
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Residual Connections
in Spiking Neural
Networks
Skipping deeper:
Unveiling the Power of Residual Connections in
Multi-Spiking Neural Networks

Àlex De Los Santos Subirats

Residual
Connections in
Spiking Neural

Networks
Skipping deeper:

Unveiling the Power of Residual Connections in
Multi-Spiking Neural Networks

by

Àlex De Los Santos Subirats

Student Name Student Number

De Los Santos Subirats 5090520

Faculty: Electrical Engineering, Mathematics and Computer Science, Delft

Cover: Cover art generated by Dream AI
Style: TU Delft Report Style, with modifications by Daan Zwaneveld

Preface

The current report of Residual Connections in Spiking Neural Networks - Skipping deeper: Unveiling the
Power of Residual Connections in Multi-Spiking Neural Networks presents the work done for my master’s
graduation project. Research was conducted within the Computer Vision Lab of TU Delft, under the super-
vision of Dr. J.C. van Gemert, Dr. N. Tömen, and A. Micheli, the later of the two having been my daily
co-supervisors.
I selected this topic because I was interested in a challenge and working on implementing something new,
and after A. Micheli’s lecture on Spiking Neural Networks as part of the “Computer Vision by Deep Learning
Seminar” I was fascinated by this novel concept of spiking neural networks. For that, I would like to thank
her for that lecture and Dr. J.C. van Gemert for teaching that seminar.
During these past few months, I have learned and struggled to implement these networks at a level of
detail I have never experienced before. Gaining a deeper understanding of the calculations behind SNNs and
traditional ANNs. For their help and guidance during these times I would like to thank Dr. N. Tömen and A.
Micheli, it has been a pleasure to work with you and I hope our paths cross again in the future. Furthermore,
I would like to thank Dr. M. Weinmann for joining the thesis committee as an external member.
Finally and on a more personal note I would like to thank my family and friends for their support during
this time. Thank you to my parents for instilling in me a love for science and computers, and a work ethic
that has been of great help during my academic career until now. Thank you to my little brother who I am
incredibly proud of. I would like to thank my wonderful girlfriend whom I love very much for all her daily
love and support, thank you for being part of my life. Finally, I would like to acknowledge my friends and old
roommates of the great Palazzo house who have made the experience of this master’s, and my bachelor’s
before that some of the best years of my life.

Àlex De Los Santos Subirats
Delft, August 2024

i

Contents

Preface i

Nomenclature iv

1 Introduction 1

Academic Article 13

2 Neural Networks 13
2.1 Image Classification Problem and Datasets . 13
2.2 Training Process . 13
2.3 Network Layers . 14

2.3.1 Fully Connected Layers and Multi-Layer Perceptrons 14
2.3.2 Convolutional Layers and Convolutional Neural Networks 15

2.4 backpropagation . 18
2.4.1 Loss Calculation . 18
2.4.2 Gradient Descent . 18
2.4.3 backpropagation Calculations, The Chain Rule . 19

2.5 Hyperparamater Optimization . 21
2.6 Overfitting . 21

3 Spiking Neural Networks 23
3.1 Neuromorphic Computing . 23
3.2 Spike Encoding . 23
3.3 Forward Pass . 24

3.3.1 Neurons . 24
3.3.2 Intuition Behind Spike Cascading . 25

3.4 Dead Neuron Problem . 25
3.5 Training Spiking Neural Networks . 26

3.5.1 Shadow Training . 26
3.5.2 Spike backpropagation and Surrogate Gradients . 26
3.5.3 Spike Time backpropagation . 28

3.6 Our Implementation . 28
3.6.1 Our Neurons . 28
3.6.2 Spike Time Calculations In The Forward pass . 29
3.6.3 Spike Time Loss Function . 30
3.6.4 Closed Form Solution . 30
3.6.5 Backward pass . 31

4 Residual Connections 33
4.1 What Is A Residual Connection? . 33
4.2 Why They Are Used? . 33
4.3 Residual Connections in Spiking Neural Networks . 34

4.3.1 How Are They Implemented In Literature? . 34
4.3.2 Banishing Spikes . 34
4.3.3 Why Residual Connections Are Important In Spiking Neural Networks? 34
4.3.4 How They Can Be Implemented In Our Scenario? 35
4.3.5 Forward Pass With Residual Connections . 35
4.3.6 backpropagation With Residual Connections . 35
4.3.7 Implementation Of The Residual Connection . 36
4.3.8 Improvement To The Existing Code Base . 37

ii

Contents iii

4.3.9 Addition Of Learning Rate Schedulers . 38
References 39

5 Source Code Example 41

Nomenclature

Abbreviations
Abbreviation Definition
NNs Neural Networks
ANNs Artificial Neural Networks
SNNs Spiking Neural Networks
MLP Multi Layer Perceptron
CNN Convolutional Neural Network

Nomenclature
Nomenclature Definition
Jump connection The residual connection channel that skips d lay-

ers.
Residual connection The residual connection channel that has flowed

though the d layers.

iv

1
Introduction

In recent times the world of artificial intelligence has seen an incredible amount of progress in the recent
years, tasks that were once considered extremely hard, such as image recognition and generation, and large
natural language models amongst other things have been achieving incredible results. However, in most of
these fields, the marvel that is the human brain continues to outperform current neural networks (NN) and
deep learning (DL) models. This is especially the case in visual recognition tasks, where a human brain can
recognize objects and patterns with truly astonishing accuracy.
That raises the question, if the brain is so good at this sort of task, why not try and copy it? This very
question is what has led to the development of Spiking Neural Networks. These networks attempt to
model the way the human brain works by using Neurons that output Spikes over time to other neurons to
generate an output. This idea of copying the brain, as one might expect, is as difficult as one might expect.
Significant technical and mathematical problems need to be considered when implementing SNNs. Over the
last few years, these problems have been slowly overcome, resulting in the state-of-the-art neuron model at
the time of writing: a network with multi-spiking precise time neurons that can learn through precise time
backpropagation [2]. It was the release of this paper, and the development of the neuron described in it,
as well as its limitations that gave rise to this thesis. The networks built with this neuron were limited in
depth by silent outputs as the network grew deeper. In order to tackle this problem, we hypothesized that
the addition of residual connections to this architecture would allow for deeper and better networks.
This thesis is structured in two main blocks. The first is an academic paper containing the main contribution
and results of this thesis, while the second is a general overview of the field that covers all required topics
to understand the aforementioned paper. We will first go over some relevant neural network knowledge,
followed by a section on spiking neural networks (SNNs), and finally, a section on residual connections,
where we go over what residual connections are, their uses, their past implementations in the literature and
finally how we went about implementing them.

1

Residual Connections in Spiking Neural Networks (SNN)

Àlex De Los Santos Subirats
TU Delft

Mekelweg 5, 2628 CD Delft
alex.delossantossubirats@student.tudelft.nl

Abstract

In recent years the emergence of Spiking Neural Net-
works (SNNs) has shown that these networks are a promis-
ing alternative to traditional Artificial Neural Networks
(ANNs) due to their low-power computing capabilities and
noise robustness. Nevertheless, in recent approaches, they
have either strayed away from spike time backpropaga-
tion, used discrete time, single spike neurons, and/or limited
themselves to shallow networks. These approaches limit the
potential of SNNs by sacrificing significant aspects of what
makes them special in order to have a functional network.

It is for this reason that we believe that, the implemen-
tation of residual connections, allowing a model that has
multi-spiking neurons, precise time and spike time back-
propagation is the path to allow these networks to truly
shine. As it will solve one of this model’s most severe lim-
itations which prevent it from being used to build deeper
networks, the banishing of spikes at a deeper depth. Hence
we aim to remedy this problem by feeding inputs from fur-
ther up the network to revitalize the spike counts at deeper
layers.

In this paper, we explore the implementation of residual
connections in precise time multi-spiking neural networks
as a way of solving the disappearing spikes problem that
inhibits spike time backpropagation. We explore two al-
ternatives in the implementation of the residual connection
and we analyze how they affect the accuracy of the network
as the depth increases in both Multi-Layer Perceptrons and
Convolutional Neural Networks. We also developed an ar-
chitecture to allow for swapping of the fuse function in or-
der to take full advantage of the flexibility that precise time
provides us. Results show that the implemented residual
connections allow for deeper training, which has the poten-
tial to aid in the network’s performance, although in some
cases some hurdles remain.

1. Introduction

The field of computer vision has long been dominated
by conventional neural networks, also called artificial neu-
ral networks. For the sake of clarity in this paper we will
refer to them as Artificial Neural Networks (ANNs). Yet,
in recent years there has been a parallel interest in so-called
Spiking Neural Networks (SNNs), these networks attempt
to more closely resemble brain biology and are comprised
of spiking neurons instead of linear operations [26]. These
networks in theory show a lot of promise as they imitate
the way that neurons fire in biological brains [25]. In other
words, these networks process information through sparse
asynchronous events called spikes.

This design brings the main benefit that they can be im-
plemented in brain-like neuromorphic hardware, for a fast
and ultra-low power solution to power-efficient neural net-
works [1, 10, 18, 21]. While digital components for the im-
plementation of neuromorphic systems do exist [1,10] these
systems perform with better processing time and power con-
sumption in specialized hardware.

In order to further understand SNNs we should look
at the advantages and disadvantages of past approaches to
these networks [19].

1.1. Advantages Of SNNs

This approach of attempting to copy biology has a very
promising set of advantages The main motivation for the
use of SNNs is the fact that brains show an enviable perfor-
mance in real-world tasks, and show such performance with
an incredibly small amount of power consumption when
compared to ANNs [19]. It is therefore not surprising that
there has been a push to attempt to recreate their structure
and work to use those properties for tasks such as image
recognition.

Once trained, these networks are also able to output their
results faster than ANNs as can be seen in [8]. This can be
useful in implementations where the information is time-
sensitive. Building on that they have shown a robustness to
noise when compared to their ANN counterparts [15] which

has great benefits and allows the network to better deal with
noisy inputs.

Adding to that, the lower power consumption of these
systems as seen in [8, 24], make them ideal for applications
in limited power environments such as battery-powered
robots or drones. It is also interesting to note that their in-
spiration, the human brain, has the ability to perform similar
tasks with an ever lower power consumption [22].

Due to the nature of the network and its inspiration, it
is a natural match for neuromorphic computational devices,
running these networks in such devices makes the above
factors stand out [19].

1.2. Downsides Of SNNs

These networks also come with problems when it comes
to their implementation, which has led many approaches in
the past to make compromises or use workarounds.

The first downside is the fact that SNN approaches fall
behind in terms of performance on the traditional bench-
mark datasets [4,13,14]. This can be attributed to a problem
with the existing benchmark datasets, as they were designed
with ANNs in mind.

The second downside with SNNs is the fact transfer
function is sometimes none differentiable, which makes the
application of backpropagation techniques used in ANNs
difficult [19].

In order to solve these complications with the transfer
function some approaches [8] have opted for limiting the
amount of spikes a neuron can output to a single one. This
makes backpropagation easier but has the downside of lim-
iting the amount of information that a neuron can transmit.
In this paper, we will be using a multi-spike network that
allows for several spikes per neuron on each layer.

A very common compromise that past approaches do, in
particular those adding residual connections to SNNs is the
use of discrete time [16, 23]. This is done for two main
reasons, firstly it makes backpropagation simpler, and sec-
ondly, it allows for the use of binary logic operations in the
residual connection fuse point. On the other hand, similar
to limiting the spikes per neuron this causes the network to
be able to transmit less precise information.

Finally, and more relevantly for the purposes of this writ-
ing is the issue with disappearing spikes limiting the depths
of the networks, as is the case in [2]. This phenomenon
refers to each layer producing fewer spikes than the pre-
vious layer until no spikes are being outputted beyond a
certain layer. In our approach, just as is the case in the
BATS approach [3], these banishing spikes are the source
highlighted by our use of spike time backpropagation. This
means that backpropagation is based on the difference be-
tween the desired spike time and the obtained spike time. In
this scenario no backpropagation can be applied if there is
no spike, and hence no corresponding spike time. Despite

this problem spike time backpropagation is a very desirable
method due to its accuracy, as no the backpropagation is
performed on the actual values flowing through the network
without the use of workarounds, as would be the case if we
used methods such as shadow training or surrogate gradi-
ents.

1.3. Contributions

Our main goal is to propose a method of implementing
residual connection that can allow spike time backpropaga-
tion methods such as [2] to function at deeper depths. We
expect that this will improve the network’s performance. In
other words, we aim to explore the possibility of deeper
and more accurate Spiking Neural Networks by answering
the following questions: Do residual connections allow for
training of deeper SNN? What is the best way to implement
said residual connections? and Do these deeper SNNs see
an increase in performance?.

In this work, we explore the possible methods of imple-
menting residual connections in SNN based on the neurons
developed by [3]. We test these connections at different
depths, datasets and architectures. Our main contributions
are:

1. Creation of an architecture to allow for the use of resid-
ual connections in SNN.

2. The development of two novel fuse functions which
are designed to work in multi-spiking continuous time
in both MLP and CNN architectures.

3. The training of deeper networks thanks to the extra
neuron activity provided by these fuse functions.

4. We test the implementation of a mean shift delay to the
proposed fuse functions.

The rest of the article is structured as follows. Section
2 discusses past approaches to SNNs and residual connec-
tions. Section 3 covers the mathematical principles of the
neurons form [3] that we use as well as the modifications
done to accommodate residual connections. Finally in sec-
tions 4 and 5 we discuss the experiments we performed and
their results. Finally, we discuss our results, the possible
future research avenues and a conclusion.

2. Related Work
Having reviewed the current state of the field, we will

now examine the most relevant papers related to our ap-
proach and delineate our contributions in relation to these
works. These attempts have faced distinct challenges, such
as imprecise backpropagation [5], the limited amount of
spikes for each neuron [8], discrete-time [16, 23], and lim-
ited depth [2].

In the past, deep SNNs have been implemented, such
as in the case of [5]. In this approach, they find two main
issues with the backpropagation calculations. First is that
SNNs use delta functions in order to represent their output
spikes, and to be able to perform traditional backpropaga-
tion you require the derivative of the output with respect to
the weight, and a delta function is non-differentiable. This
can be addressed by the use of substitute or approximate
gradients, nevertheless, it will be less accurate. Second,
they have been shown to suffer from what has been termed
the “weight transport” problem [7]. For both these issues
workarounds can be used, however, these lead to a less pre-
cise transfer of information in the backwards pass.

Another notable approach is the Fast & Deep method
suggested in [8], this paper provides a closed-form solu-
tion to the spike times by restraining the synaptic and mem-
brane times. This exact expression of the spike times al-
lows for fast and accurate backpropagation, they do this by
iterating the ordered pre-synaptic spikes (spikes a layer re-
ceives). The precision of this network allowed it to be im-
plemented in analogue neuromorphic processors. Crucially
this method was the first to allow for exact backpropagation
through spikes without requiring any assumptions about the
relation between weights and spikes, allowing for novel and
more direct training techniques for SNNs upon which other
papers such as [2] have built. However, this Fast & Deep
approach only encoding allowed for a neuron to fire a sin-
gle spike in each forward pass, so again it is limited.

Building on the last paper and attempting to fix the sin-
gle spike per neuron issue is the BATS approach seen in [2],
this paper’s neuron implementation is the one upon which
we build our own residual network approach. This method
allowed for the multiple spikes per neuron and hence the use
of rate encoding rather the latency encoding. Yet, suffered
from the banishing spikes problem, only allowing for shal-
low networks, limiting its effectiveness and applications.

