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Abstract

Radar rainfall nowcasting stands for the prediction of rainfall amounts and intensities over the next 6
hours by means of statistical extrapolation of radar measurements. It is the principal ingredient for
modern flood forecasting and early warning systems. Radar forecasts are generated by identifying and
tracking rainfall cells in radar images and extrapolating them along the main direction of motion based
on the assumption of Lagrangian persistence. The latter means that the rainfall cells do not physically
evolve over time. Therefore the key to improving predictions is to anticipate the growth and decay of
rainfall cells during the next few hours. Studies have shown that estimating growth and decay based on
past radar images is nearly impossible. Therefore, in this thesis, a new approach for predicting growth
and decay based on physical guidance from a numerical weather prediction model is investigated. The
idea is that numerical weather prediction models are better at anticipating changes in the atmosphere
than radar and thus, should also contain information about the growth and decay of rain cells. To
test this hypothesis, two simple machine learning models have been trained to learn the relationship
between the observed growth and decay in radar images and the output parameters from the Dutch
mesoscale numerical weather prediction model HARMONIE. The models were trained on data in the
summer of 2019 around the city of Rotterdam for two area sizes, 20 × 20 kmኼ and 60 × 60 kmኼ. The
first model is static and assumes that all predictions from HARMONIE are correct. Unfortunately, this
turns out to be too optimistic as HARMONIE often places the rain cells at the wrong locations with the
wrong intensities and trends. As a result, no meaningful relationship between HARMONIE outputs and
growth/decay in radar could be learned. The dynamic model overcomes this issue with the help of an
additional classifier. The classifier predicts whether the information from HARMONIE can be trusted
or not. Then, a regression model predicts the magnitude of growth and decay (only for the trusted
cases).

Out of 308 analysed cases, the classifier labelled 237 HARMONIE predictions as being untrustworthy,
thereby removing a lot of bad cases. However, 98 of these were false negatives, meaning that they
could have been used to predict growth and decay. On the other hand, only 71 cases were labelled
as containing useful information, from which 27 cases were false positives. Despite these errors, the
dynamic model was able to improve the root mean square error on the predicted growth/decay by 27%
for these 71 cases. Also, the correlation between the predicted and actual growth/decay increased from
near zero to 0.488. This is encouraging and clearly highlights the potential of this approach. Still, some
important challenges remain. In particular, results show that the dynamic model often underestimates
the magnitude of growth and decay. Also, when the entire validation data set is considered, including all
unusable cases, the improvement with respect to the static model is only 6%. This is mainly caused by
the poor performance of HARMONIE and the large number of unusable cases. However, performance
could be improved further by building a better classifier capable of identifying all good cases with a low
number of false negatives.
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1
Introduction

Nowcasting is the prediction of a certain phenomena over a short period of time. Precipitation nowcast-
ing focuses on predicting rainfall mostly up to two hours. These nowcasts have increasingly become
more accessible to the mass. Businesses, like airports, which are sensitive to changes in weather con-
ditions require accurate predictions of precipitation. Also due to the urbanisation and climate change,
there is an increasing demand in nowcasting for heavy rain and floods [1].

The conventional approach of nowcasting predicts precipitation based on the extrapolation of precip-
itation areas derived from radar maps. The extrapolation is done in various ways, but the fundamental
principle is first to infer a motion field from a series of radar images and then the precipitation areas
are extrapolated according to the estimated motion field. This approach is built on the assumption that
the total intensity does not change over time, also called Lagrangian persistence [2].

The advection of rain cells usually accounts for a significant part of the variations in temporal domain
for the first tens of minutes. However, one of the shortcomings of the conventional approach is the
inability to predict new rain cells, because the nowcast depends only on what is observed at a certain
time [3, 4]. Also growth or decay of a rain cell, both in aerial size and intensity, is not accounted for
in this approach. Neglecting this growth and decay of rain cells causes the nowcasts lagging behind
or ahead with respect to the real precipitation field. This time lag gets bigger when the lead times
increases. This time lag is caused due to the size of the rain cell getting bigger or smaller and thus
reaches an area faster or slower than predicted.

The disadvantages of extrapolating rain cells could be solved by approaching the nowcasting with
a machine learning perspective. Several studies have already shown that machine learning techniques
are able to outperform the traditional nowcasting techniques, by capturing correlations in both the
spatial and temporal domain and recognizing patterns in successive radar images [5–7]. However, the
use of machine learning in precipitation nowcasting is still in an early stage of development [6].

The predicted rainfall contains errors mainly caused by growth and decay of rain cells [8]. The
problem lies in the chaotic nature of rainfall caused by complex and dynamical processes. Numerical
weather predictions (NWP) use a variety of information, like air pressure, wind, temperature and hu-
midity, to predict how the weather will change and/or look in the future. Because numerical weather
predictions are based on physical models, they better account for the dynamical behaviour of rain cells
in contrast to radar nowcasts which do not account for any change in the rainfall field. The downside of
using these predictions is that the spatial resolution is relatively coarse compared to the radar nowcasts
and the temporal resolution is far lower. In this thesis, we investigate whether the information from
numerical weather prediction models could be combined with the conventional extrapolation approach
using a machine learning technique to account for the growth and decay of rain cells.

1



2 1. Introduction

1.1. State of the art
Techniques for extrapolating radar echos can be divided into two main groups. The first group tries to
fit a sequence of images and extrapolates the image based on the derived motion field. This is done
by either maximizing the correlation between the images [9] or by solving the optical flow equations
[10]. Different techniques exist, but the underlying basis remains the same. It performs well for large
scale rain cells which do not move fast and also do not grow as fast as convective rain cells. As this
extrapolates the whole area, it is widely used in nowcasting systems, such as Nowcasting and Initial-
ization for Modeling Using Regional Observation Data System (NIMROD) [11], Auto-Nowcast System
(ANC) [12], Continuity of TREC Vectors (COTREC) [13], McGill Algorithm for Precipitation Nowcasting
by Lagrangian Extrapolation (MAPLE) [14], Short-Term Ensemble Prediction System (STEPS) [15] and
Short-range Warning of Intense Rainstorms in Localized Systems (SWIRLS) [16]. The second group
is mostly used in forecasting storm cells. It detects and tracks the movement of individual rain cells.
Depending on the used technique certain parameters, like the centroid or borders, are tracked and
extrapolated [17, 18]. For example, Thunderstorm Identification, Tracking, Analysis and Nowcasting
(TITAN) [18] identifies individual storm cells.

There are many uncertainties in the process of extrapolating radar echos. The first one are the
uncertainties in the measurement. The main sources of error in the measurement can be found in
signal attenuation, clutter and anomalous propagation, beam blockage, variability of the Z–R relation
[19]. The model may also contain errors in the derived motion field [20]. The second source of un-
certainties is related to the dynamics of the rain cells and atmosphere and is linked to the assumption
of Lagrangian persistence. Most of the predictive skill in radar nowcasts therefore tends to be lost
after 60-180 min [21]. In many cases, the intensity of the rain field will vary throughout time and also
the size of the individual rain cells will change over time. As aforementioned, the biggest error source
in predicting rainfall after tens of minutes is caused by this change in intensity and size (growth and
decay) [8]. Note that this also depends on the type of rain cell. Convective rain cells tend to have a
higher variability than stratiform rain cells and thus the error is much larger for convective cases. A
recent study [22] attempted to determine the predictability of growth and decay of precipitation at dif-
ferent scales. According to the study, the predictability of both rainfall and growth and decay increases
when eliminating small scale rain cells. Small scale rain cells (convective cells) change very rapidly and
their lifetime is just a few tens of minutes. And hence the predictability of these small scale rain cells
and growth and decay is considerably low [22]. Larger cells, however, can persist for many hours and
remain predictable for much longer.

The simplest form of nowcasting is to just extrapolate the rainfall fields and not take the growth
and decay into account. One might also think that trends in intensity and echo size in radar images
could be used for the estimation of the growth and decay. Tsonis and Austin were the first ones to
study this. They concluded that including these trends do not yield any significant improvements. Their
method was unable to predict when cells would start decay and in general, the variability of the rain
cells dominated the weakly defined trend [23]. The study by Wilson came to the same conclusion [8].
Both studies tracked individual cells and then estimated the trends. However, a different study showed
that trending could provide some improvements [24]. This study used a radius of influence around
each pixel and then estimated the trends.

All of the nowcasting systems above were based on radar images. However, there are nowcast-
ing systems which use more complex algorithms to improve the predictions of rainfall fields. These
are called expert systems and make decisions based on different models, thresholds and so on [25].
Thunderstorm Identification, Tracking, Analysis and Nowcasting (TITAN) [18] uses thresholds to iden-
tify precipitation areas and then track these so-called objects. Other systems also try to incorporate
some of the growth and decay by using boundary layer convergence line and fuzzy logic. The Auto-
Nowcast System [12] produces for example a convective likelihood field which is obtained from fuzzy
logic rules. These rules are based on systematic and persistent changes in the rainfall fields.

NWPmodels uses physical atmospheric models to simulate and predict the conditions of the weather.
Because of this, the NWP models are very computational expensive. The models require information
of the initial state in order to produce a good prediction. This is done using data assimilation in the
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NWP models. There is a variety of data assimilation methods, like Three-Dimensional Variational Data
Assimilation (3DVAR) [26] and Four-dimensional variational data assimilation (4DVAR) [27]. The most
commonly used methods is 3DVAR, because of its computational efficiency [28, 29]. These methods
try to produce the best initial state of the model using the given information.

As the NWP models moves to higher resolutions, it will require the same high resolution observation
data for initialisation. Radar networks can provide these data [30]. The assimilation of high resolution
observation data benefits the prediction of convective precipitation [31, 32]. Convective precipitation
are found on a smaller scale and by having more dense observation these rain cells are better described
in the initial state of the model [33]. A recent development is the assimilation of radar data into NWP.
Studies have tried assimilating radar data into NWP and concluded that this improves the forecasts
of convective rain cells. Assimilation of the radar improved the mesoscale dynamic field in terms
of better location and structure prediction and also improves the predictions of convective rain cells
[31, 33, 34]. However, even after assimilation the prediction could still be off in time and position [31].
The assimilation of radar data into NWP can be done in various ways, but all have the same issue that the
data cannot be directly used. Precipitation rate is computed from other parameters and the observed
precipitation rates can therefore not be directly assimilated into an NWP. However, information can be
inferred from the radar data about other variables, like moisture and temperature. This information
can be used to adjust the variables of the NWP so that it fits more with the radar data [35]. Multiple
methods for radar data assimilation are described in the review paper of Gustafsson et al [32]. This
paper concluded also that the more advanced methods, like 4D�Var, yield more improvements over
the simpler methods.

The disadvantage of assimilating radar data is that radar observations contain noise from artifacts,
clutter and radio interference. NWP does not contain any noise and by assimilating radar into NWP,
noise can be introduced even though clutter removal techniques are applied beforehand. Another issue
for radar data assimilation is the large difference in spatial and temporal resolution between the radar
data and NWP [32]. It is therefore necessary to develop methods which can handle these discrepancies.

Attempts have been made to use NWP models for nowcasting purposes. A lot of progress have
been made but there are also challenges which has not been overcome yet. Recent development is
the blending of radar extrapolation techniques with NWP. This blending is simply a weighted average
between the extrapolation forecast and NWP and allows therefore for a seamless 0-6 hour forecast.
Resulting in a better forecast at higher lead times (2-6 hours), as NWP produces better forecasts at
higher lead times. NIMROD uses this blending to allow for longer nowcasts [11]. The blending gives a
certain weight to the extrapolation and NWP models depending on the lead time. For the first hour, the
extrapolation of the rainfall field is given full weight. This weight gradually decreases over lead time
and the weight for NWP increases over lead time. The blending techniques requires a high resolution
(<4 km) convection-permitting NWP model [25]. These NWP models can reproduce the initiation and
evolution of small scale convective rain cells. They however lack in accuracy in both spatial and tem-
poral domain and are therefore not suited for nowcasting purposes [36].
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1.2. Problem definition
The goal of this thesis is to improve radar nowcasts by estimating growth and decay of rain cells with the
help of NWP models. NWP models contain some information about the future behaviour of rain cells.
However, NWPs are limited in both spatial and temporal resolution and also lack accuracy compared
to radar. The information from these models can still be helpful though, because NWPs incorporates
physics. Using machine learning techniques, the relation between the NWP prediction and the true
rainfall field as seen by radar can be learned. The research question is therefore formulated as follows:

Is it possible to predict the growth and decay of rain cells by adding informa-
tion obtained from numerical weather prediction models in radar nowcasts using
machine learning?

In order to answer this question, multiple sub-questions have been defined:

1. How accurate are current radar nowcasts and NWP predictions, for example the KNMI nowcasts?

2. How can we use machine learning to extract useful information about growth and decay from the
numerical weather forecasts?

3. What is the gain in performance when the NWP predictions of growth and decay are combined
with radar?

1.3. Approach
To answer the research questions above, information about rain cell growth and decay from the Dutch
national C-band radar network and the numerical weather prediction model HARMONIE will be used.
More specifically, the following tasks have been defined:

1. Assess the errors due to growth and decay in Lagrangian radar nowcasts.

2. Train a static model for predicting average growth and decay in radar images based on different
features extracted from the HARMONIE weather prediction model. This model assumes that all
the predictions from the numerical weather prediction model HARMONIE are good and can be
trusted.

