

MSc thesis in Geomatics

Further Development of a

QGIS Plugin for the 3D City

Database

Tendai Mbwanda

2023

MSc thesis in Geomatics

Further Development of a QGIS Plugin for the

CityGML 3D City Database

Tendai Mbwanda

June 2023

A thesis submitted to the Delft University of Technology in

partial fulfillment of the requirements for the degree of

Master of Science in Geomatics

Tendai Mbwanda: Further Development of a QGIS Plugin for the CityGML
3D City Database (2023)
cbThis work is licensed under a Creative Commons Attribution 4.0 In-
ternational License. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

The work in this thesis was carried out in the:

3D geoinformation group
Delft University of Technology

Supervisors: Giorgio Agugiaro
Camilo León Sánchez

Co-reader: Martijn Meijers

with valuable contributions from:

Virtual City Systems
Berlin, Germany

External Supervisors: Claus Nagel
Zhihang Yao

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Abstract

Diversity in the use cases of semantic 3D city models today is unprece-
dented. A key enabler for this is the City Geographic Markup Lan-
guage (CityGML) standard developed by the Open Geospatial Consor-
tium (OGC) to facilitate storing and exchanging these city models. Never-
theless, CityGML only provides object definitions which cater for a wide
range of applications, making necessary the need to attach additional se-
mantic information specific to each domain. For this reason, CityGML
was designed with generic components that allow it to be extended. Al-
ternatively, an extensibility mechanism that strengthens semantic inter-
operability in data exchange is the Application Domain Extension (ADE).
An example is the Energy ADE which augments CityGML for Urban En-
ergy Modelling at single-building and city-wide scales. Base CityGML
datasets are commonly encoded using the Extensible Markup Language
(XML), though there are other encodings based on the JavaScript Ob-
ject Notation (JSON) and Structured Query Language (SQL). The lat-
ter encoding is favourable for its associated benefits that come from the
underlying Relational Database Management System (RDBMS). The 3D
City Database (3DCityDB), upon which this thesis is based, is one such
encoding that is open source and developed for PostgreSQL and Ora-
cle. It has a complex structure which makes it difficult for users with-
out extensive knowledge of CityGML, databases and SQL to access data.
Hence, the 3DCityDB-Tools plugin was developed to simplify user inter-
action with the 3DCityDB using Quantum Geographic Information Sys-
tem (QGIS). However, encoding an extended CityGML dataset in the
3DCityDB adds greater complexity to a system that is already complex.
In addition, 3DCityDB-Tools currently has no support for Application
Domain Extensions (ADEs). On this backdrop, this research was initiated
to investigate the extent to which ADE support can be introduced to the
3DCityDB-Tools plugin. Its server-and-client-side components are further
developed to have extended layers that interact with data in 3DCityDB ta-
bles, can be managed from the Graphical User Interface (GUI) in QGIS
and whose attributes are editable. This was achieved in an incremental
and iterative process while maintaining the current architecture and user
experience of the plugin. Areas identified for future development relate
to the underlying database encoding of CityGML and capabilities not yet
supported.

IV

Acknowledgements

I extend my gratitude to The Dutch Organisation for Internationalisation
in Education (Nuffic) for their Holland Scholarship awards which sus-
tained me for the duration of the MSc Geomatics program.

Many thanks go to my Delft University of Technology thesis supervisors,
Dr. Giorgio Agugiaro and Camilo León Sánchez, for their guidance, valu-
able feedback and collaboration throughout this graduation project. Also,
I thank the co-reader of this thesis, Martijn Meijers, for his interest in and
in-depth review of my research, as well as constructive feedback. More-
over, I am grateful to my external supervisors from Virtual City Systems,
Claus Nagel and Zhihang Yao. Their expertise was valuable in steering
this research.

Finally, I want to express my deepest gratitude to my mother who has
been incredibly supportive throughout my journey at Delft University of
Technology.

V

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research Question and Objectives 3
1.3 Scope of Research . 4
1.4 Research Organisation . 4

2 Theoretical Background and Related Work 5
2.1 Theoretical Background . 5

2.1.1 CityGML . 5
2.1.2 Energy ADE . 8

2.2 Related Work . 10
2.2.1 The 3D City Database 10
2.2.2 QGIS . 13
2.2.3 Qt . 16
2.2.4 Related QGIS Plug-ins 18

3 3DCityDB-Tools for QGIS 23
3.1 Introduction . 23
3.2 Back-End . 23

3.2.1 Defining a Layer . 23
3.2.2 Creating a Layer . 24
3.2.3 Layer Metadata . 25
3.2.4 Updating a Layer . 27

3.3 Front-End . 28
3.3.1 QGIS Package Administrator 28
3.3.2 Layer Loader . 34
3.3.3 Bulk Deleter . 38

4 Extending 3DCityDB-Tools with ADE Support 40
4.1 Method . 40

4.1.1 Introduction . 40
4.1.2 Incremental Development 40
4.1.3 Iterative Development 42
4.1.4 Back-End: Rethinking the Layer Concept 43
4.1.5 Front-End: Enabling ADE Support 45
4.1.6 Tools and Data . 46

4.2 Implementation . 47
4.2.1 Introduction . 47

VI

4.2.2 Back-End . 47
4.2.3 Front-End . 56

5 Conclusion 69
5.1 Future Work . 73

A Reproducibility self-assessment 75
A.1 Marks for each of the criteria 75
A.2 Self-reflection . 75

A.2.1 Input Data . 75
A.2.2 Methods . 76
A.2.3 Results . 76

VII

List of Figures

1 ”UML package diagram illustrating the separate modules of CityGML
and their schema dependencies. Each extension module (indi-
cated by the leaf packages) further imports the GML 3.1.1 schema
definition in order to represent spatial properties of its thematic
classes.” Source: (Gröger et al., 2012) 5

2 UML diagram of the Building module along with its asso-
ciated geometry. (Figure adapted from (Gröger et al., 2012)) 6

3 CityObject subclasses which inherit the relativeToWater prop-
erty, and the relativeToWaterType values specified by CityGML. 7

4 ” UML diagram of generic objects and attributes in CityGML.
Prefixes are used to indicate XML namespaces associated with
model elements. Element names without a prefix are defined
within the CityGML Generics module.” Source: (Gröger et al.,
2012) . 7

5 Package diagram of the Energy ADE data model. Source:
(Benner, 2018) . 8

6 Two new classes in the Energy ADE that extend CityGML.
Source: (Benner, 2018) . 9

7 AbstractBuilding in the full Energy ADE and KIT Profile. . . 10
8 ADE Manager in the 3D City Database Importer/Exporter. 12
9 Extract of EnergyADE KIT Profile showing AbstractMaterial

and its subclasses Gas and SolidMaterial at the same inheri-
tance level. 12

10 A composition relationship between ThermalZone and Ther-
malBoundary defined by the Energy ADE KIT Profile. 13

11 QGIS Layers panel with layers structured in a tree. 15
12 Attribute Table of a QgsVectorLayer in QGIS. 15
13 Customised Attributes Form for a QGIS layer. 16
14 A QPushButton with a QLabel. 17
15 A QGroupBox. 18
16 Qt GUI elements that allow displaying a list of options

from which a selection can be made. 18
17 Properties of a CityJSON object. (Figure adapted from

(Ledoux et al., 2019)) . 19
18 The CityGML classes implemented in CityJSON (same names

as CityGML classes) divided into 1st and 2nd level CityObjects.
Figure adapted from (Ledoux et al., 2019) 20

VIII

19 Storage of ”Building” inside the CityObject dictionary of a CityJ-
SON object. Figure adapted from (Ledoux et al., 2019) 20

20 Storage of the geometric information of a CityObject by CityJ-
SON object. Figure adapted from (Ledoux et al., 2019) 21

21 Dialog of the CityJSON Loader QGIS plugin. 22
22 QGIS Package Administrator dialog. 29
23 The User Connection tab in the Layer Loader. 35
24 Workflow followed in creating, refreshing and dropping

layers through the User Connection tab of the Layer Loader
using a thread and a method in a worker class. 36

25 The Layers tab in the Layer Loader. 37
26 Options for the RelativeToWaterType enumeration in a Build-

ing layer. 37
27 The Settings tab in the Layer Loader. 38
28 The Bulk Deleter dialog. 39
29 ”Framework incremental.” Source: (Graham, 1989) 41
30 ”Incremental build and test.” Source: (Graham, 1989) 41
31 Layer classification. 45
32 Workflow depicting the decision process behind creating a

layer for the various layer types. 51
33 Workflow for thwarting an INSERT query on a layer. 52
34 Workflow for committing a DELETE query to the underly-

ing 3DCityDB tables of a layer. 53
35 Workflow for committing an UPDATE query to the under-

lying 3DCityDB tables of a layer. 55
36 Modified User Connection tab in the Layer Loader dialog. . 59
37 QgsCheckableComboBox which lists all available ADEs in the

database. 60
38 QgsCheckableComboBox which lists all available feature types

in the database. 61
39 Customised Attributes Form for a layer constructed from

the KIT Profile class AbstractBuilding. 66
40 Geocoder dialog. 67
41 Geocoder dialog. 68
42 Geocoder dialog. 68
43 Current versus upcoming versions of the 3DCityDB. Source:

(Nagel & Zhihang, 2023) . 73
44 Reproducibility criteria to be assessed. 75

IX

List of Tables

1 An example of the table enum lookup config using City-
Object and RelativeToWaterType. 31

2 An example of the table enumeration template using City-
Object and RelativeToWaterType. 31

3 An example of the table enumeration value template using
CityObject and RelativeToWaterType. 31

4 An example of the table codelist lookup config template
using the CityGML Building class. 32

5 An example of the table codelist template using the CityGML
Building class. 32

6 An example of the table codelist value template using the
CityGML Building class. 32

7 An example of the view v enumeration value template us-
ing CityObject and RelativeToWaterType. 33

8 An example of the view v codelist value template using
the CityGML Building class. 33

9 Table enum lookup config example using ThermalBound-
aryTypeValue . 57

10 Table enumeration template example using ThermalBound-
aryTypeValue . 57

11 Table enumeration value template example using Thermal-
BoundaryTypeValue . 57

12 Table codelist lookup config template example using Ener-
gyCarrierTypeValue . 58

13 Table codelist template example using EnergyCarrierType-
Value . 58

14 Table codelist value template example using EnergyCarri-
erTypeValue . 58

X

Listings

1 Function invoked when the button to create layers in the
GUI is clicked. It first determines if an ADE has been se-
lected then proceeds to initiate an appropriate thread. . . . 61

2 Function invoked when the button to refresh layers in the
GUI is clicked. It first determines if an ADE has been se-
lected then proceeds to initiate an appropriate thread. . . . 62

3 Function invoked when the button to drop layers in the
GUI is clicked. It first determines if an ADE has been se-
lected then proceeds to initiate an appropriate thread. . . . 63

4 Use of QgsRelation to create a link between a HeightAbove-
Ground object and a building. 64

XI

List of Acronyms

3DCityDB 3D City Database

3DCM 3D city models

ADE Application Domain Extension

ADEs Application Domain Extensions

API Application Programming Interface

CityGML City Geographic Markup Language

ESRI Environmental Systems Research Institute

GIS Geographic Information System

GISs Geographic Information Systems

GUI Graphical User Interface

GUIs Graphical User Interfaces

JSON JavaScript Object Notation

LoD Level of Detail

LoDs Levels of Detail

OGC Open Geospatial Consortium

OSM OpenStreetMap

QGIS Quantum Geographic Information System

QML Qt Modelling Language

RDBMS Relational Database Management System

SFM Simple Feature Model

SQL Structured Query Language

UI User Interface

UML Unified Modelling Language

XII

UX User Experience

XML Extensible Markup Language

XIII

1 Introduction

1.1 Motivation

Semantic 3D city models are an asset to various user groups which
require them for storing and using domain-specific urban information
for vast use cases (Biljecki et al., 2015). Aggregators, enablers, developers
and enrichers in the geoinformation value chain (Welle Donker, 2018)
often use them to exchange information and create value. To that end,
CityGML was developed by the OGC to facilitate data reuse. It is an
open standard which aims to establish a conventional definition of
objects commonly found in the urban environment. Geometry, topology,
semantics and appearance are the prominent characteristics of features
in the CityGML data model, and can be represented at multiple scales
and levels of detail (Gröger et al., 2012; Kolbe, 2009).

The increasing number of use cases of semantic 3D city models (3DCM)
was, in addition, taken into account in the development of the standard.
CityGML generalises the urban environment into several feature types
shared by a wide range of applications. This allows users to attach
domain-specific semantic information, as needed, to city models. To
augment the semantic modelling capabilities for specific domains, the
standard offers extensibility through an ADE mechanism. ADEs are data
models which extend CityGML modules by defining new feature types
or properties to existing ones, offering a prescribed alternative to generic
city objects and attributes. Data volume increses when users enrich them
with and exchange such information.

Its encapsulation of the functionality of a RDBMS makes the 3DCityDB
an attractive option for encoding the data model. Yao et al. (2018)
describe the mapping rules and considerations behind them, how they
enable efficient management, analysis and querying of large datasets
within a central data repository using the SQL as well as accessibility by
external applications. One example of such a software application is the
3DCityDB-Tools, a QGIS plugin for interacting with CityGML data in a
3DCityDB instance, whose further development is investigated in this
study. The 3DCityDB is similarly extensible by means of an ADE. The
Energy ADE is one example which has been the subject of several studies
(Agugiaro et al., 2018; Widl et al., 2021) and serves as a starting point to
explore further development of 3DCityDB-Tools.

1

Geographic information ”... is not an end in itself but a means to support
policy making as well as economic and social development ...” (van Loenen,
2006), this includes semantic 3DCM. With increasing urbanisation glob-
ally for the last 50 years (OECD, 2020; Zhang, 2016), energy consumption
and demand have soared. Buildings are reported to be responsible for
at least one third of the world’s energy consumption (Ahmad & Zhang,
2020; Kim et al., 2019), followed by industry and transport. ”Population
growth, built area increase, higher buildings services and comfort levels,
together with the rise in time spent inside buildings have raised buildings
consumption by 1.2%/yr since 2000.” (González-Torres et al., 2022).

The Energy ADE was designed for use cases which endeavour to address
these issues, providing ”a unique and standard-based data model to allow for
both detailed single-building energy simulation (based on sophisticated models
for building physics and occupants behaviour) and city-wide, bottom-up energy
assessments, with particular focus on the buildings sector.” (Benner, 2018).
Energy demand diagnostics, solar potential study and simulation of
low-carbon energy strategies are cited in the Energy ADE Specification
as a few use cases among many that are targeted by the extension.

Considering this context, buildings are found at the forefront of climate
change mitigation and adaptation efforts, due to their high potential for
improving energy efficiency and renewable energy generation (Mavro-
matidis et al., 2016). The European Directive 2010/31/EU on the energy
performance of buildings exemplifies such efforts as it strives towards
nearly net zero energy buildings. A societal drive has emerged which
seeks to meet energy demand by means of research, education, finance
and the law. The combination of these four streams has led to a focus on
sustainable or renewable energy sources like solar. Its potential has been
the subject of several studies at global (Huld et al., 2012; Korfiati et al.,
2016), national (Mainzer et al., 2014), urban (Catita et al., 2014; Jakubiec
& Reinhart, 2013; Martıénez-Rubio et al., 2016; Yuan et al., 2016) and
(sub)district (Machete et al., 2018; Nguyen & Pearce, 2012; Redweik et al.,
2013) scales.