Finally, it is important to note previous attempts to im-
plement residual connections in spiking neural networks
such as [12, 16, 23]. These approaches have shown promis-
ing results with the use of binary functions to join the dif-
ferent inputs from two input layers and have shown that the
addition of a delay, especially if it is learnt can be beneficial
to the network’s performance. In particular, the case of [12]
demonstrates that such networks are capable of learning
more complex image recognition tasks, such as CIFAR [13]
and ImageNet [20]. However, these approaches only have
been implemented in discrete timings for the spikes which
makes them require modifications to be implemented in pre-
cise time.

Hence our goal is to build on the [2] multi-piking pre-
cise time neuron with precise spike time backpropagation
by adding residual connections to it in order to allow for
deeper networks.

3. Approach
In this research, we intend to build an exact-time multi-

spiking neural network architecture with residual connec-
tions in both MLP and CNN architectures. We aim to inves-
tigate if these changes can allow for the training of deeper
networks and how those deeper networks perform. In this
we are inspired by [9] with the aim to solve the limitations
of the [3] approach.

In this section we shall cover the neurons used in our ap-
proach, the different ways we implement the residual con-
nection, the delay used, and the learning rate schedulers de-
veloped.

3.1. Neurons

Like [2] we use a network of Current-Based Leaky
Integrate-and-Fire neurons with a soft reset of the mem-
brane potential [2, 6, 8]. This means that the membrane po-
tential of neuron j in layer l referred as u(l,j) is given by the
following equations:

u(l,j)(t) =
N(l−1)∑
i=1

wl
i,j

n(l−1,i)∑
z=1

ϵ(t−t(l−1,i)
z)−

n(l,j)∑
z=1

η(t−t(l,j)z)

And then:

du(l,j)

dt
= −1

τ
u(l,j)(t) + g(l,j)(t)− ϑδ(u(l,j)(t)− ϑ)︸ ︷︷ ︸

reset

dg(l,j)

dt
= −1

τ
g(l,j) +

N(l−1)∑
i=1

w
(l)
i,j

n(l−1,i)∑
z=1

δ(t− t(zl − 1, i))︸ ︷︷ ︸
Pre-synaptic spikes

where:

δ =

{
+∞ x = 0

0 otherwise

• δ is a delta function that is used as the spike with∫ +∞
−∞ δ(x) dx = 1.

• N (i) represents the number of neurons at layer l.

• n(l,j) is the number of spikes of neuron j in layer l.

• t
(l,j)
k is the kth spike at of neuron n(l,j).

• wl
i,j is the weight that represents the intensity of the

connection between neuron i in layer l− 1 and neuron
j in layer l.

• g(l,j) is the post-synaptic current, τ and τs the mem-
brane and synaptic time constants that control the de-
cay of the membrane potential and the post-synaptic
current respectively.

• ϑ is the activation threshold of the neuron at which a
post-synaptic spike is emitted, and then resets u(l,j) by
reducing the potential by η(t).

with ϵ(t) being the Post-Synaptic Potential (PSP) kernel
determining how the neuron reacts to pre-synaptic times,
and η(t) being the refractory kernel determining the reset
behaviour after a neuron spike.

3.2. Gradient Calculations

We will now briefly outline the process used to calcu-
late the gradient for the weights of this network. The fact
that the spike timing now has a closed-form solution is what
allows these exact gradient calculations (this is the same
solution used in [2]). A weight w(l)

i,j between neuron pre-
synaptic neuron i and post-synaptic neuron j at layer l re-
ceives an error δ(l,j)k though backpropagation, this spike er-
ror is calculated in the same way as in [2]. This lead to a
change w

(l)
i,j → w

(l)
i,j − λ∆w

(l)
i,j

∆w
(l)
i,j =

n(l,j)∑
k=1

∂L
∂t

(l,j)
k

∂t
(l,j)
k

w
(l)
i,j

=

n(l,j)∑
k=1

δ
(l,j)
k

∂t
(l,j)
k

w
(l)
i,j

In short, the gradient depends on two main components:
The first one is the loss associated with the weight δ(l,j)k ,

which contains both intra-neuron and inter-neuron depen-
dencies (how spikes from other neurons and the previous
spikes before k of this neuron have effected the error).
The calculations behind obtaining said value are covered in
equation 2 for the res

The second one consists of ∂t
(l,j)
k

w
(l)
i,j

, so how this weight

has affected the timing of the spike k, the precise formula

for ∂t
(l,j)
k

w
(l)
i,j

can be found in the [2] paper and in this paper’s

accompanying thesis document.

3.3. Loss Function

We use a loss function that aims to minimize the distance
between the desired spike count and the number of spike the
neuron outputted. Hence the loss function is:

L =
1

2

n(o)∑
j=1

(
yj − n(o,j)

)2

Where:

• yj is the desired amount of output spikes for neuron i.

• n(o,j) is the obtained number of output spikes from
neuron j in the output layer o.

• n(o) is the number of neurons in the output layer o.

The target number of spikes on the correct and incorrect
labels are constant hyperparameters usually set to a ratio of
1/10.

Figure 1. In this figure you can see on the top how a fuse function
in a residual connection in discrete can be a logical function (in
this case OR). While in the case of precise time, we have a lot
more flexibility. In the “Average” entry, we display the result of
applying the average fuse function to the two precise time inputs,
while in the “Append” case we show a representation of applying
the append fuse function to those same precise inputs.

3.4. Residual Connections

Our approach builds on [3] by adding residual connec-
tions to a network with precise and exact backpropagation
on neurons that can fire multiple times. The aim is to allow
for the networks to learn when using deeper architectures
with the goal of having this extra depth aid in achieving
better performance in more complex problems.

These residual connections are implemented in the form
of Residual Layers that help add the outputs of a layer fur-
ther up the network into the input for the Residual Layer
and then this layer computes an output based on both the
Previous Layer and the Jump Layer. The reason for this is
that the addition or fusing of spikes in precise time is more
complex than when you use discrete timing and we there-
fore can not use a binary logic function like in [23] as can
be seen in figure 1.

These residual connections allow for precise time and
multiple spikes just as the [3] implementation does.

3.4.1 Fuse Functions

There are many ways to combine of the inputs from the
Jump and Previous layers, in this section we will go over the
options and the justifications for each approach. The first
two describe approaches for fully connected layers while
the last one describes an approach for a convolutional ar-
chitecture.

The first of these fuse functions, is called the average
fuse function. As the name implies it is a simple averaging
out of the spike times, the results of this fuse function can
be seen in figure 1 for a single neuron. In our implementa-

tion, the spikes are represented by a matrix of shape (b,n, s);
where b is the batch size, n is the number of output neurons
from the previous layer, and s is the maximum number of
spikes a neuron can output. For this fuse function it is nec-
essary that both inputs be the same b and n. If that is given
the procedure is simple: for each set of output spikes for
a neuron in the previous layer we check it with the equiv-
alent neuron in the Jump Layer. Since for a given neuron
in a given batch, the spikes are sorted from earliest to lat-
est we take inspiration from both [23] and regular residual
connections checking both neurons have a spike in that po-
sition, if they do we take the average of both spike times if
only one of them has a spike we take that spike time (sim-
ilar to an OR gate), and if none of them have given a spike
we do not output a spike. This function is simple and takes
inspiration from past approaches using boolean fuse func-
tions [23], however, it has the downside of information loss
as with the averaging out operation you fuse two precise
spike times, that could be carrying different information,
into one.

The second fuse function is one we shall refer to as the
Append fuse function seen in figure 1. As the name im-
plies we append the outputs from both the Jump and Pre-
vious layers into a single output of size with a number of
neurons the size of the sum of the number of neurons from
both layers. In this way we avoid the problem of informa-
tion loss of the previous approach, this, however, requires
more weight and therefore increases training time and cost.

Finally, the Convolutional fuse functions are the ver-
sions of the above append and average fuse functions but
designed for a convolutional architecture. These functions
are similar to the previously described fuse functions, ex-
cept for some changes to make them fit the architecture and
that in the case of the append convolutional function, in-
stead of appending on the neuron dimensions we append on
the channel dimensions of the convolutional layer. As an
example, this means that if the Previous Layer has 30 chan-
nels and the Jump Layer has 15 then the residual layer will
receive an input of 45 channels.

The math behind the implementation for the append
fuse function and its convolutional counterpart are de-
scribed in equations 1 for the forward pass, and equation
2 for the loss associated with the kth spike of neuron j in
layer l, formally referred to as δ(l,j)k . In comparison to the
equations of the non-residual forward and backward pass
equations described in [3] the main difference is the input
from the jump connection at layer l− d in the forward pass
and a change in the inter-neuronal component of the back-
ward pass equation. Equation 2 shows the forward pass for
a residual layer l that receives inputs from layer l − 1 and
jump layer l+ d. An effort has been made to keep the same
notation as in the [2] paper, similarly equation 2 shows the
backward pass from a layer l that has a jump to a layer l+d.

For the layers without residual connections, they use a ver-
sion of equation 2 without the Inter Neuronal (part 2)
component.

u(l,j)(t) =
N(l−1)∑
i=1

wl
i,j

n(l−1,i)∑
z=1

ϵ(t− t(l−1,i)
z)

+
N(l−d)∑
u=1

wl
u,j

n(l−d,u)∑
z=1

ϵ(t− t(l−d,u)
z)︸ ︷︷ ︸

Input from the jump connection at layer l − d

−
n(l,j)∑
z=1

η(t− t(l,j)z)

(1)

δ
(l,j)
k :=

∂L
∂t

(l,j)
k

= ϕ
(l,j)
k + µ

(l,j)
k =(∑N(l+1)

i=1

∑n(l+1,i)

z=1
∂L

∂t
(l+1,i)
z

∂t(l+1,i)
z

∂t
(l,j)
k

)
2︸ ︷︷ ︸

ϕ
(l,j)
k → Inter Neuronal (part 1)

+

(∑N(l+d)

i=1

∑n(l+d,i)

z=1
∂L

∂t
(l+d,i)
z

∂t(l+d,i)
z

∂t
(l,j)
k

)
2︸ ︷︷ ︸

ϕ
(l,j)
k → Inter Neuronal (part 2)

+

n(l,j)∑
z=k+1

∂L
∂t

(l,j)
z

∂t
(l,j)
z

∂t
(l,j)
k︸ ︷︷ ︸

µ
(l,j)
k →Intra Neuronal

(2)

where:

• L is the loss value obtained from calculating the loss
of the last forward pass using the method described in
section 3.3.

• δ
(l,j)
k loss associated with the kth spike of neuron j on

layer l.

• N (i) represents the number of neurons at layer l.

• n(l,j) is the number of spikes of neuron j in layer l.

• t
(l,j)
k is the kth spike at of neuron n(l,j).

• wl
i,j is the weight that represents the intensity of the

connection between neuron i in layer l− 1 and neuron
j in layer l.

In the case of the average fuse function and its convolu-
tional pair the math is more complex as the effect from the
different layers depends on the relation between the num-
ber and times of the spikes from the two input layers as
described earlier.

Figure 2. In this figure we show how the fuse function would affect
the input from the Previous layer and Residual layer as a means to
feed it into the residual layer. Note that the inputs are fused before
the weights of the layer so that the network and that depending on
the fuse function the number of wights changes (in this diagram
there would be two wights in the Average function and 4 in the
case of the Append).

For all of these fuse functions the possibility of adding
a delay, as they do in [16], is very intuitive. This gives the
possibility of this delay being made a learned variable, this
nonetheless, is beyond the scope of this paper.

An overlook of how these fuse functions interact with the
architecture and how the residual layers are implemented
can be seen in figure 2.

3.5. Delay

We implement the possibility of a time delay for the
spikes from the jump connection. The delay amount is cal-
culated such that the average of both spike clusters are lo-
cated at the same point in time. This is done by calculating
the mean of the spike times from both the residual and jump
connections mtr and mtj respectively and then calculating
the difference to delay all jump connection spikes by the
given amount.

The goal with this is to attempt to give equal conditions
to both sets of spikes so that neither one nor the other suffers
the risk of being ignored due to arriving too early or too late.
Yet, as seen in the results this was not the case.

3.6. Learning Rate Scheduler

Finally, it is worth noting that we implemented a more
advanced learning rate scheduler than the one in [2], which
simply reduces the learning rate by a fixed amount every
N epochs. In our case, we use two different learning rate
schedulers, one that reduces the learning rate when the slope
of the last five epochs is higher than -0.1. The second one
reduces the learning rate by the same fraction when the low-
est training loss epoch was more than five epochs away.

4. Methodology

In this section, we will go over how we tested the previ-
ously mentioned residual layers. For the purpose of testing
the performance of these networks at different depths, we
shall use the following benchmark datasets: MNIST, EM-
NIST, Fashion MNIST, and CIFAR-10.

4.1. Multi Layer Perceptrons

We decided to test on Multi Layer Perceptrons as they
are one of the simplest architectures and would serve as a
proof of concept as well as a solid point of comparison with
the approach in [3]. Unlike in the [3] approach we used
layers consisting of 600 neurons each.

When testing the Fully Connected Residual Layer we
used a standard multi-layer architecture with residual con-
nections skipping two layers, like it was done in the [9] pa-
per. With the goal of testing how these residual connections
perform, we compared them on the four above-mentioned
datasets with different depths.

Since we are interested in how the residual connections
affect the network’s ability to be deeper we test using the
following depth: 1, 4 (5), 9, and 13. The reason for these
numbers is the following. Depth of 1 is the baseline as used
in [2], the depth of 4 (5 in the case of EMNIST) is the maxi-
mum depth to which the networks without residual connec-
tions can be stretched, then 9 and 13 are depths that have
additional residual connections, as we are using a jump of 3
layers every 4 as they do in [9].

4.2. Convolutional Neural Network

After the MLP tests, we decided to test on an Convo-
lutional Neural Network due to their properties of transla-
tion invariance and their ability to increase their receptive
field as depth increases. We believe that these allow them to
better shine with the added depth that residual connections
allow.

Unlike in the [3] approach we used kernels of size 5x5
with 16 channels each, we chose these values because we
wanted to increase the receptive field, but that meant we had
to limit the number of channels when compared to standard
implementations, in which the number of channels tends to
be values such as 64 channels and increase with the depth of
the layer [17]. Our CNN network consists of an input layer,
an n amount of layers, a feedforward layer and finally an
output layer. We chose this architecture as it was the sim-
plest CNN architecture and would allow us to test the effects
of the residual connections without external variables.

When testing the performance of the Convolutional
Layer and how residual connections affect the performance
of multi-spiking exact time spiking neural networks we will
test them using both fuse functions and with one, three and
four layers. The single-layer case is meant as a baseline for

the current state of the art, while the three-layer is a base-
line for the performance on the max depth the non-residual
network can achieve, finally the four-layer network is used
to show that the extra depth added thanks to the residual
connections improves results.

5. Results
In this section, we will present the experimental results

in relation to our primary research questions. To answer
them we have tested out fuse functions at different depths
with the datasets MNIST, EMNIST, Fashion MNIST, and
CIFAR-10. As mentioned in section 4 we use the MLP ex-
periments in order to test our baseline assumptions and then
attempt to exploit the benefit of our implementation in the
CNN architecture.

5.1. Do Residual Connections Allow For Training
Of Deeper SNN?

In this section, we seek to investigate if the implemented
residual connections help solve the decaying spikes prob-
lem. The fact that we can train with deeper networks is
self-evident in the result as we get an accuracy above ran-
dom chance and learning. As we expected we also saw that
the addition of residual connections kept all the layers in
the network producing output spikes. It is important to note
that in order to avoid the appearance of these “dead” layers
the frequency of residual connections and the length of the
jump needs to be similar to the max depth the network can
achieve without residual connections.

5.2. What Is Best Approach To Implement Residual
Connections?

As mentioned there are many possible ways to imple-
ment these residual connections in a precise time SNN. In
this paper, we have tested two approaches and the effects
of adding delay. In this section, we will go over the results
of the experiments performed and discuss what fuse func-
tion should be used and how the addition of delay should
be handled. For this, we will mainly focus on the results
obtained from the MLP experiments as those allow for test-
ing in a shorter time frame and due to lack of time many of
these experiments could not be performed on a CNN archi-
tecture, in addition to this MLP can provide a good baseline
on how depth affects the ability of the network to learn and
how it affects overfitting.