3. Train an adaptive, dynamical model for predicting growth and decay based on the most recent
performances of the numerical weather prediction model HARMONIE over a moving window. The
dynamic model uses only HARMONIE predictions which it trusts to predict growth and decay. The
disadvantage is that the model is not always able to predict growth and decay, but could perform
better than the static model.

4. Quantify the performance of each model and determine which combination of features and ap-
proach yields the most promising results.

5. Propose ideas for future improvements.



2
Data

In this chapter the two data sets are described. It is important to know how the data sets are structured
and how to access them. This chapter contains three parts. The first part describes the radar data set
and how the radar images are converted to rain intensities. The second part gives a description of the
NWP model used in this thesis. The parameters found in the model are also shown here. The last part
describes the availability and quality of both data sets.

2.1. Description of the radar data
The radar data used in this thesis comes from the Royal Netherlands Meteorological Institute (KNMI).
It contains forecasts of radar reflectivity composites at a height of 1500 meters over the Netherlands
and surrounding areas. The radar reflectivity composites are forecasted every five minutes up to a lead
time of two hours. The radar data used in this study span the summer season of 2019, namely May,
June, July and August. A total of 2721 hours of data were collected.

2.1.1. Radar observations
The first radar reflectivity composite is not predicted but observed by two radars. One radar is installed
in Herwijnen (51.8369 N, 5.1381 E) and the other one in Den Helder (52.9533 N, 4.7900 E). Both
radars measure radar reflectivity at four different elevation angles (0.3, 1.1, 2.0, 3.0 degrees) and have
a maximum observation range of 320 km. The measurements at different elevation angles, also called
scans, are then merged into one radar image for each radar, containing radar reflectivities at 1500 m.
The radar image is generated by linearly interpolating the radar reflectivity at different elevation angles.
The two radar images are then combined by computing the weighted average of the radar reflectivities.
The weights are defined based on the distance from a given point to the radar. This results in a radar
reflectivity composite of psuedo constant altitude plan position indicator (PseudoCAPPI) with pixels
representing an area of 1 by 1 squared kilometer. More information about how KNMI produces these
reflectivity composites can be found in [37].

2.1.2. Radar forecasts
Each data file contains one observed reflectivity composite and 24 forecasts based on this observation.
These forecasts are all based on the first radar reflectivity composite, which is observed by the radar.
The forecasts contain a prediction of the precipitation for every five minutes with a lead time up to two
hours. This is done by assuming Lagrangian persistence, meaning that the precipitation rate does not
change over time. This assumption neglects thus any growth and decay. The method of estimating
the motion field by KNMI is not published and the details remains unknown. But the estimates are
very similar to those obtained by optical flow. The motion field is then used for the advection of the
observed radar reflectivity composite. The 1h lead time will be the main focus in this thesis, because
most of the predictive skill is then lost due to growth and decay of rain cells.

5
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2.1.3. Conversion data to rain intensity
The radar data is stored in an HDF5 file format and can easily be accessed in python with the h5py
package. Appendix A shows how to access the radar files using h5py. The reflectivities are saved as 8
bit integers, ranging from 0 to 255. Pixels with values of 0 and 255 represent missing or out of range
data, respectively. The conversion from 8 bit integer to reflectivity 𝑍 (𝑚𝑚ዀ/𝑚ኽ) is done in the following
manner:

𝑧 = 0.5(𝑝𝑥 − 64) (2.1)

𝑍 = 10፳/ኻኺ (2.2)

where 𝑝𝑥 represents the pixel value and 𝑧 is the logarithmic reflectivity in 𝑑𝐵𝑍. The Z-R relationship,
found in Eq. 2.3, is used to convert from reflectivity 𝑍 (𝑚𝑚ዀ/𝑚ኽ) to rainfall intensity 𝑅 (𝑚𝑚/ℎ). KNMI
uses the standard Z-R relationship, also known as Marshall Palmer equation [38], with coefficient
𝑎 = 200 and 𝑏 = 1.6. The same coefficients are used in this thesis.

𝑍 = 200𝑅ኻ.ዀ (2.3)

𝑅 = (𝑍/200)ኻ/ኻ.ዀ (2.4)

Figure 2.1 shows an example of a radar reflectivity composite which is converted to precipitation
rate. Thanks to the 1000 meter resolution grid, also smaller rain cells can be detected with enough
detail. The high resolution also makes it possible to accurately estimate the motion field. The compos-
ites uses a stereographic projection and can be found inside each data file as a proj.4 definition. The
coordinates of each pixel are converted to WGS84 in order to work on one projection for both radar
and NWP model.

Figure 2.1: Observed rain intensity on 2019-05-09 18:00 after conversion to precipitation rate ፑ (mm/h).
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2.2. Description of the NWP
As mentioned in chapter 1, NWP models predicts the state of the atmosphere ahead of time based on
mathematical models using the current atmospheric conditions. KNMI has developed, in collaboration
with other national meteorological services, two models, namely the High Resolution Limited Area Model
(HIRLAM) and HARMONIE (HIRLAM ALADIN Research on Mesoscale Operational NWP in Euromed).
Both of these models are specifically designed for short term weather predictions, with HARMONIE
having a higher resolution in the spatial domain. KNMI computes HIRLAM and HARMONIE on a grid
with resolutions of 11 km and 2,5 km respectively.

KNMI provides HARMONIE data with hourly predictions up to 48 hours into the future every 6 hours
with a spatial resolution of 2,5 km. It has been available since 2012 and is run four times a day at
00, 06, 12, and 18 o’clock. Each run takes around 2.5 to 3 hours to complete. From that, surface
parameters are produced and distributed through the KNMI datacenter. Data are only stored for 24
hours after which they are overwritten.In this thesis, we decided to use HARMONIE because of 1)
data availability, 2) the relatively high spatial resolution of 4 km compared with other weather models
and 3) its ability to predict mesoscale phenomena such as thunderstorms. Note that only the surface
parameters are available for free on the KNMI data center. However, in the future, the full NWP output
could be used. This would provide more information about the vertical variability.

The data set has been, just as the radar data set, manually downloaded every day and overlaps the
radar data for the biggest part. The data set is stored in multiple GRIB files, with each file representing
a forecast with respect to the initial start time. Accessing the data is not as easy as with the radar data,
the package cfgrib has been used together with some modifications to the default configuration of this
package. Appendix B shows which steps has to be taken and how to access the data. The coordinates
are stored as latitude and longitude pairs in the coordinate system WGS 84.

Each file contains multiple parameters, such as temperature and rain intensity at a certain height
level (see Figure 2.2). All parameters are shown in Table 2.1. PMSL and BRT are not accessible because
they are on a different height system than the other parameters. Also, accumulated parameters are
not present in the zero hour prediction files. These parameters are therefore not used and removed
from the data set.

Figure 2.2 shows on the left the observed rain intensity and on the right the predicted rain intensity
by the HARMONIE model. The prediction is a 3 hour forecast, but the rain event is still clearly visible.
The lower resolution of HARMONIE is also noticeable and the precipitation is smoother.

Figure 2.2: On the left the observed rain intensity by the radar and on the right the predicted rain intensity by the HARMONIE
model for 2019-05-08 15:00. The HARMONIE model was run based on the latest data assimilated at 12 o’clock and the forecast
time is thus 3 hours.

2.3. Data availability and quality
2.3.1. Radar
The radar data from the KNMI is not perfect. The access to the 5-minute forecasted radar reflectivity
composites is limited and only the last 24 hours of observations can be downloaded. This has led to
some missing observations in the data set and also to some corrupted files, which were removed from
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Table 2.1: Near surface parameters found in the data set from the KNMI HARMONIE model. The code values refers to the
parameter ID in the GRIB Parameter Database1. The level values show the height above ground, except for PMSL (height above
sea) and BRT (Nominal top of atmosphere).

Parameter Description Code Level Cumulative Units

PMSL Pressure on mean sea level 001 0 - 𝑃𝑎
U10 U-wind component at 10 m 033 10 - 𝑚 𝑠ዅኻ
V10 V-wind component at 10 m 034 10 - 𝑚 𝑠ዅኻ
2T Temperature of air at 2 m 011 2 - 𝐾
2RH Relative humidity at 2 m 052 2 - %
TCC Total cloud cover 071 0 - %
LCC Low Cloud Cover (surface to 748 hPa) 073 0 - %
MCC Medium Cloud Cover (748 to 424 hPa) 074 0 - %
HCC High Cloud Cover (above 424 hPa) 075 0 - %
CR Accumulated rain from start runtime 061 457 X 𝑘𝑔 𝑚ዅኼ
CS Accumulated snow from start runtime 062 457 X 𝑘𝑔 𝑚ዅኼ
CG Accumulated graupel from start runtime 063 457 X 𝑘𝑔 𝑚ዅኼ
INR Rain precipitation rate 061 456 - 𝑘𝑔 𝑚ዅኼ 𝑠ዅኻ
INS Snow precipitation rate 062 456 - 𝑘𝑔 𝑚ዅኼ 𝑠ዅኻ
ING Graupel precipitation rate 063 456 - 𝑘𝑔 𝑚ዅኼ 𝑠ዅኻ
SC Snowcover 066 0 -
BLH Boundary layer height 067 0 - 𝑚
GR Global Radiation 117 0 X 𝐽 𝑚ዅኼ
SWR Net short-wave radiation 111 0 X 𝐽 𝑚ዅኼ
LWR Net long-wave radiation 112 0 X 𝐽 𝑚ዅኼ
LH Latent heat flux 121 0 X 𝐽 𝑚ዅኼ
SH Sensible heat flux 122 0 X 𝐽 𝑚ዅኼ
BRT Brightness temperature 118 39680 - 𝐽 𝑚ዅኼ 𝑠ዅኻ
CLB Cloud base 135 0 - 𝑚
CIG Column integrated graupel 201 458 - 𝑘𝑔 𝑚ዅኼ
UWG U-component maximum gust at 10 m 162 10 - 𝑚 𝑠ዅኻ
VWG V-component maximum gust at 10 m 163 10 - 𝑚 𝑠ዅኻ

the data set. The radar data set also contains artifacts. These artifacts can be caused by a large variety
of objects. A radar transmits electromagnetic pulses and then measures the power after the has been
scattered back by an object. In the case of a weather radar this back scattering is preferably caused by
precipitation, however backscatter can also be caused by other objects like buildings, windmills, wind
turbines and birds or insects. Most of the clutter in radar images can be found above sea and also at
above 200 km distance from the radars. An example of this clutter is shown in Figure 2.3.

2.3.2. HARMONIE
Because HARMONIE is physical model, it may contain some information about the dynamical behaviour
of rain cells. This information could be useful for determining growth and decay of rain cells. However,
like any other NWP model, HARMONIE lacks accuracy in both spatial and temporal domain. Rain cells
could be predicted at a certain location but could be observed at a different location in the radar. Also,
HARMONIE does not have the ability to predict rain cells with a lifetime of tens of minutes, due to
the hourly resolution. The lifecycle of a convective rain cell is too short to be resolved by the model.
Figure 2.4 shows a good example of the lack in spatial accuracy and the inability to predict smaller
scale rain cells. Nonetheless, large scale trends over a few hours and hundreds of kilometers can still
be captured, as shown in Figure 2.2.

HARMONIE also does not contain any artifacts or clutter unlike radar.

1The database can be found at https://apps.ecmwf.int/codes/grib/param-db/

https://apps.ecmwf.int/codes/grib/param-db/
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Figure 2.3: Precipitation rate observed on 2019-07-26 03:35 over the Netherlands. Artifacts in this observation are noticeable
around the coast near Maasvlakte 2.

Figure 2.4: On the left the observed rain intensity by the radar and on the right the predicted rain intensity by the HARMONIE
model for 2019-06-02 18:00.





3
Methods

The notion of growth and decay of rain cells is very broad and can be defined in multiple ways. In
the first part of this chapter, the formal definition of growth and decay used in this thesis as well as
its mathematical formulation are given. The procedure of computing the growth and decay involves
adapting the Lagrangian framework in order to follow a precipitation parcel along its trajectory. This
enables the tracking of change in precipitation rate over time. The second part of this chapter, intro-
duces the multi-layer perceptron (MLP). This is a machine learning technique which is very versatile
in its use as it can be used for both classification and regression problems. MLP will be used in this
thesis to predict the growth and decay. Not all of the available data will be used for this. From the
available data only days with rain will be used. The last paragraph explains step-by-step how the data
are filtered.

3.1. Study area
In order to reduce the amount of data and the computational time, only a small area of the Netherlands
will be taken into consideration. The area of interest over which the growth and decay will be predicted
is a 20×20 kmኼ square over the city of Rotterdam centered around the location of the Rijnmond X-band
radar on top of the Delftse Poort at the coordinates 51.923630 N, 4.471657 E. This area will be called
the target area and denoted as 𝐴ኼኺ. A larger area surrounding 𝐴ኼኺ and acting as a buffer zone will
also be used. This is important as rain cells move around and information could be found around the
target area. The larger area covers an area of 60 × 60 kmኼ, overlapping the observation area of the
Rijnmond radar and will be denoted as the buffer area 𝐴ዀኺ. The size of the buffer zone is chosen to be
60×60 kmኼ, because the Rijnmond radar, once it is operational, will have a range of up to 30 km over
the same area. Also, the average wind speed in the summer is around 20 km hዅኻ and rain cells will
still be inside the buffer area after 1 hour has passed by. Figure 3.1 shows the two areas. To minimize
the confusion about which area is used, superscripts are used to denote the area. For example, s𝑃ኼኺ
and s𝑃ዀኺ stand for the average precipitation rates over the 20 × 20 kmኼ area and 60 × 60 kmኼ area
respectively.

