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ABSTRACT. Purpose: Automated diagnosis of urogenital schistosomiasis using digital micros-
copy images of urine slides is an essential step toward the elimination of schisto-
somiasis as a disease of public health concern in Sub-Saharan African countries.
We create a robust image dataset of urine samples obtained from field settings and
develop a two-stage diagnosis framework for urogenital schistosomiasis.

Approach: Urine samples obtained from field settings were captured using the
Schistoscope device, and S. haematobium eggs present in the images were man-
ually annotated by experts to create the SH dataset. Next, we develop a two-stage
diagnosis framework, which consists of semantic segmentation of S. haematobium
eggs using the DeepLabv3-MobileNetV3 deep convolutional neural network and
a refined segmentation step using ellipse fitting approach to approximate the
eggs with an automatically determined number of ellipses. We defined two linear
inequality constraints as a function of the overlap coefficient and area of a fitted ellip-
ses. False positive diagnosis resulting from over-segmentation was further mini-
mized using these constraints. We evaluated the performance of our framework
on 7605 images from 65 independent urine samples collected from field settings
in Nigeria, by deploying our algorithm on an Edge AI system consisting of
Raspberry Pi + Coral USB accelerator.

Result: The SH dataset contains 12,051 images from 103 independent urine sam-
ples and the developed urogenital schistosomiasis diagnosis framework achieved
clinical sensitivity, specificity, and precision of 93.8%, 93.9%, and 93.8%, respec-
tively, using results from an experienced microscopist as reference.

Conclusion: Our detection framework is a promising tool for the diagnosis of urogeni-
tal schistosomiasis as our results meet the World Health Organization target product
profile requirements for monitoring and evaluation of schistosomiasis control programs.
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1 Introduction
Schistosomiasis is endemic in 76 countries worldwide with ∼252 million people infected and an
estimated 779 million people at risk of infection.1 Schistosomiasis is caused by blood flukes of
the genus Schistosoma (S); both S. mansoni (intestinal schistosomiasis) and S. haematobium
(urogenital schistosomiasis) are endemic in Africa.2 Schistosomiasis presents a substantial public
health and economic burden as it is a disease of poverty. In the drive to attain the World Health
Organization (WHO) control and elimination targets, diagnosis for adequate monitoring of
interventions and surveillance is critical.2,3 Recently, the WHO published the diagnostic target
product profiles (TPP) for monitoring, evaluation, and surveillance of schistosomiasis control
programs,4 which identifies development of diagnostic tests for S. haematobium detection as
a high-risk requirement due to lack of its availability. The TPP suggests a semi-quantitative
analysis, capable of providing some degree of information regarding intensity of infection, as
ideal for a diagnostic test for schistosomiasis to support monitoring and evaluation.4 Currently,
microscopy is the WHO reference standard for the diagnosis of schistosomiasis in resource-
limited settings. For the detection of S. haematobium infection, urine samples, after filtration,
sedimentation, or centrifugation, are microscopically examined for the presence of eggs.3 This
method is operator dependent, costly, laborious, and time-consuming. Furthermore, it requires
expertise, which means microscopy skills need to be gained and maintained, which can be an
economic challenge, particularly in remote rural communities.3 There is also the risk of visual
health complications among microscopists resulting from excessive workload due to the low ratio
of trained microscopists to samples for analysis in endemic regions.5 Hence, a field adaptable,
rapid, and easy-to-use automated diagnosis is relevant for the prompt detection of cases, which
will facilitate mapping and monitoring of interventions.4 Recent advances in opto-mechanics
and opto-electronics have rapidly transformed the field of biomedical optics. Optical imaging
technologies, such as conventional light microscopes, are being redesigned to integrate and
miniaturize portable light microscopes for use at the point of care.6–9 Although these technologies
are readily available in high-income countries, unfortunately, nearly all schistosomiasis cases
are seen in low-resource regions of low-income countries, significantly justifying the need for
cost-effective and easy-to-use smart diagnostic technologies. In this work, we address these
challenges by first increasing the size of the S. haematobium (SH) dataset in our previous work10

from 5198 to 12,051 images of clinical samples.11 We carry out detection and counting of
S. haematobium eggs present in each image by proposing a two-stage framework consisting of
a DeepLabv3 with MobilenetV3 backbone deep convolutional neural network12 trained on the
SH dataset using a transfer learning approach. The second stage of our proposed framework is a
refined segmentation and egg counting procedure, which adapts the region-based fitting of over-
lapping ellipses13 to efficiently separate the boundaries of overlapping eggs in the image. Finally,
the detected isolated eggs are screened for the presence of an egg, which meets the defined boun-
dary condition before the sample can be determined as positive/negative diagnosis. We further
demonstrate the robustness and applicability of the proposed framework for field diagnoses of uro-
genital schistosomiasis by implementing our framework on an Edge AI system (Raspberry Pi +
Coral USB accelerator) and testing 65 clinical urine samples obtained in a field settings in Nigeria.
The main contributions of this work can be summarized as follows.