5.2.1 What Fuse Function Should Be Used?

When deciding what fuse function should be used one
should take into account what architecture it is being used
in, when testing both functions we saw a discrepancy be-
tween how they compared in MLP architectures and how
they compared in CNN architectures.

Layers Datasets No Residual Average Append

1 MNIST 98.2 NA NA
4 MNIST 97.6 97.8 97.2
9 MNIST No BP 96.9 97.0

13 MNIST No BP 95.1 97.1
1 EMNIST 75.3 NA NA
4 EMNIST 82.6 78.6 81.3
5 EMNIST 76.4 80.1 82.7
9 EMNIST No BP 78.7 83.1

13 EMNIST No BP 71.6 75.5
1 Fashion 88.8 NA NA
4 Fashion 88.6 89.9 88.8
9 Fashion No BP 87.2 80.7

13 Fashion No BP 75.8 77.9
1 CIFAR-10 25.8 NA NA
4 CIFAR-10 20.9 23.2 24.4
9 CIFAR-10 No BP 19.4 20.6

13 CIFAR-10 No BP 16.0 16.3

Table 1. Test accuracy of the different MLP experiment. “NA”
means that the experiments can not be run due to residual connec-
tions needing more than one layer. “No BP” refers to no back-
propagation as there are no spikes in the output. The bold entries
represent the best results at a given depth.

Layers Datasets No Residual Average Append

1 MNIST 98.9 NA NA
4 MNIST 99.6 99.8 99.8
9 MNIST No BP 99.2 99.8

13 MNIST No BP 98.0 99.8
1 EMNIST 76.7 NA NA
4 EMNIST 88.4 80.2 85.5
5 EMNIST 80.1 81.4 86.2
9 EMNIST No BP 79.2 88.5

13 EMNIST No BP 73.0 80.9
1 Fashion 91.6 NA NA
4 Fashion 99.1 98.5 99.4
9 Fashion No BP 98.9 88.7

13 Fashion No BP 87.2 87.2
1 CIFAR-10 30.6 NA NA
4 CIFAR-10 30.7 30.0 33.1
9 CIFAR-10 No BP 29.3 31.3

13 CIFAR-10 No BP 22.0 22.8

Table 2. Training accuracy of the different MLP experiment.
“NA” means that the experiments can not be run due to residual
connections needing more than one layer. “No BP” refers to no
backpropagation as there are no spikes in the output. The bold
entries represent the best results at a given depth.

In the MLP test of table 1 we saw that the average fuse
function tends to perform better, initially it would be tempt-
ing to see that this is due to the lower number of weights

Figure 3. Test accuracy obtained at the depth where the MLP net-
work still has output spikes, in this figure we can see that the ad-
dition of residual connections overall improves results, especially
at deeper layers. No Residual is shown in blue, Average is shown
in yellow, and Append is shown in green.

used in the average function when compared to the append
fuse function causing it to overfit less. Yet, this does not
seem to be the case as the training data results 2 should then
be better for Append. That then leaves us with the option
that the additional weights are not needed, as the task is rel-
atively simple, and hence they are mainly acting as a source
of noise that is decreasing the accuracy. We also believe that
the lower accuracy at these increased depths could be due to
the hyperparameters selected being imported from [3] and
therefore focused on networks of one or two layers.

On the other hand, the append function performed bet-
ter in the CNN experiments in figure 5 and table 3 as it has
more weights and less loss of information. Nevertheless,
the average function is not lagging far behind and has less
weight.

Due to the above-mentioned when using more complex
image recognition tasks, we recommend the use of a CNN
with the Append fuse function, as it seems to give the best
results, on the other hand, when doing an MLP task we sug-
gest the use of an average fuse function as it is less prone
to overfitting. Nevertheless, for different cases some trial
and error might be required, and even the possibility of cre-
ating a new fuse function implementing domain knowledge
of the given problem to fit into the architecture. For this rea-
son, we designed the code base to be able to accommodate
new fuse functions.

5.2.2 Should Non-learnable Delay Be Used?

In short, as seen in table 4 the delay was not useful and
using it produced a drop in accuracy all across the board.
This is not surprising as it is not a learnable delay, however,

Figure 4. Test accuracy results of adding delay on a 4 and 9-layer
MLP network.

implementing a learnable delay fell outside the scope of this
project. Due to the results in table 4, we stopped testing the
delay in other scenarios, with the purpose of focusing our
attention on other parts of the proposal. As it didn’t show
a significant improvement and caused a significant drop in
accuracy in most tested cases.

5.3. Do These Deeper Spiking Neural Networks Per-
form Better?

As can be seen in tables 1 and 2 we see an increase in
accuracy when the residual connections are added as seen
in figure 3 and the depth is increased. This is especially
noticeable in table 2 where the MLPs overfit in the train-
ing data, showing that it is indeed capable of learning more
complex problems with depth.

However, the most relevant results are in the results ob-
tained in the CNN experiments (seen in figure 5 and table 3),
this is because CNNs have been known to increase in accu-
racy with depth as their receptive field increases. Hence we
expected the best results in relation to depth in this model. It
is important to note that no pooling layers were used in the
architecture as a means of simply testing the residual con-
nections without concern for any external influence from
other factors.

When comparing the network without residuals
stretched as deep as it will go to the single-layer baseline
we see that there is an expected decrease in accuracy.
We believe this to be due to the network having a harder
time getting output spikes at this depth. However, as
expected when residual connections are added the accuracy
increases even without increasing the depth. This shows
that the increased spike activity in the network caused
by the residual connections is beneficial to the network’s
performance and accuracy.

Finally, when increasing the depth to four, a depth in
which without residual connections there is no backpropa-
gation, we see generally a further increase in accuracy. This
is especially the case in the experiments with the EMNIST

Figure 5. Comparison of the testing accuracy plot for an CNN
architecture in the different datasets and fuse functions as the depth
increases. No Residual is shown in blue, Average is shown in
yellow, and Append is shown in green.

dataset. Additionally to what was shown before, this points
toward the fact that the added depth allowed by the resid-
ual connections does indeed have a positive effect on the
accuracy of the network.

Despite this, none of these deeper approaches have been
able to beat the hyperparameter optimized single layer repli-
cation of the [2] paper. We believe this is due to the lack
of hyperparameter optimization on the side of the residual
connection neuron parameters, as well as some tuning being
required in non-residual hyperparameters. With the goal of
addressing this, we attempted to optimize the hyperparam-
eters, yet due to long run times and the limited time avail-
able for this project, we could not do an optimization of all
hyperparameters. Hence we decided to focus on changing
the distribution of the weight initialization and implement-
ing better learning rate schedulers, we believed that these
would be parameters that would have a large effect on the
accuracy of the network. However, this process was un-
successful in getting to surpass the single-layer results. In
this situation, the hyperparameter optimization is extremely
time-consuming as a single run of a CNN to convergence
on the machine we are using is about 7 days.

5.4. Hyperparameter Optimization

Since the Hyperparameter from [2] had been optimized
with shallow networks in mind, we considered that in order
to achieve a higher accuracy we would also need to perform
some optimization. Nevertheless, given the time limitation
and long run times of the deeper networks (especially the
CNNs in table 3) we were limited on the number of hyper-
parameters we could optimize, hence we decided to focus
on adding a learning rate scheduler and investigation the ef-
fects of changing the initial weight distribution. The results
of this can be seen in 4.

Even so, although some changes did have an effect on the

Layers Datasets No Residual Average Append
1 MNIST 98.7 NA NA
3 MNIST 96.6 98.4 97.2
4 MNIST No BP 98.0 98.0
1 EMNIST 84.4 NA NA
3 EMNIST 71.6 72.0 71.9
4 EMNIST No BP 80.0 79.6
1 Fashion 90.0 NA NA
3 Fashion 84.3 87.1 85.8
4 Fashion No BP 87.8 87.7

Table 3. Test accuracy results for the CNN architecture tests. The
same terminology as in tables 1 and 2 is used.

Dataset LR scheduler (-1,1) (-1,2) (-5,5)

MNIST Slope 97.9 96.0 96.7
MNIST No Slope 96.3 97.3 96.8

EMNIST Slope 83.8 30.0 73.3
EMNIST No Slope 66.5 78.1 73.7
Fashion Slope 73.1 63.2 80.2
Fashion No Slope 86.6 86.4 61.2

CIFAR-10 Slope 19.6 16.4 17.3
CIFAR-10 No Slope 18.4 15.5 15.6

Dataset LR scheduler (-1,1) (-1,2) (-5,5)

MNIST Slope 98.0 97.5 96.0
MNIST No Slope 97.2 97.5 96.4

EMNIST Slope 79.6 78.6 72.2
EMNIST No Slope 79.5 80.3 74.8
Fashion Slope 87.7 87.7 79.7
Fashion No Slope 86.7 84.1 78.2

CIFAR-10 Slope 19.6 16.4 17.3
CIFAR-10 No Slope 19.9 19.6 18.6

Table 4. Test accuracy of the hyperparameter optimization at-
tempts on a 4-layer CNN architecture with the append fuse func-
tion on the top table and the average fuse function in the lower
table. In each dataset, the entry marking the best hyperparameter
combination has been highlighted.

accuracy we see that increasing the initial weight distribu-
tion makes the network more unstable, and since the (-1,1)
uniform weight distribution has the most consistently high
results we recommend using the (-1,1) uniform distribution
with the slope learning rate scheduler, as it gives some of
the more consistent results.

5.5. How Do They Preform On A More Complex
Dataset?

Finally, we wanted to see if these deeper networks could
aid in the learning of a more complex dataset. For this pur-
pose, we performed some tests on the CIFAR-10 dataset
[13]. We tested both the MLP and CNN architectures on the

dataset and obtained the results shown in tables 1 and 2 for
MLP results, and 4 for the CNN results. Sadly we have been
unable to achieve the results we desired, although the addi-
tion of residual connections and some additional depth does
seem to have a positive effect on the network’s accuracy. We
attribute this underperformance to a few reasons. The first is
the lack of time for the long experiments and computational
times required, as with these networks being the most com-
plex ones each epoch takes the most time out of the other
datasets and they require more epochs to converge. Sec-
ondly, we speculate that the lack of pooling layers through-
out our architecture has a negative effect, these layers al-
though implemented in the code base were not used as we
wanted to focus on the effect of the residual connections.
Thirdly this was the only of the tested datasets containing
coloured RGB images without a uniform background, we
hypothesise that this property of that dataset combined with
the spike encoding inherited from [3] could be a feasible
explanation for the decrease in accuracy. Intending to rem-
edy it, we attempted two solutions such as grey-scaling the
image, and adding a minimum amount of intensity that a
pixel needed in order to produce an input spike. Yet none of
these proved to improve the performance to any significant
extent.

Finally is the fact that the CNNs are of relatively shal-
low depth, which combined with the lack of pooling layers
limits the receptive field size quite considerably.

6. Discussion
In this section there are three points we would like to

discuss in regards to this paper, the methodology choices
and results.

Firstly, is that due to the fact that the goal of this paper
was to evaluate how residual connections affected the per-
formance of the SNN neurons developed by [3] we used the
same datasets as a means of aiding the result comparison be-
tween the two methods. While these datasets are widely re-
garded as excellent benchmarks for comparison due to their
standard use in image recognition, compatibility with vari-
ous architectures, and ease of use, it is important to recog-
nize that they were not designed with event-based systems
in mind. As a result, they do not fully leverage the advan-
tages offered by SNNs. We believe that results that do not
focus on comparison to other methods should, in the future,
focus on datasets composed of data such as event camera
images or audio datasets.

Secondly, in reference to the long run times of the net-
work, it is important to note that these runs were computed
in a traditional computer as we had no access to a neuro-
morphic chip, hyperparamater optimization might be aided
incredibly by the reduced runtime achieved from using such
technology.

Finally, when comparing our results to those obtained

by the [3] paper it is important to note that in an effort to
save computation time, we use fewer neurons on each layer
in the MLP architectures and fewer channels in the CNN
architectures. It is because of this that we made our own
baseline runs to use as a point of comparison. Additionally,
regarding the CIFAR-10 results we want to note that neither
in the [3] or [2] paper were there any attempts on datasets
of this complexity. To the best of our knowledge, there are
currently no papers that use neurons of this type on datasets
such as CIFAR-10.

7. Future Work
There are a few areas of this approach that we believe

have room for improvement for any future researcher who
chooses to pursue it. These are as follows.

Firstly, continue the hyperparameter optimization in or-
der to show if the deeper CNNs can beat the single-layer
CNN, we believe that the parameters that could have the
greatest effect, given that the initial weight distribution did
not fix it, are the residual neuron threshold parameters.

Secondly, the implementation of a learnable delay and
the testing of its performance. Although many implemen-
tations recently seem to not be focusing on delay, as is the
case with [11].

Thirdly, attempt these experiments with event camera
datasets, or other event-based data as it would give more
accurate information in the fields where SNNs are meant to
shine. Finally, the implementation of other fuse functions
to see if they have a better effect on the accuracy.

Finally, we believe that while the images are encoded
into spikes works for the purposes of grey-scale images
without background it falls short when it comes to encod-
ing more complex datasets such as CIFAR [13] or Ima-
geNet [20]. Hence we believe that if this model is to be
used in those datasets an improvement on the [3] image en-
coding is required.

8. Conclusion
In conclusion, we have explored two ways of implement-

ing fuse residual connection on precise time multi-spiking
neural networks. We show that the addition of these con-
nections allows for the training of deeper networks and that
these deeper networks have their strengths when compared
to shallower networks. Namely, a higher ability to fit more
complex data in MLP and a better increase of accuracy in
CNNs both when depth was increased and when the resid-
ual connections were added. Overall we believe that the
results show promise and potential, and prove that residual
connections in SNN can be beneficial to the accuracy of the
network. Yet there are still some hurdles to overcome and
areas to further explore as described in section 7

We have, however, been unable to beat the accuracy of

the single-layer CNN although we remain convinced that it
is possible if they both had a similar level of hyperparam-
eter optimization. To our disappointment, this process was
not feasible due to the long run times of the deeper CNNs
combined with our time constraints for this project.

