarse mesh in Fig. 15, including strips that form a
grid to reduce face skewness and strips that follow the curvature of
an ellipsoidal dome to reduce face curvature. The addition rules are
shown with dashed blue curves following the polyedges along which
to add the strip. The dense quad mesh in grey helps for visualisation
without representing the actual density. The eight strip additions on
the initial two-strip topology result in a ten-strip topology, considered
as the supermesh, shown in Fig. 16. The ten strips are gathered in six
groups to preserve the twofold symmetry, represented by the colour
scheme. The enumeration of the 26 = 64 deletions of the strip groups
yields the 26 quad meshes in Fig. 17. This reduction from 64 to 26
stems from: excluding isomorphic topologies that result from the dele-
tion of different sets of strips; excluding deletions of strips that result
in topologies with a different number of boundaries; and excluding
redundant denser versions of the same topology, like the 2 × 2 grid
and the 1 × 1 grid.

The topologies shown in Fig. 17 are organised based on topological
similarity with the supermesh, mesh 0, the closer the more similar.
However, this organisation does not reflect the distance between other
pairs of meshes.

The topologies are all processed with the same workflow to obtain
the quad-mesh patterns. The strips are subdivided equally with a
target of a total of 500 mesh faces. The mesh is relaxed with area-
weighted Laplacian smoothing with boundary vertices constrained to
the elliptic boundary. The mesh is form-found with the Force Density
Method [38] with fixed boundary vertices, a uniform force density of
1, and a uniform vertical load distributed on the vertices weighted by
their projected tributary area. The mesh is planarised with an iterative
procedure that independently projects each face to its best-fit plane
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Fig. 14. Combining vertex maps to find polyedges across meshes with different numbers and labels of vertices. The strips become reduced polyedges through the rule maps from
he input meshes 𝑀𝑖 and 𝑀𝑗 to the submeshes 𝑀𝑖 and 𝑀𝑗 , which are mapped across the submeshes 𝑀 via isomorphism search. Other submeshes between the same initial meshes
result in different maps and therefore other possibilities for the generation of hybrid meshes.
Fig. 15. Heuristic rule-based exploration with addition of strips along the polyedges highlighted with blue dashed lines.
Fig. 16. The supermesh has ten strips, gathered in six coloured groups to preserve the
twofold symmetry.
8

before merging the disconnected vertices [39,40]. The resulting designs
are shown in Fig. 18, with the mesh singularities in pink, the dense
mesh in grey, the coarse mesh in black with the boundary in red, and
the bar charts of the multiple performance objectives to minimise.

3.1.3. Numerical results
Table 2 shows the numerical results of each design for each objec-

tive, plotted as bar charts in Fig. 18. The lower the metrics, the better
the design. The maximum value of each metric 𝑋 is used to normalise
it as 𝑋. The designs present different trade-offs between the multiple
objectives, with a Pareto front consisting of five designs (0, 1, 14, 18,
and 19). The Pareto designs, which represent 19% of the design pool,
are underlined in Table 2 and Fig. 18. With a low number of designs and
a high number of objectives, the Pareto front can only be represented
coarsely. Releasing the Pareto condition considers more designs close
to the Pareto front, controlling performance loss and maintaining di-
versity in the pool of designs for upcoming considerations in the design

process [41]. The 0.95-Pareto front adds nine designs (2, 5, 6, 7, 13,
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Fig. 17. Enumeration of the deletions of the coloured strip groups in mesh 0 to generate 25 other meshes. These meshes share a different number of these strips and, therefore,
feature different degrees of similarity with mesh 0.
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Fig. 18. Enumerating different topological designs for a gridshell on an elliptic boundary. The designs are organised based on topological similarity with design 0. The bar charts
show the multi-objective trade-offs. The Pareto designs are underlined.
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Table 2
Performance metrics of the hybrid designs in Fig. 18:
normalised load path 𝐿𝑃 , normalised panel curvature
𝐶, normalised deviation due to planarisation 𝐷, and
normalised panel skewness 𝑆. The Pareto designs are
underlined, the lowest values in green, and the highest
ones in red.