3.2. Definition of growth and decay
Rain cells grow and decay in various ways. They can grow and decay in terms of size, meaning that
a rain cell grows when it covers a larger area at time 𝑡 with respect to time 𝑡 − 𝜏. Conversely, decay
means that the rainy area becomes smaller. Growth and decay can also refer to the strengthening or
weakening of a rain cell. Growth (decay) is then linked to the increase (decrease) of precipitation rates.
This thesis only focuses on the latter definition, i.e., the strengthening or weakening of the average
rain rate over an area.

3.2.1. Tracking of precipitation parcel
Due to motion, precipitation parcels observed at time 𝑡 − 𝜏 will be at a different location at time 𝑡. The
Lagrangian framework allows for the physical properties to be studied as we follow each precipitation

11
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Figure 3.1: The two areas (ፀᎴᎲ and ፀᎸᎲ) used for the prediction of growth and decay of rain cells.

parcel along its trajectory. The Lagrangian framework is adopted by first estimating the motion field
over the area between time 𝑡−𝜏 and 𝑡 and then computing the trajectory of each parcel. A backtracking
algorithm is then used to estimate the original location of each parcel at time 𝑡 − 𝜏, see Figure 3.2.

Estimation of the motion field
The motion field describes the apparent motion of a parcel at any location in the observation field. The
motion field is estimated using the Lucas-Kanade optical flow method provided by the python package
pySTEPS [39, 40]. This is different from the object-tracking method used by KNMI but our analyses
show that both approaches produce very similar motion estimates. The Lucas–Kanade method assumes
that the pixels inside a window are moving in one direction with the same speed. This is based on the
assumption that the moved distance of an object inside the image is small. This means that the optical
flow equation must hold within a window for all pixels, resulting in a linear system of equations. The
optical flow method only estimates the motion field around rain cells as it detects corners of objects
inside an image. This is to reduce the computational time and noise.

Two consecutive radar fields are used to estimate the motion field. The first is the reflectivity field
at time 𝑡 − 𝜏 and the second is the reflectivity field at time 𝑡. The motion field is therefore the motion
from time 𝑡−𝜏 to 𝑡. Normally in radar nowcasting, the motion field is based on radar images until time
𝑡 − 𝜏, because the radar image at time 𝑡 is not observed yet. This introduces additional uncertainties,
because similarly to the intensity, the motion field is not constant and can vary over time. In this thesis,
these additional uncertainties are avoided by including the radar image at time 𝑡, therefore leading to
the best possible estimate of the motion field.
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Backtracking
The motion field is used to compute the displacement terms 𝛼 and 𝛽, representing the distance traveled
in the 𝑥 and 𝑦-direction respectively. These can be computed in two ways. The first way is called the
constant-vector scheme. The displacement terms are then computed as:

𝛼 = 𝜏𝑢(𝑥, 𝑦)
𝛽 = 𝜏𝑣(𝑥, 𝑦) (3.1)

where 𝑢(𝑥, 𝑦) and 𝑣(𝑥, 𝑦) represent the estimated motion between time 𝑡 − 𝜏 and 𝑡 in 𝑥 and 𝑦-
direction respectively at location (𝑥, 𝑦). The constant-vector scheme translates each grid point only
once and does not allow for rotation. The second way to compute the displacement terms is by using
a semi-Lagrangian scheme. The time lag 𝜏 is divided into smaller times steps and the displacement is
computed recursively, in the same manner as in the constant-vector scheme except that the location is
updated at every time step. Depending on the amount of time steps and how quickly the motion field
changes, this semi-Lagrangian scheme can account for rotation up to a certain degree. To simplify the
analysis, the displacement terms in this thesis are computed with the constant-vector scheme. The
error introduced by not accounting for the rotation is small as the parameters are averaged over a
relatively large area anyway.

By convention, the motion field goes forward in time and therefore the displacement terms points
away from the origin (𝑥፨፫።፠።፧ , 𝑦፨፫።፠።፧) to the target location of the rain cell (𝑥፭ፚ፫፠፞፭ , 𝑦፭ፚ፫፠፞፭) at time 𝑡.
The origin of the rain cell at time 𝑡 − 𝜏 is thus found by subtracting the displacement terms, see Eq.
3.2. Figure 3.2 shows the displacement terms, which can be computed by the two schemes.

𝑥፨፫።፠።፧ = 𝑥፭ፚ፫፠፞፭ − 𝛼
𝑦፨፫።፠።፧ = 𝑦፭ፚ፫፠፞፭ − 𝛽

(3.2)

(𝑥፨፫።፠።፧ , 𝑦፨፫።፠።፧)

𝛼

𝛽 (𝑥፭ፚ፫፠፞፭ , 𝑦፭ፚ፫፠፞፭)

𝑂𝑟𝑖𝑔𝑖𝑛 (𝑡 − 𝜏)

𝑇𝑎𝑟𝑔𝑒𝑡 (𝑡)

𝑥

𝑦

Figure 3.2: Displacement terms ᎎ and ᎏ used in the backtracking of rain cells. The solid line and dashed line represent the
trajectory computed by the constant-vector scheme and semi-Lagrangian scheme respectively.

3.2.2. Formulation of growth and decay
The growth and decay can be mathematically defined in two ways. A simple way to formulate growth
and decay is with the help of a multiplicative model, shown in Eq. 3.3. The growth and decay 𝐶፦፮፥፭
between time 𝑡 − 𝜏 and 𝑡 is formulated as the ratio between the average precipitation rates s𝑃 at time
𝑡 − 𝜏 and 𝑡. The movement of the precipitation parcels are accounted for by adopting the Lagrangian
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framework as described in section 3.2.1. This means that s𝑃(𝑡) is computed over the target area and
s𝑃(𝑡−𝜏) over the backtracked area, i.e. the origin in Figure 3.2. The multiplicative model always outputs
a positive value ranging between 0 and infinity. Growth occurs when 𝐶፦፮፥፭ is larger than 1 and when
the average precipitation rate decreases the ratio 𝐶፦፮፥፭ will be less than 1. One major drawback for
this model is that it can only be used when there is already precipitation. The average precipitation rate
s𝑃(𝑡 − 𝜏) should be always greater than 0. This means that initiation of rain cells can not be predicted
with the multiplicative model.

s𝑃(𝑡) = s𝑃(𝑡 − 𝜏)𝐶፦፮፥፭(𝑡) (3.3)

Growth and decay can also be formulated as an additive model, see Eq. 3.4. The growth and
decay 𝐶ፚ፝፝ shows the difference between the average precipitation rate s𝑃 between time 𝑡 − 𝜏 and
𝑡. This formulation of the growth and decay is easy to understand as it represents the actual change
in precipitation rate in mm/h. Positive values stand for growth and negative values for decay. The
additive model can also be used to study the initiation of rain cells.

s𝑃(𝑡) = s𝑃(𝑡 − 𝜏) + 𝐶ፚ፝፝(𝑡) (3.4)

In this thesis we will use the additive model for the estimation of the growth and decay. However,
logarithmic reflectivity 𝑧 (dBZ) will be used instead of rainfall rates (mm/h), because reflectivity fields
are directly measured by the radar and have a more Gaussian distribution. Also, the impact of an error
in the lower precipitation rates is higher compared to the same error at a higher precipitation rate.
Even though the absolute error is the same, the impact of this error is different at different scales of
precipitation. A difference of 5 mm/h has more impact for the precipitation rates between 1 − 10
mm/h than for 20 − 30 mm/h. The relative error is therefore more important than the absolute error.
The symbol for average precipitation rate s𝑃 thus changes to average logarithmic reflectivity s𝑧:

s𝑧(𝑡) = s𝑧(𝑡 − 𝜏) + Δ𝑧፭ዅᎡ,፭ (3.5)

The radar observations from the KNMI are used for the reflectivity field 𝑧 at time 𝑡 over the Nether-
lands. The precipitation parcels are then traced back to its original position at time 𝑡 − 𝜏 using the
constant-vector scheme. Because we are interested in the mean growth or decay, the reflectivity fields
are first averaged over the area 𝐴ኼኺ and then the mean growth and decay is computed. Resulting
in Eq. 3.5 which is used to compute average growth and decay over area 𝐴ኼኺ, where Δ𝑧፭ዅᎡ,፭ is the
average growth and decay.

Due to the temporal resolution of HARMONIE, this thesis will focus on predicting growth and decay
for a lead time 𝜏 = 60 minutes.

3.3. General approach
The idea behind using a numerical weather prediction model to improve the radar nowcasts is simple.
There exists a tradeoff between accuracy in time and space and the dynamical part of rain cells. Radar
nowcasts are able to predict the location of a rain cell fairly accurate at the right time. However the
shortcomings of radar nowcasts is that they do not account for any change in size or intensity of rain
cells. In contrast to radar nowcasts, numerical weather prediction models are less accurate when it
comes to predicting rain cell at the right location and time, but are able to predict the dynamics of rain
cells. Examples can be found in Chapter 4.

Information about the dynamics may be present directly in the different parameters at time 𝑡, the
time we want to predict the growth and decay. Since we are only interested in the areal average growth
and decay, looking at the trend or change of the parameters would be the better choice. Therefore, only
the trend of the parameters from HARMONIE are used. The trends are computed, just like the growth
and decay, using the additive model, see Eq. 3.5. The parameters from HARMONIE are backtracked,
averaged and then the trend is computed by subtraction.

The information from the trends however is still not directly usable to predict growth and decay.
For this, a machine learning technique needs to be used to make sense out of the information from
HARMONIE and to predict growth and decay. The multi-layer perceptron (MLP) will be used for the
prediction of growth and decay. Other machine learning techniques could be used, but MLP is very
flexible as it can be used for both classification and regression problems. Also MLP can be used deal
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with non linear problems and is able to produce predictions very fast, once a model is trained. More
information about MLP and how it is used can be found in chapter 3.4.

3.3.1. Sliding window method
It should be noted that the performance of the MLP depends on the information it gets. Too much
contradictory data or too much noise in the data will result in the MLP not being able to make sense out
of the data. This could be also the case with the HARMONIE data, because the data itself is a prediction
and is not 100% accurate. Therefore trusting all of the information from HARMONIE might be a bad
idea. A better option might be to only predict growth and decay for cases where the accuracy of the
information from HARMONIE is high enough. In the remainder of the cases, it is better to assume
Lagrangian persistence, i.e. no growth and decay.

The accuracy for each prediction could be measured by comparing the growth and decay from
HARMONIE at time 𝑡 with the radar observation at time 𝑡. This is however not possible as the radar
observation at time 𝑡 is not present. An alternative option is to use the historical performance of
HARMONIE. The performance of previous predictions can be used as an indication of how good the
information from HARMONIE at time 𝑡 is. If the previous predictions are consistent with the corre-
sponding observations, chances are high that the image at time 𝑡 will also be consistent. For this
purpose, the sliding window method is used to move over the data set and to compute the historical
performance of HARMONIE for each prediction. The sliding window method uses a window, with a
certain length 𝐿, which moves over each prediction and computes the performance of the previous 𝐿
predictions.

The historical performance could be computed in two different ways. First option is to compute the
correlation between growth and decay from radar and HARMONIE. The correlation is computed over
the points inside the window. Correlation shows how similar the two time series are. The downside
however is that it does not show how good the agreement is between radar and HARMONIE. So
HARMONIE and radar could both be contradicting each other regarding growth and decay but the
correlation could still be high. The second option is to count how many times HARMONIE agrees with
radar within the window. HARMONIE agrees with radar if both show growth or decay. A high number
of agreements means that there is high chance that the prediction for time 𝑡 will also be correct. Both
of the performance quantities will be used to assess the performance of HARMONIE. How the cases
where HARMONIE could be used to predict growth and decay will be chosen is through MLP and is
explained in chapter 5.

3.3.2. Shift correction method
Not only limiting the amount of data given to the model could improve the results. HARMONIE does
not always predict the rain cells at the right location at the right time. Correcting these inconsistencies
could lead to an increase in accuracy of the information from HARMONIE. This can be accomplished
by aligning the precipitation images from HARMONIE with the radar observation. This will reduce the
chance of the rain cell being at the wrong location.