References
[1] Filipp Akopyan, Jun Sawada, Andrew Cassidy, Rodrigo

Alvarez-Icaza, John Arthur, Paul Merolla, Nabil Imam, Yu-
taka Nakamura, Pallab Datta, Gi-Joon Nam, et al. Truenorth:
Design and tool flow of a 65 mw 1 million neuron pro-
grammable neurosynaptic chip. IEEE transactions on
computer-aided design of integrated circuits and systems,
34(10):1537–1557, 2015. 1

[2] Florian Bacho and Dominique Chu. Exploring trade-offs in
spiking neural networks. Neural Computation, 35(10):1627–
1656, 2023. 2, 3, 4, 5, 6, 9, 10

[3] Florian Bacho and Dominique Chu. Exploring tradeoffs in
spiking neural networks, 2023. 2, 3, 4, 5, 6, 8, 10

[4] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre
Van Schaik. Emnist: Extending mnist to handwritten letters.
In 2017 international joint conference on neural networks
(IJCNN), pages 2921–2926. IEEE, 2017. 2

[5] Wei Fang, Zhaofei Yu, Yanqi Chen, Tiejun Huang, Timothée
Masquelier, and Yonghong Tian. Deep residual learning in
spiking neural networks. Advances in Neural Information
Processing Systems, 34:21056–21069, 2021. 2, 3

[6] Wulfram Gerstner and Werner M Kistler. Spiking neuron
models: Single neurons, populations, plasticity. Cambridge
university press, 2002. 3

[7] Stephen Grossberg. Competitive learning: From interac-
tive activation to adaptive resonance. Cognitive science,
11(1):23–63, 1987. 3

[8] J. Göltz, L. Kriener, A. Baumbach, S. Billaudelle, O. Bre-
itwieser, B. Cramer, D. Dold, A. F. Kungl, W. Senn, J.
Schemmel, K. Meier, and M. A. Petrovici. Fast and energy-
efficient neuromorphic deep learning with first-spike times.
Nature Machine Intelligence, 3(9):823–835, Sept. 2021. 1,
2, 3

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. CoRR,
abs/1512.03385, 2015. 3, 6

[10] Hagar Hendy and Cory Merkel. Review of spike-based neu-
romorphic computing for brain-inspired vision: biology, al-
gorithms, and hardware. Journal of Electronic Imaging,
31(1):010901–010901, 2022. 1

[11] Yifan Hu, Lei Deng, Yujie Wu, Man Yao, and Guoqi Li. Ad-
vancing spiking neural networks toward deep residual learn-
ing. IEEE Transactions on Neural Networks and Learning
Systems, 2024. 10

[12] Yangfan Hu, Huajin Tang, and Gang Pan. Spiking deep
residual networks. IEEE Transactions on Neural Networks
and Learning Systems, 34(8):5200–5205, 2021. 3

[13] Alex Krizhevsky. Learning multiple layers of features from
tiny images. Technical report, 2009. 2, 3, 9, 10

[14] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist hand-
written digit database. ATT Labs [Online]. Available:
http://yann.lecun.com/exdb/mnist, 2, 2010. 2

[15] Chen Li, Runze Chen, Christoforos Moutafis, and Steve
Furber. Robustness to noisy synaptic weights in spiking neu-
ral networks. In 2020 International Joint Conference on Neu-
ral Networks (IJCNN), pages 1–8. IEEE, 2020. 1

[16] Yudong Li, Yunlin Lei, and Xu Yang. Rethinking residual
connection in training large-scale spiking neural networks.
arXiv preprint arXiv:2311.05171, 2023. 2, 3, 6

[17] Zewen Li, Fan Liu, Wenjie Yang, Shouheng Peng, and Jun
Zhou. A survey of convolutional neural networks: analysis,
applications, and prospects. IEEE transactions on neural
networks and learning systems, 33(12):6999–7019, 2021. 6

[18] Eustace Painkras, Luis A Plana, Jim Garside, Steve Tem-
ple, Francesco Galluppi, Cameron Patterson, David R Lester,
Andrew D Brown, and Steve B Furber. Spinnaker: A 1-
w 18-core system-on-chip for massively-parallel neural net-
work simulation. IEEE Journal of Solid-State Circuits,
48(8):1943–1953, 2013. 1

[19] Michael Pfeiffer and Thomas Pfeil. Deep learning with spik-
ing neurons: Opportunities and challenges. Frontiers in neu-
roscience, 12:409662, 2018. 1, 2

[20] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. Imagenet large scale visual recognition challenge,
2015. 3, 10

[21] Sebastian Schmitt, Johann Klähn, Guillaume Bellec, An-
dreas Grübl, Maurice Guettler, Andreas Hartel, Stephan
Hartmann, Dan Husmann, Kai Husmann, Sebastian Jeltsch,
et al. Neuromorphic hardware in the loop: Training a
deep spiking network on the brainscales wafer-scale system.
In 2017 international joint conference on neural networks
(IJCNN), pages 2227–2234. IEEE, 2017. 1

[22] Biswa Sengupta and Martin B Stemmler. Power consump-
tion during neuronal computation. Proceedings of the IEEE,
102(5):738–750, 2014. 2

[23] Yimeng Shan, Xuerui Qiu, Rui jie Zhu, Ruike Li, Meng
Wang, and Haicheng Qu. Or residual connection achiev-
ing comparable accuracy to add residual connection in deep
residual spiking neural networks, 2023. 2, 3, 4, 5

[24] Martino Sorbaro, Qian Liu, Massimo Bortone, and Sadique
Sheik. Optimizing the energy consumption of spiking neural
networks for neuromorphic applications. Frontiers in neuro-
science, 14:516916, 2020. 2

[25] Amirhossein Tavanaei, Masoud Ghodrati, Saeed Reza Kher-
adpisheh, Timothée Masquelier, and Anthony Maida. Deep
learning in spiking neural networks. Neural networks,
111:47–63, 2019. 1

[26] Jilles Vreeken et al. Spiking neural networks, an introduc-
tion. 2003. 1

2
Neural Networks

To understand Spiking Neural Networks (SNNs) it is first paramount to understand conventional Neural
Networks, also referred to as Artificial Neural Networks (ANNs). For the purposes of this thesis, we will only
focus on Fully Connected Layers and Convolutional Layers as they are the most commonly used networks
for image recognition and the ones that have been transformed into SNNs in this thesis.
On the most basic level, neural networks are a set of ordered layers in which the outputs of one are used
as the inputs of the next. Each of these layers has a set of weights that act as variables in a function that
takes the input and turns it into the output. An error is calculated from this output using a Loss Function,
which is used to calculate how to adjust the weights with the aim of obtaining a better result by working
backwards and calculating the derivative of the weights of a current layer in respect to the errors of the one
after it through a process called backpropagation.

2.1. Image Classification Problem and Datasets
Image classification is a common problem for which to use Neural Networks. The objective of Image
Classification algorithms is to classify or label images that have not been previously provided to the algorithm,
without human intervention.
To do this you run the training loop on a subset of images in the dataset called the training set and then
test how well this newly trained network generalizes on unseen data with the test set. These sets in the case
of supervised learning consist of an image/data, a label for said data, and possibly some metadata.
In this project, we use three main image classification datasets: MNIST [16], EMNIST [5], and Fashion-
MNIST[29]. All of these datasets are labelled datasets and are split into training and testing subsets, as
explained in the paper the selection of these datasets was due to our goal of comparing our method with
existing SNN methods, such as [2].
MNIST is one of the simplest image classification tasks that exist in the field. It consists of a train set of
60,000 images and a test set of 10,000. All the images are in greyscale and are of handwritten digits 0-9.
EMNIST is similar to MNIST but has been extended with handwritten letters. It has 697,932 training
samples and 116,323 test samples that can be one of 62 labels.
Fashion MNIST also has a similar formal but instead of handwriting it attempts to classify articles of clothing
into 10 groups. It has 60,000 training samples and 10,000 testing samples.

2.2. Training Process
To achieve a network that produces the desired outcomes the weights of the network need to be set to a
correct value employing a training process. This training process is divided into steps over which the entire
dataset is iterated over called epochs. Due to memory and computation limitations of different machines
the data in these epochs is usually split into batches.

13

2.3. Network Layers 14

There are two types of epochs: training epochs, and testing epochs; these go over the training and testing
splits of the dataset respectively. During the training epochs for each batch of data a forward and backward
pass is performed; in the forward pass the data is processed through the network with the current values of
the weights of the layers described in section 2.3 and an output is produced, this output is then compared
to the desired output and from the difference, calculated as the loss value, backpropagation (described in
section 2.4) the weights are updated to something that is believed to produce a better result, with these
weight values the process is then repeated with the next batch. This goes on until convergence is reached,
which refers to when the loss value of the training set is no longer decreasing.

2.3. Network Layers
In this section, we will cover two of the most popular types of layers used in neural network architectures,
the Multi-Layer Perceptron and the Convolutional layers as well as their main respective components,
the Perceptrons and the Kernel respectively. These layers can be used in combination with one another,
and in fact in the case of convolutional architectures they include a feedforward layer just before the output
layer that is composed of Perceptrons

2.3.1. Fully Connected Layers and Multi-Layer Perceptrons
Fully connected layers are the basis for Multi-Layer Perceptrons, as they consist of a stack of n perceptron
layers with mi perceptrons each. For each of these layers, input of the current layer i ∈ {1, ..., n − 2} is
the output of the previous layer i − 1 and the output of i is the input of i + 1. For layers 0 (the input
layer) and layer n− 1) (the output layer) they receive the input feed into the model and output the model’s
output respectively. These take the form of an array of numbers with size m0 for the input and mn−1 for
the output. For classification problems mn−1 = #labels as one-shot encoding is used. This means that the
output of a perceptron in the output layer represents the probability that the input should be assigned the
corresponding label.

Perceptron
A perceptron is one of the most basic instances of a neural network. They consist of a very simple function
f(x) = x ∗ w + b where x is the input, w is the weight of the perceptron and b is the bias. This simple
equation repeated hundreds or thousands of times is what powers the fully connected layers. To create a
perceptron layer the w is transformed into an array of weights w = w1, w2, ..., wn where n is the number of
weights in the layer and the same thing is done with the biases b = b1, b2, ..., bn. This layer is then fed an
input x of form x = x1, x2, ..., xn to obtain an output, this output is then cascaded to the next layer in the
network, as can be seen in figure 2.1, where the diagram on an MLP with two hidden layers and its internal
connections is shown.

Figure 2.1: Diagram of a two hidden layer fully connected MLP from [24]. In it you can see the inputs represented by the x
values and the output represented by the y value, as we are looking at a fully connected MLP each perceptron is connected to

every element of the previous and next layer.

2.3. Network Layers 15

Figure 2.2: Visual representation of how the receptive field increases in the simple case of a 2D convolution with a 3x3
kernel.[14]

2.3.2. Convolutional Layers and Convolutional Neural Networks
Convolutional Neural Networks (CNNs) are a staple of image recognition networks as they can detect patterns
in images. They focus on transmitting information from groups of inputs (in our case pixels) and therefore
unlike MLP take into account neighbouring pixels.
These networks are able to detect “shapes” and “patterns” in the image as long as they fit within the
networks Receptive field size.
Receptive field size is the size of the region of the input that affects a kernel feature. In the case of a single
kernel layer, we can calculate it very easily as the receptive field is the size of the kernel. On the other hand,
when layers are stacked the receptive field depends on the size of the staked kernels as well as the stride
each kernel uses. This can be calculated recursively using the following formula ri = si−1ri−1 + (ki−1si−1)
with r being the receptive field, s being the stride, and k being the kernel size. A visualization of this with
a 3x3 kernel can be seen in figure 2.2.
Another crucial property that CNNs have is that they can find these patterns regardless of where they are
located in the image, this is called translation invariance. For example, if the network learns that a solid
black area of 5x5 pixels means a higher chance of a certain label then the absolute location of this area in
the picture will not harm the network’s capabilities to recognise it.

Kernel
Much like the fully connected layer has the Perceptron a convolutional layer has a Kernel, these are in essence
the detectors of a CNN. They take the form of a matrix of size (m,m, c) with m being a hyperparameter
and c being the number of channels, much like with the perceptron we shall focus on the single channel
example as one can easily extrapolate that to multiple channels. Mathematically speaking a kernel works as
a set of perceptrons (usually without the bias component) that take a set of m2 inputs and multiply each
with one of its weights before adding them all together in a single output, then takes a step of stride s before
repeating the process, an example of a kernel operation on a padded matrix and its result can seen in 2.4.
The application of this operation in an image reduces the size of the image as can be seen in the second
image of figure 2.4, due to this, it is common to apply some form of padding to the sides of the image so
that it maintains the size after the operation.
By changing the weights of the kernel it can learn to detect different patterns across the image, some
examples of this property that are easy to see by humans can be seen in figure 2.3. In actual CNNs the
patterns tend to be more complex and harder for humans to interpret as can be seen in [31]. Whatever the
case it allows the network to gather information on pixel values in relation to the values of the pixels around
them.
In conclusion, for the goals of this thesis, it is more important to understand that the following key ideas.

2.3. Network Layers 16

Figure 2.3: Visual representation of the effects applying a kernel can have on an image [6]. As shown by using different values
in the kernel, one can detect regions of the image, such as edges. With larger kernels one can detect larger shapes, hence the

importance of receptive fields.

2.3. Network Layers 17

Kernels look for “shapes” and “patterns” in the data by looking not only at the value of a pixel but also at
the values of the pixel around it. The complexity and size of what these kernels are able to detect increases
with the depth of the CNN, this is due to the depth causing an increase in the Receptive field size of the
network. Unlike MLPs, this extra depth does not cause overfitting as they are learning properties that are
general and translation invariant. Overfitting is discussed more in-depth in section 2.6.

Figure 2.4: An example and visualization of how convolution operations function in relation to the addition of padding. As
you can note the first image has padding in the input and the second image does not, hence the output of the first example

remains the same while the output of the second is reduced in size [19, 21].

Pooling layers
Pooling layers act in a similar way to convolutional layers and are a common part of the CNN architecture,
their goal is to help pool together the information from the previous layers and expand the receptive field.
They function by performing an operation with the values inside the kernel area that outputs a single output.
In theory, there could be a nearly infinite number of pooling functions but only three are used commonly.
These are max pooling, which takes the max value from the pooled area; min pooling, which takes the
minimum value from inside the pooled area; and finally average pooling, taking the average of the pooled
values. An example of the operation with max and average pooling can be seen in figure 2.5.

2.4. backpropagation 18

Figure 2.5: Example of a 2x2 pooling layer with a stride of 2 being applied to a 4x4. In max pooling the highest of the four
values while the average pooling takes the average of the four values [30]

2.4. backpropagation
As mentioned earlier, backpropagation is the process by which neural networks learn from their mistakes and
adjust their weights to values that will produce a better result in the next iteration. As the name indicates
this process begins from the loss value or error and then works backwards through all the layers in the
network.

2.4.1. Loss Calculation
The loss function is the function that takes the predicted values and compares them to the expected values
giving a higher loss the further the values are from the expected values. This loss value is the starting point
of the backpropagation and hence is what the network is aiming to minimize when updating its weights. The
most commonly used loss function for classification function is the cross-entropy loss function, shown below.

L(p, t) = −
∑

x∈classes

(p(x) ∗ log(q(x)))

Where p(x) is the one-shot probability of label x and q(x) is the model’s predicted probability distribution.
In this paper, we will use a different loss function that is better suited for our spike-based output and will
be explained in 3.

2.4.2. Gradient Descent
Gradient descent is the optimization algorithm used with the goal of finding the local minimum of a derivable
function. In the case of deep learning, it is used to find the combination of weight values that produce the
lowest loss in the loss function.
The goal is to reach a satisfactory or ideally the global minimum of the loss function by taking small
approximation steps as seen in figure 2.7 and 2.6. This is done by gradually updating the weights of the
network based on a hyperparameter called “learning rate” λ using the following formula, with △w being the
gradient for the variable in question that would cause the greatest reduction in the value of the loss function
(this △w gradient can be obtained through backpropagation calculations covered in the following section
2.4.3).

w→w − λ△w

This constant determines how big each step should be and it is one of the most crucial parameters for
the performance of the functions. This is because as mentioned above gradient descent locates the local
optimum of the loss function, therefore as shown in figure 2.6 a learning rate that is too high will lead the

2.4. backpropagation 19

Figure 2.6: Comparison between two different values of learning rate in a very simple loss function. Case A shows a proper
learning rate and how it leads to a local minima of this simple function. Case B shows a learning rate that is too high and

therefore is not able to settle down on the local minimum.

skipping over the optimal, while a learning rate that is too low will lead to finding a very local minimum and
be unable to take a large enough step to leave said minimum. Choosing the proper learning rate involves
both domain knowledge and trial and error.

Figure 2.7: Illustration of gradient descent on a two-dimensional solution space [1]. As shown in this figure, the intuition
behind it is to take steps towards the “direction” that the loss decreases the most and eventually you will find a local

optimum. How good this local optimum is in relation to the global optimum is usually determined by the learning rate value
as well as the initial weight distribution/values.

