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SUMMARY

This thesis addresses the topic of visual person detection and pose estimation. While
these tasks are relevant for a broad range of applications, this thesis focuses on the domain
of intelligent vehicles in urban traffic scenes. This domain is particularly interesting due to
specific challenges related to visual perception from a moving vehicle. Accident statistics
show that a great proportion of traffic fatalities affect vulnerable road users such as
pedestrians and riders. This motivates the interest in reproducing or even surpassing the
capabilities of an attentive human driver for driver assistance systems and fully automated
driving to improve safety. Deep learning contributed to narrowing the performance gap
between computer vision methods and human visual perception. Especially the capability
of convolutional neural networks to learn powerful features is helpful for person detection
and pose estimation. Throughout this thesis new deep learning methods for these tasks
will be presented. The thesis not only focuses on methodical extensions but also on the
creation of new datasets for training, evaluation, and benchmarking in the intelligent
vehicles domain.

First, a novel approach for joint object detection and orientation estimation with a
single deep convolutional neural network is presented. The orientation estimation is
implemented by extending an existing convolutional network architecture with several
carefully designed layers and an appropriate loss function. The network depends on
external proposals for object candidate regions, whose accuracy is crucial for the overall
performance. Therefore, two proposal methods are introduced that make use of 3D
sensor data - precisely stereo as well as lidar data. The KITTI dataset, which is commonly
used for object detection benchmarking in the automotive domain, serves for training
and evaluation. The experiments on the KITTI dataset show that by combining proposals
of both sensor modalities, high recall can be achieved while keeping the number of
proposals low. Furthermore, the method for joint detection and orientation estimation is
competitive with other state of the art approaches. It outperforms the state of the art for a
test scenario of the bicycle class.

Big data has had a great share in the success of deep learning in computer vision. Still,
the number of pedestrians and riders in the KITTI dataset is rather limited and previous
works suggest that there is significant further potential to increase object detection per-
formance by utilizing bigger datasets. Regarding benchmarking, small datasets are prone
to dataset bias and overfitting.

Therefore, the second part of this thesis introduces the EuroCity Persons dataset,
which provides a large number of highly diverse, accurate, and detailed annotations of
pedestrians, cyclists, and other riders in urban traffic scenes. The images for this dataset
were collected onboard a moving vehicle in 31 cities of 12 European countries. With
over 238200 person instances manually labeled in over 47300 images, EuroCity Persons is
nearly one order of magnitude larger than datasets used previously for person detection
in traffic scenes. The dataset furthermore contains a large number of person orientation

xi
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annotations (over 211200). Four state of the art deep learning approaches are thoroughly
optimized to serve as baselines for the new object detection benchmark. In experiments
with previous datasets, the generalization capabilities of these detectors when trained
with the new dataset are analyzed. Furthermore, this thesis studies the effect of the
training set size, the dataset diversity (day- vs. night-time, geographical region), the
dataset detail (i.e., availability of object orientation information), and the annotation
quality on the detector performance.

The qualitative and quantitative analysis of error sources for the best-performing
detector reveals methodical weaknesses in dense traffic scenes. For these, the commonly
used (greedy) implementation of non-maximum suppression, which is needed in the
post-processing of the analyzed deep learning methods, poses a tradeoff between recall
and precision.

As the robustness of detection and pose estimation is also important in dense groups
of persons, the third part of the thesis focuses on improving both tasks for such scenarios.
Learning the task of non-maximum suppression with a neural network architecture in-
corporating the head boxes of pedestrians as further attributes to discriminate persons in
groups does not improve performance. Yet, the experiments reveal issues with ambigui-
ties in detection and attribute estimation (e.g. head box estimation) for pedestrians that
highly overlap each other. To solve this ambiguity for pairwise constellations of persons
a new pose estimation method is proposed that relies on pairwise detections as input
and jointly estimates the two poses of such pairs in a single forward pass within a deep
convolutional neural network. As the availability of automotive datasets providing poses
and a fair amount of crowded scenes is limited, the EuroCity Persons dataset is extended
by additional images and pose annotations, which are made publicly available as the
EuroCity Persons Dense Pose dataset. This dataset is the largest pose dataset recorded from
a moving vehicle. The experiments on this dataset with the new method show improved
performance for poses of pedestrian pairs in comparison with a state of the art method
for human pose estimation in crowds.

The final chapter of the thesis draws conclusions from the content of the previous
chapters of the thesis and discusses the required performance for automated driving.
Furthermore, it reasons about efficiency aspects regarding the collection, annotation, and
usage of data for deep learning and presents potential future work regarding methodical
improvements and end-to-end training of the functional chain for automated driving
including the integration of multiple sensors.



SAMENVATTING

Dit proefschrift betreft de detectie van personen en de schatting van lichaamshouding op
basis van video beelden. Alhoewel het relevant is voor meerdere applicaties, is de focus
van dit proefschrift zelfrijdende voertuigen in stedelijke verkeerssituaties. Dit domein
in het bijzonder is interessant door de uitdagingen die voortkomen uit visuele perceptie
vanuit een bewegend voertuig. Verkeersstatistieken geven aan dat ‘vulnerable road users’
- kwetsbare verkeersdeelnemers, zoals voetgangers en fietsers - betrokken zijn bij een
groot deel dodelijke verkeersongelukken. Dit motiveert onderzoek naar het reproduceren
of zelfs overtreffen van het menselijke rijvermogen in assistentiesystemen en zelfrijdende
voertuigen om de veiligheid te waarborgen. Deep learning is medeverantwoordelijk voor
het dichten van het gat tussen computer visie methodes en menselijke visuele perceptie.
Vooral de krachtige features die convolutionele neurale netwerken kunnen leren zijn
behulpzaam voor de detectie van personen en schatting van lichaamshouding. Nieuwe
deep learning methodes voor deze taken zullen in dit proefschrift gepresenteerd worden.
Dit proefschrift zal niet alleen methodologische uitbreidingen introduceren, maar ook
de creatie van nieuwe datasets voor het trainen, evalueren, en het ijken van perceptie
systemen in het zelfrijdende voertuigen-domein.

Eerst zal een nieuwe methode voor gezamelijke detectie en houding schatting met een
enkel ‘diep’ convolutioneel neuraal netwerk gepresenteerd worden. Houding schatting
is bereikt door een bestaande convolutioneel netwerk architectuur uit te breiden met
een aantal zorgvuldig ontworpen layers en een toepasselijke loss functie. Het netwerk is
afhankelijk van externe voorstellen voor object kandidaat regios, waarvan de nauwkeurig-
heid van groot belang is voor de uiteindelijke prestatie van het netwerk. Twee voorstel
methodes die gebruik maken van 3D sensor data - stereo en lidar data om precies te zijn -
worden daarom geïntroduceerd. De KITTI-dataset, die vaak gebruikt wordt voor bench-
marken in het zelfrijdende voertuigen-domein, is benut voor het trainen en evalueren.
De experimenten op de KITTI-dataset geven aan dat, met het combineren van voorstellen
gebaseerd op beide sensormodaliteiten, een hoge recall bereikt kan worden, alhoewel er
weinig voorstellen nodig zijn voor deze methode. Verder is de methode voor gezamelijke
detectie en houding schatting competitief met andere state of the art methodes. Deze
methode presteert beter dan de state of the art voor fietsers in een test scenario.

Big data is een belangrijke factor in het succes van deep learning in computer visie.
Desondanks is het aantal voetgangers, fietsers, en rijders in de KITTI-dataset nogal be-
perkt, de bestaande literatuur suggereert dat de prestatie van object detectie methoden
verbeterd zou kunnen worden door het gebruik van grotere datasets. Met betrekking tot
benchmarken zijn kleine datasets daarnaast gevoelig voor dataset bias en overfitting.

Daarom introduceert het tweede deel van dit proefschrift de EuroCity Persons dataset.
Deze dataset heeft een groot aantal diverse, nauwkeurige, en gedetailleerde annotaties
van voetgangers, fietsers, en andere rijders in stedelijke verkeerssituaties. De afbeeldingen
van deze dataset zijn verzameld vanuit een rijdend voertuig in 31 steden in 12 Europese
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landen. Met meer dan 238200 handmatig geannoteerde instanties van personen in
meer dan 47300 afbeeldingen is EuroCity Persons bijna één order van grootte groter dan
bestaande datasets voor de detectie van personen in verkeerssituaties. De dataset telt
verder een groot aantal annotaties van de oriëntatie van personen (meer dan 211200). Vier
state of the art deep learning methodes zijn zorgvuldig geoptimaliseerd om als baselines te
dienen voor de nieuwe object detectie benchmark. In experimenten met vorige datasets
worden het generalisatievermogen van deze detectors (getraind op de nieuwe dataset)
geanalyseerd. Dit proefschrift onderzoekt ook het effect van de grootte van de training
set, diversiteit van de dataset (dag vs. nacht, geografische regio), het detail van de dataset
(i.e. beschikbaarheid van object oriëntatie informatie), en de annotatiekwaliteit op de
prestatie van de detector.

De kwalitatieve en kwantitatieve analyses van foutbronnen voor het best presterende
detector model tonen methodologische tekortkomingen aan voor drukke verkeerssitu-
aties. Voor zulke situaties veroorzaakt de meest populaire greedy implementatie voor
non-maximum suppression - die nodig is in de post-processing stap van de bestudeerde
deep learning methodes - een tradeoff tussen recall en precision.

Omdat de robuustheid van de detectie en schatting van lichaamshouding ook be-
langrijk is voor situaties met veel personen, focust het derde deel van de proefschrift
zich op het verbeteren van beide taken voor zulke situaties. Non-maximum suppression
leren met een neuraal netwerk dat ‘hoofd boxes’ van voetgangers gebruikt als attributen
om personen in groepen te onderscheiden verbetert de prestatie niet. Wel tonen de
experimenten problemen met onenigheden tussen detectie en attribuutschatting (e.g.
hoofd box estimation) voor voetgangers met een grote overlap. Een nieuwe methode
voor het schatten van de lichaamshouding die gebruik maakt van pairwise detections
wordt voorgesteld om deze onenigheid op te lossen voor paren van personen. Deze
methode schat de lichaamshoudingen van zulke tweetallen tegelijk in een enkele for-
ward pass van een ‘diep’ convolutioneel neuraal netwerk. Omdat de beschikbaarheid
van datasets die lichaamshouding informatie geven en een redelijk aantal drukke scenes
bevatten beperkt is, is de EuroCity Persons-dataset uitgebreid met extra afbeeldingen en
lichaamshouding annotaties, publiekelijk beschikbaar gesteld als de EuroCity Persons
Dense Pose-dataset. Deze dataset is de grootste lichaamshouding dataset die opgenomen
is vanuit een bewegend voertuig. De experimenten met de nieuwe methode op deze
dataset tonen een betere prestatie aan voor de voorspelling van lichaamshoudingen van
een tweetal voetgangers dan de state of the art voor schatting van lichaamshouding in
menigten.

Het laatste hoofdstuk van het proefschrift trekt conclusies uit de voorgaande hoofd-
stukken en bespreekt de vereiste modelprestatie voor zelfrijdende voertuigen. Verder
redeneert het over de efficiëntie van de collectie, annotatie, en gebruik van data voor deep
learning en presenteert het mogelijk toekomstig onderzoek met betrekking tot methodo-
logische vorderingen en end-to-end training van de pipeline voor zelfrijdende voertuigen,
inclusief de integratie van meerdere sensoren.



1
INTRODUCTION

Perception and the processing of sensory input by the brain enable humans to interact
with a dynamic world. In particular, vision turned out to be very effective to understand
our surroundings. From an early age we effortlessly not only perceive but also recognize
and interpret. Things are categorized and thus receive a semantic meaning. The visual
input alone provides rich information that allows the recognition of detailed attributes
of objects. Based on experience and knowledge, we can even predict to some extent the
future and the impact of our actions. Thus, we can plan our behavior and react to the
outcome using our senses - thus closing the interaction loop with our surrounding world.

Due to the effortless and partially sub-conscious act of interpretation and recognition,
one could easily underestimate the effort needed to recreate human visual capabilities.
The research area of computer vision and pattern recognition seeks to recreate such skills
that are needed to build automated systems in several domains that depend on visual
input. Applications range from surveillance, over visual inspection systems in the industry
to automatic image and video processing, as well as driver assistance systems, and fully
automated driving. This thesis focuses on computer vision in the domain of intelligent
vehicles.

Even for humans, driving a vehicle is a complex task. Apart from controlling the
vehicle, all the information received from the dynamically changing surroundings has
to be processed at the same time. A human driver builds a mental representation of
the outside world to plan the future driving maneuvers. The representation not only
comprises the road layout but also other traffic participants that can frequently appear
and disappear - sometimes even unexpectedly. Other participants are categorized into
different classes and localized relative to the ego vehicle. The task of classification and
localization of other participants will be referred to as detection in the remainder of this
thesis. A human driver not only detects other participants but also considers many of
their attributes providing additional context information to understand their potential
behavior. Perceived additional cues such as their line of sight, hand gestures (see Fig-
ure 1.1), or the gait cycle are automatically processed. E.g. the instantaneous pose of
pedestrians is already a strong predictor for the potential moving directions or the motion
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2 1. INTRODUCTION

state like walking or standing. The accuracy of the human recognition system even allows
the detection of other agents in very challenging scenarios. In crowds, single pedestrian
instances are recognized even if most parts of a person are occluded.

Figure 1.1: The rider’s hand gesture indicates his wish to turn left. It may be used to predict his potential future
moving direction. Visual perception results of a deep neural network running onboard the moving vehicle are
depicted by the red bounding box regarding the detection, and by the arrow and the colored lines regarding
the pose in terms of body orientation and the configuration of the joint points. The image was recorded by an
onboard camera attached behind the windshield during performance tests at the Aldenhoven Testing Center.

This thesis addresses vulnerable road users (VRUs) [53] such as pedestrians and
riders. The term person refers to pedestrians as well as riders in the following. Due to
the high variability of the physical appearance of persons, it is difficult to handcraft a
robust descriptive model for the appearance and further attributes of persons. This leads
to the need for pattern recognition and machine learning techniques to replicate the
recognition skills of a human driver. When comparing these computer vision methods
with humans there is still a performance gap regarding the detection and pose estimation
of VRUs. Recent deep learning approaches have contributed to narrow this gap [71, 178]
and will be investigated and extended within this thesis for these tasks.

1.1. MOTIVATION, SCOPE, AND CHALLENGES
The current road safety situation for VRUs described in Section 1.1.1 motivates special
attention to these object classes. Driver assistance systems already reduce accidents and
fatalities caused by human failures [86]. A further transition to fully automated driving
(more in Section 1.1.2) needs an even higher performance of perception methods and
apart from object detection also relies on detailed object analysis, in particular pose
estimation (see the scope of this thesis in Section 1.1.3). This is difficult to achieve
especially for VRUs, as certain challenges are involved in detection and pose estimation
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with images recorded from an onboard camera. These challenges are described in Section
1.1.4.

1.1.1. ROAD SAFETY AND HUMAN DRIVER WEAKNESSES

Figure 1.2: Distribution of deaths by road user type and WHO region in 2016 from [161]. The proportion varies
drastically across different regions, e.g. in South-East Asia 14% of mortalities are among pedestrians in contrast
to 40% in Africa.

The worldwide number of deaths in road traffic has increased to 1.35 million in 2016
according to the Global Status Report on Road Safety of the World Health Organization
(WHO) [161]. The death rate, which is the number of deaths relative to the population size
per year, remains constant despite the increasing motorization worldwide. Still, injuries
caused by road traffic accidents are the leading cause of death for young people between
the age of five and 29 [161]. The risk to die in road traffic varies drastically between
countries and shows a correlation with the country income level. The death rate ranges
from 8.3 per 100,000 citizens per year in high-income to 27.5 in low-income countries.
There are also inequalities for whole regions. While Africa has the highest death rate
of 26.6, the death rates in America and Europe have decreased between 2013 and 2016
resulting in 18 and 16.9 respectively.

There is also a variation in road users most affected that corresponds with the vari-
ations in death rates [161] (see Figure 1.2). VRUs are the most affected ones globally.
Pedestrians and cyclists comprise 26%, while motorized two- and three-wheelers repre-
sent another 28%. In Africa, 44% of road traffic mortalities are among pedestrians and
cyclists, which is the highest proportion of this group. In South-East Asia and the Western
Pacific, the highest proportion of the mortalities is among riders of motorized two and
three-wheelers, with 43% and 36% respectively. The high risk for VRUs motivates special
attention for this group of traffic participants.
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According to the WHO Status Report [161] the following legislative measures and
traffic participant behaviors are important to improve road safety:

• Managing speed

• Reducing drunk driving

• Increase seat belt use

• Increase use of child restraint

• Build safer roads (e.g. regarding road layout)

• Use of safer vehicles (e.g. providing electronic stability or anti-lock braking system)

The progress in implementing these points varies between different countries worldwide.
Such measures and changes in behavior are important, especially those affecting the
human driver, who remains to be a major cause of accidents as shown by different studies
[143, 152]. E.g. in 94% of accidents in the US between 2005 and 2007, the critical reason
has been assigned to the driver [143].

Despite the capabilities in recognition, a human driver is less suitable for the following
tasks according to [89]:

• Routine tasks

• Simple but time-critical tasks

• Vision at night and in adverse weather conditions

• Estimation of distance and speed differences

• Maintaining a safe and appropriate distance from other road users

Failing these tasks may result in critical mistakes during driving. Therefore, e.g. [89]
proposes to use driver assistance systems for such tasks. These may contribute to road
safety also for VRUs and may prevent traffic accidents.

1.1.2. FROM DRIVER ASSISTANCE SYSTEMS TO FULLY AUTOMATED DRIVING
Driver assistance systems are already available to improve road safety. The progress
in pedestrian detection enabled the market introduction of active safety systems like
the PRE-SAFE® brake [16], which is able to brake automatically in dangerous traffic
situations. In autumn 2021, Mercedes-Benz has released the first level 3 S-Class model
[113] according to the levels of automated driving as defined by the SAE [79] (see Figure
1.3). This conditional automation is a further step toward fully automated driving (level
5) and hits a major milestone, as the system takes over the responsibility of monitoring
the driving environment. It is still restricted to traveling speeds below 60 km/h and
highway driving in Germany. Thus, the recognition of VRUs plays a subordinate role, and
the complexity of the road layout is lower compared to urban regions. For deployment
of fully automated driving in urban regions the detection and analysis of VRUs takes
a fundamental role. Hereby, the accuracy constraints are high. Pedestrian detection
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Figure 1.3: Levels of automated driving according to the SAE [79].
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systems are bound to a tradeoff between generating false alarms and missing pedestrians.
For a level 2 driver assistance system, a correct detection performance of e.g. 90% may be
still acceptable, as long as the false alarm rate is essentially zero because there is a driver,
who is responsible overall. With the advent of fully automated vehicles, performance
needs to be significantly upped, as a driver is no longer necessarily available to intervene.
No relevant VRU should be overseen while false alarms and resulting erroneous braking
maneuvers still have to be avoided for comfort and safety reasons.

A fully automated vehicle has to be reliable also in challenging scenarios typical for
urban areas, e.g. in crowded scenes with dense groups of pedestrians. Imagine a group
of pedestrians waiting at a bus stop as shown in Figure 1.4. As each member in such
a group can suddenly step out and enter the street, a reliable detection and analysis is
equally important for all the pedestrians in the group, even for the ones further in the
back, potentially occluded by other pedestrians.

Figure 1.4: A group of pedestrians waiting at a bus stop. As each of the pedestrians could start moving towards
the street, reliable detection is equally important for all pedestrians.

Furthermore, a fully automated vehicle needs to predict the movement of surrounding
VRUs and cars far in advance, in order to be able to brake and/or employ evasive maneu-
vers in time. Due to the high maneuverability of VRUs, any auxiliary context information
that can reduce the uncertainty of movement prediction should be utilized. Using pose
information of pedestrians for example can help increase the prediction horizon up to one
second without increasing the false alarm rate [90, 91] (see Figure 1.5). As shown in Figure
1.1 pose information is also relevant for gesture recognition. In [135], estimating pose
is even stated as a general requirement for the design of onboard pedestrian detection
systems.

Benefits of Fully Automated Driving. Apart from increased road safety and comfort,
fully automated driving will also have environmental impacts. There is an increasing
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Figure 1.5: Path prediction of the pedestrian in [90] is based on context features, which can help increase the
prediction horizon up to one second. The pedestrian’s awareness is one of the context features and is based on
the pedestrian’s pose regarding the head orientation. It indicates if the pedestrian will stop at the curbside or
cross the street. Figure from [90].

number of studies on that topic, see [140] for a survey. Cooperative driving of auto-
mated vehicles [159] could improve traffic flow, and thus reduce traffic congestions and
emissions. Shared mobility services such as fully automated taxis could also reduce
carbon emissions. Without the cost of a human driver, such taxis could be affordable
enough to decrease the demand for private cars. A study by [49] estimates that one auto-
mated vehicle could replace around 11 conventional vehicles. Reducing the number of
needed cars saves resources and spares our environment. Fully automated taxis could
also solve the first-/last-mile problem [27] by providing accessibility to nearby transit
stations (e.g. trains). Thus, usage of public transport could be encouraged. A case study
by [54] estimates, that an electrified fleet of autonomous taxis could reduce greenhouse
gas emissions by 60% in comparison with conventional vehicles. Hence, fully automated
driving could play an important role in fighting man-made climate change. Reducing
emissions by shared mobility could also improve air quality, which poses several health
issues. According to the WHO [162], air pollution caused 7 million deaths globally in
2016 alone. The positive effects depend on usage of car sharing in conjunction with
keeping the mobility level at the current level. In fact, automated vehicles might easily
lead to an increased mobility demand, e.g. caused by people living further away from
work encouraged by the availability of automated vehicles, which enable working during
the commute. See [97] for a survey also listing negative effects of automated vehicles,
e.g. investment which could be shifted away from public transport systems. Overall, the
benefits towards fighting climate change depend on its utilization by society and the
management of its introduction [140].
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1.1.3. SCOPE OF THE THESIS

The scope of this thesis is the detection and pose estimation of VRUs with deep learning
methods using monocular images. The targeted application domain is automated driving
in urban traffic scenes. Hence, the camera sensors recording the images of the datasets
used within this thesis are attached to moving platforms e.g. behind the windshield or on
the vehicle roof. This causes specific challenges as described in the next section. Other
sensors such as lidar and radar are out of the scope of this thesis.

Monocular detection and pose estimation usually is one part of a complex system
for automated driving. In addition to the methods utilizing lidar or radar data (see for
example [118]), it provides detection results as input for the functional chain. Subsequent
modules take care of fusing the data of the different sensors and tracking of the detected
objects. Following this, motion prediction as in [90, 91], which may also rely on additional
context cues like the pose, takes care of predicting the future path of other traffic partici-
pants like VRUs. Situation analysis and motion planning depend on these predictions to
plan a safe trajectory for the vehicle, which is then executed by the vehicle control module.
Temporal information of course is essential for the functional chain, but out-of-scope
of this thesis. A lot of valuable information e.g. for motion prediction can already be
extracted from static, singular images by means of detection and pose estimation.

A specific focus of this thesis are person groups (see Chapter 5), which require special
attention in urban areas as explained in the section before. The challenge for person
detection and pose estimation is not a high overall number of persons in an image by
itself, but rather a high person density. If the local density and hereby the visual overlap in
the image is high, even two overlapping pedestrians may cause difficulties, due to mutual
occlusions and methodical shortcomings explained in this thesis. To emphasize the fact
that it is not only about the number of people but mainly the density, the term dense
traffic scenes is used throughout the following work in addition to the more common
terms crowds and person groups.

Regarding pose estimation this thesis considers two different representations for
the pose of a person (see Figure 1.6). First, looking at generic objects in the computer
vision domain, pose estimation refers to the task of estimating three orientation angles
in Euclidean space (frequently in addition to the position). The focus of this thesis only
lies on the estimation of the single yaw angle (see Chapter 3), as the other two angles can
be assumed to be close to zero for upright objects like pedestrians [55]. The yaw angle is
referred to as body orientation throughout this work. It may be used as a surrogate of the
pose to determine the potential direction of movement and has the potential to support
the initialization of tracks in tracking-by-detection approaches.

Second, human pose estimation often refers to the task of estimating the configuration
of the human body regarding the position of certain keypoints, also called joint points.
These joints comprise anatomical joints of a person such as ankles, knees, elbows, and
shoulders, but often also the positions of the eyes and ears [19]. The localized joints
can be used as an intermediate representation for gesture recognition and intention
estimation [92]. Thus, cues such as the line of sight, hand gestures, or the gait cycle that
are automatically perceived and processed by a human driver, can also be recognized.

In this thesis, new methods of both representation domains are presented. Figure
1.6 shows exemplary annotations for the body orientation as well as the joint point
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annotations consisting of 17 joint points for the EuroCity Persons Dense Pose dataset
presented in this work.

1.1.4. CHALLENGES OF PERSON DETECTION AND POSE ESTIMATION
Despite two decades of steady progress, person detection is still an open research problem.
It often features as a canonical task to assess the performance of generic object detectors.
Challenges particular to person detection and analysis from a moving vehicle with an
onboard camera are described in this section. Figures 1.7 and 1.8 show samples for the
challenges listed in the following.

• High intra-class variance. There is a wide variation in person appearance. Persons
are non-rigid objects and their poses may be very articulated (see Figure 1.7a). Due
to the non-rigid nature, the potentially cluttered background influences the overall
appearance, in particular, if the person’s location is represented by an enclosing
bounding box. Sitting or even lying persons have a very different aspect ratio
compared to standing persons. The clothing also varies a lot, not only due to
different seasons, weather, and time of day but also due to personal style (see Figure
1.7b). Therefore, the intra-class variance is high and the difference in appearance
between two persons (e.g. regarding pixel-wise intensities) may be even higher
than between a person and other similar, out-of-class objects like shop-window
mannequins. Such similar objects may sometimes only be discriminated from real
persons based on the context information (see Figure 1.7c).

• Occlusion, truncation. Often, persons in urban areas are not fully visible. Obsta-
cles like parking cars and vegetation cause occlusions. At the image border, persons
are truncated. A special challenge is the occlusion in person groups with heavy
mutual occlusions (see Figure 1.7d). These hinder the discrimination of single
instances and may result in ambiguities, e.g. which body part belongs to which
person if only parts of the limbs are visible. For a subsequent tracking approach,
erroneous detections in groups result in wrong associations and erroneous velocity
vectors. Such “ghost” velocities do not correspond to real movements, and may
negatively influence the motion planning of the vehicle.

• Low resolution. The real-time requirements and the available computing power
within a vehicle also limit the image resolution that may be processed. The pixel
size of a person is inversely proportional to the distance to the camera. Doubling
the distance means halving the pixel size for a fixed person size in meters. Thus,
in particular, children who are far away appear very small within an image and
are difficult to detect (see Figure 1.7e). Still, early detection of far-away objects is
desirable to enable early planning and reaction.

• Motion blur and other perturbations. Due to the non-instantaneous exposure
of the image sensor and a rolling shutter that is commonly used in automotive
cameras, the recording of dynamic objects, and recording from a moving vehicle,
objects may appear blurred. The higher the exposure time due to lower illumination
(night, dawn, cloudy weather) the higher the motion blur (see Figure 1.8a). Dust,
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Figure 1.6: Examples for bounding box and pose annotations in terms of 17 joint points and the body orientation
of the presented EuroCity Persons Dense Pose dataset.
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dirt, or rain droplets on the windshield also reduce the image quality (see Figure
1.8b).

• Illumination. The illumination of the scene may differ a lot due to a different time
of day, weather, season, or shadows caused by buildings and other obstacles. A low
illumination causes low contrast, while a low standing sun blinds the camera if it is
in or close to the line of sight (see Figure 1.8c). Rapid changes in the illumination,
e.g. when entering or leaving a tunnel, also causes challenges as the regulation of
the exposure time of the camera needs time to adjust. During this regulation, the
recording is too bright or too dark. This also introduces a further variance in the
appearance of persons.

Performance Gap. Deep learning had a large success in image classification (e.g.
AlexNet [94]), which is the task of assigning an object category to a full image. It has
been boosted by the availability of appropriate GPU hardware and big datasets such as
ImageNet [35]. In contrast to classic machine learning approaches, the networks learn a
feature representation from raw image pixels, instead of manual design and selection of
appropriate features, e.g. edges. These powerful features extracted from raw pixels can
be effectively used for other tasks besides image classification and lead to the successful
incorporation of deep learning in the context of object detection [58, 59, 132]. This
also turned out to improve the detection of VRUs, due to the notably high variation in
appearance.

Despite the progress in detection with deep learning methods, a recent paper [178]
argues that current pedestrian detection performance lags that of an attentive human by
an order of magnitude, which also results from the challenges mentioned before. How
can this performance gap be closed?

Datasets play a crucial role in today’s computer vision research [35]. Corresponding
benchmarks reveal strengths and weaknesses of existing approaches and are instrumental
in guiding research forward. Still, [146] argues that even larger datasets are needed.
Experiments on a 300 million images dataset show that the classification performance
further increases logarithmically with the size of the training dataset. More data could
prove useful for object detection as well [179].

1.2. OUTLINE AND CONTRIBUTIONS
The goal of this thesis is to enhance image-based person detection and pose estimation
performance with deep learning methods. First, a new detection and orientation esti-
mation method is presented and evaluated on the KITTI dataset, which is commonly
used for benchmarking in automotive scenarios (Chapter 3). Second, as the size of the
KITTI dataset is limited and deep learning methods could profit from bigger datasets, a
new dataset for detection and orientation estimation is presented in conjunction with
a thorough analysis of various deep learning methods (Chapter 4). Third, as crowded
scenes turn out to be a major issue for detection performance, a further focus is put on
optimizing the detection and pose estimation for groups of persons (Chapter 5). New
datasets presented in this thesis are made publicly available for benchmarking and to
stimulate further research.
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(a) Variation in poses (sitting)

(b) Varying clothing

(c) Similarity with other objects

(d) Occlusion, truncation, groups (e) Low resolution

Figure 1.7: Examples for different challenges in person detection and analysis.
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(a) Motion blur

(b) Rain droplets on the windshield

(c) Low sun

Figure 1.8: Examples for different challenges in person detection and analysis.
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In addition to the methodical Chapters 3, 4, and 5, the thesis presents previous work
regarding person detection, pose estimation, and benchmarking in Chapter 2 and draws
conclusions and discusses future work in Chapter 6.

1.2.1. JOINT DETECTION AND ORIENTATION ESTIMATION WITH 3D OBJECT

PROPOSALS
Classical object detection approaches consist of a proposal and a classification stage [41].
Chapter 3 builds upon the R-CNN architecture [58], which profits from the success of
deep convolutional neural networks for classification in the second stage. Still, detection
performance is limited by the recall of the input proposals. Here, these proposals are
optimized using stereo and lidar data. Regarding stereo, the chapter makes use of the
"Stixel World" [121], which is a medium-level representation of stereo data that groups
pixels of similar depth into vertical sticks of fixed width. Furthermore, the network
architecture is extended by orientation estimation using a von Mises loss function, which
is combined with a Biternion representation as in [9]. Results are presented on the
frequently used KITTI benchmark. Chapter 3 is based on the work published in [15]
(©2016 IEEE).

This chapter’s main contributions are:

• First, the chapter proposes a novel deep CNN architecture called Pose-RCNN for
joint object detection and orientation estimation based on the well-known R-CNN
method [58]. It differs from other methods by modeling orientation regression with
a carefully designed von Mises loss function based on a Biternion representation,
while e.g. [24] applies a simple L1 regression. Whereas detection and orientation
estimation was treated separately in most other works e.g. [52], the chapter presents
a joint method for detection and orientation estimation by using one single CNN
architecture.

• Second, two 3D proposal methods based on lidar and stixel information are pre-
sented. Compared to [24], a new proposal method based on stixel data is introduced
in contrast to using raw pointcloud data. Combining lidar and stixel proposals im-
proves the recall performance.