Aligning the images can be achieved by computing the correlation between two images for all
possible shifts and looking for the maximum correlation, this method is also called cross correlation.
Computing the cross correlation directly is computationally expensive and takes a considerable amount
of time as each radar image contains 700∗765 pixels. A method called Phase correlation [41, 42] uses
the properties of the Fourier Transform in order to efficiently compute the cross correlation between
two images. Directly computing the cross correlation involves a convolution operation making it very
expensive for a large amount of pixels. However, the convolution operation in the spatial domain
is equivalent to a multiplication in the frequency domain. Transforming the images to the frequency
domain using the Fast Fourier Transform reduces the computational time significantly. Phase correlation
uses this property to efficiently compute the correlation surface 𝑐ፈᎳ ,ፈᎴ:

𝑐ፈᎳ ,ፈᎴ(𝑥, 𝑦) = ℱዅኻ(ℱ(𝐼ኻ)ℱ(𝐼ኼ)∗) (3.6)

where ℱ(𝐼ኻ) and ℱ(𝐼ኼ) are respectively the Fourier Transform of the images 𝐼ኻ and 𝐼ኼ, ℱዅኻ denotes
the inverse Fourier Transform and ℱ(𝐼ኼ)∗ stands for the complex conjugate of the Fourier Transform of
image 𝐼ኼ. The correlation 𝑐ፈᎳ ,ፈᎴ(𝑘, 𝑙) at coordinates (𝑘, 𝑙) shows the correlation between the two images
corresponding to shifting image 𝐼ኼ by the difference between the center of the surface and coordinates
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(𝑘, 𝑙). The coordinates with the maximum correlation are therefore the best estimate for translation
shift.

Phase correlation algorithm
Multiple steps have to be taken to find the shift between the radar precipitation rate and precipitation
rate from HARMONIE. The computation of the method consists of the following steps:

1. Ensure that both precipitation rate images are in the same units (𝑚𝑚/ℎ).

2. Convert the HARMONIE coordinates to the radar projection and resample the HARMONIE im-
age so that both images have the same grid and dimensions. Using the python package scipy,
the HARMONIE images are resampled to the radar grid. Resampling is done with the function
scipy.ndimage.map_coordinates() which maps the image to a new grid by cubic spline interpola-
tion.

3. Compute the correlation surface 𝑐ፈᑣᑒᑕᑒᑣ ,ፈᐿᐸᑉᑄ .

(a) Compute the Fourier Transform of both images ℱ(𝐼፫ፚ፝ፚ፫) and ℱ(𝐼ፇፀፑፌ). The 2-D Fourier
Transform is computed using the function np.fft.fft2() from the python package numpy.

(b) Compute the cross power spectrum, ℱ(𝐼፫ፚ፝ፚ፫)ℱ(𝐼ፇፀፑፌ)∗.
(c) Take the inverse Fourier Transform of the cross power spectrum and rearrange this by shifting

the zero component to the center of the surface. The correlation surface 𝑐ፈᑣᑒᑕᑒᑣ ,ፈᐿᐸᑉᑄ needs
to be rearranged because the function saves the negative terms at the end of the surface.The
function np.fft.fftshift() is used to rearrange the components.

4. Find the translation shifts (Δ𝑥, Δ𝑦).

(a) Find coordinates of maximum correlation (𝑥፦ፚ፱ , 𝑦፦ፚ፱).
(b) Compute the translation shifts. The shift is computed as the difference between the center

of the surface (𝑥 , 𝑦) and (𝑥፦ፚ፱ , 𝑦፦ፚ፱), i.e. (Δ𝑥 = 𝑥፦ፚ፱−𝑥 , Δ𝑦 = 𝑦፦ፚ፱−𝑦). A negative Δ𝑥
means that HARMONIE should be moved to the west by |Δ𝑥| km, and vice versa. A negative
Δ𝑦 means that HARMONIE should be moved to the north by |Δ𝑦| km, and vice versa.

The same problem, as for measure the performance of HARMONIE, arises that there is no radar
observation at time 𝑡, so the HARMONIE image cannot be aligned with the corresponding radar obser-
vation. Assuming that the best shift for time 𝑡 does not deviate much from the shift for time 𝑡−60. We
could solve this issue by estimating the best shift for the previous image at time 𝑡−60 and applying this
shift to the image at time 𝑡. Also, it is possible to extend the phase correlation algorithm to estimate
the best shift for a series of images. This thesis will cover both cases.

3.4. Multi-layer perceptron
In this thesis a MLP (multi-layer perceptron) is used for the prediction of growth and decay. MLP is also
called a feedforward neural network [43]. It is comprised of multiple layers, each of which containing a
certain number of neurons(nodes). Figure 3.3 gives an example of a three-layer perceptron (3LP). The
number of neurons within the 𝑖th layer is denoted as 𝑁።. The first layer is called the input layer. The
features or data are directly fed into this layer and the number of neurons is the same as the number
of features. The last layer is the output layer. It can contain multiple neurons depending on the desired
output. Since the goal is to predict the growth and decay at a certain moment, the output layer only
has one neuron. The layers between the first and the last layer are called hidden layers. These layers
are used to map the input (features) to the desired output. The output 𝑎።,፣ of a node 𝑗 within a hidden
layer 𝑖 is the weighted sum of each neuron in layer 𝑖 − 1. A non linear activation function ℎ is then
applied to the weighted summation, making the MLP non linear. In this thesis, the hyperbolic tangent
function is used as the activation function ℎ. This is a natural choice for modeling growth and decay as
the range is between −1 and 1 and the function is centered around zero. This ensures the MLP deals
with both negative and positive values in the same manner. Figure 3.3 and Eq. 3.7 shows the output
of a node 𝑗 in layer 𝑖. The sum is over all neurons 𝑘 in layer 𝑖 − 1.
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𝑧።,፣ =∑
፤
𝑎።ዅኻ,፤𝑤።,፣,፤

𝑎።,፣ = ℎ(𝑧።,፣)
ℎ(𝑥) = tanh(𝑥)

(3.7)
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Figure 3.3: On the left: an example of a three-layer perceptron. On the right: a visual representation of how the output of a
node is composed.

3.4.1. Backpropagation
The weights found in Eq. 3.7 are estimated by backpropagation. They are updated iteratively according
to the stochastic gradient descent algorithm Adam [44]. One iteration is also called an epoch. This
algorithm is expected to work well with noisy data. It uses the exponential moving averages of the
first and second moments of the gradients. These two averages are then used to update the weights
of the neural network model. For a certain weight 𝑤, the algorithm consists of the following steps:

𝑔፭ =
𝜕𝐽
𝜕𝑤፭

𝑚፭ = 𝛽ኻ𝑚፭ዅኻ + (1 − 𝛽ኻ)𝑔፭
𝑣፭ = 𝛽ኼ𝑣፭ዅኻ + (1 − 𝛽ኼ)𝑔ኼ፭
𝑚፭ =

𝑚፭
1 − 𝛽፭ኻ

𝑣፭ =
𝑣፭

1 − 𝛽፭ኼ
𝑤፭ = 𝑤፭ዅኻ − 𝛼

𝑚፭
√𝑣፭ + 𝜖

(3.8)

where 𝐽 represents the cost function, which is minimized with the Adam algorithm [44]. The ex-
ponential moving average of the first and second moments are formulated by 𝑚፭ and 𝑣፭ at iteration
𝑡, respectively. These are then corrected for the bias. The moving averages use 𝛽ኻ and 𝛽ኼ as the
exponential decay rate for the first and second moment, respectively and 𝜖 is used to prevent division
by zero. The settings recommended by [44] are used, 𝛽ኻ = 0.9, 𝛽ኼ = 0.999 and 𝜖 = 10ዅዂ. The learning
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rate 𝛼 depends on the input and the size of the model and is changed for each model. The vanishing
gradient problem is mitigated by keeping the number of hidden layers as low as possible.

The neural network models are created and trained using the python package Tensorflow [45],
which is an open-source machine learning package from Google. Also the stochastic gradient descent
algorithm Adam was already implemented in the package.

3.4.2. Validation of the neural network
The cost function 𝐽 used in the backpropagation is chosen to be the mean squared error (MSE). The
mean squared error measures how good the model fits the data in a squared sense. Larger errors will
therefore be penalized more than smaller ones.

The issue of under and overfitting is minimized by keeping the size and complexity of the neural
network models to a minimum. Only 80% of the training data set will be used to train the model. The
remaining part is used to evaluate the behaviour of the model. The MSE of this part is computed after
every epoch and is used to avoid overfitting the model. The training of the model will be stopped if
there is no improvement in the MSE after five epochs. This method is called early stopping.

To evaluate the models, mean squared error (MSE), mean bias error (MBE) and Pearson’s correlation
coefficient(𝜌) will be computed over the validation data set. MBE represents the systematic error of the
model to under or overestimate the growth and decay. A perfect model would result in a systematic
error of 𝑀𝐵𝐸 = 0, i.e., no under or overestimation of the growth and decay. The Pearson’s correlation
coefficient measures the linear relationship between the growth/decay and the predicted growth/decay.
The correlation for a perfect model should be 𝜌 = 1. The performance metrices are defined as:

𝑀𝑆𝐸 = 1
𝑁

ፍ

∑
።ኻ
(�̂�። − 𝑦።)ኼ (3.9)

𝑀𝐵𝐸 = 1
𝑁

ፍ

∑
።ኻ
�̂�። − 𝑦። (3.10)

𝜌 =
𝜎፲̂፲
𝜎፲̂𝜎፲

(3.11)

where 𝑦። and �̂�። represents the true and estimated value of data point 𝑖 respectively.

3.5. Event selection
The radar archive contains a lot of time steps where no rain was observed in area 𝐴ኼኺ. A flowchart
showing the procedure used to select the events is shown in Figure 3.4. The first step is to select a
set of potential events. This is done by using two criteria:

1. The fraction of wet pixels in the target area 𝐴ኼኺ is greater than 15%. A pixel is considered wet
when the precipitation rate (reflectivity) is higher than 0.2 mm/h (11.827 dBZ).

2. The maximum precipitation rate (reflectivity) in the target area 𝐴ኼኺ is larger than 10mm/h (39.010
dBZ).

The threshold of 0.2 mm/h is used to minimize the noise found in the observations. If a radar
observation meets both criteria, then all of the observations of that day are added to the data set. This
is to ensure that the growth or decay is present in the observations, but this is not always the case as
rain cells are not fixed to a specific location and move around. The HARMONIE data set is then added
to the data set. Note that some files were missing or mislabeled, due to the way the two data sets
have been gathered. The records which depend on a file which is missing, misnamed or corrupted
were removed. The data set with the remaining records were then visually checked for artifacts. All
suspect cases were removed.

In total, there were 39 days in the radar data set that met both criteria. However, 11 days of radar
data were removed after checking for artifacts. As a result 28 days of data in 2019 were used in this
thesis. The month of May had the least amount of rain events, with only four days of rainfall. June
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Figure 3.4: Process of selecting the events

however started with warm days and little rain. From the 10th of June, rain events started to occur
almost daily up until the 19th. The 25th of June 2019 had met the criteria, but was removed from the
data set as there were a lot artifacts in the observations. Four days in the month of July were also
removed for the same reason. Rain started to fall again at the end of July and continued into August.
August had the largest number of rain events, with a total of 13 days of rain.

3.6. Construction of the training and validation data set
As aforementioned, the data set exists only of days which include a rain event. This data set is split
into two data sets, a training and validation data set. The training data set is used for the training of
the machine learning technique by optimizing the weight for each neuron. To tune the models hyper-
parameters, such as the number of hidden layers and neurons, a k-fold cross validation is used only
on the training data. The validation data set is used for validating the model.

The data set is split based on the date of the observations in order to avoid information leaking into
the model. The observations from the first three months, May, June and July, is assigned to the training
data set and August will be used as validation. The data sets only have records which depend on the
observations made on the hour. This limitation is due to the temporal resolution of the HARMONIE
model. Therefore the time lag 𝜏 is set to 60 minutes. The training data set has 355 observations (14.8
days) and the validation data set has 309 observations (12.9 days).





4
Assessment of radar and

HARMONIE forecasts

4.1. Performance for selected events
As mentioned in chapter 3, there are 28 days in the four months with rainfall. Of these 28 days three
events were selected to give a sense of how good the radar nowcasts and HARMONIE perform. These
three events either have a growing, decaying or little to no growth or decay behaviour. The differences
between the radar nowcasts and HARMONIE will also become more apparent by showing these events.

4.1.1. Event 1 - Growth
The first selected event occurred on 2019-06-10. Figure 4.1 shows a time series of radar images of
this event. A rain cell passes through area 𝐴ዀኺ from the south to the north side. It is clearly noticeable
that the area of the rain cell gets smaller as the southern part is vanishing. At the same time, the front
of the rain cell is growing both in intensity and in size. The Lagrangian extrapolation method does
not account for this growth and decay, causing the radar nowcast being of in time. The combination
of growth and decay of this rain cell results in an artificial acceleration. The rain cell passes through
the buffer zone earlier than is predicted by the KNMI, due to this artificial acceleration. Figure 4.2
shows the nowcast product from the KNMI for this event. At 13:40 the rain cell has reached the buffer
zone, but the nowcasts shows this happening at 14:00. The radar nowcast lags approximately 20 mins
behind. Also, the area of the rain cell inside the buffer zone is bigger in the nowcast at 15:00 than in
the observations. The average predicted precipitation rate in the area will therefore be overestimated.
The nowcasts for this time frame are therefore both off in timing and average intensity.

The time series of the HARMONIE forecasts are shown in figure 4.3. HARMONIE has a harder time in
predicting the rain cell. The rain cell is predicted to pass through the area at 16:00, which is almost two
hours too late. However, it is most likely that the rain cell is predicted at the wrong location. At 14:00
HARMONIE predicts a rain cell south of 𝐴ዀኺ and continues moving north. These inaccuracies result in
HARMONIE performing bad for this event, unless the HARMONIE is corrected for these discrepancies
in time and space.