𝐿𝑃 [ - ] 𝐶 [ - ] 𝐷 [ - ] 𝑆 [ - ]

0 0.83 0.16 0.29 0.53
1 0.77 0.18 0.18 0.42
2 0.81 0.25 0.26 0.55
3 0.84 0.37 0.63 0.52
4 0.93 0.58 0.68 0.89
5 0.81 0.42 0.52 0.53
6 0.82 0.62 0.66 0.42
7 0.78 0.49 0.39 0.46
8 0.82 0.82 0.74 0.64
9 0.84 0.39 0.68 0.52
10 0.92 0.49 0.64 0.88
11 1 0.68 0.67 0.75
12 0.84 0.32 0.61 0.67
13 0.8 1 1 0.39
14 0.78 0.23 0.18 0.22
15 0.94 0.17 0.46 0.68
16 0.87 0.37 0.61 0.58
17 0.83 0.64 0.9 0.51
18 0.95 0.19 0.15 0.5
19 0.78 0.17 0.15 0.33
20 0.99 0.43 0.58 1
21 0.85 0.48 0.62 0.68
22 0.82 0.53 0.5 0.35
23 0.78 0.42 0.32 0.36
24 0.8 0.48 0.23 0.42
25 0.82 0.39 0.53 0.34

min. 0.77 0.16 0.15 0.22
max. 1.00 1.00 1.00 1.00
avrg. 0.85 0.46 0.53 0.55
st. dev. 0.07 0.23 0.24 0.22

22, 23, 24, and 25) to the strict Pareto front, consisting of 54% of the
design pool.

3.2. Combination from multiple designs

By combining designs with 𝑛𝑖 strips that have an intersection sub-
mesh with 𝑛0 strips, ∏

𝑖 2𝑛𝑖−𝑛0 combinations of rules can be applied
o explore designs with different degrees of similarity. However, the
ntersection submesh may not exist to create a reference to generate the
nion supermesh, especially when considering a large number of input
eshes. However, the designer can add strips to the initial designs to

reate a submesh before the generation of hybrid meshes.

.2.1. Design problem
Let us consider the design of a quad-mesh pattern for a gridshell

onstrained to a pillow-like shape. The NURBS geometry has a square
oundary with a 10 m span and a 2 m height. The four corners
re vertically and horizontally supported, and the structure has to
ithstand a uniform surface load of 2 kN/m2 and a central point

oad of 100 kN, as shown in Fig. 19. The built-in steel S235 beams
ave an RO 114.3/4 tubular cross-section, with a stiffer RO 457.2/6.3
oundary cross-section for the local stability of the free edge [42].
he performance objectives consist of three metrics to minimise. A
elative edge-length variation 𝐿 measures geometrical regularity for
abrication as 𝐿 = (𝑙𝑚𝑎𝑥 − 𝑙𝑚𝑖𝑛)∕𝑙𝑡𝑜𝑡 with 𝑙𝑚𝑎𝑥 the maximum edge
ength, 𝑙𝑚𝑖𝑛 the minimum edge length, and 𝑙𝑡𝑜𝑡 the total edge length.
wo metrics measure the structural efficiency, as the strain energy
𝑀 under the mesh load, and the strain energy 𝐸𝑃 under the point

oad. A second-order mechanical analysis is performed, using the Finite
lement Analysis plugin Karamba3D for Grasshopper3D [43].
11
Fig. 19. Design of a pillow-shaped gridshell pinned at the corners and withstanding a
point load.

Fig. 20. Two quad-mesh topologies heuristically generated from a simple coarse quad
mesh.

Fig. 21. The intersection between the initial designs does not yield any submesh due
to the lack of a common strip structure. Adding the strips in cyan provides such a
structure to obtain an intersection submesh and a union supermesh.

3.2.2. Pattern design
The design starts from a regular quad-mesh grid. Fig. 20 shows

two heuristic designs obtained by applying addition and deletion rules
on the initial design. Coloured dashed polylines highlight the input
polyedges and strips of these rules. The colours highlight the clustering
of the strips based on the twofold symmetry of the design problem.

The quad-mesh topology in Fig. 20(a) with a pole at the centre
provides many load paths from the point load, whereas the quad-
mesh topology in Fig. 20(b) with a pole at each corner provides many
load paths to the supports. To combine these two topological designs,
the intersection mesh must be computed before obtaining the union
supermesh. As they do not share any strip structure, addition rules are
applied to create this common strip structure, as a third input design,
as shown in Fig. 21. The resulting intersection submesh and union
supermesh with their reciprocal strip and polyedge elements are shown

in Fig. 22.



Computer-Aided Design 176 (2024) 103751R. Oval et al.
Fig. 22. The reciprocal polyedges for addition in the submesh and strips for deletion
in the supermesh. The colour scheme representing the strip groups takes into account
the symmetry of the design problem.

