
D
el
ft
U
ni
ve
rs
ity

of
Te
ch
no
lo
gy

Using Model Predictive
Control on a Steer-by-Wire
Bicycle for Performance
Assistance
Simonas Draukšas



Using Model Predictive
Control on a Steer-by-Wire
Bicycle for Performance

Assistance

by

Simonas Draukšas

to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Monday September 26th, 2022 at 14:30.

Student number: 5384559
Project duration: March 1, 2022 – September 26, 2022
Thesis committee: Dr.ing. L. Marchal Crespo, TU Delft, chair, supervisor

Dr. J. K. Moore, TU Delft, supervisor
Prof.Dr.ir. R. Happee, TU Delft, supervisor
Dr. L. Alizadehsaravi, TU Delft, daily supervisor
Dr. B. Shyrokau, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Using Model Predictive Control Steer-by-Wire Bicycle for Performance
Assistance

Simonas Draukšas
TU Delft, MSc Candidate

September 26th, 2022

Abstract

Bicycle safety is quickly becoming an increasingly important field as the number of electric bicycles on the streets
grows faster each year. E-bikes are able to accelerate quicker and travel at faster speeds than conventional bicycles,
increasing the severity of injuries in case of an accident. There are a number of ways to improve safety, such as
building better infrastructure, implementing active safety systems, improving bicycling skills, or better protective
gear. In this thesis, a controller based on Model Predictive Control has been designed to explore whether it could
be used as a haptic guidance system that would improve motor learning of a cycling task, and whether it could
assist the cyclist during cycling manoeuvres. The cycling task of lane change manoeuvres performed at a constant
forward velocity was investigated. The controller was implemented on a desktop PC, which wirelessly controlled the
TU Delft’s Steer-by-Wire bicycle – a bicycle where the steering is enabled by the use of electric motors instead of
mechanical coupling between the front fork and the handlebars. To test the controller, ten participants took part
in a pilot study. The study was designed following a counterbalanced measures design and the participants were
split into two groups that experienced the controller’s haptic guidance in different order. During the study, the
participants were asked to ride the bicycle on a treadmill and hit virtual targets, shown on a display mounted in
front of the treadmill, by carrying out lane change manoeuvres. The hypothesis stated that the controller improves
performance while it is assisting the participants. It was found that the controller did not significantly improve
immediate performance and this result is likely caused by too low of the task difficulty. However, it is likely that
the controller was more effective at improving motor learning of lower skilled participants compared to higher skilled
participants, but a small number of lower skilled participants limited the analysis. A short post-hoc no-hands riding
test of the same cycling task was carried out to investigate whether the controller is able to carry out lane change
manoeuvres with minimal rider input. A significant performance improvement was found during the no-hands test.
In conclusion, due to limitations of the study, no performance or motor learning improvement caused by the controller
was found. Yet the controller showed promising results in a no-hands riding test, which suggests that the controller
could be used as a starting point for advanced safety systems for bicycles.

1 Introduction
Bicycles are one of the simplest and most accessible modes
of transport. They are cheap, do not require much main-
tenance and, most often, do not require a license to ride
on the street. In countries like the Netherlands, bicycle
travel even accounts for a quarter of all trips [12]. For the
past decade, the number of electric bikes sold each year
has been quickly increasing [34]. E-bikes are attractive as
they can travel at higher speeds than conventional bicy-
cles for the same rider effort. However, higher speeds also
lead to injuries of higher severity in case of an accident
[26, 43]. As such, bicycling safety is of utmost importance.
There are multiple ways to improve bicycling safety: in-
frastructure, bicycle design, bicycling skill, and protective
gear.

Bicycle designs have barely changed since the so-called
safety bicycle – a bicycle with two equally-sized wheels
– was introduced in late 19th century. While there have
been some developments between the 19th century and
modern bicycles, those developments mostly came from
trial and error, rather than rigorous analysis of the physics
of bicycles. In recent years, there has been a resurgence

in interest of bicycle dynamics. In 2007, J. P. Meijaard
et al. [36] thoroughly reviewed previous literature and
chose the Whipple-Carvallo bicycle model as a canoni-
cal model that describes the linearised bicycle dynamics.
With the help of nonlinear computer simulations [36] and
experimental data [20], they were able to validate that
this linearized model is able to describe bicycle behaviour
well. Additionally, they provided a set of benchmark bicy-
cle parameters that allows different models and software
implementations to be compared and validated.

Having this canonical model made it easier to conduct
further research into bicycles. Kooijman et al. [22] used
the model to show that gyroscopic or caster effects are not
necessary for bicycle stability; Moore and Hubbard [38]
used it to design an optimally handling bicycle; TU Delft,
together with Koninklijke Gazelle, [6] used it to design a
bicycle that provides steering assistance; and others ([21,
40, 47] and many more) used it to look into human control
of a bicycle. The canonical Whipple-Carvallo model is
also the model used in this thesis.

In 2012, Appelman [1] designed and built an early pro-
totype of a steer-by-wire bicycle. On a steer-by-wire bicy-
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cle, the handlebars are mechanically decoupled from the
fork and the front wheel of the bicycle. Instead, two mo-
tors and two angular position sensors are installed on the
front assembly of the bicycle. One motor, in tandem with
one position sensor, controls the steer angle of the fork
and the front wheel, while the other motor, combined
with the second position sensor, controls the steer angle
of the handlebars. These two motors enable the steer-by-
wire system designer to change how the bicycle handles.
For example: the system could multiply the rider’s steer-
ing input without a need for a gearbox; the mentioned
multiplication could be changed to a nonlinear function;
the system could remove the need for the rider to counter-
steer during cornering [35]; the system could stabilise the
bicycle by itself; and a creative mind could come up with
many more possibilities. To continue research on steer-
by-wire bicycles, a new prototype was built in 2018 by
Dialynas [7], which has been used in this thesis.

While a lot of research has been put into bicycle design
and human control of the bicycle, not much attention is
paid to how humans learn to ride a bicycle. A signifi-
cant fraction of bicycle riders learnt how to ride a bicycle
using training wheels. However, it can be argued that
this method is sub-optimal as it masks the real bicycle
dynamics, since the bicycle abruptly becomes a tricycle
the moment a training wheel touches the ground. Some
riders might also develop bad habits and rely on the train-
ing wheel to help regain balance instead of learning the
correct method of “steer into the fall”, which becomes an
issue when trying to finally get rid of the training wheels.

Klein et al. [17] came up with a better system than
training wheels. Their solution is to replace the bicycle
wheels with rollers of varying radii. A new rider starts by
riding a bicycle equipped with a roller of infinite radius
(a cylinder). The radius is slowly reduced as the riders
learn, until the radius of a conventional tyre is reached.
Rollers with high radius make the bicycle more stable
and easier to balance. The rider, therefore, feels more
comfortable during training, during which they build up
experience and muscle memory needed to ride a bicycle.
This method has been trialed with children with autism
spectrum disorder and Down syndrome in a couple of dif-
ferent experiments [13, 17, 31, 48] and was found to be
successful at teaching children how to ride a bicycle.

While not much has been explored regarding human
motor learning specifically in bicycles, research has been
carried out in other motor tasks. Recent advancements in
robotics meant that researchers could explore the role of
robots in facilitating motor learning. Experiments were
carried out on motor tasks of differing difficulty, with and
without robotic assistance on healthy subjects. The sim-
plest tasks involved reaching [2, 29, 30] or shape tracing
[25, 28, 44, 49]. Other tasks, like driving [14, 24, 32] or
tennis swings [16, 33], could be considered more complex.

Literature review [8] carried out before the thesis
project found that results in the literature vary from
robotic assistance being detrimental to learning, to not
having a significant effect, to being effective at improving
learning. In general, it was found that robotic training is
more effective when the difficulty of the task is matched

to the skill of the participant [3]. For example, the robot
could assist a participant to make the task easier and more
manageable. Looking back on Klein et al. [17], the same
mechanism is seen - the complex task of cycling is made
easier for novices by replacing the wheels with rollers.

Two of the human motor learning papers were in-
strumental in this thesis - Özen et al. [42] and Özen,
Buetler and Marchal-Crespo [41]. These papers deal with
a pendulum-swinging task. In the first paper, Model Pre-
dictive Control (MPC) was introduced to motor learn-
ing research. The reasoning behind MPC is to allow the
participant to experience more variability and increase
the sense of agency by using a control method that can
adapt and recalculate optimal trajectories on-the-fly, com-
pared to classical control methods, which constrain the
participant to a pre-determined trajectory. There, it was
found that training with MPC did improve participants’
performance during training, measured by absolute er-
ror between the participants’ location and the targets,
when compared to performance without MPC. In the sec-
ond paper, the study was expanded to include a transfer
task and compared MPC to a conventional Proportional-
Derivative (PD) controller. It was found that only the
participants that trained with an MPC controller acting
on the end-effector of the pendulum were able to signifi-
cantly increase their deviation from the natural frequency
of the pendulum, which shows a better control of pendu-
lum’s dynamics.