21
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Figure 4.1: Time series of a rain cell passing the buffer zone ፀᎸᎲ on 2019-06-10 with intervals of 20 minutes.

Figure 4.2: Time series of the nowcast images on a rain cell passing the buffer zone ፀᎸᎲ on 2019-06-10 with intervals of 20
minutes. The lead time is one hour.
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Figure 4.3: Time series of the HARMONIE forecasts on a rain cell passing the buffer zone ፀᎸᎲ on 2019-06-10.

4.1.2. Event 2 - No growth or decay
Event 2 is an event for which the radar nowcast is very similar to the observed radar images. This
event took place on 20199-07-27 and is shown in Figure 4.4. At first, between 03:40 and 04:00, the
rain cell grows rapidly. The rain cell then stops growing significantly from 04:00 and onward. Because
the rain cell does not change much in intensity or size, we would expect that the radar nowcast will be
close to the real truth. Figure 4.5 shows the radar nowcast with a lead time of one hour. The nowcast
is comparable to the radar observations as there is little change in the shape of the rain cell.

HARMONIE, on the other hand, is clearly wrong in predicting the rain cell. Figure 4.6 shows the
prediction of HARMONIE and it looks like the rain is not predicted at all. However the rain could also
be predicted at the wrong location. HARMONIE predicted rain south of the Netherlands and could be
predicted at the wrong location and actually correspond to the rain cell passing over Rotterdam. This
proves that HARMONIE is not always reliable.

4.1.3. Event 3 - Decay
The third event is shown in Figure 4.7 and is an example of a rain cell decay/vanishing. Two rain cells
are present near the buffer zone at 08:00 and move towards the northeast direction. One rain cell start
decaying until it is vanished completely at around 08:40. The other rain does not change very much.
As mentioned, the nowcast does not take any growth or decay into account and thus still shows the
vanished rain cell in the prediction for 09:00, see Figure 4.8. According to the prediction the rain cells
will also take longer to leave the area. Just like event 1, the decaying leads to the nowcast being off
in timing and average precipitation rate.

Figure 4.9 shows that HARMONIE predicts one rain cell instead of two at 08:00. This rain cell is
decaying and disappears at 09:00. This might be caused by the lower resolution of HARMONIE and
also the inability of HARMONIE to predict small rain cells. Also, it could be that only the vanishing
rain cell is predicted. But, on the bright side, the dynamical part of this event is predicted correctly by
HARMONIE and could be used for improving the radar nowcast.
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Figure 4.4: Time series of a rain cell passing the buffer zone ፀᎸᎲ on 2019-07-27 with intervals of 20 minutes.

Figure 4.5: Time series of the nowcast images on a rain cell passing the buffer zone ፀᎸᎲ on 2019-07-27 with intervals of 20
minutes. The lead time is one hour.
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Figure 4.6: Time series of the HARMONIE forecasts on a rain cell passing the buffer zone ፀᎸᎲ on 2019-07-27.

Figure 4.7: Time series of a rain cell passing the buffer zone ፀᎸᎲ on 2019-08-19 with intervals of 20 minutes.



26 4. Assessment of radar and HARMONIE forecasts

Figure 4.8: Time series of the nowcast images on a rain cell passing the buffer zone ፀᎸᎲ on 2019-08-19 with intervals of 20
minutes. The lead time is one hour.

Figure 4.9: Time series of the HARMONIE forecasts on a rain cell passing the buffer zone ፀᎸᎲ on 2019-08-19.
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4.2. General performance
The radar nowcasts and HARMONIE predictions are both not perfect. The three events shown before
proved that the performance of both product depend on the characteristics of the rain cell itself. The
growing or decaying part of a rain cell is not captured with the radar nowcasting method, but the
position of the rain cell is still predicted very well. This is in contrast with HARMONIE. HARMONIE is
capable of predicting growth and decay of rain cells, but has a hard time predicting the position of the
rain cell. There is a trade off between the accuracy of position/timing and dynamical behaviour.

Figure 4.10: From left to right, the observed precipitation rate, predicted precipitation rate from the radar nowcast with 1 hour
lead time and predicted precipitation rate from HARMONIE respectively.

The difference between the KNMI products can be clearly seen in Figure 4.10. HARMONIE captures
the decay of the rain cell very well and the radar nowcasts predicts the rain cell at the right location
even though the prediction does not account for the decay of the rain cell. The performance of these
products are therefore assessed in terms of mean squared error (MSE), mean biased error (MBE)
and correlation. The performance metrics are defined in chapter 3.4.2. The performance metrics are
computed over the average precipitation rate s𝑃 over area 𝐴ዀኺ and 𝐴ኼኺ. The performance of HARMONIE
is only computed for area 𝐴ዀኺ, due to the low resolution and HARMONIE not predicting the rain cells
at the right location.

Table 4.1: The general performance of the radar nowcasts and HARMONIE. The lead time of the radar nowcasts is one hour and
is computed on the entire data set on an hourly resolution.

Radar nowcast
averaged over 𝐴ዀኺ

Radar nowcast
averaged over 𝐴ኼኺ

Harmonie
averaged over 𝐴ዀኺ

MSE [𝑚𝑚ኼ/ℎኼ] 0.100 0.621 0.858
MBE [𝑚𝑚/ℎ] −0.009 0.004 0.008
𝜌 [−] 0.850 0.564 0.345

Table 4.1 shows how well both products perform. The MSE over area 𝐴ዀኺ is lower than for area 𝐴ኼኺ.
Going from a larger area to a smaller area means that predicting the rain cell at the correct position will
become more important and thus the MSE will be higher. Also, the dynamical behaviour will become
more important for smaller areas as the average is computed over a smaller area. A smaller area means
less pixels that are getting averaged and thus the growth and decay will become more apparent. As
expected, HARMONIE is less accurate than the radar nowcast. This is mostly because the rain cells are
being predicted at the wrong location or at the wrong time.
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4.2.1. Performance of radar nowcast with lead time
As mentioned in chapter 1, the nowcasts perform well whenever the dominant source of variability is
due to the motion of the rain cells rather than growth and decay. The growth and decay in events 1 and
3 implies that the nowcasts were less accurate than for event 2. Event 2 had little growth, resulting in
the nowcast being more accurate. The same conclusion can also be drawn with longer lead times. By
increasing the lead time, growth and decay will play a more evident and important role. The accuracy
of the nowcasts decreases as a result of longer lead times. To visualize this phenomena the observed
average precipitation rate s𝑃ኼኺ of an event is shown together with the predicted average precipitation
rate �̂�ኼኺᎡ for different lead times 𝜏 = 5 𝑚𝑖𝑛, 60 𝑚𝑖𝑛 and 120 𝑚𝑖𝑛 in Figure 4.11.

Figure 4.11: The observed average precipitation rate and the predicted average precipitation rate for different lead times from
the radar nowcasts over the area ፀᎴᎲ.

It is clearly visible that the accuracy decreases when the lead time increases. The predicted average
precipitation rate with 5 min lead time follows the observed precipitation rate very well. Increasing this
lead time to 60 minutes in a prediction which lags behind of the observation. Also the predicted
precipitation rate does not follow the observation very well anymore. Increasing the lead time even
further results in a bigger time lag, so the rain cell passes the area almost an hour too late. Also the
predicted precipitation rate is lower. The growth of this rain cell is not captured with extrapolation.
Therefore this is noticeable in all of the nowcasts and the lag increases with lead time. This is also
evident when looking at the MSE in Figure 4.12. As the lead time increases the error gets larger. Up to
around 45 minutes the mse shows a linear increase. The linearity disappears after this. This change is
probably due to the growth and decay becoming the dominant source of variability. The MSE is even
higher when only looking at average precipitation rates above 1 mm/h.

Figure 4.12: The mean squared error between the KNMI nowcasts and observed precipitation rate computed over the entire
data set on 5 min temporal resolution. The MSE in the plot on the left is over the whole data set and the MSE in the plot on the
right is computed over points with observed average precipitation rate above 1 mm/h. As expected, the error increases with the
lead time.
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The correlation coefficient is shown in figure 4.13 and shows the same behaviour. This correlation
coefficient measures the strength of the linear relationship between two variables and if this is correla-
tion is positive or negative. If two variables are perfectly positive correlated the correlation coefficient
will be 1 and if it is perfectly negative the correlation coefficient will be −1. If there is no correlation
the correlation will be 0. The difference between the correlation of the areas 𝐴ኼኺ and 𝐴ዀኺ is big. The
cause can be found in the difference in size. Averaging over a larger area tends to smooth out the
smaller, more localized, rain cells and also the growth and decay of rain cells is less. Surpisingly, the
correlation coefficient of 𝐴ዀኺ [s𝑃 > 1 mm/h] seems to not change very little for lead times between 80
and 105 minutes. It is not clear why this happens.

Figure 4.13: The correlation coefficient between the radar nowcasts and observed precipitation rate over the whole data set. As
the lead time increases the error gets larger and the correlation decreases.

4.2.2. Limitations of HARMONIE
The estimated rain precipitation rate (INR) from HARMONIE is expected to be a useful parameter.
HARMONIE does a decent job at predicting precipitation rate. But its timing and accuracy are far from
perfect. Some rain events last much longer than is predicted by the model and on some occasions the
rain events are predicted too early or too late. This can go up to 3 hours too early/late. Four events
are not predicted at all and when rain is predicted, the average intensity is most of the time an order of
magnitude smaller than in the radar. This could be caused by the fact that HARMONIE predicts smaller
rain cells and thus has a lower average precipitation rate. Also the grid size of HARMONIE is larger than
the radar, causing the rain rates to be smoothed out over a larger area. By working in the logarithmic
domain, the change in low average precipitation rate will have more impact.

Figure 4.14: The observed average precipitation rate and the predicted average precipitation rate from the HARMONIE model
over the areas ፀᎴᎲ and ፀᎸᎲ.

Figure 4.14 shows the predicted average precipitation rate over the areas 𝐴ኼኺ and 𝐴ዀኺ. It looks
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like the peak at 08:00 is predicted too early by HARMONIE. At 22:00 the average precipitation rate
is predicted correctly. Thus the predictions do not have a constant time lag but this varies over time.
HARMONIE also does not always predict the rain cells at the right location. A lot of these time and
spatial discrepancies are present in the HARMONIE data.

4.3. Correlation of HARMONIE features with precipitation rate
The HARMONIE data set contains a variety of parameters, however not all of them are useful for
predicting the growth and decay. Relative humidity (RH) might be an important parameter. At almost
every rain event there is an increase in the predicted relative humidity. The trend of this parameter
could be a useful parameter for the estimation of the growth and decay. The relative humidity, however,
also grows when there is no rain present. The same goes for the cloud cover parameters. The wind
speed parameters (U10 and V10) do not seem to contain useful information about the rain events.

One of the drawback of NWP models is that they often lack accuracy in both spatial and temporal
domain. For this reason the Pearson’s correlation coefficient between the observed rain rate and
HARMONIE parameters is calculated. The correlation coefficient between the observed rain rate and
HARMONIE parameters can be found in Tables 4.2 and 4.3. The correlation is calculated for both areas
𝐴ኼኺ and 𝐴ዀኺ. The highest correlation are from the cloud cover parameters, precipitation rate, cloud
base and relative humidity. The correlation also slightly increases going from area 𝐴ኼኺ to 𝐴ዀኺ, especially
for the precipitation rate. This means that more information about the rain events are found in the
area 𝐴ዀኺ. However, all correlation coefficients remain low. This is caused by HARMONIE predicting
rain cells on a different location or at a different time. These bad predictions could introduce errors
and noise in the data. Having too much of these errors will lower the performance or accuracy of a
machine learning technique.

Table 4.2: Pearson’s correlation coefficient between the average precipitation rates sፏᎴᎲ, sፏᎸᎲ and the HARMONIE parameters
averaged over area ፀᎴᎲ, sorted from high positive correlation to high negative correlation.

s𝑃ዀኺ s𝑃ኼኺ

Medium Cloud Cover (MCC) 0.39 0.29
Rain precipitation rate (INR) 0.31 0.2
Total cloud cover (TCC) 0.24 0.18
High Cloud Cover (HCC) 0.21 0.14
Relative humidity (RH) 0.16 0.13
Low Cloud Cover (LCC) 0.14 0.12
Boundary layer height (BLH) 0.032 −0.007
U-component maximum gust at 10 m (UWG) −0.053 −0.057
U-wind component at 10 m (U10) −0.051 −0.065
Temperature of air at 2 m (2T) −0.057 −0.066
V-wind component at 10 m (V10) −0.074 −0.071
V-component maximum gust at 10 m (VWG) −0.081 −0.084
Cloud base (CLB) −0.17 −0.14
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Table 4.3: Pearson’s correlation coefficient between the average precipitation rates sፏᎴᎲ, sፏᎸᎲ and the HARMONIE parameters
averaged over area ፀᎸᎲ, sorted from high positive correlation to high negative correlation.

s𝑃ዀኺ s𝑃ኼኺ

Medium Cloud Cover (MCC) 0.4 0.31
Rain precipitation rate (INR) 0.4 0.27
Total cloud cover (TCC) 0.26 0.19
High Cloud Cover (HCC) 0.21 0.14
Relative humidity (RH) 0.17 0.14
Low Cloud Cover (LCC) 0.15 0.12
Boundary layer height (BLH) 0.0091 −0.021
U-component maximum gust at 10 m (UWG) −0.044 −0.059
Temperature of air at 2 m (2T) −0.049 −0.062
U-wind component at 10 m (U10) −0.048 −0.064
V-wind component at 10 m (V10) −0.067 −0.064
V-component maximum gust at 10 m (VWG) −0.068 −0.069
Cloud base (CLB) −0.24 −0.23

4.4. Validation of the backtracking algorithm
Figure 4.15 shows the histogram of the estimated flow direction upwind of area 𝐴ዀኺ for the observa-
tions. According to the backtracking algorithm, most of the precipitation from the radar images comes
from the southwest direction and flows towards northeast. This is conform the monthly average wind
direction from the KNMI. However, due to the growth and decay of rain cells, the apparent motion of
the rain is not always the same as the wind direction. Therefore, some events were visually checked
to ensure that the algorithm works correctly.

