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ABSTRACT
Molecular-based equations of state for describing the thermodynamics of chain molecules are often based on mean-field like arguments that
reduce the problem of describing the interactions between chains to a simpler one involving only nonbonded monomers. While for dense
liquids such arguments are known to work well, at low density they are typically less appropriate due to an incomplete description of the effect
of chain connectivity on the local environment of the chains’ monomer segments. To address this issue, we develop three semi-empirical
approaches that significantly improve the thermodynamic description of chain molecules at low density. The approaches are developed for
chain molecules with repulsive intermolecular forces; therefore, they could be used as reference models for developing equations of the state
of real fluids based on perturbation theory. All three approaches are extensions of Wertheim’s first-order thermodynamic perturbation theory
(TPT1) for polymerization. The first model, referred to as TPT1-v, incorporates a second-virial correction that is scaled to zero at liquid-like
densities. The second model, referred to as TPT1-y, introduces a Helmholtz-energy contribution to account for correlations between next-
nearest-neighbor segments within chain molecules. The third approach, called TPT-E, directly modifies TPT1 without utilizing an additional
Helmholtz energy contribution. By employing TPT1 at the core of these approaches, we ensure an accurate description of mixtures and enable
a seamless extension from chains of tangentially bonded hard-sphere segments of equal size to hetero-segmented chains, fused chains, and
chains of soft repulsive segments (which are influenced by temperature). The low-density corrections implemented in TPT1 are designed to
preserve these good characteristics, as confirmed through comparisons with novel molecular simulation results for the pressure of various
chain fluids. TPT1-v exhibits excellent transferability across different chain types, but it relies on knowing the second virial coefficient of the
chain molecules, which is non-trivial to obtain and determined here using Monte Carlo simulation. The TPT1-y model, on the other hand,
achieves comparable accuracy to TPT1-v while being fully predictive, requiring no input besides the geometry of the chain molecules.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0197910

I. INTRODUCTION

Equations of state for describing fluids containing polyatomic
(chain) molecules are important for the design of processes and
products in the (petro-)chemical, energy, and pharmaceutical indus-
tries. Models derived from a description of molecules and their
interactions have proven particularly useful, providing a unique
combination of accuracy and predictive power. A well-established

approach for developing such molecular-based equation-of-state
models is to start from a reference molecular model comprising
only repulsive intermolecular forces and later incorporate the effects
of attractive intermolecular interactions (such as dispersion, polar-
ity, or hydrogen bonding) as perturbations. Notable examples of
successful equations of state for chain molecules developed this
way are the perturbed hard-chain theory (PHCT) of Beret, Dono-
hue, and Prausnitz,1,2 as well as the Statistical Associating Fluid
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Theory (SAFT) family of models,3–9 which have found extensive
applications in describing the thermodynamic properties and phase
behavior of systems ranging from mixtures of n-alkanes to polymer
blends, polymers in solution, and surfactants.10–14

One of the archetype molecular models for describing chain
molecules is a fully flexible chain of tangentially bonded hard
spheres, which serves as the reference model for the PHCT theory,
the original SAFT models,3–5 and the PC-SAFT equation of state.7
Chains of hard spheres comprise some of the most essential features
of chain molecules, such as excluded volume interactions, molecu-
lar anisotropy, and, depending on the way the spheres are bonded,
intramolecular flexibility. Because of this, they have been intensively
studied over the past 50 years, leading to equations of state based on
integral equation theory (e.g., PRISM,15 Percus Yevick theory,16–18

Wertheim’s multi-density Ornstein–Zernicke equation,19–21 GBY
hierarchy,22,23 and Kirkwood hierarchy24), Wertheim’s thermo-
dynamic perturbation theory of polymerization (TPT) and its
extensions,4,25–37 Zhou and Stell’s solvation theory,38–41 gen-
eralized Flory–dimer theory (GFD),42–50 and scaled particle
theory.51,52

Central to the description of chain molecules within the
SAFT framework is Wertheim’s TPT,25,26 which characterizes how
monomers associate through strong, short-range directional attrac-
tions. In the limit of infinite association strength, Wertheim’s
approach provides the means to approximate the change in
Helmholtz energy due to the formation of chains, using only the
properties of a reference fluid of unbonded monomers as input.4
This offers a versatile approach that can be applied to homo-
segmented chains, hetero-segmented chains,32,33,53,54 branched
chains,27,28,34,55 fused chains,51,52,56–61 and mixtures thereof, as long
as an accurate description of the thermodynamics and structure of
the monomeric reference fluid (mixture) is available.

Although widely applied, TPT is not without limitations. As
its main approximation, it describes the Helmholtz energy of chain
formation based on that of a single chain in a fluid of monomers.
Within this “single-chain approximation,” the theory thus only
incorporates the effect of intramolecular correlations on the equa-
tion of state of chain molecules; the effect of chain-connectivity
on the correlations between the segments of different chains is
neglected. At first-order (TPT1),25 only correlations between neigh-
boring segments within chain molecules are incorporated, while
higher-order versions of the theory also incorporate intramolecular
correlations between triplets (TPT2),26,27,62 quadruplets (TPT3),35

and so on. For isotropic (liquid or gaseous) fluids at high densi-
ties, the single-chain approximation is very reasonable because the
local density around a segment of a chain molecule is similar to
the local density around unbonded monomers.63 At low densities,
however, the chain connectivity significantly alters the local den-
sity around chain segments,63,64 and the accuracy of TPT decreases
substantially.35,37

Several studies have focused on improving the low-density
behavior of TPT, ranging from fundamental approaches (e.g.,
changing the reference fluid to a fluid of dimers or n-mers,29,30,65

or going beyond the single-chain approximation by includ-
ing chain–chain interactions in Wertheim’s cluster expansion37)
to more empirical approaches where the low-density behav-
ior is imposed.36,41,66 The present work falls within the latter
category.

Key to this work is our focus on transferability: we aim to
develop low-density corrections to TPT1 that can be applied beyond
chains of tangentially bonded hard spheres of equal size. That is,
hetero-segmented chains, fused chains, mixtures, and soft repul-
sive chains. We approach this from three different angles, leading
to three distinct models. The first model (TPT-v) resembles the low-
density corrections proposed by Yethiraj et al.67 and Vega et al.,66

where the second virial coefficient predicted by TPT1 (or GFD) is
replaced by the second virial coefficient obtained from Monte Carlo
simulation. We scale the second-virial correction to zero when den-
sity increases, leading to an approach that bears some similarity to
the recent uf -theory68 and uv-theory.69 The applied scaling function
inherently leads to a modification of higher (n > 2) virial coeffi-
cients Bn; the implications of this will be discussed and analyzed.
The second model (TPT-y) draws inspiration from the work of Hu
et al.,39 who suggested considering correlations between neighbor-
and next-nearest-neighbor segments within chain molecules to
describe the Helmholtz energy of chain formation. We derive a
novel approach for calculating the next-nearest-neighbor contribu-
tion, which is used as a low-density correction to TPT1. The third
model (TPT-E) builds on a recent approach by Elliott,70 where TPT1
is empirically reformulated to reproduce the correct polymer scal-
ing of the second virial coefficient with the number of spherical
segments per chain molecule.

II. THEORY DEVELOPMENT
We consider a fluid mixture of N = N1 +N2 + ⋅ ⋅ ⋅ +NC chains

(where C is the number of species) of arbitrarily sized, fused hard
spheres in a volume V . The density of the system is defined as
ρ = N/V = ∑C

i=1 xiρ, where we introduced the mole fraction of
species i, xi = N i/N. Chains of species i are defined by their number
of hard-sphere segments si, the diameters dαi of the hard spheres,
and the bond lengths lαiα′i (which are fixed), where the index αi runs
over all segments 1, 2, . . . , si within the chain, and the index α′i runs
over all neighbors of segment αi. We further introduce a dimension-
less bond-length l∗αiα′i

= 2lαiα′i /(dαi + dα′i ), and the average number of
hard-sphere segments per chain molecule s̄ = ∑C

i=1 xisi. All chains
considered in this work have no bond-bending or torsion interac-
tions; therefore, they are free to adopt any chain conformation under
the constraint that any pair of non-neighboring segments (e.g., seg-
ments 1 and 3) may only overlap if this overlap occurs within the
segments that connect them along the chain’s backbone (segment
2 in our example). Given the absence of bond-bending or torsion,
we refer to these chains as “fully flexible,” although we emphasize
that increasingly fused chains effectively become more rigid due to
the aforementioned constraint.

A. TPT1 for mixtures of fused, hetero-segmented
hard chains

To describe fused, hetero-segmented chains of hard spheres
using TPT1, we follow the recent approach of Rehner et al.,61 where
chains are cut into hard-sphere fragments as illustrated in Fig. 1.
The dimensionless Helmholtz energy per molecule ã ≡ A/NkBT is
described by a monomer term, defining the system of unbonded
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FIG. 1. Geometry of segment α fused with its neighbors α′ ∈ {β, γ}. Subscripts i
have been dropped for clarity.

hard-sphere fragments, and a chain contribution for connecting the
hard-sphere fragments to form chains, according to

ã TPT1
= s̄ã mono

−
1
2

C

∑
i=1

xi

si

∑
αi=1
∑
α′i

ln ymono
(lαiα′i ). (1)

For chains of tangentially bonded monomers (no fusing), the
quantity ymono

(lαiα′i ) is the cavity-correlation function of two
hard-spheres at contact. For fused chains, it denotes an effective
cavity-correlation function of two hard-sphere fragments , to be
defined below.