The chapter shows that the new Pose-RCNN architecture using the new proposal
method achieves competitive results with state of the art approaches on the KITTI bench-
mark.

1.2.2. A NOVEL BENCHMARK FOR PERSON DETECTION IN TRAFFIC SCENES
The publicly available KITTI dataset used for benchmarking in Chapter 3 has certain
limitations e.g. regarding dataset size and diversity of the recording locations. The small
amount of person samples makes it prone to dataset bias and overfitting. Chapter 4
presents EuroCity Persons (ECP), a newly created highly diverse dataset for vision-based
person detection collected onboard a moving vehicle in 31 cities of 12 European countries.
A thorough performance evaluation and analysis is performed for several recent deep
learning methods. In comparison to the R-CNN method built upon in Chapter 3 all
of these methods integrated the proposal generation within the neural network itself.
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The von Mises loss function used for the Pose-RCNN method in Chapter 3 is integrated
into the best performing deep learning method Faster R-CNN [132] for evaluation of
orientation estimation on the new dataset. Thus, despite the strong focus on detection
performance, orientation estimation is also part of Chapter 4. It is based on the work
published in [13] (©2019 IEEE).

The contributions are threefold:

• The EuroCity Persons dataset is introduced, which provides a large number of
highly diverse, accurate, and detailed manual annotations of persons (pedestrians,
cyclists, and other riders) in urban traffic scenes across Europe. It also contains
night-time scenes. Annotations extend beyond bounding boxes and include overall
body orientations and a variety of object- and image-related tags. See Section 4.2.
It is made available for public benchmarking via website a.

• Four deep learning approaches (Faster R-CNN [132], R-FCN [31], SSD [109] and
YOLOv3 [128]) are optimized to serve as baselines for the new person detection
benchmark. The chapter proves the generalization capabilities of detectors trained
with the new dataset and thereby its usefulness. See Sections 4.3.1 and 4.3.2.

• Insights are gained and provided regarding the effect of several dataset charac-
teristics on detector performance: the training set size, the dataset bias (day- vs.
night-time, geographical region), the dataset detail (i.e. availability of object orien-
tation information), and the annotation quality. Chapter 4 analyzes error sources
and discusses the road ahead. See Sections 4.3.3 and 4.4.

1.2.3. DETECTION AND POSE ESTIMATION IN DENSE TRAFFIC SCENES
The approaches analyzed in Chapter 4 depend on a post-processing step to filter multiple
detections per object. This step is called non-maximum suppression (NMS). Its goal
is to reduce the initial detection set to end up with exactly one detection per object.
Chapter 4 identifies this NMS as a major issue regarding detection performance as its
configuration poses a trade-off between recall and precision. This hampers detection
in dense traffic scenes and results in missed detections if the mutual overlap between
persons is too high. Preceding work on detection in dense traffic scenes which lead to
insights and methodical contributions of Chapter 5 is presented in Section 5.2. This
section investigates the potential of further discriminative attributes, such as the head
position, to aid the detection in groups of persons. A recent approach of [73] is adapted
to learn the task of NMS from data using the head position as additional input. Section
5.2 shows issues with ambiguity in the estimation of discriminative attributes. Ambiguity
is also an issue in object detection in general and pose estimation as well. When two
persons are too close to each other, the detection result for a single proposal box in
between these persons is influenced by features of both persons and during inference, it
may be ambiguous which person and which pose or attribute should be the target for that
proposal. Section 5.3 proposes a detection and pose estimation approach that tackles
this ambiguity by jointly handling pairs of pedestrians. As the EuroCity Persons dataset
presented in Chapter 4 is not annotated with joint points of persons, an extended pose

ahttps://eurocity-dataset.tudelft.nl
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dataset based on the ECP dataset is presented. Chapter 5 is based on the work published
in [14] (©2020 IEEE) and [12] (©2021 IEEE).

The contributions are twofold:

• First, the chapter proposes a new top-down pose estimation method to jointly
estimate poses of pedestrian pairs in a single network. It relies on paired detections
that improve the recall in groups. The new method is simple to integrate into
existing network architectures for human pose estimation, yet effective and does
not depend on a separate input hint or a post-processing stage for disambiguation
of poses of pedestrian pairs. As the pairwise detection approach is similar to the
concurrent work of [28], which was published just before [12], only the pairwise pose
estimation and the combination of the two approaches is claimed as a contribution.

• Second, a new automotive dataset for pose estimation is created extending the
original ECP dataset with additional images from the front-facing and two side-
facing cameras. The detailed annotations including bounding boxes and poses of
pedestrians and riders will be made available for public benchmarking.



2
PREVIOUS WORK

This chapter presents the previous work on visual bounding box based person detection
and pose estimation including relevant datasets and benchmarks with a focus on the
intelligent vehicles domain. Work on other sensor modalities like radar and lidar is out of
the scope of this thesis (see for example [118]).

2.1. DETECTION
Classic object detection based on hand-crafted features usually consists of two stages.
Proposal boxes (also abbreviated as proposals in the following) that serve as candidate
regions of interest (ROIs) are generated in the first stage. For example, the sliding window
approach arranges boxes of different aspect ratios and sizes on a regular grid across the
image [32]. More sophisticated methods (see [72] for an overview) reduce the needed
amount of proposals and hereby the needed computation time by generating proposals
that are more likely to contain objects. Thus, they enable the use of more complex
methods in the second stage, which is the classification of proposal boxes. Classic object
detection methods build upon hand-crafted features for classification. These have to be
selected and optimized according to the task at hand. In the pedestrian detection domain,
Deformable Part Models (DPM) using Histograms of Oriented Gradients (HOG) features
[51, 116, 168], and Decision Forests using Integral Channel Features (ICF) [5, 37, 177, 180]
were the established methods until a few years ago [6].

Successes of deep learning for image classification (e.g. AlexNet [94]) also lead to
its incorporation in object detection. By training deep convolutional neural networks
(CNN) like GoogleNet [148], VGG [141] and ResNet [68] on the ImageNet dataset [35] for
classification, models learn to extract powerful features from raw pixels, which can be
used effectively for other tasks like object detection [76].

A comparison of selected detection methods building upon feature maps of CNNs is
shown in Table 2.1. They can be clustered into two-stage methods [31, 58, 132] that use a
proposal stage and a downstream classification stage (like the classic detection methods),
and one stage methods that go without the proposal stage [109, 127, 128]. The Regions
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with CNN features (R-CNN) methods [58, 59, 132] are the basis for most current two-stage
methods. Just like the classic detection methods, R-CNN [59] and its extension Fast
R-CNN [58] depend on proposals for possible object locations from an external input. R-
CNN uses a CNN to classify each proposal separately. Fast R-CNN optimizes the runtime
by executing the CNN on a complete image to share the calculated features. For every
(mapped) region proposal, features are pooled and used for separate classification and
bounding box regression by fully connected layers. The relation between proposal recall
and the overall detection performance is shown in [72] for different color image based
proposal methods like selective search [155], MCG [4], BING [26], Objectness [2], and
Constrained Parameteric Min-Cut (CPMC) [21]. Recent works [24, 44, 63, 102, 104] showed
performance improvements by taking advantage of 3D sensors including RGB-D camera
and stereo camera for proposal generation. The works of [44] and [102] generate proposals
based on the stixel world [121], which is a condensed stereo representation. The method
of [24] improves the detection performance of Fast R-CNN with an energy formulation for
proposal generation based on raw pointcloud data increasing the proposal recall.

Faster R-CNN [132] works without external proposals by implementing a region pro-
posal network (RPN). Thus, the two stages are combined in a single network jointly
trainable end-to-end. Inside the RPN anchor-boxes of varying scales, positions, and as-
pect ratios are convolutionally classified as fore- or background. Foreground anchors
are then used as proposals for feature pooling. Regardless of the scale of an anchor-box
features are pooled only from the last layer. Hereby the spatial support of the features can
be a lot larger or even smaller than the objects to be detected. The problem of varying
object sizes in pedestrian detection is tackled in the extensions [17, 100, 170, 184]. In
SDP [170] features are pooled from different layers in dependence on the proposal size.
MS-CNN [17] directly appends proposal networks on feature maps of different scales.

A great part of the computational complexity of Fast R-CNN and Faster R-CNN de-
pends on the number of proposals. The minibatch during training consists of a sampled
subset, which is usually several orders of magnitude smaller than the total amount of pro-
posals. [58] and [51] argue that the selection of background samples slightly overlapping
with positive samples can be seen as a heuristic hard negative mining. R-FCN [31] does
not use fully connected layers and thus does not have to resort to limiting the number of
proposals by sampling. Instead, it uses convolutional layers to generate scoring maps.
Final detection is performed by pooling from these scoring maps without any further
calculations dependent on trainable weights. As all proposals are classified, online hard
example mining [139] is applicable.

One stage detection methods like You only look once (YOLO) [127], its extensions
YOLOv2 [126], YOLOv3 [128], and others like the Single Shot MultiBox Detector (SSD) [109],
or [130] go without a distinct proposal stage. In YOLO the final downsampled feature map
is divided into grid cells. For each grid cell, fully connected layers are trained to detect
objects that are centered within this cell using the complete image as spatial support.
This approach has weaknesses for small objects and object groups that cluster within a
single cell. That is why YOLOv2 [126] adopts the anchor boxes of Faster R-CNN. Scales
and aspect ratios of these boxes are set by calculating dimension clusters using k-means
clustering. Features are stacked from different layers to further support the detection
of varying object sizes, still, the boxes themselves are anchored in a single layer. In
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YOLOv3 [128] three different layers with three different strides are used to predict classes
and precise positions for the anchor boxes. Furthermore, they propose the Darknet-53
network architecture specialized for fast object detection, combining ideas of other CNNs
[68, 141, 148] in particular the usage of residual blocks.

SSD [109] detects objects based on default boxes. These default boxes are similar
to anchor boxes, but they are applied to different feature layers at different resolutions.
Hereby the receptive field sizes are approximately proportional to the sizes of the default
boxes. In the SSD512 variant, seven layers are used for prediction which means a finer
discretization of the output space than with YOLOv3. Unlike the YOLO methods, not
all negative boxes or gridcells are used in backpropagation. Hard negative mining is
explicitly applied to select the boxes with the highest confidence loss similar to R-FCN.
[130] introduces a recurrent neural network based on a VGG-16 architecture that improves
the localization accuracy of one-stage methods. This is achieved by applying a recurrent
rolling convolution on several feature layers.

Generative adversarial networks (GAN) [61] are also used for pedestrian detection. In
[99] a Fast R-CNN architecture is extended by a generator branch that adds super-resolved
features after region proposal pooling to improve the detection performance for small
objects. The adversarial branch is trained to discriminate super-resolved features of
small objects from real features of large-scale objects. Inspired by GANs, [75] trains a
discriminator to select realistic-looking images rendered by a game engine. An extension
of Faster R-CNN coined RPN+ is then trained on this data to improve the detection
performance for unusual pedestrians.

Table 2.1: Overview of recent deep learning detection methods. Methods evaluated in Chapter 4 are bold-faced.
YOLOv3 and SSD use different feature maps for proposals of different scales.

two stage method Fast R-CNN[58] Faster R-CNN[132] R-FCN[31]
region proposals external RPN RPN

hard example mining heuristic heuristic explicit
used feature maps last last last

one stage method YOLO [127] YOLOv3 [128] SSD[109]
region proposals gridbased anchor boxes default boxes

hard example mining none none explicit
used feature maps last several several

2.1.1. DETECTION IN DENSE TRAFFIC SCENES

The aforementioned detection methods like [58, 109, 128, 132] depend on non-maximum
suppression (NMS) in a post-processing step to suppress multiple detections per object.
Interestingly, many of the top-performing methods apply a simple greedy implementation
based on a single intersection over union (IoU) threshold [10]. Selecting this threshold for
suppression poses a tradeoff between recall and precision.
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There are several approaches to improve the recall in particular in crowd situations,
without losing precision. In Soft-NMS [10] detections are not discarded, but their class
score is reduced if they overlap with another detection that has a higher confidence. The
authors of [73] propose a network architecture to learn the NMS task using bounding
box locations and class scores as input. Thus, the NMS could be trained in a fully end-
to-end detection framework. In [108] a density value is estimated per prediction that is
used instead of the single IoU threshold within the greedy NMS. A high density value
leads to less suppression and a higher recall in groups. [173] builds upon this idea and
additionally estimates a diversity value. This discriminative diversity value is estimated
in an embedded feature space and is fed into the adapted NMS algorithm. Similarly,
[169] estimates a discriminative feature in a geometric embedding. In [158], a special loss
coined Repulsion Loss is used, to push detections of separate instances away from each
other to lower the IoU between such detections. [28] tries to detect all objects in a group
based on a single proposal. These set detections do not suppress each other within the
NMS.

Other works estimate the head box in addition to the body box to support the NMS
[175], or do not depend on anchor boxes/proposals as they directly estimate certain
keypoints of the full bounding box like the corners [96] or additionally the center [39].
For keypoint localization, a convolutional heatmap approach is used, which is similar to
scene segmentation [138] - the task of assigning a class to each pixel. Instance segmen-
tation approaches like [33] that assign an instance to each pixel in addition to the class
information, could also be used for detection in dense scenes. Still, instance segmentation
is out of the scope of this thesis, as the main interest lies in the estimation of the full
extent of the body bounding box, even if most parts are occluded. Instance segmentation
focuses on the visible parts.

2.2. POSE ESTIMATION
First, Section 2.2.1 lists previous work for orientation estimation as surrogate of the pose
of a person. The body orientation may be used to predict the probable direction of
movement, while the head orientation gives information about a person’s attention and
awareness. Section 2.2.2 is about estimating joint points of persons with a focus on multi
person pose estimation. It may be used as an intermediate representation for gesture
recognition and intention estimation [92].

2.2.1. ORIENTATION ESTIMATION

The focus here is on work that estimates a single orientation angle. In particular for
pedestrians it is reasonable to only estimate the body orientation/yaw angle, as the other
two angles can be assumed to be close to zero [55] due to the mostly upright postures.

Early work uses hand-crafted features like HOG [7, 8, 23] for orientation estimation
with SVMs [23] or Decision Trees/Ferns [7, 8]. These works model orientation estimation
as a discrete classification problem with a varying number of orientation bins. The work
of [42] also applies this discrete formulation but the trained classifiers then are used to
infer a continuous orientation angle. This is also done in [52] to achieve the transition
from the discrete to the continuous domain. Notably, [52] also jointly tracks the head and
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body orientation over time with a Dynamic Bayesian Network.

Recently, deep neural networks are also used for estimating orientations of common
objects in traffic scenarios [102, 145, 154]. In these works, orientation estimation is consid-
ered a multiclass classification problem. Beyer et al. [9] show that a correctly performed
regression is a more natural way to address the problem of orientation estimation. They
introduce Biternion Net which is capable of regressing fine-grained orientation angles
using the von Mises loss. In [24] an L1 loss is used for estimating continuous orientation
angles instead of estimating biternions in conjunction with a von Mises loss. They com-
bine orientation estimation with detection in a jointly trained deep convolutional neural
network.

2.2.2. MULTI PERSON POSE ESTIMATION

Multi person pose estimation for the estimation of joint points can be clustered into
bottom-up and top-down approaches. Bottom-up approaches [19, 78, 82, 119, 122]
first try to find all joints within an image, which are then clustered into instances. Early
approaches solve the clustering by integer linear programming [78, 122]. In [19] part
affinity heatmaps are estimated in addition to the joint heatmaps. The part affinities are
used as edge weights in the graph-based clustering. In [119] pixelwise offset values are
calculated pointing from one joint to another. These offsets are used for grouping. [82]
proposes a graph convolutional network for clustering. Thus, clustering can be learned
as part of an end-to-end framework. As stated in [101] and [124], invisible joints and the
small local context used for joint estimation lead to inferior performance of bottom-up
methods.

Top-down approaches first detect all persons within an image and then estimate
the pose for every instance. Most works follow the heatmap-based approach of [150].
Mask R-CNN [67] learns both stages in a single end-to-end trainable network. Recent
top-down methods profit from better person detectors or better network architectures
[115, 147, 166]. Still, dense person group situations remain challenging for top-down
methods. On the one hand, estimating the positions of occluded joints is difficult. On the
other hand, image crops of detected persons contain parts of other persons as well. In
some cases, the overlapping region between two persons is so high that the target pose is
ambiguous. [60] proposes a solution for the handling of occluded joints training separate
heatmap estimators for occluded and visible joints. Thus they train different experts
for different occlusion states but not for disambiguation of multiple persons within a
crop. [70] tries to solve the ambiguity for multiple persons by adding the position of a
visible joint point for each person as an additional input. They depend on the results of a
state of the art bottom-up pose estimation approach for these input hints. In AlphaPose+
[101] detections are handled independently within the single person pose estimation. A
so-called joint candidate loss allows the estimation of all joints that are within an image
crop. The disambiguation of poses of different persons is part of a post-processing stage.
There, joint candidates from all heatmap estimations are extracted. In a global graph-
based optimization procedure they can be reassigned to different detections based on
the heatmap scores. As it is a fixed algorithm it can not be trained end-to-end within
the framework. [124] depends on the initial pose results of AlphaPose+ [101], which are
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refined by a graph convolutional network (GNN) depending on image features extracted
from the base network of AlphaPose+. They also propose a variant of this GNN, where
poses of pedestrian pairs are jointly refined.

2.3. DATASETS AND BENCHMARKING
Methodical progress in the computer vision domain is monitored on appropriate datasets
that serve for benchmarking. Improved sensor technology, e.g. regarding the camera
resolution, the need for more data in particular with deep learning methods, or other
limitations of existing datasets may raise demands for the creation of new datasets. Previ-
ous work regarding datasets and performance analysis for person detection is presented
in Section 2.3.1 and 2.3.2, while datasets specific for pose estimation are presented in
Section 2.3.3.

2.3.1. PERSON DETECTION

A number of early datasets focus on pedestrian classification (e.g. Daimler-CB [114], CVC
[57], and NICTA [117]) and detection (e.g. Daimler-DB [43], INRIA [32], ETH [46], and
TUD-Brussels [160]). See [43] for an overview. Currently, KITTI [56] and Caltech [38] are
the established pedestrian detection benchmarks. The latter has been extended by [178]
with sanitised annotations. The Tsinghua-Daimler Cyclist (TDC) dataset [102] focuses
on cyclists and other riders. In [77] a multi-spectral dataset for pedestrian detection is
introduced, combining RGB and infrared modalities.

The Cityscapes dataset [29] was recorded in 50 cities during three seasons. Similar to
earlier scene labeling challenges like Pascal VOC [48] and Microsoft COCO [107], it pro-
vides pixel-wise segmentations for a number of semantic object classes. The CityPersons
dataset [179] extends part of the Cityscapes dataset by bounding-box labels for the full
extent of pedestrians. This enables occlusion analysis as the segmentation masks cover
the visible areas only.

See Table 4.1 in the corresponding benchmarking Chapter 4 for an overview of the
main person detection benchmarks in vehicle context. In terms of the annotation quantity
and data diversity, CityPersons [179] and Tsinghua-Daimler Cyclist (TDC) [102] had, so
far, the most to offer for the pedestrian and the riders class. Although Caltech [38] lists a
large number of pedestrian annotations, only an unspecified subset of these annotations
was done manually, the remainder was obtained by interpolation (the number of manual
annotations is probably an order of magnitude smaller). In total there are about 2300
unique persons in this dataset. Training and evaluation on Caltech is typically performed
on a subset of the dataset, using every 30th frame. Cyclist and other riders annotations are
missing in the Caltech dataset, and orientation annotations are missing in both Caltech
and CityPersons datasets. KITTI, Caltech, and TDC datasets have been collected in one
city only. CityPersons was recorded in 27 different cities but, apart from Strasbourg and
Zurich, it covers only Germany, and recordings were not made throughout all seasons.
Very recently, the Berkeley Deep Drive dataset (BDD) [171] was made available, which in
total provides 100000 images recorded in a vehicle context. A white paper describing the
dataset was announced.
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Other person datasets relate to attribute recognition [11, 64, 137]. Notable for its sheer
size is furthermore the recent Open Images V4 dataset [95], containing 15.4M bounding
boxes on 1.9M images for 600 different categories.

2.3.2. PERFORMANCE ANALYSIS OF PERSON DETECTION
In [38], 16 different detection methods are evaluated on the Caltech dataset. Small
sizes and occlusion are identified as major challenges for pedestrian detectors. The
"reasonable" test set typically used for evaluation contains pedestrians larger than 50
px with no partial occlusion. In [6] more than 40 detectors are evaluated on the Caltech
dataset to analyze the main cause for improvement during the last 10 years. Deep models
are examined as one of several possible causes. Still, they are outclassed by the design of
better features as the main driver of performance improvement. In [71] also deep models
on the Caltech dataset are analyzed. False positives which are touching ground-truth
samples are considered localization errors. The remaining false positives are considered
as confusion of background and foreground. Hereby, the authors find that confusion is the
most frequent reason for false positives. Discriminating false positives by localization and
confusion errors is also done in [178]. The authors focus on the boosted decision forests-
based methods RotatedFilters [181] and Checkerboards [180]. In addition to categorizing
false positives as localization or classification errors, they automatically analyze the effect
of contrast, size, and blurring on the detection score. Furthermore, they manually cluster
false positives and false negatives at a fixed false positives per image for qualitative failure
reasons. In contrast, [125] applies an automatic failure analysis for ACF [36] on Caltech
and KITTI. They assign failure reasons to false negatives, such as truncation, occlusion,
small objects heights, unusual aspect ratios, and localization in one study. As more than
one of the sources could qualify as failure reason a certain prioritization provides the
primary reason.

Methods [17, 100, 176] building upon the work of Fast/Faster R-CNN are the top-
performing methods on the Caltech dataset [178]. [176] uses decision forests for classi-
fication instead of fully connected layers but the performance depends on the feature
layers of the CNNs. Regarding the KITTI benchmark, the top-performing non-anonymous
submissions all rely on deep CNNs [17, 130, 165, 170, 184]. Apart from [130] all of these
are two-stage methods building upon the work of Fast/Faster R-CNN.

[74] evaluates R-FCN, SSD, and Faster R-CNN on the generic object detection bench-
mark MSCOCO [107]. By varying the feature extractor, the image resolution, and other
parameters various speed/accuracy trade-offs are examined.a

2.3.3. POSE ESTIMATION
The KITTI dataset [56] and the Tsinghua-Daimler Cyclist (TDC) dataset [102] provide a
yaw angle describing the body orientation as pose surrogate. KITTI has been widely used
for benchmarking orientation estimation.

Progress in deep learning based multi person pose estimation regarding joint point
positions has been driven by datasets like MSCOCO [107], MPII [3] and AI Challenger

aThis section refers to previous work in performance analysis and benchmark results before the publication of
the EuroCity Persons detection and orientation benchmark [13] presented in Chapter 4. The ongoing release
of even newer and better methods can be observed on the corresponding benchmark websites.
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[163]. The CrowdPose [101] and OCPose [124] datasets focus on crowd situations with
a high amount of pedestrians overlapping each other. These situations constitute a
specific challenge for pose estimation. The images of the mentioned datasets have
been collected using online search engines, Flickr and YouTube. In terms of automotive
datasets, PedX[87] provides stereo images recorded from a moving vehicle including lidar
annotated with 2D and 3D poses. Still, the diversity regarding context is rather low as
only three urban intersections are covered. Recently, the TDUP dataset [157] has been
announced, which will provide images recorded from a moving vehicle covering diverse
urban traffic scenes in China. An overview of these datasets is shown in Table 5.1 within
the corresponding Chapter 5.



3
JOINT DETECTION AND

ORIENTATION ESTIMATION WITH

3D OBJECT PROPOSALS

3.1. OVERVIEW
As described in Chapter 1 detection and pose estimation of vulnerable road users are
essential components for building a fully automated driving system. This chapter not only
focuses on detection but also on the estimation of the body orientation of pedestrians
and riders as surrogate of the pose.

Today, deep learning methods are able to capture complex context information by
using powerful, multi-layer visual representations. The visual representations are ex-
tracted from a set of object proposals estimated by preceding proposal methods. The
recall rate of the proposal methods is crucial because it specifies an upper bound for
the overall detection performance. The detection performance of the Regions with CNN
features (R-CNN) method on the KITTI benchmark [56] is limited due to the low recall
performance of its proposal method, such as Selective Search [155]. Recent work [24]
showed that the detection performance can be greatly improved by using more powerful
3D proposals from pointcloud data.

This chapter introduces Pose-RCNN, a combined approach for object detection and
pose estimation based on a single R-CNN-like neural network. Pose estimation is carried
out through an orientation regression network attached to an R-CNN architecture. The
regression net is trained by using a carefully designed von Mises loss function [111]
combined with a Biternion representation [9] of the orientation. Inspired by the good
results achieved in [24], two different 3D proposal methods are presented: One originates
from the stixel world [121], the other uses lidar point clouds. The proposed Pose-RCNN
is evaluated on the KITTI dataset [56]. The results are competitive in both detection
and orientation estimation. Both introduced proposal methods achieve similar recall
performance as the state of the art and significantly outperform methods that only make
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use of 2D image data. Figure 3.1 shows an example of detected objects with their bounding
box and orientation regression.

This chapter is based on the work published in [15] (©2016 IEEE).

Figure 3.1: Example results on the KITTI dataset of the novel Pose-RCNN framework with bounding box
proposals (green), and final detections (after bounding box regression) for cars (red), pedestrians (cyan), and
cyclists (blue). Results from the orientation regression are shown by the arrow inside the detected bounding
boxes.

3.2. PROPOSED APPROACH

3.2.1. LIDAR PROPOSAL GENERATION

3D object proposals are generated in a straightforward way by clustering an unorganized
lidar scan of the 3D environment into smaller clusters. A particular approach to cluster a
traffic scene is to remove ground points and group the rest using the nearest-neighbor
clustering technique, as shown in Figure 3.2. Ground estimation is carried out through
progressive morphological filter (PMF) [174], which distinguishes non-ground measure-
ments such as buildings, vehicles, vegetations etc. from the ground plane. Subsequently,
the non-ground lidar points are clustered by grouping nearest neighbors together using a
kd-tree search structure [133]. In a last step, the 3D bounding box of each lidar cluster
is projected onto the image plane in order to generate 2D object proposals. The 2D
proposals are augmented again through spatial translation and scaling.

The recall rate of lidar proposals are highly affected by the parameter settings of the
PMF and the nearest neighbor clustering. Here, this chapter evaluates two different
parameter settings: The first one Li1 attempts to rigorously keep the false negative rate as
low as possible, whereas the second set Li2 allows more smaller object clusters in order to
increase the recall rate. Table 3.1 shows the detailed parameter settings of Li1 and Li2.

Additionally, ground estimation by Li2 is only performed on lidar points within a short
range, since the laser scan hardly reaches the ground above a certain distance. In other
words, ground points are clustered together with wide range objects by Li2. This helps us
catch more wide range objects and thus increase the recall rate. The range threshold is
set to be 20 meters.
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Figure 3.2: Example of lidar bounding box proposal through clustering. Top: Lidar data and 3D boxes resulting
from the point clusters. Bottom: 2D proposal boxes resulting from the projection of the 3D boxes.

Table 3.1: Detailed parameter settings of lidar proposal.

Step Parameter Li1 Li2

Ground estimation
initial ground distance 0.2m 0.15m
maximal ground distance 0.5m 0.15m

Euclidean clustering
cluster distance 0.3m 0.45m
minimal number of points 50 10
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3.2.2. STEREO PROPOSAL GENERATION
Similarly to [102], the stixel representation of the world [44] is used to generate proposals
(see Figure 3.3). Stixels are calculated based on stereo data in a joint energy optimization
that minimizes the variance of the depth within a stixel. Hence stixels are an efficient and
sparse representation of objects having approximately vertical surfaces like vulnerable
road users and cars. If the stixel calculation is supported by a ground plane estimation
(i.e. in an automotive setup), the 3D position of the bottom of a stixel can be adjusted to
match the ground plane. A priori knowledge of the size of possible objects is used to get
proposals from the stixels. First, the stixels are filtered by their height in world coordinates
that has to be within [1.2m,2.4m] and their distance that has to be less than 100m. If an
estimated ground plane is available, stixels that are more than 0.5m above the ground
are also removed. In a second step, the width is adapted to match different aspect ratios.
For each stixel, there will be one proposal per aspect ratio. This chapter evaluates two
different parameter settings SP and SPLJ. The applied aspect ratios for both are 0.5, 1,
and 2. The width of the stixels in the energy minimization is fixed to seven pixels for SP
and three pixels for SPLJ. By SPLJ, each proposal is augmented through four additional
proposals sampled in the surrounding. Therefore, the position of the proposals is adapted
by 10% of the witdh to the left and right and 10% of the height to the top and bottom.

3.2.3. POSE-RCNN
Fast R-CNN [58] is extended by attaching a small orientation regression network on top of
the ROI pooling layer. Based on the last convolution layer of a VGG16 [141] architecture,
ROI-pooling is done in the same way as in the original Fast R-CNN version. A softmax
probability for classification and per-class bounding-box offsets are estimated from the
pooled feature vectors at the end. The orientation regression network estimates an
additional per-class orientation angle from each pooled feature vector. Figure 3.4 shows
the architecture of the proposed Pose-RCNN. It is essential for an orientation regression
network to have a carefully-designed loss function and a “mathematically convenient"
representation of orientation. This chapter uses the von Mises [111] distribution for
designing a loss for the orientation regression as done in [9]. The von Mises distribution
is an analog of the normal distribution for the circular domain which avoids the problem
of angular discontinuity, and it is everywhere differentiable and thus optimal for gradient-
based optimization. It has the form

g (θ;µ,κ) = 1

2πI0(κ)
eκcos(θ−µ), (3.1)

where θ is an angle, µ is the mean angle of the distribution, κ is the concentration
parameter, and I0 is the modified Bessel function of order 0. By inverting and scaling
constants, one can derive the von Mises loss function which measures the probabilistic
distance between a predicted angle θ and the target angle t as

LV M (θ|t ;κ) = 1−eκ(cos(θ−t )−1), (3.2)

with κ as a hyper parameter controlling the shape of the used von Mises distribution.
To predict a periodic value using a linear operation, [9] introduces the Biternion repre-
sentation y = (cosθ, sinθ). By combining the von Mises loss function with the Biternion
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Figure 3.3: Two qualitative results of the stereo proposal generation (three rows per example). First the complete
set of stixels (top) is filtered by several constraints. The resulting proposals (bottom) have the height of the
remaining stixels (middle). Their width is adapted to match given aspect ratios.
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Figure 3.4: Net architecture of the proposed Pose-RCNN. ä denotes the size of the ROI pooling layer, and p
shows the layer depth. Inputs to the Pose-RCNN comprise an image and a number of bounding box proposals.
Feature vectors per bounding box proposal are extracted through the ROI pooling layer, and they are mapped by
three fully connected layers in order to generate outputs of the network. These include: softmax probability for
classification, per-class bounding-box regression offsets, and per-class orientation regression.



3.3. EXPERIMENTS AND EVALUATION

3

31

representation and by using common trigonometric identities, the loss function of the
orientation regression network and its gradient for back-propagation can be expressed
by:

LV M (y|t;κ) = 1−eκ(y·t−1), (3.3)

∂LV M

∂y
=−eκ(y·t−1)κy. (3.4)

The derivation shown here is based on the assumption that the biternion representation
takes valid values, which means that ‖y‖ = cos2θ+ sin2θ = 1. Since the orientation
regression network cannot guarantee the vector length, normalization is required before
loss computation. Therefore, a normalization layer is added ensuring the estimations to
be always on the unit circle. Given a d-dimensional vector x = (x1, x2, . . . , xd ), the forward
pass is simply a normalization, described by

y = x

‖x‖ = xp
x ·x

. (3.5)

For backward pass, the partial derivative of the loss with respect to each dimension of x is
derived, which is

∂L

∂x j
=

d∑
i=1

∂L

∂yi

∂yi

∂x j
, j ∈ {1,2, . . . ,d}, (3.6)

while ∂L
∂yi

is the backpropagated gradient from the succeeding layer. Following basic
derivation rules results in

∂yi

∂x j
= δi j − yi y jp

x ·x
, (3.7)

where δi j =
{

0 if i 6= j

1 if i = j
represents the Kronecker delta.