Figure 4.15: Polar histogram of the estimated flow direction. The flow directions are estimated using the optical flow method
called Lucas–Kanade.
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There are two options to use the backtracking algorithm for HARMONIE. The first option is to use
the motion field derived from the radar images. The second is to estimate the motion field from the
HARMONIE data itself. As HARMONIE is a model, it does not necessarily produce the same trajectories
as the radar images. Figure 4.15 shows the histogram of the estimated flow direction upwind of the
buffer area for both radar and HARMONIE. The histogram shows that HARMONIE is slightly rotated,
having the most rain cells coming from the west, instead of the southwest. The radar and HARMONIE
data set have two different projections and might be causing the rotation. Also the coarser resolution
of HARMONIE can have an impact.

To see the difference in results, the growth and decay of the HARMONIE using both motion fields
has been computed and has been compared to the radar. Table 4.4 shows the agreement of both radar
and HARMONIE. The columns in the table show which motion field is used for backtracking HARMONIE.
The radar growth and decay is computed for area 𝐴ዀኺ, because the used HARMONIE data is averaged
over this area. The difference between the two motion fields is not big enough to justify the extra time
needed to estimate two motion fields. Aside from the small difference, there were also 20 occasions
where the motion field could not be derived from the HARMONIE data. This was mostly caused by the
absence of precipitation in the HARMONIE images. Therefore in this thesis, the first option was chosen
and the motion field was derived from the radar and applied to HARMONIE.

Table 4.4: Classification of the growth and decay in the area ፀᎸᎲ after applying the two different motion fields.

Radar motion field HARMONIE motion field
Both grow 22.3% 22.4%
Both decay 14.5% 15.7%
Both no grow/decay 4.1% 3.8%
Radar grows, HARMONIE decays 16.3% 17.0%
Radar decays, HARMONIE grows 12.7% 12.3%
Radar no growth/decay, HARMONIE grows 2.1% 1.8%
Radar no growth/decay, HARMONIE decays 1.5% 2.0%
Radar grows, HARMONIE no growth/decay 16.7% 13.9%
Radar decays, HARMONIE
no growth/decay 9.9% 8.1%

4.5. Performance regarding growth and decay
The growth and decay derived from the radar images in the Lagrangian framework will be used to
evaluate the performance of the neural network models. The extrapolation method from the KNMI
is based on Lagrangian persistence, meaning that there is no correction for growth and decay in the
nowcasts. To set a baseline for the models the mean squared error (MSE) and mean bias error (MBE)
is computed for both training and validation data set, and can be found in Table 4.5. The used error
is the derived growth and decay from the radar images itself, as there is no correction applied. Both
data sets have a positive MBE meaning there tends to be more growth than decay on average. The
MBE computed over the buffer area for both data sets is also positive and is in the same order of
magnitude as the MBE of the target area. The validation data set seems to exhibit less growth and
decay as it has a smaller MSE than the training data set. The rain events in the validation data set are
less intense and lasted longer hence the smaller MSE. As expected, the MSE for both data sets is also
lower for the buffer area 𝐴ዀኺ. A larger area tends to lower the average precipitation as its averaged
over a larger area. The influence of the smaller scale convective rain cells on the MSE are reduced due
to the larger area. The correlation could not be computed as there is no estimated growth and decay
when assuming Lagrangian persistence.

The performance of HARMONIE is also shown in Table 4.5. HARMONIE also shows the same re-
lationship between the training and validation data set. HARMONIE performs worse than the radar
nowcasts. This might be caused by predicting the rain at the wrong place and/or time. This is also
why the MSE reduces when averaging over a larger area. This is however not enough and could be
reduced by dynamically adjusting the position or timing of the rain cell.
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Table 4.5: Performance of the KNMI radar nowcasts and HARMONIE in estimating growth and decay for 1h lead time.

Radar nowcasts HARMONIE
Training Validation Training Validation

𝐴ኼኺ
MSE [𝑑𝐵𝑍ኼ] 109.137 58.463 159.161 107.57
MBE [𝑑𝐵𝑍] 0.886 1.090 0.707 0.562
𝜌 [−] − − 0.012 0.076
𝐴ዀኺ
MSE [𝑑𝐵𝑍ኼ] 28.173 14.164 78.463 61.313
MBE [𝑑𝐵𝑍] 0.583 0.724 0.405 0.196
𝜌 [−] − − 0.022 0.197

4.5.1. Lagrangian versus Eulerian framework
As mentioned in chapter 3, the rain over the area is backtracked to its original position at time 𝑡 − 60.
This is also called Lagrangian framework where a parcel is followed along the trajectory. There exists
another framework called the Eulerian framework. In this framework the area is fixed and the change
in precipitation is only computed over time. The histogram in Figure 4.16 shows the distribution of
the growth and decay for the two frameworks inside the target area 𝐴ኼኺ. The Eulerian framework has
a larger spread compared with the Lagrangian framework. This was expected because the chance of
rain cells moving in or out of the area in the Eulerian framework is greater. By using the Lagrangian
framework, this chance is minimized but this phenomena can still occur because of imperfections in
the optical flow method. Also less growth/decay is observed, hence the frequency around zero is much
higher for the Lagrangian framework. The scatterplot found in Figure 4.16 confirms these conclusions.
This scatterplot also shows that most of the time both frameworks agree on whether the average
precipitation is intensifying or weakening. But there are still cases where both frameworks disagree
with each other, i.e. Eulerian framework shows growth whereas Lagrangian framework shows decay
and vice versa. It is therefore important to backtrack the rain over the area to its original position.
This will reduce the possibility of rain cells moving in or out of the area and thus also reduces extreme
values in the growth and decay in the area. When considering a bigger area, for example area 𝐴ዀኺ,
there is less chance that the rain cells will move in or out of the area. The Eulerian framework will be
more consistent to the Lagrangian framework.

Figure 4.16: Left: Histogram of the growth and decay for the Eulerian and Lagrangian frameworks. Right: Scatterplot of the
growth and decay in the Lagrangian framework against the growth and decay in the Eulerian framework. The growth and decay
shown is averaged over area ፀᎴᎲ.



34 4. Assessment of radar and HARMONIE forecasts

4.5.2. Comparison between radar and HARMONIE
Table 4.4 shows that even with backtracking, the agreement of HARMONIE with radar is not good.
There are more cases where they disagree with each other than agree. Figure 4.17 shows the average
radar growth and decay over 𝐴ኼኺ as a function of the average HARMONIE growth and decay over
𝐴ዀኺ. There seems to be no correlation between the radar and the HARMONIE growth and decay. The
average HARMONIE growth and decay over 𝐴ኼኺ is not shown but this is even worse. This suggests
that the growth and decay inferred from HARMONIE will not be a good predictor for the neural network
model. Other more elaborate ways of using HARMONIE should be explored, e.g. a dynamic model
that adapts for local shifts in space and/or time or a model that takes into consideration how good the
previous predictions of the HARMONIE were.

Figure 4.17: Scatterplot between the radar growth and decay and HARMONIE derived growth and decay for area ፀᎴᎲ.
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5.1. Model formulation
The first model is based on the assumption that all of the predictions from HARMONIE are correct,
i.e. it trusts all of the predictions. The first model is a simple static model that only uses the three
HARMONIE features with the largest correlations. The first feature is the precipitation rate (INR). First,
this feature is transformed to dB using Eq. 5.1. To avoid logኻኺ(0) a small constant (5 ∗ 10ዅኾ) is added
to the precipitation rate. This transformation is done to have the same scaling as the radar data. . It
is then normalized using Eq. 5.2 to scale the values to the range [0, 1]. This minimum and maximum
value from the training data set are used and also used to normalize the values from the validation
data set. The two other features are medium cloud cover (MCC) and relative humidity (RH). These
have not been transformed and already have a range between 0 and 1. The features are averaged
over the buffer area 𝐴ዀኺ.

Ď𝑖𝑛𝑟 = 10 ∗ logኻኺ(Ě𝐼𝑁𝑅 ∗ 3600 + 5 ∗ 10ዅኾ) (5.1)

Ď𝑖𝑛𝑟ᖣ =
Ď𝑖𝑛𝑟 − Ď𝑖𝑛𝑟፦።፧

Ď𝑖𝑛𝑟፦ፚ፱ − Ď𝑖𝑛𝑟፦።፧
(5.2)

As we are interested in the growth and decay the changes between 𝑡 −60 and 𝑡 of the features are
computed. The input for the model is therefore:

1. Δ𝑖𝑛𝑟 = Ď𝑖𝑛𝑟ᖣ፭ − Ď𝑖𝑛𝑟ᖣ፭ዅዀኺ
2. Δ𝑀𝐶𝐶 = Ę𝑀𝐶𝐶፭ − Ę𝑀𝐶𝐶፭ዅዀኺ
3. Δ𝑅𝐻 = Ď𝑅𝐻፭ − Ď𝑅𝐻፭ዅዀኺ

The range of the inputs are [−1, 1]. This will help the neural network regard the inputs similarly
and use all of the inputs. The model has one hidden layer with 15 neurons. Different combinations of
the number of neurons and hidden layers were tested but did not yield any improvement. The output
of the model represents the average growth and decay over the target area 𝐴ኼኺ. The model is also
trained to estimate the average growth and decay over the buffer area 𝐴ዀኺ, in order to see what the
influence of using a larger area. The entire model is shown in Figure 5.1.

35
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Δ𝑧፭ዅᎡ,፭

Input layer Hidden layer Output layer

𝑁ኻ = 3 𝑁ኼ = 15 𝑁ኽ = 1

Δ𝑖𝑛𝑟፭ዅᎡ,፭

Δ𝑀𝐶𝐶፭ዅᎡ,፭

Δ𝑅𝐻፭ዅᎡ,፭

Figure 5.1: The static neural network model

5.2. Results for the static model
The static model has been trained ten times with each time a different weight initialization. The MSE,
MBE and correlation is computed as the average of these ten runs. This is done to remove the influence
of the weight initialization on the performance of the static model. The learning curve of one run is
shown in Figure 5.2. Thanks to the early stopping method, the training stops at the fifth epoch after
reaching a minimum MSE on the validation data set. This avoids overfitting of the model on the training
data. The model, for example, is overfitting the training data after the 70th epoch for this run and
training is stopped at the 75 epoch. The performance of the model is shown in Table 5.1 and indicates a
small improvement. This improvement is however not big enough to compensate for the computational
cost.

Figure 5.2: The MSE of the training and validation data set after each epoch, i.e. after each update of the weights. The model
was trained to estimate the average growth and decay for area ፀᎸᎲ .
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Figure 5.3 shows the predicted growth and decay Δ�̂�፭ዅዀኺ,፭ against the derived growth and decay
Δ𝑧፭ዅዀኺ,፭. The model is not capable of predicting any growth and decay and seems to only correct for
the bias found in the training data set. As shown in Table 5.1, the MSE is slightly lower than of the KNMI
radar nowcasts. The low correlation between the predicted and the derived growth and decay is also
indicating that the model is not working. When taking a closer look at the input of the model,namely
Δ𝑖𝑛𝑟, Δ𝑀𝐶𝐶 and Δ𝑅𝐻, it becomes clear why the model behaves this way. Figure 5.3 shows the three
scatterplots of the inputs against the growth and decay derived from the buffer area 𝐴ዀኺ. There is no
clear relationship visible between these features and the growth and decay from the radar. The model
is therefore not able to learn from the input.

Table 5.1: Performance of the static model on the validation data set in estimating growth and decay for 1h lead time.