The seventeen strips in the super mesh represent five symmetrical
groups for 25 = 32 combinations of strip deletions. The removal of the
redundant isomorphic meshes and of the meshes with a different shape
topology results in the fourteen meshes with different strip structures
in Fig. 23. The two initial meshes (meshes 1 and 2) and the submesh
(mesh 0) mark the corners of a triangular layout, the supermesh (mesh
13) marks the centre, and the other meshes are arranged based on their
relative strip similarity, for visualisation.

The coarse quad meshes are densified based on a target number
of faces of 500, with each strip having the same density parameter.
Surface mapping and relaxation are performed using area-weighted
Laplacian smoothing [44]. The resulting fourteen quad-mesh patterns
are shown in Fig. 24, arranged based on topological similarity, with
their measured performance plotted as bar charts.

3.2.3. Numerical results
The numerical results are provided in Table 3. The maximum value

of each metric 𝑋 is used to normalise it as 𝑋. The lower the metric,
the more efficient the design for this metric.
12
Table 3
Performance metrics of the hybrid designs in
Fig. 24: normalised edge-length disparity 𝐿,
normalised strain energy for a mesh load 𝐸𝑀 ,
and normalised strain energy for a point load
𝐸𝑃 . The Pareto designs are underlined, the
lowest values in green, and the highest ones
in red.

𝐿 [ - ] 𝐸𝑀 [ - ] 𝐸𝑃 [ - ]

0 0.09 0.75 0.91
1 0.75 0.41 0.62
2 0.68 0.59 0.28
3 0.85 0.39 1
4 0.8 0.67 0.54
5 0.55 0.42 0.87
6 0.35 1 0.66
7 0.97 0.51 0.35
8 0.62 0.39 0.28
9 1 0.4 0.22
10 0.85 0.4 0.49
11 0.77 0.45 0.61
12 0.8 0.43 0.5
13 0.51 0.48 0.51

min. 0.09 0.39 0.22
max. 1.00 1.00 1.00
avrg. 0.69 0.52 0.56
st. dev. 0.25 0.18 0.24

Designs 0, 1, and 2 are among the best designs for edge-length
regularity, mesh-load energy, and point-load energy, respectively, as
intuitively designed. However, these designs do not perform well for
the other two metrics. The designs generally offer different trade-
offs between the multiple objectives. Particularly, design 13, from the
supermesh, shows a balanced trade-off between the three objectives.
The Pareto front consists of eight designs (0, 2, 3, 5, 6, 8, 9, and 13),
Fig. 23. Combination of the strip structures of the initial meshes and the submesh. The fourteen meshes are arranged based on topological similarity, highlighted by the common
coloured strips.
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Fig. 24. Combining different topological designs for a pillow-shaped gridshell. The designs are organised based on topological similarity with designs 0, 1, and 2. The designs
provide different trade-offs between geometrical regularity and structural efficiency under different load cases. The Pareto designs are underlined.
underlined in Table 3 and Fig. 24, which represent 57% of the design
pool.

4. Conclusion

This paper introduced similarity-informed topology finding with
the generation of hybrid pattern topologies to explore multi-objective
performance trade-offs. This approach is based on generative design
with a novel algebra for quad meshes with operators for distance,
intersection, and union, based on a quad-mesh strip structure and a
two-rule design grammar:

• an assessment was presented for topological similarity between
two quad meshes with a distance;

• a strategy was developed for the combination of quad meshes
to generate hybrid meshes with different degrees of topological
similarity;

• this strategy was used to perform heuristic multi-objective de-
sign of quad-mesh patterns based on single-objective designs to
find Pareto fronts, demonstrated on different design workflows,
computational methods, performance objectives, and load cases.

This approach enables informed exploration through a heuristic
ombination of previous designs that perform well for different objec-
ives, as a means to explore the daunting combinatorial design space of
urface pattern topology.

opology processing. The processing of the topology through density
nd geometry design is essential for the final performance of the design
tself. Fig. 25 shows the topological interpolation between two quad
eshes for a plate supported at its corners, based on stress fields stem-
ing from two load cases, a symmetrical and an anti-symmetrical mesh

oads. Fig. 26 illustrates their application to a ribbed concrete floor
ystem. Only some of the hybrid topologies are shown. The integration
13
of the stress field into a coarse quad mesh, the orientation of the edges
of the dense quad mesh, and their alignment with the boundary of the
plate are important design decisions. The processing of the topology
into the design matters. Simultaneous topology, density, and geometry
exploration and optimisation, across the different design spaces, are
necessary to explore the full potential of a topological design.