1. A large-scale S. haematobium egg dataset of 12,051 images captured in field settings is
created with respective manually annotated mask images. The dataset contains images
with artifacts, such as crystals, glass debris, air bubbles, and fibres.

2. A S. haematobium egg detection framework consisting of the DeepLabv3 with
MobileNetV3 backbone deep convolutional neural network, trained using transfer learning
approach for semantic segmentation of the eggs. This effectively segments transparent
eggs in noisy images taken in the field. The framework also separates overlapping eggs
using a refined segmentation algorithm resulting in a more accurate egg count.

3. The implementation and testing of the S. haematobium egg on an Edge AI system to
demonstrate its field applicability for the diagnosis of schistosomiasis in low-resource
settings.
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2 Related Work
A pioneering study on the identification and classification of human helminth eggs based on
computer vision algorithms was carried out by Ref. 14. However, their focus was on helminth
eggs found in microscopic faecal samples. Subsequent works15–18 included the detection
S. haematobium eggs found in urine but only in images pre-captured by professional clinical
operators mostly with isolated and non-overlapping eggs in the field of view (FoV) images.
Regarding the detection of S. haematobium eggs in microscopy images of urine from field
settings, these images contain many artifacts with morphological and textural similarity to eggs,
such as crystals, glass debris, air bubbles, fabric fibres, and human hair. This makes it difficult to
achieve high accuracy using traditional AI methods, which detect objects in the images based on
some threshold value or discontinuous local features of an image. The S. haematobium eggs are
oval-shaped structures (110 to 170 μm long and 40 to 70 μm wide) with a thick transparent
capsule and a sword-shaped protrusion known as the terminal spine located at the narrow end
of the egg. Detecting an egg is challenging due to its similar appearance to its surroundings.
Automated detection of an isolated S. haematobium egg by thresholding the cross-correlation
coefficient of two sets of invariant moments for both a reference and sample image was per-
formed by Ref. 19. However, this method had poor performance in noisy images and hence
cannot be used for S. haematobium eggs detection in field settings.

Recently, deep learning algorithms were used by Ref. 20 to solve the challenges of
S. haematobium egg detection in images captured in field settings. Using transfer learning, they
compared RetinaNet,21 MobileNet,22 and EfficientDet23 architectures pre-trained on the COCO
2017 dataset.24 They retained the feature extraction layers and fine-tuned the dense layers of
these models to detect S. haematobium eggs as a single class. The RetinaNet architecture had
improved egg detection performance with egg counts closely related to manual egg counts
obtained by a trained user. It was also able to detect isolated eggs and reject other debris from
a crowded FoV. However, air bubbles were incorrectly classified as eggs, and the automated
detection of eggs aggregated in large clumps with other eggs or debris remained a challenge.
In our previous work, we developed a low-cost automated digital microscope (Schistoscope
V5.0) with AI for the detection S. haematobium eggs,10 and we reported the results from a field
validation study in Nigeria.11 A U-Net model25 trained with the S. haematobium dataset consist-
ing of 5198 images captured from both clinical and spiked urine samples was used for automated
egg detection. Although we achieved a high diagnostic sensitivity of 87.3%, the diagnostic speci-
ficity was low (48.9%). This was due to the high number of false positives by the U-Net archi-
tecture and the inability of the segmented pixel area-based linear model to filter out incorrectly
segmented eggs while counting.

All these studies show that deep learning is a promising approach for the automated diag-
nosis of urogenital schistosomiasis. However, developing a model that is field applicable requires
a robust dataset of images with varying degrees of urine artifacts from field settings. Also the
separation of overlapping eggs for improved estimation of infection intensity has remained
a challenge. This paper proposes a two-stage framework to solve these challenges.

3 Methods
To meet the WHO TPP requirements for a diagnostic test for schistosomiasis, the proposed
urogenital schistosomiasis diagnostic framework consists of two stages (Fig. 1). The first stage
involves the semantic segmentation of candidate S. haematobium eggs in captured images. The
segmentation results are further refined in the second stage by ellipse fitting and morphological
filtering of the segmented regions. The two-stage framework minimizes false positive detection
that enables a high diagnostic specificity, which is a requirement for diagnostic tools for
monitoring and evaluation of schistosomiasis control programs and determining transmission
interruption.