Radar nowcast HARMONIE Static model

𝐴ዀኺ
MSE [𝑑𝐵𝑍ኼ] 14.164 61.313 13.444
MBE [𝑑𝐵𝑍] 0.724 0.196 0.162
𝜌 [−] − 0.197 0.130
𝐴ኼኺ
MSE [𝑑𝐵𝑍ኼ] 58.463 107.57 57.093
MBE [𝑑𝐵𝑍] 1.090 0.562 0.269
𝜌 [−] − 0.076 0.071

Adding or combining other features from the HARMONIE data set to the model did not improve its
performance. The features are not sufficiently related to the growth and decay and thus the model is
not able to gain information about the growth and decay. The target area 𝐴ኼኺ suffers more from this
problem as the area is much smaller and HARMONIE being less accurate over a smaller area.
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Figure 5.3: Upper left: the predicted growth and decay against the observed growth and decay. Upper right: scatterplot of
growth and decay against the growth and decay of HARMONIE. Lower left: scatterplot of growth and decay against the change
in medium cloud cover. Lower right: scatterplot of growth and decay against the change in relative humidity. The growth and
decay values are in logarithmic reflectivity and all points represent the average over ፀᎸᎲ.
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The low correlation between HARMONIE and radar growth and decay is caused by giving the model
the wrong information for an event. This is mainly caused by three major drawbacks. First, the rain
events are often predicted too early or too late. For example, the rain event on 2019-07-26 is predicted
two hours too early. The growth and decay of this event is shown Figure 5.4. The time discrepancy of
this event results in giving the model the wrong information, i.e. at 18:00 HARMONIE predicts decay
but radar observes growth instead. It is clearly visible that HARMONIE shows the same trend but at a
different time. This event overlaps two runs of HARMONIE, at 12:00 and 18:00. At 18:00, HARMONIE
seems to adjust for this delay and the growth and decay at 22:00 is predicted one hour later. The time
discrepancy is thus not constant but changes locally and varies over time.

Figure 5.4: The average growth and decay over ፀᎸᎲ of a rain event on 2019-07-26. The rain event is not predicted at the right
time. Therefore, the growth and decay derived from HARMONIE does not match with the radar growth and decay.

HARMONIE also tends to predict rain cells at the wrong location. Figure 5.5 shows the average
growth and decay over 𝐴ዀኺ of a rain event on 2019-08-01. HARMONIE is predicts over the area, but
this should be predicted elsewhere. This leads to using the wrong information as the right information
for 𝐴ዀኺ is found at a different place. There are other events where the rain event should be predicted
over the area but is predicted elsewhere. An improvement of the static model could be made by
accounting for these two drawbacks of HARMONIE. Applying local shifts in both time and space on the
HARMONIE predictions may improve the agreement between radar and HARMONIE.

Figure 5.5: The average growth and decay over ፀᎸᎲ of a rain event on 2019-08-01. The rain event is not predicted at the right
place. Therefore, the growth and decay derived from HARMONIE does not match with the radar growth and decay.

The third drawback has to do with the prediction of a rain cell itself. The predictions from HARMONIE
are not perfect. There are cases where rain cells are not predicted at all. Also, even if the rain cells are
predicted at the right time and location it does not necessarily mean that the characteristics and shape
of the rain cell is predicted correctly. HARMONIE cannot be used to predict the growth and decay for
these events. We can therefore conclude that trusting every prediction from HARMONIE affects the
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static model in a negative manner. Because of the contradictory data the model is not able to detect
and use important features.
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Dynamic model

The dynamic model aims to improve the quality of the information given to the neural network model,
also called the input. The quality of the input can be improved in two ways. The first approach aims
to reduce the amount of wrong information given to the neural network. Training the model only on
cases where the information from HARMONIE is in line with the radar observation could lead to an
easier understanding of the input by the model. This also means that the model is not able to predict
the growth and decay for every case. The second approach involves improving the quality of the input
by shifting the HARMONIE image to the correct location. The information from HARMONIE could be
improved in terms of accuracy by correcting the predictions from HARMONIE. HARMONIE does not
always predict the rain cells at the right place and thus provides the wrong information for the neural
network. Having the rain cells at the right position could lead to a performance improvement. The first
approach is implemented in the dynamic model, restricting the model to only use ’good’ cases in which
HARMONIE can be trusted.

The dynamic model consists of two stacked neural network models. A visual representation is shown
in Figure 6.1. The first neural network model is called the input classifier. The main difference between
the static and the dynamic model is that the dynamic model does not predict growth and decay for all
cases. Instead the dynamic model first decides whether HARMONIE can be trusted to predict growth
and decay or not. This is done with the input classifier. The second neural network model then predicts
the growth and decay for the good cases only where we think that HARMONIE can be used to predict
growth and decay. The structure of this neural network model resembles the static model and is called
the regression model. The same three features found in the static model are used for the regression
model with the same amount of layers and nodes (1 hidden layer and 15 nodes), see chapter 5. This
allows us to compare the performance of both the static and dynamic model. The dynamic model also
acts as a proof of concept of the underlying theory. Due to limited time, no further optimisation of the
input classifier and regression model has taken place.

6.1. Input classifier
The input classifier is a neural network model which classifies if the information from HARMONIE can be
trusted to predict growth and decay. This classifier uses three features. The first two features are the
correlation and the count of the number of agreements between HARMONIE and radar inside a moving
window of length 𝐿 = 5 hours. The window length 𝐿 = 5 is chosen because HARMONIE performs
a new data assimilation every 6 hours. The third feature counts the agreement between HARMONIE
and radar only for the last two hours. This is based on the assumption that the last two predictions of
HARMONIE are more important than the older ones.

The input classifier has one node in the output layer. This node is assigned either a 0 or 1. The
value 0 (class ‘no’) means that the information from HARMONIE is not directly usable to predict growth
and decay. A value of 1 (class ‘yes’) means that the information from HARMONIE was consistent with
past trends and can therefore be trusted to predict growth and decay. The input classifier is trained
using the training data set. The labels for the training data set are chosen based on the agreement
between the growth and decay of HARMONIE and radar. If HARMONIE is predicting growth(decay) and
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Figure 6.1: Flowchart of the static and dynamic model.

the radar observes growth(decay) then the information from HARMONIE can be used and this case will
be assigned to the class ’yes’. When HARMONIE and radar do not agree then this case will be classified
to class ’no’. This is visually shown in the left scatterplot of Figure 6.2. Note that the cases for which
there is no growth or decay are assigned to class ’no’.

Depending on the outcome of the input classifier, the growth and decay will be predicted or not. If
the input classifier outputs class ’no’, the growth and decay will be assumed zero. In other words, it is
better to assume Lagrangian persistence as the information from HARMONIE is not sufficiently reliable
to predict growth and decay. All other cases for which the input classifier predicts ‘yes’ are given as
inputs to the regression model to predict the expected value of the growth/decay. The regression
model is therefore trained on a subset of the training data set only, consisting of all cases for which
the input classifier predicted class ’yes’.

6.2. Results for the dynamic model
6.2.1. Input classifier
The input classifier classifies 60% of the cases from the validation data set to the correct class. There
is however still room for improvement as the model achieves an accuracy of approximately 70% over
the training data set. This applies to both target area 𝐴ኼኺ and buffer area 𝐴ዀኺ. The main purpose of
the input classifier is to detect bad cases for which HARMONIE cannot be used to predict growth and
decay. This minimises the risk of using bad information for predicting growth and decay. Therefore
it is important that the false positive (FP) rate is as low as possible. Table 6.1 shows the confusion
matrix of the input classifier for area 𝐴ዀኺ. The input classifier favours classifying most of the cases to
class ’no’, which is the most common class. Incidentally, this also minimizes the FP. Still, the confusion
matrix shows that there is still room for improvement as the false negative (FN = 98) is higher than
the true positive (TP = 44). This problem could be addressed by adding other features, for example
the MSE over the past 6 hours or by one hot encoding the matches between HARMONIE and the radar
instead of using a sliding window method.

The advantage of using an input classifier is that, by removing the cases belonging to class ’no’, the
correlation between the growth and decay and the features becomes higher. The scatterplot on the
right in Figure 6.2 shows the distribution between the growth and decay from HARMONIE and radar of
the validation data set. There is more consistency between the radar observations and the HARMONIE
features. This means that the regression model will have an easier time figuring out the relationship
between the features and actual growth and decay in the radar. Figure 6.2 also shows that the input
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Table 6.1: Confusion matrix of the input classifier for area ፀᎸᎲ, each row represents the cases in the actual class and each
column represents the predicted class for these cases.

Predicted class
No Yes

True class No 𝑇𝑁 = 139 𝐹𝑃 = 27
Yes 𝐹𝑁 = 98 𝑇𝑃 = 44

classifier allows more growth cases than decay cases. This behaviour is more apparent for the smaller
target area 𝐴ኼኺ and is caused by the larger amount of trusted cases.

Figure 6.2: Two scatterplots of the growth and decay against the normalized growth and decay of HARMONIE for area ፀᎸᎲ.
The left scatterplot shows the points which were used to train the input classifier. The right scatterplot shows which points are
predicted to be trusted or not by the input classifier.

The target area 𝐴ኼኺ is a lot smaller than area 𝐴ዀኺ therefore HARMONIE needs to be even more
accurate. This naturally results in fewer cases where HARMONIE can be trusted. The training data set
has 270 cases for class ’no’ and 85 cases for class ’yes’. This suggests that HARMONIE is not accurate
enough (in space and time) to predict growth and decay over a small area of 20×20 km. The problem
is not the input classifier but the low accuracy of the NWP model at such small scales. A more accurate
NWP model would probably result in a better spread over the classes, enabling the regression model
to use more information from HARMONIE and also predict the growth and decay for more cases.

6.2.2. Performance of the dynamic model
By reducing the amount of unusable information, the quality of the information given to the regression
model is much higher. Table 6.2 shows the performance of the static and dynamic model. Overall,
the dynamic model performs slightly better than the static model. The MSE decreased by 0.158 dBZኼ
and also the correlation has increased to 0.234. However the MBE for the dynamic model is greater,
meaning that the dynamic model is underestimating the growth and decay. Note that the table shows
the performance for all cases, including the rejected cases for which no growth and decay is predicted.
This also explains the numbers in Table 6.2. The MBE is higher because the growth and decay is not
predicted for all cases resulting in underestimated growth and decay on average.
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Table 6.2: Performance of the dynamic model on the validation data set in estimating growth and decay for 1h lead time.

Radar nowcast HARMONIE Static model Dynamic model

𝐴ዀኺ
MSE [𝑑𝐵𝑍ኼ] 14.164 61.313 13.444 13.286
MBE [𝑑𝐵𝑍] 0.724 0.196 0.162 0.594
𝜌 [−] − 0.197 0.130 0.234
𝐴ኼኺ
MSE [𝑑𝐵𝑍ኼ] 58.463 107.57 57.093 56.081
MBE [𝑑𝐵𝑍] 1.090 0.562 0.269 0.768
𝜌 [−] − 0.076 0.071 0.188

To provide more insight into the added value of the dynamic model, the performance metrics are
also computed only for the cases classified as ’yes’. The numbers can be found in Table 6.3. We see
that the MSE has decreased by 27% and the correlation between the actual and predicted growth and
decay is almost 0.5. This shows that the dynamic model is indeed working. Note that the dynamic
model is not optimised and only serves as a proof of concept. The model could be improved by using
other combinations of features, external information from satellites or weather stations or other, more
accurate numerical weather prediction models.

Table 6.3: Performance of the dynamic model in estimating growth and decay for 1h lead time. The performance metrics are
computed only over the cases where the input classifier has predicted that HARMONIE is able to predict growth and decay.

Radar nowcast Dynamic model

𝐴ዀኺ
MSE [𝑑𝐵𝑍ኼ] 15.845 11.468
MBE [𝑑𝐵𝑍] 0.993 0.364
𝜌 [−] − 0.488
𝐴ኼኺ
MSE [𝑑𝐵𝑍ኼ] 100.017 77.383
MBE [𝑑𝐵𝑍] 4.652 1.791
𝜌 [−] − 0.233

Figure 6.3 shows the predicted growth and decay for the cases where HARMONIE is predicted to be
trusted. Taking a closer look at these cases reveals that the dynamic model is indeed effective, but it still
needs to be improved. The presence of growth and decay is predicted correctly most of the time but the
model lacks accuracy in predicting the actual magnitude of the growth/decay. It should be pointed out
that the dynamic model has trouble with predicting little to no growth and decay. A positive feature of
the dynamic model is that the extreme cases are also predicted to be extreme. The other scatter plots
in Figure 6.3 shows the relationship of the features with the growth and decay. The features relating to
the precipitation rate(Δ inr) and medium cloud cover (ΔMCC) have a good correlation with the growth
and decay. The relationship between the growth and decay and these features is strong. Relative
humidity (ΔRH), on the other hand, does not appear to have a strong correlation with the growth and
decay. The range of this features is also a lot smaller compared with the other two features. The
usefulness of this feature on the model is therefore smaller. The correlations between the features and
the growth and decay for the target area 𝐴ኼኺ are just a bit lower compared to area 𝐴ዀኺ.
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Figure 6.3: Scatterplot showing the predicted growth and decay ጂ፳̂ᑥᎽᎸᎲ,ᑥ against the observed growth and decay ጂ፳ᑥᎽᎸᎲ,ᑥ for
area ፀᎸᎲ.

6.2.3. Performance after applying the shift correction
As mentioned at the beginning of this chapter, there are two ways to improve the prediction: by
restricting the application to good cases only or by trying to improve the HARMONIE predictions them-
selves. Indeed, we know that HARMONIE often predicts rain cells at the wrong location. Aligning the
HARMONIE images with the radar images could therefore improve the quality of the predictions from
HARMONIE. Figure 6.4 shows the results of applying a global shift correction method to HARMONIE.
The shift correction uses a window with length 𝐿 to estimate the average shift over the domain. Un-
fortunately, Figure 6.4 indicates that there seems to be little to no improvement in performance after
applying the shift correction. This could be caused by several factors:

• The phase correlation algorithm only accounts for translation shifts. Other transformations like
rotation and scaling are not considered.