The monomer contribution to the Helmholtz energy
is calculated accurately using the Boublik–Mansoori
–Carnahan–Starling–Leland (BMCSL) EoS for additive hard-sphere
mixtures,71,72

ã mono
=

1
ζ0
[

3ζ1ζ2

1 − ζ3
+

ζ3
2

ζ3(1 − ζ3)
2 + (

ζ3
2

ζ2
3
− ζ0) ln (1 − ζ3)], (2)

but with the scaled-particle-theory variables ζ i = ρzi modified
according to the fundamental measures of the cut hard-sphere
fragments,

z0 =
π
6

C

∑
i=1

xi

si

∑
αi=1
=

π
6

s̄, (3)

z1 =
π
6

C

∑
i=1

xi

si

∑
αi=1

A∗αi dαi , (4)

z2 =
π
6

C

∑
i=1

xi

si

∑
αi=1

A∗αi d
2
αi , (5)

z3 =
π
6

C

∑
i=1

xi

si

∑
αi=1

V∗αi d
3
αi , (6)

where z3 is the average molecular volume of the mixture, and
ζ3 = η is the packing fraction of the system. The quantities A∗αi and
V∗αi define the ratio of the surface area and volume of a hard-sphere
fragment to that of the full hard sphere, according to

A∗αi = 1 −
1
2∑α′i

(1 − 2
δαiα′i
dαi

), (7)

V∗αi = 1 −
1
2∑α′i

⎡
⎢
⎢
⎢
⎢
⎣

1 − 3
δαiα′i
dαi

+ 4(
δαiα′i
dαi

)

3⎤
⎥
⎥
⎥
⎥
⎦

, (8)

where

δαiα′i =
d2

αi − d2
α′i
+ 4l2

αiα′i
8lαiα′i

, (9)

defines that part of the bond-length lαiα′i that lays inside segment
αi (see Fig. 1). In the limit of chains of tangentially bonded hard
spheres, A∗αi = V∗αi = 1, and the unmodified BMCSL EoS is recovered.

The effective cavity-correlation function of two hard-sphere
fragments is described using the same functional form as the BMCSL
result for the contact value of the cavity-correlation function of hard
spheres,

yHS
(

dαi + dα′i
2

) =
1

1 − ζ3
+ (

dαi dα′i
dαi + dα′i

)
3ζ2

(1 − ζ3)
2

+ (
dαi dα′i

dαi + dα′i
)

2 2ζ2
2

(1 − ζ3)
3 , (10)

but with the fundamental measures zi calculated by Eqs. (3)–(6)
and the diameters dαi and dα′i replaced by lαiα′i + (dαi − dα′i )/2 and
lαiα′i + (dα′i − dαi)/2, leading to

ymono
(lαiα′i ) =

1
1 − ζ3

+
3bαiα′i ζ2

2(1 − ζ3)
2 +
(bαiα′i ζ2)

2

2(1 − ζ3)
3 , (11)

with the “bond function,”

bαiα′i = max
⎛

⎝

4l2
αiα′i
− (dαi − dα′i )

2

4lαiα′i
, 0
⎞

⎠
. (12)

The bond function provides a convenient substitute for the bond
length in cases where chains are hetero-segmented: it equals zero
for bond-lengths that lead to total fusion of segments α and α′ and
reduces to 2dαdα′/(dα + dα) for tangent chains, thereby recovering
the desired BMCSL result of Eq. (10) when substituted in Eq. (11).
As shown by Rehner et al.,61 a bond function equal to zero leads to
the correct limiting behavior of Eqs. (2)–(12) for totally fused homo-
segmented hard chains (i.e., a hard-sphere fluid).

B. Analysis of TPT1 prediction for the second virial
coefficient

The TPT1 result for the second virial coefficient
B̄2 ≡ (∂ã/∂ρ)T,ρ=0 of a mixture of fused hetero-segmented
hard chain molecules is obtained from Eqs. (1)–(9), (11), and (12) as

B̄TPT1
2 = s̄(z3 + 3

z1z2

z0
) −

1
2

C

∑
i=1

xi

si

∑
αi=1
∑
α′i

(z3 +
3
2

z2bαiα′i ), (13)

where the bar in B̄2 denotes it is a mixture property.
For pure, homo-segmented chains, Eq. (13) simplifies as

BTPT1
2

(π/6)d3 = 4 + (s − 1)[6l∗ −
1
2

l∗3
] + (s − 1)2

[
3
4
(l∗2
+ l∗4
)]. (14)
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FIG. 2. Second virial coefficient of homo-segmented tangent hard-sphere chains: B∗2 = B2/((π/6)d3). A comparison between the results of TPT1, TPT1-y, TPT1-E, and
TPT1-v to the results obtained from MC simulation (symbols).66,67,73

In Fig. 2, the results of this equation are compared to MC simu-
lation data66,67,73 for the second virial coefficient of tangent hard-
sphere chains (l∗ = 1). The rather large overestimation of B2 for
longer chains is a known effect and is rooted in the single-chain
approximation underlying TPT,35,37,74 which leads to a too strong
asymptotic (polymer) scaling, BTPT1

2 ∼ s2, as compared to the scaling
implied by MC simulations, B2 ∼ s2−ν with ν ≈ 0.25.67 We exem-
plify this in the right diagram of Fig. 2, where we plot B∗2 /s

2 vs s−ν.
For the longer chains shown, the MC simulation results for B∗2 /s

2

depend linearly on s−ν, while the TPT1 result approaches a constant
positive value.

Interestingly, the asymptotic scaling BTPT1
2 ∼ s2 is correct for

chains comprising segments fixed in a rigid, linear configuration.75,76

Fusing the segments of flexible chains effectively increases the
chains’ rigidity because next-to-nearest neighbor segments α and α′′
are not allowed to overlap outside the middle segment α′ of the
respective triplet (see Fig. 3, αα′α′′ → αβγ). This suggests that the
second virial coefficient predicted by TPT1 is more appropriate for
fused chains than for tangent chains.

C. TPT1-v
As a first approach to improve the TPT1 description of chain

fluids at low densities, we add a correction term that replaces the
second virial coefficient predicted by TPT1 with the actual, smaller
second virial coefficient of the chain fluid. Since TPT1 is known to
provide an accurate description of high-density chain fluids, we scale
down the correction term for increasing packing fraction η. We find

FIG. 3. Schematic showing that the minimum allowed bond-angle θ increases for
more strongly fused triplets. Effectively, the more strongly fused triplet in (b) is
more rigid.

that a simple exponential scaling with packing fraction leads to good
results,

ã TPT1−v
= ã TPT1

+ exp (−η)(B̄2 − B̄TPT1
2 )ρ, (15)

where

B̄2 =
C

∑
i=1

C

∑
j=1

xixjB2,ij , (16)

with B2,ij being the second virial coefficient of species i and j.
For pure, fully flexible homo-segmented tangent hard-sphere

chains, the second virial coefficient required by Eq. (15) is calcu-
lated using an analytic model developed in Appendix A. The second
virial coefficients describing fused chains, hetero-chains, or cross
interactions in mixtures are for now calculated based on MC simu-
lations (see Appendix E for the simulation details and Table I for the
results); the development of an analytic model for the second virial
coefficient of such chain molecules may be the subject of subsequent
work.

TABLE I. Second virial coefficient of two fully flexible chains of s (fused) hard-
sphere segments was obtained from MC simulation. The estimated statistical uncer-
tainty of the last digit is given in parentheses. Comparison of block-copolymers
(A–A–B–B), alternating chains (A–B–A–B), mixtures (A–A–A–A + B–B–B–B), and
homo-segmented chains (C–C–C–C) of equal average segment volume (π/6)d3

12
≡ (π/6)(s1 + s2)−1∑2

i=1∑αi
d3

αi
.

d3
12 s l∗ dA dB Chain 1 Chain 2 B2

1.872 10 1 1 1.4 A–A–B–B A–A–B–B 118.61(1)
1.872 10 1 1 1.4 A–B–A–B A–B–A–B 118.63(2)
1.872 10 0.8 1 1.4 A–B–A–B A–B–A–B 91.39(2)
1.872 10 0.6 1 1.4 A–B–A–B A–B–A–B 70.83(4)
1.872 10 1 1 1.4 A–A–A–A B–B–B–B 111.08(8)
1.872 10 1 d12 d12 C–C–C–C C–C–C–C 122.9969a

1.476 55 20 1 1 1.25 A–A–B–B A–A–B–B 292.0(1)
1.476 55 20 1 1 1.25 A–B–A–B A–B–A–B 292.3(1)
1.476 55 20 1 d12 d12 C–C–C–C C–C–C–C 296.2788a

aModel from Eqs. (A1) and (A2).
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We emphasize that Eq. (15) exactly reproduces the second virial
coefficient B2 that is given as input. If the model for B2 has the proper
asymptotic scaling with the number of segments s, the TPT-v model
thus reproduces this scaling.