3.3. EXPERIMENTS AND EVALUATION

3.3.1. EXPERIMENTAL SETUP
This section evaluates the proposed approach for proposal generation, object detection,
and orientation estimation on the KITTI object benchmark, which consists of 7481 train-
ing images and 7518 test images that are captured by the left RGB camera mounted on
the recording vehicle. For each left color image in the object dataset, a corresponding
right color image is available, which enables computing disparities and stixels from stereo
pairs. Lidar point clouds and calibration information between the lidar and the cameras
are also provided. A total of 80256 labeled objects in common traffic scenes including
cars, pedestrians, and cyclists are available in the public training dataset.

The different 3D proposal methods SP, SPLJ, Li1, Li2 as well as certain combinations
are evaluated. Hereby SP-Li1, SPLJ-Li1, and SPLJ-Li2 are just the union of the correspond-
ing proposals without any filtering of duplicates.

The framework and parameter settings provided by [24] and the different proposal
methods are used for the training of the Pose-RCNN model. 50% of the images of the
training dataset serve as validation set.
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Figure 3.5: Recall as a function of the IoU threshold for several proposal methods. The average number of
proposals per frame (first number) and the average recall (in %) are displayed inside the brackets. The 3DOP
curve is sampled from the original paper [24]. Rows show results for different classes, while columns show
results for different test scenarios as defined in [56].
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3.3.2. RESULTS

PROPOSAL METHODS

The new proposal methods are compared with several state of the art approaches – among
others Selective Search (SS) [155] and 3DOP [24]. Therefore, Figure 3.5 shows the Recall
as a function of the IoU threshold between 0.5 and 1.0. Average recall (AR) defined in
[72] is used as the metric for comparison. Note that the number of proposals is not the
same for all methods. A fair comparison can be made between the results of SP-Li1, 3DOP
and SS for 500 proposals. SP-Li1 achieves a higher AR than 3DOP for the moderate and
hard setting of the cyclist class and a lower AR for the other cases. SS and other state
of the art methods like MCG [4] and BING [26] are outperformed (results for these are
shown in [24]). The average recall of SPLJ and Li2 is higher than for the corresponding
settings SP and Li1 while increasing the number of proposals (see Figure 3.5). Note how
the combination of stereo and lidar proposals further boosts the average recall score for
SPLJ-Li1 and SPLJ-Li2. The combination of proposals of stereo and lidar data is further

Figure 3.6: Absolute coverage of the ground truth samples of the pedestrian (left) and cyclist (right) classes
(moderate difficulty). A sample counts as covered if there is a proposal with an IoU greater than 0.7. The samples
are grouped by the method of the covering proposal and their height values. The absolute count of these groups
is represented by the height of the bar segments.

analyzed in Figure 3.6. Although duplicates are not deleted when combining proposals,
a lot of ground truth samples are only covered by one or more proposals of exactly one
method. A great amount of small objects are only covered by lidar proposals. That is due
to missing stereo data in the far range.

DETECTION AND ORIENTATION REGRESSION

The Pose-RCNN model trained with proposals of the SPLJ-Li2 setting achieves the best
results on the validation set. For evaluation on the test dataset, an additional Pose-RCNN
model is trained with SPLJ-Li2 proposals on the combined training and validation dataset.
Table 3.2 and 3.3 show the respective test results. Especially for cyclists, Pose-RCNN
performs very well. The model achieves the highest detection and orientation scores on
the easy test scenario and competitive ones on the other scenarios.
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Table 3.2: Average Precision (in %) on the test set of the KITTI benchmark for different classes and different test
scenarios (Easy, Moderate, Hard) as defined in [56].

Cars Pedestrian Cyclist

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard
ACF [36] 55.9 54.7 43.0 44.5 39.8 37.2 - - -

R-CNN [71] - - - 61.6 50.1 44.8 - - -
DPM-VOC+VP [120] 75.0 64.7 48.8 59.5 44.9 40.4 42.4 31.1 28.2

3DOP [24] 93.0 88.6 79.1 81.8 67.5 64.7 78.4 68.9 61.4
SubCNN [165] 90.8 89.0 79.3 83.3 71.3 66.4 79.5 71.1 62.7

Pose-RCNN 88.4 75.8 66.6 77.5 63.4 57.5 80.8 68.8 60.4

Table 3.3: Average orientation Similarity (in %) on the test set of the KITTI benchmark for different classes and
different test scenarios (Easy, Moderate, Hard) as defined in [56].

Cars Pedestrian Cyclist

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard
DPM-VOC+VP [120] 72.3 61.8 46.5 53.6 39.8 35.7 30.5 23.2 21.6

3DOP [24] 91.4 86.1 76.5 72.9 59.8 57.0 70.1 58.7 52.4
SubCNN [165] 90.7 88.6 78.7 78.5 66.3 61.4 72.0 63.7 56.3

Pose-RCNN 88.3 75.4 66.1 74.0 59.9 54.3 75.5 62.9 55.5

3.4. DISCUSSION
Average orientation similarity as defined in [56] is strongly correlated with the average
precision. The average precision score is even the upper bound for the average orientation
similarity score. The ratio between the orientation and detection score can not be higher
than one. For cars, 3DOP [24], SubCNN [165], and the new Pose-RCNN approach already
achieve a ratio of nearly one. For cyclists and pedestrians, the ratio achieved by Pose-
RCNN is higher than by 3DOP and SubCNN, which evinces the potential of the proposed
approach. The improvement of the detection performance for example by improving
the average recall of the proposals could automatically boost the average orientation
similarity score.
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DETECTION IN TRAFFIC SCENES

4.1. OVERVIEW
During the last two decades, an extensive amount of research has been spent on pedes-
trian detection [6, 38, 43, 71, 125, 178]. For several years, progress in this domain was
monitored on benchmarks like Caltech [38] and KITTI [56], which was also used in the last
Chapter 3. However, these datasets have come into age since. The recording conditions
back then (i.e. image resolution and quality) do not reflect the current state of the art
anymore. The comparatively small size of the training data (i.e. several thousand samples)
furthermore makes these benchmarks prone to dataset bias and to over-fitting [151]. Re-
cently, CityPersons [179] was released with higher resolution images and a larger quantity
of training data (≈ 35000 person samples). Although these data additions are helpful, [179]
conclude that more training data is necessary for the recent high-capacity deep learning
architectures. Data diversity is another important aspect. The before-mentioned datasets
were captured in a few countries (1−3), and in daylight and dry weather conditions only;
this hampers generalization to real world applications.

To address these limitations this chapter introduces a new dataset for vision-based
person detection coined EuroCity Persons. The images for this dataset were collected
onboard a moving vehicle in 31 cities of 12 European countries, see Figure 4.1. With
over 238200 person instances manually labeled in over 47300 images, EuroCity Persons
is nearly one order of magnitude larger than person datasets used previously for bench-
marking, in terms of manual annotations (see Table 4.1). Due to its comparatively large
geographic coverage, its recordings during both day and night-time, and during all four
seasons (light/short summer to thick/long winter clothing) it provides a new level of data
diversity. EuroCity Persons furthermore offers detailed annotations; besides bounding
box information, it includes tags for occlusion/truncation and annotates body orientation
(the latter has relevance for object tracking and path prediction). Finally, thanks to the
implemented quality control procedures, annotations are overall accurate.

35
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By means of an experimental study using EuroCity Persons, this chapter addresses a
number of questions in Section 4.3: how much do recent deep learning methods improve
by an increased amount of training data? How well does this dataset generalize to existing
datasets? What is the day- and night-time performance? Is there a geographical bias?
How does annotation quality affect object detection performance? Does multi-tasking
(orientation estimation) help object detection?

This chapter is based on the work published in [13] (©2019 IEEE).

Figure 4.1: The EuroCity Persons dataset was recorded in 31 cities of 12 European countries: Croatia (Zagreb),
Czech Republic (Brno, Prague), France (Lyon, Marseille, Montpellier, Toulouse), Germany (Berlin, Dresden,
Hamburg, Köln, Leipzig, Nürnberg, Potsdam, Stuttgart, Ulm and Würzburg), Hungary (Budapest), Italy (Bologna,
Firenze, Milano, Pisa, Roma and Torino), The Netherlands (Amsterdam), Poland (Szczecin), Slovak Republic
(Bratislava), Slovania (Ljubljana), Spain (Barcelona) and Switzerland (Basel, Zürich). The map itself was compiled
from 500 randomly sampled pedestrian bounding boxes from the dataset.



4.2. THE EUROCITY PERSONS BENCHMARK

4

37

Table 4.1: Comparison of person detection benchmarks in vehicle context

Caltech [38] KITTI [56] CityPersons [179] TDC [102] EuroCity Persons
# countries 1 1 3 1 12
# cities 1 1 27 1 31
# seasons 1 1 3 1 4
# images day 249884 14999 5000 14674 40217
# pedestrians day 289395a ∼9400b 31514 8919 183004
# riders day - ∼3300b 3502 23442 18216
# ignore regions day 57226a ∼22600b 13172 - 75673
# orientations day - ∼12700b - - 176879
# images night - - - - 7118
# pedestrians night - - - - 35309
# riders night - - - - 1564
# ignore regions night - - - - 20032
# orientations night - - - - 34393
resolution 640×480 1240×376 2048×1024 2048×1024 1920×1024
weather dry dry dry dry dry, wet
train-val-test split (%) 50-0-50 50-0-50 60-10-30 71-8-21 60-10-30

a Only an unspecified subset of these annotations were done manually, the remainder was obtained by
interpolation (the number of manual annotations probably are an order of magnitude smaller).

b Number estimated on the basis of the average number of pedestrians per image, since the test set is private
and the authors did not report the actual number.

Figure 4.2: External view of the sensor vehicle buildup.
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Figure 4.3: Schematic of the communication used to achieve time synchronization.

4.2. THE EUROCITY PERSONS BENCHMARK

4.2.1. SENSOR VEHICLE BUILDUP

For the recording of the EuroCity Persons dataset, a vehicle had to be built up, integrating
the required sensors and other recording hardware, especially the car PC as major com-
puting and storage unit. Figure 4.2 shows an external view of the car. While three lidars,
five front-facing, and two side-facing cameras have been integrated in total, the focus of
this thesis lies on two front-facing cameras mounted behind the windshield that form a
stereo pair, and the two side facing intersection cameras mounted at the side mirrors. All
sensors are connected with the car PC, which takes care of raw data processing, recording,
and storage utilizing the robot operating system (ROS) [144]. For later use of the data, a
precise localization in space, as well as time, is needed. The former is achieved by intrinsic
and extrinsic calibration of the sensors, while the latter is fulfilled by the implemented
time synchronization, which will be described in more detail below.

Calibration. The projection of the world on the image sensor is described by the
pinhole camera model. The goal of the intrinsic calibration is the estimation of the free
model parameters for each camera, e.g. the focal length and distortion parameters. These
are calculated based on several recorded images of a Tsai grid [153] or a checkerboard pat-
tern of known size at different positions relative to the camera. For a detailed explanation
see [65].

The extrinsic calibration is needed to estimate the relative position and orientation
of the cameras to each other and to the vehicle coordinate system. For this mapping
between the coordinate systems of the sensors and the vehicle a tachymeter has been
used. It forms the point of origin in a world coordinate system and measures the exact
3D position of a prism that is tracked by a laser beam. Measuring the 3D location in
addition to the 2D image position of that prism at several positions enables the extrinsic
3D calibration of the cameras within the world coordinate system of the tachymeter
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by solving the Perspective-n-Point problem. By measuring the 3D positions of the four
wheels of the car with the tachymeter the world location and pose of the car is estimated.
As the locations and poses of the cameras and the car are calculated in the same world
coordinate system of the tachymeter the relative mapping between different sensors and
the car is calculated by multiplying and inverting the respective calibration matrices.

Time Synchronisation. The implemented system (see Figure 4.3) ensures that the
internal clocks of all sensors are precisely synchronized to the GPS time. The GPS signal
is received by a Genesys ADMA, which provides an accurate car position in a global
coordinate system by filtering its internal IMU data and the GPS data. The current
location and time are sent via UDP to the car PC. An Arduino board serves as a relay to
deliver a so-called pulse per second (PPS) signal of the ADMA to the serial car PC interface.
The PPS signal on this interface is used to synchronize the car PC’s clock to the GPS time
via GPSd and the network time protocol (NTP). The clocks of the car PC and the cameras
are then synchronized using the precision time protocol (PTP). Furthermore, the left
camera of the stereo pair serves as the master camera and sends a trigger signal to all
other cameras. Thus, all cameras start their image capturing at the same time.

Camera Specifications. The stereo and intersection cameras are state of the art two-
megapixel cameras (1920 x 1024) with rolling shutter run at a frame rate of 20 Hz. They
yield 16-bit rgb images; this high dynamic range is important for capturing scenes with
strong illumination variation (e.g. night-time, low-standing sun shining directly into
the camera). The EuroCity Persons dataset presented in this chapter consists only of
images of the left stereo camera, while the EuroCity Persons Dense Pose dataset pre-
sented in Chapter 5 also utilizes images of the two intersection cameras. As the images
are recorded without further compression, the raw data streams of the four megapixel
cameras alone result in a data rate of ∼320 MB/s - the total data rate of all sensors was
between ∼500 MB/s and ∼700 MB/s. That produces sufficient computing load to require
direct cooling by redirecting the car’s air conditioning system into the trunk to avoid
overheating the complete system. Recording at such a high bandwidth was furthermore
enabled by an internal SSD RAID. The recorded data was ingested to slower, high-volume
storage devices during and after the tours for transport and long-term storage.

4.2.2. DATASET COLLECTION

The images of the EuroCity Persons dataset were collected from the moving vehicle
described in the section before in 31 cities of 12 European countries. To collect data from
all seasons, the recordings were done during seven recording tours. This enabled an early
beginning of data processing and data annotation right after the first tour. On average
four to five cities have been visited per tour. The first tour began in Stuttgart, Germany
on the 25th of October 2016 while the last tour to Italy ended on the 15th of June 2017.
For every visited city, a route has been planned beforehand as close as possible to the
city center and pedestrian areas, where most interesting traffic scenarios with vulnerable
road users can be expected. In between the tours, the intrinsic calibration of the cameras
had to be repeated, as varying temperatures within the car and the strong sun exposure
cause a decrease in calibration accuracy over the course of time. Images of the left stereo
camera were debayered and rectified after each tour. For the purpose of EuroCity Persons
benchmark, and for allowing comparisons with existing datasets, the original 16-bit color
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images were converted to 8-bit by means of a logarithmic compression curve with a
parameter setting different for day and night.

53 hours of image data were collected in total, for an average of 1.7 hours per city. To
limit selection bias [151], every 80-th frame was extracted for the detection benchmark
without further filtering. This means that a substantial fraction of the person annotations
in the dataset are unique, although especially at traffic lights and in slow-moving traffic,
the same persons might appear in different annotations. Even so, due to sparse sampling
at every four seconds, image resolutions and body poses will differ.

4.2.3. DATASET ANNOTATION

Annotations comprise pedestrians and riders; the latter were further distinguished by
their ride-vehicle type: bicycle, buggy, motorbike, scooter, tricycle, wheelchair.

Location. All objects were annotated with tight bounding boxes of the complete
extent of the entity. If an object is partly occluded, its full extent was estimated (this is
useful for later processing steps such as tracking) and the level of occlusion was annotated.
The latter is discriminated between no occlusion, low occlusion (10%-40%), moderate
occlusion (40%-80%), and strong occlusion (larger than 80%). Similar annotations were
performed with respect to the level of object truncation at the image border (here, full
object extent was not estimated). For riders, the riding person and its ride-vehicle are
labeled with two separate bounding boxes. The ride-vehicle type is also annotated.
Riderless-vehicles of the same type in close proximity were captured by one class-specific
group box (e.g. several bicycles on a rack).

In [178] and [179] one vertical line is drawn and automatically converted into a rectan-
gular box of a fixed aspect ratio. Because of the diverse pedestrian aspect ratios (see Figure
4.4) and to be comparable with the KITTI dataset, the classic bounding-box convention
of labeling the outermost object parts is remained for the annotations. For every sampled
frame, all visible persons were annotated; otherwise, missed annotations could lead to
the flawed generation of background samples during training and bootstrapping. Also
persons in non-upright poses (e.g. sitting, lying) were annotated or persons behind glass.
These cases were tagged separately.

A person is annotated with a rectangular (class-specific) ignore region if a person is
smaller than 20 px, if there are doubts that an object really belongs to the appropriate
class, and if instances of a group can not be discriminated properly. In the latter case,
several instances may be grouped inside a single ignore region.

Orientation. The overall object orientation is an important cue for the prediction of
future motion of persons in traffic scenes. This information is provided for all persons
larger than 40 px (including those riding).

Additional Tags. Person depictions (e.g. large poster) and reflections (e.g. in store
windows) were annotated as a separate object class. Additional events were tagged at
the image level, such a lens flare, motion blur, and rain drops or a wiper in front of the
camera.

All annotations were manually performed; no automated support was used, as it
might introduce an undesirable bias towards certain algorithms during benchmarking.
Reasonably high demands are placed on accuracy. The amount of missed and hallu-
cinated objects were each to lie within 1% of the annotated number. Annotators were
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Figure 4.4: Statistics of EuroCity Persons and CityPersons for pedestrians of the training and validation datasets
(top: height, middle: aspect ratio, and bottom: count per frame).
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asked to be accurate within two pixels for bounding box sides (apart from ignore regions)
and within 20 degrees for orientation. Annotations were double checked by a quality
validation team that was disjoint from the annotation team. If needed, several feedback
iterations were run between the teams to achieve a consolidated outcome. Experiments
regarding annotation quality are listed in Section 4.3.3.

4.2.4. ANNOTATION TOOLING

In practice, the efficiency of the manual annotations, as well as the quality control, also
depends on appropriate tooling software. Here, Labrador has been used for both which is
described in detail in [53]. Labrador provides a highly flexible, and configurable graphical
user interface, and a plugin-based software architecture with a broad range of available
plugins that can be positioned and customized according to the task at hand, e.g. bound-
ing box based annotation or quality control. Figure 4.5 shows a screenshot of the software
with bounding box and orientation annotations on an image recorded in Rome.

The Document View (top-left) lists the images within the sequence to be annotated
and the already annotated objects per image. The sequence can also be navigated by
the Frame Slider (top). A detailed list of the annotated objects is given by the Entity Tree
(top-right), which also shows annotated tags, like the level of occlusion, which can be
easily annotated using the buttons on the right of the LabelEditor (center). Apart from
tag annotation, bounding boxes can be drawn in the LabelEditor plugin. A zoomed crop
of the currently selected object is displayed by the EntityViewer (bottom-right), which
provides functionality for the orientation annotation. A 3D model of a body is displayed
right next to the crop. The task of the annotator is to align the orientation of this 3D
model with the selected person. Hence, the annotator annotates the orientation angle
of the person relative to the line of sight of the camera, as the annotation of the object
based on the crop is independent of its position within the image. Regarding orientation
estimation investigated in this thesis, which only depends on appearance information
from single images, it is more feasible to estimate this relative angle. If the distance of
the object and the camera calibration are known, the orientation within the coordinate
system of the car may be calculated using simple trigonometry.

4.2.5. DATA SUBSETS

Various data subsets are defined on the overall EuroCity Persons dataset. First, it is split
into a day-time and a night-time data subset, each with its own separate training, valida-
tion, and test set. Three overlapping data subsets are furthermore defined, considering
the ground-truth annotations, similar to [56, 102, 179]:

• Reasonable: Persons with a bounding box height greater than 40 px which are
occluded/truncated less than 40%

• Small: Persons with a height between 30 px and 60 px which are occluded/truncated
less than 40%

• Occluded: Persons with a bounding box height greater than 40 px which are
occluded between 40% and 80%
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These data subsets can be used in test cases to selectively evaluate properties of person
detection methods for various sizes or degrees of occlusion.

Figure 4.6: The applied test, val, and train split visualized for one city. Assuming a recording length of one hour
for this city, the whole session is divided into three equidistant 20 minute subsets. Each subset is then split into
train, validation, and test by a 60%,10%,30% distribution.

Each city recording lasted on average 1.7 hours. In order to increase the chances that
certain time-dependent environmental conditions (e.g. a rain shower, particular type of
road infrastructure or buildings) were well represented across training, validation and
test set, for each city the recordings are separated into chunks with a duration of at least
20 minutes. The recorded images of each chunk were split into training, evaluation, and
test by 60%, 10%, and 30% respectively, as illustrated in Figure 4.6. During halts due to
traffic lights or jams people could appear in several consecutive frames. To facilitate that
the test, validation and training sets are disjunct in terms of people, sequences are only
splitted at points in time where the recording vehicle had a speed larger than 7 km/h. By
placing furthermore the validation set intermittently with the training and test, it was all
but avoided that the latter two would contain the same physical person.

4.2.6. DATASET CHARACTERISTICS

See Table 4.1 and Figure 4.4 for some statistics on the new EuroCity Persons dataset.
Seasonality, weather, time of day and, to some degree, geographical location, all influence
clothing and thus person appearance. These factors also influence the observed person
count per frame, which, as shown in Figure 4.4 varies a lot, not only per frame but also
per city. For example, the lowest average number of pedestrians per city (1.8) occurred in
Leipzig likely due to the rainy weather during recording. Very crowded scenarios have
been collected in Lyon with on average 9.5 pedestrians per image. These imply challenging
occlusions and overlapping objects that complicate non-maximum suppression (these
difficult scenarios are missing in KITTI and Caltech, where on average there is about
one pedestrian per frame). Geographical location also influences the background (i.e.
vehicles, road furniture, buildings). The time-of-the-day has furthermore a significant
impact on scene appearance. Recordings at night-time suffer from low contrast, color
loss and motion blur.

By driving through a large part of Europe, during all four seasons, in most weather
conditions (apart from heavy rain or snowfall), and during day and night, very diverse
backgrounds and person appearances were recorded, see Figures 4.8, 4.9, 4.10 and 4.11.
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4.2.7. EVALUATION METRICS
To evaluate detection performance, the miss-rate (mr ) is plotted against the number of
false positives per image (fppi) in log-log plots:

mr (c) = f n(c)

t p(c)+ f n(c)
, (4.1)

f ppi (c) = f p(c)

#i mg
, (4.2)

where t p(c) is the number of true positives, f p(c) is the number of false positives, and
f n(c) is the number of false negatives, all for a given confidence value c such that only
detections are taken into account with a confidence value greater or equal than c . As com-
monly applied in object detection evaluation [38, 48, 56, 179] the confidence threshold
c is used as a control variable. By decreasing c, more detections are taken into account
for evaluation resulting in more possible true or false positives, and possible less false
negatives. The log average miss-rate (L AMR) is defined as

L AMR = exp

(
1

9

∑
f

log

(
mr ( argmax

f ppi (c)≤ f
f ppi (c))

))
, (4.3)

where the 9 fppi reference points f are equally spaced in the log space, such that f ∈
{10−2,10−1.75, . . . ,100}. For each fppi reference point the corresponding mr value is used.
In the absence of a miss-rate value for a given f the highest existent fppi value is used as
new reference point, which is enforced by mr (argmax f ppi (c)≤ f f ppi (c)). This definition
enables L AMR to be applied as a single detection performance indicator at image level.
At each image the set of all detections is compared to the ground-truth annotations by
utilizing a greedy matching algorithm. An object is considered as detected (true positive)
if the Intersection over Union (IoU) of the detection and ground-truth bounding box ex-
ceeds a pre-defined threshold. Due to the high non-rigidness of pedestrians this chapter
follows the common choice of an IoU threshold of 0.5. Since no multiple matches are
allowed for one ground-truth annotation, in the case of multiple matches the detection
with the largest score is selected, whereas all other matching detections are considered
false positives. After the matching is performed, all non matched ground-truth annota-
tions and detections, count as false negatives and false positives, respectively. In addition,
to allow a comparison with results from other work [56, 102] this chapter also utilizes the
Average Precision (AP), which is defined as:

AP = 1

11

∑
r∈{0,0.1,...,1}

max
r e(c)≥r

pr (c), (4.4)

with the recall r e(c) = t p(c)/(t p(c)+ f n(c)), and precision pr (c) = t p(c)/(t p(c)+ f p(c)),
both for a given confidence threshold c.

For the evaluation of joint object detection and pose estimation the average orienta-
tion similarity (AOS) is used [56]:

AOS = 1

11

∑
r∈{0,0.1,...,1}

max
r̃ :r̃≥r

s(r̃ ), (4.5)



4

46 4. A NOVEL BENCHMARK FOR PERSON DETECTION IN TRAFFIC SCENES

where s is the orientation similarity given by:

s(r ) = 1

|D(r )|
∑

i∈D(r )

1+cos∆(i )
θ

2
δi . (4.6)

D(r ) denotes the set of all object detections at recall r and ∆(i )
θ

is the difference between
the estimated and the ground-truth angle. δi is set to 1, if detection i has been assigned
to a ground truth bounding box (I oU > 0.5) else it is set to zero, to penalize multiple
detections which explain a single object. Thus, the upper bound of the AOS is given by
the AP score.

As in [56], [179], neighboring classes and ignore regions are used during evaluation.
Neighboring classes involve entities that are semantically similar, for example bicycle
and moped riders. Some applications might require their precise distinction (enforce)
whereas others might not (ignore). In the latter case, during matching correct/false detec-
tions are not credited/penalized. If not stated otherwise, neighboring classes are ignored
in the evaluation. In addition to ignored neighboring classes all persons annotations with
the tags behind glass or sitting-lying are treated as ignore regions. Further, as mentioned
in Section 4.2.3, ignore regions are used for cases where no precise bounding box annota-
tion is possible (either because the objects are too small or because there are too many
objects in close proximity which renders the instance based labeling infeasible). Since
there is no precise information about the number or the location of objects in the ignore
region, all unmatched detections which share an intersection of more than 0.5 with these
regions are not considered as false positives.

4.2.8. BENCHMARKING
The EuroCity Persons dataset, including its annotations for the training and validation sets,
is made freely available to academic and non-profit organizations for non-commercial,
scientific use. The test set annotations are withheld. An evaluation server is made avail-
able for researchers to test their detections, following the metrics discussed in previous
Subsection. Results are tallied online, either by name or anonymous. The frequency of
submissions is limited.

4.3. EXPERIMENTS
All the baseline and generalization experiments (Sections 4.3.1 and Section 4.3.2) involved
the day-time EuroCity Persons dataset and the pedestrian class, for comparison purposes
with earlier works. This also holds in part for the data aspects experiments (Section 4.3.3),
unless stated otherwise.

4.3.1. BASELINES
As the top ranking methods on KITTI and Caltech use deep convolutional neural networks,
the baselines are selected among these methods. Many recent pedestrian detection
methods [17, 75, 99, 110, 165, 170, 184] are extensions of Fast/Faster R-CNN and profit
from the basic concepts of these methods. Therefore, Faster R-CNN is evaluated as
prominent representative of the two stage methods. As shown in [179], it can reach top
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performance for pedestrian detection if it is properly optimized. The one stage methods
often trade faster inference against a lower detection accuracy. YOLO [127] is one of the
first methods within this group. This section evaluates its latest extension YOLOv3 [128],
as in comparison with its predecessors, its design is promising regarding the detection of
smaller objects. Within both groups methods with explicit hard example mining are also
selected, namely R-FCN [31] and SSD [109].

Faster R-CNN, R-FCN and SSD are trained with the Caffe framework [80] using VGG-16
[141] as base architecture (as done for pedestrian detection in [75, 99, 110, 130, 179]; using
ResNet as base architecture for Faster R-CNN did not improve experimental results, see
supplemental material). YOLOv3 is trained with the Darknet framework and Darknet-53
[128] as base architecture. The base architectures are pre-trained on ImageNet [35].

Figure 4.7: Recall vs. IoU for small pedestrians (top) and pedestrians of the "reasonable" test case (bottom) for
the optimized anchor-boxes of Faster R-CNN and YOLOv3 and the SSD default boxes.

Adaptations and Training. The box recall for all methods is optimized as it is impor-
tant for the overall detection performance. Improvements from [179] are applied for Faster
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R-CNN and R-FCN namely adapting the scales and aspect ratios of the anchor-boxes,
reducing the feature stride by removing the last max pooling layer and upscaling the input
image during training and testing. SSD and YOLOv3 can in practice not be trained on
upscaled images because of higher memory demands and the limitations of the used
graphics cards. Still, optimization of the default boxes of SSD and the anchor boxes of
YOLOv3 results in similar recalls for all methods for the "reasonable" test case as shown
in Figure 4.7. For Faster R-CNN and R-FCN an ignore region handling similar to [179] is
implemented. Furthermore, training samples are filtered according to different test cases
to train several Faster R-CNN models as summarized in Table 4.2. For all experiments
with R-FCN, SSD and YOLOv3 samples are filtered that are more than 80% occluded or
smaller than 20 px in height. SGD is used as backpropagation algorithm on the training
dataset with a stepwise reduced learning rate. The model to be evaluated on the test
dataset is selected on the validation dataset.

Table 4.2: Training settings of the Faster R-CNN method, differing in the heights and degree of occlusion of the
samples used for training and in the upscaling factor used by bilinear interpolation (between brackets).

height occlusion upscaling
Faster R-CNNsmal l [20,∞] [0,40] yes (1.3)
Faster R-CNNr easonable [40,∞] [0,40] yes (1.3)
Faster R-CNNoccl uded [40,∞] [0,80] yes (1.3)
Faster R-CNNal l [20,∞] [0,80] yes (1.3)
Faster R-CNNal l_or i g si ze [20,∞] [0,80] no
Faster R-CNNbasel i ne [20,∞] [0,40] no

Table 4.3: Log average miss-rate (L AMR) on the test set of the EuroCity Persons benchmark for different settings
of the optimized methods.

Test Case

reasonable small occluded
Faster R-CNNsmall 7.2 16.4 51.3
Faster R-CNNr easonable 7.3 24.7 50.0
Faster R-CNNoccl uded 7.8 25.1 33.3
Faster R-CNNal l 7.9 17.0 33.2
Faster R-CNNal l_or i g si ze 9.2 23.1 34.5
Faster R-CNNbasel i ne 9.3 22.5 54.4
YOLOv3 8.1 16.7 36.1
SSD 10.6 20.8 41.8
R-FCN OHEM 11.9 19.6 43.2
R-FCN NoOHEM 12.0 19.4 44.9

Results. See Table 4.3 for the quantitative results obtained with the methods consid-
ered. Variants of the two stage method Faster R-CNN perform overall best on the three
test cases. Faster R-CNNsmall performs best on the corresponding "small" test case, and
interestingly, also slightly better on the "reasonable" test case. Faster R-CNNal l that is
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trained with pedestrians of all sizes and of occlusions up to 80% performs best overall.
It also performs slightly better than Faster R-CNNoccl uded on the "occluded" test case.
The Faster R-CNN variants (al l_or i g si ze,basel i ne) that are trained and tested with the
original image resolution perform slightly worse for the "reasonable" and "occluded"
test cases than the other Faster R-CNN variants. Still, they run 66% faster during training
and testing. As could be expected by the lower box recall shown in Figure 4.7, there is a
considerable performance difference for small sized pedestrians. Interestingly, both one
stage detectors YOLOv3 and SSD perform better than R-FCN at least on the "reasonable"
and "occluded" test cases. One of the main differences between Faster R-CNN and R-FCN
is the use of the bootstrapping method OHEM. OHEM proves useful when comparing
results for the two R-FCN variants with enabled and disabled OHEM for the "occluded"
test case.

See Figures 4.8, 4.9, 4.10 and 4.11 for some illustrations of typical results with Faster
R-CNNal l (including night-time and rider results, not part of this section) and Figure 4.12
for miss-rate curves of the methods considered.