3.1 Sample Image Capture and S. haematobium Egg Annotation
The details of the Schistoscope’s mechanical precision and optical quality are described in our
previous work.10 The Schistoscope optical system consists of a 4× magnification microscope
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objective and a Raspberry Pi High-Quality Camera Module V2.1 equipped with a Sony
IMX477R camera sensor. The camera sensor has a pixel-pitch of 1.55 μm and registers an image
size of 2028 × 1520 pixels. The device consists of an autofocusing and an automated slide
scanning system. For urine filtration, we made use of a 13 mm filter membrane, which results
in 117 image grid segments per sample when scanned by the device. The S. haematobium eggs
in the captured images used for training and development testing were manually annotated by
an expert parasitologist using the coco annotator tool.26 The annotation process is highlighted
as follows.

1. Annotation of the exact boundary pixels of the S. haematobium eggs was not strictly
enforced due to the limitation posed by the size of the eggs.

2. The pixel values of the filter membrane and artifacts in the ground-truth image were
labeled as “0” (background) and the eggs as “1” (foreground).

3. There were few S. mansoni eggs found in the images of the clinical urine samples and their
pixel values were labeled as “1” (foreground).

4. Pixels of partially cut eggs at the edges of the images were labeled as “1” (foreground).
5. The region of the eggs covered by artifacts was labeled as “0” (background).

3.2 Stage 1: Semantic Segmentation of S. haematobium Eggs

3.2.1 Transfer learning using DeepLabv3-MobileNetV3

In transfer learning, a model trained on one task is repurposed to another related task, usually by
some adaptation toward the new task. This approach is mainly useful for tasks where enough
training samples are not available to train a model from scratch, such as medical image classi-
fication for neglected tropical diseases or emerging diseases.27 To overcome the limited data
sizes, transfer learning was used to retrain the DeepLabv3-MobileNetV312 model for semantic
segmentation of candidate S. haematobium eggs using the SH dataset. DeepLabv3 is a semantic
segmentation architecture that was developed to handle the problem of segmenting objects at
multiple scales. Modules are designed, which employ atrous convolution in cascade or in parallel
to capture multi-scale context by adopting multiple atrous rates. We initialize the model with
weights obtained from the pre-trained model on a subset of COCO train2017, on the 20 catego-
ries that are present in the Pascal VOC dataset.28 Since our case consists of two output classes
(background and foreground), we replace the 21-output channel convolutional layer with a single
output-channel convolutional layer. The weights of all layers of the model are then updated
during the training stage.

Fig. 1 Schematics of the proposed two-stage diagnosis framework urogenital schistosomiasis
with DeepLabV3-MobileNetV3 deep learning architecture for semantic segmentation of eggs and
refined segmentation for overlapping eggs separation and count.
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3.2.2 Loss function

The model was trained using the Dice similarity coefficient (DSC) loss function,29 which is
widely used in medical image segmentation tasks to address the data imbalance problem between
foreground and background:

EQ-TARGET;temp:intralink-;e001;117;681LDSC ¼ 2
P

x;yðSi;x;y × Gi;x;yÞP
x;y
S2i;x;y þ

P
x;y
G2

i;x;y
; (1)

where Si;x;y and Gi;x;y refer to the value of pixel ðx; yÞ in the segmentation result Si and ground
truth Gi, respectively.

3.3 Stage 2: Refined Segmentation of S. haematobium Eggs
To solve the challenge of obtaining accurate egg counts in the occurrence of false positives or
overlapping and clustered eggs, we adopted a refined segmentation procedure, which involves
fitting ellipses over the region of interest in the binary output image of the semantic segmenta-
tion. The refined segmentation algorithm as shown in Algorithm 1 operates in a number of steps,
which can be summarized as follows.

3.3.1 Optimization problem formulation

We assume a binary image I that represents the segmentation mask output of the DeepLabV3-
MobileNetV3 deep neural network model. The binary image may contain one or more sliced
binary region image R, which has the same size as the bounding box. This region image
R represents a segmented isolated or overlapping eggs. A pixel p of R belongs to either the
foreground FG (RðpÞ ¼ 1) or the background BG (RðpÞ ¼ 0). The area AR of the segmented
egg is given by

EQ-TARGET;temp:intralink-;e002;117;417AR ¼
X

p∈FG
RðpÞ: (2)

We also assume a set ER of NR ellipses are fitted over the region image R. The binary image
UE is defined such that UEðpÞ ¼ 1 at point p that is inside any of the ellipse ER;i; otherwise
UEðpÞ ¼ 0. Also we define the coverage αðErÞ of the segmented eggs by the given set of ellipses
ER as

EQ-TARGET;temp:intralink-;e003;117;332αðErÞ ¼
1

AR

X

p∈FG
RðpÞUEðpÞ: (3)

Essentially, αðErÞ is the percentage of the segmented eggs that are under some of the ellipse
in ER. Let the sum of the areas of all the ellipses be denoted by jERj ¼

Pði ¼ 1ÞjER;ij and
let CðERÞ denote the coverage area by all the ellipses:

EQ-TARGET;temp:intralink-;e004;117;254CðERÞ ¼
X

p∈R
UEðpÞ: (4)

It should be stressed that CðERÞ < jERj, with the equality holding in the case that all ellipses
are pairwise disjoint. This is because in case of two overlapping ellipses, jERj counts the area of
their intersection two times, while CðERÞ does not. Similar to the work of Ref. 13, we want to
maximize the shape coverage αðE�

RÞ with a set of ellipses E�
R whose covered area by all ellipses

CðE�
RÞ is as close as possible to AR:

EQ-TARGET;temp:intralink-;e005;117;157E�
R ¼ arg max

ER

αðErÞ s:t: CðERÞ ¼ AR: (5)

We defined a model complexity measure the ratio of the area AR of the segmented region to
experimentally observed average area of segmented isolated egg A�

R:
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EQ-TARGET;temp:intralink-;e006;114;116C ¼ AR

A�
R
: (6)

To estimate the optimal number N�
R of ellipses in a segmented egg region image R, a trade-

off between the egg coverage αðErÞ and the model complexity C is optimized by employing

Algorithm 1 The refined segmentation algorithm

1 Input: Binary segmentation mask image I

2 Output: Set of ellipse E�
I , egg count N�

I

3 N�
I ¼ 0

4 E �
I ¼ ∅

5 for each region image R ∈ I do

6 N�
R ¼ 0

7 E�
R ¼ ∅

8 AIC�
R ¼ ∞

9 Nlb; Nub ¼ ComputeBoundaryðARÞ

10 NR ¼ Nlb

11 repeat

12 ER ¼ F itEl l ipseðR;NRÞ

13 AICR ¼ ComputeAICðR;UE Þ

14 if AICR < AIC�
R then

15 N�
R ¼ NR

16 AIC�
R ¼ AICR

17 E�
R ¼ ER

18 NR ¼ NR þ 1

19 until NR ¼ Nub

20 E�
I ¼ unionðE�

I ; E
�
RÞ

21 N�
I ¼ N�

I þ N�
R

22 end

23 return N�
I ; E

�
I

Legend

I: Binary segmentation mask image

E�
I : Optimal set of ellipses for I

N�
I : Optimal number of ellipses for I

R: Segmented egg region image

N�
R : Optimal number of ellipses for R

E�
R : Optimal set of ellipses for R

AIC�
R : Optimal Akaike Information Criterion for R

Nlb : Lower boundary for N

Nub : Upper boundary for N
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the Akaike information criterion (AIC).30 The AIC-based model selection criterion amounts to
the minimization of the quantity:13

EQ-TARGET;temp:intralink-;e007;117;712AICR ¼ C lnð1 − αðErÞÞ þ 2NR: (7)

This minimizes the error in egg count as intuitively the complexity is proportional to the area
of the segmented eggs.

3.3.2 Extracting segmented egg regions

First, connected components in the binary segmentation mask image are extracted and binary
region image R, which has the same size as bounding box of the connected component is created.
If area AR of the region image (i.e., the number of pixels in the segmented egg region) is less than
the defined area threshold Ath, then the detected region is classified as noise; otherwise, we solve
for the optimal number of ellipses as described in the next section.

3.3.3 Initializing ellipses solutions

For defined number NR of ellipses in a segmented egg region image R, we initialize the ellipse
hypotheses using k-means clustering this defines a set ER of clusters, which are circular in shape
with hard cut-off borders where each pixel is strictly allocated to one cluster. The cluster centers
are the mean vector of the points belonging to the respective cluster, while the diameters are the
maximum Euclidian distances of the cluster members from their respective cluster centers.

3.3.4 Optimizing ellipses solutions

To obtain a more complex, ellipsoid shapes with soft cut-off borders (i.e., overlapping ellipses)
which closely describes the shape of S. haematobium eggs, the ellipse hypotheses is evolved
using the Gaussian mixture model expectation maximization (GMM-EM) algorithm to finetune
the parameters of the initialized set ER of clusters with the best coverage αðErÞ of the given
segmented egg region. This is achieved by expectation-step and the maximization-step iteratively
of the GMM-EM algorithm. The log likelihood function is maximized until the GMM-EM algo-
rithm converges. A detailed explanation of the GMM-EM algorithm can be found in the work of
Refs. 31 and 32.