D. TPT1-y
As another approach to improve the TPT1 description of chain

fluids at low densities, we follow a route similar to that taken by
Hu, Liu, and Prausnitz.39,40 Central to this approach is Zhou and
Stell’s “zero-order approximation” for chemical association of sticky
spheres into chains,38 which relates the Helmholtz energy of chain
formation to the s-particle cavity-correlation function of a fluid of
non-bonded monomers y(s)

(1, 2, . . . , s), where (1, 2, . . . , s) is a con-
figuration of s monomers that yields the structure of a fully bonded
chain molecule,

ã = s̄ã mono
−∑

i
xi ln y(si)

i (1, 2, . . . , si). (17)

Following Hu, Liu, and Prausnitz, we approximate the cavity-
correlation function as a product of correlations between neighbors
(αα′) and next-nearest neighbors (αα′′) within a chain,

y(si)
i (1, 2, . . . , si) ≈

⎛

⎝

si

∏
αi=1
∏

α′i

y(2)i,αiα′i

si

∏
αi=1
∏
α′′i

y(2)i,αiα′′i

⎞

⎠

1/2
, (18)

where the square-root is to prevent overcounting. Substituting
Eq. (18) into Eq. (17), one obtains

ã = s̄ã mono
−

1
2

C

∑
i=1

xi

⎡
⎢
⎢
⎢
⎢
⎣

si

∑
αi=1
∑
α′i

ln y(2)i,αiα′i
+

si

∑
αi=1
∑
α′′i

ln y(2)i,αiα′′i

⎤
⎥
⎥
⎥
⎥
⎦

. (19)

Contrary to the approach of Hu, Liu, and Prausnitz, where both
the nearest- and next-nearest neighbor contributions of Eq. (19)
are described based on empirical functions correlated to molecular
simulation data, we only use an empirical equation for describing
the next-nearest-neighbor contribution—for describing the nearest-
neighbor contribution, we simply adopt the TPT1 expression of
Sec. II A. The description of tangent hard-sphere dimers thereby
remains practically unaltered as compared to the approach of Hu,
Liu, and Prausnitz (in fact, it improves slightly), but, given the
generic nature of the TPT1 of Sec. II A, the benefits of describing
fused chains, hetero-chains, and mixtures are substantial.

The basic equation of our model, referred to as TPT1-y, follows
as

ã TPT1−y
= ã TPT1

−
1
2

C

∑
i=1

xi

si

∑
αi=1
∑
α′′i

ln y(2)i,αiα′′i
. (20)

The remainder of this section is devoted to developing an empirical
function for the effective cavity-correlation function of next-nearest
neighbor segments ln y(2)i,αiα′′i

. With the aim of preserving the generic
nature of the TPT1 described in Sec. II A, we take inspiration
from the (effective) cavity-correlation function of nearest-neighbor
segments of Eqs. (11) and (12).

For now, we will drop the subscript i that denotes the species
type. Let us first propose a bond function bαα′′ for next-nearest

neighbor segments α and α′′ based on the bond function bαα′ of
neighboring segments α and α′ from Eq. (12). The bond function of
next-nearest neighbors should be zero in case there is no αα′′ inter-
action; this happens when (1) the outer segments α and/or α′′ are
completely contained within the middle segment α′, or (2) when
the outer segments are completely contained within each other.
Since the outer segments may only overlap with each other within
the middle segment α′, case (1) encompasses case (2). For all
other cases, we assume the bond function can be described by a
characteristic distance Lαα′′ , leading to the following definition:

bαα′′ =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

0 if lα′α′′ <
1
2
(dα′ − dα′′),

0 if lαα′ <
1
2
(dα′ − dα),

Lαα′′ , otherwise .

(21)

We define the characteristic length Lαα′′ in terms of the averaged
squared distance between segments α and α′′ (which can be obtained
from the cosine rule), leading to

L2
αα′′ ≡ ⟨r

2
αα′′⟩ω = l2

αα′ + l2
α′α′′ − 2lαα′ lα′α′′⟨cos θ⟩ω, (22)

where rαα′′ = ∣rα − rα′′ ∣ is the distance between segments α and α′′,
ω1 = r̂α − r̂α′ and ω2 = r̂α′′ − r̂α′ denote the orientation vectors of the
two bonds (the hat denotes a unit vector), and θ = arccos(ω1 ⋅ ω2)

is the bond angle. The orientational average is solved analytically by
aligning the orientation of molecule 1 with the z-axis of a Cartesian
reference frame. After changing to spherical coordinates, the polar
angle of molecule 2 then coincides with the bond-angle θ, and the
integrations over the polar angle of molecule 1 and both azimuthal
angles can be done independently. We obtain

⟨cos θ⟩ω =
∬ cos θdω1dω2

∬ dω1dω2

=
∫

π
θmin

cos θ sin θ dθ

∫
π

θmin
sin θdθ

=
1
2
(cos θmin − 1). (23)

The minimum possible bond angle θmin for which segments α and α′′
do not overlap outside the middle segment α′ (see Fig. 3 for a
schematic, αα′α′′ → αβγ) follows from the following exact result:61

cos θmin =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

4(l2
αα′ + l2

α′α′′) − (dα + dα′′)
2

8lαα′ lα′α′′
if χ ≥ 1,

4δα′αδα′α′′ −
√

(d2
α′ − 4δ2

α′α)(d
2
α′ − 4δ2

α′α′′)

d2
α′

if χ < 1,

(24)
where δα′α and δα′α′′ are calculated using Eq. (9), and

χ = 4
dαl2

α′α′′ + dα′′ l
2
αα′

d2
α′(dα + dα′′)

−
dαdα′′

d2
α′

(25)
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is a parameter that decreases for more fused chains; χ ≥ 1 and
χ < 1 correspond to cases (a) and (b) shown in Fig. 3, respectively.
For homo-segmented chains, the minimum bond-angle simplifies to

cos θmin =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 −
1
2

l∗−2 if l∗ ≥
1
√

2
,

2l∗2
− 1 if l∗ <

1
√

2
.

(26)

To obtain an expression for the effective cavity-correlation
function of next-nearest neighbor segments ln y(2)i,αiα′′i

, we substitute
the bond function bαiα′′i of Eq. (21) for bαiα′i in Eq. (11) and make
some empirical modifications, which will be explained below,

ln y(2)i,αiα′′i
= Θ(si − 2)(

si − 2
si
)b
∗ 3

2
αiα′′i

ln
⎡
⎢
⎢
⎢
⎢
⎣

1 − b∗2
αiα′′i +

b∗2
αiα′′i

1 − ζ3

+
a0bαiα′′i ζ2

(1 − ζ3)
2 +

a1(bαiα′′i ζ2)
2

(1 − ζ3)
1
2

⎤
⎥
⎥
⎥
⎥
⎦

. (27)

When substituting this result in the next-nearest-neighbor contri-
bution of Eq. (20), the product of the Heavyside function Θ(si − 2)
with (si − 2)/si renders a next-nearest neighbor contribution that is
zero for chains with (less than) two segments and that is without
discontinuities at si = 2 [note that the sum over α′′i in Eq. (20) intro-
duces another multiplication with si − 2]. This is useful for possible
applications of the model to molecules with non-integer numbers of
si, e.g., 1 < si < 2. We further introduced

b∗αiα′′i =
bαiα′′i

Ltangent
αiα′′i

(28)

as a parameter that varies between zero and unity when going from a
fully fused to a tangentially bonded triplet. This parameter is used to
maintain the correct limit of total fusion (i.e., a hard sphere) dictated
by TPT1 of Sec. II A.61

The empirical parameters a0 and a1 are given a depen-
dence on the number of spherical segments of a chain molecule,
according to

a0 = a00 + a01(
si − 2

si
) + a02(

si − 2
si
)

2
,

a1 = a10 + a11(
si − 2

si
) + a12(

si − 2
si
)

2
.

(29)

The six adjustable model constants aij are used to correlate MC and
MD simulation results35,61,77 for the pressure of fully flexible homo-
segmented tangent hard-sphere chains comprising between 3 and
500 hard-sphere segments (see the supplementary material for the
complete dataset, and Table II for the correlated model constants),
leading to an average absolute relative deviation (AAD) of 0.48% per
datapoint and a maximum absolute relative deviation (Max-AD) of
2.8%.

We note that the modified density dependence of the last term
of Eq. (27) as compared to that of Eq. (11) can be justified to some
extent. Since we aim to describe the correlation between the ter-
minal segments α and α′′ of a triplet, the density dependence of
Eq. (27) should be less strong than for the pair correlations between

TABLE II. Correlated constants of Eq. (29).

a00 0.357 49
a01 −1.259 1
a02 0.848 41
a10 −1.342 0
a11 3.248 7
a12 −2.524 3

neighboring segments α and α′ described by Eq. (11).78 We find that
reducing the power of the last term of Eq. (11) to a square root works
well in that respect.

E. TPT1-E
As a third approach to improving the TPT1 description of chain

fluids at low densities, we elaborate on a suggestion by Elliott70 and
replace the constant 3/2 appearing in the effective cavity correla-
tion function of hard-sphere fragments of Eq. (11) by an empirical
function C(si, bαiα′i ) that enforces the correct polymer scaling of the
second virial coefficient,

ymono
(lαiα′i ) =

1
1 − ζ3

+ C(si, bαiα′i )
bαiα′i ζ2

(1 − ζ3)
2 +
(bαiα′i ζ2)

2

2(1 − ζ3)
3 . (30)

The second virial coefficient corresponding to this modified TPT1
can be written as

B̄2 = s̄(z3 + 3
z1z2

z0
) −

1
2

C

∑
i=1

xi

si

∑
αi=1
∑
α′i

(z3 + C(si, bαiα′i )z2bαiα′i ). (31)

For tangent hard-sphere chains, the empirical function C must
cancel that contribution to Eq. (31) which scales as ∼s2, which
is s̄3z1z2/z0. The polymer scaling B2 ∼ s2−ν (with ν ≈ 0.25) is then
enforced using two empirical constants c1 and c3, according to

Ctangent
(si, bαiα′i ) = 3

z1

z0bαiα′i
−

c1
√

si
−

c3
√

1 +
√

si − 1

≡ κ(si) −
c3

√
1 +
√

si − 1
. (32)

To recover the original TPT1 in the case of a dimer, we impose the
boundary condition C(s = 2) = 3/2, which fixes the constant c3 as

c3 = (κ(2) −
3
2
)
√

2. (33)

Equations (32) and (33) essentially recover the functional form pro-
posed by Elliott.70 The empirical constant c1 = 0.5632 was adjusted
to reproduce MC simulation data for the second virial coefficient of
fully flexible homo-segmented tangent hard-sphere chains66,67,73 of
three up to 200 segments (see the supplementary material for the
complete dataset).