However, the 3DCityDB has a complex structure consisting of 66 rela-
tions. Each CityGML feature has its own table, though its attributes are
stored in multiple tables to respect hierarchies in the data model. Using
a CityObject subclass such as AbstractBuilding as an example, properties
that are inherited from the superclass are kept in the cityobject table and
those of AbstractBuilding itself in the building table. A feature of the same

2

class can also have user-defined attributes for which the genericAttribute
class and cityobject genericattrib table were designed. In addition, surface
and volumetric boundary representation geometries of a feature are
unnested into a single table. An important note to highlight is the devi-
ation of the 3DCityDB encoding from the Simple Feature Model (SFM)
implemented by widely used Geographic Information Systems (GISs)
like QGIS and Environmental Systems Research Institute (ESRI) ArcGIS.
Instead of dispersing attributes of a feature in more that one table, the
SFM aims to have a single feature collection table in which each feature
is represented with non-spatial attributes as well as a geometry property
(Open Geospatial Consortium, 1999).

To handle this described complexity, the 3DCityDB demands Unified
Modelling Language (UML) and general computer programming ex-
pertise from its users. Pantelios (2022) writes that because of this,
the software may not be usable immediately and effectively. Hence,
3DCityDB-Tools for QGIS was developed to overcome this limitation
for city planners and users that might not have the required technical
knowledge but are accustomed to QGIS. Its open source nature and
ubiquity make QGIS an attractive option for developing a user-friendly
and simple GUI for handling geographic data encoded in the 3DCityDB.

Nevertheless, CityGML does not always contain all the required proper-
ties and semantics from one use case to another. This is the case for ap-
plications targeted by the Energy ADE which need to be accommodated
by new classes and attributes. Transformation of ADE XML schemas into
database tables, 33 for the Energy ADE KIT Profile, adds another layer
of complexity to the 3DCityDB. Furthermore, 3DCityDB-Tools does not
currently support ADEs, limiting the extent to which these software can
be used to make the most of CityGML datasets. This research aims to
overcome this limitation by exploring how 3DCityDB-Tools for QGIS can
provide ADE capabilities to users while masking the underlying com-
plexity of an extended 3DCityDB.

1.2 Research Question and Objectives

Without ADE support, 3DCityDB-Tools limits the extent to which a
broader range of users can further exploit CityGML datasets. Thus, the
following research question arises:

To what extent can support for Application Domain Extensions be added to

3

3DCityDB-Tools in its further development?

To address this question, the following objectives are relevant:

1. Conceptual definition of a strategy to add server-side support for
an ADE to QGIS Package, the server-side component of 3DCityDB-
Tools for QGIS.

2. Develop an ADE-enabled QGIS-Package, with focus on the Energy
ADE KIT Profile.

3. Conceptual definition of a strategy to add client-side support for an
ADE to the front-end of the 3DCityDB-Tools for QGIS plugin.

4. Develop an ADE-enabled 3DCityDB-Tools for QGIS front-end.

5. Contribute to further testing and extending and improving existing
functionalities.

1.3 Scope of Research

This research will focus on the Energy ADE KIT Profile to extrapolate
how 3DCityDB-Tools can support any other ADE developed for specific
applications and not generic ADEs that supplement CityGML without
a specific intended application. It will also be limited to versions 2.0
of the CityGML standard and 4.4 of the 3D City Database. The entire
pipeline is examined in this study, from server-side constructs which
leverage database management system functionalities in handling ADE
information to feature retrieval and editing on the client-side.

1.4 Research Organisation

The current chapter presents a background to the research conducted.
Chapter 2 analyses concepts and tools relevant to this research based on
literature. Following this, the methodology that guided further develop-
ment of 3DCityDB-Tools is discussed in chapter 3. An account of how
ADE support was explored in the plugin is given in chapter 4. Lastly,
chapter 5 sums up the research and points out a few recommendations
for future work.

4

2 Theoretical Background and Related Work

2.1 Theoretical Background

2.1.1 CityGML

CityGML is an open standard developed by the OGC to establish a con-
ventional definition of topographic objects commonly found in the urban
environment. Its data model groups them into packages ”according to
thematic and logical criteria and not according to graphical or render-
ing considerations” (Yao et al., 2018). Figure 1 shows the thematic de-
composition of CityGML version 2.0 into the core module and thematic
extension modules. Within CityGML core, ”CityGML uses a subset of
the GML3 geometry model which is an implementation of the ISO 19107
standard” (Kolbe, 2009), allowing objects to be represented by aggregate
or composite 0D, 1D, 2D or 3D geometric primitives. CompositeSurface
and MultiSurface are respective examples of a composite and an aggre-
gate geometry. The thematic modules are defined by this geometry and
topology, as well as semantics and properties.

Figure 1: ”UML package diagram illustrating the separate modules of CityGML
and their schema dependencies. Each extension module (indicated by the leaf
packages) further imports the GML 3.1.1 schema definition in order to represent
spatial properties of its thematic classes.” Source: (Gröger et al., 2012)

The Building module depicted in Figure 2 can be used as an illustration.
A building can have at least one aggregate or composite geometry at

5

Levels of Detail (LoDs) between 0 and 4 for the former, and between 1
and 4 for the latter. Composite geometry objects imply the preservation
of topology, while aggregate geometry objects are not restricted in terms
of spatial relationships. ”At the semantic level, real-world entities are
represented by features, such as buildings, walls, windows, or rooms.”
(Gröger et al., 2012). Attributes are housed by classes of these real world
entities as Figure 2 demonstrates with AbstractBuilding. Conventional
definition of topographic objects drills down to values of some of their
attributes. CityGML achieves this using enumerations and codelists.
Enumerations are immutable and standardised values of a particular
property of a feature. For instance, RelativeToTerrainType (Figure 2)
which prescribes a list of values for the relativeToTerrain property of a
CityObject. Codelists resemble enumerations, except they also allow
arbitrarily specified attribute values. Though CityGML does not specify
any, its extensions may offer value lists which the user can add to and
the Energy ADE is one example.

Figure 2: UML diagram of the Building module along with its associated
geometry. (Figure adapted from (Gröger et al., 2012))

6

(a) The CityObject class and its
subclasses that inherit its properties.

(b) Enumeration values for the
relativeToWater property of a CityObject.

Figure 3: CityObject subclasses which inherit the relativeToWater property,
and the relativeToWaterType values specified by CityGML.

CityGML can be extended by creating new object types or adding new
properties. This is made possible by the genericAttribute data type and
GenericCityObject class contained in the Generics module (Figure 4).
However, these mechanisms limit interoperability as additional name-
value pair properties and semantics cannot be stored in a systematic way.
An alternative way to extend the data model is through ADEs. (Biljecki
et al., 2018) distinguish between two types of ADEs, those developed to
support a specific application and generic ADEs.

Figure 4: ” UML diagram of generic objects and attributes in CityGML. Pre-
fixes are used to indicate XML namespaces associated with model elements. Ele-
ment names without a prefix are defined within the CityGML Generics module.”
Source: (Gröger et al., 2012)

7

2.1.2 Energy ADE

The Energy ADE specialises CityGML for a variety of Energy applica-
tions (Benner, 2018). It provides a formalised data model, currently at
version 1.0, which fosters interoperability and allows for ”both detailed
single-building energy simulations and city-wide bottom-up energy
assessment” (Agugiaro et al., 2018). One of the two objectives behind
its design is as the previously quoted study states to ”provide data
to assess the energy performance of buildings ...”. To further develop
3DCityDB-Tools for QGIS, this provided an operating scope with respect
to CityGML.

Figure 5: Package diagram of the Energy ADE data model. Source: (Ben-
ner, 2018)

Similarly, the Energy ADE has a core module, as well as four other
thematic modules containing energy-related entities and attributes.
Another package designated as Supporting Classes defines types which
allow representation of temporal attributes. Figure 5 depicts a package
diagram of the Energy ADE. It augments CityGML with new attributes
and classes which may be CityObjects. AbstractBuilding with the stereo-
type ADEElement (Figure 7a) is an example of the former, WeatherStation
and Occupants are examples of the latter. AbstractBuilding provides
additional properties to the native CityGML class of the same name.

8

WeatherStation and Occupants are new classes altogether, though one is a
CityObject (Figure 6a) and the other is not (Figure 6b). All classes that are
not CityObject descendants were put in place to capture supplementary
information about static attributes and temporal values of other classes
that may be. HeightAboveGround which provides AbstractBuilding with
heightReference and value (Geiger et al., 2018), as well as VolumeType which
supports ThermalZone with type and value are examples of classes that
enrich CityObjects. OpticalProperties, a non-CityObject, harvests fraction
and waveLengthRange from Transmittance. These three classes were
used to demostrate for their similarity to genericAttribute type in the
CityGML data model, which is already supported by 3DCityDB-Tools.
To complement all these Energy ADE components, the data model also
specifies its own codelists and enumerations.

(a) WeatherStation, a new CityObject
introduced by the Energy ADE.

(b) Occupants, a new non-CityObject
introduced by the Energy ADE.

Figure 6: Two new classes in the Energy ADE that extend CityGML.
Source: (Benner, 2018)

Moreover, some information in the Energy ADE is not required for every
application in the Energy domain. Instead, only a subset of what the ADE
offers may be used in some use cases, giving rise to the specialisation of
the ADE itself. The Energy ADE KIT Profile is one such product which
removes unwanted classes, attributes, enumerations and codelists and
leaves only those that are necessary for a given use case. To illustrate,
reference can be made to Figure 7. Figure 7a shows the AbstractBuilding
class in the full Energy ADE, whereas for the same class shown in Figure
7b some attributes are left out of the KIT Profile. For clarification, this
research focuses on the Energy ADE KIT Profile, or simply the KIT Profile,
though reference may be made to the whole Energy ADE.

9

(a) AbstractBuilding class in the full
Energy ADE. Source: (Benner, 2018)

(b) AbstractBuilding class in the
KIT Profile.

Figure 7: AbstractBuilding in the full Energy ADE and KIT Profile.

2.2 Related Work

2.2.1 The 3D City Database

The ”3DCityDB is an Open Source software suite allowing to import,
manage, analyze, visualize, and export virtual 3D city models according
to the CityGML standard, supporting both versions 2.0 and 1.0.” (Yao
et al., 2018). 3DCityDB 4.4.0, the latest release at the time of writing, maps
classes in CityGML to 66 database relations in a PostgreSQL database
schema. This schema also brings various functionalities for computations
on geometries, spatial indexing, deleting CityObject instances from the
database and other trivial data management tasks (The 3D City Database,
n.d.). Aside from the database itself, another component of the software
suite is the 3D City Database Importer/Exporter, a tool that implements
the above mapping. One of its functions is to ensure that a file-encoded
CityGML dataset is correctly imported into a 3DCityDB schema.

Stadler et al. (2009) highlight the differences in relations and hierarchies
from one CityGML module to another, making necessary the develop-
ment of some criteria under which a relational model is created. Four
mapping guidelines are presented by Yao et al. (2018) which optimise
operating performance and semantic interoperability.

CityGML inheritance hierarchies are placed in the same table to enable
quick retrieval of CityObjects. Classes at the same inheritance level are
mapped to the table of their common superclass, having Building and
BuildingPart in one relation for example, to boost overall performance by
avoiding joining queries. However, this rule is only applied when the
superclass is abstract and holds all attributes and relationships inherited

10

by its subclasses which in turn do not have any additional properties
or associations. Constraining the mapping approach this way is an
attempt to maximise storage efficiency in case there are subclasses that
have very different attributes and cause a large number of empty cells
in the table. Aggregations and compositions such as those between
BoundarySurface features and geometry types such as MultiSurface are

also unnested into one relation, linked by the columns parent id and
root id in this example. Doing so works around recursive joins which
reduce database performance. The previous example can be extended
to the last rule, mapping of boundary representation geometries onto a
single table. Overall, these four guidelines flatten the complex CityGML
data model, an approach also highlighted and undertaken by Ledoux
et al. (2019) in the design of a JSON-based encoding of the same standard.

CityGML extensibility mechanisms are also supported by the 3DCityDB.
Classes in its Generics module (Figure 4) which allow creating new City-
Objects or enriching existing ones with new attributes compose 2 of the
66 tables. Formalised extensions are mapped into multiple relations, for
instance 33 more are introduced by the Energy ADE KIT Profile, using
the ADE Manager in the 3D City Database Importer/Exporter which is
shown in Figure 8. A database prefix is required for each ADE. One use
for the prefix is naming tables such that the table for the ThermalZone
class is named as ng thermalzone. In Figure 8, the prefix ng is input for the
Energy ADE for naming, and will be used throughout this report for the
KIT Profile. After extending the 3DCityDB, an extended dataset can then
be imported, though not using the same four rules mentioned above for
this particular ADE. Not all abstract classes have attributes, some classes
at the same inheritance level have different properties (Figure 9), plus ag-
gregations and compositions may not be flattened into the same table as
is the case for the ThermalZone and ThermalBoundary classes (Figure 10).

11

Figure 8: ADE Manager in the 3D City Database Importer/Exporter.

Figure 9: Extract of EnergyADE KIT Profile showing AbstractMaterial and
its subclasses Gas and SolidMaterial at the same inheritance level.

12

Figure 10: A composition relationship between ThermalZone and Thermal-
Boundary defined by the Energy ADE KIT Profile.

2.2.2 QGIS

QGIS is an open source Geographic Information System (GIS) which
allows creating, querying, visualisation and processing of geographic
data (Sherman et al., 2005). In this regard, it interacts with a plethora of
vector and raster data formats. ”While its initial goal was simply to de-
velop a spatial data viewer, it has now evolved into a complete platform
for the loading, transformation, and processing of spatial data...” (Vitalis
et al., 2020). The Qt framework, Python and C++ are used to build
QGIS. With this comes the possibility to extend its functionality, taking
advantage of its Application Programming Interface (API) interface for
either of the aforementioned programming languages. These customised
functionalities are termed QGIS plug-ins and 3DCityDB-Tools is one
example among many listed in the QGIS Python Plugins Repository
(QGIS, 2023).

Due to a greater complexity brought to the 3DCityDB by the Energy
ADE KIT Profile, this research strives to produce ADE feature collection
tables which adhere to the SFM. Through 3DCityDB-Tools, these
tables can then be easily imported and managed in QGIS using the
QgsVectorLayer and QgsDataSourceUri classes in its API. A QgsVectorLayer
instance creates ”... a vector layer which manages a vector based data sets”
(QGIS-Python-API, 2018). The QGIS Python API documentation also
describes that a QgsVectorLayer object is associated to a QgsDataSourceUri
which can connect to a PostgreSQL data source using the connection

13

parameters, table, geometry column, and other attributes. This implies
that the data source must have its spatial and non-spatial properties in
the same table. Having ADE features in the 3DCityDB organised in this
way would enable them to be imported into QGIS as instances of the
QgsVectorLayer class.

Datasets imported into QGIS are simply referred to as Layers and are
placed in the Layers panel. Additional organisation can be performed
such that layers are structured in a tree, whose nodes are based on a
user-defined criteria. Figure 11 illustrates a layer tree which organises
layers with a PostgreSQL data source based on a database name, schema
name, as well as CityGML feature type and level of detail. Each layer
has an Attribute Table which is a collection of feature attributes. Its rows
represent features in the dataset, and columns contain feature attribute
values as shown in Figure 12. Feature editing can be performed directly
from the Attribute Table. New features can be created, and existing ones
can be deleted or their attributes modified. Any updates made on a layer
in QGIS are committed to the data source as well.

14

Figure 11: QGIS Layers panel with layers structured in a tree.

Figure 12: Attribute Table of a QgsVectorLayer in QGIS.