MPC has also been successfully used in other fields.
Since its creation in 1970s, it has been an attractive con-
trol methodology in petrochemical industry, where it was
able to control non-linear systems and outperform classi-
cal control in terms of product quality metrics [46]. The
ability of MPC to work within specified constraints, as
well as the aforementioned ability to control non-linear
systems, attracted attention from robotics and automo-
tive fields. For example, MPC was used by Yoshida et al.
[50] to model a lane change manoeuvre of an automobile,
and Yu et al. [51] have implemented a non-linear MPC
model for a path-following task on a simulated vehicle
and found that MPC outperformed Stanley and Linear
Quadratic Regulator controllers.

This thesis is a successor of the two papers regarding
MPC applied to a pendulum swinging task [41, 42]. In
this thesis, a complex task of cycling is looked into. An
MPC controller is designed and implemented on a steer-
by-wire bicycle that applies haptic guidance to assist the
rider during lane change manoeuvres. To measure the ef-
fectiveness of the controller, a pilot study was conducted.
The pilot study involved 10 participants riding a steer-
by-wire bicycle on a treadmill and hitting virtual targets
shown on a display in front of the treadmill. The perfor-
mance of the rider was measured by a score, which was
calculated according to rider’s deviation from the target’s
centre. The participants were split into two equally-sized
groups with a counter-balanced repeated measures design
of two training methods: Controller On; Controller Off.
The main hypothesis is that the controller improves per-
formance while it is acting on the bicycle.

The thesis is structured as follows. Section 2 describes
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Figure 1: The game shown to the participants. The par-
ticipants control the lateral position of the virtual bicycle
shown in the middle and need to collect green stars that
are approaching them. After passing each star, the par-
ticipants are shown a score at the top of the display that
corresponds to their distance to that star’s centre. The
red walls correspond to the edges of the treadmill.

the experimental setup, the task and the controller. In
Section 3, statistical analysis is carried out on the data
collected during the experiment. The results are discussed
in Section 4. The thesis is concluded in Section 5. Some
suggestions for future work are given in Section 6.

2 Materials and Methods
2.1 Experimental Setup
The experiment involves riding a steer-by-wire bicycle [7]
on a treadmill. On this bicycle, the handlebars and the
front fork are mechanically separated. A steer-by-wire
connection is created using two electric steer motors and
two absolute angular encoders. A PD controller is im-
plemented to minimise the steer angle difference between
the handlebars and the front fork, mimicking a rigid cou-
pling. The control loop of the PD controller is 1 kHz and
the controller runs on a Teensy 4.1 (PJRC, US) microcon-
troller. Dialynas et al. [7] found that this setup provides
good tracking for steering inputs up to 2.5 Hz.

Controllers based on MPC require a lot of computa-
tional power due to the need for online optimisation.
Thus, it was decided to use a significantly more powerful
desktop PC for the controller’s implementation, instead of
the onboard Teensy microcontroller. The MPC controller
is implemented on a Windows 10 (Microsoft, US) desk-
top computer equipped with Intel i7-7700K 4.2 GHz pro-
cessor (Intel, US), running Simulink Desktop Real-Time
(MathWorks, US). The desktop computer and the bicy-
cle communicate wirelessly using Bluetooth at 200 Hz for
the bicycle-to-computer communication, and 75 Hz for
the computer-to-bicycle communication.

During the experiment, the bicycle acts as a Human In-
terface Device for the game, in which the virtual targets
are hit. By moving the bicycle on the treadmill laterally,
the participant controls the lateral position of the virtual
bicycle shown in the game, which is displayed on a 24-inch
computer monitor, placed around 2 metres in front of the

Figure 2: Rear view of the setup, a participant can be
seen riding the bicycle. The location of the SteamVR
Base Stations 2.0 are shown in red. The location of the
HTC Vive Tracker 3.0 is shown in green. The display
showing the game is shown in blue. The width of the
usable space of the treadmill is 1.1 meters.

participant. The game is implemented using Unity (Unity
Technologies, US) and can be seen in Figure 1. The lat-
eral position, yaw angle and roll angle of the real bicycle
is obtained using an HTC Vive Tracker 3.0 (HTC, Tai-
wan) installed above the rear wheel. Two SteamVR Base
Stations 2.0 (HTC, Taiwan) are used to enable tracking
- one installed directly behind the treadmill, and the sec-
ond one installed on the side of the treadmill. The rear
view of the setup showing the treadmill and the locations
of the Base Stations can be seen in Figure 2.

The data from the HTC Vive Tracker is sent to the
supplied USB dongle, which is connected to a Raspberry
Pi 4 Model B 4GB (Raspberry Pi Foundation, UK). This
computer runs a 32-bit version of Raspberry Pi OS Lite
in headless mode. Libsurvive’s [27] Simple API is used
to read the raw data coming from the Tracker, calculate
the position and the pose of the tracker, and send the
data over an Ethernet cable using UDP to the Windows
10 computer at the rate of 220 Hz.

To reduce the risk of injury, a safety harness is used,
which is fixed to a point on the ceiling above the tread-
mill. Due to the harness, the participant does not need
to pedal, reducing fatigue and allowing the participant to
focus solely on the steering task.

2.2 Target-hitting Task
To analyse the performance of the MPC controller as an
assistance system, a target-hitting task is designed. The
participant is asked to collect stars that are approach-
ing at a constant velocity of 15 km/h. The interval be-

5



Table 1: Survey results. The cycling frequency is measured by number of days cycled in a typical 28 day month.

Participant 1 2 3 4 5 6 7 8 9 10
Age bracket 25-29 30-34 25-29 60-64 30-34 35-39 25-29 25-29 25-29 25-29
Cycling frequency 28 2 28 24 14 0 25 25 28 16

tween the stars is 6 seconds. The stars’ lateral positions
can be between −0.2 and +0.2 m from the centre of the
treadmill. Seven equally spaced-out points are defined
spanning this whole region (possible star locations: −0.2,
−0.133, −0.067, 0.0, +0.067, +0.133, +0.2 m). The se-
quence of 10 stars is then randomised from these 7 points
before the experiment. Three out of 10 stars were located
on the right side of the treadmill, five were on the left,
and the remaining two were in the middle. All partici-
pants experienced the same sequence.

The stars are hit by placing the virtual bicycle in front
of the star and passing through it. To give feedback to
the user, a score is shown on the display. The score is cal-
culated using Equation 1, where yP is the lateral position
of the bicycle’s rear wheel contact point in metres and
yS is the lateral position of the star’s centre in metres.
If the participant is within ±0.02 m of the centre of the
star as they pass it, they are given a score of 100. And if
the participant is not within the distance of ±0.02 m, but
within the distance of ±0.22 m, a linear equation is used
to calculate the score. Otherwise, the score of 0 is given.

∆y = |yP − yS |

score =


100, if ∆y < 0.02.
500× (0.22−∆y), if 0.02 ≤ ∆y ≤ 0.22.
0, otherwise.

(1)

2.3 MPC Controller
MPC is an advanced control method that uses a math-
ematical model of the controlled system to predict the
system’s behaviour throughout a specified control hori-
zon. A control signal is chosen such that the predicted
system state follows a given reference state. The con-
troller is able to work within the specified constraints put
on the system.

What makes MPC different from classical control is
that the controller is implicit in the sense that the designer
of the controller does not explicitly specify the control
law. Rather, the designer specifies a cost function (and
its weights) which is then used by the controller to de-
termine the control law at each time step. The control
law is obtained through online optimisation, which has a
downside of being computationally costly.

The linear MPC problem, used in this application, is
stated in Equation 2, where t is the current time, N is
the number of steps in the receding horizon, x is the bi-
cycle state, r is the reference state, u is the control input,
andQ and R are designer-defined weighing matrices. Sub-
scripts lb and ub stand for lower bound and upper bound,
respectively, and are used to set the previously mentioned

constraints. Matrices A and B are linear time-invariant
state-space matrices.