3.3.5 Solving for the optimal number of ellipses

Different models (i.e., solutions involving different numbers NR of ellipses) for a segmented egg
image region are evaluated based on the AIC criterion [defined in Eq. (7)] that balances the trade-
off between model complexity and approximation error. To minimize AICR, the refined segmen-
tation algorithm increments the number of candidate ellipses NR starting from a lower boundary,
Nlb ¼ 0.6ceilðCÞ, with a step size of 1. At each value of NR, the set ER of clusters is first ini-
tialized by k-means clustering (described in Sec. 3.3.3) and then evolved using the GMM-EM
algorithm (described in Sec. 3.3.4). This process continues until NR is equal to the upper boun-
dary, Nub ¼ 1.1ceilðCÞ. In each iteration, the AICR criterion is computed. The lower and upper
boundaries of the number of ellipses are formulated using the complexity measure C, derived
from prior knowledge about the average pixel area of the S. haematobium eggs. This helps to
reduce the search space for the optimal number of ellipses. From all possible models (involving
from Nlb to Nub), the refined segmentation algorithm reports as the optimal solution as the set of
ellipses E�

R with the minimum AICR.

3.3.6 Morphological filtering of detected isolated eggs

To reduce these false positives diagnosis caused by pixels of artifacts, such as crystals wrongly
segmented as isolated egg, we introduced two linear inequality constraints, which are functions
of the area of the detected ellipse jERj and overlap coefficient OCðR;UEÞ defined by the follow-
ing ratio:
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EQ-TARGET;temp:intralink-;e008;114;736OCðR;UEÞ ¼
R ∩ UE

minðR;UEÞ
: (8)

These inequality constraints are derived experimentally and only applied to segmented
regions with a single fitted ellipse for determination of diagnosis result. This improves the
specificity of the algorithm by accepting only regions that fall within an experimentally defined
boundary region as candidate S. haematobium eggs while discarding the others as a false positive
prediction.

4 Dataset and Implementation Details

4.1 Dataset Description
A total of 103 captured urine samples were used for the creation of the SH dataset. The SH
dataset was used for training and development testing of the DeepLabV3-MobileNetV3 deep
neural network model, while a separate set of 65 captured urine samples referred to as diagnosis
test dataset was used for testing the developed framework for urogenital schistosomiasis diag-
nosis. The images were captured from urine samples collected in a rural area in central Nigeria
with the Schistoscope V5.0.11 The size of the captured images is 1520 × 2028 pixels. The details
of the sample collection and preparation process are described in our previous works.10,11

The procedure followed in capturing and annotation of the S. haematobium eggs in images is
described in Sec. 3. A summary of the SH image dataset is shown in Table 1. It consists of 12,051
images of clinical urine samples and their respective mask images. There are 17,799 annotated
S. haematobium eggs in 2997 captured FoV images. The dataset consists of images that are easy
to identify eggs (Fig. 2) without the presence of artifacts in the background, as well as images that
are difficult to analyse (Fig. 3) with backgrounds containing artifacts, such as crystals, glass
debris, air bubbles, fabric fibres, and human hair, which makes egg identification difficult.

Table 1 Number of images per category in the SH dataset.

Split Positive images Negative images Total

Training set (80%) 2420 7221 9641

Test set (20%) 577 1833 2410

Total 2997 9054 12,051

Fig. 2 Example of sample images that are easy-to-identify eggs having glass slides and filter
membranes as background and their respective ground truth images.
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The SH dataset is split into 80% (9641 images) and 20% (2410 images) for training and develop-
ment testing, respectively. To our best knowledge, this SH dataset is the largest robust dataset
focused on S. haematobium egg images captured in a field setting.

4.2 Implementation Details
The training of the DeepLabv3-MobileNetV3 model was performed using the Pytorch
framework33 on NVIDIA A100-SXM4-40GB GPU. All images were pre-processed by centring
and normalizing the pixel density per channel. We fine-tuned the model for 100 epochs. The
batch size is set to 8, and ADAM optimizer is used to optimize the Dice loss function, with
an initial learning rate of 1 × 10−4. We employ a “poly” learning rate policy,12 where the initial
learning rate is multiplied by ð1 − iter∕ðmaxiterÞÞpower with power ¼ 0.9. All images were down
sampled to 507 × 676 before being fed to the neural network.

To demonstrate the field applicability of the two-stage framework in low-resource settings,
we performed the development testing and diagnosis testing on a Raspberry Pi 4 model B using a
Coral USB accelerator. To perform semantic segmentation on the Edge AI system, we converted
the DeepLabv3-MobileNetV3 model from Pytorch to TensorFlow lite.34 This was done by
first exporting the Pytorch model in Open Neural Network Exchange (ONNX) format. The
ONNX model is then converted to TensorFlow before the final conversion from TensorFlow to
TensorFlow Lite. The refined segmentation algorithm was implemented on the Raspberry Pi.