Failure Analysis. This section now analyzes the detection errors of the best-performer
Faster R-CNNal l qualitatively and quantitatively. Tables 4.4 and 4.5 illustrate false pos-
itives and false negatives of this method at a false positive per image rate of 0.3 for the
"reasonable" test case, clustered by main error source. As can be seen, clothes, depictions
and reflections are main sources for confusion with real pedestrians and thus for false pos-
itives (the evaluation policy is strict and due to application considerations these are count
as wrong; note, however, that depictions and reflections are annotated in the dataset, thus
a more lenient policy to ignore false positives of these types is readily implemented).

Certain pedestrian poses and aspect ratios can lead to multiple detections for the
same pedestrian as shown in the Multidetections category. Non-maximum suppression
(NMS) is used by Faster R-CNN and other deep learning methods to suppress multiple
detections. The used IoU threshold of 0.5 is not sufficient to suppress detections that have
very diverse aspects. On the other hand, a higher IoU threshold would result in more false
negatives. These already occur for an IoU threshold of 0.5 as shown in the NMS repressing
category. In these instances, pedestrians are occluded less than 40% and thus have to be
detected in the "reasonable" test case. Because of the high IoU between pedestrians not
all of them can be detected because of the greedy NMS. Thus, NMS is an important part
of many deep learning methods that is usually not trained but has a great influence on
detection performance.

Small and occluded pedestrians are a further common source for false negatives
as already shown by the "small" and "occluded" test cases. In traffic scenarios usually
only the lower part of a pedestrian is occluded due to parked cars or other obstacles.
The qualitative analysis shows false negatives where the head is occluded. These are
particularly challenging for pedestrian detection methods, as these cases are quite rare in
the training dataset. Further challenges are rare poses or pedestrians leaning on bicycles
as shown in the Others group.

The following quantitative analysis of false positives builds upon the ideas of oracle
tests as in [178]. There, false positives touching ground-truth samples are regarded as
localization error. Non-touching false positives are regarded as confusion of fore- and
background. False positives types are analyzed for a finely discretized range of false
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Figure 4.8: Qualitative detection results for true positives of Faster R-CNNal l at fppi of 0.3 (green: pedestrians,
blue: riders). Samples recorded during dry weather.
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Figure 4.9: Qualitative detection results for true positives of Faster R-CNNal l at fppi of 0.3 (green: pedestrians,
blue: riders). Samples recorded during rainy weather and wintertime.
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Figure 4.10: Qualitative detection results for true positives of Faster R-CNNal l at fppi of 0.3 (green: pedestrians,
blue: riders). Samples recorded during during dusk and night.
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Figure 4.11: Qualitative detection results for true positives of Faster R-CNNal l at fppi of 0.3 (green: pedestrians,
blue: riders). Samples recorded during dusk and night.
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Figure 4.12: Miss-rate curves on the EuroCity Persons test set for the selected methods for the "reasonable" (top
left), "small" (top right) and "occluded" (bottom) test case. The required IoU for a detection to be matched with
a ground-truth sample is 0.5. For every method, the curves are shown for enforcing or ignoring precise class
label with respect to neighboring classes.
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Table 4.4: Error types in detection for Faster R-CNNal l at 0.3 fppi (green: true positives, red: false positives,
purple: false negatives, white: ground truth).
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Table 4.5: Error types in detection for Faster R-CNNal l at 0.3 fppi (green: true positives, red: false positives,
purple: false negatives, white: ground truth).

False Negatives (Image Detail)
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Figure 4.13: The contribution of various sources to the number of false positives of Faster R-CNNal l , depending
on fppi

positive per image (fppi), see Figure 4.13. This section further subdivides the localization
errors in four groups: multiple detections (I oU > 0.5 with ground-truth samples, as
multiple assignments are penalized), and detections touching matched ground truth
samples, non-matched ground truth samples, and ignore regions, respectively. In this
context an ignore region may either be an ignore region annotation or an object that has
not to be detected in the "reasonable" test case. The fore- and background confusions
are subdivided into three groups: detections that can be matched with depictions and
reflections, and other background, further subdivided whether smaller than 80 px in
height or not.

Figure 4.13 shows that localization errors account for about 60% of all errors at a high
fppi of 6, decreasing to about 40% for a low fppi rate of 4×10−3. The share of false positives
touching ground-truth samples remains approximately the same for the entire fppi range.
Of these touched ground-truth samples, an increasing proportion is non-matched, for
decreasing fppi. The share of false positives touching ignore regions is similar for a large
fppi range but decreases somewhat for fppi below 10−2. Possible objects inside these
ignore regions seem to lead to erroneous detections in their surroundings. In terms of
classification errors, depictions and reflections are among the hardest error sources to
take care off: at decreasing fppi the share of this error type increases. Also the share of
larger other-background objects increases with decreasing fppi.

Computational Efficiency. Processing rates for the R-FCN, Faster R-CNN, SSD and
YOLOv3 on non-upscaled test images were 1.2 fps, 1.7 fps, 2.4 fps and 3.8 fps, respectively,
on a Intel(R) Core(TM) i7-5960X CPU 3.00 GHz processor and a NVidia GeForce GTX
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TITAN X with 12.2 GB memory. There are several possibilities to optimize the runtime,
such as replacing the VGG base architecture by a GoogLeNet model [148] and upgrading
to the latest GPU processor; this was outside the scope of this study.

The remaining experiments focus on Faster R-CNN as best performing method. Re-
sults for other methods are shown when they lead to additional insights.

4.3.2. GENERALIZATION CAPABILITIES

A dataset with a reduced bias should better capture the true world, and result in supe-
rior generalization capabilities of the detectors which are trained on this dataset. KITTI,
CityPersons (CP) and EuroCity Persons (ECP) all involve traffic-related datasets but con-
tain differences. KITTI and ECP, for example, differ in camera types used for recording.
Even for a casual observer the images of these datasets look differently regarding colors
and style. The CP and ECP datasets have been recorded with similar cameras. Still, they
differ regarding the annotation bias, as the aspect ratios of all bounding boxes provided by
CP are the same, unlike ECP (cf. Section 4.2.3). The Open Images V4 dataset (OP), on the
other hand, contains iconic images of persons; this "generic" setting is quite different to
the traffic setting of KITTI, CP and ECP (an obvious difference is the much larger person
sizes in OP).

This section examines how the various datasets generalize with respect to the traffic-
related ("target") datasets KITTI, CP, and ECP. For this, various training sets are considered
(in isolation and with pre-training) and the performance of a reference model (i.e. the
optimized Faster R-CNN baseline) is measured on a target evaluation set.

The OP dataset contains 3.2M individually labeled persons from 736433 images. La-
beled groups of persons are used as ignore regions in the experiments. To compensate for
the large person sizes the OP images are downscaled by a factor of 2 (OP512) or by a factor
of 4 (OP256). The official KITTI training dataset is split into two equally sized, disjunct
subsets to obtain separate training and validation datasets, as in [24].

All models derived from the individual KITTI, CP, OP, and ECP datasets are initialized
with ImageNet [35]. Pre-training a model with a source dataset means selecting its best
performing version during training based on evaluation on the validation set of the pre-
training dataset. The training strategy and all hyper-parameters for fine-tuning are kept
the same to ensure the changes in performance can be traced back to the model used for
initialization.

The results of the generalization experiments are shown in Tables 4.6, 4.7 and 4.8. A
first observation is that if no pre-training is used (rows 1, and 6-9 of Tables 4.6-4.8), then
the best performance on the target evaluation dataset is obtained when training with
the target training dataset (row 1 of respective tables). The second best performance in
that case is achieved by training with the ECP training set (for KITTI and CP as targets,
see Tables 4.6 and 4.7). Training with the OP-only training set gives notably bad results,
despite its large size.

A second observation is that pre-training with very large training sets (ECP, OP) allows
to surpass the performances significantly of using solely the target training sets, for the
target test sets of smaller size (KITTI and CP). Pre-training results in an improvement of
about 6, 9, and 12 percentage points in average precision for the "easy", "moderate" and
"hard" KITTI validation datasets, respectively, when compared to using the original KITTI
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training data set. Similarly, pre-training results in an improvement of 3, 9, and 6 percent-
age points in L AMR for the "reasonable", "small", and "occluded" CP validation datasets,
respectively, when compared to using the original CP training data set. Pre-training with
ECP is especially valuable for the hard or occluded cases, involving improvements of
about 10 percentage points in L AMR or average precision.

Pre-training with OP and with ECP do similarly well for the easier test case of CP (see
"reasonable" column of Table 4.7). That OP is competitive with ECP in this case should
perhaps not come as a big surprise, given this test case involves comparatively large and
un-occluded pedestrians, where the OP dataset has some similarity with the target dataset.
Yet size is not all that matters. Despite being one order of magnitude larger in size than
ECP, when it comes to the harder test cases (see "moderate/small" and "hard/occluded"
columns of Tables 4.6 and 4.7), pre-training with ECP outperforms pre-training with OP
significantly. For the KITTI validation set, Table 4.6 shows an improvement of at least
1.3 and 2.9 in average precision for the "moderate" and "hard" test cases. For the CP
validation set (Table 4.7) this improvement is at least 0.9 and 1.5 in L AMR.

Table 4.6: Average Precision on the KITTI validation set for different training settings of Faster R-CNN. A → B
denotes pre-training on A and finetuning on B .

KITTI Validation Set

Training Data easy moderate hard
KITTI 80.8 72.3 62.6
ECP→KITTI 86.4 81.1 74.1
CP→KITTI 83.6 77.5 68.5
OP256→KITTI 84.9 79.8 71.2
OP512→KITTI 85.2 78.7 69.3
ECP 73.9 68.7 61.4
CP 69.8 65.2 58.6
OP256 67.7 60.0 51.5
OP512 72.7 65.9 55.7

Table 4.7: Log average miss-rate (L AMR) on the CityPersons (CP) validation set for different training settings of
Faster R-CNN. A → B denotes pre-training on A and finetuning on B .

CityPersons Validation Set

Training Data reasonable small occluded
CP 17.2 38.9 52.0
ECP→CP 15.0 30.0 45.8
KITTI→CP 17.0 39.3 51.7
OP256→CP 15.6 30.9 47.3
OP512→CP 14.7 32.3 48.0
ECP 25.5 43.8 62.6
KITTI 57.7 81.4 88.1
OP256 55.5 67.8 88.8
OP512 48.2 66.6 85.3
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Table 4.8: Log average miss-rate (L AMR) on the EuroCity Persons (ECP) test set for different training settings of
Faster R-CNN. A → B denotes pre-training on A and finetuning on B .

EuroCity Persons Test Set

Training Data reasonable small occluded
ECP 7.2 16.4 33.2
CP→ECP 7.2 16.8 32.2
KITTI→ECP 7.4 16.5 32.9
OP256→ECP 7.4 15.8 31.6
OP512→ECP 7.2 16.3 31.4
CP 30.7 48.4 68.6
KITTI 65.3 82.8 92.3
OP256 66.8 77.3 93.2
OP512 51.9 74.4 90.9

Pre-training with ECP furthermore strongly outperforms pre-training with KITTI or CP
across the board. For the KITTI validation set, there is an improvement of 2.8, 3.6, and 5.6
in average precision for the "easy", "moderate" and "hard" test cases versus pre-training
with CP (rows 2 and 3 in Table 4.6). For the CP validation set, there is an improvement
of 2.0, 9.3, and 5.9 in L AMR (rows 2 and 3 in Table 4.7). Note that the L AMR listed in
[179] for training and testing on CP was 12.8 rather than 17.2 listed here. The difference
arises from a difference in the "reasonable" test case settings used. Using the exact same
settings as in [179] results in an even better L AMR of 12.2, which is improved by ECP
pre-training to 10.2.

The benefit of pre-training with ECP on the official KITTI test set is analyzed by
submitting to the evaluation server on the KITTI website. The pre-trained model on ECP
achieved an average precision of 74.3 for the moderate setting. At the moment of the
submission this results in rank 6. The Faster R-CNN model trained with KITTI data alone
achieved an average precision of 63.5 resulting in rank 32.

A third observation is that when considering the ECP dataset as target, pre-training
on the other datasets only helps marginally, if at all (see Table 4.8).

4.3.3. DATASET ASPECTS
What aspects make a dataset worthwhile and facilitate that it generalizes well? This
section argues that these aspects are diversity, quantity, accuracy, and detail. These are
now examined in turn for the ECP dataset. Faster R-CNNbasel i ne is used as training setting
without upscaling images because of computational considerations.

Quantity. [146] shows a logarithmic relation between the amount of training data
and the performance of deep learning methods. This relation is validated on the ECP
benchmark. Therefore, the baseline methods are trained on different sized subsets which
are randomly sampled from all cities. The detection results for the baseline methods with
the use of different augmentation modes in dependence of the dataset proportion are
shown in Figure 4.14. As image augmentations the images may be flipped or scaled in
size. The rgb augmentation randomly shifts the colors of an image independently for the
three color channels. The logarithmic relation between training set size and detection
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Figure 4.14: Detection performance (L AMR) of Faster R-CNN and SSD as a function of training set size

performance also holds on the ECP benchmark for Faster R-CNN and SSD.
Diversity. This section investigates whether overall geographical region introduces a

dataset bias which influences person detection performance. For this, two datasets are
constructed that are similar in terms of other influencing factors (i.e. season, weather,
time of day, person count per frame):

• Central West Europe (WE): Basel, Dresden, Köln, Nürnberg, Stuttgart, Ulm, Würz-
burg

• Central East Europe (EE): Bratislava, Budapest, Ljubljana, Prague, Zagreb

These datasets are split into subsets for training, validation and testing as described
in Section 4.6, such that the number of pedestrians in each training dataset is 15000.
[34] shows that resampling of a dataset can be applied to evaluate the significance of
benchmark results. The train-val-test blocks are permutated and the block length is
varied (between 10 and 30 minutes) resulting in 20 different dataset combinations for
training, validation, and testing. For every dataset combination one model is trained per
region and evaluated on the corresponding test datasets of the two regions. The mean
performances over all different dataset combinations and the standard deviations for
these are shown in Table 4.9. In the case of a non existent dataset bias the difference
between the output of both models comes from a distribution with zero median. This is
used as the null-hypothesis for the Wilcoxon signed-rank test [34]. For the same test set
the 20 results for the model trained on the same location and the model trained on the
other location are paired. The respective p-value is calculated, which is the probability of
observing the test results given the null-hypothesis is true. For the WE and EE test sets,
these values are 0.0098 and 0.0020, respectively. Hence, with a confidence interval of 99%,
the null-hypothesis (the non-existence of a regional bias) can be rejected for both regions.

Another diversity factor is the time of day. Table 4.10 shows detection results for the
day-time, night-time and combined datasets. As the night-time dataset is only 20% of
day data (Table 4.1) the number of training samples used for the day-time and combined
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models is reduced accordingly for this experiment. Table 4.10 shows that training on
day-time and testing on night-time gives significantly worse results than training and
testing on the same time-of-day. Overall results are worse than those of other experiments
due to the comparatively small training sets used.

Table 4.9: Effect of geographical bias on detection performance (L AMR) for the "reasonable" test case: central
West Europe (WE) vs. central East Europe (EE). Datasets compiled to provide otherwise similar conditions.
Results involve averages over different dataset splits.

Test Set

Training Set WE (mean) WE (std) EE (mean) EE (std)
WE 12.7 1.3 11.0 0.7
EE 14.4 2.3 9.0 0.4
WE&EE 12.2 1.1 9.6 0.7

Table 4.10: Effect of day- vs. night-time condition on detection performance (L AMR) for the "reasonable" test
case. Datasets compiled to provide otherwise similar conditions.

Test Set

Training Set Night Day
Night 18.4 21.4
Day 33.3 14.3
Day and Night 22.7 14.5

Table 4.11: Log average miss-rate (L AMR) of the detail study.

Test Case

Training Scenario reasonable small
Baseline 9.3 22.5
NoIgnoreHandling 10.8 24.5
Orientation L1 9.3 22.7
Orientation Bit 10.1 24.0

Detail. The importance of additional annotations for ignore regions, for riders, and
for orientations is now examined. Table 4.11 shows results for a model trained without
ignore region handling compared to the baseline method. In accordance with earlier
findings [179], the detection performance deteriorates when not using ignore regions
during training. For the "reasonable" and "small" test cases the L AMR drops by about
two points.

The baseline detection method is extended by an orientation estimation layer as
in [15] (Two variants for the orientation loss are considered: L1 and Biternion loss).
Hence, the network performs multi-tasking: classification, bounding box and orientation
regression (see Figure 4.15 for qualitative results for the orientation estimation using the
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Figure 4.15: Qualitative results for orientation estimation. Top and center image show correct estimations.
Bottom image contains a rare failure case (left person has orientation offset of about 180 degrees)
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Figure 4.16: Person orientation estimation quality vs. object size (distance).

Biternion loss). As body orientation correlates with the aspect ratio the bounding box
regression task and hereby the detection performance could also benefit from learning all
three tasks jointly in one network. In contrast to [58] which shows that training multiple
tasks together can improve the overall result, the detection results decrease slightly for
the multitask network with the Biternion loss as shown in Table 4.11. Figure 4.16 shows
the orientation estimation error as a function of object size (distance). The Biternion loss
is superior to the L1 loss as it does not suffer from the periodicity of an orientation angle.
Using the aggregated AOS metric from Section 4.2.7 for the "reasonable" test case results
in a score of 85.9 for the L1 loss and 86.7 for the Biternion loss.

Table 4.12: Effect of multi-class handling (pedestrian vs. riders) on detection performance (L AMR) for the
"reasonable" test case. The ”enforce” (”ignore”) settings involves (not) penalizing samples of the other class for
being categorized as the respective class. The first row (baseline) involves a single class, the second and third
row involve two classes.

Test

pedestrians riders
Training ignore enforce ignore enforce
Baseline (pedestrians) 9.3 11.0 - -
+Riders only 9.2 10.3 8.9 11.0
+Riders with ride-vehicle 9.2 10.4 10.7 12.1

The evaluation protocol described in Section 4.2.7 ignores detected neighboring
classes. For pedestrians this means that riders are not considered as false positives. If
these neighboring classes are instead counted as false positives, detection performance
decreases as expected: the L AMR for the baseline method increases from 9.3 to 11.0,
as shown in Table 4.12. By adding riders as an additional class, one observes that the
pedestrian detection performance improves for the protocol which requires pedestrians
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Figure 4.17: Mean pixel error between median of three additional annotators and the ECP dataset annotations,
in dependence of object height p (averaged over the interval [p-20, p+20]).

to be classified as such (10.3 vs. 11.0). There is only a slight difference in performance
when the network is trained to regress a bounding box for the rider alone or for the rider
including the ride type. The absolute detection performance for pedestrians and riders
is quite similar although there are 10 times more pedestrians than riders in the training
dataset.

Accuracy. Here, this section evaluates to what degree the annotation accuracy re-
quirements from Section 4.2.3 were actually met in practice in the final EuroCity Persons
annotations.

To estimate the amount of missed annotations, these are compared with the object
detector output. At a fppi of 0.3 for Faster R-CNNal l on the "reasonable" test case 230
missed annotations larger than 32 px are manually counted. However, the miss-rate for
Faster R-CNNal l at this fppi is about 10% for the small test scenario and about 30% for
the occluded test scenario. Using the more conservative 30% figure, one can estimate
that, in fact, there are additional 99 missed annotations for pedestrians larger than 32
px, bringing the total missed annotation to 329. As there are about 48000 pedestrians in
the test dataset, this corresponds to 0.7% missed annotations, which lies within the 1%
quality requirement of Section 4.2.3.

To determine the inter-annotator agreement and thus obtain an indication about
achieved accuracy with respect to bounding box localization and orientation annotation,
a random subset of 1000 not occluded pedestrians was labeled again by three different
persons. The average deviation between the median value of the three annotators and the
corresponding Eurocity Persons annotation is analyzed in dependence of the object size.
Figure 4.17 shows that the average deviation of the bounding box extents stays below 1.4
px for objects up to 200 px high (interestingly, upper/lower box side more accurate than
left/right side). Figure 4.16 shows that in terms of orientation angle, the average deviation
starts at 20 degrees for object sizes of 40 px and reduces to about 10 degrees for object
sizes larger than 100 px. This lies within the requirements of Section 4.2.3 as well.

In the following experiments the annotation quality of the training dataset is artificially
disturbed, see Table 4.13. First, bounding boxes of instances and groups are randomly
deleted to simulate the effect of missed objects during annotation (”delete”). Second,
bounding boxes are moved by four pixels up or down and left or right (”jitter”). Third,
(erroneous) ground-truth boxes are added to simulate the effect of hallucinating objects
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during annotation (”hallucination”). For this, a selected ground-truth bounding box itself
is not changed but an additional, identically sized bounding box of the pedestrian class is
placed at a random location in the image. Lastly, hallucinations are introduced that are
more likely to resemble pedestrians, by running a SSD model of an early training stage
on the training dataset (after 80000 iterations). The 11000 highest scoring false positives
of these detections (corresponds to 10% of all pedestrians in the training dataset) are
handled as regular ground truth boxes and added to the training dataset for the ”false
positives” experiment. Different levels of disturbances are examined by manipulating
different amounts of bounding boxes. The effects for disturbances that are even worse
than in the very first pilot study are also evaluated. The probability for a bounding box to
be disturbed is given in the Table 4.13.

The detection performance of Faster R-CNN suffers from deleting and disturbing the
bounding box locations. Deleting 25% of the bounding boxes results in a miss-rate of 11.3.
Note that with 75% of the training samples a L AMR of 10.0 is achieved (see Figure 4.14).
Pedestrians without bounding box labels may be used as background samples during
training which results in the confusion of pedestrians and background during testing.
This effect is even stronger when OHEM is applied as seen when comparing R-FCN
results with and without OHEM. Placing hallucinations at random locations only slightly
influences the overall detection performance. Adding 10% hallucinations that more
resemble pedestrians (”false positives”) result in a more significant drop in performance
of 3.3 points.

Table 4.13: Perturbation analysis of annotation, effects on performance.

Method Disturbance Prob. LAMR ∆

Faster R-CNN none - 9.3 -
Faster R-CNN delete 10% 9.9 +0.6
Faster R-CNN delete 25% 11.3 +2.0
Faster R-CNN false positives 10% 12.6 +3.3
Faster R-CNN hallucination 20% 9.3 0.0
Faster R-CNN hallucination 50% 9.8 +0.5
Faster R-CNN jitter 10% 9.5 +0.2
Faster R-CNN jitter 20% 9.7 +0.4
Faster R-CNN jitter 50% 12.3 +3.0
R-FCN OHEM none - 11.9 -
R-FCN OHEM delete 25% 14.9 +3.0
R-FCN NoOHEM none - 12.0 -
R-FCN NoOHEM delete 25% 13.7 +1.7

4.4. DISCUSSION
A main outcome from the EuroCity Persons (ECP) experiments is that data still remains
a driving factor for the person detection performance in traffic scenes: Even at training
data sizes that are about one order of magnitude larger than existing ones (cf. Table 4.1),
the considered state of the art deep learning methods (Faster R-CNN and SSD) do not
saturate in detection performance.
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Figure 4.18: Recall (top left), precision (top right) and the associated per-image detection and ground-truth
sample counts (bottom) vs. object height at two operating points for the Faster R-CNN variant at day- and
night-time (each trained and tested separately on upscaled day- and night-time images of EuroCity Persons
reasonable). To calculate the distance of an object (upper x-axis) the camera calibration is used and a fixed
object height of 1.7 m is assumed. For smoothing reasons, the recall and precision for object height p in pixels
(px) is computed within the height range [p-20 px, p + 20 px].
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The fact that saturation does not occur can be attributed to the diversity of the data.
The ECP dataset covers a large geographical region, day and night, and different weather
conditions. This quality is reflected in its generalization capability across datasets. As was
shown in Section 4.3.2, pre-training on ECP and fine-tuning (post-training) on a smaller
target dataset (KITTI, CP) yields significantly better results than training solely on the
target dataset. Pre-training on ECP also leads to better results than pre-training with other
datasets on these target datasets. Conversely, pre-training with other datasets helps only
marginally, if at all, when evaluating on the ECP test dataset. A "generic" dataset like
Open Images V4 was shown to be beneficial for pre-training of the smaller traffic-related
datasets (KITTI, CP), when ECP is not used. It could not outright replace the training sets
of the latter.

The ECP dataset allowed us to analyze some biases in more detail. Foremost, ex-
periments suggest that there is indeed a bias derived from large geographical region.
Datasets were compiled for central West Europe vs. central East Europe, where other
factors influencing performance were held similar. The analysis showed that the existence
of a bias is statistically significant with a confidence interval of 99%.

Comparing day- and night-time detection performance, one observes from Table 4.10
that at equal training set sizes, night-time performance is worse (a L AMR of four points
higher). This difference is enlarged when the entire day- and night-time training sets of
ECP are used as the former is an order of magnitude larger. See Figure 4.18. The drop
in recall for pedestrians closer than 8 m could be due to the headlights of the recording
vehicle. These could result in very bright spots for the lower body of pedestrians and
complicate detection. The ECP dataset provides the possibilities to further research in
this direction and compare differences between day and night recordings.

The way annotations are performed proves to be important as well. As in [179] the
experiments show that a correct ignore region handling has an impact on detection
performance. It boosts performance by 1.5 points (see Table 4.11). This is a larger
difference than that between the performances using 75% and 100% of the training data
in Figure 4.14. This chapter goes beyond [179] and shows that it is beneficial to train
specific detectors for classes that otherwise might be confused with the target class. In
the experiments, the jointly trained detection models for riders and pedestrians achieve a
lower miss rate for the pedestrian class, than models trained for pedestrians-only, when
the precise class is enforced. In the evaluation protocol of [179] this case is not considered
as riders are always handled as ignore regions.

It is interesting to put the current traffic-related person detection performance in
context. When viewed in historic context, the best-performer on an early benchmark
[43] was a method based on HOG features and SVM classifier. When comparing its
performance with that of the best-performer in this chapter, the R-CNN, one observes
that performance has improved by an order of magnitude over the past decade, in terms
of the reduction of the number of false positives at given correct detection rate, albeit
dealing with two different datasets of urban traffic (Figure 8 in [43] vs. Figure 4.12 here).

State of the art detection performance (e.g. correct detection around 90% at 0.1−
0.3 f ppi ) is sometimes cited as evidence that performance is far away from practical
use for an onboard vehicle application. This is incorrect, as can be readily inferred from
the fact that there are already several vision-based person detection systems onboard
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production vehicles on the market. A number of factors improve performance in the
vehicle application. First, other than assumed in this study, not all errors are equal in
the vehicle application. Errors increasingly matter when they involve objects close to the
vehicle. The detectors improve their performance with decreasing distance (increasing
object size). See Figure 4.18, the detection rate increases to 97% at a distance of 25 m
(object height 100 px). Second, some false positives can be eliminated, when taking
advantage of known scene geometry constraints (e.g. pedestrians or riders should be
on the ground plane, their heights should be physically plausible when accounting for
perspective mapping [98]). Third, many false positives arise by an accidental overlaying
of structures at different depths, and are not consistent over time when observed from
a moving camera. Tracking can suppress such false positives ([43] shows a reduction by
up to 37%). Last but not least, active safety systems for pedestrians and cyclists involve
additional sensors for detecting obstacles in front of the vehicle: a second camera (stereo
vision), radar or lidar. Thus vehicle actuation (braking, steering) does not solely rely on
monocular object detection. It should be finally noted that current commercial systems
are in the context of driver assistance, meaning that a correct detection performance of
about 90% is acceptable, as long as the false alarm rate is essentially zero.

This brings us to the human baseline. A visual inspection shows that the remaining
errors are indeed ”hard”, even for a human, see Tables 4.4 and 4.5. A recent paper [178]
finds that current single-frame pedestrian detection performance lags that of an attentive
human by an order of magnitude. Thus there is a potential for a substantial further
performance improvement; an improvement which would be important with the advent
of fully self-driving vehicles.

More data remains part of the solution on how to improve performance. The ECP
benchmark study shows that performance still improves with increasing training set size
with a decent gradient (i.e. Figure 4.14). A further doubling of the current training size
(110,000 pedestrians) is projected to yield a reduction of the L AMR from 9.3 to about
7.3 points. More training data is especially helpful for persons in non-standard poses, in
rainy or night-time conditions, or under partial occlusions. The found relations between
annotation quality and quantity on one hand and detection performance on the other
(i.e. Table 4.13), together with a price tag for annotations at various quality levels can help
optimizing the requirement specification for dataset annotation.

In terms of vision methods, better solutions are needed to provide accurate local-
ization in the presence of multiple persons and significant occlusion. In particular the
greedy non-maximum suppression that poses a tradeoff between recall and precision as
shown in Tables 4.4 and 4.5 will be addressed in the following Chapter 5.

A number of methodical avenues could improve classification performance. Figure
4.18 and the baseline experiments show that small objects are still very challenging despite
the great amount of small sized pedestrians present in the training dataset. Approximately
75% of the false positives at 0.3 fppi analyzed in Figure 4.13 are smaller than 80 pixels.
Recently, methods have been published that are tuned for the detection of smaller objects
like MS-CNN. Such methods have to be analyzed in detail to find still remaining weak-
nesses and further possibilities for improvement. This chapter shows quantitatively in
Figure 4.13 and qualitatively in Table 4.4 that depictions, reflections and clothes are often
confused with real pedestrians. These confusions result in high scoring false positives
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also for sizes larger than 80 px. That necessitates the design of appropriate multi-task
deep nets that more effectively incorporate global scene context. Training a detection
network jointly for pedestrians and riders already shows that confusions between the two
person classes can be reduced. Utilizing the already annotated reflections and depictions
as additional classes during training could improve the discrimination performance as
well. An ensemble of specialized deep learning models could take advantage of known
bias (particular location and digital maps, weather, time of day). Such an approach could
even switch on a per frame basis between sub-models, e.g. when there is a sudden change
in lighting. For example, lenseflares might occur from one frame to another when the
vehicle turns into the direction of the sun.

As person detection is being perfected, the focus of research will likely shift to tracking
and motion prediction. Motion prediction based on point kinematics is often not accurate
because of abrupt changes in person motion. Systems like [90, 91] come into play which
take into account additional pose information. In preparation for this, this benchmark
includes the orientation estimation of the overall body, for which it was shown that it can
be jointly trained with the detection task at minimal performance loss.

4.5. BENCHMARKING RESULTS SINCE RELEASE
This section analyzes the impact and use of the ECP dataset since its release for online,
public benchmarking in March 2019 on the corresponding websitea. As of April 2022, 1486
persons have registered online for use of the dataset and participation in the benchmark.
The license terms of the benchmarkb are strict to avoid any violation of privacy rights
and to comply especially with the general data protection regulation (GDPR) of the
European Union. Therefore, the dataset may only be used for scientific, non-commercial
purposes and approximately half of the registrations had to be denied. Table 4.14 shows a
distribution of the remaining 700 approved registrations in dependence of the registrants’
countries. So far, persons from 60 different countries have been granted access, which
proves a broad interest on a global scale. The highest numbers of registrations are from
China, Germany, the USA, and India which already comprise nearly 50% of the total
number of approved registrations.

Among the registrants, some have already participated in benchmarking and submit-
ted detection results on the private test dataset, for which the annotations are kept secret.
Table 4.15 shows the benchmark ranking as of April 2022. For online benchmarking, the
“enforce” setting as in Table 4.12 is used. The additional “all” scenario is evaluated for all
pedestrians greater than 20 pixels and less than 80% occluded.

Since the benchmark study of this chapter the performance on ECP has been further
improved by [18, 66, 81, 167, 173]. The progress can be attributed to different aspects,
mainly the data used for training [66], the backbone network to learn the feature rep-
resentations [66, 81, 167, 173] and methodical extensions [18, 81, 167, 173]. Similar
to the study in this chapter, the work of [66] investigates generalization capabilities of
detectors by cross dataset evaluation on ECP, Caltech [38] and CityPersons [179]. By
using further non-domain specific datasets for training, namely CrowdHuman [136] and

ahttps://eurocity-dataset.tudelft.nl
bhttps://eurocity-dataset.tudelft.nl/eval/license/ecplicense
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Table 4.14: Number of approved registrations per country for the EuroCity Persons benchmark.