2.4.3. backpropagation Calculations, The Chain Rule
In this section, we will go over the calculations and mathematical principles that are behind the process of
backpropagation. The chain rule is a calculus formulation that states f ′(g(x)) = f ′(g(x))g′(x). Note that,
for simplicity’s sake, in this section when discussing the math we will use a chain of perceptrons and a single
univariate input. If we take a single perceptron with a nonlinearity σ(z). So in the case of a single input and
label pair (x, t) with regularization parameter to the loss R = 1

2w
2 and hyperparameter λ so the equations

for this system become:

2.4. backpropagation 20

z = xw + b→ y = σ(z)→ L =
1

2
(y − t)2

R =
1

2
w2 → Lreg = L+ λR

Figure 2.8: Equations for the described equation system and the flow diagram. In this case, we want to change the bias b and
the weight w with the goal of minimizing the loss with the regularization term applied Lreg

Given this forward pass, we will now explore how to determine the adjustments required to the values of the
learned variables W and b with the objective of minimizing the regularized loss Lreg. How these variables all
relate to one another can be seen in the set of equations in figure 2.8 and their accompanying information
flow diagram. What we are most interested in knowing is how a change in a variable, for example, the weight
w and b, affects the loss so that we can increase or decrease it appropriately; formally we aim to find:

∂Lreg

∂W
= w̄

∂Lreg

∂b
= b̄

Please note the notation x̄ that we will be using from now on as a way to refer to the derivative of the loss
function with respect to a variable x.
To do this we use the chain rule starting from ¯Lreg = 1 and work our way backwards.

¯Lreg = 1

R̄ = ¯Lreg
dLreg

dR
= ¯Lregλ

L̄ = ¯Lreg
dLreg

dL
= ¯Lreg

ȳ = L̄dL
dy

= L̄(y − t)

z̄ = ȳ
dy

dz
= ȳσ′(z)

w̄ = z̄
dz

dw
+ R̄

dR

dw
= z̄x+ R̄w

b̄ = z̄
dz

db
= z̄

Having obtained the value of w̄, we can change w appropriately, as we know how a change in the value
of w will affect the value of the loss. If we update the weight by a fraction λ of w̄ as covered in the
gradient descent section 2.4.2 this should cause the next forward pass calculation to have a different and
more accurate result. This process is repeated for each batch in every epoch, the loss function is complex
and hard to predict, for this reason, small steps are taken each time depending on the gradient and the
learning rate.

2.5. Hyperparamater Optimization 21

Figure 2.9: A figure showing how overfitting can look in a 2D space. The green line shows overfitting while the black line is
more accurate to the general distribution of the data

2.5. Hyperparamater Optimization
A crucial factor influencing the performance of neural networks is the selection and tuning of hyperparameters.
Hyperparameters are values external to the model itself, and they control the learning process, determining
how the model is trained and how well it will perform. These parameters can significantly affect the model’s
ability to learn patterns in the data and generalize to new, unseen data. One illustrative example of the
importance of hyperparameters is the learning rate, which was discussed in detail in section 2.4.2. The
learning rate is a key hyperparameter in the gradient descent algorithm that governs the step size at each
iteration while moving towards a minimum of the loss function. Choosing an appropriate learning rate is
critical; a value too large can lead to overshooting the optimal solution, while a value too small can result
in a slow convergence process, or getting stuck in a local minimum.
However, the learning rate is just one of many hyperparameters that need carefully selected. Other hy-
perparameters that tend to have a large impact on the performance include but are not limited to weight
initialization methods, batch size, number of layers, number of neurons per layer, activation functions, and
dropout rates. Each of these parameters plays a role in the network’s ability to learn from data and requires
fine-tuning in order to achieve optimal performance, and they usually have different values depending on the
dataset and architecture.
Selecting the optimal values for these hyperparameters is a complex task. The process typically involves
exploring the hyperparameter space, which can be vast and high-dimensional. This exploration is often
conducted through a combination of intuition, trial and error, and domain knowledge. Researchers and
practitioners may rely on experience and theoretical insights as a means of narrowing down the range of
potential values. In my case, I used the experience of my supervisors who advised me that the learning
rate scheduler and the weight distributions were the factors that were most likely contributing to a loss of
accuracy.

2.6. Overfitting
Overfitting is the phenomenon in which a model adapts to the training data to such a degree that it hurts
the performance of the model on unseen data (such as the test set). The main cause for this, especially as
it concerns this thesis is the extra degrees of freedom that the network has in combination with the extra
training epochs.
As an example let’s take a look at Multi-Layer Perceptrons are linear classifiers that draw a line to split the
data with a function, hence the more layers and the bigger those layers are the more variables the function

2.6. Overfitting 22

has and the more flexible it can be in order to fit to the data. An example of this can be seen in figure 2.9
where even though the green line will have a higher accuracy in the shown data it would perform worse than
the black line in unseen data given the distribution of the blue and red dots.
In this thesis, we employ both MLPs and CNNs, making it crucial to explore why MLPs are more prone
to overfitting, while CNNs exhibit a lower tendency for this issue. Having established a foundational under-
standing of these architectures, we can now delve into the factors that contribute to the higher likelihood of
overfitting in MLPs compared to CNNs.
MLPs focus only on the value of the pixel and do not take into account the location of said pixel in the image
or the values of the neighbouring pixels. What we mean by that is that an MLP would achieve the same result
if you were to choose a random way of scrambling the pixel locations in the image, as long as you always
scramble it the same way. This means that if given enough weights and layers an MLP could theoretically
perfectly split the training data groups perfectly adjusted to the training data of the classification problem.
This fit however will probably not reflect the reality of the general data. In figure 2.9 you can see a clear
example of overfitting on the training data of a two-class classification problem.
On the other hand, due to the use of kernels and pooling layers, CNNs do not have this problem, as they
learn to detect certain local pixel patterns, as described in section 2.3.2. These patterns are a lot more likely
to be repeated over several images, and since regardless of where the pattern is located the network will be
able to identify it, the network learns general information of what it is looking for and not specific properties
of the training set, hence avoiding overfitting.

3
Spiking Neural Networks

With a solid understanding of Artificial Neural Networks, we can now transition to exploring Spiking Neural
Networks. As the name might suggest the SNNs are a type of neural network that instead of working with
numbers (as described in section 2) uses spikes over time in order to transmit the information. This is more
accurate to biological brain functioning and can be faster and more energy efficient [9, 27]. On the other
hand, they also come with some downsides, mainly because the non-differential transfer function they use in
the forward pass does not allow for traditional propagation methods.

3.1. Neuromorphic Computing
When talking about SNNs it is important to understand that one of the key advantages of it is that they can
efficiently run on neuromorphic computational devices. These devices have specialized hardware in which
one can embed an SNN and train it faster and with less energy consumption than on a traditional machine.
However, in this thesis, we did not implement it on a neuromorphic machine due to lack of resources.

3.2. Spike Encoding
As one might assume, the inputs and outputs of these networks consist of spikes. Since most data is not
naturally made out of spikes over time the question of spike encoding then is “How do we transform none
spike information into spikes and vice versa?”.
There are two main ways of doing the none-spike to spike data transformation in the case of conventional
image data: temporal or latency encoding and rate encoding. In other words, one stores information based
on the time between spikes while the other stores information in the amount of times received in a period of
time. Let’s explore how each of these methods would go about encoding the data of a single channel pixel
such as in the case of the input from the MNIST benchmark dataset [17]:

• The first encodes the intensity of the input pixel by producing a single spike per pixel value and making
the delay of that spike to be inversely (or directly) proportional to the intensity of the original value.

• While the second encodes this information by generating multiple spikes per value with the number of
spikes being proportional to the pixel intensity.

In the case where we want to interpret the output spikes of an SNN network, there are two main options
for image classification labelling: Time To First Spike (TTFS) and Spike Count (SC). Time To First Spike
(TTFS) the predictions of the network are the ones corresponding to the first output neuron that produced
a spike. In Spike Count (SC) the selected label is the one that is the most active.
While in the past both approaches have been used, in [2] rate encoding is used. Similarly, in the approach
covered in this thesis, we chose to use a spike count, also referred to as rate encoding. This is done in order
to take better advantage of our implementation’s multi-spiking neuron capability.

23

3.3. Forward Pass 24

3.3. Forward Pass
In this section we will cover everything that one needs to know in order to understand a forward pass of a
SNN and the different design decisions that can be made; special focus will be given to the properties chosen
for our approach. We will first go over a general overview of a neuron in an SNN and all the different types
of neurons that exist while explaining what neuron is used in our implementation, we will then follow that
up with some more general intuition on how these neurons interact with each other when set up in a SNN.

3.3.1. Neurons
Neurons are the key to spiking neural networks, they perform a similar function than perceptrons do in ANNs.
In order to understand the spiking behaviour of a neuron it is important to understand the concepts of Spikes
and Membrane potentials.
A Spikes is the lowest unit of information in an SNN, just like output and input values are in the context of
an ANN. However, unlike numerical values in ANNs, they do not transmit the information based on “what
they are”, as all spikes are the same in terms of intensity, but in terms of “When they happen”. In other
words, information is communicated through the temporal channel.
The Membrane potential of a neuron is the internal state of said neuron. This value goes up by a certain
amount when the neuron receives a spike, decays constantly over time, and when it reaches a certain
threshold vth or vth the neuron outputs a spike to the neurons it is connected to in the next layer and resets
its membrane potential. This can be seen in the visualization 3.1.
There are four main properties to keep in mind when talking about a neuron and its membrane potential are
the following:

• The first is whether the system uses exact time or discrete time. In a lot of implementations of SNNs,
discrete-time is used due to the fact that it simplifies a lot of the calculations. The way this is done is by
splitting the time into segments and instead of having a precise and exact time for each spike they store
each spike in a time step. The use of discrete time does come with its own set of downsides, mainly
that by limiting the values the spike times can take you are also limiting how precise the information
the network can relay, for this reason in our implementation we have opted to use precise time.

• The second is if the neuron uses a leaky membrane potential. A membrane potential is considered leaky
if it decreases over time when it does not receive spikes, this means that in the case of a leaky potential
in order for the neuron to output a spike it has to receive the spikes close together, while in the case
of a completely non-leaky neuron, the time between spikes does not matter. For the implementation
described in this thesis, we have chosen to use leaky neurons as they allow for more flexibility in the
network.

• The third is if the neuron is multi-spiking, if a neuron can spike more than once then this affects the
computations behind membrane potential, as now it is no longer affected by the spikes that input
the neuron (called pre-synaptic spikes), but also by the spikes that have outputted the neuron (post-
synaptic spikes). If a neuron can output more than one spike then the neuron can communicate more
complex information, therefore we have chosen (thanks to the advances shown in [2]) to go for a
network of multi-spiking neurons.

• The final property to keep in mind is whether the neuron has a hard or soft reset of the membrane
potential. This only applies in the case of multi-spiking neurons and it refers to how the membrane
potential is brought down from its activation threshold vthafter the neuron has outputted a spike. In
the case of a hard reset the membrane potential is brought back to its initial value vrest, while in the
case of a soft reset an amount η(t) is subtracted from the current potential v → v−η(t) when v > vth
this can lead to values above or below vrest and by tuning the function η a lot more flexibility is given
for tuning the network. For this reason, we chose a soft reset in our approach.

3.4. Dead Neuron Problem 25

Figure 3.2: Representation of the relation between the weight, and the neurons it connects. The weight determines how much
the spike increases the membrane potential. This is repeated for every pair of neurons that have a connection to each other

[22]

Figure 3.1: Visual representation of the activation function of a neuron in s SNN taken from [10]. This figure uses a leaky
neuron with a hard reset, while my approach uses a leaky neuron with a soft reset, meaning that the membrane potential

would not necessarily go to vrest, but the current membrane potential value minus a reset amount.

3.3.2. Intuition Behind Spike Cascading
With an understanding of neurons, their various types, and their interrelationships, we can now explore how
neurons interact during the forward pass of an SNN.
As mentioned before a neuron outputs a spike when its membrane potential reaches the activation threshold,
in our case since we are using leaky neurons this means that the neuron has received enough spikes in a
short enough amount of time from neurons from the layers above it. How many of these spikes are needed
to produce an output spike depends on the neurons the spikes are coming from, as the membrane potential
increases in direct relation to the weight w(l)

i,j as seen in figure 3.2 (it is interesting to note that these weights
can also be negative). Keeping this in mind the idea is that these weights, after a number of epochs will
produce a neural path based on strong connections in neuron spikes through the network [28]; just like neural
pathways are created in the human brain [8].

3.4. Dead Neuron Problem
Before we move on to how to train SNN this is an adequate point to cover a recurring problem known as
the dead neuron problem. This problem refers to a situation where the weights of a neuron are not updated
because of issues with the spike S and weight w derivation ∂S

∂w , this mainly but mainly stems from the fact
that the spikes are discontinuous. Formally there are 3 cases when taking the spike derivation:

3.5. Training Spiking Neural Networks 26

1. The membrane potential is below the threshold. ∂S
∂w = 0

2. The membrane potential is above the threshold ∂S
∂w = 0

3. The membrane potential is equal to the threshold ∂S
∂w =∞

In cases one and two adding them to the chain rule causes ∂L
∂w = 0 causing there to be no change to the

weight, and therefore no learning to it or any of the previous neurons. In the improbable case three adding
∞ to the chain rule causes it to swap out any meaningful gradient. This is visualized in figure 3.3 a.
In our implementations this is tackled by using the spike times, so ∂ts

∂w instead of the above described ∂S
∂w .

This solves it because while the spikes are not continuous time is. There are however other ways around this
problem and they all have advantages and disadvantages to be aware of.

3.5. Training Spiking Neural Networks
The main ways of training an SNN network as covered by [7] are the following:

• Shadow Training: This method consists of training an ANN and then once it is trained transforming
it into an SNN by means of encoding the ANN weights as SNN weights.

• Surrogate Gradients: In surrogate gradients, you use a surrogate function to replace the spikes, as in
the case of [18].

• Spike Time: spike time is a method of training SNNs that use the actual spike times, as in the case
of [4].

Let’s cover them in a bit more detail as although in this project we only use spike time backpropagation it is
important to understand the context it is being proposed in and the other options available in order to see
the benefits of our selected method.

3.5.1. Shadow Training
Shadow training is a method of training SNN that avoids the problem of how to train an SNN by sidestepping
the need to train an SNN. The way they do this is by instead training an ANN and then once this network
is trained they convert it and its weights into a SNN. This method has produced good results in the field of
image classification, however as one can intuit their training process is quite inefficient and raises questions
about redundancy.
Other than that they also show issues that make them not as promising as other training methods:

• The first is that since the training is done on an ANN the datasets used do not usually involve the
use of the temporal dynamics of SNN and relegate them to ordinary benchmark datasets designed for
ANN, This however is a problem many approaches face and is hard to solve due to the lack of datasets
designed to highlight the aforementioned property.

• The second downside is that since ANNs use highly precise values converting them into SNN requires,
in the case of discrete-time SNNs, a large amount of simulation time steps. This can undermine the
power and latency advantages that SNNs provide.

• Finally and more crucially the training method attempts to make the SNN an approximation of an ANN,
and therefore the SNN will not reach or surpass the ANN. Some approaches such as [23] use a hybrid
approach where the ANN is used to set an initial value for the SNN and then perform backpropagation
on the SNN, this however still requires one of the other covered SNN training methods.

3.5.2. Spike backpropagation and Surrogate Gradients
Spike backpropagation and Surrogate Gradients are ways to attempt backpropagation while circumventing
the dead neuron problem with the use an approximate gradient (as is the case in [18]) to replace ∂S

∂w with
an approximation ∂S̃

∂w . In the case of [18] for example they use a Sigmund function Θ(x) for Θ̃(x) in this
case the notation used is ∂S

∂w = Θ′(x)→ ∂S̃
∂w = Θ̃′(x). A visual representation of these surrogate gradients

can be seen in figure 3.4.