4.3 Evaluation Metrics
We evaluated the performance of semantic segmentation of S. haematobium egg by comparing
the DeepLabV3-MobileNetV3 segmentation, which are the prediction results with a ground
truth (GT) that was manually annotated by a trained parasitologist using the pixel accuracy
(PA):

EQ-TARGET;temp:intralink-;e009;117;192PA ¼ 1

n

Xn

i¼0

1ðGTi¼DSiÞ: (9)

We also compared the semantic segmentation performance using DSC and Jaccard similarity
coefficient (JAC), which are widely used in evaluating medical segmentation algorithms:

EQ-TARGET;temp:intralink-;e010;117;126DSC ¼ 2
jGT ∩ DSj
jGTj þ jDSj ; (10)

EQ-TARGET;temp:intralink-;e011;117;77JAC ¼ jGT ∩ DSj
jGT ∪ DSj : (11)

Fig. 3 Example of sample images that are difficult-to-identify eggs with artifacts, such as crystals,
glass debris, air bubbles, and fabric fibers in the background, and their respective ground truth
images.
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Although the diagnostic performance of our two-stage diagnosis framework was evaluated
by employing three metrics, precision, sensitivity, and specificity, which are commonly used for
evaluating diagnostic devices:

EQ-TARGET;temp:intralink-;e012;114;700precision ¼ TP

TPþ FP
; (12)

EQ-TARGET;temp:intralink-;e013;114;654sensitivity ¼ TP

ðTPþ FNÞ ; (13)

EQ-TARGET;temp:intralink-;e014;114;624specificity ¼ TN

ðTNþ FPÞ ; (14)

where TP, FP, TN, and FN are true positive, false positive, true negative, and false negative
samples, respectively.

5 Experiments and Results

5.1 DeepLabV3-MobileNetV3 S. haematobium Egg Semantic Segmentation
To determine the applicability of the framework on the Edge AI system in low-resource settings
with no internet connectivity, we implemented and evaluated its performance on a Raspberry Pi
4B with Coral USB accelerator. We evaluate the DeepLabV3-MobileNetV3 deep learning
model for the semantic segmentation of S. haematobium eggs using the development test
dataset. As shown in Table 2, the deep learning model achieved a segmentation accuracy of
99.69%. It is, however, important to note the existence of a very high imbalance between
the foreground and background pixels in the images, which could hamper the segmentation
accuracy. While using the Jaccard and dice coefficient as performance metric, the model obtained
85.30% and 87.20%, respectively. However, the average inference time per image was 7.13 s
with a model size of 7.13 MB. We considered the inference time too high given the need to
process 117 images per sample diagnosis. To reduce the processing time on the Edge AI system,
we optimized the DeepLabV3-MobileNetV3 deep learning model using post-training quantiza-
tion on TensorFlow. The optimized model was applied to the development test dataset. We
observed a significant reduction in inference time and model size (2× and 4×, respectively)
with little effect (about 1% reduction) in the Jaccard and Dice coefficient metric. However,
the segmentation accuracy remained the same. All further experiments in the work were carried
out using the optimized model.

The visual performance of the segmentation model is shown in Fig. 4(c). We observed that
the model detected eggs in images heavily cluttered with artefacts, such as crystals and other
particles (sample image 3). It also detected highly transparent S. haematobium eggs (sample
image 1) present in the captured images. Partially cut eggs on the edge of the images and
overlapping eggs were also detected as observed in sample image 2. However, the boundaries
in the overlapping eggs are not clearly segmented.

5.2 Refined Segmentation and Egg Count
In the second stage of our framework, we applied a refined segmentation algorithm on the output
segmentation mask image of the DeepLabV3-MobileNetV3 deep learning model as described in
Sec. 3.2. From Fig. 4(d), we observed that the refined segmentation steps fills-in eggs pixels
missed in the deep learning semantic segmentation stage. This improves the visual perceptibility
of the eggs in the segmentation mask image especially in regions with overlapping eggs as seen

Table 2 Performance of DeepLabV3-MobileNetV3 for semantic segmentation of S. haematobium
eggs.

PA JAC DSC Model size (MB) Inference time (s)

Base model 99.69 85.30 87.20 42.1 7.13

Optimized model 99.69 84.64 86.55 11.1 4.39
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in sample image 2. Figure 5 shows example regions with overlapping eggs in the deep learning
segmentation mask image. We observed that the correct number of eggs in Figs. 5(a) and 5(c) are
equivalent to the optimal AIC criterion values in Figs. 5(b) and 5(d), respectively. The refined
segmentation stage is able to separate overlapping eggs thus improving the accuracy of deter-
mining the infection intensity of the sample.

Figure 6 shows the scatter log-scale plots of the automated egg counts versus the manual egg
count (i.e., egg count by an experienced microscopist) of samples in the diagnosis test dataset.
Although we observed that the predicted egg counts were mostly under the 1:1 line, this signifies
underprediction especially in samples with high egg counts. However, the manual and automated
egg counts are highly correlated in samples with both low and high egg counts, which indicate
the applicability for the developed framework in determining infection intensity of a sample.