A QgsVectorLayer has several other properties which include Symbology
and an Attributes Form. Symbology defines how features are displayed in

15

the QGIS map canvas and Layers panel. An Attributes Form is similar
to the Attribute Table, except that it lays out attributes in a view that is
more user friendly. When a layer is loaded in QGIS, a default Attributes
Form is created using ”...a user interface specification and programming lan-
guage” (Qt-Project, n.d.) called Qt Modelling Language (QML). Although
this standard form already facilitates editing features, arrangement of at-
tributes depends on their original order in the data source. For complex
data models such as CityGML and the Energy ADE, further formatting is
required to make feature editing more user-friendly and intuitive. QML
can be used to customize an Attributes Form for this purpose. An example
form is provided in Figure 13, attributes are presented in a more organ-
ised manner in contrast to the attribute table for the same layer in Figure
12.

Figure 13: Customised Attributes Form for a QGIS layer.

2.2.3 Qt

Qt is a framework used to build Graphical User Interfaces (GUIs),
that of QGIS serving as one example. Although it is native to C++,

16

Python bindings are developed which combine ”all the advantages of
the Qt C++ cross-platform widget toolkit with Python, the powerful and
simple, cross-platform interpreted language” (Willman, 2022), and allow
developers to create Qt interfaces in Python. It provides Qt Designer,
a toolkit which enables non-programmatic user interface design. In
this research, Qt Designer is used to structure graphical user interface
elements. Among a variety of GUI design styles, (Zanzoterra, 2018)
reports Qt Widgets as the most common, stable and well-tested approach
to Qt development. For this reason, Qt Widgets served as a starting point
for further developing the 3DCityDB-Tools GUI.

GUI elements use signals and slots to communicate. ”A signal is emitted
when a particular event occurs.” (The Qt Company, 2023b), clicking and
scrolling are examples of these events. The Qt documentation further
explains that an event triggers a function, also called a slot, to perform a
task in response to a signal. Some classes contain their own signals and
slots, but Qt Widgets allow developers to build custom data or message
transfer channels. Hence, customised tasks can be connected to dialog
elements.

According to the Qt documentation, a QPushButton is the most frequently
used graphical user interface element. As the name leads on, it is a button
which can be pressed to emit a clicked signal and ”command the computer to
perform some action or to answer a question.” (The Qt Company, 2023a). An
example of this button is given in Figure 14. A customised label can be
assigned to a QPushButton, as well as to any other GUI element. In this
context, the QPushButton is labelled ”Cancel”. This is done using a QLabel.

Figure 14: A QPushButton with a QLabel.

A QGroupBox is another example of a Qt Widgets class to whose objects
actions can be connected. It provides a frame in which other elements can
be placed as child elements, and can be activated or deactivated using its
setChecked method if it is checkable. Activating or deactivating it will re-
sult in the same action also being performed on its child elements. Figure
15 shows an example of this object with a few child elements although
only its child elements can be checked in this instance.

17

Figure 15: A QGroupBox.

A QComboBox allows displaying a list of options from which one item
can be selected. To initiate tasks in response to a selection, custom slots
can be developed and attached to its signals. It can be modified to en-
able selection of more than one item, as is done by its pyQGIS subclass
QgsCheckableComboBox. Figure 16 shows examples of both elements.

(a) A QComboBox

(b) A QgsCheckableComboBox

Figure 16: Qt GUI elements that allow displaying a list of options from
which a selection can be made.

2.2.4 Related QGIS Plug-ins

2.2.4.1 CityJSON Loader

Ledoux et al. (2019) present CityJSON, a developer-oriented data format
designed to overcome the complexity and verbosity of GML as well as the
difficulty of efficient web-based processing and exchanging of CityGML
models. Although this study states that version 1.0.0 of CityJSON
encodes CityGML version 2.0, the data format has been upgraded to
version 1.1.3 which is tailored for CityGML 3.0. The one commonality

18

is the encoding of only a subset of the data model, leaving out only
those components seldom used in practice or that would unnecessarily
complicate the encoding. A CityJSON file contains one JSON object of
type ”CityJSON” and would typically contain the properties shown in
Figure 17.

Figure 17: Properties of a CityJSON object. (Figure adapted from (Ledoux
et al., 2019))

CityObjects are organised into two levels. In the first are top-level
classes which are typically named after their respective feature types, for
instance Building shown in Figure 2. Part-named features such as Build-
ingPart and all other classes belonging to a CityGML module constitute
the second level. Figure 18 gives a better illustration of this classification.
CityJSON encodes both in a similar way inside the CityObjects dictionary
of the CityJSON object as depicted in Figure 19. Storing them in this
manner effectively unnests CityGML hierarchies.

19

Figure 18: The CityGML classes implemented in CityJSON (same names as
CityGML classes) divided into 1st and 2nd level CityObjects. Figure adapted
from (Ledoux et al., 2019)

CityJSON implements support for geometries by defining 3D geomet-
ric primitives, MultiPoint, MultiLineString, MultiSurface, CompositeSur-
face, Solid, MultiSolid and CompositeSolid. Their storage in JSON objects
by the ”geometry” property of a CityObject is well-documented online at
https://cityjson.org/specs. In addition, semantic surfaces introduced by
CityGML from LoD2 are treated as JSON objects in the ”surfaces” array
which is placed in the geometry dictionary and linked to their respective
vertices using the ”values” array as Figure 20 summarises.

Figure 19: Storage of ”Building” inside the CityObject dictionary of a CityJSON
object. Figure adapted from (Ledoux et al., 2019)

20

https://cityjson.org/specs

Figure 20: Storage of the geometric information of a CityObject by CityJSON
object. Figure adapted from (Ledoux et al., 2019)

For this encoding, the CityJSON Loader was developed ”with the intention
of making CityJSON (and, thus, 3D city models) more accessible to researchers
and practitioners through general-purpose GIS software (in this case, QGIS).”
(Vitalis et al., 2020). The plugin has one window (Figure 21) which allows
users to create QGIS features with multi-polygon geometries that repre-
sent the objects of the city model under the assumption that every city ob-
ject is composed of multiple surfaces. Several layer configurations make
this possible. A CityObject itself as a multipolygon, its levels of detail or
semantic surfaces as polygons can be mapped to QGIS features which can
be further packaged as layers grouped according to the CityGML feature
type or LoD. An alternative would be to combine both these packaging
mechanisms such that a layer is created for every LoD of every module.
However, this plugin does not have customised attribute forms for user-
friendly feature editing neither does it support any ADE currently.

21

Figure 21: Dialog of the CityJSON Loader QGIS plugin.

2.2.4.2 3DCityDB-Tools for QGIS

The 3DCityDB-Loader (Pantelios, 2022), now renamed to 3DCityDB-Tools
for QGIS, is a Python-and-Qt-based QGIS plug-in designed to simplify
user interaction with CityGML data encoded in the complex 3DCityDB.
It has a server-side component also called QGIS Package that consists
of a database schema and a front-end whose 3 features are the QGIS
Package Administrator Layer Loader and Bulk Deleter. Currently, the
plug-in has no support for ADEs. Chapter 3 is dedicated to describing
this plugin in greater detail to provide a better understanding for the
reader.

22

3 3DCityDB-Tools for QGIS

3.1 Introduction

3DCityDB-Tools for QGIS is a QGIS plug-in developed to to ”facilitate the
use of 3DCityDB for users of different fields and expertise with the com-
mon denominator being the well-accustomed QGIS environment” (Pan-
telios, 2022). Its server-side component, QGIS Package, provides user and
layer management capabilities to the client although it can be used inde-
pendently and by other external applications. The client gives users ac-
cess to these functionalities using an easy-to-use graphical user interface
which does not necessarily require advanced knowledge of the complex
3DCityDB environment described in Section 2.2.1.

3.2 Back-End

3.2.1 Defining a Layer

CityGML modules contain features that are children of the CityOb-
ject class, have at least one associated geometry type and specified
levels of detail. One example of a class with these characteristics
is AbstractBuilding in Figure 2. It has 3 geometry types, gml:: Solid,
gml::MultiSurface and gml::MultiCurve whose levels of detail vary be-
tween 0 and 4. Specifically, gml:: Solid has four levels of detail, lod1Solid
to lod4Solid. Though AbstractBuilding is an abstract class and cannot be
instantiated, it is inherited by its subclasses Building and BuildingPart.

Section 2.2.1 details the complexity of the 3DCityDB, how attributes and
geometry of a feature are stored in multiple tables. Therefore, in com-
pliance with the SFM implemented by QGIS, each instance of Building
in a table must have attribute columns and a geometry property. This
structure exactly describes what 3DCityDB-Tools refers to as a Layer. To
carry forward the scenario of Building and gml:: Solid, each of the 4 lev-
els of detail is treated as a unique geometric representation of Building
features. Hence, 4 corresponding tables, reserved for each level of detail,
with one geometry column are created such that Building features have
their attributes and a spatial property as well in the same table. Each of
these 4 tables would then stand as a Layer. Since all CityGML features
supported by 3DCityDB-Tools currently have at least one geometry and
level of detail, they produce layers of type VectorLayer.

23

3.2.2 Creating a Layer

As aforementioned, a layer is simply a database table with attribute
columns and a geometry property. It is created in 2 steps. First, SQL
statements to update the layer metadata, gather attributes and geometry
from different 3DCityDB tables, and make the layer updatable are gener-
ated in one function. Adopting the example of Building and gml:: Solid,
a separate layer is created for each of the 4 levels of detail. For each
one, a Materialized View containing id and geometry columns is created.
Materialized views are used for efficiency reasons as ”...querying the
geometry table on the fly would take a lot of time, so from several
experiments we have decided to pre-generate the geometries” (Pantelios,
2022). The id column is later used to join to all geometries to their
corresponding Building attributes to form a View, which is actually a
layer as defined in Section 3.2.1.

Following this, SQL statements that attach triggers to the layer are also
generated. A function named generate sql triggers is called and used
to draft SQL code that attaches triggers to the layer. It requires a user
schema, layer name and trigger function suffix to dynamically generate
and attach a trigger function to a given layer. The function iterates over
the INSERT, UPDATE and DELETE commands and builds a SQL state-
ment that creates a trigger which in turn prescribes a trigger function to
be subsequently executed for the relevant data query operation. Triggers
redirect a query to an appropriate trigger function that prevents the
insertion of new records into the tables on which a layer is built or allows
an existing record to be updated or deleted.

Next, these SQL statements are executed in another function, resulting in:

1. removal of the metadata record for that layer, if any, from the layer
metadata table.

2. (re-)creation of the layer.

3. insertion of a new metadata record for the (re-)created layer in the
layer metadata table.

4. creation of triggers that are fired in the event of an INSERT, DELETE
or UPDATE operation on the layer.

5. linking triggers to the trigger functions which they invoke when IN-
SERT, DELETE or UPDATE operations are performed on the layer.

24

3.2.3 Layer Metadata

The layer generation process also involves creating a new metadata record
of the layer which is then inserted in the layer metadata table. Information
about the layer that is captured includes:

• 3DCityDB schema.

The 3DCityDB schema which contains the tables used to create the
layer.

• ADE prefix.

If the layer is for an ADE feature, the ADE prefix takes the value
which is specified when the 3DCityDB is extended with the ADE.
In the current state of the plugin, no ADE is supported, therefore a
NULL value is stored.

• Layer type.

This is the layer type produced from the feature. Currently, it takes
the value VectorLayer for all layers generated by the plugin.

• Feature type.

The CityGML module under which the feature falls, if any.

• Top-level class.

Top-level CityGML class which the feature inherits, if any.

• Class name.

Name of the class whose metadata is in the current record.

• Level of detail.

Level of detail for the geometric representation of the layer.

• Layer name.

Name of the layer.

• Materialized view name.

Name of the materialized view containing layer geometry.

25

• Attribute view name.

This is a redundant column originally intended to store the layer
name.

• Number of features.

Number of features in the layer.

• Creation date.

Date on which the layer was created.

• Refresh date.

Latest refresh date of the layer’s materialized view. This property is
only used for layers with geometry, otherwise it is NULL.

• QML attribute form name.

Name of the customised attribute form for the layer.

• QML symbology form name.

Name of the customised layer symbology form.

• QML 3D symbology name.

Name of the customised layer 3D symbology form.

• Layer columns associated to an enumeration.

This property stores an array of arrays containing table and enu-
meration column pairs.

• Layer columns associated to a codelist.

This property stores an array of arrays containing table and codelist
column pairs.

26

3.2.4 Updating a Layer

The plug-in only permits layer updates made using DELETE and
UPDATE queries. Furthermore, execution of these operations directly on
the layer is prevented. This is because a layer is composed of information
from different 3DCityDB tables, and does not satisfy the one of the
conditions required by PostgreSQL for a view to be directly updatable.
”The view must have exactly one entry in its FROM list, which must be a table
or another updatable view.” (The PostgreSQL Global Development Group,
2023b), which is not the case as previously described for layers produced
by 3DCityDB-Tools. Instead, trigger functions are used as a starting point
in a chain of functions that simulate the effect of an updatable view.

When an INSERT query is attempted on a layer to introduce new records
into the view, the trigger for this operation is fired and in turn invokes
the trigger function. Rather than completing the insertion, the trigger
function raises an error which notifies the operator that QGIS Package
does not permit this action. A DELETE query similarly sets off a
trigger which then points to a trigger function. Subsequently, the trigger
function invokes a 3DCityDB function, named as del cityobject, which
deletes a CityObject from the database and any associated hierarchical
information in other tables. For example, to remove a Building object
from the 3DCityDB, its id is given to the del building function which
erases information from the cityobject, building and surface geometry tables.

For an UPDATE query, several functions are chained to the relevant trig-
ger function linked to a layer. Now, the first step in creating the effect
of an updatable view involves separating attributes intended for different
3DCityDB base tables from the query. This action is performed inside the
trigger function using the Type construct provided by PostgreSQL which
”...registers a new data type for use in the current database.” (The PostgreSQL
Global Development Group, 2023a). QGIS Package creates a Type for each
3DCityDB table such that it contains the same attributes as the table and
behaves akin to a class in object-oriented programming languages like
Python. For each layer produced by the plugin, the associated types are
known beforehand. In the event of an UPDATE, each trigger function in
the back-end is hardcoded to assign attributes in the query to their cor-
responding types. Following this is a View Update Function. It receives all
objects from the trigger function. Thereafter, it hands over each object to
a Table Update Function which actually performs the update on the table
represented by the type which it receives. Suppose an UPDATE query is

27

performed on a layer for the Building class, the trigger halts the operation.
The trigger function takes over, separates attributes from the query into
2 objects that capture CityObject and Building attributes, and hands them
over to the view update function. From here, two other functions receive
each of the objects and carry out updates to the cityobject and building
relations.

3.3 Front-End

3.3.1 QGIS Package Administrator

QGIS Package Administrator, shown in Figure 22 is the window used
for installing or uninstalling QGIS Package and managing users. By
installing QGIS Package to the database first connected to, the qgis pkg
schema is created in the back-end together with tables and functions for
user and layer management. Uninstalling in turn removes the schema
from the database. User management entails creating or removing a
separate database schema for a user which will contain all layers they
create, and assigning them privileges that either restrict them to only
accessing data or enable both viewing and modifying database tables.
For a user to appear in this dialog so that they may be assigned a
schema and privileges, they must be created in the database beforehand.
Typically, only database administrators or users with sufficient privileges
can perform these tasks.

Among the tables that are created when QGIS Package is installed
are those that store enumeration and codelist information as well as a
template table for layer metadata. These are enum lookup config, enumer-
ation template, enumeration value template, codelist lookup config template,
codelist template, codelist lookup config and layer metadata template. The
template metadata table is identical to the table discussed in Section
3.2.3. What differentiates the two tables is that layer metadata template is
kept in the qgis pkg schema and is not used to capture any information.
Instead, it is used to create replica tables in user schemas which actually
capture the layer metadata detailed in Section 3.2.3. Hence, the metadata
table will not be discussed further.