J =

t+N∑
k=t

(xk − rk)
TQk(xk − rk) +

t+N−1∑
k=t

uTkRkuk

subject to xk+1 = Axk +Buk

xlb,k ≤ xk ≤ xub,k

ulb,k ≤ uk ≤ uub,k

(2)

In this experiment, N is set to 150, which is equal to
the time horizon of 2 seconds with 75 Hz sample rate. The
control input u is steering torque. The bicycle and refer-
ence states, x and r, consist of the lateral position of the
rear wheel of the bicycle yP , the yaw angle ψ, the roll an-
gle ϕ, the steering angle δ, the roll rate ϕ̇ and the steering
rate δ̇. The state-space matrices A and B are obtained
using HumanControl software [15], which can convert the
equations of motion of a linear Whipple-Carvallo bicycle
model to state-space representation. Bicycle parameters
of the Davis Instrumented Bicycle (specified under Rigid
in pages 91-92 of [40]) are used due to its physical simi-
larity to the TU Delft’s Steer-by-Wire bicycle. A forward
speed of 15 km/h (4.17 m/s), equal to the treadmill’s
speed, is chosen. The torque calculated by the MPC con-
troller is applied to both the handlebar and front fork
motors of the steer-by-wire bicycle, meaning that the con-
troller not only applies haptic guidance to the handlebars,
but also steers the bicycle.

The bounds on the input u for the steering torque are
set to ±3 Nm to allow the participant to easily overpower
the motors if needed and to avoid over-current of the mo-
tors. The state x has bounds implemented on lateral po-
sition, roll and steering angles. The position is limited to
±0.5 m due to the limited width of the treadmill. The
steering angle is limited to ±40 degrees to avoid hitting
the physical stops installed on the bicycle, and the roll
angle is limited to ±20 degrees to avoid unnecessarily big
roll angles.

The weighing matrix Rk is always kept constant at the
value of 1 to minimise the control inputs, while Qk is
time-dependent. The weights in Qk are always kept at
zero, except for the 4 second period before a star reaches
the bicycle. During that 4 second period, the weights are
linearly increased to the specified values: 10 for yP and
ψ; 3 for ϕ; and 0 for the remaining states. The weight on
yP instructs the controller to carry out lane change ma-
noeuvres, while the weight on ψ encourages the controller
to keep the bicycle parallel to the treadmill’s centreline
as much as possible. Lastly, ϕ’s weight ensures that the
bicycle is kept upright. The values were obtained through
trial and error.

Since the MPC cost function is quadratic and con-
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Figure 3: Study protocol. Participants were assigned to one of two groups. Blue rectangles represent blocks where the
controller is assisting the participant, black represents the blocks where the controller is not assisting the participants.
Each rectangle is 1 minute long and contains 10 stars. BL stands for Baseline, MTR stands for Mid-training retention,
ETR stands for End-of-training retention, and T1 and T2 stand for Training 1 and Training 2, respectively.

vex, a Quadratic Programming (QP) solver is used to
find the optimal control input. The solver of choice here
is qpOASES [11] and, more accurately, its Simulink in-
terface for solving QP problems with varying matrices
qpOASES_SQProblem. The QP problem is solved at every
time step (at 75 Hz).

The state of the bicycle is measured using absolute
encoders on the bicycle and the HTC Vive Tracker.
The measurements are then passed through a real-time
second-order low-pass Butterworth filter with a cutoff fre-
quency of 8 Hz (adapted from [39]). The Butterworth fil-
ter also calculates the angular rates ϕ̇ and δ̇ from their
respective angles.

The details on how the MPC problem is translated into
a QP problem and a visualisation of a typical reference
path can be found in Appendix B.

2.4 Study Protocol
Ten healthy adult participants (7 male, 3 female) took
part in the study. The participants were informed of
the risks and consented to the study. Before the study,
the participants were asked for their age bracket and how
many days they cycle during a typical month (a typical
month was considered to be 28 days long, out of which 8
are weekends). The answers can be seen in Table 1.

The study is split into five trials: Baseline (BL), Train-
ing 1 (T1), Mid-Training Retention (MTR), Training 2
(T2), and End-of-Training Retention (ETR). Baseline,
Mid-Training Retention and End-of-Training Retention
are considered to be “no-intervention” trials, as the con-
troller was always turned off during these trials. The
MPC controller is only turned on during Training 1 or
Training 2. All trials are further separated into blocks,
where each block is 1 minute long and contains a sequence
of 10 stars. The participants were randomly assigned to
either Group 1 or Group 2. The participants were in-
formed that the MPC controller will assist them during
the experiment, but were not informed when the assis-
tance will be provided.

Before the study, the participants were given 5 minutes
to familiarise with riding a bicycle on a treadmill. During
these 5 minutes, the MPC controller was turned off, the
stars did not appear on the display, and the participants
were encouraged to carry out lane change manoeuvres of

varying amplitudes.
The experiment starts with 2 minute long no-

intervention Baseline trial. Immediately after Baseline,
the 6 minute long Training 1 trial begins. During Train-
ing 1, Group 1 has the controller assisting them, while
Group 2 trains without the controller. After Training
1, a very short (less than 2 minutes) break is needed to
prepare the upcoming trials. The participants are asked
whether they would like to extend this break. While all
participants wanted to continue immediately, the break
was extended (to approximately 5 minutes) for two par-
ticipants due to technical issues.

After the break, another 2 minute long no-intervention
Mid-Training Retention trial takes place, immediately fol-
lowed by a six minute long Training 2 trial. During Train-
ing 2, Group 2 has the controller assisting them, while
Group 1 trains without the controller. As before, a very
short break is required after Training 2 and the partici-
pants are given a chance to extend the break. All partic-
ipants wanted to continue without extending the break.

The study is completed with the last 2 minute long
no-intervention End-of-Training Retention trial. The vi-
sualisation of the study protocol can be seen in Figure
3.

2.5 Riding Without Hands

After the study was completed, an additional short test
was conducted to check whether the controller is able to
complete lane change manoeuvres by itself. The test fol-
lowed the structure of one of the 8 minute long sections
of the study – 2 minutes of Baseline with the controller
turned off, immediately followed by 6 minutes of riding
with the controller turned on. However, this time the
controller had the full control authority over the bicycle.
Throughout this test, the author was riding the bicycle
and used as little as possible active steering by hovering
his hands above the handlebars. Additionally, he was ig-
noring the game shown on the screen and was watching
the handlebars instead. The video of this test can be seen
in [9].
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2.6 Data Processing and Statistical
Analysis

The sensor data from the experiment is recorded in a Mat-
lab .mat file. After the experiment, the scores are calcu-
lated for each star from the sensor data using Equation 1.

Participants receive a score between 0 and 100 for
each star. Therefore, the performance of the participant
throughout each trial is measured by the mean score. A
within-subject score variance of the trial is calculated
as well. A low score variance can be indicative of high
precision and participant’s skill to repeatedly place the
bicycle in the correct location. The calculated values are
exported as .csv files and imported into R [45] for statis-
tical analysis.

Normality of the data is checked by visually inspecting
Q-Q plots and using Shapiro-Wilk tests. A Welch two
sample t-test is used to compare the mean scores and
score variances of the two groups during Baseline to
see if there were any significant differences in performance
between two groups.

The controller’s ability to improve performance while
the controller is assisting the participant is investigated
by calculating relative difference of the mean score
and difference of the score variance between the
Training trial and the preceding no-intervention trial.
To calculate the differences during Training 1, equation
PMT1 − PMBL is used, where PM stands for “perfor-
mance metric” and can be either the difference of the
mean score or difference of the score variance. Sim-
ilarly, Training 2 uses the equation PMT2−PMMTR. The
obtained values are compared between groups (T1 Group
1 – T1 Group 2; T2 Group 1 – T2 Group 2) using two
Welch two sample t-tests.

The α-level is set to .05 and any result with a p value
lower than this is considered significant.

3 Results
All 10 participants completed all five trials without falling.
However, one participant fell during the 5 minutes of fa-
miliarisation, but was not injured and chose to continue
the study. No data was excluded from the analysis.

The mean score and score variance evolution by
block for all participants can be seen in Appendix A, as
well as the scores of the groups as a whole. No signif-
icant differences were found (F (1, 8) = 0.216, p = .655
and F (1, 8) = 0.003, p = .958) between the groups during
BL, therefore is it assumed that the differences between
groups in other trials are due to the controller’s effect.

3.1 Improvement in Performance with
MPC Assistance

To test whether the controller had an effect on immediate
performance, the difference of the mean score and
difference of the score variance between BL and T1 or
MTR and T2 were compared using two Welch two sample
t-tests. The graph showing the variables can be seen in

Figure 4.
During T1, there was no difference between the groups

in mean score change (t(6.92) = 0.042, p = .968) and
score variance change (t(7.96) = −0.190, p = .854). The
same can be said about T2 – no significant difference in
mean scores (t(7.35) = −1.981, p = .086) and variances
(t(8.00) = 2.069, p = .072). However, both p-values in T2
show that there might be a trend, therefore, the previ-
ously mentioned figures need to be inspected.