Fig. 4 Visual performance of developed framework on sample images from the dataset.
Schistoscope (a) captured and (b) ground truth images. The output mask images of
(c) DeepLabV3-MobileNetV3 segmentation and (d) refined segmentation. (e) The result image
with detected eggs.
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5.3 Urogenital Schistosomiasis Diagnosis
A 10 mL urine sample consists of 117 FoV images when filtered with a 13 mm membrane and
captured by the Schistoscope. For a sample to be determined as true negative diagnosis, the 117
FoV images must contain no false positives. We experimentally defined boundary conditions for
the detected isolated eggs using inequality functions, defined by the overlap and area of the fitted
ellipse as shown in Fig. 7. The boundary conditions are defined by OC ≥ −4.75 × 10−4jERj þ
1.15 and OC ≤ 3.25 × 10−4jERj þ 0.74, where OC is the overlap and jERj is the area of
fitted ellipse The experiment was carried out using images from the development test dataset

Fig. 6 Logarithmic scale scatter plot of infection intensity per 10 mL urine sample. The manual egg
count obtained by a microscopist manually counting the eggs in the diagnosis test image dataset is
used as a reference, whereas the automated egg count is obtained using the developed
framework.

Fig. 7 Boundary conditions to determine a sample as positive or negative diagnosis applied to
images from (a) the development test dataset and (b) diagnosis test dataset. Samples are deter-
mined as positive if an egg in any of the 177 FoV images is detected in the green region.

Fig. 5 (b), (d) Estimated AIC criteria values for different number of ellipses fitted on the (a),
(c) region images with optimal ellipses are highlighted in green.
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[Fig. 7(a)], and boundaries were found to hold also in images from the diagnosis test dataset
[Fig. 7(b)]. A sample was determined as positive diagnosis if an isolated egg is detected in the
set of 117 FoV images, which satisfies the defined boundary conditions (an egg is detected in the
green region of Fig. 7). Otherwise, the sample is determined as negative diagnosis. We observed
that most of the false negatives in Fig. 7 (gray markers) were broken or partly captured eggs
found at the edges of the image, whereas the false positives (yellow markers) are artefacts that
are very similar in appearance to a S. haematobium egg.

The diagnostic performance of the developed framework is shown in Table 3. We observed a
significant improvement in diagnosis specificity (from 72.73% to 93.94%) and precision (from
77.50% to 93.75%) when the boundary conditions are applied in determining the sample diag-
nosis. However, a reduction in the diagnosis sensitivity is observed. This is due to some samples
with very low infection intensities (eggs per 10 mL of urine ≤2) not having any detected eggs,
which meet the boundary constraint represented by the green region of Fig. 7(b). McNemar’s test
returned a p-value of 0.008, which indicates a statistically significant difference between both
methods (p-value < 0.05). Also we achieved a 7.39% and 92.11% performance improvement in
diagnosis sensitivity and specificity, respectively, compared to our previously published work.11

5.4 Computational Time
To evaluate the computational performance of the developed framework, we measured the
computational time of both stages of the proposed method as function of infection intensity.
S. haematobium infection intensity has consistently been characterized by the number of
schistosome eggs per 10 mL of urine with 1 to 49 eggs per 10 mL of urine defining a light
infection and more than 50 eggs per 10 mL of urine indicating a heavy infection.35 We performed
the running time experiments on a Raspberry PI 4B with Coral USB accelerator to study how the
infection intensity affects the computational time. The algorithm was applied on images from
the diagnosis test image dataset. Figure 8 shows the average computational time from the
application of the first (DeeplabV3-MobileNetV3 semantic segmentation) and the second
(refined segmentation and separation of overlapping eggs) stages of the developed framework
to the diagnosis test image dataset as a function of the infection intensity. From this figure,

Table 3 Diagnostic performance of developed framework on the diagnosis test dataset.

Sensitivity Specificity Precision

Without boundary conditions 96.88 72.73 77.50

With boundary conditions 93.75 93.94 93.75

Fig. 8 Average computational time in seconds from the application of framework on the diagnosis
test image dataset.
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it can be seen that there is little difference between the computational time of negative and
light intensity samples (620 and 628 s, respectively). However, processing samples with heavy
infection intensity is more time-consuming with an average computational time of 748 s.