28

Figure 22: QGIS Package Administrator dialog.

For the purpose of illustrating how enumeration tables are struc-
tured, RelativeToWaterType (Figure 3b) will be used together with
the CityObject class. In addition, only those columns required for
explanation will be presented. The table enum lookup config con-
tains configuration information for enumerations in the CityGML
data model as Table 1 demonstrates. Next, enumeration template
records contain a data model, enumeration name and names-
pace in the data model, name and name space columns respectively.
A row representing RelativeToWaterType in this table would have
”CityGML”, ”RelativeToWaterType” and the uniform resource locator
”https://schemas.opengis.net/citygml/2.0/cityGMLBase.xsd” as values
in the columns given above. Actual enumeration values are stored in
the table enumeration value template. Carrying on with RelativeToWater
and one of its values ”entirelyAboveWaterSurface”, this value is stored
under the column value and its description ”(City)Object entirely above
water surface” under description. This table also contains a foreign

29

key to enumeration template which links an enumeration value to its
enumeration name and data model. Tables 2 and 3 show examples
of enumeration template and enumeration value template using the given
information.

The codelist containers in qgis pkg are identical to their enumer-
ation counterparts, except they are for codelists. Columns of
codelist lookup config template, codelist template and codelist value template
are the same as those of enum lookup config, enumeration template and
enumeration value template respectively. Using the class property of
the Building feature in CityGML and one of its codelist values ”1120”
together with the description ”Healthcare” for illustration, Tables 4, 5
and 6 show values that go into each of the 3 relations.

In addition to these tables, two views are created when QGIS Package
installation is performed. These are v enumeration value template and
v codelist value template. The first view is formed as a join between
enumeration template and enumeration value template with the columns
data model, name, value, description and name space. The second view
has the same structure, but from a join between codelist template and
codelist value template. Using the previous examples, RelativeToWaterType
and AbstractBuildingClass, Tables 7 and 8 show how these views are
structured.

Aside from QGIS Package installation, QGIS Package Administrator is
also used for user management. This involves creating or removing
a user schema, and assigning or revoking database privileges. When
a user schema is created, the template layer metadata table is copied
to this schema, and so too are the views v enumeration value template
and v codelist value template. However, all three relations are renamed
to layer metadata, v enumeration value and v codelist value respectively. All
metadata is kept in the layer metadata table in the user schema and not
in the qgis pkg schema. Having enumerations and codelists in the user
schema allows for them to be linked to their associated CityGML feature
attributes when the user imports layers into QGIS.

30

Ta
bl

e
1:

A
n

ex
am

pl
e

of
th

e
ta

bl
e

en
um

lo
ok

up
co

nfi
g

us
in

g
C

ity
O

bj
ec

t
an

d
R

el
at

iv
eT

oW
at

er
Ty

pe
.

ad
e

pr
efi

x
so

ur
ce

cl
as

s
so

ur
ce

ta
bl

e
so

ur
ce

co
lu

m
n

ta
rg

et
ta

bl
e

ke
y

co
lu

m
n

fil
te

r
ex

pr
es

si
on

N
U

LL
C

it
yO

bj
ec

t
ci

ty
ob

je
ct

re
la

ti
ve

to
w

at
er

v
en

um
er

at
io

n
va

lu
e

da
ta

m
od

el
=

C
it

yG
M

L
2.

0
A

N
D

na
m

e
=

R
el

at
iv

eT
oW

at
er

Ty
pe

Ta
bl

e
2:

A
n

ex
am

pl
e

of
th

e
ta

bl
e

en
um

er
at

io
n

te
m

pl
at

e
us

in
g

C
ity

O
bj

ec
t

an
d

R
el

at
iv

eT
oW

at
er

Ty
pe

.

id
da

ta
m

od
el

na
m

e
na

m
e

sp
ac

e
2

C
it

yG
M

L
R

el
at

iv
eT

oW
at

er
Ty

pe
ht

tp
s:

//
sc

he
m

as
.o

pe
ng

is
.n

et
/c

it
yg

m
l/

2.
0/

ci
ty

G
M

LB
as

e.
xs

d

Ta
bl

e
3:

A
n

ex
am

pl
e

of
th

e
ta

bl
e

en
um

er
at

io
n

va
lu

e
te

m
pl

at
e

us
in

g
C

ity
O

bj
ec

t
an

d
R

el
at

iv
eT

oW
at

er
Ty

pe
.

id
en

um
id

va
lu

e
de

sc
ri

pt
io

n
6

2
en

ti
re

ly
A

bo
ve

W
at

er
Su

rf
ac

e
(C

it
y)

O
bj

ec
t

en
ti

re
ly

ab
ov

e
w

at
er

su
rf

ac
e

31

Ta
bl

e
4:

A
n

ex
am

pl
e

of
th

e
ta

bl
e

co
de

lis
t

lo
ok

up
co

nfi
g

te
m

pl
at

e
us

in
g

th
e

C
it

yG
M

L
Bu

ild
in

g
cl

as
s.

ad
e

pr
efi

x
so

ur
ce

cl
as

s
so

ur
ce

ta
bl

e
so

ur
ce

co
lu

m
n

ta
rg

et
ta

bl
e

ke
y

co
lu

m
n

fil
te

r
ex

pr
es

si
on

N
U

LL
Bu

ild
in

g
bu

ild
in

g
cl

as
s

v
co

de
lis

t
va

lu
e

da
ta

m
od

el
=

C
it

yG
M

L
A

N
D

na
m

e
=

A
bs

tr
ac

tB
ui

ld
in

gC
la

ss

Ta
bl

e
5:

A
n

ex
am

pl
e

of
th

e
ta

bl
e

co
de

lis
t

te
m

pl
at

e
us

in
g

th
e

C
it

yG
M

L
Bu

ild
in

g
cl

as
s.

id
da

ta
m

od
el

na
m

e
na

m
e

sp
ac

e
4

C
it

yG
M

L
A

bs
tr

ac
tB

ui
ld

in
gC

la
ss

ht
tp

s:
//

w
w

w
.s

ig
3d

.o
rg

/c
od

el
is

ts
/s

ta
nd

ar
d/

bu
ild

in
g/

2.
0/

A
bs

tr
ac

tB
ui

ld
in

g
cl

as
s.

xm
l

Ta
bl

e
6:

A
n

ex
am

pl
e

of
th

e
ta

bl
e

co
de

lis
t

va
lu

e
te

m
pl

at
e

us
in

g
th

e
C

it
yG

M
L

Bu
ild

in
g

cl
as

s.

id
co

de
id

va
lu

e
de

sc
ri

pt
io

n
40

4
11

20
H

ea
lt

hc
ar

e

32

Ta
bl

e
7:

A
n

ex
am

pl
e

of
th

e
vi

ew
v

en
um

er
at

io
n

va
lu

e
te

m
pl

at
e

us
in

g
C

ity
O

bj
ec

t
an

d
R

el
at

iv
eT

oW
at

er
Ty

pe
.

id
da

ta
m

od
el

na
m

e
va

lu
e

de
sc

ri
pt

io
n

na
m

e
sp

ac
e

6
C

it
yG

M
L

2.
0

R
el

at
iv

eT
oW

at
er

Ty
pe

en
ti

re
ly

A
bo

ve
W

at
er

Su
rf

ac
e

(C
it

y)
O

bj
ec

t
en

ti
re

ly
ab

ov
e

w
at

er
su

rf
ac

e
ht

tp
s:

//
sc

he
m

as
.o

pe
ng

is
.n

et
/

ci
ty

gm
l/

2.
0/

ci
ty

G
M

LB
as

e.
xs

d

Ta
bl

e
8:

A
n

ex
am

pl
e

of
th

e
vi

ew
v

co
de

lis
t

va
lu

e
te

m
pl

at
e

us
in

g
th

e
C

it
yG

M
L

Bu
ild

in
g

cl
as

s.

id
da

ta
m

od
el

na
m

e
va

lu
e

de
sc

ri
pt

io
n

na
m

e
sp

ac
e

40
C

it
yG

M
L

2.
0

A
bs

tr
ac

tB
ui

ld
in

gC
la

ss
11

20
H

ea
lt

hc
ar

e
ht

tp
s:

//
w

w
w

.s
ig

3d
.o

rg
/

co
de

lis
ts

/s
ta

nd
ar

d/
bu

ild
in

g/
2.

0/
A

bs
tr

ac
tB

ui
ld

in
g

cl
as

s.
xm

l

33

3.3.2 Layer Loader

The Layer Loader dialog is used to create, refresh and drop layers,
or load them into QGIS for visualisation or attribute editing. This is
arguably the window users mostly interact with. It has 3 tabs which will
be discussed in the following paragraphs.

3.3.2.1 User Connection

In the User Connection tab (Figure 23), users can create, refresh or drop
layers. First a connection is made to a particular 3DCityDB schema. Next,
at least one specific feature type (CityGML module) can be selected, and
all its associated layers can be created. If no selection is made, layers for
all feature types present in the loaded 3DCityDB schema will be created
when ”Create layers for schema ’{sch}’” is clicked. Doing so emits a
signal which is caught by the evt btnCreateLayers clicked slot, leading to
initiation of a separate thread outside the main event loop of the plugin.
The QThread object is handed a QObject worker class, CreateLayersWorker,
whose create layers thread method is connected to the started signal of
the thread and responsible for invoking server-side functions that create
layers for each feature type. For a given class in a CityGML module, its
layer is created as described in Section 3.2.2.

34

Figure 23: The User Connection tab in the Layer Loader.

Refreshing layers follows similar steps to creating. Clicking the button
”Refresh layers for schema ’{sch}’” emits a signal which is caught by the
evt btnRefreshLayers clicked slot, leading to another thread being created
by the function run refresh layers thread. The thread is handed a QObject
worker class, RefreshLayersWorker, whose refresh all gviews thread method
obtains materialized views to be refreshed from the layer metadata table
in the user schema when the thread is started. Likewise, clicking ”Drop
layers” emits a signal which is caught by the evt btnDropLayers clicked
slot, leading to another thread in the function run drop layers thread.
The QThread object is handed a QObject worker class, DropLayersWorker,
whose drop layers thread method is connected to the started signal of the
thread and responsible for deleting layers and their metadata from the
user schema. To illustrate, Figure 24 generalises the sequence of events
after clicking a button in the User Connection tab to create, refresh or
drop layers.

35

Figure 24: Workflow followed in creating, refreshing and dropping layers
through the User Connection tab of the Layer Loader using a thread and
a method in a worker class.

3.3.2.2 Layers

In the Layers tab (Figure 25), users can select a feature type and level of
detail, and subsequently choose which layers to import into QGIS among
those that meet the specified criteria. For example, Building and LoD4
could be selected. As layers are pulled from the database, they are also
linked to their respective enumerations in the user schema. Doing so
enables these standardised values to appear in drop-down menus in the
layer Attributes Form. Figure 26 illustrates the effect of this linkage, for
the RelativeToWaterType enumeration, in a form. It is also at this point
that layers are linked to their QML files ”...to stylize the symbology (only
color) and the attribute form.” (Pantelios, 2022).

36

Figure 25: The Layers tab in the Layer Loader.

Once layers have been imported into QGIS, they are sorted in a tree in
the Layers panel. A database name, schema name, as well as CityGML
feature type and level of detail are the parameters used in creating tree
nodes for organising the layers. An example is given in Figure 11.

Figure 26: Options for the RelativeToWaterType enumeration in a Building
layer.

3.3.2.3 Settings

In the Settings tab (Figure 27), users have the options to perform geome-
try simplifications settings and control the maximum number of features
to import from the database. Also, users can select codelist sets to load,

37

though those CityGML are loaded by default. This enables them to ap-
pear in drop-down menus in the layer Attributes Form.

Figure 27: The Settings tab in the Layer Loader.

3.3.3 Bulk Deleter

To delete features in their entirety (geometry, topology, semantics and
properties) from a 3D City Database schema is the purpose of the Bulk
Deleter, as is inherent in the name. While the dialog in Figure 28 has been
part of the plugin since version 0.7, it will be discussed further in Section
4.2.3.3 due to its connection to objective 5 of this study.

38

Figure 28: The Bulk Deleter dialog.

39

4 Extending 3DCityDB-Tools with ADE Sup-
port

4.1 Method

4.1.1 Introduction

Addition of ADE support to 3DCityDB-Tools was tailored to maintain the
current architecture and user experience of the plugin. Reusing code as
much as possible and minimising changes in the user interface guided
the above requirements. Furthermore, this research set out to develop a
generic approach for supporting CityGML ADEs though using the En-
ergy ADE as a test case. For both the back-and-front ends, the following
sections report the strategies followed and how they were implemented.

4.1.2 Incremental Development

To mitigate integration and architectural risks, this development ap-
proach breaks down a project in one of several ways. Figure 29 depicts
the underlying concept. A product can be developed as a series of sub-
systems, each one having its own lifecycle. In another form, incremental
development first defines overall requirements and then proceeds to im-
plementation in iterations (Figure 30). This allows frequent feedback
loops and easy isolation and handling of issues. In this way, event-driven
systems such as the 3DCityDB-Tools GUI can be developed. Changing
requirements are accommodated, and integration issues are mitigated
quickly. This is particularly important in the context of CityGML and
the Energy ADE due to a complexity in these data models acknowledged
by several studies in literature. Their hierarchies are factored in with each
increment.

40

Figure 29: ”Framework incremental.” Source: (Graham, 1989)

In line with this approach, the back-end was first enhanced followed by
the front-end. The goal was to have a complete server-side with all func-
tionality required by the user interface before extending it with ADE-
aware elements and operations. Not only did incremental development
guide further development of 3DCityDB-Tools from this rather wide pic-
ture, it also influenced development at a granular level. On the server-
side, ADE support was facilitated by files that were compiled one after
another. Development of units in each file took an incremental build and
test strategy which involved implementing and testing until the desired
performance was achieved. Similarly, ADE capabilities were added to the
ADE element by element and function by function. Concurrent devel-
opment and testing was also followed to ensure that a ADE component
triggered the correct events, traced the intended execution path and per-
formed the desired action.

Figure 30: ”Incremental build and test.” Source: (Graham, 1989)

41

4.1.3 Iterative Development

The goal of this approach is effectiveness, speed is at the moment
overshadowed by the need to have a product which does what it is
intended to do. Hence, Iterative Development involves decomposing a
project to enable fast development through prototyping. With respect to
CityGML and the 3DCityDB, adoption of this approach complemented
incremental development.

The addition of the Energy ADE introduces deeper hierarchies in
a CityGML dataset, and greater relational intricacy in a 3DCityDB
instance. For this reason, 10 classes packaged in different modules
but representative of the Energy ADE KIT Profile were picked as an
initial test set in investigating further development of 3DCityDB-Tools.
AbstractBuilding, ThermalZone, ThermalBoundary, ThermalOpening, Weath-

erStation, WeatherData, EnergyDemand, DailySchedule, PeriodOfYear and
RegularTimeSeries served as a starting point as they presented various
dissimilarities in LoDs, inheritance levels and nature of associations with
other classes including those native to CityGML. For instance, the KIT
Profile class AbstractBuilding inherits CityGML AbstractBuilding and by
extension has an association to gml:: Solid and gml::MultiSurface which
possess its spatial properties. This means it can be represented at 4
LoDs for gml:: Solid with lod1Solid up to lod4Solid geometry, and at 5
LoDs for gml::MultiSurface by lod0FootPrint and lod0RoofEdge as well as
lod1MultiSurface to lod4MultiSurface.