Θ(x) =

{
1 if x >= 0

0 else
(3.1)

3.5. Training Spiking Neural Networks 27

Figure 3.3: Visual representation of the dead neuron problem and the three main solutions to it [7]. “ (a) The dead neuron
problem: the analytical solution of �S/�U � 0, ∞ results in a gradient that does not enable learning. (b) Shadow training: a
non-spiking network is first trained and subsequently converted into an SNN. (c) Spike-time gradient: the gradient of spike
time f is taken instead of the gradient of the spike generation mechanism, which is a continuous function as long as a spike

necessarily occurs [3]. (d) Surrogate gradients: the spike generation function is approximated to a continuous function during
the backward pass [11]. The left arrow (←) indicates function substitution. This is the most broadly adopted solution to the

dead neuron problem.”- as explained by [7]

3.6. Our Implementation 28

Figure 3.4: Comparison of the surrogate gradient and the real gradient. As you can see the loss of the gradient helps smooth
out the loss function, and hence make the. [15]

Θ̃(x) =
1

1 + e−4x
→ Θ̃′(x) = 4Θ̃(x) ∗ (1− Θ̃(x)) (3.2)

This allows them to perform propagation in the same way as ANNs do, this is visualized in 3.3 section d.
However spikes still need to be outputted in order to update the weights, a downside our implementation
also shares, as explained in section 4.3.2 and which we aim to correct with the residual connections.

3.5.3. Spike Time backpropagation
The final method of training SNNs is the use of Spike time backpropagation, this is the method used on our
approach and therefore we will not go in-depth in this section as the rest of this chapter covers this training
method and the equations used in our implementation. As mentioned in the dead neuron problem section
3.4 this method performs the backpropagation not in the spikes but in the spike times.
The intuition behind this method is that a change △w in a weight will cause a change in the membrane
potential by △U and that will result in a change of the spike time t of △t. When comparing to Spike
backpropagation the main change is that we change ∂S

∂w of ∂t
∂w . This does however mean that neurons must

emit a spike in order for their gradient to be calculated, this problem that we call silent neurons problem is
one of the main problems we intend to tackle in our implementation by the use of residual connection.
Other than that, using spike times to calculate the gradient also has another difficulty. That is the relation
between the weight values and the spike times. Due to the nature of the neurons a small change in weights
can cause a large change in the spike times as can be seen in 3.5 or it can even cause the neuron to stop
outputting spikes altogether.
This method has another significant downside that this thesis aims to solve, and that is the fact that since
the backpropagation is done on spike times; if there are no spikes at the output backpropagation is not
possible. This is a problem we refer to as the banishing spike problem and I will cover it more in-depth and
how it relates to deeper networks in section 4.3.2.

3.6. Our Implementation
In our implementation we use neurons multi-spiking precise time neurons capable of precise spike time
backpropagation developed by [2]. In this section, we shall go over both the intuition and the math behind
these neurons. The additional math related to residual connections and our relation to it will be explored in
section 4.3.

3.6.1. Our Neurons
With that said let’s start taking a look at the inner workings of our neurons by looking a the membrane
potential equation. This equation determines when our spikes will occur and is composed of two main
components. One that reacts to pre-synaptic spikes, and one that reacts to post-synaptic spikes. The reason
for this is that since it can spike multiple times the spike times of future spikes do not only depend on the

3.6. Our Implementation 29

Figure 3.5: Visual representation of how a small change in the weight can have a large effect on the spike time. This is one of
the causes that make backpropagation in spiking neural networks more challenging than in traditional Artificial Neural

Networks.

spike the neuron receives but also on the spikes the neuron has emitted.

u(l,j)(t) =

N(l−1)∑
i=1

wl
i,j

n(l−1,i)∑
z=1

ϵ(t− t(l−1,i)
z)−

n(l,j)∑
z=1

η(t− t(l,j)z) (3.3)

with ϵ(t) representing the response of the neuron to a pre-synaptic spike and η(t) being the neuron’s reset
response to emitting a spike. In the case of the neurons used for this thesis these equations are the following:

ϵ(t) = Θ(t)
ττs

τ − τs

[
exp

(
−t
τ

)
− exp

(
−t
τs

)]
(3.4)

η(t) = Θ(t)vthexp

(
−t
τ

)
(3.5)

Θ(x) :=

1 if x > 0

0 else
(3.6)

Where τ is the membrane time constant τs is the synaptic time constant and vth is the activation threshold.
Let’s take these equations one at a time. The first thing to note in both equations is that all spikes no
matter the time set the Θ(t) = 1. Another detail of importance is that since we use a leaky neuron the
input of both functions is not the spike time but the difference between the current time and the time of
the last spike. We also see that a more recent spike will increase the membrane potential more due to the
exp

(
−t
τ

′
)

and exp
(

−t
τs

)
components in τ(x).

3.6.2. Spike Time Calculations In The Forward pass
Spike time for a spike in a multi-spiking neuron depends on two things, the pre and post-synaptic spikes
of the neuron, those referring to the spikes the neuron has received up to this point (pre-synaptic) and the
spikes the neuron has outputted up to this point (post-synaptic). A way to understand this is to picture the
neuron’s membrane potential as a water bucket with a hole at the bottom and a pump that empties it once
a certain level of water is reached. In this analogy the leakiness of the neuron would be the whole at the
bottom of the bucket, a higher leakiness a larger whole and the more water (spikes) in a certain period of
time you need to input to fill it to the threshold. This threshold is the vth is the level at which the pump is
activated, throwing water into the next buckets (the neuron outputs a spike), whether the bucket is left at
the original water line or not is the hard or soft rest.

3.6. Our Implementation 30

This is the reason why in the closed form solution for the spike time calculations seen in equation 3.9 the
spike time t

(l,j)
k depends on both the spike times of the previous layer t

(l−1,i)
k → ∀i ∈ N(l − 1) as well as

the previous spike times of itself t(l,j)n → n < k.

3.6.3. Spike Time Loss Function
Similar to an ANN the loss function should take two inputs, what we obtained from the network and what
we want to obtain (taken from the labels), and calculate a distance between them. However, in SNNs most
traditional loss functions such as Mean Squared Error (MSE) do not apply. Therefore we use the following
loss function:

L =
1

2

n(o)∑
j=1

(
yj − n(o,j)

)2
(3.7)

That compares the number of output spikes of a given neuron in the output layer n(o,j) with the number
of outputs it should be producing yj . The value of yj changes between two values in our implementation
depending on whether the neuron corresponds to the correct label or not, these two values are set as
parameters.
Another option for the loss function would be to use Time to first spike encoding and then perform the
cross-entropy loss function on the selected label.

3.6.4. Closed Form Solution
The closed-form solution of the spike timing equations is what allows backpropagation to work without
needing to use surrogate functions as it makes the spike time equations derivable. This is done in [9] and
then built upon by [2] to allow for multiple spikes per neuron. they do this by constraining the value of the
membrane time constant τ to be two times the value of the synaptic time constant (τ = 2τs).
In general, the Spike Response Model (SRM) mapping of a LIF with this constraint can be written as:

0 = −a(l,j)k exp

(
−t(l,j)k

τ

)2

+ b
(l,j)
k exp

(
−t(l,j)k

τ

)
− c

(l,k)
k (3.8)

and therefore this polynomial equitation can be solved for t(l,j)k , representing the spike time of the kth spike
in neuron j of layer l, by using:

t
(l,j)
k = τ ln

[
sa

(l,j)
k

b
(l,j)
k + x

(l,j)
k

]
with x

(l,j)
k =

√
(b

(l,j)
k)2 − 4a

(l,j)
k c

(l,j)
k (3.9)

With a
(l,j)
k , b

(l,j)
k , c

(l,j)
k being terms that change depending on the implementation; in this case:

a
(l,j)
k :=

N(l−1)∑
i=1

w
(l)
i,j

∑
z

= 1n
n(l−1,i)

Θ
(
t
(l,j)
k − t(l−1,i)

z

)
exp

(
t
(l−1,i)
z

τs

)
(3.10)

b
(l,j)
k :=

N(l−1)∑
i=1

w
(l)
i,j

∑
z

= 1n
n(l−1,i)

Θ
(
t
(l,j)
k − t(l−1,i)

z

)
exp

(
t
(l−1,i)
z

τs

)
−vth

τ

n(l,j)∑
z=1

Θ
(
t
(l,j)
k − t(l,i)z

)
exp

(
t
(l,i)
z

τ

)
(3.11)

c := c
(l,j)
k =

vth
τ

(3.12)

Since c
(l,j)
k is the same for every neuron we denote is at c for convenience. These equations are derivable,

therefore gradient descent can be performed.

3.6. Our Implementation 31

3.6.5. Backward pass
In the backward pass, we aim to modify values of the weights (labelled as synapses in figure 3.1) that connect
the neurons in order to strengthen or weaken pathways between them to how the output of a neuron in layer
l−1 have a higher or lower impact on the membrane potential of layer l. For that, we again need to calculate
the gradient from the spike errors in order to know the best direction of weight change.

Weight Updating
A weight w

(l)
i,j between neuron pre-synaptic neuron i at layer l − 1 and post-synaptic neuron j at layer l

receives an error δ(l,j)k through backpropagation, this spike error is calculated in the same way as in [2]. This
lead to a change w

(l)
i,j → w

(l)
i,j − λ∆w

(l)
i,j

∆w
(l)
i,j =

n(l,j)∑
k=1

∂L

∂t
(l,j)
k

∂t
(l,j)
k

∂w
(l)
i,j

=

n(l,j)∑
k=1

δ
(l,j)
k

∂t
(l,j)
k

∂w
(l)
i,j

(3.13)

With λ being the training rate hyperparameter.

Gradient Calculations
As a consequence of the above described closed form solution found in equation 3.9. From spike timing, it
is now differential, which allows for a computation of an exact gradient as was eluded to in the equation
3.13. Just as in that case, we are dealing with a weight w(l)

i,j receiving an error δ(l,j)k ; let’s now pick up from
where we left off with the calculation of how w

(l)
i,j effects t

(l,j)
k , since as said it is deliverable we get:

∂t
(l,j)
k

∂w
(l)
i,j

=

n(l−1,i)∑
z=1

Θ
(
t
(l,j)
k − t(l−1,i)

z

)[
f
(l,j)
k exp

(
t
(l−1,i)
z

τs

)
− h

(l,j)
k exp

(
t
(l−1,i)
z

τ

)]
(3.14)

with

f
(l,j)
k :=

∂t
(l,j)
k

∂a
(l,j)
k

=
τ

a
(l,j)
k

[
1 +

c

x
(l,j)
k

exp

(
t
(l,j)
k

τ

)]
(3.15)

h
(l,j)
k :=

∂t
(l,j)
k

∂b
(l,j)
k

=
τ

x
(l,j)
k

(3.16)

With these calculations the only element we are missing to perform the weight updating calculations from
section 3.6.5 is the error.

Spike Errors
Next, we will examine the term δ

(l,j)
k in detail and discuss its calculation. δ

(l,j)
k is the error associated with

the spike time t(l,j). As we are dealing with a neuron that can output multiple spikes this error is received
from two locations and can be written in the following way:

δ
(l,j)
k :=

∂L
∂t(l,j)

= ϕ
(l,j)
k + µ

(l,j)
k =

N(l+1)∑
i=1

n(l+1,i)∑
z=1

∂L
∂t

(l+1,i)
z

∂t
(l+1,i)
z

∂t
(l,j)
k︸ ︷︷ ︸

ϕ
(l,j)
k → Inter Neuronal

+
∑

)n
(l,j)

z=k+1

∂L
∂t

(l,j)
z

∂t
(l,j)
z

∂t
(l,j)
k︸ ︷︷ ︸

µ
(l,j)
k →Intra Neuronal

(3.17)

The first, represented by ϕ
(l,j)
k , is from the influence of the post-synaptic spikes of the neuron on pre-synaptic

spikes, in other words from how the weights have influenced the neuron’s behaviour and its effect on the
neurons further down the network. This error is different in the output layer than in the other layers, as
this is where the loss from the labels enters the system. In this layer o the ϕ

(o,j)
k is set to be the difference

between the number of spikes the neuron should be outputting in based on the label yi and the real number
the neuron is outputting n(o,j). Hence these are the equations:

ϕ
(o,j)
k :=

∂L
∂n(o,j)

= yi − n(o,j) (3.18)

3.6. Our Implementation 32

On the other hand in the hidden neurons the error ϕ(l,j)
k is the sum of all the errors δ

(l+1,i)
z backpropagated

from spikes that spike t
(l,j)
k has contributed to. Hence it is formally defined as:

ϕ
(l,j)
k :=

N(l,j)∑
i=1

n(l+1,i)∑
z=1

∂L
∂t

(l+1,i)
z

∂t
(l+1,i)
z

∂t
(l,j)
k

=

N(l,j)∑
i=1

n(l+1,i)∑
z=1

δ(l+1,i)
z

∂t
(l+1,i)
z

∂t
(l,j)
k

(3.19)

and

∂t
(l+1,i)
z

∂t
(l,j)
k

= Θ
(
t(l+1,i)
z − t

(l,j)
k

)
w

(l+1)
j,i

[
f
(l+1,i)
z

τs
exp

(
t
(l,j)
k

τs

)
− h

(l+1,j)
z

τ
exp

(
t
(l,j)
k

τ

)]
(3.20)

note that f
(l+1,i)
z and h

(l+1,j)
z are given in equations 3.15 and 3.16 respectively. Therefore we now have

everything we need to calculate the errors and the gradients extracted from said errors if we were not dealing
with a multi-spiking neuron architecture.

In the second location, represented by µ
(l,j)
k the error comes is the influence the post-synaptic spikes have on

the neuron’s other post-synaptic spikes due to the reset functionality. The intuition behind these calculations
is that spike k in neuron j of layer l will affect all later spikes in that neuron because it will reset the neuron
potential. Therefore in a similar way to before µ

(l,j)
k is defined as the sum of all backpropagated errors

generated by spikes the neuron generates after k. Formally we write it in the following way:

µ
(l,j)
k :=

n(l,j)∑
z=k+1

∂L
∂t

(l,j)
z

∂t
(l,j)
z

∂t
(l,j)
k

=

n(l,j)∑
z=k+1

δ(l,j)z

∂t
(l,j)
z

∂t
(l,j)
k

(3.21)

where
∂t

(l,j)
z

∂t
(l,j)
k

=
vth

τx
(l,j)
z

exp

(
t
(l,j)
k

τ

)
(3.22)

With the combination of these two elements in the error, an error can be calculated to perform the back-
propagation, as seen in section 3.6.5.

4
Residual Connections

In the field of deep learning residual connections are a standard piece of the puzzle and they have been
successfully used to allow for the training of deeper networks, such as in the case of ResNet [12]. These
connections are tried in tested in the field of ANNs but are having some issues being implemented into SNNs
In this section we will cover what they are, why they are used, why they are relevant to implement in SNNs,
and how they can be implemented in said networks.

4.1. What Is A Residual Connection?
A residual connection is a connection in a neural network that allows for information from an earlier layer to
be transmitted into a layer lower down the network. This is usually used to skip two or three layers in the
network to create what is called a block, a 2-layer example can be seen in figure 4.1.
Of special note for this project is what we will refer to as the fuse function. That is how the residual input
F (x) is fused with the skip connection x; in the case of the example given in figure 4.1 that would be a
simple addition, this is the function used for the vast majority of approaches to residual connections as it has
been shown to produce great results [12]. However, the reason this can be used is that the values of both
x and F (x) are numerical, this sort of simplistic function can not be used in SNNs where you have more
concerns but also more flexibility.