Towards optimisation. For future work on the development of a novel
framework for grammatical topology optimisation, several aspects must
be addressed.

Although the patterns are encoded as coarse quad meshes inde-
pendent of density and geometry, the combinatorial search explodes
for patterns with an increasing number of singularities. Although, the
examples shown feature designs with a significant number of singu-
larities for industrial and practical application, the computation of
the distance can be accelerated by leveraging parallel computing to
perform the multiple independent checks and by exploring the potential
of probabilistic strategies.

The discrete nature of the distance can challenge state-of-the-art
exploration and optimisation algorithms if not turned into a continuous
one. A larger set of descriptors that apply at the level of the mesh
can be extracted. These descriptors include the number of vertices and
faces, the number of boundaries, the Euler characteristic, the number
of singularities per type (valency or index). Statistical methods like
interpolation, regression, and dimensionality reduction can enable the
creation of a latent space to obtain a continuous distance from such a
set of discrete topological descriptors.

The input designs create a bias in the algorithmic search, as they
bound the topological design space, making the quality of the output
therefore particularly sensitive to the quality of the input, which can
limit exploration if chosen poorly. Along with gene recombination,
mutation is essential in evolutionary search algorithms to create diver-
sity in the pool of genes to explore alternative design directions. With

this aim, the mesh grammar can be expressed as a formal grammar,
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Fig. 25. Similarity-informed topology finding based on structural performance for multiple load cases.
Fig. 26. Similarity-informed topology finding of hybrid topologies for ribbed concrete floors.
where the transformation rules are expressed as a string of characters
or a vector of binaries [30], where randomness can be introduced in
generative design. Alternatively, reinforcement learning with a reward
system could steer design exploration through performance information
[11].

CRediT authorship contribution statement

R. Oval: Writing – original draft, Visualization, Validation, Soft-
ware, Methodology, Investigation, Formal analysis, Data curation, Con-
ceptualization. R. Mesnil: Writing – review & editing, Supervision.
T. Van Mele: Writing – review & editing, Supervision. O. Baverel:
Writing – review & editing, Supervision, Funding acquisition. P. Block:
Writing – review & editing, Supervision, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgement

The authors wish to thank Maurizio Brocato who suggested framing
this research as an ‘algebra’.
14
References

[1] Bendsøe Martin Philip, Sigmund Ole. Topology optimization: theory, methods,
and applications. Springer Science & Business Media; 2013.

[2] Pottmann Helmut, Eigensatz Michael, Vaxman Amir, Wallner Johannes. Archi-
tectural geometry. Comput Graph 2015;47:145–64. http://dx.doi.org/10.1016/j.
cag.2014.11.002.

[3] Schiftner Alexander, Balzer Jonathan. Statics-sensitive layout of planar quadrilat-
eral meshes. In: Ceccato Cristiano, Hesselgren Lars, Pauly Mark, Pottmann Hel-
mut, Wallner Johannes, editors. Proceedings of the advances in architectural
geometry 2010. Springer; 2010, p. 221–36.

[4] Méndez Echenagucia Tomás, Capozzoli Alfonso, Cascone Ylenia, Sassone Mario.
The early design stage of a building envelope: Multi-objective search through
heating, cooling and lighting energy performance analysis. Appl Energy
2015;154:577–91. http://dx.doi.org/10.1016/j.apenergy.2015.04.090.

[5] Winslow Pete, Pellegrino Sergio, Sharma Shrikant B. Multi-objective optimization
of free-form grid structures. Struct Multidiscip Optim 2010;40(1–6):257. http:
//dx.doi.org/10.1007/s00158-009-0358-4.

[6] Mueller Caitlin T, Ochsendorf John A. Combining structural performance and
designer preferences in evolutionary design space exploration. Autom Constr
2015;52:70–82. http://dx.doi.org/10.1016/j.autcon.2015.02.011.

[7] Brown Nathan C, Jusiega Violetta, Mueller Caitlin T. Implementing data-
driven parametric building design with a flexible toolbox. Autom Constr
2020;118:103252. http://dx.doi.org/10.1016/j.autcon.2020.103252.

[8] Oval Robin, Rippmann Matthias, Mesnil Romain, Van Mele Tom, Baverel Olivier,
Block Philippe. Topology finding of structural patterns. In: Advances in
architectural geometry. 2018.

[9] Stiny George, Gips James. Shape grammars and the generative specification of
painting and sculpture. In: Proceedings of the congress international federation
for information processing 1971. 1971, p. 1460–5.