To extend these results to fused chains, we introduce the
dimensionless bond function of two neighboring segments,

b∗αiα′i ≡
bαiα′i

btangent
αiα′i

, (34)
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which varies conveniently from zero for a configuration where
the two segments are completely fused to unity for a configura-
tion where they are tangentially bonded. For fully fused chains
(b∗αiα′i

= 0), we assume a polymer scaling consistent with that of
rigid linear chains B2 ∼ s2, whereas for tangent (fully flexible) chains
(b∗αiα′i

= 1) Eqs. (32) and (33) should remain unaltered. For fused
chains characterized by 0 < b∗αiα′i

< 1, we interpolate between these
two limits using an empirical parameter c2. We propose

C(si, bαiα′i ) = b∗αiα′i κ(si) −
(b∗αiα′i

κ(2) − 3
2)
√

2
√

1 + (si − 1)ξ
, (35)

with

ξ = c2b∗αiα′i + (2ν − c2)b∗2
αiα′i

⎧⎪⎪
⎨
⎪⎪⎩

2ν b∗αiα′i = 1,

0 b∗αiα′i = 0.
(36)

The constant c2 = 1.239 was fitted to MC simulation data for
the pressure of homo-segmented fused hard-sphere chains of 20
segments (see the supplementary material for MC data).

We note that the imposed scaling of rigid linear chains B2 ∼ s2

for b∗ → 0 does not do justice to the fact that very long polymers
might well be flexible on the scale of the contour length L of the
full polymer, even if they are strongly fused.79–81 In other words, the
flexibility of a polymer does not depend solely on the local stiffness
(as measured by the persistence length Lp) but also on the number of
segments s. It would be interesting to analyze if and how the number
of Kuhn segments79,81 L/(2Lp) could be used to replace the dimen-
sionless bond-function b∗ in the above analysis, but we consider this
outside the scope of this work.

F. Extension to chains of soft repulsive segments
EOS models for real fluid mixtures are often rooted in per-

turbation theory, where the effect of attractive interactions between
molecules (or their atoms/segments) is described as a perturbation
to a reference fluid with only repulsive intermolecular interactions.
A common reference fluid used in perturbation theories such as
SAFT is a fluid of chain molecules with segments that interact
with the positive part of the Lennard-Jones potential, a model that
was first suggested by Barker and Henderson.82 Here, we apply the
TPT1-v and TPT1-y models, derived in Secs. II C–II E, to chains
of spherical “Barker–Henderson” (BH) segments. For reasons dis-
cussed below, the TPT1-E model of Sec. II E leads to an equivalent
description of BH chains as TPT1; therefore, this model is not ana-
lyzed further. We fix the bond-length of the molecules at the distance
l = σ, where the LJ potential equals zero. Note that “tangent” in
Eq. (28) now refers to chains with segments bonded at distance
l = σ; therefore, b∗αα′′ = 1 for BH chains.

As a leading-order approximation, the effect of the soft repul-
sive interactions between BH chains can be described by modeling
the spherical segments of the chains as hard spheres of effective,
temperature-dependent diameter,83

d(T) = (3∫
σ

0
[1 − exp (−βuLJ

(r))]r2dr)
1/3

, (37)

where uLJ
(r) is the intermolecular potential of two LJ monomers

separated by a distance r. This equation can be derived by map-
ping the second virial coefficient of BH monomers onto that of
hard spheres: BBH

2 = BHS
2,d = (2/3)πd(T)3. The integral in Eq. (37)

is calculated analytically;84 the respective equations are listed in
Appendix B.

It is important to note that the bond-length of the molecules
is fixed at l = σ, while d(T) ≤ σ. The cavity-correlation function of
hard spheres that is required to evaluate the TPT1 contribution to
chain formation in Eq. (1) must thus be evaluated for two hard
spheres at a relative distance larger than d. We, therefore, replace
Eq. (11) with the Modified Scaled Particle Theory (MSPT) model of
Boublik,85

yhs
d (σ) = exp(k0 + k1(

σ
d
) + k2(

σ
d
)

2
+ k3(

σ
d
)

3
), (38)

with

k0 = − ln (1 − η) +
(42η − 39η2

+ 9η3
− 2η4

)

6(1 − η)3 ,

k1 =
η4
+ 6η2

− 12η
2(1 − η)3 ,

k2 =
−3η2

8(1 − η)2 ,

k3 =
−η4
+ 3η2

+ 3η
6(1 − η)3 .

(39)

Any improvements to TPT1-E with respect to TPT1 are thereby lost
because TPT1-E was developed from TPT1 by modifying Eq. (11). It
might be that an analog of the TPT-E of Sec. II E can be developed
starting from Eq. (38), but we do not pursue this in this paper.

We note that the MSPT should not be used for σ/d(T) >
√

2.
For BH chains, this comes down to a maximum temperature of
kBT/ϵ = 447 (ϵ being the well depth of the LJ potential), which is
high enough for practical purposes.

For describing fluids at high densities and elevated temper-
atures, it is known that the leading-order approximation ABHchain

≈ AHSchain
d described above is not sufficiently accurate.86,87 To

improve the accuracy at those conditions, we add an (approximate)
first-order Mayer- f perturbation contribution88–90 to Eqs. (15) and
(20) for describing the difference between the Helmholtz energy of a
fluid of BH chains and a fluid comprising chains of hard spheres
of diameter d(T) bonded at l = σ. More details on this approach
and an analytic implementation of this perturbation contribution
are provided in Appendix C.

Applying the TPT-v model to BH chains further requires the
second virial coefficient of two BH chains as input. We develop a
model for this in Appendix D, based on a mapping onto the second
virial coefficient of tangent hard-sphere chains.

III. RESULTS
A. Tangent, homo-segmented chains

In Fig. 4, we analyze the accuracy of TPT1, TPT1-v, TPT1-y,
and TPT1-E in describing the pressure of tangent, homo-segmented
hard-sphere chain fluids. The dataset of molecular simulation results
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FIG. 4. Percentage deviation of TPT1, TPT-E, TPT1-v, and TPT1-y with respect
to molecular simulation results for the residual pressure pres = p − pig (with
pig = ρkBT) of homo-segmented tangent hard-sphere chain fluids comprising
between two and 500 hard spheres per molecule.35,61,77 Lines act as a guide for
the eye for chains of 201 and 500 segments.

used for the analysis comprises the MC and MD data of Zmpi-
tas and Gross35 (s = {2, 4, 8, 16, 64}), the MD data of Jover et al.77

(s = {16, 20, 100, 201, 500}), and the MC data of Rehner et al.
(s = 3).61 The complete dataset is provided in the supplementary
material.

Compared to TPT1, all three low-density corrections developed
in this work provide a significant improvement in the description of
the pressure of homo-segmented tangent hard-sphere chain fluids.
TPT1-y is the most accurate model, leading to an AAD = 0.48% and
a Max-AD = 2.8%, as compared to an AAD = 11.8% and a Max-AD
= 100% for TPT1. Second place is for TPT1-v with an AAD = 1.76%
and Max-AD = 18.6%, followed by TPT1-E with an AAD = 1.84%
and Max-AD = 20.9%. The superior description obtained based on
TPT1-y is not surprising, since TPT1-y is the only model that was
parameterized for the dataset shown in Fig. 4.

The similar performance of TPT-v and TPT-E can be ascribed
to the fact that these models were both developed to reproduce the
second virial coefficient. The results for the longest chains consid-
ered (s = 201 and s = 500; the largest negative deviations shown in
Fig. 4) suggest such simple second-virial corrections cannot lead
to a quantitative description of the equation of state of very long
chain molecules over the whole range of fluid density. The reason
for this might lie in the underestimation66 of the third virial coeffi-
cient B3 = ∂

2Z/∂ρ2
∣ρ=0 (and the fourth virial coefficient) by TPT1,

which is not fully corrected for by either TPT1-v or TPT1-E. As
an example, let us analyze the contribution of the TPT-v correc-
tion term of Eq. (15) to the third virial coefficient, which equals
−V̄m(B̄2 − BTPT1

2 ) > 0, where V̄m is the average molecular volume of
the mixture. Although this correction is of the right sign, its magni-
tude is too small: for homo-segmented tangent hard-sphere chains
of s = 100, the correction only compensates for about 10% of the
underestimation of B3 by TPT1.66

The description of the second virial coefficient is analyzed in
Fig. 2. An important observation is the slight deterioration in the
TPT1-y description of B2 for chains of more than, say, 50 segments.
This is caused by the fact that TPT1-y is unable to alter the asymp-
totic scaling B2 ∼ s2 of TPT1. The success of TPT1-y in describing

the equation of state of very long chain molecules as shown in
Fig. 4 then partly lies in this (incorrect) asymptotic scaling B2 ∼ s2:
apparently the accompanying overestimation of B2 can sufficiently
compensate for the underestimation of B3 of long chains.

With the above in mind, we develop an alternative implemen-
tation of TPT1-v by multiplying the term exp (−η)(B̄2 − B̄TPT1

2 )ρ of
Eq. (15) by the following activation function of the average number
of segments per chain molecule:

g(s̄) =
⎛
⎜
⎝

1.0 −

¿
Á
ÁÀ a0 s̄ 2

1 + a1 s̄ 2

⎞
⎟
⎠

, (40)

with a0 = 8.4803 × 10−7 and a1 = 1.3235 × 10−5. For chains of less
than about 50 segments, the activation function is very close to unity,
while for s→∞, it goes to a lower value of about 0.75. The descrip-
tion of the dataset in Fig. 4 thereby becomes of similar quality as
that obtained by TPT1-y (AAD = 0.96%, Max-AD = 4.5%), while the
asymptotic scaling of the second virial coefficient B2 ∼ s1.75 is altered
to B2 ∼ s2. At this point, it is difficult to say whether this modification
will be beneficial for describing real (polymeric) fluids; it is simply
not clear what is more important for the success of a perturbation
theory of chain fluids with attractive interactions: having the cor-
rect polymer scaling for B2 of the repulsive reference fluid or having
an accurate description of the pressure of this reference fluid. In the
remainder of this paper, we only analyze the (unmodified) TPT1-v
of Sec. II C.