Whereas, the other 9 class do not all have an associated geometric
representation. Those of the 9 that do have no level of detail specified in
the data model, as is the case for ThermalZone. It has a volumeGeometry
property of type GM Solid but the data model does not specify any
levels of detail for the spatial representation of a ThermalZone. Dai-
lySchedule, EnergyDemand, PeriodOfYear and WeatherData do not descend
from any other class unlike the other 6 which take after CityObject or
AbstractBuilding in CityGML if not a superclass in the same KIT Profile

module. Taking this route was a measure to reduce the complexity of
the Rubik’s cube at hand while developing solutions that generalise
to all classes. A second iteration incorporated the remaining ADE classes.

42

4.1.4 Back-End: Rethinking the Layer Concept

Currently, the 3DCityDB-Tools only produces layers of type VectorLayer
which contain information about CityGML features that have a spatial
representation. For each supported class, every associated level of detail
for a given aggregate or composite geometry produces a layer containing
its attributes. Sections 3.2.1 and 3.2.2 explain how these layers are defined
and created respectively.

However, the ADE adopted in this research does not directly fit into this
template. It brings about different elements which necessitate the intro-
duction of a layer taxonomy for layer generation, metadata and structur-
ing in the QGIS layer tree. These elements are listed below with examples:

• new ”child” CityObjects which do not have geometry (UsageZone).

• new ”child” CityObjects which have geometry (ThermalBoundary).

• classes which may have geometry but no defined levels of detail
(ThermalZone, Facilities).

• extended CityObjects (AbstractBuilding).

• new top-class CityObjects (WeatherStation).

• non-CityObjects which have geometry (WeatherData).

• non-CityObjects which do not have geometry (EnergyDemand).

An adapted layer classification is therefore put forward for a 3DCityDB-
Tools extended with the Energy ADE KIT Profile. In addition, the
absence of defined LoDs in the KIT Profile is a void filled by assigning a
new Level of Detail (LoD) termed LoDX or lodx.

New and extended CityObjects are labelled VectorLayer since they have
geometry. This only stretches the current definition of this layer type
which models a CityObject with spatial properties and at least one
defined level of detail. An ADE class represented by a VectorLayer is
commonly mapped to three 3DCityDB tables, cityobject, ng cityobject and
another which takes the class name. ThermalZone for instance produces
a VectorLayer with attributes from cityobject, ng cityobject if any and
ng thermalzone. Such a layer will actually be a View built on a Materialized
View containing geometry, with non-spatial properties from the three

43

tables listed. Another example is that of AbstractBuilding, though it
is an exception because it extends an existing CityObject and can have
attributes stored in four tables. These tables represent the CityGML
CityObject and AbstractBuilding classes, as well as their respective

subclasses CityObject and AbstractBuilding in the Energy ADE. A layer
produced from this class will also be a View that extracts geometry from
a Materialized View as detailed in Section 3.2.1, but with attributes from
the four tables listed.

CityObjects that are not associated with any geometry in the data model
are designated as VectorLayerNoGeom. Their information is similarly
extracted from three tables, except these classes are CityObjects with no
geometric representation. As an example, Facilities is an underlying class
for a VectorLayerNoGeom with attributes from cityobject, ng cityobject if
any and ng facilities. Its layers will be views that capture only attributes
from the mentioned relations.

A class which is not a CityObject but may have a geometric representation
is a DetailView. A DetailView layer will have some commonalities with
those of type VectorLayer. Though a KIT Profile class from which a
DetailView will be created is typically not a CityObject, the 3DCityDB
stores some information about the feature in cityobject and another table
named after the class itself. This is the case for WeatherData, whose
table is ng weatherdata. Therefore, its layers will also be views that
borrow columns from the referenced relations and from a geometry view
containing gml::Point geometry.

Lastly, a DetailViewNoGeom signifies a KIT Profile class which neither has
geometry nor inherits CityObject. Some layers of this type merge informa-
tion from at least two tables, including cityobject and another named after
class with the type stereotype. A fitting example is that of EnergyDemand
whose layers extract attributes from cityobject and ng energydemand. In
the case of inheritance from an abstract class, DetailViewNoGeom layers
will pull attributes from three tables, the third being that of the abstract
class. The relations cityobject, ng timeseries and ng regulartimeseries
provide attributes for a RegularTimeSeries layer, considering that class as
an example. Other layers of this type are created from attributes taken
from a single table, as is the case for classes like VolumeType and FloorArea.

Figure 31 summarises the thinking behind these four layer types. All
layer types laid out in this section are based on identification of linked

44

3DCityDB tables and extracting relevant data from them into a view into
a view. Assessing from the above, the choice of which layer type to
designate for a given Energy ADE KIT Profile class is influenced by 3
pieces of information - presence or absence of geometry, relationship of
ADE classes to those in CityGML and encoding of ADE classes in the
3DCityDB.

Figure 31: Layer classification.

4.1.5 Front-End: Enabling ADE Support

One of the uses of the QGIS Package Administrator dialog is installing
the qgis pkg schema in the back-end for CityGML functionalities only.
This research aimed to have a QGIS Package installation process which
also brings ADE capabilities to the front-end. In this way, users would
then be able to create, refresh, drop and load ADE-aware layers within
QGIS. However, a design decision was made to allow these actions to be
carried out either for plain CityGML layers or for those extended by only
one ADE at a time. Consequently, for a given 3DCityDB schema, the
layer metadata table will only have layers for the CityGML base profile,
or those associated with an ADE. The reason for this decision comes
down to reducing complexity of the task at hand to quickly advance
investigation of the research question and have a minimum viable
product that supports an ADE. In addition, duplication of information is
prevented. Taking an example of the AbstractBuilding class in CityGML,
its attributes will also be present in a layer created for its subclass

45

AbstractBuilding in the Energy ADE KIT Profile. Hence, nearly the same
data would be contained in two different layers if the above decision was
not enforced.

With this also comes a requirement for attribute forms to be created,
which are loaded when layers are imported into QGIS. Users are only
exposed to a single attribute form, giving the impression that they are
interacting with one database table. Though this is partially true, the pre-
vious section explains the relational complexity hidden by these layers.
Having tailored forms for feature attribute editing additionally makes
performing updates to ADE and CityGML tables more user-friendly by
eliminating the need for broad technical knowledge of the 3DCityDB en-
vironment.

4.1.6 Tools and Data

Multiple tools were required to explore further development of
3DCityDB-Tools. PostgreSQL is the database management system
in which test instances of the 3DCityDB version 4.4 were installed.
For this, platform dependent scripts that are distributed as part of
the 3DCityDB Suite were used on Ubuntu 22.04 Long Term Support.
To import CityGML datasets, the 3DCityDB Importer/Exporter was
employed. It also provides functionalites to transform the Energy ADE
KIT Profile XML schema definition into relations, followed by extension
of a 3DCityDB schema in the database. Python 3.9, complemented
by the Qt framework for User Interface (UI) design, QGIS’ Desktop
version 3.22 and Application Programming Interface written in the same
language, was the plugin development language for implementing and
testing functionality. These tools were run on the Ubuntu 22.04 Long
Term Support operating system, although all modifications maintain the
platform-independent status of the plugin.

An artificial dataset was used in conducting this research. It was selelcted
for having information for all but two classes in the the Energy ADE KIT
Profile, and an unavailability of real-world datasets that are open-source.

46

4.2 Implementation

4.2.1 Introduction

Extensions of the CityGML data model introduce new elements into the
3DCityDBTools frame. All packages in the Energy ADE KIT Profile put
in place supplementary classes and attributes. To accommodate them in
QGIS Package, database types, tables and views, functions, and triggers
were devised in a set of scripts. This structure aligns with the current
version of the plug-in and permits standalone use of QGIS Package or in
combination with the plug-in.

4.2.2 Back-End

4.2.2.1 Creating a Layer

At initial development in the work of Pantelios (2022) , 3DCityDB-Tools
only supported layers of type VectorLayer built on top of the CityGML
base profile in which all CityObjects are associated with at least one ge-
ometry type. However, the Energy ADE brings about different elements
which necessitated the introduction of a layer taxonomy elucidated in
Section 4.1.4. The workflow for creating layers is similarly carried out in
two distinct steps as discussed in Section 3.2.2. A few differences arise
for the Energy ADE and will be explained in this section, but the general
approach is the same.

Each CityGML feature type extended or introduced by this ADE has its
own file containing a SQL generator function for every one of its classes.
Benner (2018) elaborates that the Energy ADE extends the Building mod-
ule of CityGML, but it also introduces WeatherStation. These functions
that generate SQL code, which is later executed by another function,
gather several pieces of information needed to create a layer and its meta-
data as SQL statements. This is done dynamically from within the second
function which runs the SQL string by taking advantage of a uniform
signature adopted by SQL-generating functions. The function signature
incorporates:

1. a function name structured as qgis pkg.generate sql layers ng xx.

The suffix takes the name of a KIT Profile class in lowercase, for
example thermalopening.

2. the same parameters - usr name, cdb schema, perform snapping, digits,
area poly min, bbox corners array and force layer creation.

47

These parameters represent a database user name, 3DCityDB
schema, boolean value indicating if geometries should be snapped,
number of digits to use for snapping, the minimum polygon area for
snapping, geometry representing corners of a bounding box and a
boolean value to determine if creating layers should be forced.

Which information is brought together and how depend on the type of
layer for which SQL statements are to be generated. Generally all func-
tions that produce SQL string begin by declaring variables used in the
function and carrying out a few checks, then they prepare statements for:

1. erasing existing metadata of the ADE feature, and entering a new
record in the layer metadata table,

2. counting the number of objects within a given geographic space (if
the feature has an associated geometry),

3. joining information from different 3DCityDB tables,

4. attaching triggers to the layer, and

5. adding actual metadata to its previously prepared statement.

Among the declared variables are codelists and enumerations of a class, if
any are stipulated by the data model. They are declared as nested arrays.
Two values, table and column names, are stored in each inner array for
both codelists and enumerations. Extending CityGML with the Energy
ADE KIT Profile invites numerous codelist and enumeration entrants
into the 3DCityDB-Tools framework. In the given order, CurrentUseValue
and WeatherDataTypeValue can serve as examples of a codelist and an
enumeration. The aforementioned checks verify the existence of the
user name and 3DCityDB schema in the database. Following this each
generator function creates a SQL statement to delete, if any, the existing
record for its feature from the layer metadata table. A partial INSERT
query into the same table with the columns whose metadata values will
be later added is then appended to the SQL string. The next step is
where differences emerge in the construction of SQL statements that
fetch information from at least one location for the varying layer types.

For a KIT Profile feature whose layer is of type VectorLayer or DetailView,
a WHERE clause is constructed and used as a spatial filter to count the
number of its instances that are within a given geographic area. This is in
fact a bounding box passed to the mview bbox parameter of the function.

48

By joining the 3DCityDB table of the feature with cityobject on their id
columns, the spatial filter can be applied on the envelope property of the
latter table. Having this filter in place guarantees that only objects in the
area of interest are added to the layer. If at least 1 record passes through
the filter, some SQL statements are forged that capture the geometries of
the feature instances within the bounding box into a Materialized View.
Furthermore, all possible options for geometric representation for each
class are exhausted to make certain that at least one geometry type is
picked out for the layer for a given LoD. Taking ThermalZone as an
example, geometry for its layers can be a gml:: Solid extracted directly
from the surface geometry relation, or gml::MultiSurface composed of
bounding surfaces first identified through a join between ng thermalzone
and ng thermalboundary on their id and thermalzoneboundedby columns.
Solid geometry always takes precedence, thus the function for Thermal-
Zone only takes the second route if the volumegeometry id property in its
3DCityDB table is NULL.

Subsequently, the function that generates SQL code then fabricates
statements that join geometry in the Materialized View beside associated
attributes of the feature into a View using a common id. This means
that for a VectorLayer, and where possible for a DetailView as well, the
layer to be created will have attributes from the relevant 3DCityDB table
named after the feature and from cityobject. This is the case for the for
the WeatherData class which produces a DetailView. All its properties
are acquired from two tables, cityobject and ng weatherdata, including
gml::Point geometry. While the above also applies to a VectorLayer, it can
go as many as two steps further due to classes in the Energy ADE that
inherit others in CityGML. Firstly, the CityObject class in the Energy
ADE inherits CityGML Core:: CityObject. Thus, every CityObject makes a
new association with two other classes, EnergyDemand and WeatherData.
Therefore, attributes of a VectorLayer may include an integer identifier
from the table ng cityobject when they are put together into a View.
Otherwise, this id column extracted from ng cityobject will be NULL.
In the case of ThermalZone, its layer would then have attributes from
three tables, ng thermalzone, ng cityobject and cityobject. Secondly, and
applicable only to one class, the AbstractBuilding class in the Energy
ADE inherits a CityGML class of the same name. This in turn implies
that a layer constructed from this class will have information from up to
four 3DCityDB tables, ng building, building, ng cityobject and cityobject.

For a KIT Profile feature whose layer is of type VectorLayerNoGeom or

49

DetailViewNoGeom, the spatial filter is foregone since neither layer type
has geometry. Instead, gathering of attributes into a View hinges on the
total number of records in the underlying 3DCityDB table. VectorLay-
erNoGeom layers will comprise attributes from the 3DCityDB relation
intended to contain properties of the feature itself, and from cityobject
and ng cityobject for the same reason explained for a VectorLayer. Facilities
is one example of a class that produces a VectorLayerNoGeom, it draws
information from ng facilities, ng cityobject and cityobject. DetailViewNo-
Geom layers represent classes that are not a CityObject and have no spatial
component. Strictly speaking, they should contain columns from only
one table, but a few exceptions occur since the 3DCityDB encoding maps
some classes fit for DetailViewNoGeom layers from cityobject. EnergyDe-
mand is one case whose DetailViewNoGeom layers will extract attributes
from ng energydemand and cityobject, rather than from ng energydemand
only.

Figure 32 generalises the previous step for all four layer types. Depend-
ing on the presence of geometry, one of two pathways is chosen, but
still leading to the same outcome. When SQL statements that generate
a layer have been put together as described, triggers are then attached
to each view by invoking the generate sql triggers function. Following
this, metadata values corresponding to the columns specified in the
previously prepared INSERT for the layer metadata table are added to
finalise the query. From the metadata presented in Section 3.2.3, it should
however be noted that DetailView and DetailViewNoGeom layers do not
have a feature type or top-level class. In addition, records for layer types
which have no associated geometry do not have a gv name in the layer
metadata table. Also, non-spatial layers do not have values for qml symb
and qml 3d, which are QML files used for styling features in the QGIS
map canvas. Ultimately, the collection of SQL code for creating a layer
generated as detailed in preceding paragraphs composes one big SQL
string which is subsequently executed by another function.

50

Figure 32: Workflow depicting the decision process behind creating a
layer for the various layer types.

4.2.2.2 Layer Metadata

Metadata is created and inserted into the layer metadata table when a
layer is created. This is the same relation discussed in Section 3.2.3 and
used by the current version of 3DCityDB-Tools which does not support
ADEs. Though the column for an ADE prefix is not used when recording
metadata about CityGML layers, each entry in the table for an Energy
ADE layer makes use of it. Instead of just VectorLayer, the other three
layer types are introduced in the metadata table. For Energy ADE classes
with no CityGML feature type or top-level class, the corresponding
metadata columns are left empty. All features without at least one LoD
defined by the data model are assigned lodx. This includes those without
geometry, which in addition do not have any metadata pertaining to a
geometry view, QML symbology form name and QML 3D symbology
name. By extension, the layer metadata attribute which captures the
latest refresh date of a Materialized View remains unused by layers with
no geometry. The remaining columns of the layer metadata table are
used as described in Section 3.2.3.