Looking at the score mean differences (Figure 4a), an
interesting phenomenon can be seen. During both T1
and T2, Group 2 had a negative median (performance
reduction). However, Group 1 managed to have a posi-
tive median (performance increase) during T1 (when they
had the controller assisting them), but the change became
negative (performance decreased) during T2 (when the
controller was not assisting them).

The story is similar in the amount of difference of score
variance (Figure 4b). Since this graph regards the differ-
ence in variance, negative values are considered as per-
formance improvement, while positive values show the re-
duction of performance. In this case, Group 1 exhibited
a slightly negative median during T1, which then turned
into a positive median during T2, mirroring the mean
score change. Group 2, on the other hand, were able to
keep their variance at a relatively same level (illustrated
by the near-zero median) during T2.

3.2 Riding Without Hands
During the Baseline of the no-hands trial, since there was
no active steering towards the stars, the author stayed
in the middle of the treadmill. The mean score of this
Baseline trial was 51.1, with a score variance of 31.6.
During the following 6 minute long Controller trial, during
which MPC was controlling the bicycle, the mean score
was 87.0 and the score variance was 17.9. The bicycle’s
lateral position without and with the controller can be
seen in Figure 5. Additional time domain graphs can be
found in Appendix D.

To check whether this difference is statistically signifi-
cant, a Wilcoxon Paired Signed-Ranks test is carried out.
A Wilcoxon test was used in place of a t-test to err on
the side of caution, as Shapiro-Wilk normality test re-
turned a non-significant, but close to significance, result
(W = 0.905, p = .052). Since paired tests require equal
sample sizes, the 6 minute long trial was split into three
2 minute long segments - Controller 1, Controller 2, Con-
troller 3. Each of the three segments is then compared
to the Baseline. The boxplot showing the distribution
of the scores during the Baseline (shown under NH_NC
scenario) and Controller (shown under NH_C scenario)
can be seen in Figure 6. The Wilcoxon test shows sig-
nificance in the differences between Baseline and Con-
troller 1 (Z = −2.94, p = .003), Baseline - Controller 2
(Z = −2.01, p = .045), and Baseline - Controller 3 (Z =
−2.99, p = .003). No significant differences found between
the different Controller parts. The results are corrected
with Bonferroni correction for multiple comparisons.
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(a) Score. Relative to the previous no-intervention trial
(between BL and T1, or between MTR and T2), positive
difference indicates performance improvement.

(b) Variance. Relative to the previous no-intervention
trial (between BL and T1, or between MTR and T2),
negative difference indicates performance improvement.

Figure 4: Boxplot of the difference of the mean score and the difference of the score variance for both groups
during T1 and T2.

Figure 5: Bicycle’s lateral position during the no-hand test. The top subfigure shows the lateral position of the
bicycle throughout the last minute of the Baseline part of the test. The bottom subfigure shows the lateral position
of the bicycle throughout the last minute of the Controller part of the test. The red circles are the star locations.

Figure 6: Score distribution during the no-hands test and during the main study’s last trial. Scenario NH_NC
represents the Baseline part of the no-hands test, when the controller was not active (20 scores). Scenario NH_C
represents the Controller part of the no-hands test, when the controller was steering the bicycle (60 scores). Scenario
ETR contains all 200 scores (10 participants, 20 stars each) of the main study’s End-of-Training Retention trial.
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(a) Scatter-plot showing the initial score versus the score
difference.

(b) Boxplot showing the score difference versus the skill
level grouped by k-means.

Figure 7: Skill dependency. The score difference is calculated by taking the score of the no-intervention trial following
the Training trial and subtracting the score of the no-intervention trial preceding the Training trial.

3.3 Skill Dependency
Literature regarding human motor learning has shown
that the efficacy of robotic assistance depends on func-
tional task difficulty, which depends on participant’s skill
[3]. Therefore, a post-hoc analysis is carried out to explore
whether there is an interaction between initial skill level
of the participant and the controller. While this analysis
was not planned before the experiment took place, the
results found here could be useful for future studies.

The score of the participant during the preceding no-
intervention trials (BL or MTR) is assumed to be a good
estimate of that participant’s skill at that moment in time.
To estimate the skill increase due to the controller dur-
ing the intervention trials (T1 or T2), the difference
in mean score between the preceding and following no-
intervention trials is used (MTR - BL or ETR - MTR).
A scatter-plot showing the initial score versus the score
difference can be seen in Figure 7a. Two regression lines
fitted to the scenarios of training with the controller (Con-
troller On) and training without the controller (Controller
Off ) can be seen. K-means clustering is applied to the
data, and the score threshold represented by the vertical
green line is found. The results to the left of the green
line are considered as “low skilled”, while the results to
the right are considered as “high skilled”. A boxplot us-
ing these groupings is shown in 7b. A Welch two sample
t-test shows a significant difference between the groups in
score differences (t(8.39) = −4.50, p = .002).

To further see if there is an effect of the controller, a
Linear Mixed Effects (LME) model with the Equation 3 is
used, where Difference is the score difference as shown
on the y-axis of the scatter plot, Skill is the initial score
(x-axis of the scatter plot), Controller is either On or
Off (colour of the data points in the scatter plot), and
ID is the participant ID. The LME model is then used in
ANOVA using lmerTest [23].

Difference ∼ Skill ∗ Controller + (1|ID) (3)

The ANOVA results can be seen in Table 2. The re-
sults show that the amount that the participant improved
by strongly depends on the initial score. Additionally,
a likely effect of the controller can be seen, as there is
the one-side significant main effect of Controller and the
one-side significant interaction effect of the skill and the
controller.

4 Discussion
The results have shown that the controller is able to carry
out lane change manoeuvres by itself, which can be seen
from the no-hands test. However, in general, it did not
seem like the controller was able to improve performance
of the participants. Yet, when taking into account the skill
of the participants, it is possible that the controller was
more effective for lower skilled participants, while even be-
ing detrimental for higher skilled participants. The main
results will be discussed here. For additional observations,
such as participant feedback, refer to Appendix C.

4.1 Performance Improvement
4.1.1 Task Difficulty

It is thought that the difficulty of the task was not prop-
erly matched to the skill level of the subjects. While de-
signing the study protocol, due to author’s own experience
testing the experimental setup, the assumption was made
that the participants will need more than 5 minutes to
fully familiarise with riding on a treadmill. Thus, it was
expected that the scores during Baseline trials would be
somewhere around 70, which would provide the partici-
pants with a lot more room for improvement and the ef-
fect of the controller might have been more pronounced.
However, it was found that the mean score of the partic-
ipants during Baseline was 88.6. A higher-than-expected
score meant that the amount of improvement through-
out the experiment was limited. Additionally, during the
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Table 2: ANOVA analysis of the LMM model shown in 3

DF Numerator DF Denominator F p
Skill 1 19.6544 47.7045 .000005∗∗∗

Controller 1 9.7537 5.3920 .07837∗

Skill * Controller 1 9.7669 5.1671 .08428∗

Significance codes: ∗ - 0.1, ∗∗∗ - 0.0

no-hand test, the controller achieved a mean score of 87,
which means that the participants were able to match the
controller’s performance from the very beginning and pos-
sibly limited the amount of assistance that the controller
was able to supply.

As such, the task should be made more difficult in the
follow up studies. The difficulty can be increased either by
reducing the time between the stars (here it was set to 6
seconds), by increasing the amplitude of the lane changes
(here, the maximum possible amplitude was 0.4 metres),
or by combining both of these changes.

4.1.2 Low Torques

During the no-hands trial, the controller rarely ever ex-
ceeded the absolute torque of 0.5 Nm, with the mean abso-
lute torque over the trial being equal to 0.16 Nm. During
the study itself, the mean absolute torque over all partic-
ipants was 0.22 Nm. The participants’ hands were placed
roughly 0.3 m away from the axis of rotation, which means
that the mean absolute torque of 0.22 Nm translates to
an absolute force of only 0.73 N.

After the experiment, majority of the participants re-
ported that they did not feel the controller acting on the
handlebars. A follow-up question revealed that those par-
ticipants have had their arm muscles tensed up during the
experiment due to trying to stay as straight with the bi-
cycle as they can. Only two participants reported feeling
some external forces. One participant said she was relaxed
and therefore could feel the low amplitude torques. The
other participant could only feel the controller during big
amplitude lane changes, which required higher torques to
complete.