B. Transferability to fused chains, hetero-segmented
chains, and mixtures

Since all three low-density corrections developed in this work in
some way incorporated molecular-simulation data for pure, homo-
segmented tangent hard-sphere chain fluids, a key performance
indicator of TPT1-v, TPT1-y, and TPT1-E is the transferability to
fused chains, hetero-segmented chains, and mixtures. In Fig. 5, we
analyze this transferability by comparing to newly generated NpT-
MC simulation data for chains of s = 10 and s = 20 segments. The
simulation details are listed in Appendix E, and the simulation
results are tabulated in the supplementary material.

In Fig. 5(a), we first analyze the description of fused, homo-
segmented chains of bond length l∗ = {1.0, 0.8, 0.6}. The overesti-
mation of the pressure by TPT1 is qualitatively similar for all bond
lengths, although the absolute overestimation decreases with l∗. This
is in agreement with our discussion of second virial coefficients in
Sec. II B, where this effect was anticipated. TPT1 thus seems to be
a better model for describing fused (less flexible) chains as com-
pared to tangent (fully flexible) chains. Based on the data analyzed
here, all three models developed in this work seem well transferable
to fused chains, leading to a significant improvement with respect
to TPT1.

Tangent, hetero-segmented chain fluids are analyzed in
Fig. 5(b). Two types of hetero-segmented chains are considered:
block-copolymer (BC) chains, consisting of a chain of s/2 segments
with diameter dA = 1, connected to a chain of s/2 segments of dia-
meter dB > dA, and alternating (A) chains, where segments of types
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FIG. 5. Percentage deviations of TPT1, TPT1-v, TPT1-y, and TPT1-E with respect to molecular simulation data for the residual pressure pres = p − pig of (a) fused homo-
segmented hard-sphere chains of 20 segments, (b) tangent hetero-segmented hard-sphere chains of 10 and 20 segments, and (c) fused hetero-segmented hard-sphere
chains of 10 segments. Type BC denotes a block-copolymer with s/2 segments of diameter dA = 1, followed by s/2 segments of diameter dB; type A denotes a chain of
alternating type A and type B segments; and type M denotes an equimolar mixture of chains with type A segments and chains with type B segments.

A and B alternate along the chain’s backbone. Both dB = 1.25 and dB
= 1.4 are analyzed. Our simulation results indicate that the pressure
of hetero-segmented chain fluids is rather insensitive to the order
of the segments along the chain’s backbone. The transferability of
TPT1-y, TPT1-v, and TPT1-E to tangent hetero-segmented chains
seems excellent.

In the bottom diagram of Fig. 5(b), we also analyze an equimo-
lar mixture (M) of chains of type 1, with segment diameter dA, and
chains of type 2, with segment diameter dB. Again, the transferabil-
ity of TPT1-y, TPT1-v, and TPT1-E is excellent. Interestingly, the
pressure of this mixture is nearly identical to that of the hetero-
segmented chains considered previously. This suggests that, for a

given mole fraction of segments within a system, the pressure is
rather invariant on how these segments are distributed within and
among chains. Our MC simulation data for the respective second
virial coefficient of the hard-sphere chains analyzed in this section
(Table I) corroborates this finding.

Since the hard-sphere contribution to the Helmholtz energy
is the same for all considered chain types (A, BC, and M), the
Helmholtz energy contribution due to bonding (which is purely
entropic for the hard chains considered here) must be invariant
on the distribution of segments as well. Assuming this Helmholtz
energy contribution can be described based on TPT1, this suggests
ln gHS

AB(dAB) ≈
1
2(ln gHS

AA(dA) + ln gHS
BB (dB)), which implies the fol-
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lowing approximation for the contact value of the cavity-correlation
function of hard spheres of type A and B,

gHS
AB(dAB) ≈

√

gHS
AA(dA)gHS

BB (dB). (41)

The accuracy of this approximation is easily tested using the
BMCSL EOS result for the cavity-correlation function of two hard
spheres at contact. We find that, for the ratio dB/dA = 1.4 consid-
ered in this section, the above approximation is accurate to within
3% for η ≤ 0.5, with the largest deviation being observed for
η = 0.5. This accuracy holds for ratios of dB/dA all the way up to 2.
The accuracy of the above approximation suggests that the pressure
of tangent hetero-segmented hard-sphere chain mixtures is largely
determined by the packing fraction and the segment mole frac-
tions in the system. Further details of the mixture (e.g., the chain
lengths of the different components in a mixture or the distribu-
tion of segments within and among chains) are much less important.
We expect this to hold only for isotropic phases; for describing non-
isotropic phases (e.g., self-assembled structures91 or liquid crystals),
such details definitely need to be taken into account.

The description of fused, hetero-segmented chain fluids is ana-
lyzed in Fig. 5(c). The chain molecules comprise 10 segments of type
A and type B (dA = 1 and dB = 1.4) in alternating order. As for the
other cases analyzed so far, all models developed in this work signifi-
cantly improve on TPT1. However, the distinction between different
models is more pronounced in this case, with TPT1-v leading to
a better description of the simulation data as compared to TPT1-y
and TPT1-E. The good transferability of TPT1-v is probably caused
by having the exact second virial coefficient as input. TPT1-y and
TPT1-E require no such input and, thus, can be considered fully pre-
dictive. With that in mind, the results of those models are considered
very satisfactory.

So far, we have only focused on the description of chain flu-
ids with a considerable number of segments per molecule (s = 10 or
s = 20). This is for the simple reason that the low-density correc-
tions developed in this work are more significant for longer chains,
where the low-density description obtained from TPT1 becomes
inaccurate. It is also important, however, to analyze whether the
rather accurate TPT1 description of chain fluids with only a small
number of segments per molecule is not compromised by our low-
density corrections. We, therefore, compare theoretical predictions
to molecular simulation results61 for several hetero-nuclear (fused)
hard trimers in Fig. 6 (please see the supplementary material for
the complete dataset of molecular simulation results used for this
analysis). It is rewarding to see that TPT1-y and TPT1-E do not
deteriorate the description as compared to TPT1, but instead slightly
improve on it. We expect similar results for TPT-v because the sec-
ond virial coefficient of trimers as predicted by TPT1 is very similar
to the exact second virial coefficient used as input for TPT-v. There
will thus be little difference between the predictions of those models
for the trimers shown in Fig. 6.

C. Chains of soft-repulsive (BH) segments
To appreciate the modifications made to arrive at the TPT1

for BH chains in Sec. II F, we first analyze the description of BH
dimers. We do this for three different implementations of TPT1:

FIG. 6. Percentage deviation of TPT1, TPT1-y, and TPT1-E with respect to molec-
ular simulation data61 for the residual pressure of heteronuclear (fused) hard
trimers. The data comprises trimers 5–10 from Table I of Rehner et al.61

(1) a TPT1 where the bond-length is (erroneously) set to the hard-
sphere diameter l = d(T), (2) a TPT1 where the bond-length is fixed
at its actual value l = σ, and (3) the same, but with the Mayer- f per-
turbation contribution from Appendix C for describing the effects
of soft repulsive intermolecular interactions included. The respec-
tive predictions for the pressure at various dimensionless temper-
atures T∗ = {2, 3, 4, . . . , 20} are compared to the grand-canonical
MC simulation data of van Westen et al.73 in Fig. 7.

The comparison of case (2) to (1) shows the merit of having a
model that allows a decoupling between the effects of bond-length
and hard-sphere diameter on the Helmoltz-energy contribution
of chain formation. When the bond-length remains fixed at its
value l = σ instead of (erroneously) changing with the hard-sphere
diameter d(T), the description of the low- and medium-density
regimes improves significantly. We emphasize that decoupling
bond-length and hard-sphere diameter is a feature of TPT1, which
gives one the freedom to use the MSPT model from Eq. (38) for the
cavity-correlation function of hard spheres at distances beyond d.

At high densities, the TPT1 of case (2) overestimates the pres-
sure, an effect that becomes stronger at higher temperatures. This
is a known effect,73,86,87 caused by an insufficient description of
the decrease in pressure due to the soft (rather than hard) repul-
sive interactions between molecules. Comparing case (3) with (2)

FIG. 7. Percentage deviation of several implementations of TPT1 with respect
to molecular simulation data73 for the total pressure of BH dimer fluids at
temperatures T∗ = {2, 3, 4, 5, 8, 20}.
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FIG. 8. Percentage deviation of TPT1, TPT1-y, and TPT1-v with respect to molec-
ular simulation data73 for the total pressure of BH chain fluids of s = {2, 3, 4, 8}
and temperatures within the range T∗ = [2, 20].

shows that including the Mayer- f perturbation contribution can-
cels much of the inaccuracies observed for case (2), leading to a
near-quantitative description of BH dimers.

In the remainder of this section, the classification “TPT1”
strictly applies to the model from Sec. II F. That is, a TPT1 where the
cavity-correlation function is evaluated for a distance equal to the
bond length l = σ and with the Mayer- f perturbation contribution
for describing soft-repulsive interactions included.