4.2.2.3 Updating a Layer

As alluded to in Sections 3.2.2 and 4.2.2.1, triggers are attached to a layer
when it is created using the function generate sql triggers. When invoked,
it iterates over the INSERT, UPDATE and DELETE commands and builds

51

a SQL statement that creates a row-level trigger which in turn prescribes
a trigger function to be subsequently executed for the each of the three
data query operations. Triggers prevent a View from being updated
directly and divert an INSERT, UPDATE OR DELETE query on any layer
to the linked trigger function.

When an INSERT query is attempted on a layer to introduce new records
into the view, the trigger for this operation is fired and in turn invokes
the trigger function. Rather than completing the insertion, the trigger
function raises an error which notifies the operator that QGIS Package
does not permit this action as shown in Figure 33. On the other hand,
delete queries on layers are allowed by 3DCityDB-Tools, as are updates.
When a query prompts deletion of rows from a layer, the associated
trigger is set off and consequently it invokes the linked trigger function.
Within the trigger function, the id of the record intended for deletion
is passed on to a native 3DCityDB function named as del cityobject
and designed to erase records from the base relation. Taking table
ng thermalboundary as an example, this id is used in a call to the function
del ng thermalboundary found in the underlying 3DCityDB schema, which
then performs the operation. Figure 34 gives an illustration.

Figure 33: Workflow for thwarting an INSERT query on a layer.

52

Figure 34: Workflow for committing a DELETE query to the underlying
3DCityDB tables of a layer.

For an UPDATE query, several functions simulate the effect of an
updatable layer. To begin with, the query is broken down, separating
attributes using a Type for each 3DCityDB table associated with the layer.
This is done on the basis of a layer being a view constructed from at least
two 3DCityDB tables, as is the case for many layers created for Energy
ADE KIT Profile classes. All objects are then handed over to another
function which in turn passes each Type to a function responsible for
performing actual updates in a 3DCityDB table. Figure 35 illustrates
how an UPDATE query is completed with the aid of an example. An
UPDATE operation is performed to a layer for the ThermalBoundary class.
A trigger stops the transaction and gives the trigger function access to
the OLD and NEW records for the corresponding id in the query. Since
a ThermalBoundary is a CityObject, the trigger function sieves through
the query using two objects, one for each of the aforementioned classes.
The objects are then given to a View Update Function whose purpose is to
distribute the two objects to other functions that modify the 3DCityDB
tables which provide attributes to the View. For this example, the tables
are cityobject and ng thermalboundary. The reader should also be made
aware that the CityObject class in the Energy ADE has been left out of this
scenario. This is because its 3DCityDB table only contains an id column,
and 3DCityDB-Tools prohibits alteration of database keys.

Typically, each Table Update Function carries out a few checks before
constructing and executing a SQL statement to alter information in a
3DCityDB table. For a layer constructed for an Energy ADE class con-
taining at least one enumeration, any value to be inserted in the corre-
sponding column through an update will be queried against an array
of values specified by the data model. This prevents non-standardised

53

values from being entered, thereby enforcing semantic interoperability.
Furthermore, entries of quantities are only completed if a unit of mea-
surement is included in the update statement. Otherwise, the function
reports back to the user to provide the missing component. The object
received by the function is also inspected to decide if any default val-
ues should be incorporated in the update statement that follows. Update
functions ThermalBoundary, SolidMaterial and ThermalZone can serve as ex-
amples in explaining these three checks. Upon receiving a ThermalBound-
ary object with new information, upd t ng thermalboundary inspects the
thermalboundarytype property to assess if its value matches any of those
in the ThermalBoundaryType enumeration. Similarly, upd t ng solidmaterial
ensures that for the properties conductivity, density, permeance, specificheat
both a quantity and unit of measurement are provided. A default value of
1 indicating true is assigned to the iscooled and isheated attributes of table
ng thermalzone in upd t ng thermalzone only when none has been specified
in either case.

54

Fi
gu

re
35

:W
or

kfl
ow

fo
r

co
m

m
it

ti
ng

an
U

PD
A

TE
qu

er
y

to
th

e
un

de
rl

yi
ng

3D
C

it
yD

B
ta

bl
es

of
a

la
ye

r.

55

4.2.3 Front-End

4.2.3.1 QGIS Package Administrator

QGIS Package Administrator (Figure 22) lets users (un)install the back-end
qgis pkg schema in a PostgreSQL database in addition to user, schema
and privilege management. Development of ADE support has brought
more capabilities to QGIS Package without any visual modifications to
this dialog. Previously, 24 scripts were run to create database object
types, tables and views, functions and triggers for CityGML only.
Now, 8 more files have been added to the same directory such that an
ADE-enabled QGIS Package can be installed in the same way as before.
An important addition to highlight is the ade feature types table. It stores
every new feature type defined by an ADE installed in the database. This
information is later used when layers are being created.

In the User Installation section of the dialog, a user schema can be
created on the back-end as described by Agugiaro and Pantelios (2023)
and in Section 3.3.1. It is the gateway through which non-administrative
users take full advantage of QGIS Package. The ”Create schema” button
(Figure 22) initiates events that lead to a new schema being created
in the database for the specified user. Together with layer metadata,
numerous other relations which are enum config, enumeration template,
enumeration value template, codelist lookup config template, codelist template
and codelist value template are then sourced from qgis pkg to the user
schema. In addition, the views v enumeration value and v codelist value
which are formed as joins between some of the above tables are created
in the usr schema. All these containers will also store metadata about
ADE layers and values from lists in the KIT Profile data model when
populated. Tables 9 to 14 show example entries in enumeration and
codelist tables using ThermalBoundaryTypeValue and EnergyCarrierType-
Value respectively.

56

Ta
bl

e
9:

Ta
bl

e
en

um
lo

ok
up

co
nfi

g
ex

am
pl

e
us

in
g

Th
er

m
al

Bo
un

da
ry

Ty
pe

V
al

ue

ad
e

pr
efi

x
so

ur
ce

cl
as

s
so

ur
ce

ta
bl

e
so

ur
ce

co
lu

m
n

ta
rg

et
ta

bl
e

ke
y

co
lu

m
n

fil
te

r
ex

pr
es

si
on

ng
Th

er
m

al
Bo

un
da

ry
ng

th
er

m
al

bo
un

da
ry

th
er

m
al

bo
un

da
ry

ty
pe

v
en

um
er

at
io

n
va

lu
e

da
ta

m
od

el
=

En
er

gy
A

D
E

1.
0

A
N

D
na

m
e

=
Th

er
m

al
Bo

un
d-

ar
yT

yp
e

Ta
bl

e
10

:T
ab

le
en

um
er

at
io

n
te

m
pl

at
e

ex
am

pl
e

us
in

g
Th

er
m

al
Bo

un
da

ry
Ty

pe
V

al
ue

id
da

ta
m

od
el

na
m

e
na

m
e

sp
ac

e
10

En
er

gy
A

D
E

1.
0

T
he

rm
al

Bo
un

da
ry

Ty
pe

V
al

ue
ht

tp
:/

/w
w

w
.s

ig
3d

.o
rg

/c
it

yg
m

l/
2.

0/
en

er
gy

/1
.0

/E
ne

rg
yA

D
E.

xs
d

Ta
bl

e
11

:T
ab

le
en

um
er

at
io

n
va

lu
e

te
m

pl
at

e
ex

am
pl

e
us

in
g

Th
er

m
al

Bo
un

da
ry

Ty
pe

V
al

ue

id
co

de
id

va
lu

e
de

sc
ri

pt
io

n
53

10
in

te
ri

or
W

al
l

Ve
rt

ic
al

pa
rt

it
io

n
se

pa
ra

ti
ng

tw
o

Th
er

m
al

Z
on

es
of

th
e

sa
m

e
bu

ild
in

g

57

Ta
bl

e
12

:T
ab

le
co

de
lis

t
lo

ok
up

co
nfi

g
te

m
pl

at
e

ex
am

pl
e

us
in

g
En

er
gy

C
ar

ri
er

Ty
pe

V
al

ue

ad
e

pr
efi

x
so

ur
ce

cl
as

s
so

ur
ce

ta
bl

e
so

ur
ce

co
lu

m
n

ta
rg

et
ta

bl
e

ke
y

co
lu

m
n

fil
te

r
ex

pr
es

si
on

ng
En

er
gy

D
em

an
d

ng
en

er
gy

de
m

an
d

en
er

gy
ca

rr
ie

rt
yp

e
v

en
um

er
at

io
n

va
lu

e
da

ta
m

od
el

=
En

er
gy

A
D

E
1.

0
A

N
D

na
m

e
=

En
-

er
gy

C
ar

ri
er

Ty
pe

Ta
bl

e
13

:T
ab

le
co

de
lis

t
te

m
pl

at
e

ex
am

pl
e

us
in

g
En

er
gy

C
ar

ri
er

Ty
pe

V
al

ue

id
da

ta
m

od
el

na
m

e
na

m
e

sp
ac

e
37

En
er

gy
A

D
E

1.
0

En
er

gy
C

ar
ri

er
Ty

pe
V

al
ue

N
U

LL

Ta
bl

e
14

:T
ab

le
co

de
lis

t
va

lu
e

te
m

pl
at

e
ex

am
pl

e
us

in
g

En
er

gy
C

ar
ri

er
Ty

pe
V

al
ue

id
co

de
id

va
lu

e
de

sc
ri

pt
io

n
15

78
37

El
ec

tr
ic

it
y

N
U

LL

58

4.2.3.2 Layer Loader

Layer loader, the dialog used to create, refresh and drop layers as well
as import them into QGIS, has undergone minor visual modification in
this study (Figure 36) while bringing the ability to interact with ADE-
extended layers. Once a connection is made to the database and the user
selects a 3DCityDB schema to load, the database is queried for the pres-
ence of any ADEs in the 3DCityDB relation ade. If at least one is found,
the new section ADE Selection in the window is enabled so that its child
element can later be accessed by the user to choose an ADE to load. The
decision to place the QGroupBox in that position was largely informed
by visual appeal. Regardless, the dialog was programmed in a way that
adapts to the presence or absence of an ADE in the chosen 3DCityDB
schema.

Figure 36: Modified User Connection tab in the Layer Loader dialog.

59

When a user chooses to select an ADE, Feature type selection is disabled
and the QgsCheckableComboBox with default text Select ADE gathers all
ADEs in the database to let the user choose one. As soon as an ADE is
selected, Feature type selection is enabled. Only one ADE can be selected
in a given procedure, a design decision justified in Section 4.1.5. To
enforce this, the signal-slot mechanism of the Qt framework is leveraged.
Selecting a second ADE emits a signal and the custom slot connected to
it displays an information box which reports the above constraint and
guides the user to have only one option checked. An alternative to the
QgsCheckableComboBox could be a QComboBox that only allows one option
to be chosen from a list. Nevertheless, its use has not been explored to
provide a starting point for any further development of the plugin which
attempts to support creating, refreshing and deleting layers for multiple
ADEs concurrently. There will be no need to change any GUI elements,
only what happens behind the interface.

After ADE Selection is enabled and an ADE chosen in the drop-down
menu (Figure 37), the relation ade feature types is requested for all new
feature types brought by that ADE. If any, WeatherStation in this case
of the Energy ADE, they together with the CityGML feature types are
placed in the QgsCheckableComboBox under Feature type selection (Figure
38). Layers for all feature types the user proceeds to select can then be
created, refreshed, dropped or imported. Should there be no ADE found
in the database, the ADE Selection remains disabled and Feature type
selection will display only CityGML modules. After clicking a button to
create, refresh or drop layers, the sequence of events that ensues depends
on whether an ADE has been selected. Suppose there is no ADE, the
plugin works just like its official release, as if no new functionality
has been added. In reality, the concept of branching is applied in
existing functions to determine whether to follow a path that produces
ADE-enabled behaviour. Also, use of a separate thread and worker class
as described in Section 3.3.2.1 is maintained for ADE-related tasks.

Figure 37: QgsCheckableComboBox which lists all available ADEs in the
database.

60

Figure 38: QgsCheckableComboBox which lists all available feature types in
the database.

To create the 4 layer types, the existing function evt btnCreateLayers clicked
(Listing 1) is programmed to follow a new branch to invoke another
function that initiates the process in a separate thread. The QThread
object is handed a QObject worker class, CreateADELayersWorker, whose
create ade layers thread method is connected to the started signal of the
thread and invokes server-side functions that create the layers. The
worker class method sends SELECT queries that call functions in the
qgis pkg schema to create layers for all selected feature types. This logic
is similar to what is illustrated in Figure 24, except that here a decision
is introduced after the button is clicked to determine whether to create a
thread for CityGML or ADE layers.

1

2 def evt_btnCreateLayers_clicked(self) -> None:

3 """ Event that is called when the ’Create layers for

schema {sch}’ pushButton (btnCreateLayers) is pressed.

4 """

5 if self.gbxFeatSel.isChecked ():

6 # Update the FeatureTypeMetadata with the information

about the selected ones

7 tc_f.update_feature_type_registry_is_selected(self)

8 selected_feat_types: list = gen_f.

get_checkedItemsData(self.cbxFeatType)

9 print(’registry\n’,self.FeatureTypesRegistry)

10

11 if len(selected_feat_types) == 0:

12 error_msg = f"You must select at least one

Feature Type. Otherwise deactivate the Feature Type

selection box."

13 QMessageBox.warning(self , "User schema not found"

, error_msg)

14 return None # Exit

15

16 # Start the thread to create the layers (materialized

views)

17 if not(hasattr(self ,’ADE_Registry ’)) or not(len(self.

ADE_Registry.keys())):

18 thr.run_create_layers_thread(self)

61

19 else:

20 thr.run_create_ade_layers_thread(self)

21

22 return

Listing 1: Function invoked when the button to create layers in the GUI
is clicked. It first determines if an ADE has been selected then proceeds
to initiate an appropriate thread.

If no feature types are seleted, layers for all feature types available in
the chosen 3DCityDB schema are created. Only two feature types are
affiliated with the KIT Profile, Building and WeatherStation. For this
reason, back-end functions invoked will produce layers whose feature
type may only be either of the two. ThermalZone and UsageZone are
respective examples of classes whose CityGML feature type is Building
since they compose AbstractBuilding, although for one layers of type
VectorLayer are produced and VectorLayerNoGeom for the other. To
create their layers as described in Section 4.2.2.1, the back-end function
create layers ng building is called.

An identical setup is in place for the client-side functions
evt btnRefreshLayers clicked and evt btnDropLayers clicked to respec-
tively refresh and delete layers in and from the user schema. They have
an alternative branch that leads to a separate thread which is connected
to a method in the worker class that takes care of refreshing or dropping
layers. Listings 2 and 3 portray source code which applies the branching
concept to refresh or drop layers.

1

2 def evt_btnRefreshLayers_clicked(self) -> None:

3 """ Event that is called when the ’Refresh layers for

schema {sch}’ pushButton (btnRefreshLayers) is pressed.

4 """

5 res = QMessageBox.question(self , "Layer refresh", "

Refreshing layers can take long time.\nDo you want to

proceed?")

6 if res == 16384 and not(hasattr(self ,’ADE_Registry ’)):

7 thr.run_refresh_layers_thread(self)

8 elif res == 16384 and (hasattr(self ,’ADE_Registry ’)):

9 thr.run_refresh_ade_layers_thread(self)

10

62

11 return

Listing 2: Function invoked when the button to refresh layers in the GUI
is clicked. It first determines if an ADE has been selected then proceeds
to initiate an appropriate thread.

1

2 def evt_btnDropLayers_clicked(self) -> None:

3 """

4 Event that is called when the ’Drop layers for schema {

sch}’ pushButton (btnRefreshLayers) is pressed.