Country
Number of
registrations Country

Number of
registrations

China 159 Finland 4
Germany 93 Denmark 4
USA 57 Portugal 3
India 31 Norway 3
Suisse 23 Morocco 3
Netherlands 23 Indonesia 3
South Korea 20 Czech Republic 3
France 20 Peru 2
Italy 18 New Zealand 2
Spain 17 Mexico 2
Japan 17 Malaysia 2
Australia 15 Israel 2
Canada 14 Ecuador 2
United Kingdom 13 Cyprus 2
Taiwan 13 Croatia 2
Romania 13 Algeria 2
Turkey 11 Ukraine 1
Singapore 10 Tunisia 1
Russia 10 Thailand 1
Vietnam 8 Syria 1
Brazil 8 Sri Lanka 1
Austria 8 Slovakia 1
Poland 7 Pakistan 1
Egypt 7 Nigeria 1
Ireland 6 Lithuania 1
Belgium 6 Kazakhstan 1
Sweden 5 Ghana 1
Greece 5 Georgia 1
Iran 4 Ethiopia 1
Hungary 4 Estonia 1
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Widerperson [182], they achieve better results with a HRNet backbone [156] and a Cas-
caded R-CNN head [18]. This Cascaded R-CNN method [18] trains a cascade of R-CNN
detectors of increasing quality by varying the IoU threshold for the matching of positive
samples during training. Thus, every detector in this cascade generates detections of
higher accuracy while also depending on higher accuracy input from the previous stage.
Throughout the cascade, more and more nearby false positives are rejected. APD [173]
estimates an additional attribute per object in an embedded feature space that serves to
discriminate instances in dense scenes. ResNet-50 [68] is one of the backbones used. The
work of [167] also builds upon the ResNet-50 architecture. They design special modules
coined Deformable Convolution with Attention Module (DCAM) that are incorporated
into the ResNet-50. The deformable convolution may adapt the receptive field being
used, while the attention module reweights the feature maps, which guides the attention
towards pedestrian regions. In combination, this is targeted towards better performance
for occluded pedestrians.

Deep neural networks which are commonly used for object detection are usually
not designed for this detection task. The domain of neural architecture search [40] tries
to automatically optimize the architecture itself for the task at hand. In the case of
detection, this is difficult, as repeating pretraining on ImangeNet for image classification
after every adaptation is computationally infeasible. The authors of SP-NAS [81] propose
a method to iteratively morph a network in a way that frequent pretraining on ImageNet
can be avoided. They initialize this network search with a ResNet-50 architecture for the
ECP dataset and combine the resulting network SPNet with an FPN head [105] and the
Cascaded R-CNN head [18] resulting in the first and fourth rank on the ECP benchmark.

Table 4.15: Log average miss-rate (L AMR) on the test set of the EuroCity Persons benchmark for different test
data splits of the top performing methods submitted to the benchmark website.

Test Case

reasonable small occluded all
SPNet with Cascade [81] 4.2 9.5 21.6 13.9
Pedestron [66] 5.1 11.2 25.4 16.2
Attribute-aware pedestrian detection (APD) [173] 5.3 12.4 26.8 17.3
SPNet with FPN [81] 5.5 12.1 24.6 16.5
DAGN [167] 5.9 14.2 26.3 17.5
Method based on Cascade R-CNN [18] 6.6 13.6 31.3 19.3
Method based on Cascade R-CNN [18] 8.6 16.8 37.9 23.0
YOLOv3 [13] 9.7 18.6 40.1 24.2
Faster R-CNN [13] 10.1 19.6 38.1 25.1
SSD [13] 13.1 23.5 46.0 29.6
PyTorch Faster-RCNN [132] 14.1 29.6 43.9 30.9
R-FCN (with OHEM) [13] 16.3 24.5 50.7 33.0

Apart from the number of registrations and benchmark submissions, the citation
count also shows the interest and relevance of the ECP benchmark. As of April 2022, it has
been referenced 175 times according to Google Scholar. In particular, its size and diversity
are acknowledged in several recent surveys (e.g. [185] and [1]).
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5.1. OVERVIEW
The focus of this chapter is detection and pose estimation of vulnerable road users in
dense traffic scenes, which cause challenges due to significant, mutual occlusions in the
presence of multiple persons as analyzed in the last chapter. The detection methods
evaluated there like R-FCN or Faster R-CNN have profited from incorporating the proposal
generation in an end-to-end learning strategy. Still, every proposal is associated with at
least one object during training, and therefore there is only one detection per proposal
during inference. To ensure that every object can be detected, there are usually (a lot)
more proposals than objects within an image. E.g. the YOLOv3 method evaluated in
Chapter 4 has been configured with 120,000 prior boxes per image, which serve as
proposal boxes. As the average number of persons per image on the ECP dataset is 5.0,
this means the number of prior boxes per image is 24,000 times higher than the number
of persons on average. The proposal boxes are classified independently of each other
resulting in multiple detections for the same object in particular if the proposals share
similar image locations (see Figure 5.1). In general, there is no loss enforcing a one-to-
one matching between detections and ground-truth samples. The task of suppressing
multiple detections for the same object is usually solved by a successive, decoupled step
of non-maximum suppression (NMS). Interestingly, most top-performing methods of the
common generic object detection benchmarks depend on a simple greedy non-maximum
suppression (greedy NMS) [10]. This greedy NMS poses a problem for overlapping objects
e.g. in pedestrian groups (see Figure 5.1). When selecting the IoU threshold there is a
tradeoff between recall and precision as shown in the last chapter (e.g. Tables 4.4 and 4.5).

This threshold is often set to 0.5 for pedestrians, meaning if two pedestrians have a
higher mutual IoU only one will be detected assuming perfectly localized detections. Such

73
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Figure 5.1: Detection results before and after applying the NMS (left and right column). Proposal boxes are
classified independently of each other resulting in multiple detections for the same object (left). The greedy
NMS suppresses such multiple detections. In this example here, it is configured with an IoU threshold of 0.5,
which results in missing detection boxes for pedestrians with an IoU higher than 0.5 (bottom right). There are
only seven detections but nine pedestrians present.

pedestrians with a higher mutual IoU than 0.5 are defined as pedestrian pairs throughout
this chapter. If there are multiple pedestrians with an IoU higher than 0.5, only the two
pedestrians with the highest mutual IoU are regarded as pairs.

Estimation of Discriminative Attributes and NMS Adaptations. Section 5.2 presents
work on using discriminative attributes for learning the task of the NMS with the Gos-
sipNet architecture [73] to replace the greedy NMS. This work preceded the methodical
contributions of this chapter published in [12].

GossipNet [73] is a neural network trained to rescore detections. Filtering detections
based on their final score renders a further NMS stage unnecessary. Still, GossipNet solely
relies on bounding box locations and confidence scores as input. Looking at the instance
segmentation domain, [33] proposes a discriminative loss function to estimate a vector
in an embedded feature space per pixel in addition to the semantic class confidence.
This vector is used as a discriminative feature to distinguish instances. [169] shows how
this idea may also be applied for proposal-based object detection. For every prior box,
a feature in a geometric embedding is estimated. A high distance in this embedding
indicates different objects and thus supports the NMS. Section 5.2 follows this idea but
uses explicit attributes that may be used as discriminative features. It considers the body
orientation, the level of occlusion, and the position of the head box as discriminative
attributes. Figure 5.4 shows the intuition of why these attributes are discriminative. The
high IoU threshold used for suppression on the right results in too many detections and a
low precision. Still, it shows that a difference in these attributes for different detections
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indicates the presence of several instances.
In Section 5.2.1, the YOLOv3 detector [128] is extended by task uncertainty weighting

similar to [93]. The work on this extension has been published in [14] (©2020 IEEE).
Predictors are added to estimate the attributes per prior box in addition to the bounding
box regression and class confidence, and the performance is evaluated. Section 5.2.3
applies a ceiling analysis to evaluate the discriminative potential of the different attributes
based on ground truth annotations. The head box attribute shows high potential and is
therefore incorporated into the GossipNet architecture [73] in Section 5.2.4. Similarly,
[175] estimates the head box in addition to the body box, and thus supports the NMS but
does not use the head box to learn the NMS task as in this chapter.a

Pairwise Detection. Estimating discriminative attributes and the GossipNet experi-
ments show issues with the inherent ambiguity in proposal-based detection approaches
in dense traffic scenes. In such scenarios, pedestrians cover similar regions within an
image, which may result in a similar IoU with a proposal. The prediction is done based on
features that result from both pedestrians. During training, minor differences in the IoU
may cause the association with different pedestrians for two nearly identical proposals.
These two proposals depend on nearly identical features within the network. If a proposal
box is in between two pedestrians, it is rather ambiguous which person should be the
detection target, and also which head location should be predicted. During inference,
this may result in head box locations right in between two other heads or in body boxes
between two pedestrians. [158] takes care of this issue with a repulsion loss that pushes
detections of different objects away from each other. [108] proposes to estimate the
density as an additional attribute, which is defined as the highest IoU with any other
pedestrian. This renders the problem less ill-posed when the value to be estimated is
identical e.g. as two overlapping pedestrians share the same density. The density value is
used as threshold instead of the single IoU threshold within the greedy NMS. Estimating
the density is some kind of inverse approach to estimating the number of pedestrians
at an image location. Solving this counting problem would also ease the NMS task. Sec-
tion 5.3.2 takes a very explicit approach to this counting problem and also to solve the
ambiguity issue, by directly estimating both pedestrians of a pedestrian pair based on
a single proposal. This is similar to the set detection approach of [28]. They propose to
predict a full set of objects based on a single proposal. As [28] has been a concurrent work
to this thesis which has been published before, Section 1.2.3 does not claim the pairwise
detection approach as a major contribution.

Pairwise Pose Estimation. This section estimates the position of 17 joint points as
surrogate of the pose instead of the body orientation as in Chapter 3. There are basically
two different approaches to human pose estimation. Top-down approaches first detect
all persons in an image and estimate the pose of each person in a second stage, whereas
bottom-up approaches first try to find all joints within an image, which are then clustered
into instances. Top-down approaches are still leading on the MSCOCO dataset [107]
frequently used for benchmarking, but of course depend on the performance of the
underlying detector. A missed detection also results in a missing pose.

aGossipNet experiments are part of the Master’s thesis “Pedestrian detection in autonomous driving by tech-
niques optimized for crowds with deep neural networks” by Phillip Czech, supervision by Markus Braun,
Ruhr-Universität Bochum, Germany, 2020 [30].
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Figure 5.2: Qualitative pose estimation result of AlphaPose+ [101] (left) and the presented Simple Pair Pose
method (right) for a pedestrian pair. While AlphaPose+ confuses joints of the two pedestrians and fails to
estimate the pose of the pedestrian in the back (red), Simple Pair Pose provides a quite accurate pose estimation
for both pedestrians. The focus of this chapter lies on such pair situations in dense urban traffic scenes.

Regarding pose estimation in groups, the cropped detections used as input often
contain parts of other persons. Similar to the ambiguity in proposal based detection, the
target pose sometimes becomes ambiguous [70], in particular, if the overlap of persons is
very high as in the pair situations. [70] solves the disambiguation by adding an additional
input hint for the target pose, while other methods optimize poses of multiple persons in
a post-processing step [101, 124]. The pose estimation approach presented here makes
use of the paired detections and jointly estimates the two poses within a single network.
The new approach makes use of a heuristic to determine the z-ordering of the ground
truth annotations and solves the disambiguation of poses by training separate experts
for front pedestrians and back pedestrians in pairs according to the z-ordering. It does
not depend on a complex post-processing step as [101, 124]. For an exemplary result see
Figure 5.2.

As the ECP detection dataset does not provide joint point annotations, a pose anno-
tated dataset coined EuroCity Persons Dense Pose (ECPDP) is created (see Table 5.1 for a
comparison with other human pose datasets). The ECPDP extends the ECP dataset by
additional images from two side-facing cameras that have been synchronously recorded.
These additional images increase the availability of crowded scenes, which is the focus for
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the selection of the 47k images that form the new ECPDP dataset. The dataset provides
pose annotations for pedestrians and riders (see Figure 1.6). Still, the focus is on pedes-
trians throughout this chapter as heavy mutual occlusions are more frequent among
these.

The work on combining pairwise detection with pairwise pose estimation and the
creation of the EuroCity Persons Dense Pose (ECPDP) has been published in [12] (©2021
IEEE).

Table 5.1: Overview of human pose datasets including the new ECPDP dataset.

Dataset ECPDP TDUP [157] PedX [87] MSCOCO [107]

Domain Automotive Automotive Automotive General
# Images 47k 21k 5k (stereo) 200k
# Person Poses 279k 93k 14k 250k
Avg. Persons/Img 5.9 4.4 2.8 1.3

Dataset MPII [3] AI Chall. [163] CP [101] OP [124]

Domain General General General General
# Images 25k 300k 20k 9k
# Person Poses 40k 700k 80k 18k
Avg. Persons/Img 1.6 2.3 4.0 2.0

5.2. ESTIMATION OF DISCRIMINATIVE ATTRIBUTES AND NMS
ADAPTATIONS

This section addresses the NMS which is often done by the greedy implementation shown
in Algorithm 1. This algorithm suppresses detections based on confidence values and
the body bounding box positions. It loops over all detections in descending order of their
scores, while every detection removes all remaining detections with an IoU greater than a
given threshold Nt (red part).

The first part of this section extends YOLOv3 by additional prediction heads for several
discriminative attributes. Similar to [83] the overall detection performance could profit
from these attributes as they relate to the detection task and could provide additional ex-
plicit information about the appearance of pedestrians. In the second part, the NMS task
is learned with the GossipNet architecture [73] incorporating the head box information to
replace the greedy NMS algorithm. As a further baseline comparison, the greedy NMS is
adapted to make use of head boxes. Instead of using the IoU of the body boxes (red part
in Algorithm 1), the IoU of the head boxes is utilized.

5.2.1. IMPROVING AND EXTENDING YOLOV3
This section first revisits YOLOv3 [128] which is used as underlying 2D object detector
throughout this chapter. In comparison with Faster R-CNN the one-stage architecture
of YOLOv3 facilitates its extension in this chapter and the detection performance of the
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Algorithm 1: Greedy NMS algorithm (adapted from [10])

Input :B = {b1, . . . ,bn},S = {s1, . . . , sn}, Nt

B is the list of initial detection boxes
S contains corresponding detection scores
Nt is the NMS threshold

begin
D ← {}
while B 6= empty do

m ← argmaxS
M ← bm

D ← D
⋃

M ;B ← B−M
for bi in B do

if IoU(M ,bi ) ≥ Nt then
B ← B−bi ;S ← S− si

end
end

end
end
return D,S

two methods is similar (see Table 4.3). YOLOv3 even outperforms Faster R-CNN when
the same input resolution is used. Similar to [93] it is taken care that all losses match
a probabilistic log-likelihood formulation to make use of task uncertainty weighting as
proposed in [83]. Weighting tasks by their uncertainty may improve the performance
of every single task as shown in [83] for scene segmentation and pixel-wise distance
estimation. Then, further tasks and losses are added to the object detection network to
estimate discriminative attributes with a single jointly trained model.

Task Uncertainty Weighting. YOLOv3 extends the Darknet53 architecture and pre-
dicts bounding boxes based on three feature layers that are downscaled by a factor of 8, 16,
and 32 respectively. Each cell within these feature layers encodes prior boxes of different
aspect ratios that are centered within the cell. Given an input image x the convolutional
neural network f parameterized with w predicts four coordinate offsets f w

loc (x) for the
full body box and c class scores f w

cl s (x) per prior box p. In contrast to [128] the objectness
classification is skipped and the four bounding box edges are directly regressed as in [69].
The class likelihood is calculated by

p(y | f w
cl s (x)) = softmax( f w

cl s (x)). (5.1)

Similar to [93] the regressed bounding box values are modeled to follow a multivariate
normal distribution. A diagonal covariance matrix with identical entries σl oc is used and
the minimization of the negative log-likelihood results in an L2 loss Ll oc (w). Regarding
classification a standard cross-entropy loss Lcl s (w) is applied, which is the log-likelihood
of the probability function in Eq. (5.1). The detection losses match the regression and
classification losses described in [83], so task uncertainty weighting can be applied for
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the total loss

L (w) = 1

σ2
cl s

Lcl s (w)+ logσcl s +
1

2σ2
l oc

Ll oc (w)+ logσloc (5.2)

with the aleatoric, homoscedastic uncertainty weights σloc and σcl s optimized during
training. During training, all person samples those bounding boxes that have an IoU > 0.5
with a prior box are associated as positive training targets. Prior boxes with no associated
sample only contribute to the classification loss.

Estimating Further Discriminative Features. The baseline detector is extended esti-
mating three discriminative attributes for every prior box, namely the orientation of the
body (yaw only), the level of occlusion of the complete bounding box, and the bounding
box for the head. Similar to Chapter 3 this is done by adding further prediction layers in
parallel to the two detection layers as shown in Figure 5.3.

Figure 5.3: Original a) and extended YOLOv3 network architecture b) with additional prediction heads for
discriminative attributes.

This section describes the occlusion estimation as a discrete classification problem. In
general, the amount of occlusion by other objects or infrastructure is a continuous value
between zero and 100%, which suggests a formulation as a regression problem. Still, the
ECP dataset provides four discrete levels of occlusions, which facilitated the annotation
process as explained in Section 4.2.3. Therefore, the same softmax formulation as in Eq.
(5.1) is used for the occlusion prediction of the four occlusion classes and similar to Eq.
(5.2) the homoscedastic uncertainty weight σocc is used for the occlusion loss Locc (w).

The formulation of the head box estimation is identical to the estimation of the
bounding box of the full body. As before, four coordinate offsets per prior box for the head
box are estimated with a further localization loss Lhead (w) in addition to the localization
loss Lloc (w) and a further uncertainty weight σhead .

For the body orientation, the same von Mises based formulation as in Chapter 3
is used. Therefore, a biternion is estimated for the orientation angle resulting in an
additional loss Lor i ent (w). This orientation loss is weighted using a fixed manual weight
λor i ent as in Chapter 3.

The total loss is the sum of the weighted singular losses and the logarithms of the
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uncertainty weights. If an attribute is not labeled for a training sample associated with a
prior box, no loss is added for the corresponding task.

Metrics. The detection performance is evaluated using the log average miss rate
(LAMR) as described before in Chapter 4. For benchmarking, the three different data
subsets reasonable, small, and occluded have been defined in Section 4.2.5. In many pair
situations, one of the two pedestrians has a rather low while the other has a high level
of occlusion. Hence, pedestrians of a pair would be divided into the reasonable and the
occluded subsets as defined in ECP. To have a common subset for pairs and hereby a
targeted evaluation for dense traffic scenes another subset named relevant is added. It
consists of all pedestrians of at least 40 pixels in height and less than 80% occlusion.

5.2.2. EXPERIMENTS

This section builds upon the YOLOv3 TensorFlow implementation provided by [93] for
the experiments. As in Chapter 4 nine prior box sizes are calculated with the dimension
clustering proposed in [128] on the training split of the ECP dataset and distributed on
the three output layers. Hence, the same prior box recall as before is achieved, which
is about 100% for an IoU of 0.5. The networks are trained to discriminate between
pedestrians and riders. Still, the focus is on the evaluation of the former as pedestrians
are a lot more frequent. Flipping and crop and scale augmentation have been used in all
trainings. Predictions are filtered with a greedy non-maximum suppression depending
only on the IoU between bounding boxes parametrized with an IoU threshold of 0.5.
Further discriminative attributes are not used for filtering in this section. An edge-aware
debayering is used for the images of ECP, which reduces artifacts along edges. It improved
the visual appearance but did not show any influence on detection performance with
YOLOv3. Experiments are run and evaluated on day-time data only.

First, a detection-only model (named Extended) is trained on the ECP training dataset.
The Darknet53 part of the extended YOLOv3 network - using the detection losses and task-
uncertainty weighting described in Section 5.2.1 - is initialized with weights optimized
for classification on ImageNet [35]. The network is trained for 800,000 iterations with an
initial learning rate of 1e-5, which is decreased by a factor of 0.1 after 300,000 and 600,000
iterations. A focal loss [106] weighting with γ= 2.0 instead of the standard cross-entropy
loss is used, as it improves the detection performance. The best-performing model with
the lowest LAMR on the reasonable scenario on the validation subset is selected and
evaluated on the ECP test dataset.

The joint models that additionally estimate discriminative attributes are trained with
the same settings and strategy. The only difference is the addition of the losses for the
different tasks. Three different variants of joint models are trained with an increasing
number of tasks. The first one additionally estimates the head box. The next model
additionally estimates the body orientation, while the third joint model is trained with all
three additional tasks.

Detection Results. Detection results for the Extended model and different variants
of joint models are shown in Table 5.2. The Extended model achieves a LAMR of 6.9
in contrast to 8.1 of the original YOLOv3 benchmark model evaluated in Section 4.3.1,
where the Darknet implementation of [128] was used. The joint models including head
box and body orientation estimation achieve a similar detection performance. Adding
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Table 5.2: LAMR detection results for pedestrians on the different scenarios of the day test subset. All values are
given in percentage points (lower values are better). Discriminative attributes are added to the Extended model.
The model of the last row estimates all three discriminative attributes.

Model reasonable occluded relevant

YOLOv3 (from ECP benchmark Section 4.3.1) 8.1 36.1 17.3
Extended 6.9 31.9 15.1
+ Head 7.0 31.4 15.2
+ BodyOrientation 7.1 32.2 15.5
+ Occlusion 8.0 34.9 16.7

the last additional task of occlusion estimation slightly degrades the overall detection
performance. As before in Chapter 4 and in contrast to [58] and also [83], adding further
tasks does not improve the overall detection performance despite the correlation of the
tasks.

The hypothesis that further discriminative attributes might be used to improve the
NMS in dense traffic scenes is qualitatively verified. Figure 5.4 exemplarily shows two
results for the last joint model for two different NMS thresholds - the default threshold
of 0.5 on the left and 0.9 on the right. Despite the presence of additional attributes, the
greedy NMS still is based on body bounding boxes and class confidences only. The NMS
run with a threshold of 0.9 suppresses fewer predictions resulting in a higher recall but
also a lower precision caused by multiple detections for the same objects. The difference
in the estimated discriminative attributes (occlusion, body orientation) on the right are an
indicator of the presence of several persons and could prove beneficial for the detection
performance if the NMS used this information to (not) suppress instances on the left.
Thus, the recall for objects with differing discriminative attributes in such dense scenarios
could be improved.

5.2.3. DISCUSSION AND ANALYSIS: ARE ATTRIBUTES DISCRIMINATIVE?
The extended YOLOv3 model achieves improved performance results in comparison
with the YOLOv3 baseline model evaluated on the ECP benchmark in the last Chapter
4. Estimating additional attributes does not further improve the detection performance
in the experiments with the greedy NMS, which still only uses the bounding box and
classification scores as input. Still, it has been qualitatively verified that further attributes
could be discriminative for different instances of pedestrians and thus helpful for NMS.
Therefore, these differences in the three attributes body orientation, level of occlusion,
and head boxes are analyzed quantitatively for pairs of pedestrians in the training set
using the ground truth annotations. This so-called ceiling analysis reveals the potential
beneficial effect these attributes could provide for the NMS, if they would be used there
to discriminate instances and if their estimation would be perfect. As it uses ground
truth annotation it shows the upper bound of potential benefits. In the remainder of this
section, we refer to this analysis shown in Figure 5.5.

The absolute difference in body orientation between two pedestrians of a pair is below
25 degrees in most cases. This results from the fact that paired pedestrians usually share
the same path moving together, thus sharing the same direction and orientation of the
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Figure 5.4: Exemplary, qualitative detection results on two images (top, bottom) including discriminative
attributes after running the greedy NMS with different IoU thresholds - the default threshold of 0.5 on the left
and a threshold of 0.9 on the right. Estimated body orientation is depicted by the arrows, while the color is
also changed in dependence on the direction. The color of the bounding box depicts the level of occlusion.
Green means no occlusion, while purple means heavily occluded. The high threshold of 0.9 is used to show
that a difference in the estimated attributes may be discriminative for different persons and thus indicate the
presence of several persons. For the default NMS threshold, there is only one detection for the woman and
the man in the first row. The denser predictions on the right show differing estimations of the occlusion levels
that are discriminative for the two persons. In the second example the same can be observed for the estimated
body orientation. Once again there is only one detection for the man and woman on the left, still, the differing
orientations in the right column for the dense predictions indicate the existence of several persons.
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Figure 5.5: Histograms for the difference of the three discriminative attributes body orientation (top), level of
occlusion (middle), and IoU of the head boxes (bottom) between the two pedestrians of pedestrian pairs on the
training subset of the ECP dataset. There are four different classes representing the level of occlusion resulting
in 10 possible combinations for two pedestrians (middle).
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body. As the accuracy of the body orientation estimation often is in a similar range (see
Figure 4.16), that attribute is not sufficiently discriminative for pedestrians within pairs in
many cases.

The level of occlusion has a higher potential for discrimination. At most 10% of
occlusion for one pedestrian and at least 40% of occlusion for the second pedestrian is
the most frequent case. For the cases, where both pedestrians of a pair have the same
level of occlusion, this attribute is also not sufficiently discriminative.

Regarding the IoU of the head boxes of pedestrians within pairs, the IoU is below 0.5 in
most cases despite the body boxes that have an IoU greater than 0.5. Even if pedestrians
are very close to each other, the heads are still mostly visible in many cases. Therefore,
work like [129] even focuses on head detection alone to detect pedestrians as heads are
more likely to be visible. This can be also observed in the example of a crowd scenario
showing ground truth annotations for head and body boxes in Figure 5.6. Therefore, the
focus is on using the head box as discriminative attribute in the following section.

5.2.4. LEARNING NMS WITH DISCRIMINATIVE FEATURES

This section replaces the default greedy NMS and learns the NMS task using the Gos-
sipNet [73] architecture to improve the detection performance in dense traffic scenes.
The GossipNet is trained to reduce the predictions to exactly one detection per object
by re-scoring the input predictions. Herefore, all neighboring predictions are processed
together by the neural network. The loss function is designed to enforce a single detection
per object. It depends on an association of predictions and ground truth samples to assign
class labels for the predictions. This step is called matching in the remainder of this sec-
tion. The raw predictions of the extended YOLOv3 model from the last section (including
the head box attribute) without applying any NMS serve as input to the GossipNet.

First, this section recapitulates the network architecture of GossipNet and the loss
function. Second, the matching of predictions and ground truth samples needed to
calculate the loss is adapted to improve the overall performance. In a third step, GossipNet
is extended to make use of the head box information as additional input, which shall
serve as a discriminative attribute and additional indicator for the correct amount of
predictions. This extended approach is compared with a greedy NMS that depends on
the head boxes instead of the body boxes.

GossipNet Architecture and Loss Function [73]. The predictions are jointly pro-
cessed by a recurrent network architecture consisting of several identical blocks. Each
prediction is represented by a d-dimensional information vector that is initialized with
zeros for the first block. Predictions with an IoU above a threshold (0.2 proposed in [73])
are paired to enable information exchange between neighboring predictions. The input of
each block consists of the current information vector per prediction and pairwise features
of paired predictions. Several convolutional layers and max-pooling layers within each
block process the information vector. Due to the possible information exchange between
information vectors of different predictions the architecture is called GossipNet. The
output of each block is the processed information vectors that are passed as input to the
next block. After the last block, several fully connected layers rescore every prediction and
assign a new confidence gi based on the information vectors. The pairwise features only
depend on the body box and the initial confidence. No further information like image
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Figure 5.6: Exemplary visualization of the ground truth body (top) and head box annotations (bottom). In most
cases, the level of occlusion of head boxes is lower than for the full body boxes. Reproduced from [30] with
author’s permission.
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features is used to train the network.
The final predictions are sorted based on their new confidences gi and matched with

ground truth objects based on the IoU. Every ground truth object can only be matched
once in contrast to the training of the YOLOv3 detector, where every ground truth object
can be matched by several prior boxes that surpass an IoU threshold. The result of the
matching defines the class labels yi ∈ {−1,1}. The following logistic loss function is used
for training

L(g , y) = 1

N

N∑
i=1

wyi · log(1+exp(−gi · yi )) (5.3)

with N as number of predictions and wyi as weight to handle the imbalance of samples
as there are a lot more negative than positive samples.

These weights are calculated as following

w1 = γ

E
and w−1 = 1−γ

1−E
(5.4)

with E as the expected amount of positive predictions and γ ∈ [0,1] as additional hyperpa-
rameter to influence the balancing.

Pre-matching. The described matching and assignment of class labels within the loss
calculation results in the training goal to select exactly one prediction per object. Still,
it is undefined which prediction should be selected from the initial set of predictions
generated by the detector. The original confidences of this detector si are used within
the pairwise features, but not within the matching. In general, the detector not only
generates predictions with high confidence for an object but also low confident ones. This
is not an issue with the default greedy NMS, which sorts the predictions in descending
order of their confidence resulting in a suppression of the low confident predictions.
Yet, the vanilla loss function of [73] allows the selection (meaning up-scoring) of low
confident predictions. Since this is not necessarily preferable, this section replaces the
vanilla matching with a so-called pre-matching. Predictions are sorted based on their
original confidence si instead of gi before matching with ground truth samples. Hereby,
the GossipNet is trained to select the matching prediction with the highest confidence
instead of any prediction within the set. This is more similar to the greedy NMS algorithm
that would also select the predictions with high confidences. The proposed GossipNet
with pre-matching will be called GossipNetpr e in the following.

Incorporating Head Box Information. Providing the head locations as an additional
information source, should help to understand the constellation of the pedestrians within
the scene. The head locations are incorporated as pairwise features in addition to the
pairwise body box and confidence features. Analogously to the body box features, these
are:

• the IoU of the head boxes of the paired detections

• pixelwise distances in x- and y-direction and the Euclidean distance of the head
box centers normalized by the head box size of the detection that is rescored by the
network

• ratios of the widths and heights of the head boxes
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• ratio of the aspect ratios of the head boxes

The proposed GossipNet with pre-matching and incorporated head box information will
be called GossipNetpr e+head in the following.

GreedyHeadNMS Baseline. The head boxes may not only be used to learn the NMS,
but they may be used in the greedy NMS itself as in [175]. A simple version is implemented
as additional baseline for comparison that uses the head box IoU instead of the body box
IoUs. The IoU threshold is adapted by grid search to reach optimal performance.

5.2.5. EXPERIMENTS
The experiments use the daytime data of the ECP dataset and focus on pedestrians only.
Predictions from the extended YOLOv3 model including head box estimation only trained
for pedestrians are used during training, validation, and testing of the GossipNet based
approaches. This section investigates three different variants, namely the vanilla version
GossipNetvani l l a [73] and the extensions GossipNetpr e and GossipNetpr e+head that make
use of the proposed pre-matching and in the case of the latter also incorporates head box
information. The runtime of GossipNet, in general, depends on the number of paired
predictions. As no NMS is applied for filtering the YOLOv3 detections, the predictions are
filtered based on their confidence. Only predictions with a confidence higher than 0.2 are
used. That is sufficient to reach the last reference point of 1.0 false-positives-per-image
when applying a greedy NMS.

Training Settings. As for the training of the Extended model, Adam optimizer [88] is
used as backpropagation algorithm. The batch size is two and all three different GossipNet
variants are trained for 300,000 iterations with a learning rate of 7 ·10−5. As in [73] the
recurrent architecture consists of 16 blocks. The information vector has a dimension of
128. The hyperparameter γ for balancing positive and negative samples in the logistic
loss is set to 0.48. The best model is selected on the validation dataset and evaluated on
the test dataset.

GossipNet Results. The results of the vanilla GossipNet, the GossipNet with the pre-
matching approach, and with the usage of additional head box features are shown in
Table 5.3.