[10] Stiny George. Shape: talking about seeing and doing. MIT Press; 2006.
[11] Nourian Pirouz, Azadi Shervin, Oval Robin. Generative design in architecture:

From mathematical optimization to grammatical customization. In: Computa-
tional design and digital manufacturing. Springer; 2023, p. 1–43. http://dx.doi.
org/10.1007/978-3-031-21167-6_1.

http://refhub.elsevier.com/S0010-4485(24)00078-2/sb1
http://refhub.elsevier.com/S0010-4485(24)00078-2/sb1
http://refhub.elsevier.com/S0010-4485(24)00078-2/sb1
http://dx.doi.org/10.1016/j.cag.2014.11.002
http://dx.doi.org/10.1016/j.cag.2014.11.002
http://dx.doi.org/10.1016/j.cag.2014.11.002
http://refhub.elsevier.com/S0010-4485(24)00078-2/sb3
http://refhub.elsevier.com/S0010-4485(24)00078-2/sb3
http://refhub.elsevier.com/S0010-4485(24)00078-2/sb3
http://refhub.elsevier.com/S0010-4485(24)00078-2/sb3
http://refhub.elsevier.com/S0010-4485(24)00078-2/sb3
http://refhub.elsevier.com/S0010-4485(24)00078-2/sb3
http://refhub.elsevier.com/S0010-4485(24)00078-2/sb3
http://dx.doi.org/10.1016/j.apenergy.2015.04.090
http://dx.doi.org/10.1007/s00158-009-0358-4
http://dx.doi.org/10.1007/s00158-009-0358-4
http://dx.doi.org/10.1007/s00158-009-0358-4
http://dx.doi.org/10.1016/j.autcon.2015.02.011
http://dx.doi.org/10.1016/j.autcon.2020.103252
http://refhub.elsevier.com/S0010-4485(24)00078-2/sb8
http://refhub.elsevier.com/S0010-4485(24)00078-2/sb8
http://refhub.elsevier.com/S0010-4485(24)00078-2/sb8
http://refhub.elsevier.com/S0010-4485(24)00078-2/sb8
http://refhub.elsevier.com/S0010-4485(24)00078-2/sb8
http://refhub.elsevier.com/S0010-4485(24)00078-2/sb9
http://refhub.elsevier.com/S0010-4485(24)00078-2/sb9
http://refhub.elsevier.com/S0010-4485(24)00078-2/sb9
http://refhub.elsevier.com/S0010-4485(24)00078-2/sb9
http://refhub.elsevier.com/S0010-4485(24)00078-2/sb9
http://refhub.elsevier.com/S0010-4485(24)00078-2/sb10
http://dx.doi.org/10.1007/978-3-031-21167-6_1
http://dx.doi.org/10.1007/978-3-031-21167-6_1
http://dx.doi.org/10.1007/978-3-031-21167-6_1


Computer-Aided Design 176 (2024) 103751R. Oval et al.
[12] Yousaf Muhammad Salman, Detwiler Duane, Duddeck Fabian, Menzel Stefan,
Ramnath Satchit, Zurbrugg Nathan, et al. Similarity-driven topology optimization
for statics and crash via energy scaling method. J Mech Des 2023;145(10).
http://dx.doi.org/10.1115/1.4062943.

[13] Bujny Mariusz, Yousaf Muhammad Salman, Zurbrugg Nathan, Detwiler Du-
ane, Menzel Stefan, Ramnath Satchit, et al. Learning hyperparameter pre-
dictors for similarity-based multidisciplinary topology optimization. Sci Rep
2023;13(1):14856. http://dx.doi.org/10.1038/s41598-023-42009-0.

[14] Oh Sangeun, Jung Yongsu, Kim Seongsin, Lee Ikjin, Kang Namwoo. Deep
generative design: Integration of topology optimization and generative models.
J Mech Des 2019;141(11):111405. http://dx.doi.org/10.1115/1.4044229.

[15] Zhang Weisheng, Wang Yue, Du Zongliang, Liu Chang, Youn Sung-Kie, Guo Xu.
Machine-learning assisted topology optimization for architectural design with
artistic flavor. Comput Methods Appl Mech Engrg 2023;413:116041. http://dx.
doi.org/10.1016/j.cma.2023.116041.