5 """

6 if not (hasattr(self , ’ADE_Registry ’)) or not (len(self.

ADE_Registry.keys())):

7 has_ade_layers_query = f’’’

8 SELECT COUNT(id) FROM

9 {self.USR_SCHEMA }. layer_metadata

10 WHERE cdb_schema = ’{self.CDB_SCHEMA}’

11 AND ade_prefix = ’{’ng ’}’ AND gv_name != ’{’ ’}’ ’’’

12

13 has_ade_layers = 0

14 with self.conn.cursor () as cur:

15 cur.execute(has_ade_layers_query)

16 has_ade_layers = cur.fetchone ()[0]

17

18 if not(has_ade_layers):

19 thr.run_drop_layers_thread(self)

20 else:

21 QMessageBox.information(self , ’Drop Layers ’,

22 f’’’Only layers affiliated with an ADE exist in

user schema {self.USR_SCHEMA} for citydb schema {self.

CDB_SCHEMA }. Select an appropriate ADE to drop the layers.

’’’)

23

24 else:

25 thr.run_drop_ade_layers_thread(self)

26

27 return

Listing 3: Function invoked when the button to drop layers in the GUI is
clicked. It first determines if an ADE has been selected then proceeds to
initiate an appropriate thread.

Once layers are assembled and refreshed, the Layers tab of the same
dialog is activated. A feature type with at least one existing layer
and a level of detail can be selected as explained in Section 3.3.2.2.
This includes WeatherStation and lodx. In addition to a VectorLayer, a

63

VectorLayerNoGeom for an Energy ADE class like Facilities can also be
selected and imported into QGIS in this tab. Though there are four layer
types for this ADE, each one is imported as an instance of the pyQGIS
class QgsVectorLayer. It is given a data source, or a QgsDataSourceUri
object, which establishes a channel to directly commit any layer updates
to the database. The data source class is also used to indicate presence or
absence of geometry in a layer using the aGeometry keyword parameter
of its setDataSource method. This helps to distinguish layers with from
those without geometry.

Furthermore, as layers are imported into QGIS, every QgsVectorLayer
instance is linked to an Attributes Form whose name is extracted
from layer metadata and to any associated codelists and enumera-
tions. To connect all layer types to their value lists, existing functions
create layer relation to codelists and create layer relation to enumerations
originally developed for a VectorLayer were reverse engineered where
possible. In a few other cases, new functions were created and relations
defined using the pyQGIS class QgsRelation. An example is given
in Listing 4. The snippet of code shown is taken from the function
create layer relation to ng heightaboveground used to link two layers. One
is an extended Building layer, and the other a HeightAboveGround layer.
The id of a building is referenced by a corresponding foreign key, build-
ing heightabovegroun id. Doing so brings consistency with the data model
which stipulates a one-to-many relationship between AbstractBuilding
and HeightAboveGround, similar to generic attributes in CityGML.
In addition, connection these two layers makes HeightAboveGround at-
tributes visible in the attribute form for a building as shown in Figure 39b.

1 rel = QgsRelation ()

2 rel.setReferencedLayer(id=layer.id())

3 rel.setReferencingLayer(id=dv_layer.layerId ())

4 rel.addFieldPair(referencingField=’

building_heightabovegroun_id ’, referencedField=’id’)

5 rel.setName(name=’re_’ + layer.name() + "_" + dv_layer.name()

)

6 rel.setId(id="id_" + rel.name())

Listing 4: Use of QgsRelation to create a link between a
HeightAboveGround object and a building.

After layers are imported, they are organised in a layer tree using the
same rules mentioned in Section 3.3.2.2. An illustration is given in Figure

64

11. Layer attributes can be accessed through a table or form like any other
QgsVectorLayer object in QGIS. However, for each layer, a default form
created by QGIS was modified to make a more user-friendly interface
in which attributes are logically organised in tabs. Figures 39a to 39f
show different sections of the form for the AbstractBuilding class in the
KIT Profile. In Figure 39a, the tabs contain attributes from the CityGML
Core module. Figure 39b shows tabs for generic attributes associated
with a Building and BuildingPart. Here, FloorArea, VolumeType and
HeightAboveGround can be seen to have their own tabs as they are generic
attributes as well. In fact, these two classes have their own layers which
are DetailViews whose forms are also customised. For their corresponding
tabs in the AbstractBuilding form to be populated, a reference is created
when layers are imported into QGIS. Figure 39d shows the remaining tab
which displays attributes specific to an extended AbstractBuilding class.
Two attributes in particular are worth pointing out, Building Type and
Construction Weight, as one has a codelist and the other an enumeration.
Figures 39e and 39f show the drop-down menus for these two, which
show descriptions rather than actual values.

65

(a) Attributes inherited from CityObject.

(b) Generic attributes of AbstractBuilding.

(c) Class, Function and Usage attributes inherited from AbstractBuilding in
CityGML.

(d) Feature-specific attributes from both AbstractBuilding in CityGML and in the
KIT Profile.

(e) Options for the Building Type codelist.

(f) Options for the Construction Weight enumeration.

Figure 39: Customised Attributes Form for a layer constructed from the
KIT Profile class AbstractBuilding.

66

4.2.3.3 Bulk Deleter

To delete features in their entirety (geometry, topology, semantics and
properties) from the database is the purpose of the Bulk Deleter, as
is inherent in the name. Although not related to the Energy ADE,
preliminary tests on how to structure this dialog (Figure 28) were part of
this research to familiarize with the plugin. It should be noted that due
to time constraints, this dialog has no ADE support. Since version 0.7,
the Bulk Deleter is officially part of 3DCityDB-Tools.

By interacting with the map canvas manually, users can set a bound-
ing box within which all contained features are to be deleted from a
3DCityDB instance. A geocoder with a dynamic window has been added
also as part of this research to enhance the user experience by allowing
users to quickly navigate to an area of interest in the case of city mod-
els spanning a large geographic extent. From text input in the Geocoder
dialog (Figure 40), the OpenStreetMap (OSM) Nominatim API is queried
for a matching place name or address using a GET request in which the
search string is encoded. Matching results from OSM are sent through a
spatial filter which uses the map canvas extent to discard irrelevant lo-
cations. Those that pass through the filter are then populated in a drop-
down menu to allow the user to select the most appropriate one (Figures
41 and 42) and zoom to it on the map canvas.

Figure 40: Geocoder dialog.

67

Figure 41: Geocoder dialog.

Figure 42: Geocoder dialog.

In the back-end, a native 3DCityDB delete function named as del cityobject
is invoked. It takes care of the hierarchies in CityGML by removing each
feature in the bounding box from its respective table as well as all as-
sociated information in other tables. Furthermore, the option to instead
truncate all tables in the database is at the disposal of the user from the
dialog of the Bulk Deleter.

68

5 Conclusion

This research demonstrates the possibility of adding support for a
CityGML Application Domain Extension to 3DCityDB-Tools for QGIS us-
ing the Energy ADE KIT Profile as a test case. Currently, the plug-in
only implements functionalities for the CityGML data model, which re-
stricts the degree to which users with limited technical knowledge of the
3DCityDB environment can further exploit extended CityGML datasets.
Furthermore, a 3DCityDB instance extended by an ADE possesses an
added dimension of complexity. Pantelios (2022) concludes that similar
QGIS plug-ins, including the CityJSON Loader, have limited capabilities
and user experience. In the context of ADE support, the same restraints
exist. To address these issues for users, the following objectives were
tackled in this research:

1. Conceptual definition of a strategy to add server-side support for
an ADE to QGIS Package, the server-side component of 3DCityDB-
Tools for QGIS.

The concept of having a set of scripts which bring CityGML
capabilities to QGIS Package was maintained for the Energy
ADE KIT Profile. New scripts that embed extended function-
ality are also executed when the qgis pkg schema is created on
the server-side. In addition, a taxonomy for classifying vari-
ous layer types for an ADE-enabled QGIS Package was estab-
lished for the Energy ADE KIT Profile. Ultimately, this strat-
egy allowed for the support of ADE layers by overcoming the
different elements introduced by the ADE which include new
CityObjects with and without geometry, extended CityObjects,
as well as other classes that are not CityObjects but may have
geometry. Lastly, users would also be able to update layer at-
tributes using QGIS Package.

2. Develop an ADE-enabled QGIS-Package, with focus on the Energy
ADE KIT Profile.

Object types, tables, triggers and functions which bring ADE
functionalities were integrated into QGIS Package. They enable
creating, refreshing or deleting layers. Furthermore, INSERT,
DELETE and UPDATE queries on layers, which are actually
views containing information from multiple 3DCityDB tables,

69

are handled by the added functionalities to aid layer manage-
ment. To complement these tasks, metadata for ADE layers is
also managed.

3. Conceptual definition of a strategy to add client-side support for an
ADE to the front-end of the 3DCityDB-Tools for QGIS plugin.

The strategy was for users to be able to create, refresh or drop
ADE layers from within QGIS, as well as import them. In ad-
dition, modifying attributes of or deleting existing features in
a layer would be facilitated.

4. Develop an ADE-enabled 3DCityDB-Tools for QGIS front-end.

Two new GUI elements are introduced to the Layer Loader dia-
log. In a given session, these elements help functions involved
in creating, refreshing or deleting layers to keep track of the
selection of an ADE and by extension to determine sequence of
events. Behaviour of the Layer Loader in creating, refreshing or
dropping layers is governed by branching to select a sequence
of events in the absence or presence of an ADE. QGIS forms for
feature attribute editing were customised to enhance the user
experience but also to enforce constraints that match those of
the database tables connected to a layer.

5. Contribute to further testing and extending and improving existing
functionalities.

This research contributed to tests around how to structure GUI
elements in the Bulk Deleter dialog and connect them to front-
end and back-end functionality. The geocoding feature was
first investigated in these tests as well. Both are officially part
of 3DCityDB-Tools for QGIS since version 0.7.

On the basis of these outcomes, 3DCityDB-Tools can support ADEs to a
greater extent. Nevertheless, there are a few considerations to emphasise
from this research.

This study focuses on a subset of the Energy ADE, the KIT Profile, which
has significantly fewer classes, associations, enumerations and codelists.
As an example, 3 feature types in the Energy ADE, EnergySystem, Ener-
gyConversionSystem and EnergyDistributionStorageSystem which together

70

define 32 classes are completely left out of the KIT Profile. Also, extend-
ing the 3DCityDB with the full Energy ADE creates 79 new tables, in
contrast to only 33 for the KIT Profile. These disparities raise uncertainty
over applicability of the methodology and implementation in this study
to the Energy ADE. Furthermore, investigating the possibility of ADE
support using just one ADE does not necessarily yield an outcome which
is representative of a real-world scenario that puts semantic 3DCM to use
in multiple disciplines. This prompts more questions to be asked with
regards to a generic approach for ADE support in 3DCityDB-Tools.

Other considerations relate to the back-end architecture of the plugin.
Figure 35 shows trigger, and view and table update functions used to
make layers updatable. The trigger function sends objects to the view
update function which in turn distributes them to table update functions.
While this setup has been shown to work, it has a component that may
be redundant. The only task of the view update function is to act as
a conduit between a trigger function and one or more table update
functions. Using 3 functions to execute updates for ADE layers is an
idea borrowed from what was the current version of QGIS Package in
the early phases of this study. By cutting out the view update function,
table update functions can be connected to trigger functions and receive
objects directly from there. This could reduce the amount of code
required in future to add support for more ADEs in QGIS Package.

Remaining points to note are to do with the client-side. Concerning the
design decision to restrict users to have layers for either the CityGML
base profile or an ADE, further reasoning may be required in the pres-
ence of two or more ADEs. The metadata table in the user schema on the
back-end is populated when layers for CityGML or an ADE are created
on the front-end. By extension, the table can only have metadata about
layers for one data model. If a second ADE is introduced, it is unknown
whether the above design decision will require rethinking. Should users
be allowed to create layers for more than one ADE simultaneously?
Should the layer metadata table accommodate CityGML and multiple
ADEs at the same time? What are the implications for other processes
carried out within 3DCity-Tools?

Also, for semantic city models spanning a large geographic extent,
refreshing layers or using the Bulk Deleter to remove features from
a 3DCityDB may be time-consuming based on present experiences.
Furthermore, the order of the Layer Loader tabs affects the User Expe-

71

rience (UX) to an extent. In the Settings tab, users can choose a data
model for which to load codelists. However, layers are imported in the
previous tab. Codelist values for an ADE will not appear in an Attributes
Form if the data model is not selected before importing layers into QGIS.
The user has to repeat the process so as to load the data model first. In
addition, only one data model can be selected at a time. How then can
a user access both CityGML and ADE codelists when the 3DCityDB is
extended?

Moreover, the landscape around the plugin is evolving. 3DCityDB-Tools
is currently based on versions 2.0 and 4.4 of CityGML and the 3DCityDB
respectively. However, CityGML 3.0 has taken over as the latest release
of the standard, and 3DCityDB 5.0 is under development. On one hand,
CityGML 3.0 revises numerous existing modules including Building and
introduces four new ones. For example, some classes like Occupancy and
HeightReferenceValue currently in the Energy ADE are now incorporated
in a new CityGML module called Construction. The latest version of
CityGML also presents new Space and Geometry concepts. Generally,
a space is a class associated with a geometry, and CityObjects like
AbstractBuilding inherit a Space. This setup diverts from what is seen

in CityGML 2.0, where features are directly associated to geometric
primitives. Regarding extensibility, CityGML 3.0 specifies ports where
ADEs can dock onto more explicitly.

On the other, a revamped 3DCityDB for CityGML 3.0 contains four main
tables, which is a drastic reduction in complexity comparing it with the
current version 4.x. One table for all features and objects, another for all
attributes and associations, a third for all geometries and the remaining
one for colours and textures. Figure 43 gives a visual contrast between the
current and upcoming 3DCityDB versions. Nagel and Zhihang (2023)
highlight that while this setup is simple, efficient and easier-to-use with
default GIS tools, substantially more work is required to adapt these tools
to the redesigned 3DCityDB schema. These two developments, 3DCityDB
5.0 and CityGML 3.0, call into question the architecture of 3DCityDB-
Tools and the outcome of this study with respect to future work.

72

Figure 43: Current versus upcoming versions of the 3DCityDB. Source:
(Nagel & Zhihang, 2023)

5.1 Future Work

By analysing the above, suggestions can be put forward for future work.
A starting point may be to implement support for the whole Energy
ADE, plus another one, to gauge scalability with respect to generic ADE
support in the plugin. UtilityNetwork can serve as a good reference for a
second ADE as it has been well-studied in literature (Boates et al., 2018;
Den Duijn et al., 2018; Kutzner et al., 2018).

To reduce amount of code on the back-end, one solution could be to
thoroughly analyse that sub-system to identify where operations can be
made more elegant. Alternatives may involve exploring a different setup
on the server-side, or consideration of a more compact SQL encoding
of CityGML with fewer tables. Both options could, however, lead to a
complete overhaul of 3DCityDB-Tools. Whether this is feasible or not
might also be worth evaluating, especially considering the number of
3DCityDB tables introduced by the full Energy ADE.

A different server-side setup that could be investigated is having all ge-
ometries of a feature in one layer. This implies that only one Materialized
View and layer are created for each feature, but the option for a user to
choose one LoD to load on the client-side would be retained. CityGML
3.0 and 3DCityDB 5.0 could be used to explore the feasibility of the other
suggested development pathway.