The description of BH trimers, 4-mers, and 8-mers is ana-
lyzed in Fig. 8. The deviations of TPT1 with respect to molecular-
simulation data resemble those of hard-sphere chains (cf. Fig. 4),
suggesting the low-density corrections of TPT-v and TPT-y are
well transferable. We consider the results of TPT-y to be especially
pleasing because TPT-y is fully predictive for BH chains, requir-
ing no external input from molecular simulations. This means that
TPT1-y can be applied on the fly to describe BH chains for other
(target) intermolecular potentials than the Lennard-Jones potential
considered here; all that is required for this is replacing the Lennard-
Jones potential by the potential of interest in the integral of Eq. (37)
for the hard-sphere diameter. For generalized Lennard-Jones (Mie)
potentials, the model provided in Appendix B calculates this inte-
gral analytically.84 Applying TPT-v to BH-Mie chains would instead
require a model for the second virial coefficient of these chains,
which (for now) is not available.

IV. CONCLUSION
The three low-density corrections to TPT1 developed in this

work, namely, TPT1-v, TPT1-y, and TPT1-E, lead to a signif-
icantly improved description of tangent homo-segmented hard-
sphere chain fluids and exhibit excellent transferability to systems
containing hetero-segmented chains, fused chains, and mixtures.
Moreover, both TPT1-v and TPT1-y can also effectively describe
soft-repulsive (Barker–Henderson) chain fluids with satisfying accu-
racy. Despite being empirical, these low-density corrections thus
possess a generic character, which is particularly advantageous for
their utilization as part of a versatile equation-of-state model such
as SAFT. Among the three models, TPT1-y stands out as the most
generic, as it can be applied predictively to all chain types analyzed

in this work without relying on external input from molecular sim-
ulations. When describing Barker–Henderson chains for a general-
ized Lennard-Jones (Mie) target potential between chain segments,
TPT1-y can be readily employed using the hard-sphere diameter
from Appendix B. The results obtained for fused hetero-segmented
chains indicate that TPT1-v demonstrates superior transferability.
However, TPT1-v is less generic due to its dependence on the second
virial coefficient of chain fluids, which may not be readily available. It
would be interesting to further investigate the transferability of these
equation-of-state models for describing branched chains or chains
with intramolecular potentials such as bond-bending and torsion.
The extension of TPT1-y to describe such chains could be pursued
based on previous work,41 while TPT1-v would require the avail-
ability of a suitable model for the second virial coefficient of such
chains. A further distinction between TPT1-v, TPT1-y, and TPT1-E
could be explored through their application as functionals in clas-
sical density functional theory for describing inhomogeneous chain
fluids, including interfaces91 and fluids confined in porous solids.92

It would also be interesting to analyze to what degree the approaches
developed in this work can be generalized to chain molecules with
attractive intermolecular interactions.

SUPPLEMENTARY MATERIAL

We refer to the online supplementary material for data files
containing the results of all molecular simulations performed in this
work and all molecular simulation results from the literature that
were used in this work.
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APPENDIX A: ANALYTIC SECOND VIRIAL
COEFFICIENT OF FULLY FLEXIBLE, TANGENT
HARD-SPHERE CHAINS

The second virial coefficient of fully flexible tangent hard-
sphere chain (THSC) molecules is described using

BTHSC
2

Vm
=

11s − 3
2s

+ 1.4535
(s − 1)2−γ

s
, (A1)

where Vm = (π/6)sd3 is the molecular volume. The parameter
γ was correlated to the MC simulation data for B2 of Yethiraj et al.67

and Vega et al.,66 which comprises chain lengths ranging from
s = 3 up to s = 200 (see the supplementary material for the complete
dataset). Following the analysis of Yethiraj et al.,67 we add a small
chain-length dependence in the exponent, leading to

γ = 0.2079 +
0.6388

s3 , (A2)

which describes the complete dataset with an AAD of 0.7% and
a Max-AD of 1.7% (s = 200). The asymptotic value γ = 0.2079 for
s→∞ is in reasonable agreement with available predictions from
theoretical and simulation approaches, γ ≈ [0.2, 0.25] (see Yethiraj
et al.67 and references therein). For dimers, or γ = 0, Eq. (A1) reduces
to the model for rigid-linear tangent hard-sphere chains of Jaffer
et al.76 and [to within 0.016% of the term of order (s − 1)2] the model
of Williamson and Jackson.75

APPENDIX B: HARD-SPHERE DIAMETER FOR
DESCRIBING SOFT REPULSIVE BH SEGMENTS

As shown by van Westen and Gross,84 the integral of Eq. (37)
is accurately described using the following parametric equation in
terms of the dimensionless temperature T∗ = kT/ϵ (where ϵ is the
well depth of the LJ potential), the LJ size parameter σ, and the repul-
sive exponent ν of a Mie ν − 6 potential (which equals 12 for the
LJ potential considered here),

d(T∗, ν)
σ

= [1 + C0T∗ + ln (1 + T∗)
3

∑
k=1

CiT∗
2k−1

4 + C4T∗2
]

− 1
2ν

,

(B1)
where C0 is determined by the exact asymptotic low-temperature
scaling of Eq. (37),

C0 = −
2ν

(n − ν)C
, (B2)

with

C = ν
ν − 6

(
ν
6
)

6
ν−6

, (B3)

TABLE III. Correlated constants ci for the hard-sphere diameter d of Eq. (B1).
The maximum absolute deviations (denoted by ϵ) of the hard-sphere diameter d,
its temperature derivative d′, the second virial coefficient of the reference fluid
B20 = (2/3)πd3, and its temperature derivative B′20, are given at the bottom of the
table. These deviations are for a range in temperature 0 ≤ T∗ ≤ 25 and repulsive Mie
exponent 7 ≤ m ≤ 80.84

c1 1.09 360 455 168 912 × 10−2

c2 −2.00 897 880 971 934 × 10−1

c3 −1.27 074 910 870 683 × 10−2

c4 1.40 422 470 174 053 × 10−2

c5 7.35 946 850 956 932 × 10−2

c6 1.28 463 973 950 737 × 10−2

c7 3.71 527 116 894 441 × 10−3

c8 5.05 384 813 757 953 × 10−3

c9 4.91 003 312 452 622 × 10−2

ϵ(d) 9.95 × 10−5

ϵ(d′) 5.18 × 10−4

ϵ(B20) 5.72 × 10−4

ϵ(B′20) 3.26 × 10−3

defining the pre-factor of the Mie ν − 6 pair potential. The remaining
coefficients are calculated as

⎛
⎜
⎜
⎜
⎜
⎝

C1

C2

C3

C4

⎞
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎝

c1

c2 c3

c4 c5 c6

c7 c8 c9

⎞
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎝

1
α′

α′2

⎞
⎟
⎟
⎠

, (B4)

with

α′ =
1

αν6(1)
−

1
α76(1)

, (B5)

and αν6(x) denoting the dimensionless mean-field constant,

αν6(x) = −∫
∞

x
u∗(r∗)r∗2dr∗

= C(x−3

3
−

x3−ν

ν − 3
). (B6)

The constants (ci, i = (1, . . . , 9)) and some details on the accuracy
and range of validity of this correlation are listed in Table III.

APPENDIX C: FIRST-ORDER MAYER- f PERTURBATION
CONTRIBUTION FOR THE DIFFERENCE BETWEEN BH
CHAINS AND HARD-SPHERE CHAINS

The difference between the Helmholtz energy of a fluid of BH
monomers and a fluid of hard spheres of effective diameter d(T) can
be expanded in a perturbation series using a Mayer- f expansion.88–90

The first-order perturbation term is written as

ã BH
− ãHS

d = −2πρ∫
σ

0
yHS

d (r)Δe(r)r2dr, (C1)
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where Δe(r) = exp(−βuLJ
(r)) − exp(−βuHS

(r)). The above integral
is calculated using the analytic implementation provided in the
supplementary material of van Westen and Gross.69

For describing the difference between the Helmholtz energy of
a fluid of BH chains (BHCH) and a fluid comprising chains of hard
spheres of diameter d(T) bonded at a distance l = σ (HSCH), the
above perturbation contribution should be modified. Here, we do
this in a rather crude manner, as follows:

ã BHCH
− ãHSCH

d ≈ s
ã BH
− ãHS

d

2 − 1
s

, (C2)

which can simply be added to Eqs. (15) and (20) to describe the
effects of soft repulsion between BH chains.

The pre-factor of Eq. (C2) accounts for the trivial multipli-
cation with s to render a perturbation contribution per molecule
rather than per segment. The division by 2 − 1/s scales down the
perturbation term of monomers when the number of segments per
chain increases. The perturbation term of monomers is scaled down
by at most a factor of 1/2 for s→∞. Scaling down the perturba-
tion term for s > 1 is done based on the empirical observation that
adding Eq. (C1) (multiplied by s) to Eqs. (15) and (20) leads to a
slight underestimation of the pressure of BH chains at high densities.
This underestimation might be caused by the fact that we neglect
the Mayer- f perturbation contribution for the difference between
the cavity-correlation function of BH monomers and hard spheres
in describing the TPT1 contribution to chain formation in Eq. (1).87

APPENDIX D: SECOND VIRIAL COEFFICIENT
OF BARKER–HENDERSON CHAINS

We map the second virial coefficient of BH chain (BHC)
molecules onto that of tangent hard-sphere chain (THSC)
molecules, using

BBHC
2 = BTHSC

2 (
deff(T∗, s)

σ
)

3

, (D1)

with the effective hard-sphere diameter,

deff(T∗, s)
σ

= (
1

1 + C1T∗ + C2T∗2 )

1
24 C3

, (D2)

and

Ci(T, s) = ci0 + ci1(
s − 1

s
) + ci2(

s − 1
s
)(

s − 2
s
) (D3)

for i ∈ [1, 2, 3]. The nine model constants cij were used to corre-
late MC simulation results for the second virial coefficient of BH

chains by van Westen et al.73 The range in the number of seg-
ments and temperatures considered is s = [1, 2, 3, 5, 8, 16, 32] and
T∗ = [0.7, 1, 1.5, 2, 3, 5, 7, 10, 20]. The full dataset is provided in the
supplementary material of this work. The adjusted constants are
listed in Table IV.