[16] Zhang Weisheng, Wang Yue, Youn Sung-Kie, Guo Xu. Machine learning powered
sketch aided design via topology optimization. Comput Methods Appl Mech
Engrg 2024;419:116651. http://dx.doi.org/10.1016/j.cma.2023.116651.

[17] Dommaraju Nivesh, Bujny Mariusz, Menzel Stefan, Olhofer Markus, Dud-
deck Fabian. Evaluation of geometric similarity metrics for structural clusters
generated using topology optimization. Appl Intell 2023;53(1):904–29. http:
//dx.doi.org/10.1007/s10489-022-03301-0.

[18] Tyburec Marek, Zeman Jan, Doškář Martin, Kružík Martin, Lepš Matěj.
Modular-topology optimization with Wang tilings: an application to truss
structures. Struct Multidiscip Optim 2021;63(3):1099–117. http://dx.doi.org/10.
1007/s00158-020-02744-8.

[19] Tyburec Marek, Doškář Martin, Zeman Jan, Kružík Martin. Modular-topology
optimization of structures and mechanisms with free material design and
clustering. Comput Methods Appl Mech Engrg 2022;395:114977. http://dx.doi.
org/10.1016/j.cma.2022.114977.

[20] Jie Wang, Tong Gao, Ming Li, Jihong Zhu, Longlong Song, Zhang Weihong.
Topology optimization of modular structures with multiple assemblies and
applications to airborne shelves. Chin J Aeronaut 2024;37(4):321–32. http:
//dx.doi.org/10.1016/j.cja.2023.12.014.

[21] Oval Robin. Topology finding of patterns for structural design [Ph.D. thesis],
Université Paris-Est; 2019.

[22] Oval Robin, Rippmann Matthias, Mesnil Romain, Van Mele Tom, Baverel Olivier,
Block Philippe. Feature-based topology finding of patterns for shell structures.
Autom Constr 2019;103:185–201. http://dx.doi.org/10.1016/j.autcon.2019.02.
008.

[23] Campen Marcel, Bommes David, Kobbelt Leif. Dual loops meshing: quality
quad layouts on manifolds. Assoc Comput Mach Trans Graph 2012;31(4):110.
http://dx.doi.org/10.1145/2185520.2185606.

[24] Campen Marcel, Kobbelt Leif. Dual strip weaving: Interactive design of quad
layouts using elastica strips. Assoc Comput Mach Trans Graph 2014;33(6):183.
http://dx.doi.org/10.1145/2661229.2661236.

[25] Akleman Ergun, Chen Jianer, Gross Jonathan L. Strip sculptures. In: 2010 shape
modeling international conference. IEEE; 2010, p. 236–40. http://dx.doi.org/10.
1109/SMI.2010.14.

[26] Akleman Ergun, Ke Shenyao, Wu You, Kalantar Negar, Borhani AliReza,
Chen Jianer. Construction with physical version of quad-edge data structures.
Comput Graph 2016.

[27] Conway John H, Burgiel Heidi, Goodman-Strauss Chaim. The symmetries of
things. CRC Press; 2016.
15
[28] Shepherd Paul, Pearson Will. Topology optimisation of algorithmically generated
space frames. In: Proceedings of the annual symposium of the international
association for shell and spatial structures 2013. 2013.

[29] Koronaki Antiopi, Shepherd Paul, Evernden Mark. Layout optimization of space
frame structures. In: Proceedings of the annual symposium of the international
association for shell and spatial structures 2017. 2017.

[30] Oval Robin, Mesnil Romain, Van Mele Tom, Block Philippe, Baverel Olivier.
A vector encoding for topology finding of structured quad-based patterns for
surface structures. Int J Space Struct 2023;38(4):327–42. http://dx.doi.org/10.
1177/09560599231207650.

[31] Cordella Luigi Pietro, Foggia Pasquale, Sansone Carlo, Vento Mario. An improved
algorithm for matching large graphs. In: 3rd IAPR-TC15 workshop on graph-
based representations in pattern recognition. 2001, p. 149–59. http://dx.doi.org/
10.1016/S0167-8655(02)00248-9.

[32] Hagberg Aric, Swart Pieter, S. Chult Daniel. Exploring network structure,
dynamics, and function using NetworkX. Technical report, Los Alamos, NM
(United States): Los Alamos National Lab.(LANL); 2008.

[33] Oval Robin, Mesnil Romain, Van Mele Tom, Block Philippe, Baverel Olivier.
Two-colour topology finding of quad-mesh patterns. Comput Aided Des
2021;137:103030. http://dx.doi.org/10.1016/j.cad.2021.103030.