However, it is possible that some participants did not
notice the controller as they were in agreement with con-
troller’s applied torques. In order to prove this, the rider’s
torques would need to be measured, which was not done
during this study. For a future study, the measurement
of the rider’s torques or rider’s intentions should be con-
sidered as they can also be a measure of how much the
rider trusts the controller.

To address the low torques, the torques applied to the
handlebars should be increased in magnitude to make
them more obvious for the participant. Yet, as shown by
the no-hands trial, high torques are not needed to carry
out lane change manoeuvres. The solution could be to
fully exploit the steer-by-wire system of the bicycle and
apply torques of different amplitudes to the front fork
and the handlebars. On the other hand, care must be
taken not to increase the torques felt on the handlebars

too much, as too high torques can lead to the loss of sense
of agency for the participant, which can be detrimental
to learning [10].

Another solution would be to instruct the participants
to relax. However, this approach was not taken due to the
concern that the participants would then rely too much
on the controller and would not learn how to control the
bicycle themselves.

4.2 Riding Without Hands
4.2.1 Controller’s performance

The no-handed test showed that the MPC controller is
able to control the bicycle and hit the stars. In fact,
throughout the whole trial, the controller managed to
reach a median score of 92 (and the median of 97 during
the last two minutes of the test), while all participants of
the main study combined were able to achieve a median
score of 97 during ETR (Figure 6). By reordering Equa-
tion 1, a median absolute distance to the star’s centre can
be obtained. In this case, a score of 92 is equal to 3.6 cm
error from the centre of the star, while the score of 97 is
equal to a distance of 2.6 cm. This means, that the con-
troller was able to get within 1 cm of human performance
if the whole trial is taken into account.

4.2.2 Trust in the Controller

Since the test was carried out with the experienced au-
thor riding the bicycle, it is possible that, during this
test, the rider trusted the controller more than the ten
participants who experienced the controller for the first
time. However, even with the additional experience, at
the start of the test the author did not completely trust
the controller and interfered during a few manoeuvres by
taking control, as he felt that the controller was about to
lose stability. By the end of the test, the author was able
to fully trust the controller, which can also be seen from
higher scores during the last 2 minutes of the test.

4.3 Skill-dependency
Post-hoc analysis of the scores led to Figure 7a, in which
two regression lines of the two controller states can be seen
crossing. At lower initial scores, the Controller On line
suggests that training with the controller’s support led to
higher improvements. Interestingly, at the initial score of
around 92, the Controller On line crosses the Controller
Off line, which can suggest that for participants that ini-
tially scored high, controller’s support was detrimental
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and training without the controller is better in that situ-
ation. This seems to match the observations seen in motor
learning literature, where robotic assistance is more effec-
tive for lower skilled subjects, while higher skilled subjects
improve more under robotic disturbance [3]. The scatter
plot also shows that lower skilled participants were able
to improve more than higher skilled participants, which
is expected, as the room for improvement reduces as the
score increases, due to the upper limit of 100.

The further analysis of the data using the LME model
showed that there might be a trend that the initial skill
and the controller state are interacting. However, the
analysis is limited due to a small number of low skilled
participants and that a lot of data points are clustered
around the initial score of 92. Therefore, a future study
should aim to have a wider range of participant skills,
as well as a higher number of participants, in order to
explore this phenomena further.

5 Conclusions
During this thesis a controller, based on the Model Predic-
tive Control framework, capable of controlling a bicycle
was designed and a pilot study investigating controller’s
effectiveness at improving performance was conducted.

A test, during which the author rode a bicycle with-
out actively steering it, showed that the controller is able
to carry out lane change manoeuvres if the rider trusts
the controller and does not interfere with it. Therefore,
the controller could be used as a starting point for future
projects regarding self-riding bicycles or advanced bicycle
safety systems.

However, no significant effect of the controller on per-
formance improvement during the main study was found.
Two main reasons are attributed to this observation – too
low task difficulty, and controller’s torques being too low
for the participants to notice.

Data analysis after the study showed that the initial
baseline scores were very high, which suggests an easy
task. As previous human motor learning literature has
shown, haptic guidance is not effective when the relative
task difficulty is low. Therefore, the controller was not
able to significantly improve participants’ performance, as
the participants were already quite proficient at the task.
In fact, when taking into account the initial skill level of
the participant, a trend appears that suggests that the
controller could have had an effect on lower skilled par-
ticipants, for whom the task was more difficult, however,
a low number of participants prevents a more concrete
conclusion. For future experiments, the functional diffi-
culty of the task should be increased either by making the
task more difficult, or by recruiting beginner cyclists as
participants.

The no-hands trial showed that the torque needed for
the lane change manoeuvres was low, as the mean abso-
lute torque was only 0.16 Nm. Additionally, the maxi-
mum absolute torque applied by the controller rarely ex-
ceeded 0.5 Nm. During the main study, the mean absolute
torque increased only slightly to 0.22 Nm and, therefore,

was hard to notice for the participants, especially when
they tensed up their arm muscles while concentrating
on the task. For future experiments, the Steer-by-Wire
mechanism of the bicycle could be exploited to increase
the haptic guidance torques felt by the participants, while
applying low torques to the front fork only.

6 Future Work
Future work could take a number of different paths: hu-
man motor learning research; smart bicycles and assis-
tance systems; assessment of bicycle handling. This sec-
tion will look at them and provide some suggestions.

6.1 Human Motor Learning
As the idea for this thesis came about from motor learn-
ing research, it is natural to continue on this path fur-
ther. During this project, a task and an experimental
setup have been designed. The pilot study has shown
that motor learning has occurred throughout the experi-
ment, but no significant effect of the controller has been
found. Therefore, some changes are proposed for future
studies:

• Increase the sample size. There were only 10 par-
ticipants in this pilot study, which were then split
into two groups of 5. Due to a small sample size,
statistical analyses did not have a lot of statistical
power. Additionally, a wider spread of skill levels
should be sought out. However, a bigger sample size
for this thesis was not achievable due to time con-
straints.

• Increase task difficulty. In this study, the par-
ticipants were skilled bicyclists with several years of
experience and the task proved to be easier than an-
ticipated. Task difficulty could be increased by re-
ducing the time between stars, or by recruiting bicy-
clists without a lot of experience.

• Increase guiding torques. Participants noted that
they could not feel controller’s guiding torques. In-
creasing the torques applied to the handlebars might
address this issue.

6.2 Smart Bicycles and Assistance Sys-
tems

The controller designed in this thesis was able to con-
trol the bicycle by itself sufficiently to get a compara-
ble score to experienced participants. Thus, the author
believes that the controller could be used on bicycles or
motorcycles as a part of Advanced Driver Assistance Sys-
tems. Possible applications could be Emergency Obstacle
Avoidance, Lane Change Assist, or Lane Keeping Assist.
However, before that, some steps should be taken:

• Integrate the controller into the bicycle itself.
The current iteration of the controller had to be ran
on a desktop PC, which limits the application to
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only a laboratory setting. In order to integrate the
controller into the bicycle, more powerful embedded
hardware, such as Jetson (NVIDIA, US), needs to be
installed on the bicycle. The controller itself should
be parallelised to take advantage of Jetson’s GPU
cores. Paper by Kogel and Findeisen [18] could be
used as a starting point.

• Estimate bicycle’s state with on-board sen-
sors. In this thesis, only the steering angle was mea-
sured using the bicycle’s sensors. The yaw and roll
angles, with their corresponding angular rates, were
obtained from an external HTC Vive Tracker, con-
straining the controller’s use to laboratory settings.

• Estimate bicycle’s location with on-board sen-
sors. For features like obstacle avoidance or lane
keeping assist, the bicycle first needs to know its loca-
tion relative to the obstacle or lane boundaries. The
need of localisation and computer vision could be ful-
filled by using Intel RealSense Technology (Intel, US)
or similar.

6.3 Bicycle Handling Assessment
Currently, there are no standardised handling quality
metrics or their tests for bicycles. This thesis has designed
a lane change task, which produces a quantitative result
in terms of a score. Different bicycles could be used to
complete the task and the score could be used as a metric
that describes how manoeuvrable that bicycle is. Addi-
tionally, the test setup is easy to put together, as only
an HTC Vive Tracker is needed for sensing, which can
be quickly transferred between different bicycles. Some
improvements are recommended:

• Star sequence. Currently, a random star sequence
with constant distance between stars is used. Ran-
domisation is great when dealing with human sub-
jects, but might not be suitable if a standardised
metric needs to be measured repeatedly. The dis-
tance between stars could also vary with time so that
the test could capture bicycle’s handling at different
levels of manoeuvre aggressiveness.