APPENDIX E: SIMULATION DETAILS
1. MC simulations of second virial coefficients

The second virial coefficient of two chain molecules 1 and 2 of
intermolecular potential energy U12 is defined as

B2 = −2π∫ (⟨exp (−βU12(r, Ω1, Ω2) ⟩Ω1Ω2
− 1)r2dr, (E1)

where r is the distance between the centers of mass of chains 1 and 2,
and Ω is a vector describing the full configuration of a chain (e.g., the
orientation vector of one bond and the total set of bond and torsion
angles). The ensemble average ⟨⋅ ⋅ ⋅ ⟩Ω1Ω2

was sampled over a grid in
the intermolecular distance r∗ = r/σ = [0, r∗max], along ten random
directions r̂ = r/r, for 105 independent chain pairs and 40 random
relative orientations of the chains. The configurations of the chains
were generated independently using the Rosenbluth method.93–96

To remove the bias introduced by the Rosenbluth method and to
recover Boltzmann statistics, each chain pair was given a statistical
weight equal to the product of the individual Rosenbluth weights of
chains 1 and 2. Different relative orientations of chains 1 and 2 were
generated by rotating chain 2 (in particular, the vector pointing to
its center of mass and the vectors describing the relative positions
of the segments with respect to the center of mass) with respect to
a randomly chosen (x, y, or z) axis of the Cartesian reference frame.
The maximum grid-distance r∗max was set to the sum of the maxi-
mum lengths of chain 1 and 2 (i.e., the length in an extended, linear
configuration), and we used a grid spacing Δr∗ = 0.05. Results for
the second virial coefficient were averaged over at least five indepen-
dent calculations, and the statistical uncertainty was estimated as the
root-mean-square deviation of these independent calculations with
respect to their average.

2. NpT -MC simulations
The density of hard-sphere chain fluids was calculated for

a specified pressure p∗ by isobaric–isothermal NpT-MC simula-
tions96 performed using an in-house MC code. The code was vali-
dated in previous work.61 Fused chains were handled by replacing
the hard-sphere potential for next-nearest neighbors α and α′′

TABLE IV. Correlated constants cij of Eq. (D3).

j 1 2 3

i
1 0.852 987 920 795 915 −0.128 229 846 701 676 0.833 664 689 185 409
2 0.024 047 779 523 804 5 0.017 761 832 199 916 4 0.127 015 906 854 396
3 1 −0.528 941 139 160 234 −0.147 289 922 797 747

J. Chem. Phys. 160, 174105 (2024); doi: 10.1063/5.0197910 160, 174105-13

Published under an exclusive license by AIP Publishing

 16 M
ay 2024 09:14:54

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

within a chain molecule with a hard-angle potential. The hard-
angle potential changes from zero to infinity only when these seg-
ments overlap outside segment α′, prohibiting the rejection of viable
configurations where segments α and α′′ overlap within segment
α′ (see Fig. 3). We refer to Rehner et al.61 for further details. We used
a cubic box with periodic boundary conditions, containing between
Ns = 1500 and Ns = 2000 segments. We employed at least 106 MC
cycles for equilibration and 106 cycles for production, with each
cycle comprising N MC moves. The MC moves considered were
translation,96 rotation,96 configurational bias regrowth,97,98 crank-
shaft moves,31,99 and volume moves,96 with relative probabilities
of 0.286, 0.286, 0.129, 0.286, 0.0143 (10-mers) and 0.22, 0.22, 0.1,
0.44, 0.011 (20-mers). During equilibration, the step-size for trans-
lation, rotation, and volume moves was adjusted to obtain ∼20%
acceptance. For the configurational bias regrowth move, we chose
a random segment as the starting segment and regrew the molecule
in a random direction (forward or backward) using six trial orienta-
tions for each new segment. The crank-shaft moves were combined
with a configurational bias scheme, using six trial angles for the
rotated segment. The statistical uncertainty of the sampled density
was estimated by dividing the production part of the simulation
into five blocks and calculating the standard deviation of the block
averages with respect to the average over all five blocks.

REFERENCES
1S. Beret and J. M. Prausnitz, AIChE J. 21, 1123 (1975).
2M. D. Donohue and J. M. Prausnitz, AIChE J. 24, 849 (1978).
3G. Jackson, W. G. Chapman, and K. E. Gubbins, Mol. Phys. 65, 1 (1988).
4W. G. Chapman, G. Jackson, and K. E. Gubbins, Mol. Phys. 65, 1057 (1988).
5W. G. Chapman, K. E. Gubbins, G. Jackson, and M. Radosz, Ind. Eng. Chem. Res.
29, 1709 (1990).
6A. Gil-Villegas, A. Galindo, P. J. Whitehead, S. J. Mills, G. Jackson, and A. N.
Burgess, J. Chem. Phys. 106, 4168 (1997).
7J. Gross and G. Sadowski, Ind. Eng. Chem. Res. 40, 1244 (2001).
8T. Lafitte, D. Bessieres, M. M. Piñeiro, and J. Daridon, J. Chem. Phys. 124, 024509
(2006).
9T. Lafitte, A. Apostolakou, C. Avendãno, A. Galindo, C. S. Adjiman, E. A. Müller,
and G. Jackson, J. Chem. Phys. 139, 154504 (2013).
10E. A. Müller and K. E. Gubbins, Ind. Eng. Chem. Res. 40, 2193 (2001).
11I. G. Economou, Ind. Eng. Chem. Res. 41, 953 (2002).
12P. Paricaud, A. Galindo, and G. Jackson, Fluid Phase Equilib. 194–197, 87
(2002).
13S. P. Tan, H. Adidharma, and M. Radosz, Ind. Eng. Chem. Res. 47, 8063
(2008).
14C. McCabe and A. Galindo, in Applied Thermodynamics of Fluids, edited by
A. R. H. Goodwin, J. V. Sengers, and C. J. Peters (The Royal Society of Chemistry,
Cambridge, 2010) Chap. 8, pp. 215–279.
15K. S. Schweizer and J. G. Curro, J. Chem. Phys. 89, 3350 (1988).
16Y. C. Chiew, Mol. Phys. 70, 129 (1990).
17V. S. Mitlin and I. C. Sanchez, J. Chem. Phys. 99, 533 (1993).
18Y. Song, S. M. Lambert, and J. M. Prausnitz, Macromolecules 27, 441 (1994).
19G. Stell, C.-T. Lin, and Y. V. Kalyuzhnyi, J. Chem. Phys. 110, 5444 (1999).
20G. Stell, C.-T. Lin, and Y. V. Kalyuzhnyi, J. Chem. Phys. 110, 5458 (1999).
21C.-T. Lin, G. Stell, and Y. V. Kalyuzhnyi, J. Chem. Phys. 112, 3071 (2000).
22P. Attard, J. Chem. Phys. 102, 5411 (1995).
23M. P. Taylor and J. E. G. Lipson, J. Chem. Phys. 102, 6272 (1995).
24H. H. Gan and B. C. Eu, J. Chem. Phys. 105, 4323 (1996).
25M. S. Wertheim, J. Stat. Phys. 42, 477 (1986).
26M. S. Wertheim, J. Chem. Phys. 87, 7323 (1987).