73

On the client-side, several improvements can be explored. First is the use
of concurrency for tasks such as refreshing layers and deleting features
from the 3DCityDB in bulk. Performance gains from this could be ben-
eficial to users and developers. Modification of the GUI might also be
investigated. A dynamic Layer Loader interface, similar to what is de-
scribed in Section 4.2.3.3 for the Geocoder, could enhance the UX. One
issue that would be addressed by a dynamic GUI is the placement of
the Layers and Settings tabs. Database connection elements and settings,
which might include choosing an ADE to load, can be first thing a user
sees in this dialog. In addition, this may also allow only one map canvas
to be used to create and import layers instead of the two canvases in the
User Connection and Layers tabs.

74

A Reproducibility self-assessment

A.1 Marks for each of the criteria

Figure 44: Reproducibility criteria to be assessed.

Grade/evaluate yourself for the 5 criteria (giving 0/1/2/3 for each):

2/3 input data

1/3 preprocessing

3/3 methods

3/3 computational environment

3/3 results

A.2 Self-reflection

A.2.1 Input Data

Data used in this research was provided by a supervisor of this research.
Though it is not publicly stored online, it can be made available on re-
quest.

75

A.2.2 Methods

A part of this research that qualifies as preprocessing is requirements
gathering. It was conducted in meetings and discussions, thus the
information is poorly documented and not available.

With respect to the methods implemented in this research, a dedicated
GitHub repository versioning and storing source code. The software
developed in this research remains open source, and as such can be freely
redistributed and/or customised within the terms stipulated by version
2 of the GNU General Public License as published by the Free Software
Foundation.

Relating to the computational environment, all development was based
on open source software.

A.2.3 Results

All modifications to the 3DCityDB-Tools plugin together with this report
can be considered the final result. The plugin and the document are
publicly available and accessible on GitHub and the Delft University of
Technology repositories.

76

References

Agugiaro, G., Benner, J., Cipriano, P., & Nouvel, R. (2018). The Energy
Application Domain Extension for CityGML: enhancing interoper-
ability for urban energy simulations. Open Geospatial Data, Software
and Standards, 3(1), 2. https://doi.org/10.1186/s40965-018-0042-y

Agugiaro, G., & Pantelios, K. (2023). Quick installation and user guide.
https://github.com/tudelft3d/3DCityDB-Tools-for-QGIS/blob/
master/user guide/3DCityDB-Tools UserGuide 0.8.1.pdf

Ahmad, T., & Zhang, D. (2020). A critical review of comparative global
historical energy consumption and future demand: The story told
so far. Energy Reports, 6, 1973–1991. https://doi.org/https://doi.
org/10.1016/j.egyr.2020.07.020

Benner, J. (2018). CityGML Energy ADE V. 1.0 Specification.
Biljecki, F., Kumar, K., & Nagel, C. (2018). CityGML Application Domain

Extension (ADE): overview of developments. Open Geospatial Data,
Software and Standards, 3(1), 13. https://doi.org/10.1186/s40965-
018-0055-6

Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S., & Çöltekin, A. (2015).
Applications of 3D City Models: State of the Art Review. ISPRS
International Journal of Geo-Information, 4(4), 2842–2889.

Boates, I., Agugiaro, G., & Nichersu, A. (2018). Network modelling and
semantic 3d city models: Testing the maturity of the utility network
ade for citygml with a water network test case. ISPRS annals of
photogrammetry, remote sensing & spatial information sciences, 4(4).

Catita, C., Redweik, P., Pereira, J., & Brito, M. C. (2014). Extending so-
lar potential analysis in buildings to vertical facades. Computers &
Geosciences, 66, 1–12.

Den Duijn, X., Agugiaro, G., & Zlatanova, S. (2018). Modelling below-
and above-ground utility network features with the citygml utility
network ade: Experiences from rotterdam. Proceedings of the 3rd
International Conference on Smart Data and Smart Cities, Delft, The
Netherlands, 43, 50.

Geiger, A., Benner, J., Häfele, K.-H., & Hagenmeyer, V. (2018). Thermal
energy simulation of buildings based on the city-gml energy ap-
plication domain extension. BauSIM2018–7. Deutsch-Österreichische
IBPSA-Konferenz: Tagungsband. Hrsg.: P. Von Both, 295–302.

González-Torres, M., Pérez-Lombard, L., Coronel, J. F., Maestre, I. R., &
Yan, D. (2022). A review on buildings energy information: Trends,

77

https://doi.org/10.1186/s40965-018-0042-y
https://github.com/tudelft3d/3DCityDB-Tools-for-QGIS/blob/master/user_guide/3DCityDB-Tools_UserGuide_0.8.1.pdf
https://github.com/tudelft3d/3DCityDB-Tools-for-QGIS/blob/master/user_guide/3DCityDB-Tools_UserGuide_0.8.1.pdf
https://doi.org/https://doi.org/10.1016/j.egyr.2020.07.020
https://doi.org/https://doi.org/10.1016/j.egyr.2020.07.020
https://doi.org/10.1186/s40965-018-0055-6
https://doi.org/10.1186/s40965-018-0055-6

end-uses, fuels and drivers. Energy Reports, 8, 626–637. https ://
doi.org/https://doi.org/10.1016/j.egyr.2021.11.280

Graham, D. (1989). Incremental development: Review of nonmonolithic
life-cycle development models. Information and Software Technology,
31(1), 7–20.

Gröger, G., Kolbe, T. H., Nagel, C., & Häfele, K.-H. (2012). OpenGIS
City Geography Markup Language (CityGML) Encoding Stan-
dard, Version 2.0.0. OGC Document No. 12-019, 344. https://portal.
opengeospatial.org/files/?artifact id=47842

Huld, T., Müller, R., & Gambardella, A. (2012). A new solar radiation
database for estimating pv performance in europe and africa. Solar
Energy, 86(6), 1803–1815. https://doi.org/https://doi.org/10.
1016/j.solener.2012.03.006

Jakubiec, J. A., & Reinhart, C. F. (2013). A method for predicting city-
wide electricity gains from photovoltaic panels based on lidar and
gis data combined with hourly daysim simulations. Solar Energy,
93, 127–143. https://doi.org/https://doi.org/10.1016/j.solener.
2013.03.022

Kim, D. W., Kim, Y. M., & Lee, S. E. (2019). Development of an en-
ergy benchmarking database based on cost-effective energy per-
formance indicators: Case study on public buildings in south ko-
rea. Energy and Buildings, 191, 104–116. https : / / doi . org / https :
//doi.org/10.1016/j.enbuild.2019.03.009

Kolbe, T. H. (2009). Representing and exchanging 3d city models with
citygml. In 3d geo-information sciences (pp. 15–31). Springer.

Korfiati, A., Gkonos, C., Veronesi, F., Gaki, A., Grassi, S., Schenkel, R.,
Volkwein, S., Raubal, M., & Hurni, L. (2016). Estimation of the
global solar energy potential and photovoltaic cost with the use
of open data. International Journal of Sustainable Energy Planning and
Management, 9, 17–30.

Kutzner, T., Hijazi, I., & Kolbe, T. H. (2018). Semantic modelling of 3d
multi-utility networks for urban analyses and simulations: The
citygml utility network ade. International journal of 3-D information
modeling (IJ3DIM), 7(2), 1–34.

Ledoux, H., Arroyo Ohori, K., Kumar, K., Dukai, B., Labetski, A., & Vi-
talis, S. (2019). Cityjson: A compact and easy-to-use encoding of
the citygml data model. Open Geospatial Data, Software and Stan-
dards, 4(1), 1–12.

Machete, R., Falcão, A. P., Gomes, M. G., & Rodrigues, A. M. (2018). The
use of 3d gis to analyse the influence of urban context on buildings’
solar energy potential. Energy and Buildings, 177, 290–302.

78

https://doi.org/https://doi.org/10.1016/j.egyr.2021.11.280
https://doi.org/https://doi.org/10.1016/j.egyr.2021.11.280
https://portal.opengeospatial.org/files/?artifact_id=47842
https://portal.opengeospatial.org/files/?artifact_id=47842
https://doi.org/https://doi.org/10.1016/j.solener.2012.03.006
https://doi.org/https://doi.org/10.1016/j.solener.2012.03.006
https://doi.org/https://doi.org/10.1016/j.solener.2013.03.022
https://doi.org/https://doi.org/10.1016/j.solener.2013.03.022
https://doi.org/https://doi.org/10.1016/j.enbuild.2019.03.009
https://doi.org/https://doi.org/10.1016/j.enbuild.2019.03.009

Mainzer, K., Fath, K., McKenna, R., Stengel, J., Fichtner, W., & Schult-
mann, F. (2014). A high-resolution determination of the technical
potential for residential-roof-mounted photovoltaic systems in ger-
many. Solar Energy, 105, 715–731.

Martıénez-Rubio, A., Sanz-Adan, F., Santamarıéa-Peña, J., & Martıénez,
A. (2016). Evaluating solar irradiance over facades in high building
cities, based on lidar technology. Applied energy, 183, 133–147.

Mavromatidis, G., Orehounig, K., Richner, P., & Carmeliet, J. (2016). A
strategy for reducing co2 emissions from buildings with the kaya
identity – a swiss energy system analysis and a case study. Energy
Policy, 88, 343–354. https://doi.org/https://doi.org/10.1016/j.
enpol.2015.10.037

Nagel, C., & Zhihang, Y. (2023). 3dcitydb 5.0 workshop [5CC+].
Nguyen, H. T., & Pearce, J. M. (2012). Incorporating shading losses in so-

lar photovoltaic potential assessment at the municipal scale. Solar
Energy, 86(5), 1245–1260.

OECD. (2020). Cities in the world: A new perspective on urbanisation.
https://doi.org/https://doi.org/10.1787/d0efcbda-en

Open Geospatial Consortium. (1999). Opengis simple features specifica-
tion for sql. revision 1.1.

Pantelios, K. (2022). Development of a QGIS plugin for the CityGML 3D
City Database. http ://resolver. tudelft .nl/uuid : fb532bef - 81b9-
482b-921a-e7ce907cb544

QGIS. (2023). Qgis python plugins repository. Retrieved May 18, 2023, from
https://plugins.qgis.org/plugins/

QGIS-Python-API. (2018). Class: Qgsvectorlayer. Retrieved April 20, 2023,
from https : / / www . qgis . org / pyqgis / 3 . 0 / core / Vector /
QgsVectorLayer.html

Qt-Project. (n.d.). Qt project documentation. Retrieved April 20, 2023, from
https://doc.qt.io/qt-6/qmlapplications.html

Redweik, P., Catita, C., & Brito, M. (2013). Solar energy potential on roofs
and facades in an urban landscape. Solar energy, 97, 332–341.

Sherman, G., Sutton, T., & BLAZEK Rand LUTHMAN, L. (2005). Quan-
tum gis user guide–version 0.7. 4 seamus.

Stadler, A., Nagel, C., König, G., & Kolbe, T. H. (2009). Making inter-
operability persistent: A 3d geo database based on citygml. In 3d
geo-information sciences (pp. 175–192). Springer.

The 3D City Database. (n.d.). The 3d city database user manual. Retrieved
May 18, 2023, from https://3dcitydb- docs.readthedocs. io/en/
latest/index.html

79

https://doi.org/https://doi.org/10.1016/j.enpol.2015.10.037
https://doi.org/https://doi.org/10.1016/j.enpol.2015.10.037
https://doi.org/https://doi.org/10.1787/d0efcbda-en
http://resolver.tudelft.nl/uuid:fb532bef-81b9-482b-921a-e7ce907cb544
http://resolver.tudelft.nl/uuid:fb532bef-81b9-482b-921a-e7ce907cb544
https://plugins.qgis.org/plugins/
https://www.qgis.org/pyqgis/3.0/core/Vector/QgsVectorLayer.html
https://www.qgis.org/pyqgis/3.0/core/Vector/QgsVectorLayer.html
https://doc.qt.io/qt-6/qmlapplications.html
https://3dcitydb-docs.readthedocs.io/en/latest/index.html
https://3dcitydb-docs.readthedocs.io/en/latest/index.html

The PostgreSQL Global Development Group. (2023a). Create type. Re-
trieved June 2, 2023, from https ://www.postgresql .org/docs/
current/sql-createtype.html

The PostgreSQL Global Development Group. (2023b). Create view. Re-
trieved June 2, 2023, from https ://www.postgresql .org/docs/
current/sql-createview.html

The Qt Company. (2023a). QPushButton Class. Retrieved May 19, 2023,
from https://doc.qt.io/qt-6/qpushbutton.html

The Qt Company. (2023b). Signals Slots. Retrieved March 13, 2021, from
https://doc.qt.io/qt-5/qgradient.html

van Loenen, B. (2006). Developing geographic information infrastructures: The
role of information policies. IOS Press.

Vitalis, S., Arroyo Ohori, K., & Stoter, J. (2020). Cityjson in qgis: Devel-
opment of an open-source plugin. Transactions in GIS, 24(5), 1147–
1164.

Welle Donker, F. (2018). Funding Open Data. https://doi.org/10.1007/
978-94-6265-261-3 4

Widl, E., Agugiaro, G., & Peters-Anders, J. (2021). Linking semantic 3d
city models with domain-specific simulation tools for the planning
and validation of energy applications at district level. Sustainability,
13(16), 8782.

Willman, J. M. (2022). Beginning PyQt. Apress. https://doi.org/10.1007/
978-1-4842-7999-1

Yao, Z., Nagel, C., Kunde, F., Hudra, G., Willkomm, P., Donaubauer, A.,
Adolphi, T., & Kolbe, T. H. (2018). 3DCityDB - a 3D geodatabase so-
lution for the management, analysis, and visualization of semantic
3D city models based on CityGML. Open Geospatial Data, Software
and Standards, 3(1), 5. https://doi.org/10.1186/s40965-018-0046-7

Yuan, J., Farnham, C., Emura, K., & Lu, S. (2016). A method to estimate
the potential of rooftop photovoltaic power generation for a region.
Urban Climate, 17, 1–19.

Zanzoterra, S. (2018). Evaluation of qt as gui framework for accelerator
controls.

Zhang, X. Q. (2016). The trends, promises and challenges of urbanisation
in the world. Habitat international, 54, 241–252.

80

https://www.postgresql.org/docs/current/sql-createtype.html
https://www.postgresql.org/docs/current/sql-createtype.html
https://www.postgresql.org/docs/current/sql-createview.html
https://www.postgresql.org/docs/current/sql-createview.html
https://doc.qt.io/qt-6/qpushbutton.html
https://doc.qt.io/qt-5/qgradient.html
https://doi.org/10.1007/978-94-6265-261-3_4
https://doi.org/10.1007/978-94-6265-261-3_4
https://doi.org/10.1007/978-1-4842-7999-1
https://doi.org/10.1007/978-1-4842-7999-1
https://doi.org/10.1186/s40965-018-0046-7

	Introduction
	Motivation
	Research Question and Objectives
	Scope of Research
	Research Organisation
	Theoretical Background and Related Work
	Theoretical Background
	CityGML
	Energy ADE

	Related Work
	The 3D City Database
	QGIS
	Qt
	Related QGIS Plug-ins

	3DCityDB-Tools for QGIS
	Introduction
	Back-End
	Defining a Layer
	Creating a Layer
	Layer Metadata
	Updating a Layer

	Front-End
	QGIS Package Administrator
	Layer Loader
	Bulk Deleter

	Extending 3DCityDB-Tools with ADE Support
	Method
	Introduction
	Incremental Development
	Iterative Development
	Back-End: Rethinking the Layer Concept
	Front-End: Enabling ADE Support
	Tools and Data

	Implementation
	Introduction
	Back-End
	Front-End

	Conclusion
	Future Work

	Reproducibility self-assessment
	Marks for each of the criteria
	Self-reflection
	Input Data
	Methods
	Results