• In-game perspective. In order to get rid of as
many human factors as possible from the test, the
rider should have as much information about the cur-
rent situation as possible. This means, that the com-
plaints from the pilot study participants regarding
the in-game perspective in the visualisation need to
be addressed, for example, by providing lines that
lead towards the centre of the star.

• Calibration. The test needs to be repeatable, there-
fore a repeatable and reliable calibration of the HTC
Vive Tracker method should be thought of.

Software developed for this thesis is available at
https://github.com/mechmotum/TUDelft-SbW-Bicycle
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A Score and Variance Evolution Graphs
This appendix shows the mean scores (Figure 8) and score variance (Figure 9) achieved by each participant
during each block (1 minute long, 10 stars) of the pilot study. The participants are grouped by the group they were
assigned to during the study. Additionally, Figures 10 and 11 show the whole group’s performance during each trial.

Figure 8: Mean score evolution throughout the experiment, separated by groups. Higher score is better.

Figure 9: Score variance evolution throughout the experiment, separated by groups. Lower variance is better.
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Figure 10: Group mean scores during each trial. Higher score is better. The error bars show standard deviation
between the subjects.

Figure 11: Group score variances during each trial. Lower variance is better. The error bars show standard deviation
between the subjects.
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B More details on MPC implementation
B.1 Model Predictive Control Problem
The MPC problem is stated in Equation 4, where N is the number of steps in the receding horizon, x is the bicycle
state, r is the reference state, u is the control input, and Q and R are user-defined weighing matrices. Subscripts
lb and ub stand for lower bound and upper bound, respectively, and are used in designer-defined constraints on the
system states and control inputs. Matrices A and B are linear time-invariant state-space matrices.

J =

N∑
k=0

(xk − rk)
TQk(xk − rk) +

N−1∑
k=0

uTRku

subject to xk+1 = Axk +Buk

xlb,k ≤ xk ≤ xub,k

ulb,k ≤ uk ≤ uub,k

(4)

In order to calculate the cost, all states of the system need to be known, but at each moment in time only x0 – the
current state of the system – is known. In this instance, using the linear time-invariant state-space representation
makes overcoming this issue easy, as it is possible to obtain all the future states while only knowing the initial state
and a sequence of future control inputs. Equations in 5 show the principle behind it. By stacking these states into
one vector x̄ =

[
x0 x1 · · · xN

]T , the control inputs into ū =
[
u0 u1 · · · uN−1

]T , the sequence of equations
can be simplified into one equation 6. The reference states, and lower and upper bounds are combined into their own
vectors as well, as shown in Equation 7. The weighing matrices are joined into diagonal matrices Equation 8. All of
these vectors and matrices lead to a simplified MPC problem, seen in 9.

xi+1 = Axi +Bui

xi+2 = Axi+1 +Bui+1 = A2xi +ABui +Bui+1

xi+3 = Axi+2 +Bui+2 = A3xi +A2Bui +ABui+1 +Bui+2

xi+N = Axi+N−1 +Bui+N−1 = ANxi +AN−1Bui + · · ·+Bui+N−1

(5)

x̄ =


I
A
A2

...
AN

x0 +


0 0 · · · 0
B 0 · · · 0
AB B · · · 0

...
... . . . ...

AN−1B AN−2B · · · B

 ū = Āx0 + B̄ū (6)

r̄ =


r1
r2
...
rN

 x̄ub =


xub,1
xub,2

...
xub,N

 x̄lb =


xlb,1
xlb,2

...
xlb,N

 ūub =


uub,1
uub,2

...
uub,N

 ūlb =


ulb,1
ulb,2

...
ulb,N

 (7)

Q̄ =


Q1 0 · · · 0
0 Q2 · · · 0
...

... . . . ...
0 0 · · · QN

 R̄ =


R1 0 · · · 0
0 R2 · · · 0
...

... . . . ...
0 0 · · · RN

 (8)

J = (x̄− r̄)T Q̄(x̄− r̄) + ūT R̄ū

subject to x̄ = Āx0 + B̄ū

x̄lb ≤ x̄ ≤ x̄ub

ūlb ≤ ū ≤ ūub

(9)

B.2 Optimisation Problem
The only unknown variable left in the simplified MPC problem is the vector of control inputs, which is where
optimisation comes in. The goal is to minimise the cost J by using a sequence of minimal control inputs ū that
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minimises the difference between the system states and the reference states x̄ − r̄. The relative importance of the
magnitude of state errors and the magnitude of the control inputs can be adjusted by changing the weights in the
matrices Q̄ and R̄.

Since the cost function is quadratic and is constrained, the optimization method of choice is Quadratic Programming
(QP). In order to implement MPC, the QP problem needs to be solved online at each time step, which requires a fast
solver. In this thesis, qpOASES[11] solver was chosen, as it features a Simulink interface that is easy to implement.

qpOASES solves the QPs of the form given in equation 10, where y is the variable to optimise, H is the Hessian, ω0

is a parameter, g is a parameter-dependent gradient vector, E is a matrix, and lbE, ubE, lb and ub are parameter-
dependent lower and upper constraint bounds.

min
y

1

2
yTHy + yT g(ω0)

subject to lbE(ω0) ≤ Ey ≤ ubE(ω0)

lb(ω0) ≤ y ≤ ub(ω0)

(10)

The MPC problem can be translated to this QP problem by substituting the stacked state-space equation 6 into the
cost function. By expanding and collecting terms, equation 11 is obtained. The last three terms can be excluded as x0
and r̄ are known beforehand, are constant during optimisation, and act as scaling factors. Dividing the equation by
two and equating ū with y, the equation takes the form of the qpOASES minimisation function, with H = B̄T Q̄B̄+ R̄

and g(ω0) =
[
B̄T Q̄Ā −B̄T Q̄

] [x0
r̄

]
.

J = ūT (B̄T Q̄B̄ + R̄)ū+ 2ūT (B̄T Q̄Ā)x0 + 2ūT (−B̄T Q̄)r̄ + xT0 (Ā
T Q̄Ā)x0 + 2xT0 (−ĀT Q̄)r̄ + r̄T Q̄r̄ (11)

Substituting 6 into the constraints of the MPC problem 9 and reordering results in 12. Which gives that lb(ω0) = ūlb,
ub(ω0) = ūub, lbE(ω0) = x̄lb − Āx0, ubE(ω0) = x̄ub − Āx0, and E = B̄.

x̄lb − Āx0 ≤ B̄ū ≤ x̄ub − Āx0

ūlb ≤ū ≤ ūub
(12)

B.3 Time-variance
As mentioned in subsection 2.3, the weight matrix Qk varies with time and can take on different values for each
sampling time. This means that Q̄ is different at each sampling time and QP problem’s H matrix needs to be
recalculated at each sampling time.

qpOASES provides a standard class QProblem, but it requires the H matrix to be constant. Luckily, the toolbox
also provides SQProblem, which allows for a varying H (or E) matrix.

A visualisation of how the matrix Qk varies can be seen in Figure 12. The three coloured lines represent the three
varying weights - lateral position yP , yaw angle ψ and roll angle ϕ. All weights start at the value of 0. When 4
seconds are left before the star, the weights start to increase. The weight for yP starts at 0.1, while the weights for
ψ and ϕ start at 1. The weights reach their final values of 10 for yP and ψ and 3 for ϕ at the same moment as the
star is passed. Afterwards, the weights are set back to 0.

B.4 Reference
In this thesis, the controller is able to preview the reference, meaning that it knows exactly what is waiting for it in
the future. The reference contains the desired lateral location of the bicycle’s rear wheel contact point yP at each
time step, while all other state references are set to 0. Setting the yaw and steering rate reference to 0 acts like a
damper. Setting the yaw, roll, and steering angle reference to 0 balances the bicycle, as the controller is going to try
to keep these values at zero.

The reference for yP is the only one that is varying between time steps. A visualisation of a part of it is shown
in Figure 13. A time snippet of 16 seconds are shown. At the current time step, the star in position 2 is being hit.
The next star is located 6 seconds away in position 1. The MPC controller does not “see” the stars (shown in red)
themselves, but “sees” the reference lines (shown in green) that passes through the centre of the stars.

The reference line begins 4 seconds before the star and corresponds to the period during which the weights are
increased, as mentioned in subsection 2.3. The line extends past the star for 2 seconds to ensure that the controller
passes through the star. If this extension did not exist and the line immediately shifted to another star, the controller
would start turning towards the other star and miss the current star. The length of the extension was chosen to be
the same length as the time horizon of the controller, to make sure that at the moment in time when a star is passed,
all the controller sees is the location of that exact star and not the location of a future star.
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Figure 12: Visualisation of the controller weights.