[34] Levenshtein Vladimir I. Binary codes capable of correcting deletions, insertions,
and reversals. Sov Phys Doklady 1966;10(8):707–10.

[35] Hamming Richard W. Error detecting and error correcting codes. Bell Syst Tech
J 1950;29(2):147–60. http://dx.doi.org/10.1002/j.1538-7305.1950.tb00463.x.

[36] Abu-Aisheh Zeina, Raveaux Romain, Ramel Jean-Yves, Martineau Patrick. An
exact graph edit distance algorithm for solving pattern recognition problems. In:
4th international conference on pattern recognition applications and methods
2015. 2015, http://dx.doi.org/10.5220/0005209202710278.

[37] Hart Peter E, Nilsson Nils J, Raphael Bertram. A formal basis for the heuristic de-
termination of minimum cost paths. IEEE Trans Syst Sci Cybern 1968;4(2):100–7.
http://dx.doi.org/10.1109/TSSC.1968.300136.

[38] Schek Hans-Jörg. The force density method for form finding and computation
of general networks. Comput Methods Appl Mech Engrg 1974;3(1):115–34.
http://dx.doi.org/10.1016/0045-7825(74)90045-0.

[39] Deuss Mario, Deleuran Anders Holden, Bouaziz Sofien, Deng Bailin, Piker Daniel,
Pauly Mark. ShapeOp—a robust and extensible geometric modelling paradigm.
In: Modelling behaviour. Springer; 2015, p. 505–15. http://dx.doi.org/10.1007/
978-3-319-24208-8_42.

[40] Piker Daniel. Kangaroo: form finding with computational physics. Archit Des
2013;83(2):136–7. http://dx.doi.org/10.1002/ad.1569.

[41] Brown Nathan, Tseranidis Stavros, Mueller Caitlin. Multi-objective optimization
for diversity and performance in conceptual structural design. In: Proceedings
of the annual symposium of the international association for shell and spatial
structures 2015. 2015.

[42] Venuti Fiammetta, Bruno Luca. Influence of in-plane and out-of-plane stiffness
on the stability of free-edge gridshells: A parametric analysis. Thin-Walled Struct
2018;131:755–68. http://dx.doi.org/10.1016/j.tws.2018.07.019.

[43] Preisinger Clemens. Linking structure and parametric geometry. Archit Des
2013;83(2):110–3. http://dx.doi.org/10.1002/ad.1564.

[44] Botsch Mario, Kobbelt Leif, Pauly Mark, Alliez Pierre, Lévy Bruno. Polygon mesh
processing. CRC Press; 2010.