Table 5.3: LAMR detection results for pedestrians on the different scenarios of the day test subset for different
models. All values are given in percentage points. GossipNetvani l l a represents the vanilla version of [73], while
GossipNetpr e makes use of the proposed pre-matching and GossipNetpr e+head makes use of the proposed
pre-matching also incorporating head box information for the pairwise features.

Model reasonable occluded relevant

YOLOv3 + Head boxes (greedy NMS) 7.4 31.1 15.4
GossipNetvani l l a [73] 23.5 49.2 32.0
GossipNetpr e 8.9 32.5 17.3
GossipNetpr e+head 12.4 34.7 21.0

YOLOv3 + Head Boxes (greedy NMS) (2nd seed) 7.2 31.3 15.3
GreedyHeadNMS 7.7 32.2 16.5

Compared to the greedy NMS results shown in the last section, the performance of
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GossipNetvani l l a is a lot worse for all three test scenarios, e.g. 16.6 percentage points for
the relevant scenario. Figure 5.7 shows the analysis of the confidences before and after
running the GossipNetvani l l a . The first plot shows a heatmap for a single, exemplary
image. There are five predictions with a high confidence gi that can be regarded as
the predictions selected by the GossipNetvani l l a . All of these had a low confidence si

below 0.35, despite the fact that there would be a lot of high confident predictions. This
trend is also shown by the lower plot in Figure 5.7 depicting all confidences for the
whole test subset. All predictions with a high confidence si get a low confidence by the
GossipNetvani l l a . This verifies the hypothesis that the matching dependent on the final
GossipNetvani l l a confidences results in the selection of low confident predictions. This
also results in up-scoring of low-confident predictions that are false positives. As the
LAMR is quite sensitive to false positives, this also leads to the bad overall detection
performance.

[73] presented a slightly improved performance of GossipNetvani l l a in comparison
with the greedy NMS on two different datasets. In both cases, they still depend on the
greedy NMS. For experiments on the first dataset, they pre-filter predictions with a greedy
NMS configured with an IoU threshold of 0.8, to make them fit on the GPU. For the
second dataset, they use predictions of a Faster R-CNN method, filtering predictions
based on confidence before the NMS similar to the experiments here. Still, the RPN
within the Faster R-CNN already runs a NMS to filter proposals, while YOLOv3 runs
without any NMS to generate the predictions used in this section. Thus, in both cases, low
scoring predictions might be already removed in [73] by running a NMS. The experiments
here go completely without any greedy NMS and the low performance is solved by the
pre-matching.

The variant with pre-matching is a lot better and nearly achieves the greedy NMS
performance, but still lacks behind by one or two percentage points. The analysis of the
pre- and post-confidences in Figure 5.8 shows the desired behavior. There are a lot of
predictions that keep the high confidences throughout the GossipNetpr e . Interestingly,
GossipNetvani l l a as well as the GossipNetpr e take strong binary decisions, which is shown
by the concentration on confidences of 0.0 and 1.0. The full range between 0.2 and 1.0,
which can be observed for the YOLOv3 confidences, is condensed around these two
values.

The last variant uses additional pair features for the head boxes with the same pre-
matching. It does not improve performance but worsens the results. This is interesting,
as GossipNetpr e+head could have learned to simply ignore the additional head features,
as all other features are completely identical. Still, the GossipNetpr e+head is trained to
use the head features by the loss function, but in inference, it does not help the overall
detection performance. The next paragraph further analyzes this issue and a potential
cause, why the head boxes are not beneficial.

GreedyHeadNMS. Predictions from an extended YOLOv3 model trained with a differ-
ent seed (second-last row in Table 5.3) have been used for the GreedyHeadNMS exper-
iments. First, the threshold to be used for filtering predictions based on the IoU of the
head boxes is optimized using grid search. Results for varying IoU thresholds are shown
in Figure 5.9. Best performance for all scenarios is achieved with a threshold of zero. This
means only if heads do not overlap at all, predictions do not suppress each other. The
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Figure 5.7: Confidences before (x-axis) and after (y-axis) applying the GossipNetvani l l a as heatmap for a single
exemplary image (top) and the full test dataset (bottom). Reproduced from [30] with author’s permission.
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Figure 5.8: Confidences before (x-axis) and after (y-axis) applying the GossipNetpr e with pre-matching as
heatmap for the full test dataset. Reproduced from [30] with author’s permission.
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Figure 5.9: Detection results for the extended YOLOv3 with head box estimation model applying the Greedy-
HeadNMS with varying IoU thresholds for different scenarios on the ECP day test dataset (left: reasonable,
middle: occluded, right: relevant). While the default greedy NMS is usually run with an IoU threshold of 0.5,
the GreedyHeadNMS achieves best performance for all scenearios with an IoU threshold of 0.0. This means
that only if head boxes do not overlap at all predictions do not suppress each other. Reproduced from [30] with
author’s permission.
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Figure 5.10: Qualitative detection results for the extended YOLOv3 with head box estimation model applying the
GreedyHeadNMS for the relevant scenario and a fppi-rate of 0.3. The box colors depict false negatives (yellow),
false positives (red), true positives (blue), matched ground truth annotation (green), and ignored ground truth
annotation (gray). Reproduced from [30] with author’s permission.
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ground truth analysis in Figure 5.5 has shown that for pedestrian pairs the mutual head
IoU is often greater than zero. To increase the recall for these cases a higher threshold had
to be used. Still, the localization of the head varies even for a single pedestrian between
several predictions. Thus, a higher threshold would result in multiple detections for single
objects and false positives. With the threshold of zero, the GreedyHeadNMS is nearly on
par with the default greedy NMS (see Table 5.3).

The qualitative results shown in Figure 5.10 reveal another issue that is related to
the ambiguity in object detection. For an IoU threshold of zero, there are false positives
right in between a pair of pedestrians. These predictions have a high confidence. As
both pedestrians around these false positives cover a similar region within the image,
features from both pedestrians influence the final prediction. In some cases, it might be
ambiguous which head had to be estimated based on a prior box, which might result in
ambiguous predictions right in between two pedestrians.

5.2.6. DISCUSSION: AMBIGUITY IN ATTRIBUTE ESTIMATION IN DENSE

TRAFFIC SCENES

In this section, GossipNet was extended to learn the task of NMS. It did not outperform
the greedy NMS. Still, the presented pre-matching extension to the GossipNet achieves
similar results. Head box information has been incorporated into the architecture, but
its usage results in worse performance. The qualitative results of the GreedyHeadNMS
experiments show badly localized head boxes right in between the heads of two other
pedestrians. As the prior boxes cover regions that contain features from both pedestrians,
it might be ambiguous for the regression head, which pedestrian’s head location should
be estimated, resulting in erroneous predictions. The GossipNet variants can not depend
on explicit image features, but only on the features provided in the information vector.
Thus, such erroneous attribute estimations may also result in erroneous predictions
of the GossipNetpr e+head , when it is trained to use the head information. Overall the
experiments showed that ambiguity is not only an issue for body box detection itself as
described in the introduction of this chapter but also for the estimation of discriminative
features. This ambiguity and the ceiling analysis of the ground truth annotations in Figure
5.5 limit the potential of discriminative attributes in improving the detection performance
in dense traffic scenes.

To further improve the performance of the GossipNetvani l l a [73] proposes to incor-
porate image features in future works, which could also be beneficial for the proposed
variants within this section. By doing so the network could directly estimate the correct
number of objects based on appearance information. As it is already a neural network
architecture it can easily be integrated into existing detection networks. Thus, the three
steps proposal generation, classification/bounding box regression, and NMS would finally
be combined in a truly end-to-end approach.

5.3. PAIRWISE DETECTION AND POSE ESTIMATION
This section presents the new Simple Pair Pose (SPP) for top-down pose estimation to
solve inherent ambiguity issues in proposal based object detection. It consists of two
parts (see Figure 5.11). For the pairwise detection, the detection head of the YOLOv3



5.3. PAIRWISE DETECTION AND POSE ESTIMATION

5

93

Figure 5.11: Overview of the Simple Pair Pose (SPP) method consisting of a pairwise detection a) and pose
estimation method b).

[128] detector is duplicated to predict pedestrian pairs based on single proposals and to
improve the recall in groups. In the pairwise pose estimation part, the single person pose
estimation network described in [101] is extended to jointly estimate the poses of paired
detections.

5.3.1. RECAPITULATION OF NMS ISSUES

The focus of Section 5.3 is on the following two issues regarding detection in crowds for
proposal based detection approaches like [58, 109, 128, 132]. First, for a single pedestrian
there are usually several overlapping proposals. The pedestrian is used as training target
for all proposals that are associated e.g. based on an IoU threshold. During inference,
this many to one mapping results in multiple detections per pedestrian that have to be
suppressed by the NMS. Depending on the IoU threshold of the NMS, not all pedestrians
within a crowd may be detected.

Second, within a group scenario, a single proposal often overlaps with several pedes-
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trians. Still, many approaches only select a single person with the highest overlap as
target for every proposal. In inference this may result in some kind of ambiguity. When
a proposal is placed between two pedestrians the final detection may be influenced by
both pedestrians and has a low localization accuracy [158].

To solve this issue a pair of pedestrians is predicted based on a single proposal. As
such paired detections do not suppress each other within the adapted NMS, the recall
in dense traffic scenes is improved. The concurrent work of [28] predicts the full set of
all associated objects based on a single proposal. They duplicate the predictor head of a
feature pyramid network [105] consisting of a classification and localization part. During
training, all predictions from a single proposal are matched with the associated ground
truth annotations minimizing an earth mover distance loss [28]. A Set NMS is applied
where predictions from the same proposal do not suppress each other. Hence, the Set
NMS depends on the information which predictions result from which proposal.

5.3.2. PAIRWISE DETECTION
This section builds on the extended YOLOv3 detection method described in Section 5.2.1.
There, for every prior box, the detection head estimates four coordinate offsets in the
localization part and the confidences for the different classes. The NMS uses an IoU
threshold of 0.5 as in the last Chapter 4 resulting in a low recall for pedestrian pairs.

For such pairs, the pedestrian with the lower bounding box edge is defined to be the
front pedestrian, whereas the other one is the back pedestrian. Following a flat world
assumption this corresponds to the z-ordering in the traffic scene. The ordering for
pedestrians with an equal lower bounding box edge or contradicting occlusion levels is
manually annotated.

The idea of pairwise detection is implemented by duplicating the detection head of
YOLOv3 as shown in part a) of Figure 5.11. Thus, for every prior box two predictions
including two bounding box regressions and classifications are estimated. In the work
of [28] a similar structure results from setting the set cardinality to two. Though, in the
approach here the loss of the set prediction is defined more explicitly as described in
the following. For the first prediction head the target is always the front pedestrian,
while the second prediction head is responsible for estimating the back pedestrian. The
matching is not permutated as in [28]. Thus, separate experts are trained for both cases
disambiguating the detection task for pedestrian pairs, as it is defined beforehand which
pedestrian has to be detected by which head. In [28] this has to be learned implicitly.

As before, the bounding box regression loss (Lloc ) is modeled to follow a normal
distribution as in [93] and the classification to follow a softmax loss (Lcl s ), which enables
uncertainty weighting [83]. The total loss for a prior box associated with a pedestrian pair
is

L (w) =L
f

cl s (g t f , w)+L
f

loc (g t f , w)

+L s
cl s (g t b , w)+L s

loc (g t b , w)
(5.5)

with g t f , g t b as the ground truth annotations of the front and back pedestrian, w as the
weights of the network, and L f ,L s as the losses of the first and second prediction head.

If a pedestrian is not part of a pair, it is defined to be a front pedestrian by default. In
this case the regression loss for the second prediction head is zero, and its target class
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is background. For inference, similar to [28] the NMS is adapted in a way that front
pedestrians do not suppress back pedestrians estimated based on the same proposal
(Pair NMS in Figure 5.11). If both class confidences of a front and back prediction from
the same proposal are above a certain threshold, this is defined as a paired detection.

5.3.3. PAIRWISE POSE ESTIMATION

This section follows the top-down multi person pose estimation approach: In general,
detections are cropped from the input image and a single person pose estimation (SPPE)
network estimates the n heatmaps of the n joints. If a crop contains several pedestrians it
may be ambiguous which pose has to be estimated [70]. This is also caused by imperfectly
localized detection boxes.

To avoid confusions of front and back joints of the front and back pedestrian, heatmaps
for both pedestrians are jointly estimated in a single forward pass. In [101] a pose head
consisting of two upsampling modules and a final convolutional layer is attached to a
ResNet-101 backbone to estimate the pose heatmaps. This pose head is duplicated to
jointly estimate front and back heatmaps as shown in part b) of Figure 5.11. It is possible
to split the paths later (or even earlier) within the network, e.g. by only duplicating the fi-
nal layer. The point to branch may be empirically selected, while an earlier split increases
runtime.

During training, ground truth boxes g t f and g t b of pedestrian pairs are combined
to a single pair box g t p enclosing the two boxes. This combined box is used to crop
the image to ensure that the context of both pedestrians is fully available. The overall
heatmap loss is the sum of the separate heatmap losses for the joints of the front and
the back pedestrian. Training separate experts for estimating the heatmaps of front and
back pedestrians disambiguates the target pose. As before in the detection method, single
pedestrians are defined to be front pedestrians by default, for which the single box is used
for cropping the image. The heatmap loss for the back joints is zero in this case. During
inference, paired detections of the pairwise detector are combined as in the training
before cropping, while single detections are kept as they are. The best front and back
poses from the heatmaps are extracted using spatial argmax. Hence, the new method
does not depend on a post-processing step to handle poses of pedestrian pairs. As all
computations are shared apart from the duplicated pose head, the runtime for pedestrian
pairs is lower in comparison with estimating the two poses based on separate image
crops.

5.4. THE EUROCITY PERSONS DENSE POSE DATASET

5.4.1. DATA SELECTION

For the ECP detection benchmark in Chapter 4 images only of the front facing camera
attached behind the windshield have been utilized. A fixed sample rate has been used to
extract and annotate images to avoid any selection bias.

For the EuroCity Persons Dense Pose (ECPDP) dataset the main focus is shifted to
crowded scenes. In addition to the front facing camera, two side facing cameras with a
higher horizontal field of view of 85◦ had been attached at the left and right door mirrors
(see Figure 4.2). As described in Chapter 4, they feature the same resolution and have
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Figure 5.12: Frequencies of various pedestrian configurations within the EuroCity Persons Dense Pose (ECPDP)
dataset (top: height, middle: pedestrians per frame, bottom: density). The density of pedestrians (bottom) is
only shown for overlapping boxes, meaning densities greater zero. The density of a pedestrian is defined as the
highest IoU with any other pedestrian within the same image.
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been synchronously triggered with the front facing camera. Adding images of the side
facing cameras increases the amount of crowded scenes for the ECPDP dataset.

Hence, images with a high number of persons are selected from the front as well
as side facing cameras. For images already contained in ECP this is done based on the
number of box annotations. For the remaining images a Faster R-CNN [132] model trained
on ECP is run to detect crowded scenes.

Overall, 30,704 images are selected from the front facing camera, of which 14,438 are
already part of the ECP dataset. Further 8,263 images from the left and 8,008 images from
the right camera are added to the final image set consisting of 46,975 images in total.
It is ensured that the train-val-test split of the new ECPDP dataset is aligned with the
train-val-test split of ECP described in Section 4.6.

5.4.2. DATASET ANNOTATION
Apart from poses the annotation protocol mimics that of ECP [13]. For every image all
pedestrians and riders of at least 20 pixels in height are annotated with tight bounding
boxes of the complete extent. If a person is not fully visible, the extent is estimated. In that
case, the level of occlusion and truncation is annotated. Groups of persons that are not
distinguishable are annotated with boxes enclosing the groups, serving as ignore regions
during evaluation. Ignore regions are also class-specific for pedestrians and riders. If the
class can not be discriminated by the annotator, it is labeled as generic person ignore
region. In addition, annotations comprise the complete poses consisting of 17 joint points
as in MSCOCO [107] for persons that are greater than 60 pixels in height. For every joint,
it is indicated if it is fully visible, self-occluded or occluded.

5.4.3. DATASET STATISTICS
Data distributions for pedestrians of the new dataset are shown in Figure 5.12. Due to
the data selection targeted on crowded scenes, there is a peak around six pedestrians per
frame. The overlap between pedestrians is analyzed, as mutual occlusions of pedestrians
cause major challenges even for recent deep learning approaches. As in [108], the density
of a pedestrian is defined as the highest IoU with any other pedestrian in this scene. As
defined before, if the density is greater than 0.5, the two pedestrians form a pair. The
amount of pairs in the ECPDP dataset is about one percentage point higher than in the
ECP dataset (5.9% in contrast to 5.0%). Regarding riders, only 1.2% of these have a mutual
IoU greater 0.5. Therefore, the focus is on pedestrians only in the pairwise experiments.

Compared to other automotive datasets, the new ECPDP dataset provides the largest
number of pose annotated persons (cf. Table 5.1). Furthermore, the ECPDP contains
the largest average number of persons per image overall. Thus, it enables the targeted
evaluation of pose estimation in dense urban traffic scenes. Detailed statistics of the
dataset subsets are shown in Table 5.4.

5.4.4. METRICS
The detection performance is evaluated applying the log average miss rate (LAMR) as in
[13] on the relevant subset defined in this chapter. The object keypoint similarity (OKS)
from [107] is used to evaluate pose estimation accuracy. The pairwise pose evaluation
matches objects based on their IoU and measures the average OKS for true positives.
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Table 5.4: Statistics of the subsets of the new ECPDP dataset regarding the number of images and the amount of
boxes, poses and ignore regions of pedestrians and riders and the number of generic person ignore regions that
may contain pedestrians as well as riders.

train val test total

# images 29,570 5,150 12,255 46,975
# pedestrian boxes 251,654 47,530 99,529 398,713
# pedestrian poses 167,066 30,960 65,698 263,724
# pedestrian ignore 17,140 3,394 7,255 27,789
# rider boxes 21,617 3,624 8,458 33,699
# rider poses 10,164 1,704 3,737 15,605
# rider ignore 943 150 347 1,440
# person ignore 9,158 1,783 3,605 14,546

In [107], objects are matched based on their OKS instead of the IoU, as not all of the
bottom-up methods provide bounding boxes. They calculate the average precision (AP)
for different OKS matching thresholds. The same evaluation procedure is applied for the
overall pose estimation performance that serves as baseline for benchmarking on the new
pose dataset. Instead of calculating the AP the LAMR is used. The LAMR implementation
of [13] is adapted matching objects based on their OKS instead of the IoU. Samples
without pose annotations or that are not part of an evaluation subset serve as ignore
instances and are still matched based on the IoU if there is no other non-ignore instance
that exceeds the OKS threshold for matching.

5.5. EXPERIMENTS
The experiments first focus on training and evaluation of the pairwise detection method
for pedestrians. Then, the training setup for the pairwise pose estimation is described,
and results of the pose estimation for pedestrian pairs are shown. Finally this section
shows the overall pose estimation performance on the complete ECPDP test dataset that
serves as baseline on the new pose benchmark. Riders are also included in the training of
all models. Still, as rider pairs are rare, only the front prediction head and the front pose
heatmaps are trained with riders and the evaluation focuses on pedestrians.

5.5.1. PAIRWISE DETECTION TRAINING

This section builds upon the experiments for the extended YOLOv3 model in Section
5.2.2. The same nine prior sizes optimized on the ECP training dataset are used. Flipping
and crop and scale augmentation are applied in all trainings. For the Base model the
training of the Extended model evaluated in Section 5.2.2 with a single prediction head is
continued on the training subset of the new ECPDP dataset. It is trained for 50 epochs,
reducing the initial learning rate of 1e-5 after 30 and 44 epochs by a factor of 0.1.

Finally, the pairwise detection network is also trained on ECPDP. The Extended model
is used for initialization. The weights of the additional convolutional filters of the second
prediction head for estimating the classification and bounding box regression of the back
pedestrian are randomly initialized. Best results are achieved with a fixed weighting for
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Figure 5.13: Qualitative results of AlphaPose+ (left within each pair of image crops) and the new pairwise pose
estimation (right within each pair of image crops) for back pedestrians (red) and front pedestrians (green) of
valid paired detections (green and red bounding boxes). The first three rows show samples where the presented
method surpasses AlphaPose+, while the last two rows show error cases.
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the losses of the second prediction head instead of uncertainty weighting [83] that is used
for the losses of the first prediction head. The Pair model is also trained for 50 epochs
with the same learning rate strategy as the Base model.

5.5.2. PAIRWISE DETECTION RESULTS
The detection performance for pedestrians is evaluated on the relevant subset of the
ECPDP test dataset.

A version of the Pair model discarding all back predictions (coined Pair w/o back) is
also evaluated. This removes the influence of back predictions that on the one hand in-
crease the recall in groups but on the other hand decrease precision due to false positives.
A greedy NMS with an IoU threshold of 0.5 is applied for this version of the Pair model
and the Base model. The full Pair model including back predictions makes use of the
adapted NMS as described in Section 5.3.2.

Quantitative results are shown in Table 5.5. The LAMR of the two Pair model variants is
0.8 points higher than of the Base model. The additional prediction head slightly reduces
the overall detection performance. Still, the recall for pedestrian pairs can be increased
by the back predictions. Despite the NMS threshold of 0.5, the recall of the Base model for
pairs at a false positive per image (fppi) rate of 1.0 is also greater 50%. This is caused by
imperfectly localized predictions that are not suppressed by the greedy NMS.

Results of valid paired detections are shown in Figure 5.13. In Figure 5.14 the recall
is shown for different density ranges of the test samples for a fppi rate of 1.0. The Pair
model achieves the highest recall for density ranges above 0.5.

Table 5.5: Detection results for pedestrians of the relevant subset on the ECPDP test subset. All values are given
in percentage points. Rec>0.5 f :x is the recall for pedestrians of pairs with a mutual IoU greater 0.5 for a given
false positive per image (fppi) rate of x.

Model LAMR Rec>0.5 f :0.1 Rec>0.5 f :1

Base 28.2 51.7 62.1
Pair w/o back 29.0 49.1 62.0
Pair 29.0 55.5 70.0

5.5.3. PAIRWISE POSE TRAINING
For better comparability with AlphaPose+ [101] the new pairwise pose estimation method
is integrated into the provided source codec. This comprises the duplication of the pose
head consisting of two upsampling modules and a final convolutional layer attached to a
ResNet-101 [68] backbone, combining pedestrian pairs before cropping, and skipping
the graph based optimization of AlphaPose+. (Only duplicating the final convolutional
layer has lead to inferior results in previous experiments.) By using the framework of
AlphaPose+, the straightforward integrability into other methods is verified. The joint
candidate loss proposed in [101] is not provided in their framework. For training of the
AlphaPose+ baseline and the new pairwise pose estimation the mean squared error is
used as heatmap loss. The training settings are identical for both methods. The person

chttps://github.com/MVIG-SJTU/AlphaPose/tree/pytorch
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Figure 5.14: Recall of pedestrians normalized per bin for the three detection models in dependence of the
density of the test samples. The density is defined as the highest IoU with any other test sample.

crops from the input image are rescaled to 320 x 256. The output heatmap resolution is
80 x 64. The training duration is 110 epochs, reducing the initial learning rate of 1e-4 to
1e-5 after 80 epochs.

Table 5.6: Pose results in terms of mean OKS (median in brackets) for detected pedestrian pairs of the ECPDP
test subset. All values are given in percentage points.

Model OK S
f
vi s OK S

f
al l OK Sb

vi s OK Sb
al l

AlphaPose+ 85.6 (93.3) 83.8 (88.9) 68.7 (75.8) 65.5 (68.7)
SPP 86.9 (94.3) 84.9 (89.7) 75.9 (81.9) 68.3 (71.7)

5.5.4. PAIRWISE POSE RESULTS
For evaluation of the new SPP method on the test dataset, the pairwise pose model is
run on the detections of the Pair detection model including back predictions. Paired
pedestrian predictions are combined first to jointly estimate the front and back pose. The
predictions of the Pair model are also used as input for AlphaPose+ for better comparabil-
ity and as YOLOv3 is also the underlying detection method in [101].

The evaluation focuses on the pair scenarios. Table 5.6 shows mean and median
OKS values on the 346 correctly detected pedestrian pairs. The two estimated poses are
associated with the front and back ground truth poses optimizing the overall OKS value.
OK S f and OK Sb are the OKS values for front and back pedestrians. All joints or only
visible joints are taken into account for OK Sal l and OK Svi s . The SPP model performs
best for front as well as back pedestrians of pairs. Most significant improvement can be
observed for back pedestrians, which is 7.2 percentage points for the mean OKS evalu-
ated on visible joint points (OK Sb

vi s ) and 2.8 points on all joints (OK Sb
al l ). AlphaPose+

performs similarly for poses of front pedestrians. In the qualitative results in Figure 5.13
there are several cases where AlphaPose+ confuses poses of the front with the back pedes-
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trians. This is caused by missing joint candidates for the pedestrians in the back, whereas
SPP profits from the expert knowledge for the back pedestrians. Figure 5.15 shows the
OKS improvement of the new method in comparison with AlphaPose+ for these back
pedestrians in dependence of the IoU between the paired detections. Apart from the last
bin that only contains seven samples, a higher IoU between the detections results in a
higher average improvement by SPP. This can be expected as a higher overlap between
detections may also induce more difficulties in discriminating the two pedestrians within
the pose estimation. This higher overlap can be also caused by a low localization accuracy
of the pair detector, e.g. when the pair detector itself confuses extents of front and back
pedestrians. The SPP method suffers less from these localization errors of the underlying
detector as the two boxes are combined and the disambiguation is solved by the different
experts.
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Figure 5.15: Mean OK Sb
al l improvement u for back pedestrians of the SPP method in comparison with Alpha-

Pose+ in dependence of the density of the paired predictions binned over different density ranges r with # as
the number of samples per bin.

Table 5.7: Overall pose performance on the ECPDP test subset. All values are given in percentage points. For the
LAMR Lt

o test samples occluded up to o% are matched based on an OKS threshold t. Pairwise training is only
applied for pedestrians in the SPP method.

Model Class Scores L0.5
40 L0.75

40 L0.5
80 L0.75

80

AlphaPose+ Ped. Box 33.9 56.7 41.1 64.0
AlphaPose+ Ped. Pose 29.8 49.3 36.1 56.2
SPP Ped. Box 32.0 56.3 39.8 63.8
SPP Ped. Pose 28.9 48.8 35.9 56.0

AlphaPose+ Rider Pose 11.2 19.0 13.7 23.1
SPP Rider Pose 11.5 19.0 14.1 23.1

5.5.5. OVERALL POSE RESULTS
For benchmarking purposes on the new dataset, Table 5.7 shows the OKS based LAMR
(abbreviated as L in the following) on all test samples annotated with poses for pedestrians
and riders. Two different OKS thresholds are used for matching: 0.5 for L0.5 and 0.75
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for L0.75 respectively. L40 is calculated for persons less than 40% occluded and L80 for
less than 80% occlusion. As before, the detections from the Pair model are used for
inference of AlphaPose+ and the new pairwise pose model. For pedestrians, results are
compared using the confidences from the box detector and the confidences from the
pose estimation, where heatmap scores are added to the initial class scores. Confidences
from the pose estimation result in better performance for both models. The methodical
focus is on pedestrian pair situations. As the amount of pedestrian pair situations is low
in comparison with all test samples the overall performance is only slightly better than
for AlphaPose+, e.g. by 0.9 points for L0.5

40 . The performance for pedestrians up to 80%
occlusion is similar. Note that the experiments do not make use of pairwise training
for riders in the SPP method due to the low relative amount of pairwise rider situations.
Therefore, the results for riders in Table 5.7 for SPP does not show any improvement over
AlphaPose+.
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CONCLUSION AND FUTURE WORK

This thesis addressed the topic of visual person detection and pose estimation for auto-
mated driving in urban traffic scenes with deep learning. On one hand, new methods
have been presented leveraging the capability of deep neural networks to learn pow-
erful features from raw pixel data. Thus, detection and pose estimation performance
has been improved overall despite the challenges listed in Section 1.1.4, in particular
the high intra-class variance of persons and dense traffic scenes. On the other hand,
new datasets have been created accompanying the work of this thesis, which were made
publicly available. Especially the EuroCity Persons (ECP) detection dataset enabled a de-
tailed evaluation of deep learning methods. Pre-training on ECP also led to an improved
detection performance on other datasets due to its high diversity and quantity of person
annotations.

6.1. CONCLUSION
This section draws conclusions along the chapters of the thesis, while also paying atten-
tion to the question “Which performance is needed for automated driving?".

Joint Detection and Orientation Estimation. Chapter 3 presented a novel approach
called Pose-RCNN for joint object detection and orientation estimation. The proposed
approach exploits deep learning to jointly perform object bounding box regression, clas-
sification, and orientation estimation. It is supported by a combination of 3D object
proposals from stereo and lidar measurements. On the KITTI benchmark, the proposal
generation in combination with the joint detection and orientation approach outper-
forms other state of the art approaches for the Easy test scenario of the bicycle class. It
achieves an average precision of 80.8, while the second-best performing method SubCNN
[165] achieves 79.5. Regarding orientation estimation, the average orientation similarity
is 75.5 which is 3.5 percentage points more than achieved by SubCNN. As explained in
Section 3.4, average precision is an upper bound for the average orientation similarity. For
pedestrians and riders, Pose-RCNN gets closer to this upper bound than the other state of
the art methods, which shows the high potential of the joint detection and orientation
estimation using the von Mises loss.

105
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ECP Benchmark Results. As the KITTI 2D detection benchmark has aged since its
recording a decade ago, the new ECP dataset has been created and presented in Chapter 4.
It takes annotations of persons in urban traffic scenes to a new level in terms of quantity,

diversity, and detail compared to datasets used for person detection in traffic scenes before
the publication of the ECP dataset [13]. Four state of the art deep learning approaches
(Faster R-CNN, R-FCN, SSD, and YOLOv3) were thoroughly optimized to serve as baselines
for the new person detection benchmark. The recall of the proposal boxes has been
optimized by adapting the scales and aspect ratios for all methods. For Faster R-CNN
and R-FCN, the network architecture has been adapted reducing the feature stride by
removing a max-pooling layer. Furthermore, upscaled images have been used as input
as it improved performance. A variant of Faster R-CNN performed best overall, with a
log-average-miss-rate of 7.9, 17.0, and 33.2 on the "reasonable", "small" and "occluded"
test cases, respectively. The better performance of this two-stage method in comparison
with the one-stage methods YOLOv3 and SSD comes at the cost of a slower runtime (1.7
fps vs. 3.8 fps of YOLOv3). In contrast to the Pose-RCNN method, Faster R-CNN integrated
the proposal generation into the network itself. Nowadays, external proposal sources
are no longer used in most approaches [39, 96, 109, 127, 132], which is a necessary step
towards end-to-end learning. For one of the experiments on the ECP benchmark the
orientation estimation of Pose-RCNN has been integrated into Faster R-CNN.

The experiments showed that data is still a driving factor for the person detection
performance in urban traffic scenes: Even at the new training data sizes that are about
one order of magnitude larger than previous ones, the considered deep learning methods
do not saturate in detection performance. Furthermore, the experiments on transfer
learning showed that detectors pre-trained with the ECP dataset and fine-tuned on
another target dataset, yield superior performance than those trained on the target dataset
only (improvements on KITTI and CityPersons by 6-12 and 2-9 points, respectively).
Conversely, pre-training with KITTI and CityPersons helped only marginally, if at all,
when evaluating on the ECP test dataset. These results can also be attributed to the
diversity of the ECP dataset.

The experiments also showed that night-performance is only a few percentage points
lower than day-time performance. Experimental results on the ECP dataset furthermore
indicate that a statistically significant bias exists on detection performance across large-
scale regions in Europe, resulting in performance variations of the same order. Adding
orientation estimation to object detection lowers the detection performance by a single
percentage point for the Biternion loss.