4.2. Why They Are Used?
The theoretical idea behind these connections is that the output from the extra layers F (x) in figure 4.1 will
provide some sort of fine-tuning and additional information to the data in x in figure 4.1. These connections
were also designed to help with the banishing and exploiting gradient problem that deep ANNs have.
In the past they have been used in ANN architectures like ResNet [12] and have empirically shown that they
help the network converge faster. They are a standard part of the deeper networks used in deep learning and

Figure 4.1: A typical example of a “block” in a residual network that uses a numerical sum as a fuse function, this is the case
in [12], where this figure is from.

33

4.3. Residual Connections in Spiking Neural Networks 34

theoretically provide the network with an information channel that passes through fewer filters, providing it
a channel in which to store the important and basic information [12].

4.3. Residual Connections in Spiking Neural Networks
With an understanding of both Spiking Neural Networks and Residual connections, we can now explore how
the principles of residual connections can be applied to SNNs. In this part of the thesis, we shall first go
over some examples of how they have been applied on networks with other types of neurons and then we
will delve into why and how we implemented them using our neurons.

4.3.1. How Are They Implemented In Literature?
This approach is not the first time that there has been an attempt to add residual connections to Spiking
Neural Networks, yet, to the best of my knowledge this is the first time that residual connections are
implemented in multi-spiking neurons with precise time that use spike time backpropagation. In this section,
we will go over some examples of implementations of residual connections in SNNs and what we can learn
from them for this implementation.
In the past residual connections have usually been implemented on discreet time and then usually implemented
using a boolean logic function to combine them [26, 18]. From these cases, we get the idea to attempt to
fuse the information of the two inputs, an idea that eventually evolved into the Average fuse function.
A different approach as the one proposed by [13], although they also use discrete time they use a more
complex way of fusing the inputs. This method and their goal to keep the transmitted information intact is
the inspiration behind our Append fuse function.
Another paper of note is [13], the approach from this paper we can see that deep SNNs have the potential to
be implemented successfully to allow for deeper spiking networks. This paper gives credence to our plan to
implement residual connections to improve the depth and accuracy of the precise time multi-spiking neurons
of the [2] paper.
Further information in the related existing literature on the topic can be found in the related work section
of the attached academic paper.

4.3.2. Banishing Spikes
When working with SNN, in particular with implementations such as [2] and the one covered in this thesis,
we must acknowledge that they suffer from a problem of decaying spikes and silent outputs. This causes
problems due to the use of spike time backpropagation, which makes the network dependent on output spikes
to update the weights. This in combination with the decrease in the average number of output spikes as the
depth of the layer increases means that we are limited in the depth of a non-residual network.
The reason for this decrease in spikes as the depth increases is that, unless the weights of the synapses
between two layers l and l + 1 are on average inefficiently high, the number of spikes that a neuron needs
to receive to produce and output spike will be greater than one; hence the number of spikes in outputted by
layer l→ N l will be greater than the number for layer l + 1→ N (l+1).
An example of this is in our implementation, the network goes silent after four or five layers of depth,
depending on the dataset. This limitation of depth is a crucial issue, as deep learning has shown that deeper
networks are able to produce better results than their shallow counterparts [25]. In this thesis, we therefore
aim to solve this problem using residual connections to increase the number of spikes received by deeper
layers.

4.3.3. Why Residual Connections Are Important In Spiking Neural Networks?
Other than the same reasons behind adding them to ANNs there is an extra motivation to add them to
SNNs in order to solve the above-mentioned spike decay problem. The addition of outputs from more active
layers into the lower layers of the network can help to maintain spike activity as the network gets deeper,
hence increasing the maximum deph.

4.3. Residual Connections in Spiking Neural Networks 35

4.3.4. How They Can Be Implemented In Our Scenario?
When implementing Residual connections in SNN with precise time you can not use methods such as simple
addition (as is used in most ANNs such as [12]) or use a binary logic function as in the case of discrete-time
SNNs (as in the case of [26]). On the other hand, it offers a lot more flexibility, in order to exploit this the
suggested architecture has the ability to accommodate different fuse functions and I created three different
fuse functions to test. These are described in the above paper in the Fuse functions section.

4.3.5. Forward Pass With Residual Connections
As expected the residual connection changes the forward pass calculations. The main change happens to the
equations of 3.3 as it now looks like this in the case of the append fuse function with a jump length of d:

u(l,j)(t) =

N(l−1)∑
i=1

wl
i,j

n(l−1,i)∑
z=1

ϵ(t− t(l−1,i)
z) +

N(l−d)∑
u=1

wl
u,j

n(l−d,u)∑
z=1

ϵ(t− t(l−d,u)
z)︸ ︷︷ ︸

Input from the jump connection at layer l − d

−
n(l,j)∑
z=1

η(t− t(l,j)z) (4.1)

As it might seem obvious this uses more weights (wl
i,j +wl

u,j) in layer l as there are now more neurons that
the neurons in layer l need to connect to.
In the case of the average fuse functions the equation for u(l,j)(t) 3.3 remains the same, nevertheless, the
value of t

(l−1,u)
z does change, as it is now affected by the values of t

(l−d,u)
z . Formally, in the case of an

average residual connection with layer l− d the following change would occur for every neuron in layer l− 1
with neurons i = 0, ..., x and each neuron in layer l − d with neurons u = 0, ..., x there are three cases:

1. The number of spikes emitted by both neurons are the same n(l−1,i) = n(l−d,u)

2. The number of spikes emitted by neuron i of layer l − 1 is the smaller of the two n(l−1,i) < n(l−d,u)

3. The number of spikes emitted by neuron i of layer l − 1 is the larger of the two n(l−1,i) > n(l−d,u)

In case one the number of spike times match ∀t(l,i)z exists a t
(l,u)
z , therefore we can simply perform an average

to compute the new spike times, mathematically this is as follows: t
(r,i)
z ← t(l−1,i)

z +t(l−d,i)
z

2 .
In cases two and three the situation is mirrored depending on what neuron has the least amount of activation.
It is for this reason that in this explanation with the aim to avoid repetition, I will only be considering case
two as due to the spike decay problem 4.3.2 it is the most common, case number three is the same but
reversed as in which spike first runs out of spikes to compare. While the spikes can be matched; meaning
that for every t

(l−1,i)
z that has a paired t

(l−d,i)
z we use the same method as in case one. After one of them

runs out of spikes we use the remaining spikes t
(r,i)
z ← t

(l−1,i)
z or t(l−d,i)

z . Formally the equation would then
be:

u(r,j)(t) =

N(r)∑
i=1

wr
i,j

n(r,i)∑
z=1

ϵ(t− t(r,i)z)−
n(r,j)∑
z=1

η(t− t(r,j)z) (4.2)

4.3.6. backpropagation With Residual Connections
The backward pass of the residual layers also has to be modified in order to accommodate for the equations
4.1 and 4.2 of the residual forward pass. The logic behind the equations remains the same as in chapter
3.6.5 nonetheless the math needs to change in order to accommodate the new connections.

4.3. Residual Connections in Spiking Neural Networks 36

Figure 4.2: Visual representation of the error flow into a spike with time t
(l,j)
1 at later. For simplicity, in this diagram, we only

show the error flows for a single neuron in each layer. In this representation, you can see that the spike time receives errors
from both other spikes emitted later on in its neuron (here represented with orange arrows) and from spike times that it has
influenced lower in the network (represented with blue arrows), in the case of this figure layer l is jump connection layer, so it

receives errors from both the next layer and the residual layer.

The main change occurs in the weight update equation 3.17 as it now is defined as such:

δ
(l,j)
k :=

∂L
∂t(l,j)

= ϕ
(l,j)
k + µ

(l,j)
k =N(l+1)∑

i=1

n(l+1,i)∑
z=1

∂L
∂t

(l+1,i)
z

∂t
(l+1,i)
z

∂t
(l,j)
k

+

N(l+d)∑
i=1

n(l+d,i)∑
z=1

∂L
∂t

(l+d,i)
z

∂t
(l+d,i)
z

∂t
(l,j)
k

× 0.5

︸ ︷︷ ︸
ϕ
(l,j)
k → Inter Neuronal

+

n(l,j)∑
z=k+1

∂L
∂t

(l,j)
z

∂t
(l,j)
z

∂t
(l,j)
k︸ ︷︷ ︸

µ
(l,j)
k →Intra Neuronal

(4.3)

As you can see the change occurred in the inter-neuronal error component as the neuron now has a more
direct effect on layers further down the network, hence the formula was changed to reflect that.
In figure 4.2 one can see how the error flows back from both the next layer and the layer that receives the
output as a jump connection input.

4.3.7. Implementation Of The Residual Connection
Now that we have looked at how we went about implementing the residual connection and the fuse functions.
An overview of it can be seen in figure 4.3. As you can see the inputs of the two channels of the residual
connection are inputted into a fuse function, these are the fuse functions that can be swapped out depending
on how you wish to mix the input of the previous and jump layer.
As described in the academic paper section of this thesis we utilize a function that takes the average spike
times of the spike belonging to the two input streams, called the Average fuse function.
Secondly, I developed a function that uses an append method to feed the input streams of the two layers
into the residual layer as if it were a single layer with a neuron count equal to the sum of the neurons of the
two input layers (formally, Npre = N (l−1) +N (l−d)), this we call the Append fuse function.

4.3. Residual Connections in Spiking Neural Networks 37

Figure 4.3: An overview of how the different layers in a residual connection interact with each other in the implementation.
This architecture was designed with the intent of being as flexible as possible and allowing for the testing of different fuse

functions to better take advantage of the flexibility given to us by the multi-spiking and precise time neurons of the network.

Finally, there are the fuse functions used for the convolutional layers, called Convolutional Append Fuse
Function and Convolutional Average Fuse Function these follow the same logic as their non-convolutional
counterparts with some modifications to make them work in the architecture and in the case of the Convo-
lutional Append Fuse Function the appending is made on the channel dimensions instead of the neuron
dimension.
In our fuse functions as shown in the appendix 5 you can see we implement them to allow them all to be
used with delay. These fuse functions had to be accompanied by changes to both the forward and backward
pass calculations to accommodate them and the changing size of the inputs. In the source code it is also
of note that I made use of CUPY [20], a Python library focused on optimization in GPUs to speed up the
processing times.
The rest of the source code can be found in the projects https://github.com/AlexDeLos/bats.git.

4.3.8. Improvement To The Existing Code Base
In addition to the changes described in the above section and the paper attached to this thesis, I have also
implemented several quality-of-life changes to help with the ability to replicate my work. These changes
include but are not limited to allowing every script to be called from the root folder, with arguments
representing hyperparameters such as the number of hidden layers, a learning rate scheduler, the length of
the residual connection jumps, batch size, number of neurons per layer, the user of weights and biases to
record the results, number of epochs, amongst many others.
Thanks to this implementation the script can now be called with the hyperparameters and architecture
changes without having to do any modifications to the code. This was very useful in my case to generate
sbatch files with the python script’s hyperparameters being able to be determined when the script was called,
unlike the original version of the code base where to change the hyperparameters one needed to edit the
code in the files.

4.3. Residual Connections in Spiking Neural Networks 38

4.3.9. Addition Of Learning Rate Schedulers
Unlike the original implementation for some of my experiments, I use a more complex learning rate scheduler.
For these there are two versions that I made, it is important to note that due to the lack of a validation
dataset all learning rate reduction decisions are made based on the training loss, not the test loss.
Slope Scheduler the first of the implemented schedulers keeps track of the slope of best fitting linear
regression of loss of the last t training epochs (in the case of my experiments 5 epochs). If the slope of this
line is higher than a threshold (in the case of my experiments this hyperparamater was set to -0.1) it then
lowers the learning rate by a given ratio (in the case of my experiments with the scheduler this amount was
set to 0.75). The goal of this scheduler was to take a more general look at the state of the loss over the last
few epochs in order to decide when to decrease the learning rate.
Last Lowest point Scheduler Was the other implemented scheduler and used a simpler logic than its
slope-based counterpart. It looked at how many epochs ago the best loss result was and if that number was
bigger than a given hyperparamater (in my experiments 5 epochs) then the learning rate was decreased by
a ratio (in the case of my experiments with the scheduler this amount was set to 0.75).

References

[1] Alexander Amini et al. Spatial Uncertainty Sampling for End-to-End Control. May 2018.
[2] Florian Bacho and Dominique Chu. “Exploring Trade-Offs in Spiking Neural Networks”. In: Neural

Computation 35.10 (2023), pp. 1627–1656.
[3] Sander M Bohte, Joost N Kok, and Han La Poutre. “Error-backpropagation in temporally encoded

networks of spiking neurons”. In: Neurocomputing 48.1-4 (2002), pp. 17–37.
[4] Sander M. Bohté, Joost N. Kok, and Han La Poutré. “SpikeProp: backpropagation for networks of

spiking neurons”. In: The European Symposium on Artificial Neural Networks. 2000. url: https:
//api.semanticscholar.org/CorpusID:14069916.

[5] Gregory Cohen et al. “EMNIST: Extending MNIST to handwritten letters”. In: 2017 international joint
conference on neural networks (IJCNN). IEEE. 2017, pp. 2921–2926.

[6] Suxia Cui et al. “Fish Detection Using Deep Learning”. In: Applied Computational Intelligence and
Soft Computing 2020 (Jan. 2020), pp. 1–13. doi: 10.1155/2020/3738108.

[7] Jason K. Eshraghian et al. Training Spiking Neural Networks Using Lessons From Deep Learning. 2023.
arXiv: 2109.12894 [cs.NE].

[8] Samanwoy Ghosh-Dastidar and Hojjat Adeli. “Spiking neural networks”. In: International journal of
neural systems 19.04 (2009), pp. 295–308.

[9] J. Göltz et al. “Fast and energy-efficient neuromorphic deep learning with first-spike times”. In: Nature
Machine Intelligence 3.9 (Sept. 2021), pp. 823–835. issn: 2522-5839. doi: 10.1038/s42256-021-
00388-x. url: http://dx.doi.org/10.1038/s42256-021-00388-x.

[10] Yilong Guo et al. “Unsupervised Learning on Resistive Memory Array Based Spiking Neural Networks”.
In: Frontiers in Neuroscience 13 (Aug. 2019). doi: 10.3389/fnins.2019.00812.

[11] Robert Gütig and Haim Sompolinsky. “The tempotron: a neuron that learns spike timing–based deci-
sions”. In: Nature neuroscience 9.3 (2006), pp. 420–428.

[12] Kaiming He et al. Deep Residual Learning for Image Recognition. 2015. arXiv: 1512.03385 [cs.CV].
[13] Yangfan Hu, Huajin Tang, and Gang Pan. “Spiking deep residual networks”. In: IEEE Transactions on

Neural Networks and Learning Systems 34.8 (2021), pp. 5200–5205.
[14] Zhenhua Huang et al. “Making accurate object detection at the edge: review and new approach”. In:

Artificial Intelligence Review 55 (Mar. 2022). doi: 10.1007/s10462-021-10059-3.
[15] Dario Izzo et al. Neuromorphic Computing and Sensing in Space. Dec. 2022. doi: 10.48550/arXiv.

2212.05236.
[16] Yann LeCun, Corinna Cortes, and CJ Burges. “MNIST handwritten digit database”. In: ATT Labs

[Online]. Available: http://yann.lecun.com/exdb/mnist 2 (2010).
[17] Yann LeCun, Corinna Cortes, and CJ Burges. “MNIST handwritten digit database”. In: ATT Labs

[Online]. Available: http://yann.lecun.com/exdb/mnist 2 (2010).
[18] Yudong Li, Yunlin Lei, and Xu Yang. Rethinking Residual Connection in Training Large-Scale Spiking

Neural Networks. 2023. arXiv: 2311.05171 [cs.NE].
[19] Medium. Kernels (Filters) in convolutional neural network (CNN), Let’s talk about them. 2021. url:

https://medium.com/codex/kernels-filters-in-convolutional-neural-network-cnn-
lets-talk-about-them-ee4e94f3319 (visited on 04/13/2024).