http://dx.doi.org/10.1115/1.4062943
http://dx.doi.org/10.1038/s41598-023-42009-0
http://dx.doi.org/10.1115/1.4044229
http://dx.doi.org/10.1016/j.cma.2023.116041
http://dx.doi.org/10.1016/j.cma.2023.116041
http://dx.doi.org/10.1016/j.cma.2023.116041
http://dx.doi.org/10.1016/j.cma.2023.116651
http://dx.doi.org/10.1007/s10489-022-03301-0
http://dx.doi.org/10.1007/s10489-022-03301-0
http://dx.doi.org/10.1007/s10489-022-03301-0
http://dx.doi.org/10.1007/s00158-020-02744-8
http://dx.doi.org/10.1007/s00158-020-02744-8
http://dx.doi.org/10.1007/s00158-020-02744-8
http://dx.doi.org/10.1016/j.cma.2022.114977
http://dx.doi.org/10.1016/j.cma.2022.114977
http://dx.doi.org/10.1016/j.cma.2022.114977
http://dx.doi.org/10.1016/j.cja.2023.12.014
http://dx.doi.org/10.1016/j.cja.2023.12.014
http://dx.doi.org/10.1016/j.cja.2023.12.014
http://refhub.elsevier.com/S0010-4485(24)00078-2/sb21
http://refhub.elsevier.com/S0010-4485(24)00078-2/sb21
http://refhub.elsevier.com/S0010-4485(24)00078-2/sb21
http://dx.doi.org/10.1016/j.autcon.2019.02.008
http://dx.doi.org/10.1016/j.autcon.2019.02.008
http://dx.doi.org/10.1016/j.autcon.2019.02.008
http://dx.doi.org/10.1145/2185520.2185606
http://dx.doi.org/10.1145/2661229.2661236
http://dx.doi.org/10.1109/SMI.2010.14
http://dx.doi.org/10.1109/SMI.2010.14
http://dx.doi.org/10.1109/SMI.2010.14
http://refhub.elsevier.com/S0010-4485(24)00078-2/sb26
http://refhub.elsevier.com/S0010-4485(24)00078-2/sb26
http://refhub.elsevier.com/S0010-4485(24)00078-2/sb26
http://refhub.elsevier.com/S0010-4485(24)00078-2/sb26
http://refhub.elsevier.com/S0010-4485(24)00078-2/sb26
http://refhub.elsevier.com/S0010-4485(24)00078-2/sb27
http://refhub.elsevier.com/S0010-4485(24)00078-2/sb27
http://refhub.elsevier.com/S0010-4485(24)00078-2/sb27
http://refhub.elsevier.com/S0010-4485(24)00078-2/sb28
http://refhub.elsevier.com/S0010-4485(24)00078-2/sb28
http://refhub.elsevier.com/S0010-4485(24)00078-2/sb28
http://refhub.elsevier.com/S0010-4485(24)00078-2/sb28
http://refhub.elsevier.com/S0010-4485(24)00078-2/sb28
http://refhub.elsevier.com/S0010-4485(24)00078-2/sb29
http://refhub.elsevier.com/S0010-4485(24)00078-2/sb29
http://refhub.elsevier.com/S0010-4485(24)00078-2/sb29
http://refhub.elsevier.com/S0010-4485(24)00078-2/sb29
http://refhub.elsevier.com/S0010-4485(24)00078-2/sb29
http://dx.doi.org/10.1177/09560599231207650
http://dx.doi.org/10.1177/09560599231207650
http://dx.doi.org/10.1177/09560599231207650
http://dx.doi.org/10.1016/S0167-8655(02)00248-9
http://dx.doi.org/10.1016/S0167-8655(02)00248-9
http://dx.doi.org/10.1016/S0167-8655(02)00248-9
http://refhub.elsevier.com/S0010-4485(24)00078-2/sb32
http://refhub.elsevier.com/S0010-4485(24)00078-2/sb32
http://refhub.elsevier.com/S0010-4485(24)00078-2/sb32
http://refhub.elsevier.com/S0010-4485(24)00078-2/sb32
http://refhub.elsevier.com/S0010-4485(24)00078-2/sb32
http://dx.doi.org/10.1016/j.cad.2021.103030
http://refhub.elsevier.com/S0010-4485(24)00078-2/sb34
http://refhub.elsevier.com/S0010-4485(24)00078-2/sb34
http://refhub.elsevier.com/S0010-4485(24)00078-2/sb34
http://dx.doi.org/10.1002/j.1538-7305.1950.tb00463.x
http://dx.doi.org/10.5220/0005209202710278
http://dx.doi.org/10.1109/TSSC.1968.300136
http://dx.doi.org/10.1016/0045-7825(74)90045-0
http://dx.doi.org/10.1007/978-3-319-24208-8_42
http://dx.doi.org/10.1007/978-3-319-24208-8_42
http://dx.doi.org/10.1007/978-3-319-24208-8_42
http://dx.doi.org/10.1002/ad.1569
http://refhub.elsevier.com/S0010-4485(24)00078-2/sb41
http://refhub.elsevier.com/S0010-4485(24)00078-2/sb41
http://refhub.elsevier.com/S0010-4485(24)00078-2/sb41
http://refhub.elsevier.com/S0010-4485(24)00078-2/sb41
http://refhub.elsevier.com/S0010-4485(24)00078-2/sb41
http://refhub.elsevier.com/S0010-4485(24)00078-2/sb41
http://refhub.elsevier.com/S0010-4485(24)00078-2/sb41
http://dx.doi.org/10.1016/j.tws.2018.07.019
http://dx.doi.org/10.1002/ad.1564
http://refhub.elsevier.com/S0010-4485(24)00078-2/sb44
http://refhub.elsevier.com/S0010-4485(24)00078-2/sb44
http://refhub.elsevier.com/S0010-4485(24)00078-2/sb44

	Similarity-driven topology finding of surface patterns for structural design
	Introduction
	Problem statement
	Research objectives
	Contributions

	Methodology
	Mesh isomorphism
	Topological similarity
	Definition
	Approach
	Implementation
	Verification

	Quad-mesh combination
	Approach
	Implementation
	Data structure


	Structural design application
	Enumeration from a single design
	Design problem
	Pattern design
	Numerical results

	Combination from multiple designs
	Design problem
	Pattern design
	Numerical results


	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgement
	References