The error analysis has shown that similar objects like depictions and reflections result
in confusion with real VRUs. Utilizing the already annotated reflections and depictions
as additional classes during training could improve the discrimination thereof, similar
to the discrimination of pedestrians and riders. Samples with small resolution are still
challenging despite the great amount of small-sized pedestrians present in the ECP
dataset. Approximately 75% of the false positives at 0.3 fppi analyzed in Figure 4.13 are
smaller than 80 pixels. Despite the fact that there are methods tuned for smaller objects
like [17], the performance for the small scenario still falls behind the reasonable test
scenario on the ECP benchmark as shown in Section 4.5. This also holds for the occluded
scenario.
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Further improvement will in part still come from additional data. The analysis of the
effect of annotation accuracy on detection performance could be useful to plan future
annotation efforts.

Group Handling (NMS Adaptations and Pairwise Estimation). Still, it is not data
alone that is needed for improvement. The benchmark experiments showed methodical
weaknesses in particular in dense, crowded scenes. The greedy NMS used in a post-
processing step by the analyzed methods implies a trade-off between recall and precision.
Chapter 5 addressed detection and pose estimation in such crowded scenes. The first
part aimed for improving the detection performance by using discriminative attributes
within the NMS. Therefore, YOLOv3 has been extended by uncertainty estimation and
several prediction heads for the different attributes, i.e. the level of occlusion, the body
orientation, and the head box position. Extending YOLOv3 did slightly lower the detection
performance from 6.9 to 8.0 points LAMR, when estimating all three additional attributes.
The multitask networks using additional prediction heads for the orientation and head
box position only achieve a similar performance. A ceiling analysis based on ground
truth annotations showed that the level of occlusion and the body orientation are less
discriminative for the number of instances than the head box position. Using the head box
instead of the body box within the greedy NMS did not improve detection performance.
In further experiments, the GossipNet architecture [73] was trained for the task of NMS to
replace the greedy NMS also incorporating the head box position as an additional input
feature. Despite several adaptations e.g. regarding the loss function, the performance
of the greedy NMS could not be achieved. This is caused by ambiguities involved in
detection and estimation of further attributes. If a proposal box is in between overlapping
persons, features from both pedestrians influence the inference result and it may be
ambiguous whose position or attribute should be estimated based on that single proposal.
As overlapping persons also pose challenges for pose estimation, the ambiguities in
detection and pose estimation were tackled in the second part of Chapter 5 by jointly
handling pairs of pedestrians.

To this end, the new Simple Pair Pose method for top-down human pose estimation
has been created. The extended, underlying YOLOv3 detector improves the recall in
groups by jointly detecting pairs of pedestrians. The issue of ambiguities is solved by
training separate prediction heads for the pedestrian in the front and back. Experimental
results for the new pose estimation method that jointly predicts poses for both pedestri-
ans of these pairs have been shown. As all computations are shared apart from the final
duplicated layers, it reduces the runtime for paired detections in comparison with sepa-
rate pose estimation. Yet, implicitly training different experts for poses of front and back
pedestrians is very effective and surpasses the AlphaPose+ method used for comparison.
Regarding pedestrian pairs, Simple Pair Pose achieves a mean object keypoint similarity
(OKS) of 75.9 for visible joints of pedestrians in the back, while AlphaPose+ achieves 68.7.
Despite the focus on pairwise constellations, the pose estimation performance on the
full test dataset is similar to AlphaPose+. The approach could be easily integrated into
other heatmap-based single-person pose estimation approaches than AlphaPose+. It
could also be used as input for the recent graph-based method [124] that relies on input
poses from AlphaPose+. The graph convolutional network proposed by [124] refines pose
results and thus could further improve the performance of Simple Pair Pose. The idea
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to jointly predict poses of pedestrian pairs to solve ambiguities may also be applied to
jointly predict other attributes (e.g. head box position, body orientation).

The new EuroCity Persons Dense Pose (ECPDP) dataset has been created, which pro-
vides the largest number of pose annotated persons in comparison with other automotive
datasets and the largest average number of persons per image. Thus, it will serve for
benchmarking of pose estimation methods on dense urban scenarios.

Performance Considerations. The introduction chapter of this thesis discussed the
performance gap between machine learning approaches and an attentive human as
shown in [178] (see Section 1.1.4). Regarding orientation estimation, this performance gap
is nearly closed for pedestrians greater 200 pixels as shown in Figure 4.16, which compares
human annotation accuracy with estimation results. In terms of detection performance,
deep learning approaches are now also closing in on the human performance. A recent
paper [85] achieves 2.2 points LAMR on the Caltech-USA dataset, while the human
baseline is at 0.8. This is also the case regarding detection performance on the ECP dataset.
The qualitative analysis in Chapter 4 already showed that the remaining errors are indeed
“hard” samples even for a human, and there has been further progress since then as shown
in Section 4.5. For a quantitative evaluation if there is a remaining performance gap the
experiments of [178] could also be repeated on the ECP dataset. Still, such experiments
would not answer the question of which visual detection performance is needed for
the different SAE levels of automated driving (shown in Figure 1.3). The performance
requirements differ in dependence on the desired level. For example, level three and four
in contrast to level five are still limited to specified driving modes such as certain regions
or road types, which may put lower requirements on detection performance. For all levels,
detections may not need to be perfect as discussed in Section 4.4. First, errors are not
equally important. They matter more at close distance to the vehicle, which coincides
with a better detection performance for nearby objects. Second, the functional chain, in
particular the follow-up tracking module, may suppress false positives and recover false
negatives over time. Third, automated vehicles usually not only rely on a single camera
but multiple sensors including radar and lidar. Therefore, it is difficult to answer the
initial question only considering the visual detection performance alone, as the answer
depends on the overall sensor setup within the car and the performance of the perception
methods running on other sensors and the processing by the following functional chain.
Still, it seems to be sufficient to a certain degree looking at what is already available in
market. E.g. Waymo provides a fully automated taxi service in San Francisco even without
a safety driver. The service is geofenced, meaning it is limited to a certain area as their
vehicles also depend on a high-definition map. Long-term statistics will hopefully show
fewer accidents in comparison with human drivers and a hereby increased road safety
for VRUs, which would provide some kind of empirical proof that detection performance
is already sufficient to replace a human driver. Still, even if those automated vehicles
already drive more safely than humans, further improvement will be needed to further
increase the safety.

6.2. FUTURE WORK
This section first discusses potential methodical improvements of Pose-RCNN and the
need for uncertainty estimation. Then, data efficiency aspects regarding collection,
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annotation, and usage of data for deep learning including benefits for Pose-RCNN and
Simple Pair Pose are addressed. Finally, this section concludes with a discussion of end-
to-end training of the full functional chain including the integration of multiple sensors.

The proposal generation of Pose-RCNN may be further improved by reducing the
number of proposals while keeping a high recall. This would further improve the detection
performance while reducing the needed runtime. Still, nowadays external proposal
sources are no longer needed. Faster R-CNN [132] integrated the proposal generation into
the network, which is a lot faster due to the realization with convolutional layers. Other
works skip the separate proposal stage, like SSD [109] or YOLOv3 [127], or come with no
proposals at all [39, 96].

The von Mises loss formulation for orientation regression shows promising results
with Pose-RCNN and with Faster R-CNN on the ECP dataset in Chapter 4. Still, it is not
only important to get an accurate estimate of person attributes like the orientation or pose
but also information on how reliable the estimation is. This motivates stronger attention
to this uncertainty estimation in the future, also triggered by the work of Kendall [84]. The
uncertainty estimation will be integrated into the networks themselves. This research
branch can already be observed e.g. for the von Mises loss in the work of [123] building
upon the Pose-RCNN publication [15] (Chapter 3). [123] models orientation estimation
with a mixture of von Mises distributions. For every distribution, a mean, concentration,
and confidence value is estimated by the network. This solves some ambiguity issues
in orientation estimation, as confusions of opposite directions are quite common, in
particular for low resolutions. A single von Mises distribution can only represent a single
direction by its single mean value, while a mixture can distribute the confidence on
mixture components with different, even opposing mean values.

The large number of person annotations of the ECP dataset leads to an improved
detection performance that does not saturate yet. Further diverse training datasets will
add further performance boosts in the future. Still, as the gain reduces logarithmically
as the amount of training data increases it will be less efficient and more difficult to
collect appropriate data. There has to be more focus on the collection of difficult cases,
which are more helpful in the training of detectors. That is especially the case for rare
classes. For the ECP dataset rare classes are e.g. children (as analyzed in [14]), duties
(e.g. police officers, firemen, ...), and persons showing non-standard poses, like traffic
control gestures or turning gestures of bicyclists. For the application of fully automated
driving, good performance for these rare cases is just as crucial as for other frequent
classes. There are mainly two potential ways to collect targeted data for difficult or rare
cases. First, more sophisticated collection strategies are needed. Instead of sub-sampling
recordings for annotation at a fixed rate, the recordings may be analyzed automatically
with machine learning support selecting frames with difficult or rare cases. See [131]
for a recent survey on this domain of active learning. For the selection of difficult cases,
uncertainty estimation also plays an important role, as a high uncertainty indicates a
difficult sample. Note that this machine learning support has been explicitly avoided
for the creation of the ECP dataset to avoid any dataset bias. This trade-off between
dataset bias and efficient data collection has to be considered in the future. Second, more
data could be created with generative models as done in [62] to improve classification
performance for special persons like police officers, construction workers and school
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guards.

Even with sophisticated methods, it might be difficult to get sufficient data. Graphics
processing units and huge amounts of data have enabled the rise of deep learning, but it
is debatable if a large number of training samples can be achieved for rare cases or when
domain adaptation is needed as investigated in [66]. Humans are capable of interpreting
their environment even if there are unknown objects that have never been seen before
based on their skill to transfer experience and knowledge to unseen object categories. The
same skill might be needed for rare classes. This is targeted by the domain of single-shot
learning [50] or even zero shot learning [164]. Needing less training data also means
less manual annotation effort. While the ECP dataset has been annotated completely
manually, this is no longer feasible for even bigger datasets like Argoverse [22] and the
Waymo Open Motion dataset [47], as the cost of hand labeling is too high [47]. E.g. [47]
uses offboard lidar based 3D object detection for label generation.

Another possibility to increase data efficiency is self-supervised representation learn-
ing, which is a subcategory of unsupervised learning. Methods of that category automati-
cally generate pseudo-labels [45] from unlabeled data with no or little manual effort for
pre-training of deep neural networks. See [45] for an overview of different mechanisms
to generate such labels. Recently, [149] has been very successful with self-supervised
training and outperformed another baseline for classification on the ImageNet dataset
without using ImageNet labels for pre-training (finetuning is done with labels on a smaller
portion of the dataset). Finally, graphic rendering has already been used for the training
of deep neural networks [112]. A further increase in photo-realism e.g. within simulation
frameworks for intelligent vehicles will be beneficial for visual deep learning approaches.

A higher data efficiency will also benefit the presented approaches Pose-RCNN and
Simple Pair Pose. As these approaches are mostly modular, further improvements can
also be achieved by replacing modules by newer methods. The orientation head of
Pose-RCNN and the pose head of Simple Pair Pose may be combined with other feature
extractors like HRNet [156], for example. The usage of HRNet [156] has already led to
performance improvements on the ECP detection benchmark as analyzed in Section
4.5. The pairwise pose estimation could also be used with future methods optimized for
detection in dense traffic scenes. Such future detection methods will probably skip the
NMS as a separate post-processing step. Recently, e.g. transformer networks have been
used for object detection [20]. The attention mechanism used within the transformer
processes global information across the full image, which is difficult to achieve with small
local receptive fields of convolutional layers. [20] achieves competitive results with an
optimized Faster R-CNN method on the MSCOCO dataset. Furthermore, it does not
depend on a NMS as a post-processing step, as the transformer network learns to handle
relations between different objects and directly estimates unique detections. Replacing
the NMS or integrating it into the network itself like in GossipNet [73] will move us towards
the goal of fully end-to-end training.

When looking at the intelligent vehicles domain, the trend towards fully end-to-end
training does not only affect detection. In classic approaches, the modules detection,
tracking, prediction, and planning are decoupled. The tracking-by-detection paradigm,
where framewise independent detections are associated and filtered over time, raises
the following issue. Detection performance is evaluated with metrics like LAMR and AP.
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These are metrics to evaluate single frame performance and they treat every pedestrian
equally. Still, for the follow-up tracking approach, a burst of false positives or false
negatives might be worse than missing pedestrians on single frames now and then,
which can be recovered by filtering. Separate training of the detection module usually
targets an optimized detection metric, which does not always result in improved tracking
performance. End-to-end training provides a training signal for the perception module,
which persons have to be detected for optimal performance of the full functional chain.
Apart from that, only using predicted boxes as input for the tracker may once again cause
ambiguities e.g. in the extraction of features for re-identification of objects in dense
scenes [183]. Therefore, in the future, the space and time components will be integrated
more frequently within single approaches as in [25], where LSTMs with attention modules
are used to integrate the time component in detection. The work of [103] presents an
end-to-end model combining detection and prediction. Regarding the full functional
chain, the works of [172] and [134] even go one step further. They use voxelized lidar and
an HD/raster map to integrate detection, prediction, and planning in a full end-to-end
trainable framework.

To increase the reliability of fully automated vehicles, usage of redundant information
from different sensors with different strengths and weaknesses will be required, while
there is no use of multimodalities yet in the works of [172] and [134]. E.g. the View-of-Delft
dataset [118] provides a multi-sensor benchmark comparing detection performance for
the usage of radar and lidar pointclouds. In classic approaches, lidar, radar, and visual
detection are often done separately and fused in a later stage, e.g. within the tracking
module. Early fusion of features of lidar and RGB as in [142] may also improve the overall
performance.

The experiments of the ECP benchmark have shown that the development of appropri-
ate multi-task deep networks, which combine a holistic approach to scene understanding
with specialized person detection, taking advantage of known bias (geolocation, time of
day, weather condition) are promising.

Summarizing most of this section, future work will probably show a full integration
of multiple tasks (detection, pose estimation), uncertainty estimation, context informa-
tion (geolocation, time of day), multiple sensor modalities, temporal information, and
the complete functional chain (including detection, tracking, prediction, and planning)
within end-to-end trainable frameworks. The ECP benchmark and the ECPDP dataset
will stimulate research towards finding the best approach for person detection and pose
estimation in traffic scenes within such a framework - an approach that will hopefully
run onboard future intelligent vehicles to save lives.
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the Soča (together with Sebastian) are quite memorable. I also had the great pleasure
of working with several master students, in particular Yikang Wang and Phillip Czech.
Thanks for your contributions to this thesis. Many thanks to Florian Kraus, for interesting
and joyful conversations and your deep learning expertise e.g. regarding the mathematical
foundations of loss functions. Special thanks to Dr. Qing Rao for the collaboration on one
of my first publications and Julian Wiederer for nice conversations, great hospitality in
Stuttgart, and intensive squash sessions. Thanks also go to Dr. Andreas Fregin for helpful
tooling in the application of ROS in our sensor vehicle and Hidde Boekema for the Dutch
translation of the summary.

I would like to thank my friends, who never let me down. In particular, I am very
grateful to Roland Wörz and Eray Özmü for their unwavering friendship since school.
I also want to express my deepest gratitude to my dear parents, for their outstanding
role in my life. I know, my deceased father, who also had a strong passion for technical
innovations, would be proud. The immeasurable support and encouragement of my

113



114 ACKNOWLEDGEMENTS

mother, and also my brothers, cannot be overestimated.
Finally to my own family - the center of my universe. The completion of this thesis

would not have been possible without the infinite support, encouragement, tolerance,
and optimism of my wife, Anna. Thank you for always being at my side during that chapter
in my life. Two years ago, we have been joined on our journey by our daughter Linda.I
could not have imagined the boundless joy that comes from your smile and laughter, your
excitement in discovering the world around you, or from holding you in my arms. Last
month, my infinite love and joy grew even bigger when we welcomed our daughter Elise.
I have now concluded the chapters of this thesis. With the deepest love for my family, I
look forward to future chapters in our life.



CURRICULUM VITÆ

Markus BRAUN

24-09-1989 Born in Heilbronn, Germany.

EDUCATION
2015-Present Ph.D. in the Cognitive Robotics department

Delft University of Technology
Thesis: Visual Detection and Pose Estimation of Vulnerable

Road Users for Automated Driving

2012–2015 MSc Computer Science
Karlsruhe Institute of Technology, Germany

2009–2012 BSc Computer Science
Karlsruhe Institute of Technology, Germany

PROFESSIONAL EXPERIENCE
2015–Present Mercedes Benz AG, Germany

Machine Learning Engineer in the Pattern Recognition team.
2014 Microsoft Development Center Norway, Norway

Three months internship as Software Developer in the Microsoft
SharePoint team in Oslo.

115





LIST OF PUBLICATIONS

7. M. Braun, F. Flohr, S. Krebs, U. Kreßel, D. M. Gavrila, Simple Pair Pose - Pairwise Human Pose
Estimation in Dense Urban Traffic Scenes, Proc. of the IEEE Intelligent Vehicles Symposium,
2021, pp.1545–1552.

Author contributions: M. Braun implemented and evaluated the proposed method and
wrote the paper, M. Braun created the dataset together with F. Flohr, S. Krebs and U. Kreßel
supported the recordings and the preparation of the dataset, D. M. Gavrila provided guidance
and supervision.

6. M. Braun, S. Krebs, D. M. Gavrila, ECP2.5D - Person Localization in Traffic Scenes, Proc. of
the IEEE Intelligent Vehicles Symposium, 2020, pp.1694-1701.

Author contributions: M. Braun implemented and evaluated the proposed baseline method
for monocular 2.5D localization, M. Braun and S. Krebs created and implemented the up-
lifting method used to create the ECP2.5D dataset, S. Krebs implemented the ego-motion
correction of lidar pointclouds, M. Braun and S. Krebs wrote the paper, D. M. Gavrila provided
guidance and supervision.

5. S. Krebs, M. Braun, D. M. Gavrila, Generating 3D Person Trajectories from Sparse Image
Annotations in an Intelligent Vehicles Setting, Proc. of the IEEE Intelligent Transportation
Systems Conf., 2019, pp.783-788.

Author contributions: S. Krebs designed, implemented, and evaluated the proposed system,
and wrote the paper, M. Braun provided technical support and feedback, D. M. Gavrila
provided guidance and supervision.

4. M. Braun, S. Krebs, F. Flohr, D. M. Gavrila, EuroCity Persons: A Novel Benchmark for Person
Detection in Traffic Scenes, IEEE Trans. on Pattern Analysis and Machine Intelligence (TPAMI),
2019, vol. 41, no. 8, pp.1844-1861.

Author contributions: M. Braun implemented, modified, and evaluated the benchmark
methods and experiments. M. Braun, S. Krebs, and F. Flohr built up the sensor vehicle and
recorded the data during several journeys. M. Braun created the detection benchmark with
help from F. Flohr and S. Krebs. F. Flohr implemented the server framework to be used for
online benchmarking, M. Braun wrote the journal article with help from S. Krebs and D. M.
Gavrila. D. M. Gavrila furthermore provided guidance and supervision.

3. A. Fregin, M. Roth, M. Braun, S. Krebs, F. Flohr, Building a computer vision research vehicle
with ROS, Proc. of the ROSCon, 2017.

Author contributions: All authors have contributed to building several computer vision
research vehicles with ROS. A. Fregin has created the publication slides.

2. M. Braun, Q. Rao, Y. Wang, and F. Flohr, Pose-RCNN: Joint object detection and pose estimation
using 3D object proposals, Proc. of the IEEE Intelligent Transportation Systems Conf., 2016,
pp.1546-1551.

117

http://dx.doi.org/10.1109/IV48863.2021.9575435
http://dx.doi.org/10.1109/IV48863.2021.9575435
http://dx.doi.org/10.1109/IV47402.2020.9304557
http://dx.doi.org/10.1109/IV47402.2020.9304557
http://dx.doi.org/10.1109/ITSC.2019.8917160
http://dx.doi.org/10.1109/ITSC.2019.8917160
http://dx.doi.org/10.1109/TPAMI.2019.2897684
http://dx.doi.org/10.1109/TPAMI.2019.2897684
https://www.researchgate.net/publication/340521736_Building_a_Computer_Vision_Research_Vehicle_with_ROS
http://dx.doi.org/10.1109/ITSC.2016.7795763
http://dx.doi.org/10.1109/ITSC.2016.7795763


118 LIST OF PUBLICATIONS

Author contributions: M. Braun implemented and evaluated Fast-RCNN methods with stixel
and lidar proposals. Q. Rao implemented Lidar proposal generation. Master student Y.
Wang implemented the method Pose-RCNN together with M. Braun and F. Flohr. All authors
contributed in writing the paper. F. Flohr provided guidance and supervision.

1. X. Li, F. Flohr, Y. Yang, H. Xiong, M Braun, S. Pan, K. Li, and D. M. Gavrila, A new benchmark
for vision-based cyclist detection, Proc. of the IEEE Intelligent Vehicles Symposium, 2016,
pp.1028-1033.

Author contributions: X. Li implemented, modified, and evaluated state of the art methods, F.
Flohr implemented and evaluated the method SP-FRCN and created the dataset together
with Y. Yang. Further F. Flohr has built up the test vehicle for recording the dataset. H. Xiong
and M. Braun helped with the evaluation of the experiments. S. Pan, K. Li, and D. M. Gavrila
provided guidance and supervision.

http://dx.doi.org/10.1109/IVS.2016.7535515
http://dx.doi.org/10.1109/IVS.2016.7535515


BIBLIOGRAPHY

[1] S. Agarwal, J. O. D. Terrail, and F. Jurie. “Recent advances in object detection in the
age of deep convolutional neural networks”. In: arXiv preprint arXiv:1809.03193
(2018).

[2] B. Alexe, T. Deselaers, and V. Ferrari. “Measuring the Objectness of image win-
dows”. In: IEEE Trans. on Pattern Analysis and Machine Intelligence (TPAMI) 34.11
(2012), pp. 2189–2202.

[3] M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele. “2D human pose estimation:
New benchmark and state of the art analysis”. In: Proc. of the IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR). 2014, pp. 3686–3693.

[4] P. Arbeláez, J. Pont-Tuset, J. T. Barron, F. Marques, and J. Malik. “Multiscale com-
binatorial grouping”. In: Proc. of the IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR). 2014, pp. 328–335.

[5] R. Benenson, M. Mathias, T. Tuytelaars, and L. V. Gool. “Seeking the strongest rigid
detector”. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR). 2013, pp. 3666–3673.

[6] R. Benenson, M. Omran, J. Hosang, and B. Schiele. “Ten years of pedestrian de-
tection, what have we learned?” In: European Conference on Computer Vision
(ECCV)Workshop. 2014, pp. 613–627.

[7] B. Benfold and I. Reid. “Guiding visual surveillance by tracking human attention”.
In: Proc. of the British Machine Vision Conf. (BMVC). 2009, pp. 1–11.

[8] B. Benfold and I. Reid. “Unsupervised learning of a scene-specific coarse gaze
estimator”. In: Proc. of the International Conf. on Computer Vision (ICCV). 2011,
pp. 2344–2351.

[9] L. Beyer, A. Hermans, and B. Leibe. “Biternion Nets: Continous head pose regres-
sion from discrete training labels”. In: German Conference on Pattern Recognition
(GCPR). 2015, pp. 157–168.

[10] N. Bodla, B. Singh, R. Chellappa, and L. S. Davis. “Soft-NMS – Improving object
detection with one line of code”. In: Proc. of the International Conf. on Computer
Vision (ICCV). 2017, pp. 5561–5569.

[11] L. Bourdev, S. Maji, and J. Malik. “Describing people: A poselet-based approach to
attribute classification”. In: Proc. of the International Conf. on Computer Vision
(ICCV). 2011, pp. 1543–1550.

[12] M. Braun, F. B. Flohr, S. Krebs, U. Kreßel, and D. M. Gavrila. “Simple Pair Pose -
Pairwise human pose estimation in dense urban traffic scenes”. In: Proc. of the
IEEE Intelligent Vehicles Symposium. 2021, pp. 1545–1552.

119



120 BIBLIOGRAPHY

[13] M. Braun, S. Krebs, F. B. Flohr, and D. M. Gavrila. “EuroCity Persons: A novel
benchmark for person detection in traffic ccenes”. In: IEEE Trans. on Pattern
Analysis and Machine Intelligence (TPAMI) 41.8 (2019), pp. 1844–1861.

[14] M. Braun, S. Krebs, and D. M. Gavrila. “ECP2.5D - Person localization in traffic
scenes”. In: Proc. of the IEEE Intelligent Vehicles Symposium. 2020, pp. 1694–1701.

[15] M. Braun, Q. Rao, Y. Wang, and F. Flohr. “Pose-RCNN: Joint object detection
and pose estimation using 3D object proposals”. In: Proc. of the IEEE Intelligent
Transportation Systems Conf. 2016, pp. 1546–1551.

[16] J. J. Breuer, A. Faulhaber, P. Frank, and S. Gleissner. “Real world safety benefits of
brake assistance systems”. In: International Technical Conference on the Enhanced
Safety of Vehicles (ESV). 2007.

[17] Z. Cai, Q. Fan, R. Feris, and N. Vasconcelos. “A unified multi-scale deep convo-
lutional neural network for fast object detection”. In: European Conference on
Computer Vision (ECCV). 2016, pp. 354–370.

[18] Z. Cai and N. Vasconcelos. “Cascade R-CNN: Delving into high quality object
detection”. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR). 2018, pp. 6154–6162.

[19] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh. “Realtime multi-person 2d pose estima-
tion using part affinity fields”. In: Proc. of the IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR). 2017, pp. 7291–7299.

[20] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko. “End-
to-end object detection with transformers”. In: European Conference on Computer
Vision (ECCV). 2020, pp. 213–229.

[21] J. Carreira and C. Sminchisescu. “CPMC: Automatic object segmentation using
constrained parametric Min-Cuts”. In: IEEE Trans. on Pattern Analysis and Ma-
chine Intelligence (TPAMI) 34.7 (2012), pp. 1312–1328.

[22] M.-F. Chang, J. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett, D. Wang, P. Carr,
S. Lucey, D. Ramanan, et al. “Argoverse: 3d tracking and forecasting with rich
maps”. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR). 2019, pp. 8748–8757.

[23] C. Chen and J.-M. Odobez. “We are not contortionists: Coupled adaptive learning
for head and body orientation estimation in surveillance video”. In: Proc. of the
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). 2012, pp. 1544–
1551.

[24] X. Chen, K. Kundu, Y. Zhu, A. Berneshawi, H. Ma, S. Fidler, and R. Urtasun. “3D ob-
ject proposals for accurate object class detection”. In: Adv. in Neural Information
Processing Systems (NIPS). 2015, pp. 424–432.

[25] X. Chen, Z. Wu, and J. Yu. “TSSD: Temporal Single-Shot Detector Based on Atten-
tion and LSTM”. In: IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). 2018, pp. 1–9.



BIBLIOGRAPHY 121

[26] M.-M. Cheng, Z. Zhang, W.-Y. Lin, and P. H. S. Torr. “BING: Binarized normed
gradients for objectness estimation at 300 fps”. In: Proc. of the IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR). 2014, pp. 3286–3293.

[27] Z. Chong, B. Qin, T. Bandyopadhyay, T. Wongpiromsarn, E. Rankin, M. Ang, E. Fraz-
zoli, D. Rus, D. Hsu, and K. Low. “Autonomous personal vehicle for the first-and
last-mile transportation services”. In: IEEE International Conference on Cybernetics
and Intelligent Systems (CIS). 2011, pp. 253–260.

[28] X. Chu, A. Zheng, X. Zhang, and J. Sun. “Detection in crowded scenes: One pro-
posal, multiple predictions”. In: Proc. of the IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR). 2020, pp. 12214–12223.

[29] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke,
S. Roth, and B. Schiele. “The Cityscapes dataset for semantic urban scene under-
standing”. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR). 2016, pp. 3213–3223.

[30] P. Czech. “Pedestrian detection in autonomous driving by techniques optimized
for crowds with deep neural networks”. Supervision by Markus Braun. MA thesis.
Ruhr-Universität Bochum, Germany, 2020.

[31] J. Dai, Y. Li, K. He, and J. Sun. “R-FCN: Object detection via region-based fully
convolutional networks”. In: Adv. in Neural Information Processing Systems (NIPS).
2016, pp. 379–387.

[32] N. Dalal and B. Triggs. “Histograms of oriented gradients for human detection”.
In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).
2005, pp. 886–893.

[33] B. De Brabandere, D. Neven, and L. Van Gool. “Semantic instance segmentation for
autonomous driving”. In: Proc. of the IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR). 2017, pp. 7–9.

[34] J. Demšar. “Statistical comparisons of classifiers over multiple data sets”. In: Jour-
nal of Machine Learning Research 7 (2006), pp. 1–30.

[35] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. “ImageNet: A large-scale
hierarchical image database”. In: Proc. of the IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR). 2009, pp. 248–255.

[36] P. Dollár, R. Appel, S. Belongie, and P. Perona. “Fast feature pyramids for object
detection”. In: IEEE Trans. on Pattern Analysis and Machine Intelligence (TPAMI)
36.8 (2014), pp. 1532–1545.

[37] P. Dollár, Z. Tu, P. Perona, and S. Belongie. “Integral channel features”. In: Proc. of
the British Machine Vision Conf. (BMVC). 2009, pp. 91.1–91.11.

[38] P. Dollár, C. Wojek, B. Schiele, and P. Perona. “Pedestrian detection: An evaluation
of the state of the art”. In: IEEE Trans. on Pattern Analysis and Machine Intelligence
(TPAMI) 34.4 (2012), pp. 743–761.

[39] K. Duan, S. Bai, L. Xie, H. Qi, Q. Huang, and Q. Tian. “CenterNet: Keypoint triplets
for object detection”. In: Proc. of the International Conf. on Computer Vision
(ICCV). 2019, pp. 6569–6578.



122 BIBLIOGRAPHY

[40] T. Elsken, J. H. Metzen, and F. Hutter. “Neural architecture search: A survey”. In:
Journal of Machine Learning Research 20.1 (2019), pp. 1997–2017.

[41] M. Enzweiler. “Compound Models for Vision-Based Pedestrian Recognition”. PhD
thesis. Institut für Technische Informatik, Ruprecht-Karls-Universität Heidelberg,
Germany, 2011.

[42] M. Enzweiler and D. M. Gavrila. “Integrated pedestrian classification and orien-
tation estimation”. In: Proc. of the IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR). 2010, pp. 982–989.

[43] M. Enzweiler and D. M. Gavrila. “Monocular pedestrian detection: Survey and ex-
periments”. In: IEEE Trans. on Pattern Analysis and Machine Intelligence (TPAMI)
31.12 (2009), pp. 2179–2195.

[44] M. Enzweiler, M. Hummel, D. Pfeiffer, and U. Franke. “Efficient Stixel-based object
recognition”. In: Proc. of the IEEE Intelligent Vehicles Symposium. 2012, pp. 1066–
1071.

[45] L. Ericsson, H. Gouk, C. C. Loy, and T. M. Hospedales. “Self-supervised representa-
tion learning: Introduction, advances and challenges”. In: IEEE Signal Processing
Magazine 39.3 (2022), pp. 42–62.

[46] A. Ess, B. Leibe, and L. Van Gool. “Depth and appearance for mobile scene analy-
sis”. In: Proc. of the International Conf. on Computer Vision (ICCV). 2007, pp. 1–
8.

[47] S. Ettinger, S. Cheng, B. Caine, C. Liu, H. Zhao, S. Pradhan, Y. Chai, B. Sapp, C. R. Qi,
Y. Zhou, Z. Yang, A. Chouard, P. Sun, J. Ngiam, V. Vasudevan, A. McCauley, J. Shlens,
and D. Anguelov. “Large scale interactive motion forecasting for autonomous
driving: The Waymo Open Motion Dataset”. In: Proc. of the International Conf. on
Computer Vision (ICCV). 2021, pp. 9710–9719.

[48] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn, and A.
Zisserman. “The PASCAL visual object classes challenge: A retrospective”. In:
International Journal of Computer Vision 111.1 (2015), pp. 98–136.