Figure 13: Reference line of the rear wheel contact point yP supplied to the MPC controller.
Red vertical lines represent the stars, with the centre of the line representing the centre of the star that would produce
a score of 100. Blue horizontal lines represent the reference position of yP , shown to the MPC controller.
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C Additional Observations
This appendix contains additional observations that could be useful for future projects and experiments.

C.1 MPC Controller
C.1.1 Controller Weights and Trust in the Controller

The reasoning behind implementing varying controller weights was to provide the participants with some freedom of
exploration during the early stages of the manoeuvre [42]. However, in practice this led to one of two things - the
participant had already completed the manoeuvre before the controller had a chance to act, or, if the participant had
not completed the manoeuvre, the controller would act too late to have any meaningful performance improvement.
Additionally, varying weights reduce the ability of the participant to predict what the controller is going to do next.
Now the participant needs to figure out a three way mapping between the bicycle’s location relative to the star, time
to the star and the controller’s torque. With constant weights, only a two way mapping would be needed – between
the location of the bicycle relative to the star and the controller’s torque. This can be an issue, since inability to
predict the controller might lead to reduced trust [5].

And trust in the controller is important in ensuring performance improvements. The participants need to trust
the controller to be able to follow its guidance. If the participants do not follow the guidance, they will be fighting
against it, reducing the performance.

C.1.2 Sensors

Better state estimation and cleaner sensor data would lead to better controller performance and lower deviations.
While the current setup with the HTC Vive Tracker 3.0 works well, some possible areas of improvement are found.

A more rigid tracker mount should be designed to avoid as much of relative motion between the tracker and the
bicycle as possible. Better physical alignment between the tracker’s coordinate system and the bicycle’s system should
be sought out as well. Currently the misalignment is solved using a calibration procedure before each participant.
However, this approach is not 100% reliable and a bias in the roll angle was found for one participant, which led to
a bias in controller’s torques.

Additionally, it would be beneficial to know how accurate the tracker is. A paper by Borges et al. [4] found that
in a static condition, the precision of the tracker is under a millimetre. However, under dynamic conditions, they
found that the precision decreases into the range of centimetres. The precision was measured using earlier Tracker
versions, as well as earlier versions of the Base Stations, and they used Vive’s proprietary algorithms. Therefore, it
is recommended to carry out new precision tests with the new hardware and using libsurvive’s algorithms. To be
able to do that, another, well-tested, localisation-capable sensor is needed to obtain a ground truth, such as a motion
capture camera setup.

C.1.3 Autonomous Bicycle

In this thesis, the controller was designed to play a role of an assistant for the human rider, rather than a system that
would ride the bicycle by itself. However, the no hands trial showed that the controller, with some improvements,
could hypothetically be used for a self-riding bicycle. To test this hypothesis, the rider could be replaced with
a rigidly-attached mass and the MPC weights should be adjusted. After a satisfactory performance is achieved,
different masses could be fitted without adjusting the MPC weights to investigate how sensitive the controller is to
unmodelled changes in dynamics.

C.2 The Game
After the study, participants expressed some annoyances regarding the game. Two main complaints were about the
in-game perspective and the delay between the movement of the real and virtual bicycles.

C.2.1 In-Game Perspective

The game is displayed on a 24-inch display placed around 2 metres in front of the rider. The camera in the game is
stationary and fixed to the middle of the treadmill.

Participants noted that, as the star appeared in the horizon, it was hard to accurately predict where the star was
going to end up in a couple of seconds. Additionally, as the star came closer, it was difficult to tell how far away from
the centre of the star the virtual bicycle was. A couple of possible improvements are suggested.

One of them is to constantly show the participants their relative distance to the centre of the star. This can be
achieved in two ways. The simplest one is to display a longitudinal line starting at the bottom of the screen and
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ending at the star’s centre, which would give the participant a line that they could follow. The second way is to show
a “ruler” that laterally extends from the virtual bicycle’s current position, to the lateral position of the star’s centre.
The length of this ruler represents the lateral distance to the star and changes length according to the movement of
the bicycle.

Another improvement is to increase the size of the monitor or replace it with a projector or a virtual reality headset.
The use of a relatively small monitor compared to the treadmill led to the participants needing to turn their heads
towards the display, which can interfere with the perception of the relative positions. The need to rotate the head
can be reduced by increasing the display size. By replacing the display with a projector or a virtual reality headset,
the real and virtual worlds could be joined seamlessly and lead to better spatial awareness for the participants.
Alternatively, the experimental setup could be modified to work outside the laboratory setting and the experiment
could be carried out on the road.

Some participants suggested to make the camera move sideways, instead of always being fixed to the middle of the
treadmill. In fact, this was piloted before the experiment with two participants. The camera was fixed to the virtual
bicycle to simulate a “first person view”. However, this led to the feeling of confusion as the participants of the pilot
test reported that any movement they made felt like it was twice as big. This issue could be overcome by smarter
camera movement, such as allowing the camera rotate towards the middle of the virtual road to mimic the rotation
of the head of the participant.

C.2.2 Delay

Seven participants commented that they noticed a slight delay between moving with a real bicycle and the virtual
bicycle. A part of the delay is introduced by design - the virtual bicycle represents the location of the rear wheel
of the real bicycle. As bicycle riders are not actively thinking about the location of the rear wheel while riding a
bicycle, but rather the location of the front wheel, this choice was made to make the task slightly more difficult. The
participants were not informed about this before the experiment as it was assumed that the participants will be able
to adapt to the induced delay by themselves.

Another component of the delay came from the delays in communication and filtering. The raw data from the
HTC Vive Tracker 3.0 is sent using Bluetooth to the Raspberry Pi, which then sends the calculated position and pose
data to the desktop PC running the controller. The data then passes through a second order Butterworth filter, and,
finally, the lateral position data is extracted and sent to the game. Each of those steps has an inherent delay that is
likely smaller than what a human could perceive, but in this case, the delays compound and become big enough for
human perception. This delay, which happened to be around 100 ms, could be reduced by reducing the number of
communication steps, for example, by making the tracker communicate directly with Simulink, or by getting rid of
Simulink altogether and implementing the controller on a bicycle or in the game itself.

C.3 Treadmill Riding
C.3.1 Starting From a Standstill

It was found that the most difficult part of riding on the treadmill is the very beginning. On the road, when starting
from a standstill, the rider quickly accelerates the bicycle to a more stable and controllable speed range. On a
treadmill, the acceleration depends on the treadmill’s capabilities and the treadmill might be accelerating too slowly,
which forces the rider to spend more time at speeds where it is hard to balance. During testing before the study, some
riders were not able to start riding on this particular treadmill from a standstill, therefore, handrails were installed
on the sides of the treadmill. The main study’s participants were asked to hold on to the handrail at the beginning
of the different sections, whilst the treadmill accelerated to the controller’s design speed of 15 km/h. However, this
introduced another issue, as some participants had trouble letting go of the handrail.

In order to hold on to the handrail, the participants had to place their bicycle near the edge of the treadmill’s belt,
which limited the amount of space in which the participants could manoeuvre, compared to starting in the middle
of the belt. Additionally, the height of the handrail is not adjustable, therefore, taller participants had to slightly
roll with the bicycle to be able to reach the low handrail. As the bicycle is rolling towards the handrail, in order to
cancel the roll angle, the rider needs to steer towards the handrail, which brings the bicycle even closer to the edge
of the treadmill’s belt and the rider grabs onto the handrail again to make sure that they do not ride off the side of
the belt. Thus, at the beginning of the study, it generally took a couple of tries for the participant to fully let go
of the handrails and become stable. The number of tries needed would then quickly decrease and, by the end of the
experiment, the majority of participants were able to let go of the handrail on the first try.

Taking into account the different amounts of time the participants needed to let go of the handrail, the 5 minute
timer of the familiarisation trial was started only when the participant was stable and in the middle of the treadmill.
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C.3.2 A “Different Feel”

The participants reported that riding on a treadmill felt different to riding on the road. The exact reasons of why
the feelings differ are not yet known. The author believes that the bicycle dynamics on the treadmill do not change
significantly from those on the road, as shown by Kooijman and Schwab [19, 20]. Therefore, the author suspects that
the reasons lie in motion perception and safety perception of the rider.