• The phase correlation algorithm maximises correlation over the whole image and does not con-
sider individual rain cells. The algorithm could therefore propose a shift which does not align the
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rain cells over the target or buffer area but still aligns other rain cells well.

• Multiple shifts with similarly large correlations could exists. The algorithm searches for the max-
imum correlation but another correction with slightly lower correlation might actually result in
better performance in terms of growth/decay.

• The predictions from HARMONIE may not be compatible with radar at all. A rain cell could be
not predicted or the prediction from HARMONIE does not represent the rain cell well enough and
thus still provides the wrong information.

Maximising the correlation for the whole image is thus not recommended. Instead, we recommend
to perform local adjustments on the predictions from HARMONIE. These local adjustments should not
only be limited to translation shifts, but also other geometric transformation such as rotation, scaling
and stretching should also be included. This statement assumes that the rain field in HARMONIE and
the radar are already fairly similar. This is not always the case and therefore the input classifier is still
needed to distinguish the good cases from the bad.

Figure 6.4: Scatterplots showing the HARMONIE growth and decay ጂ።፧፫ against the observed growth and decay ጂ፳ᑥᎽᎸᎲ,ᑥ. Each
scatterplot is corrected for a shift which is based on ፋ previous images. No shift correction is applied on the first scatterplot.



7
Conclusion and recommendations

This thesis has examined the possibility of using information from a numerical weather prediction model,
called HARMONIE, to predict the average growth and decay in rainfall over the city of Rotterdam.
Predicting the average growth and decay can help improve radar nowcasts, by minimizing the error
introduced due to the assumption of Lagrangian persistence. Using a numerical weather prediction
model to improve radar nowcasts has not been done before. This is difficult because HARMONIE
can not always be trusted when it comes to predicting the exact location, intensity and dynamics
of precipitation. To overcome this, a dynamic model is introduced which first predicts whether the
prediction from HARMONIE can be trusted. The average growth and decay will be predicted if the
information from HARMONIE can be trusted according to the dynamic model. If the dynamic model
decides otherwise, it is better to assume Lagrangian persistence as the information from HARMONIE
is not sufficiently reliable to predict growth and decay.

7.1. Conclusion
Based on the research done and the results the following conclusions are drawn.

• Predicting growth and decay is necessary to increase the accuracy of radar nowcasts. Without
growth and decay, radar nowcasts can be both off in timing and intensity.Figure 4.11 shows
that the accuracy of the nowcasts decreases as the lead time increases. The growth and decay
becomes more important as we increase the lead time.

• The size of the area to predict growth and decay plays an important role. A too large area will
result in very little to no growth and decay as the areal average precipitation rate will also be
small. Tables 6.2 and 6.3 shows this. The MSE (14.164 dBZኼ) of area 𝐴ዀኺ is far lower than the
MSE (58.463 dBZኼ) of area 𝐴ኼኺ Also a large area will have less valuable information as users of
the nowcasts are only interested in a particular area. A small area means that the predictions
from the numerical weather prediction model should be more accurate. There are a total of 308
cases in the validation data set. Of these 308 cases, only 100 cases can be trusted for area 𝐴ኼኺ.
The larger area 𝐴ዀኺ has 42 more cases which can be trusted.

• The correlation between the HARMONIE parameters and observed precipitation rate is quite low.
The maximum correlation was 0.40 and it was between the precipitation rates of HARMONIE and
radar. This confirms that the predictions from HARMONIE are not always correct. Even when the
two agree in terms of rain rate, the average growth and decay from HARMONIE might still be
wrong.

• The static model is based on the assumption that all predictions from HARMONIE are correct
and can be trusted. This assumption is wrong, which is reflected by the poor performance of the
static model. The model is not able to understand and interpret the information from HARMONIE.
There is too much contradictory information and the model does not learn from the features but
only from the average statistics of growth and decay. The training data set has more growth
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than decay cases and the average growth and decay is 0.724 dBZ. This leads to the static model
predicting growth for the majority of the cases.

• The dynamic model is different from the static one in the sense that it assumes that not all pre-
dictions from HARMONIE are correct. The dynamic model uses a classifier in order to determine
which information can be used to predict growth and decay. The input classifier is able to achieve
an accuracy of 60%, but this is mainly achieved by classifying the majority of the information to
be not trustworthy. Of the 142 cases where HARMONIE predictions could be trusted, the classifier
only found 44 cases and also classified 27 untrustworthy cases as trustworthy.

• Even though the majority of the useful cases are not used, the dynamic model still performs well.
The model shows an improvement of almost 1 dBZኼ over the radar nowcasts. The improvement
is even bigger when we only look at the trustworthy cases classified as ’yes’ by the input classifier.
For those cases, the MSE decreases from 15.845 dBZኼ to 11.468 dBZኼ, an improvement of 27%.
The input classifier plays therefore a crucial role in the dynamic model.

• The shift correction of HARMONIE did not improve the performance of the dynamic model. This is
probably caused by the fact that the phase correlation algorithm tries to maximise the correlation
of the entire image, instead of performing local corrections.
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7.2. Recommendations
While this thesis shows that it is possible to predict growth and decay using numerical weather pre-
diction models, there is still room to better understand and improve the dynamic model. A couple of
recommendations for future work are provided below.

• It is necessary to adapt the Lagrangian framework in order to be able to predict growth and decay.
The Lagrangian framework enables precipitation parcels to be followed along their trajectories.
Allowing the change in precipitation rate and other properties to be monitored for each parcel.
The Lagrangian framework also deals with the problem of rain cells coming in or leaving out of
the area. The Lagrangian framework can be adapted by estimating a motion field between two
consecutive images and using the motion field to compute the original location of each precipita-
tion parcel or rain cell. The displacement terms were computed according to the constant-vector
scheme. Better results could be achieved by using the semi-Lagrangian scheme as it accounts
for rotation.

• Different combinations of features should be studied. From the three used features only two
showed good correlation with the growth and decay. The correlation between relative humidity
and growth and decays is very low. Other combinations of features for the regression model
could improve the dynamic model even further. Also different features for the input classifier
could improve the dynamic model. Not only other features but also other classification and
regression techniques could be used to increase the accuracy of the dynamic model.

• The models have been trained with data from May, June and July and are evaluated on data from
August. For such a short time span this should not be a problem, but the model could perform
worse if used to predict growth and decay for other months, like December. It is recommended
to predict growth and decay using a model which is trained with data from the same month or
period. Also study has to be done to the performance impact of the dynamic model when using
a model which is trained with summer data to predict the growth and decay for other seasons.

• It is also recommended to train and validate the model with a larger data set because a lot of
cases are rejected by the input classifier. More cases will give a better representation of the
performance of the dynamic model. More cases allows the model also to be more complex and
use more features.

• The growth and decay is in units of logarithmic reflectivity. Averaging logarithmic values is not
the same as averaging linear values and thus the performance of the dynamic model will not be
the same when used with linear values. It is recommended to study the possibilities of using the
dynamic model with reflectivity in units of 𝑚𝑚ዀ/𝑚ኽ or rainfall rates in units of 𝑚𝑚/ℎ.

• The shift correction method did not yield any significant improvement in the quality of the infor-
mation. This could be caused by the phase correlation algorithm which maximises the correlation
of the images. Maximising correlation does not necessarily mean that the images are aligned.
We recommend to study the potential of performing local adjustments on the predictions from
HARMONIE and how this affects the amount of trustworthy cases.
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Accessing radar data with python

Opening the KNMI radar files using the python package h5py is fairly straightforward and not compli-
cated. First the package needs to be installed. This is done by typing the following command in the
command line window:

pip install h5py

The function shown below can be used to open the radar files. Note that the package has to be
imported beforehand.

import h5py

def openh5(filename):
try:

f = h5py.File(filename, 'r')
f.close
return f

except:
print('File {:s} cannot be opened'.format(filename))
return []

f = openh5('RAD_NL25_PCP_FM_1205.h5')

Listing 1: Function for opening a radar data file with HDF5 file format.

Once the radar file is succesfully opened the information can be accessed by calling the variable ’f’.
The HDF5 file format works with groups and attributes. The attributes hold the actual information and
the groups act like directories on a computer to ensure a well-structured dataset. The radar files have
multiple groups1 but the most important groups is the geographic group and the radar images itself.
The radar data files can accesed through a program called ’HDFView’ to quickly see all of the groups and
attributes and to also view the images. The geographic group contains all of the information regarding
the projection and resolution of the radar file. This group is named ’geographic’ inside the HDF5 file
format. How to access these attributes is shown in Listing 2.

The radar files have 25 images and each image is stored inside a group named ’image’ followed
by a number starting from 1 to 25. For example, ’image1’ is the radar image at time 𝑡 and ’image2’
shows the forecast for time 𝑡 + 5 min and so on. The data of the images are saved as 8 bit integers,
ranging from 0 to 255. The function ’convertdBZtoR’ shown in Listing 3 converts these to precipitation
rate. Listing 3 also shows how to access the images.

1More information about the radar data files can be found at https://www.knmi.nl/kennis-en-datacentrum/
publicatie/knmi-hdf5-data-format-specification-v3-5
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# pixel_size contains the pixel size in kilometers
# for the x and y direction respectively
pixel_size = [f['geographic'].attrs['geo_pixel_size_x'][0]

, f['geographic'].attrs['geo_pixel_size_y'][0]]

# geo_offset is the offset of pixel (0,0) from origin of projection
geo_offset = [f['geographic'].attrs['geo_column_offset'][0]

, f['geographic'].attrs['geo_row_offset'][0]]

# image_size contains the number of pixels of the images
image_size = [f['geographic'].attrs['geo_number_columns'][0]

, f['geographic'].attrs['geo_number_rows'][0]]

# The proj.4 definition, the package pyproj can be used to
# convert coordinates from and to this projection
proj4_params = f['geographic']['map_projection']

.attrs['projection_proj4_params'].decode('utf-8')

Listing 2: Accessing the important geographic information.

# Each image can be accessed with the following code
# The images are stored in a 2d array
image1 = f['image1']['image_data'][()]

# A subset of the images can also be accessed
# For example, the pixels in y direction from 200 to 400
# and in x direction from 300 to 500
image1subset = f['image1']['image_data'][()][200:400, 300:500]

# This function converts the images to the precipitation rate
def convertdBZtoR(image):

# 8 bit to dBZ
image = np.where(image == 255,0, 0.5*(image-64.0))
# dBZ to Z
image = np.where(image == 0,0,10.0**(image/10.0))
# Z to R
image = (image/200)**0.625
return image

# This array contains the precipitation rate for each pixel
image1R = convertdBZtoR(image1)

Listing 3: Accessing the images and converting to precipitation rate.



B
Accessing HARMONIE data with

python

This appendix shows how to access the HARMONIE files with the GRIB file format. Note that this
only works with the KNMI HARMONIE 36 version. The HARMONIE files can be accessed through the
package cfgrib. This package needs to be installed with the conda package system. The following
command installs cfgrib on your system.

conda install -c conda-forge cfgrib

Once installed, you need to download the zip file from https://drive.google.com/file/d/
1k8YtTFFLS4FSvo3aVpIF-q65uIK2Hmik/view?usp=sharing and extract to PythonInstallFolder\
Library\share\eccodes\definitions\grib1\localConcepts. PythonInstallFolder is the di-
rectory where python is installed. This step is needed because the HARMONIE files do not adhere to
the GRIB standard. In order to open a HARMONIE file the function shown in Listing 4 can be used.
The function takes in two arguments. The first argument is the filename and the second is called level.
Level stands for the height above ground in m. Each file has 5 levels, 0, 2, 10, 456 and 457. With each
level having different parameters, see Table 2.1. Note that to get the data of all of the parameters the
file has to be opened 5 times.

The HARMONIE files have been converted to netCDF files for easier access. How this is done is
shown in Listing 5.
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import xarray as xr

def readgrib(filename, level):
# Open the file
ds = xr.open_dataset(filename, engine='cfgrib', backend_kwargs={

'filter_by_keys': {'typeOfLevel': 'heightAboveGround'
, 'level': int(level)}})

# This renames the parameters for easier reading
if level == 0:

try:
ds = ds.rename({'p3111': 'swr'})

except:
pass

try:
ds = ds.rename({'p3112': 'lwr'})

except:
pass

try:
ds = ds.rename({'p3117': 'gr'})

except:
pass

try:
ds = ds.rename({'unknown': 'clb'})

except:
pass

try:
ds = ds.rename({'p3067': 'blh'})

except:
pass

if level == 456:
try:

ds = ds.rename({'p3062': 'ins'})
except:

pass
try:

ds = ds.rename({'p3063': 'ing'})
except:

pass
if level == 457:

try:
ds = ds.rename({'p3062': 'cs'})

except:
pass

try:
ds = ds.rename({'p3063': 'cg'})

except:
pass

Listing 4: Function for opening a HARMONIE data file with GRIB file format.

ds = readgrib('harm36_v1_ned_surface_2019050218_014_GB', 0)
ds.to_netcdf('harm36_v1_ned_surface_2019050218_014.nc')

Listing 5: Function for converting the GRIB file format to netCDF.
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