[49] D. J. Fagnant and K. M. Kockelman. “The travel and environmental implications
of shared autonomous vehicles, using agent-based model scenarios”. In: Trans-
portation Research Part C: Emerging Technologies 40 (2014), pp. 1–13.

[50] L. Fei-Fei, R. Fergus, and P. Perona. “One-shot learning of object categories”. In:
IEEE Trans. on Pattern Analysis and Machine Intelligence (TPAMI) 28.4 (2006),
pp. 594–611.

[51] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. “Object detec-
tion with discriminatively trained part-based models”. In: IEEE Trans. on Pattern
Analysis and Machine Intelligence (TPAMI) 32.9 (2010), pp. 1627–1645.

[52] F. Flohr, M. Dumitru-Guzu, J. F. P. Kooij, and D. M. Gavrila. “A probabilistic frame-
work for joint pedestrian head and body orientation estimation”. In: IEEE Trans.
on Intelligent Transportation Systems (TITS) 16.4 (2015), pp. 1872–1882.



BIBLIOGRAPHY 123

[53] F. B. Flohr. “Vulnerable road user detection and orientation estimation for context-
aware automated driving”. PhD thesis. Informatics Institute (IVI), University of
Amsterdam, Netherlands, 2018.

[54] J. H. Gawron, G. A. Keoleian, R. D. De Kleine, T. J. Wallington, and H. C. Kim. “Deep
decarbonization from electrified autonomous taxi fleets: Life cycle assessment
and case study in Austin, TX”. In: Transportation Research Part D: Transport and
Environment 73 (2019), pp. 130–141.

[55] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. “Vision meets robotics: The KITTI
dataset”. In: The International Journal of Robotics Research 32.11 (2013), pp. 1231–
1237.

[56] A. Geiger, P. Lenz, and R. Urtasun. “Are we ready for autonomous driving? The
KITTI vision benchmark suite”. In: Proc. of the IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR). 2012, pp. 3354–3361.

[57] D. Gerónimo, A. Sappa, A. López, and D. Ponsa. “Adaptive image sampling and
windows classification for on-board pedestrian detection”. In: Proc. of the Interna-
tional Conf. on Computer Vision System. 2007.

[58] R. B. Girshick. “Fast R-CNN”. In: Proc. of the International Conf. on Computer
Vision (ICCV). 2015, pp. 1440–1448.

[59] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. “Rich feature hierarchies for
accurate object detection and semantic segmentation”. In: Proc. of the IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR). 2014, pp. 580–587.

[60] T. Golda, T. Kalb, A. Schumann, and J. Beyerer. “Human pose estimation for real-
world crowded scenarios”. In: Proc. of the International Conference on Advanced
Video and Signal-Based Surveillance (AVSS). 2019, pp. 1–8.

[61] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville, and Y. Bengio. “Generative adversarial nets”. In: Adv. in Neural Informa-
tion Processing Systems (NIPS). 2014, pp. 2672–2680.

[62] Z. Guo, R. Zhi, W. Zhang, B. Wang, Z. Fang, V. Kaiser, J. Wiederer, and F. Flohr.
“Generative model based data augmentation for special person classification”. In:
Proc. of the IEEE Intelligent Vehicles Symposium. 2020, pp. 1675–1681.

[63] S. Gupta, R. B. Girshick, P. Arbeláez, and J. Malik. “Learning rich features from
RGB-D Images for object detection and segmentation”. In: European Conference
on Computer Vision (ECCV). 2014, pp. 345–360.

[64] D. Hall and P. Perona. “Fine-grained classification of pedestrians in video: Bench-
mark and state of the art”. In: Proc. of the IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR). 2015, pp. 5482–5491.

[65] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. 2nd ed.
Cambridge University Press, 2003.

[66] I. Hasan, S. Liao, J. Li, S. U. Akram, and L. Shao. “Generalizable pedestrian detec-
tion: The elephant in the room”. In: Proc. of the IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR). 2021, pp. 11328–11337.



124 BIBLIOGRAPHY

[67] K. He, G. Gkioxari, P. Dollár, and R. Girshick. “Mask R-CNN”. In: Proc. of the
International Conf. on Computer Vision (ICCV). 2017, pp. 2961–2969.

[68] K. He, X. Zhang, S. Ren, and J. Sun. “Deep residual learning for image recognition”.
In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).
2016, pp. 770–778.

[69] Y. He, C. Zhu, J. Wang, M. Savvides, and X. Zhang. “Bounding box regression with
uncertainty for accurate object detection”. In: Proc. of the IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR). 2019, pp. 2888–2897.

[70] S. Hong, H. Park, J. Park, S. Cho, and H. Park. “HintPose”. In: arXiv preprint
arXiv:2003.02170 (2020).

[71] J. Hosang, M. Omran, R. Benenson, and B. Schiele. “Taking a deeper look at pedes-
trians”. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR). 2015, pp. 4073–4082.

[72] J. Hosang, R. Benenson, P. Dollár, and B. Schiele. “What makes for effective de-
tection proposals?” In: IEEE Trans. on Pattern Analysis and Machine Intelligence
(TPAMI) 38.4 (2016), pp. 814–830.

[73] J. Hosang, R. Benenson, and B. Schiele. “Learning non-maximum suppression”.
In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).
2017, pp. 4507–4515.

[74] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer, Z. Wojna,
Y. Song, S. Guadarrama, and K. Murphy. “Speed/accuracy trade-offs for modern
convolutional object detectors”. In: Proc. of the IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR). 2017, pp. 3296–3297.

[75] S. Huang and D. Ramanan. “Expecting the unexpected: Training detectors for
unusual pedestrians with adversarial imposters”. In: Proc. of the IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR). 2017, pp. 4664–4673.

[76] M.-Y. Huh, P. Agrawal, and A. A. Efros. “What makes ImageNet good for transfer
learning?” In: arXiv preprint arXiv:1608.08614 (2016).

[77] S. Hwang, J. Park, N. Kim, Y. Choi, and I. Kweon. “Multispectral pedestrian detec-
tion: Benchmark dataset and baseline”. In: Proc. of the IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR). 2015, pp. 1037–1045.

[78] E. Insafutdinov, L. Pishchulin, B. Andres, M. Andriluka, and B. Schiele. “DeeperCut:
A deeper, stronger, and faster multi-person pose estimation model”. In: European
Conference on Computer Vision (ECCV). 2016, pp. 34–50.

[79] S. International. Taxonomy and definitions for terms related to driving automation
systems for on-road motor vehicles. j3016. Tech. rep. 2016.

[80] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,
and T. Darrell. “Caffe: Convolutional architecture for fast feature embedding”. In:
Proc. of the ACM international conference on Multimedia. 2014, pp. 675–678.

[81] C. Jiang, H. Xu, W. Zhang, X. Liang, and Z. Li. “SP-NAS: Serial-to-parallel backbone
search for object detection”. In: Proc. of the IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR). 2020, pp. 11863–11872.



BIBLIOGRAPHY 125

[82] S. Jin, W. Liu, E. Xie, W. Wang, C. Qian, W. Ouyang, and P. Luo. “Differentiable
hierarchical graph grouping for multi-person pose estimation”. In: European
Conference on Computer Vision (ECCV). 2020, pp. 718–734.

[83] A. Kendall, Y. Gal, and R. Cipolla. “Multi-task learning using uncertainty to weigh
losses for scene geometry and semantics”. In: Proc. of the IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR). 2018, pp. 7482–7491.

[84] A. Kendall, Y. Gal, and R. Cipolla. “Multi-task learning using uncertainty to weigh
losses for scene geometry and semantics”. In: Proc. of the IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR). 2018, pp. 7482–7491.

[85] A. H. Khan, M. Munir, L. van Elst, and A. Dengel. “F2DNet: Fast focal detection
network for pedestrian detection”. In: arXiv preprint arXiv:2203.02331 (2022).

[86] A. Khan, C. D. Harper, C. T. Hendrickson, and C. Samaras. “Net-societal and
net-private benefits of some existing vehicle crash avoidance technologies”. In:
Accident Analysis & Prevention 125 (2019), pp. 207–216.

[87] W. Kim, M. S. Ramanagopal, C. Barto, M.-Y. Yu, K. Rosaen, N. Goumas, R. Vasude-
van, and M. Johnson-Roberson. “PedX: Benchmark dataset for metric 3D pose
estimation of pedestrians in complex urban intersections”. In: IEEE Robotics and
Automation Letters (RA-L) 4.2 (2019), pp. 1940–1947.

[88] D. P. Kingma and J. Ba. “Adam: A method for stochastic optimization”. In: Interna-
tional Conference on Learning Representations (ICLR). 2015.

[89] W. König. “Guidelines for user-centered development of DAS.” In: Handbook of
Driver Assistance Systems: Basic Information, Components and Systems for Active
Safety and Comfort. 2016, pp. 781–796.

[90] J. F. Kooij, F. Flohr, E. A. Pool, and D. M. Gavrila. “Context-based path prediction
for targets with switching dynamics”. In: International Journal of Computer Vision
127.3 (2019), pp. 239–262.

[91] J. F. P. Kooij, N. Schneider, F. Flohr, and D. M. Gavrila. “Context-based pedestrian
path prediction”. In: European Conference on Computer Vision (ECCV). 2014,
pp. 618–633.

[92] I. Kotseruba, A. Rasouli, and J. K. Tsotsos. “Benchmark for evaluating pedestrian
action prediction”. In: IEEE Winter Conference on Applications of Computer Vision
(WACV). 2021, pp. 1258–1268.

[93] F. Kraus and K. Dietmayer. “Uncertainty estimation in one-stage object detection”.
In: Proc. of the IEEE Intelligent Transportation Systems Conf. 2019, pp. 53–60.

[94] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “ImageNet classification with deep
convolutional neural networks”. In: Adv. in Neural Information Processing Systems
(NIPS). 2012, pp. 1097–1105.

[95] A. Kuznetsova, H. Rom, N. Alldrin, J. Uijlings, I. Krasin, J. Pont-Tuset, S. Kamali,
S. Popov, M. Malloci, A. Kolesnikov, T. Duerig, and V. Ferrari. “The Open Images
Dataset V4: Unified image classification, object detection, and visual relationship
detection at scale”. In: International Journal of Computer Vision 128.7 (2020),
pp. 1956–1981.



126 BIBLIOGRAPHY

[96] H. Law and J. Deng. “CornerNet: Detecting objects as paired keypoints”. In: Euro-
pean Conference on Computer Vision (ECCV). 2018, pp. 734–750.

[97] C. Legacy, D. Ashmore, J. Scheurer, J. Stone, and C. Curtis. “Planning the driverless
city”. In: Transport Reviews 39.1 (2019), pp. 84–102.

[98] B. Leibe, N. Cornelis, K. Cornelis, and L. Van Gool. “Dynamic 3d scene analysis
from a moving vehicle”. In: Proc. of the IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR). 2007, pp. 1–8.

[99] J. Li, X. Liang, Y. Wei, T. Xu, J. Feng, and S. Yan. “Perceptual generative adversarial
networks for small object detection”. In: Proc. of the IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR). 2017, pp. 1951–1959.

[100] J. Li, X. Liang, S. Shen, T. Xu, and S. Yan. “Scale-aware Fast R-CNN for pedestrian
detection”. In: IEEE Transactions on Multimedia 20.4 (2018), pp. 985–996.

[101] J. Li, C. Wang, H. Zhu, Y. Mao, H.-S. Fang, and C. Lu. “CrowdPose: Efficient crowded
scenes pose estimation and a new benchmark”. In: Proc. of the IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR). 2019, pp. 10863–10872.

[102] X. Li, F. Flohr, Y. Yang, H. Xiong, M. Braun, S. Pan, K. Li, and D. M. Gavrila. “A
new benchmark for vison-based cyclist detection”. In: Proc. of the IEEE Intelligent
Vehicles Symposium. 2016, pp. 1028–1033.

[103] M. Liang, B. Yang, W. Zeng, Y. Chen, R. Hu, S. Casas, and R. Urtasun. “PnPNet: End-
to-end perception and prediction with tracking in the loop”. In: Proc. of the IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR). 2020, pp. 11553–11562.

[104] D. Lin, S. Fidler, and R. Urtasun. “Holistic scene understanding for 3D object
detection with RGBD cameras”. In: Proc. of the International Conf. on Computer
Vision (ICCV). 2013, pp. 1417–1424.

[105] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie. “Feature
pyramid networks for object detection”. In: Proc. of the IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR). 2017, pp. 2117–2125.

[106] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. “Focal loss for dense object
detection”. In: Proc. of the International Conf. on Computer Vision (ICCV). 2017,
pp. 2980–2988.

[107] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L.
Zitnick. “Microsoft COCO: Common objects in context”. In: European Conference
on Computer Vision (ECCV). 2014, pp. 740–755.

[108] S. Liu, D. Huang, and Y. Wang. “Adaptive NMS: Refining pedestrian detection in a
crowd”. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR). 2019, pp. 6459–6468.

[109] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg. “SSD:
Single shot multibox detector”. In: European Conference on Computer Vision
(ECCV). 2016, pp. 21–37.

[110] J. Mao, T. Xiao, Y. Jiang, and Z. Cao. “What can help pedestrian detection?” In:
Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). 2017,
pp. 6034–6043.



BIBLIOGRAPHY 127

[111] K. V. Mardia and P. E. Jupp. Directional Statistics. John Wiley & Sons, Inc., 2008.

[112] M. Martinez, C. Sitawarin, K. Finch, L. Meincke, A. Yablonski, and A. Kornhauser.
“Beyond Grand Theft Auto V for training, testing and enhancing deep learning in
self driving cars”. In: arXiv preprint arXiv:1712.01397 (2017).

[113] Mercedes Benz. Introducing DRIVE PILOT: An Automated Driving System for the
Highway. Tech. rep. 2019.

[114] S. Munder and D. M. Gavrila. “An experimental study on pedestrian classification”.
In: IEEE Trans. on Pattern Analysis and Machine Intelligence (TPAMI) 28.11 (2006),
pp. 1863–1868.

[115] A. Newell, K. Yang, and J. Deng. “Stacked hourglass networks for human pose
estimation”. In: European Conference on Computer Vision (ECCV). 2016, pp. 483–
499.

[116] W. Ouyang and X. Wang. “Single-pedestrian detection aided by multi-pedestrian
detection”. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR). 2013, pp. 3198–3205.

[117] G. Overett, L. Petersson, N. Brewer, L. Andersson, and N. Pettersson. “A new
pedestrian dataset for supervised learning”. In: Proc. of the IEEE Intelligent Vehicles
Symposium. 2008, pp. 373–378.

[118] A. Palffy, E. Pool, S. Baratam, J. F. P. Kooij, and D. M. Gavrila. “Multi-class road user
detection with 3+1D radar in the View-of-Delft dataset”. In: IEEE Robotics and
Automation Letters (RA-L) 7.2 (2022), pp. 4961–4968.

[119] G. Papandreou, T. Zhu, L.-C. Chen, S. Gidaris, J. Tompson, and K. Murphy. “Per-
sonLab: Person pose estimation and instance segmentation with a bottom-up,
part-based, geometric embedding model”. In: European Conference on Computer
Vision (ECCV). 2018, pp. 269–286.

[120] B. Pepik, M. Stark, P. Gehler, and B. Schiele. “Multi-view and 3D deformable part
models”. In: IEEE Trans. on Pattern Analysis and Machine Intelligence (TPAMI)
37.11 (2015), pp. 2232–2245.

[121] D. Pfeiffer and U. Franke. “Towards a global optimal multi-layer Stixel representa-
tion of dense 3D data”. In: Proc. of the British Machine Vision Conf. (BMVC). 2011,
pp. 51.1–51.12.

[122] L. Pishchulin, E. Insafutdinov, S. Tang, B. Andres, M. Andriluka, P. V. Gehler, and
B. Schiele. “DeepCut: Joint subset partition and labeling for multi person pose
estimation”. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR). 2016, pp. 4929–4937.

[123] S. Prokudin, P. Gehler, and S. Nowozin. “Deep directional statistics: Pose esti-
mation with uncertainty quantification”. In: European Conference on Computer
Vision (ECCV). 2018, pp. 534–551.

[124] L. Qiu, X. Zhang, Y. Li, G. Li, X. Wu, Z. Xiong, X. Han, and S. Cui. “Peeking into
occluded joints: A novel framework for crowd pose estimation”. In: European
Conference on Computer Vision (ECCV). 2020, pp. 488–504.



128 BIBLIOGRAPHY

[125] R. N. Rajaram, E. Ohn-Bar, and M. M. Trivedi. “An exploration of why and when
pedestrian detection fails”. In: Proc. of the IEEE Intelligent Transportation Systems
Conf. 2015, pp. 2335–2340.

[126] J. Redmon and A. Farhadi. “YOLO9000: Better, faster, stronger”. In: Proc. of the IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR). 2017, pp. 6517–6525.

[127] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. “You only look once: Unified,
real-time object detection”. In: Proc. of the IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR). 2016, pp. 779–788.

[128] J. Redmon and A. Farhadi. “YOLOv3: An incremental improvement”. In: arXiv
preprint arXiv:1804.02767 (2018).

[129] E. Rehder, H. Kloeden, and C. Stiller. “Head detection and orientation estimation
for pedestrian safety”. In: Proc. of the IEEE Intelligent Transportation Systems Conf.
2014, pp. 2292–2297.

[130] J. Ren, X. Chen, J. Liu, W. Sun, J. Pang, Q. Yan, Y.-W. Tai, and L. Xu. “Accurate single
stage detector using recurrent rolling convolution”. In: Proc. of the IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR). 2017, pp. 5420–5428.

[131] P. Ren, Y. Xiao, X. Chang, P.-Y. Huang, Z. Li, X. Chen, and X. Wang. “A survey of
deep active learning”. In: ACM Comput. Surv. 54.9 (2021), pp. 1–40.

[132] S. Ren, K. He, R. Girshick, and J. Sun. “Faster R-CNN: Towards real-time object de-
tection with region proposal networks”. In: Adv. in Neural Information Processing
Systems (NIPS). 2015, pp. 91–99.

[133] R. Rusu. “Semantic 3D Object Maps for Everyday Manipulation in Human Living
Environments”. PhD thesis. Computer Science department, Technische Univer-
sität München, Germany, 2009.

[134] A. Sadat, S. Casas, M. Ren, X. Wu, P. Dhawan, and R. Urtasun. “Perceive, predict,
and plan: Safe motion planning through interpretable semantic representations”.
In: European Conference on Computer Vision (ECCV). 2020, pp. 414–430.

[135] B. Schiele and C. Wojek. “Camera based pedestrian detection.” In: Handbook of
Driver Assistance Systems: Basic Information, Components and Systems for Active
Safety and Comfort. 2016, pp. 525–545.

[136] S. Shao, Z. Zhao, B. Li, T. Xiao, G. Yu, X. Zhang, and J. Sun. “CrowdHuman: A
benchmark for detecting human in a crowd”. In: arXiv preprint arXiv:1805.00123
(2018).

[137] G. Sharma and F. Jurie. “Learning discriminative spatial representation for image
classification”. In: Proc. of the British Machine Vision Conf. (BMVC). 2011, pp. 1–11.

[138] E. Shelhamer, J. Long, and T. Darrell. “Fully convolutional networks for seman-
tic segmentation”. In: IEEE Trans. on Pattern Analysis and Machine Intelligence
(TPAMI) 39.4 (2017), pp. 640–651.

[139] A. Shrivastava, A. Gupta, and R. Girshick. “Training region-based object detectors
with online hard example mining”. In: Proc. of the IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR). 2016, pp. 761–769.



BIBLIOGRAPHY 129

[140] Ó. Silva, R. Cordera, E. González-González, and S. Nogués. “Environmental im-
pacts of autonomous vehicles: A review of the scientific literature”. In: Science of
The Total Environment (2022), p. 154615.

[141] K. Simonyan and A. Zisserman. “Very deep convolutional networks for large-scale
image recognition”. In: International Conference on Learning Representations
(ICLR). 2015.

[142] V. A. Sindagi, Y. Zhou, and O. Tuzel. “MVX-Net: Multimodal VoxelNet for 3D object
detection”. In: Proc. of the International Conf. on Robotics and Automation (ICRA).
2019, pp. 7276–7282.

[143] S. Singh. Critical reasons for crashes investigated in the national motor vehicle
crash causation survey. Tech. rep. 2015.

[144] Stanford Artificial Intelligence Laboratory et al. Robotic Operating System. Ver-
sion ROS Indigo Igloo. July 22, 2014.

[145] H. Su, C. R. Qi, Y. Li, and L. Guibas. “Render for CNN: Viewpoint estimation
in images using CNNs trained with rendered 3D model views”. In: Proc. of the
International Conf. on Computer Vision (ICCV). 2015, pp. 2686–2694.

[146] C. Sun, A. Shrivastava, S. Singh, and A. Gupta. “Revisiting unreasonable effective-
ness of data in deep learning era”. In: Proc. of the International Conf. on Computer
Vision (ICCV). 2017, pp. 843–852.

[147] K. Sun, B. Xiao, D. Liu, and J. Wang. “Deep high-resolution representation learning
for human pose estimation”. In: Proc. of the IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR). 2019, pp. 5693–5703.

[148] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich. “Going deeper with convolutions”. In: Proc. of the IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR). 2015, pp. 1–9.

[149] N. Tomasev, I. Bica, B. McWilliams, L. Buesing, R. Pascanu, C. Blundell, and J. Mitro-
vic. “Pushing the limits of self-supervised ResNets: Can we outperform supervised
learning without labels on ImageNet?” In: arXiv preprint arXiv:2201.05119 (2022).

[150] J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and C. Bregler. “Efficient object local-
ization using convolutional networks”. In: Proc. of the IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR). 2015, pp. 648–656.

[151] A. Torralba and A. A. Efros. “Unbiased look at dataset bias”. In: Proc. of the IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR). 2011, pp. 1521–1528.

[152] J. R. Treat, N. Tumbas, S. McDonald, D. Shinar, R. D. Hume, R. Mayer, R. Stansifer,
and N. Castellan. Tri-level study of the causes of traffic accidents: final report.
Executive summary. Tech. rep. 1979.

[153] R. Tsai. “A versatile camera calibration technique for high-accuracy 3D machine
vision metrology using off-the-shelf TV cameras and lenses”. In: IEEE Journal on
Robotics and Automation 3.4 (1987), pp. 323–344.

[154] S. Tulsiani and J. Malik. “Viewpoints and keypoints”. In: Proc. of the IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR). 2015, pp. 1510–1519.



130 BIBLIOGRAPHY

[155] J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, and A. W. M. Smeulders. “Selective
search for object recognition”. In: International Journal of Computer Vision 104.2
(2013), pp. 154–171.

[156] J. Wang, K. Sun, T. Cheng, B. Jiang, C. Deng, Y. Zhao, D. Liu, Y. Mu, M. Tan, X. Wang,
et al. “Deep high-resolution representation learning for visual recognition”. In:
IEEE Trans. on Pattern Analysis and Machine Intelligence (TPAMI) 43.10 (2021),
pp. 3349–3364.

[157] S. Wang, D. Yang, B. Wang, Z. Guo, R. K. Verma, J. Ramesh, C. Weinrich, U. Kreßel,
and F. B. Flohr. “UrbanPose: A new benchmark for VRU pose estimation in urban
traffic scenes”. In: Proc. of the IEEE Intelligent Vehicles Symposium. 2021, pp. 1537–
1544.

[158] X. Wang, T. Xiao, Y. Jiang, S. Shao, J. Sun, and C. Shen. “Repulsion loss: Detecting
pedestrians in a crowd”. In: Proc. of the IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR). 2018, pp. 7774–7783.

[159] Z. Wang, Y. Bian, and S. E. Shladover. “A survey on cooperative longitudinal mo-
tion control of multiple connected and automated vehicles”. In: IEEE Intelligent
Transportation Systems Magazine 12.1 (2020), pp. 4–24.

[160] C. Wojek, S. Walk, and B. Schiele. “Multi-cue onboard pedestrian detection”. In:
Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). 2009,
pp. 794–801.

[161] World Health Organization. Global status report on road safety 2018. Tech. rep.
2018.

[162] World Health Organization. World health statistics 2021. Tech. rep. 2021.

[163] J. Wu, H. Zheng, B. Zhao, Y. Li, B. Yan, R. Liang, W. Wang, S. Zhou, G. Lin, Y. Fu, et al.
“AI Challenger: A large-scale dataset for going deeper in image understanding”. In:
arXiv preprint arXiv:1711.06475 (2017).

[164] Y. Xian, B. Schiele, and Z. Akata. “Zero-shot learning - the good, the bad and the
ugly”. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR). 2017, pp. 4582–4591.

[165] Y. Xiang, W. Choi, Y. Lin, and S. Savarese. “Subcategory-aware convolutional neural
networks for object proposals and detection”. In: IEEE Winter Conference on
Applications of Computer Vision (WACV). 2017, pp. 924–933.

[166] B. Xiao, H. Wu, and Y. Wei. “Simple baselines for human pose estimation and
tracking”. In: European Conference on Computer Vision (ECCV). 2018, pp. 466–481.

[167] H. Xie, W. Zheng, and H. Shin. “Occluded pedestrian detection techniques by
Deformable Attention-Guided Network (DAGN)”. In: Applied Sciences 11.13 (2021),
p. 6025.

[168] J. Yan, X. Zhang, Z. Lei, S. Liao, and S. Z. Li. “Robust multi-resolution pedestrian
detection in traffic scenes”. In: Proc. of the IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR). 2013, pp. 3033–3040.



BIBLIOGRAPHY 131

[169] C. Yang, V. Ablavsky, K. Wang, Q. Feng, and M. Betke. “Learning to Separate:
Detecting heavily-occluded objects in urban scenes”. In: European Conference on
Computer Vision (ECCV). 2020, pp. 530–546.

[170] F. Yang, W. Choi, and Y. Lin. “Exploit all the layers: Fast and accurate CNN object
detector with scale dependent pooling and cascaded rejection classifiers”. In:
Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). 2016,
pp. 2129–2137.

[171] F. Yu, H. Chen, X. Wang, W. Xian, Y. Chen, F. Liu, V. Madhavan, and T. Darrell.
“BDD100K: A diverse driving dataset for heterogeneous multitask learning”. In:
Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). 2020,
pp. 2636–2645.

[172] W. Zeng, S. Wang, R. Liao, Y. Chen, B. Yang, and R. Urtasun. “DSDNet: Deep
structured self-driving network”. In: European Conference on Computer Vision
(ECCV). 2020, pp. 156–172.

[173] J. Zhang, L. Lin, Y. Li, Y.-c. Chen, J. Zhu, Y. Hu, and S. C. Hoi. “Attribute-aware
pedestrian detection in a crowd”. In: IEEE Transactions on Multimedia (2019).

[174] K. Zhang, S.-C. Chen, D. Whitman, M.-L. Shyu, J. Yan, and C. Zhang. “A progressive
morphological filter for removing nonground measurements from airborne LiDAR
data”. In: IEEE Transactions on Geoscience and Remote Sensing 41.4 (2003), pp. 872–
882.

[175] K. Zhang, F. Xiong, P. Sun, L. Hu, B. Li, and G. Yu. “Double anchor R-CNN for
human detection in a crowd”. In: arXiv preprint arXiv:1909.09998 (2019).

[176] L. Zhang, L. Lin, X. Liang, and K. He. “Is Faster R-CNN doing well for pedestrian
detection?” In: European Conference on Computer Vision (ECCV). 2016, pp. 443–
457.

[177] S. Zhang, C. Bauckhage, and A. B. Cremers. “Informed Haar-like features improve
pedestrian detection”. In: Proc. of the IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR). 2014, pp. 947–954.

[178] S. Zhang, R. Benenson, M. Omran, J. Hosang, and B. Schiele. “Towards reaching
human performance in pedestrian detection”. In: IEEE Trans. on Pattern Analysis
and Machine Intelligence (TPAMI) 34.4 (2018), pp. 973–985.

[179] S. Zhang, R. Benenson, and B. Schiele. “CityPersons: A diverse dataset for pedes-
trian detection”. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recog-
nition (CVPR). 2017, pp. 3213–3221.

[180] S. Zhang, R. Benenson, and B. Schiele. “Filtered channel features for pedestrian
detection”. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR). 2015, pp. 1751–1760.

[181] S. Zhang, R. Benenson, M. Omran, J. Hosang, and B. Schiele. “How far are we from
solving pedestrian detection?” In: Proc. of the IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR). 2016, pp. 1259–1267.



132 BIBLIOGRAPHY

[182] S. Zhang, Y. Xie, J. Wan, H. Xia, S. Z. Li, and G. Guo. “Widerperson: A diverse dataset
for dense pedestrian detection in the wild”. In: IEEE Transactions on Multimedia
22.2 (2019), pp. 380–393.

[183] Y. Zhang, C. Wang, X. Wang, W. Zeng, and W. Liu. “FairMOT: On the fairness
of detection and re-identification in multiple object tracking”. In: International
Journal of Computer Vision 129.11 (2021), pp. 3069–3087.

[184] Y. Zhu, J. Wang, C. Zhao, H. Guo, and H. Lu. “Scale-adaptive deconvolutional
regression network for pedestrian detection”. In: Asian Conf. on Computer Vision
(ACCV). 2016, pp. 416–430.

[185] Z. Zou, Z. Shi, Y. Guo, and J. Ye. “Object detection in 20 years: A survey”. In: arXiv
preprint arXiv:1905.05055 (2019).



M
ar

ku
s 

B
ra

un
   

   
   

Vi
su

al
 D

et
ec

ti
on

 a
nd

 P
os

e 
E

st
im

at
io

n 
of

 V
ul

ne
ra

bl
e 

R
oa

d 
U

se
rs

 fo
r 

A
ut

om
at

ed
 D

ri
vi

ng


	Summary
	Samenvatting
	Introduction
	Motivation, Scope, and Challenges
	Road Safety and Human Driver Weaknesses
	From Driver Assistance Systems to Fully Automated Driving
	Scope of the Thesis
	Challenges of Person Detection and Pose Estimation

	Outline and Contributions
	Joint Detection and Orientation Estimation with 3D Object Proposals
	A Novel Benchmark for Person Detection in Traffic Scenes
	Detection and Pose Estimation in Dense Traffic Scenes


	Previous Work
	Detection
	Detection in Dense Traffic Scenes

	Pose Estimation
	Orientation Estimation
	Multi Person Pose Estimation

	Datasets and Benchmarking
	Person Detection
	Performance Analysis of Person Detection
	Pose Estimation


	Joint Detection and Orientation Estimation with 3D Object Proposals
	Overview
	Proposed Approach
	Lidar Proposal Generation
	Stereo Proposal Generation
	Pose-RCNN

	Experiments and Evaluation
	Experimental Setup
	Results

	Discussion

	A Novel Benchmark for Person Detection in Traffic Scenes
	Overview
	The EuroCity Persons Benchmark
	Sensor Vehicle Buildup
	Dataset Collection
	Dataset Annotation
	Annotation Tooling
	Data Subsets
	Dataset Characteristics
	Evaluation Metrics
	Benchmarking

	Experiments
	Baselines
	Generalization Capabilities
	Dataset Aspects

	Discussion
	Benchmarking Results since Release

	Detection and Pose Estimation in Dense Traffic Scenes
	Overview
	Estimation of Discriminative Attributes and NMS Adaptations
	Improving and Extending YOLOv3
	Experiments
	Discussion and Analysis: Are Attributes Discriminative?
	Learning NMS with Discriminative Features
	Experiments
	Discussion: Ambiguity in Attribute Estimation in Dense Traffic Scenes

	Pairwise Detection and Pose Estimation
	Recapitulation of NMS Issues
	Pairwise Detection
	Pairwise Pose Estimation

	The EuroCity Persons Dense Pose Dataset
	Data Selection
	Dataset Annotation
	Dataset Statistics
	Metrics

	Experiments
	Pairwise Detection Training
	Pairwise Detection Results
	Pairwise Pose Training
	Pairwise Pose Results
	Overall Pose Results


	Conclusion and Future Work
	Conclusion
	Future Work

	Acknowledgements
	Curriculum Vitæ
	List of Publications
	Bibliography