One of the contributing factors could be that the participants were instructed not to pedal during the experiment,
and some people commented that they normally use pedalling to help them balance. However, the author wants
to bring attention to coasting. During normal cycling there are many times when the rider does not pedal (for
example while slowing down or going downhill), yet can still balance and carry out manoeuvres, such as lane changes.
Therefore, the author does not believe that not pedalling has had a big effect on participants’ performance.

Other remark from the participants was that they did not feel comfortable riding close to the edge of the treadmill.
It is likely due to the manoeuvrability being limited and can be compared to riding on a very narrow bicycle path
on the road.

The author thinks, however, that the main reason is the lack of optical flow, which is how humans perceive velocity.
The author hypothesises that the internal bicycle dynamic models, that the rider has learned, have velocity dependent
gains, just as the bicycle dynamics are velocity dependent. Therefore, to be able to use the correct gains, the rider
needs to be able to estimate the velocity at which they are currently moving. On the road, this can be done using
the visual cues as the surrounding objects move past the rider. On the treadmill, however, the surroundings are
stationary and the rider does not have any reference to estimate the velocity from. While the participants were
informed that the treadmill was going to be set to 15 km/h, it is likely that it was not enough. A solution for this is
to use a virtual reality headset or a display that surrounds the sides of the treadmill and can show moving objects in
the peripheral vision.

Vestibular cues (cues regarding accelerations) are also important for movement perception and the absence of them
can make movement feel different and unnatural. As the bicycle on a treadmill is moving at a constant velocity,
there is no longitudinal acceleration and is equivalent to riding a bicycle on the road at a constant velocity. Other
major vestibular cues come from lateral and angular accelerations, which are expected to exist during lane change
manoeuvres while riding on a road. The same accelerations also exist on the treadmill, as the bicycle is able to move
from side to side, and is able to change its yaw angle. Therefore, the author thinks that there are no significant
vestibular cues missing from this experiment, which could contribute to the different feel that the participants
experienced.

C.4 Steer-by-Wire Bicycle
C.4.1 Play in the Steering Assembly

The participants reported feeling a bit of play in the steering assembly that led to the front fork not reacting to
small steering inputs (especially during micro-corrections) or reacting to them with a slight delay. This is due to the
bicycle not having a mechanical link between the fork and the handlebars, but rather having two electric motors,
which have gearboxes, connected to the handlebars or the fork using timing belts. The electric motors are controlled
by PD controllers.

The lack of reaction to small steering inputs (approximately < 0.5 degrees) is therefore happening due to a couple
of compounded reasons. First is that when a small steering angle is applied to the handlebars, only a small angular
error between the handlebars and the fork is observed. A small angular error leads to a small torque request by
the PD controller. A big part of this already small torque is then absorbed by the gearbox of the electric motor,
either due to backlash or friction losses. The remaining part of the torque reaches the timing belt, where, again,
a bit of the torque is lost in the stretching of the belt. Additionally, there are friction losses in the fork bearings
as well, which absorb the remaining amount of torque. To overcome these losses, the rider needs to increase their
steering angle inputs slightly, compared to a normal bicycle. This issue could be overcome by forgoing the gearbox
and the belts and instead opting to connect the fork and the handlebars straight onto the shafts of their respective
electric motors. However, it is not an easy improvement to implement as new motors would need to be sourced and
the bicycle frame would need to be redesigned. Therefore, a possible improvement could be achieved electronically
through PD controller tuning or feed-forward friction compensation. As an alternative, a bicycle with one electric
motor connected to a conventional mechanically coupled steering assembly could be used, if advanced features enabled
by the steer-by-wire system (such as application of different amplitude torques to the fork and the handlebars) are
not needed.

C.4.2 On-board Controller

A significant improvement would be to integrate the whole controller into the bicycle itself, which would get rid of
the wireless communication delays and also allow the controller to be used outside of the laboratory setting. To do
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this, two major things would need to be changed.
Currently, the bicycle’s brain is a Teensy 4.1. It is one of the most powerful affordable microcontrollers. However,

it is still likely not powerful enough to run the current iteration of the MPC controller. To make the controller
work on a Teensy, it would need to be written in C or C++ instead of being implemented as a Simulink model,
and would likely need to be simplified by reducing the time horizon, the sample rate, or by simplifying the dynamic
model. Another approach could be to replace the Teensy with a Raspberry Pi, which is a tiny computer that has
General-Purpose Input/Output pins that could be used to communicate with various sensors.

The second major change would be to implement a way to accurately estimate the position (mainly lateral) and
pose (mainly roll and yaw angles) of the bicycle without the need for the HTC Vive Tracker and its Base Stations.
The angles could be estimated using IMU data and Kalman (or similar) filters, while the (relative) lateral position
would likely require cameras and machine vision.

D Supplementary Time Domain Analysis
This appendix contains time-domain graphs (Figures 14 and 15) of the excerpt from the data recorded during the
no-hands test. This particular excerpt is taken from the last minute of the no-hands test, between the fifth and
sixth stars of the sequence. These two stars are interesting due to the lane change manoeuvre being the biggest in
amplitude (0.33 metres, from -0.13 m to 0.2 m) in the study.

Figure 14 shows the bicycle’s lateral position, yaw angle, roll angle, steering angle and the controller torque in solid
blue. The red circles in the lateral position graph represent the locations of the stars. Green dashed lines represent
an “ideal” trajectory, obtained from the simulation of the MPC controller with the same weights. Please note that
the MPC torque’s graph contains two y-axes for easier legibility, as the torques in the simulation were significantly
lower.

Figure 15 shows the bicycle’s roll and steer rates in solid blue, while dashed green represents the simulation data.
Please note the different y-axes for both rates.

It can be seen that the lateral position and the yaw angle of the real bicycle roughly matches the ideal simulation
graphs. At the beginning of the manoeuvre, the roll angle, steer angle and the torque try to follow the ideal
trajectories. However, as time passes, the real bicycle’s data drifts away from the simulation data. The author
suspects that this disagreement arises due to a number of reasons.
Approximate bicycle and rider parameters. The steer-by-wire bicycle used in this project has not been

measured for its parameters, as the bicycle would need to be disassembled to be measured. Due to the complexity of
the steer-by-wire system, disassembly and reassembly would be a very time-consuming task. Instead, the parameters
of a physically similar (Davis Instrumented Bicycle [40]) bicycle have been used. Both bicycles feature an electric hub
motor installed on the rear wheel, a battery fixed to the seat tube, an electronics box placed above the rear wheel,
and a modified steering assembly. Not only that, but the rider parameters are important in bicycle dynamics as well.
Similarly to bicycle parameters, rider parameters were also approximated, as measuring each participant before an
experiment would be very time consuming. Therefore, the controller used during the experiment did not know the
actual parameters of the system it was controlling, while the simulated controller had a perfect knowledge of the
system.
Linear Whipple-Carvallo model is not a perfect description of bicycle dynamics. It is the simplest

model that is able to capture bicycle’s self-stability. To achieve that simplicity, several assumptions have been made.
For example, the wheels are modelled as an ideal knife-edge contact with the ground, instead of having a toroidal
shape and exhibiting tyre forces. The rider is also assumed to be rigidly connected to the bicycle, instead of being
free to move relative to the bicycle like in the real world. It is possible to extend this model further to relax some
assumptions (like it was done in [37]). However, the canonical Whipple-Carvallo model was chosen due to the need
for a real-time controller, and each additional extension of the model introduces additional equations that need to be
solved online, requiring more computational power.
Unmodelled disturbances. As mentioned before, the Whipple-Carvallo model assumes that the rider is rigid.

That was not the case during the experiment, where the rider could interfere by rolling in different directions and
acting as a disturbance. Additionally, the model assumes that there are no mechanical losses in the system. In this
situation, the losses in the steer-by-wire system might have played a big part. The author thinks that their influence
can be seen in the torque graph, as during the simulation the torques needed to carry out the manoeuvre were nearly
a magnitude lower than observed in reality, while the yaw, roll and steer angles are of similar magnitude.

To conclude, the no-hands trial shows that the controller tries to follow an ideal line, but the approximations and
unmodelled dynamics and disturbances prevent the controller from performing at its best. Regardless, the controller
is still able to carry out lane change manoeuvres, and the performance can be improved over time by addressing the
above mentioned limitations.
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Figure 14: Data excerpt from a no-hands trial, compared to simulation data. Blue solid line is the real data, green
dashed line is the simulation data, red circles represent the location of the stars. Please note the different y-axes in
the torque graph.

Figure 15: Roll rate and steer rate data from the no-hands trials, compared to simulation data. Blue solid line is the
real data, green dashed line is the simulation data. Please note the different y-axes.
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