[20] Ryosuke Okuta et al. “CuPy: A NumPy-Compatible Library for NVIDIA GPU Calculations”. In: Proceed-
ings of Workshop on Machine Learning Systems (LearningSys) in The Thirty-first Annual Conference
on Neural Information Processing Systems (NIPS). 2017. url: http://learningsys.org/nips17/
assets/papers/paper_16.pdf.

39

https://api.semanticscholar.org/CorpusID:14069916
https://api.semanticscholar.org/CorpusID:14069916
https://doi.org/10.1155/2020/3738108
https://arxiv.org/abs/2109.12894
https://doi.org/10.1038/s42256-021-00388-x
https://doi.org/10.1038/s42256-021-00388-x
http://dx.doi.org/10.1038/s42256-021-00388-x
https://doi.org/10.3389/fnins.2019.00812
https://arxiv.org/abs/1512.03385
https://doi.org/10.1007/s10462-021-10059-3
https://doi.org/10.48550/arXiv.2212.05236
https://doi.org/10.48550/arXiv.2212.05236
https://arxiv.org/abs/2311.05171
https://medium.com/codex/kernels-filters-in-convolutional-neural-network-cnn-lets-talk-about-them-ee4e94f3319
https://medium.com/codex/kernels-filters-in-convolutional-neural-network-cnn-lets-talk-about-them-ee4e94f3319
http://learningsys.org/nips17/assets/papers/paper_16.pdf
http://learningsys.org/nips17/assets/papers/paper_16.pdf

References 40

[21] J Padarian, B Minasny, and AB McBratney. “Using deep learning to predict soil properties from regional
spectral data”. In: Geoderma Regional 16 (2019), e00198.

[22] Rachmad Vidya W. Putra and Muhammad Shafique. FSpiNN: An Optimization Framework for Memory-
and Energy-Efficient Spiking Neural Networks. July 2020.

[23] Nitin Rathi et al. Enabling Deep Spiking Neural Networks with Hybrid Conversion and Spike Timing
Dependent Backpropagation. 2020. arXiv: 2005.01807 [cs.LG].

[24] Alireza Sarraf Shirazi and Ian Frigaard. “SlurryNet: Predicting Critical Velocities and Frictional Pressure
Drops in Oilfield Suspension Flows”. In: Energies 14 (Feb. 2021), p. 1263. doi: 10.3390/en14051263.

[25] Jürgen Schmidhuber. “Deep learning in neural networks: An overview”. In: Neural Networks 61 (Jan.
2015), pp. 85–117. issn: 0893-6080. doi: 10.1016/j.neunet.2014.09.003. url: http://dx.doi.
org/10.1016/j.neunet.2014.09.003.

[26] Yimeng Shan et al. OR Residual Connection Achieving Comparable Accuracy to ADD Residual Con-
nection in Deep Residual Spiking Neural Networks. 2023. arXiv: 2311.06570 [cs.CV].

[27] Martino Sorbaro et al. “Optimizing the energy consumption of spiking neural networks for neuromorphic
applications”. In: Frontiers in neuroscience 14 (2020), p. 516916.

[28] Amirhossein Tavanaei et al. “Deep learning in spiking neural networks”. In: Neural networks 111 (2019),
pp. 47–63.

[29] Han Xiao, Kashif Rasul, and Roland Vollgraf. “Fashion-MNIST: a Novel Image Dataset for Bench-
marking Machine Learning Algorithms”. In: CoRR abs/1708.07747 (2017). arXiv: 1708.07747. url:
http://arxiv.org/abs/1708.07747.

[30] Huo Yingge, Imran Ali, and Kang-Yoon Lee. “Deep Neural Networks on Chip - A Survey”. In: Feb.
2020, pp. 589–592. doi: 10.1109/BigComp48618.2020.00016.

[31] Matthew D Zeiler and Rob Fergus. “Visualizing and understanding convolutional networks”. In: Com-
puter Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part I 13. Springer. 2014, pp. 818–833.

https://arxiv.org/abs/2005.01807
https://doi.org/10.3390/en14051263
https://doi.org/10.1016/j.neunet.2014.09.003
http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://dx.doi.org/10.1016/j.neunet.2014.09.003
https://arxiv.org/abs/2311.06570
https://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747
https://doi.org/10.1109/BigComp48618.2020.00016

5
Source Code Example

In this Appendix we show some snippets of the source code. For the full code please go to the GitHub
repository. The following snipets cover the code corresponding to the fuse functions.

1 def fuse_inputs_append(pre_input, jump_input, count_pre, count_jump, max_n_spike, delay =
False) -> Tuple[cp.ndarray, cp.ndarray]:

2 pre_is_inf = cp.all(cp.isinf(pre_input))
3 jump_is_inf = cp.all(cp.isinf(jump_input))
4 if delay and not(pre_is_inf or jump_is_inf):
5 copy_pre_spike_per_neuron = cp.copy(pre_input)
6 non_inf_values_pre = copy_pre_spike_per_neuron[cp.isfinite(copy_pre_spike_per_neuron)

] % Select non-inf values
7 average_non_inf_pre = cp.mean(non_inf_values_pre)
8 copy_jump_spike_per_neuron = cp.copy(jump_input)
9 non_inf_values_jump = copy_jump_spike_per_neuron[cp.isfinite(

copy_jump_spike_per_neuron)]
10 average_non_inf_jump = cp.mean(non_inf_values_jump)
11 time_delay = average_non_inf_pre - average_non_inf_jump
12 jump_input = jump_input + time_delay
13 result_count = cp.append(count_pre, count_jump, axis=1)
14 if jump_input.shape[2] != pre_input.shape[2]:
15 jump_input = cp.pad(jump_input, ((0, 0), (0, 0), (0, pre_input.shape[2] - jump_input.

shape[2])), mode='constant', constant_values=cp.inf)
16 result_spikes = np.append(pre_input, jump_input, axis=1)
17 return result_spikes, result_count

Listing 5.1: Python function for fusing inputs and appending spikes in an MLP architecture

1 def fuse_inputs(pre_input, jump_input, count_residual, count_jump, max_n_spike, delay = False
) -> Tuple[cp.ndarray, cp.ndarray]:

2 if delay:
3 copy_pre_spike_per_neuron = cp.copy(pre_input)
4 non_inf_values_pre = copy_pre_spike_per_neuron[cp.isfinite(copy_pre_spike_per_neuron)

] # Select non-inf values
5 average_non_inf_pre = cp.mean(non_inf_values_pre)
6 copy_jump_spike_per_neuron = cp.copy(jump_input)
7 non_inf_values_jump = copy_jump_spike_per_neuron[cp.isfinite(

copy_jump_spike_per_neuron)]
8 average_non_inf_jump = cp.mean(non_inf_values_jump)
9 time_delay = average_non_inf_pre - average_non_inf_jump

10 jump_input = jump_input + time_delay
11

12 result_count = cp.maximum(count_residual, count_jump)
13

14 batch_size_res, n_of_neurons_res, max_n_spike_res = pre_input.shape
15 batch_size_jump, n_of_neurons_jump, max_n_spike_jump = jump_input.shape
16

17 not_inf_mask_res = cp.logical_not(cp.isinf(pre_input))
18 not_inf_mask_jump = cp.logical_not(cp.isinf(jump_input))
19

41

42

20 inf_mask_res = cp.isinf(pre_input)
21 inf_mask_jump = cp.isinf(jump_input)
22

23 xor_combined_mask = cp.logical_xor(not_inf_mask_res, not_inf_mask_jump)
24 or_combined_mask = cp.logical_or(not_inf_mask_res, not_inf_mask_jump)
25 and_combined_mask = cp.logical_and(not_inf_mask_res, not_inf_mask_jump)
26

27 #! for now if both are inf we take residual, we should take whichever is not inf
28 get_non_infinite = cp.where(inf_mask_res, jump_input, pre_input)
29 get_non_infinite = cp.where(inf_mask_jump, pre_input, get_non_infinite)
30 result_times = cp.where(or_combined_mask, jump_input, pre_input)
31

32 # we make the average of both inputs
33 if batch_size_res != batch_size_jump:
34 raise ValueError("The batch size of the residual and jump input must be the same")
35 if n_of_neurons_res != n_of_neurons_jump:
36 raise ValueError("The number of neurons of the residual and jump input must be the

same")
37 if max_n_spike_res != max_n_spike_jump:
38 raise ValueError("The max number of spikes of the residual and jump input must be the

same")
39

40 result_times = cp.where(xor_combined_mask,
41 get_non_infinite,
42 cp.mean(cp.array([pre_input, pre_input]), axis=0))
43

44 return result_times, result_count

Listing 5.2: Python function for fusing inputs and averaging spikes using the methods described.

1 def aped_on_channel_dim(pre_spike_per_neuron , pre_n_spike_per_neuron , jump_spike_per_neuron ,
2 jump_n_spike_per_neuron , shape_of_neurons, delay=False):
3 batch_size, spikes, max_n_spikes = pre_spike_per_neuron.shape
4 jump_batch_size, jump_spikes, jump_max_n_spikes = jump_spike_per_neuron.shape
5

6 if delay:
7 copy_pre_spike_per_neuron = cp.copy(pre_spike_per_neuron)
8 non_inf_values_pre = copy_pre_spike_per_neuron[cp.isfinite(copy_pre_spike_per_neuron)

]
9 average_non_inf_pre = cp.mean(non_inf_values_pre)

10 copy_jump_spike_per_neuron = cp.copy(jump_spike_per_neuron)
11 non_inf_values_jump = copy_jump_spike_per_neuron[cp.isfinite(

copy_jump_spike_per_neuron)]
12 average_non_inf_jump = cp.mean(non_inf_values_jump)
13 time_delay = average_non_inf_pre - average_non_inf_jump
14 jump_spike_per_neuron = jump_spike_per_neuron + time_delay
15

16 if batch_size != jump_batch_size:
17 raise RuntimeError("The batch sizes of the two inputs are not the same")
18 pre_x, pre_y, pre_c = shape_of_neurons.get()
19

20 if max_n_spikes != jump_max_n_spikes:
21 print('Warning: the maximum number of spikes is not the same for the two inputs',
22 max_n_spikes, jump_max_n_spikes)
23 max_n_spikes = max(max_n_spikes, jump_max_n_spikes)
24 padding_for_max_spikes_pre = ([0, 0], [0, 0], [0, max_n_spikes - pre_spike_per_neuron

.shape[2]])
25 padding_for_max_spikes_jump = ([0, 0], [0, 0], [0, max_n_spikes -

jump_spike_per_neuron.shape[2]])
26 pre_spike_per_neuron = cp.pad(pre_spike_per_neuron , padding_for_max_spikes_pre ,
27 mode='constant', constant_values=cp.inf)
28 jump_spike_per_neuron = cp.pad(jump_spike_per_neuron , padding_for_max_spikes_jump ,
29 mode='constant', constant_values=cp.inf)
30

31 pre_spike_per_neuron = cp.reshape(pre_spike_per_neuron , (batch_size, pre_x, pre_y, pre_c,
max_n_spikes))

32 jump_spike_per_neuron = cp.reshape(jump_spike_per_neuron , (jump_batch_size, pre_x, pre_y,
pre_c, jump_max_n_spikes))

33 pre_n_spike_per_neuron = cp.reshape(pre_n_spike_per_neuron , (batch_size, pre_x, pre_y,
pre_c))

43

34 jump_n_spike_per_neuron = cp.reshape(jump_n_spike_per_neuron , (jump_batch_size, pre_x,
pre_y, pre_c))

35

36 new_spike_per_neuron = cp.append(pre_spike_per_neuron , jump_spike_per_neuron , axis=3)
37 new_spike_per_neuron = cp.reshape(new_spike_per_neuron , (batch_size, pre_x * pre_y * (

pre_c + pre_c), max_n_spikes))
38

39 new_n_spike_per_neuron = cp.append(pre_n_spike_per_neuron , jump_n_spike_per_neuron , axis
=3)

40 new_n_spike_per_neuron = cp.reshape(new_n_spike_per_neuron , (batch_size, pre_x * pre_y *
(pre_c + pre_c)))

41 return new_spike_per_neuron , new_n_spike_per_neuron

Listing 5.3: Python function handelling the fusing of spikes using the convolutional append function.

1 def fuse_inputs_conv_avg(pre_input, pre_n_spike_per_neuron , jump_input,
jump_n_spike_per_neuron , neurons_shape, delay) -> Tuple[cp.ndarray, cp.ndarray]:

2 if delay:
3 copy_pre_spike_per_neuron = cp.copy(pre_input)
4 non_inf_values_pre = copy_pre_spike_per_neuron[cp.isfinite(copy_pre_spike_per_neuron)

] # Select non-inf values
5 average_non_inf_pre = cp.mean(non_inf_values_pre)
6 copy_jump_spike_per_neuron = cp.copy(jump_input)
7 non_inf_values_jump = copy_jump_spike_per_neuron[cp.isfinite(

copy_jump_spike_per_neuron)]
8 average_non_inf_jump = cp.mean(non_inf_values_jump)
9 time_delay = average_non_inf_pre - average_non_inf_jump

10 jump_input = jump_input+ time_delay
11

12 result_count = cp.maximum(pre_n_spike_per_neuron , jump_n_spike_per_neuron)
13

14

15 not_inf_mask_res = cp.logical_not(cp.isinf(pre_input))
16 not_inf_mask_jump = cp.logical_not(cp.isinf(jump_input))
17

18 inf_mask_res = cp.isinf(pre_input)
19 inf_mask_jump = cp.isinf(jump_input)
20

21 xor_combined_mask = cp.logical_xor(not_inf_mask_res, not_inf_mask_jump)
22 or_combined_mask = cp.logical_or(not_inf_mask_res, not_inf_mask_jump)
23 and_combined_mask = cp.logical_and(not_inf_mask_res, not_inf_mask_jump)
24

25 #! for now if both are inf we take residual, we should take whichever is not inf
26 get_non_infinite = cp.where(inf_mask_res, jump_input, pre_input)
27 get_non_infinite = cp.where(inf_mask_jump, pre_input, get_non_infinite)
28 result_times = cp.where(or_combined_mask, jump_input, pre_input)
29

30 # return residual_input
31 result_times = cp.where(xor_combined_mask,
32 get_non_infinite,
33 cp.mean(cp.array([pre_input, pre_input]), axis=0))
34

35 return result_times, result_count

Listing 5.4: Python function handelling the fusing of spikes using the convolutional average function.

	Preface
	Nomenclature
	Introduction
	Academic Article
	Neural Networks
	Image Classification Problem and Datasets
	Training Process
	Network Layers
	Fully Connected Layers and Multi-Layer Perceptrons
	Convolutional Layers and Convolutional Neural Networks

	backpropagation
	Loss Calculation
	Gradient Descent
	backpropagation Calculations, The Chain Rule

	Hyperparamater Optimization
	Overfitting

	Spiking Neural Networks
	Neuromorphic Computing
	Spike Encoding
	Forward Pass
	Neurons
	Intuition Behind Spike Cascading

	Dead Neuron Problem
	Training Spiking Neural Networks
	Shadow Training
	Spike backpropagation and Surrogate Gradients
	Spike Time backpropagation

	Our Implementation
	Our Neurons
	Spike Time Calculations In The Forward pass
	Spike Time Loss Function
	Closed Form Solution
	Backward pass

	Residual Connections
	What Is A Residual Connection?
	Why They Are Used?
	Residual Connections in Spiking Neural Networks
	How Are They Implemented In Literature?
	Banishing Spikes
	Why Residual Connections Are Important In Spiking Neural Networks?
	How They Can Be Implemented In Our Scenario?
	Forward Pass With Residual Connections
	backpropagation With Residual Connections
	Implementation Of The Residual Connection
	Improvement To The Existing Code Base
	Addition Of Learning Rate Schedulers

	References
	Source Code Example