27S. Phan, E. Kierlik, M. L. Rosinberg, H. Yu, and G. Stell, J. Chem. Phys. 99, 5326
(1993).
28E. A. Müller and K. E. Gubbins, Mol. Phys. 80, 957 (1993).
29D. Ghonasgi and W. G. Chapman, J. Chem. Phys. 100, 6633 (1994).
30J. Chang and S. I. Sandler, Chem. Eng. Sci. 49, 2777 (1994).
31F. A. Escobedo and J. J. de Pablo, J. Chem. Phys. 102, 2636 (1995).
32K. P. Shukla and W. G. Chapman, Mol. Phys. 91, 1075 (1997).
33K. P. Shukla and W. G. Chapman, Mol. Phys. 98, 2045 (2000).
34B. D. Marshall and W. G. Chapman, J. Chem. Phys. 138, 174109 (2013).
35W. Zmpitas and J. Gross, Fluid Phase Equilib. 416, 18 (2016).
36B. D. Marshall, J. Chem. Phys. 144, 164104 (2016).
37W. Zmpitas and J. Gross, J. Chem. Phys. 150, 244902 (2019).
38Y. Zhou and G. Stell, J. Chem. Phys. 96, 1507 (1992).
39Y. Hu, H. Liu, and J. M. Prausnitz, J. Chem. Phys. 104, 396 (1996).
40H. Liu and Y. Hu, Fluid Phase Equilib. 122, 75 (1996).
41T. van Westen, B. Oyarzún, T. J. H. Vlugt, and J. Gross, Mol. Phys. 112, 919
(2014).
42R. Dickman and C. K. Hall, J. Chem. Phys. 85, 4108 (1986).
43R. Dickman and C. K. Hall, J. Chem. Phys. 89, 3168 (1988).
44K. G. Honnell and C. K. Hall, J. Chem. Phys. 90, 1841 (1989).
45M. A. Denlinger and C. K. Hall, Mol. Phys. 71, 541 (1990).
46K. G. Honnell and C. K. Hall, J. Chem. Phys. 95, 4481 (1991).
47A. Yethiraj and C. K. Hall, J. Chem. Phys. 94, 3943 (1991).
48A. Yethiraj and C. K. Hall, Mol. Phys. 80, 469 (1993).
49S. D. Mehta and K. G. Honnell, J. Phys. Chem. 100, 10408 (1996).
50H. S. Gulati, J. M. Wichert, and C. K. Hall, J. Chem. Phys. 104, 5220 (1996).
51T. Boublík, Mol. Phys. 68, 191 (1989).
52T. Boublík, C. Vega, and M. Diaz-Penã, J. Chem. Phys. 93, 730 (1990).
53A. L. Archer and G. Jackson, Mol. Phys. 73, 881 (1991).
54M. D. Amos and G. Jackson, Mol. Phys. 74, 191 (1991).
55F. J. Blas and L. F. Vega, J. Chem. Phys. 115, 3906 (2001).
56J. M. Walsh and K. E. Gubbins, J. Phys. Chem. 94, 5115 (1990).
57M. D. Amos and G. Jackson, J. Chem. Phys. 96, 4604 (1992).
58S. Phan, E. Kierlik, and M. L. Rosinberg, J. Chem. Phys. 101, 7997 (1994).
59Y. Zhou, C. K. Hall, and G. Stell, J. Chem. Phys. 103, 2688 (1995).
60A. Dominik, P. Jain, and W. G. Chapman, Mol. Phys. 103, 1387 (2005).
61P. Rehner, T. van Westen, and J. Gross, Phys. Rev. E 105, 034110 (2022).
62E. Kierlik and M. L. Rosinberg, J. Chem. Phys. 99, 3950 (1993).
63K. G. Honnell, J. G. Curro, and K. S. Schweizer, Macromolecules 23, 3496
(1990).
64Y. C. Chiew, Mol. Phys. 73, 359 (1991).
65F. A. Escobedo and J. J. de Pablo, J. Chem. Phys. 103, 1946 (1995).
66C. Vega, J. M. Labaig, L. G. MacDowell, and E. Sanz, J. Chem. Phys. 113, 10398
(2000).
67A. Yethiraj, K. G. Honnell, and C. K. Hall, Macromolecules 25, 3979 (1992).
68T. van Westen and J. Gross, J. Chem. Phys. 154, 041102 (2021).
69T. van Westen and J. Gross, J. Chem. Phys. 155, 244501 (2021).
70J. R. Elliott, J. Phys. Chem. B 125, 4494 (2021).
71T. Boublík, J. Chem. Phys. 53, 471 (1970).
72G. Mansoori, N. F. Carnahan, K. E. Starling, and T. W. Leland, J. Chem. Phys.
54, 1523 (1971).
73T. van Westen, T. J. H. Vlugt, and J. Gross, J. Chem. Phys. 142, 224504 (2015).
74W. Zmpitas and J. Gross, Fluid Phase Equilib. 428, 121 (2016).
75D. C. Williamson and G. Jackson, Mol. Phys. 86, 819 (1995).
76K. M. Jaffer, S. B. Opps, and D. E. Sullivan, J. Chem. Phys. 110, 11630 (1999).
77J. Jover, A. J. Haslam, A. Galindo, G. Jackson, and E. A. Müller, J. Chem. Phys.
137, 144505 (2012).
78P. Attard and G. Stell, Chem. Phys. Lett. 189, 128 (1992).
79W. Kuhn, Kolloid-Z. 87, 3 (1939).
80H. Yamakaw, Modern Theory of Polymer Solutions (Harper & Row, New York,
1971).

J. Chem. Phys. 160, 174105 (2024); doi: 10.1063/5.0197910 160, 174105-14

Published under an exclusive license by AIP Publishing

 16 M
ay 2024 09:14:54

https://pubs.aip.org/aip/jcp
https://doi.org/10.1002/aic.690210612
https://doi.org/10.1002/aic.690240511
https://doi.org/10.1080/00268978800100821
https://doi.org/10.1080/00268978800101601
https://doi.org/10.1021/ie00104a021
https://doi.org/10.1063/1.473101
https://doi.org/10.1021/ie0003887
https://doi.org/10.1063/1.2140276
https://doi.org/10.1063/1.4819786
https://doi.org/10.1021/ie000773w
https://doi.org/10.1021/ie0102201
https://doi.org/10.1016/s0378-3812(01)00659-8
https://doi.org/10.1021/ie8008764
https://doi.org/10.1063/1.454944
https://doi.org/10.1080/00268979000100891
https://doi.org/10.1063/1.465777
https://doi.org/10.1021/ma00080a018
https://doi.org/10.1063/1.478440
https://doi.org/10.1063/1.478441
https://doi.org/10.1063/1.480882
https://doi.org/10.1063/1.469269
https://doi.org/10.1063/1.469073
https://doi.org/10.1063/1.472249
https://doi.org/10.1007/bf01127722
https://doi.org/10.1063/1.453326
https://doi.org/10.1063/1.465976
https://doi.org/10.1080/00268979300102791
https://doi.org/10.1063/1.467021
https://doi.org/10.1016/0009-2509(94)e0097-a
https://doi.org/10.1063/1.468695
https://doi.org/10.1080/002689797170815
https://doi.org/10.1080/00268970009483407
https://doi.org/10.1063/1.4803023
https://doi.org/10.1016/j.fluid.2015.11.017
https://doi.org/10.1063/1.4948811
https://doi.org/10.1063/1.5085116
https://doi.org/10.1063/1.462185
https://doi.org/10.1063/1.470838
https://doi.org/10.1016/0378-3812(96)03017-8
https://doi.org/10.1080/00268976.2013.812257
https://doi.org/10.1063/1.450881
https://doi.org/10.1063/1.454973
https://doi.org/10.1063/1.456026
https://doi.org/10.1080/00268979000101961
https://doi.org/10.1063/1.461772
https://doi.org/10.1063/1.460671
https://doi.org/10.1080/00268979300102401
https://doi.org/10.1021/jp9535304
https://doi.org/10.1063/1.471149
https://doi.org/10.1080/00268978900102051
https://doi.org/10.1063/1.459523
https://doi.org/10.1080/00268979100101631
https://doi.org/10.1080/00268979100102161
https://doi.org/10.1063/1.1388544
https://doi.org/10.1021/j100375a065
https://doi.org/10.1063/1.462796
https://doi.org/10.1063/1.468226
https://doi.org/10.1063/1.470528
https://doi.org/10.1080/00268970500075297
https://doi.org/10.1103/physreve.105.034110
https://doi.org/10.1063/1.466142
https://doi.org/10.1021/ma00216a018
https://doi.org/10.1080/00268979100101251
https://doi.org/10.1063/1.469719
https://doi.org/10.1063/1.1322637
https://doi.org/10.1021/ma00041a021
https://doi.org/10.1063/5.0031545
https://doi.org/10.1063/5.0073572
https://doi.org/10.1021/acs.jpcb.1c01999
https://doi.org/10.1063/1.1673824
https://doi.org/10.1063/1.1675048
https://doi.org/10.1063/1.4922264
https://doi.org/10.1016/j.fluid.2016.07.033
https://doi.org/10.1080/00268979500102391
https://doi.org/10.1063/1.479102
https://doi.org/10.1063/1.4754275
https://doi.org/10.1016/0009-2614(92)85110-v
https://doi.org/10.1007/bf01512208


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

81M. Rubinstein and R. H. Colby, Polymer Physics (Oxfor University Press,
Oxford, 2003).
82J. A. Barker and D. Henderson, J. Chem. Phys. 47, 4714 (1967).
83P. Paricaud, J. Chem. Phys. 124, 154505 (2006).
84T. van Westen and J. Gross, J. Chem. Phys. 154, 234502 (2021).
85T. Boublík, Mol. Phys. 59, 775 (1986).
86T. van Westen and J. Gross, J. Chem. Phys. 147, 014503 (2017).
87T. van Westen and J. Gross, Mol. Phys. 120, e2059410 (2022).
88J. A. Barker, Proc. R. Soc. A 241, 547 (1957).
89H. C. Andersen, J. D. Weeks, and D. Chandler, Phys. Rev. A 4, 1597 (1971).
90K. E. Gubbins, W. R. Smith, M. K. Tham, and E. W. Tiepel, Mol. Phys. 22, 1089
(1971).

91P. Rehner, B. Bursik, and J. Gross, Ind. Eng. Chem. Res. 60, 7111 (2021).
92E. Sauer and J. Gross, Langmuir 35, 11690 (2019).
93M. N. Rosenbluth and A. W. Rosenbluth, J. Chem. Phys. 23, 356 (1955).
94D. Frenkel and B. Smit, Mol. Phys. 75, 983 (1992).
95D. Frenkel, G. C. A. M. Mooij, and B. Smit, J. Phys.: Condens. Matter 4, 3053
(1992).
96D. Frenkel and B. Smit, in Understanding Molecular Simulation: From
Algorithms to Applications, 2nd ed. (Academic Press, San Diego, 2002).
97D. Frenkel, G. C. A. M. Mooij, and B. Smit, J. Phys.: Condens. Matter 3, 3053
(1991).
98J. I. Siepmann and D. Frenkel, Mol. Phys. 75, 59 (1992).
99X. Li and Y. C. Chiew, J. Chem. Phys. 101, 2522 (1994).

J. Chem. Phys. 160, 174105 (2024); doi: 10.1063/5.0197910 160, 174105-15

Published under an exclusive license by AIP Publishing

 16 M
ay 2024 09:14:54

https://pubs.aip.org/aip/jcp
https://doi.org/10.1063/1.1701689
https://doi.org/10.1063/1.2181979
https://doi.org/10.1063/5.0050659
https://doi.org/10.1080/00268978600102391
https://doi.org/10.1063/1.4991008
https://doi.org/10.1080/00268976.2022.2059410
https://doi.org/10.1103/physreva.4.1597
https://doi.org/10.1080/00268977100103401
https://doi.org/10.1021/acs.iecr.1c00169
https://doi.org/10.1021/acs.langmuir.9b02378
https://doi.org/10.1063/1.1741967
https://doi.org/10.1080/00268979200100761
https://doi.org/10.1088/0953-8984/4/12/006
https://doi.org/10.1080/00268979200100061
https://doi.org/10.1063/1.467691