6 Discussion

6.1 Impact on Schistosomiasis Control and Elimination
Schistosomiasis affects about 252 million people globally2 with ∼90% of infections and the vast
majority of morbidity occurring in Sub-Saharan Africa. Chronic urogenital schistosomiasis
infection can result in bladder fibrosis as well as female and male genital schistosomiasis, which
is associated with greater risk of HIV transmission.36 Also the bulk of the more than 1.6 million
disability-adjusted life years37 caused by schistosomiasis worldwide affect children, who have
the highest prevalence and intensity of infections. Morbidity in children include anaemia, delays
in physical and cognitive development, and reduced tolerance to exercise.38 The main strategy for
control of schistosomiasis focuses on mass drug administration (MDA) of praziquantel in priority
to primary school-aged children because it is more cost-effective to treat all school-aged children
in a community above a certain prevalence threshold than to test and treat each individual.4 On a
population level, higher intensities of infection are associated with higher levels of morbidity,
but these relationships are poorly defined, as most control programs monitor only prevalence of
infection and not intensity.39 Microscopic examination of urine samples is often a cheap and
simple procedure recommended by WHO for the diagnosis of urogenital schistosomiasis.
However, it has some critical shortcomings, which include access to microscopes and trained
personnel as well as poor sensitivity and reproducibility, and an error-prone manual read-out.40

This led to the recent formation of the WHO Diagnostic Technical Advisory Group with the
mandate to identify and prioritize diagnostic needs and to subsequently develop TPPs for future
diagnostics.4,41,42 The TPP requires new diagnostic tools to have high specificity so as reliably
measure when prevalence is above or below a cut-off of 10% in school-aged children. This
informs decision on the frequency of the MDA. A diagnostic tool with high specificity is also
needed to track changes of prevalence, ensuring that MDA is reducing overall prevalence, and to
determine if transmission has been interrupted. In this work, we developed a two-stage diagnostic
framework, which is a suitable candidate for estimating infection intensity and diagnostic preva-
lence in urogenital schistosomiasis monitoring and control.

6.2 Limitations
• Image auto-focusing. Some of the images in the dataset captured by the Schistoscope were

blurry due to sub-optimal autofocusing. Although this had no effect on the diagnostic
performance, it did have an effect on the automated egg counts of a few samples in the
diagnosis test dataset. This problem has been solved by a more accurate auto-focusing
algorithm in subsequent version of the Schistoscope.

• Annotation problem. Annotating the exact boundaries of the eggs was difficult due to their
small sizes. This may contribute to the difficulty of the model to segment the exact egg
boundaries, especially in overlapping eggs.

• Diagnostic prevalence. The determining diagnosis of a sample with eggs that are either
broken or are at the edges of the images is mostly not considered by the developed frame-
work as they do not meet the boundary requirements. This increases the chances of a false
negative diagnosis especially in samples with very low egg counts.

• Computational time. On a Raspberry Pi with Coral USB accelerator, the developed frame-
work processes 117 images of the 13 mm urine filter membrane in ∼11 min. Therefore,
an estimated processing time of 35 min required to process a 25 mm filter membrane
with 372 captured FoV images. However, the processing time can halved by the use of
2 Coral USB accelerators for computation through multi-threading.

7 Conclusion
We created a robust dataset of manually annotated S. haematobium eggs in microscopy images of
urine samples collected from an endemic population, captured by the Schistoscope V5.0 device.
We then developed a two-stage diagnosis framework for urogenital schistosomiasis using the SH

Oyibo et al.: Two-stage automated diagnosis framework for urogenital. . .

Journal of Medical Imaging 044005-14 Jul∕Aug 2023 • Vol. 10(4)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Medical-Imaging on 05 Oct 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



dataset. The framework consists of two main stages, the first step involves the semantic segmen-
tation of the eggs using the DeepLabV3 deep learning architecture with a MobileNetV3 back-
bone. The model effectively segmented the transparent eggs having low contrast with the
background, and it also differentiated between eggs and other urine artifacts, such as crystals
that have egg-like structures. In the next stage, a refined segmentation algorithm was applied
to detect and count the eggs present. The refined segmentation algorithm separates overlapping
eggs by fitting the region image with an optimal number of ellipses determined by optimising the
AIC criterion. For improved diagnostic performance, we determine a sample as positive only if
there is a detected egg present in the sample images that meet a defined boundary requirement,
which is a function of the overlap and area of the fitted ellipse. We implemented the developed
framework on an Edge AI system consisting of a Raspberry Pi 4B with Coral USB accelerator
and applied it to a diagnosis test dataset of 65 samples using results obtained by an expert micros-
copist as reference. We obtained 93.75%, 93.94%, and 93.75% sensitivity, specificity, and pre-
cision, respectively. The automated egg count was also highly correlated with the manual count
of the microscopist. The framework also provides causality for its estimated egg counts, which is
relevant for diagnosis. From our results, it is evident that our automated framework for urogenital
diagnosis combined with the Schistoscope device is a promising diagnostic tool for schistoso-
miasis. In a future study, the proposed multilayer framework, combined with the Schistoscope,
will be validated for the diagnosis of urogenital schistosomiasis by comparing its performance
with conventional microscopy as well as more accurate diagnostic methods, such as schistosome
circulating antigen detection and DNA-based methods, such as polymerase chain reaction
assays.43
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