
Delft Center for Systems and Control

Distributionally Robust Abstrac-
tion and Strategy Synthesis with
Formal Guarantees

Ibón Gracia Merino (5358779)

M
as

te
ro

fS
cie

nc
e

Th
es

is





Distributionally Robust Abstraction
and Strategy Synthesis with Formal

Guarantees

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft
University of Technology

Ibón Gracia Merino (5358779)

October 6, 2022

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology



Copyright © Delft Center for Systems and Control (DCSC)
All rights reserved.



Delft University of Technology
Department of

Delft Center for Systems and Control (DCSC)

The undersigned hereby certify that they have read and recommend to the Faculty of
Mechanical, Maritime and Materials Engineering (3mE) for acceptance a thesis

entitled
Distributionally Robust Abstraction and Strategy Synthesis with

Formal Guarantees
by

Ibón Gracia Merino (5358779)
in partial fulfillment of the requirements for the degree of

Master of Science Systems and Control

Dated: October 6, 2022

Supervisor(s):
Prof. Dr. Dimitris Boskos. Supervisor

Prof. Dr. Luca Laurenti. Second Supervisor

Reader(s):
Prof. Dr. Manuel Mazo Jr. First Reader

Prof. Dr. Laura Ferranti. Second Reader





Abstract

There is growing interest to control cyber-physical systems under complex specifications while
retaining formal performance guarantees. In this thesis we present a framework for formal
control of uncertain systems under complex specifications. We consider dynamical systems
with random disturbances, whose probability distribution is unknown. When it comes to the
specifications, we focus on those given as syntactically co-safe linear temporal logic (scLTL)
formulas. Such formulas resemble natural language, and allow us to reason over complex
behaviours of the system.

We follow an abstraction-based approach: we abstract the original system to a finite-state
Markov model, in which the state discretization error as well as the distributional ambiguity,
are embedded as uncertainties. To do so we make use of tools from optimal transport and
ambiguity sets of probability distributions. After that, we obtain a strategy for the abstraction
and obtain probabilistic guarantees that the abstraction satisfies the specification. Finally,
we correctly refine the strategy to one that the original system can follow, and prove that the
guarantees we obtained for the abstraction also hold for the original system.

We propose two approaches to obtain the abstraction. First, we propose a data-driven ap-
proach to abstract the system into an interval Markov decision process (IMDP) when samples
from the unknown distribution is available. Then we use already existing algorithms to obtain
a strategy for the IMDP. Secondly, we propose an approach to abstract the original system
into a robust Markov decision process (robust MDP). This second approach is applicable to
more general uncertainty models besides the data-driven one, and reduces conservatism of
the abstraction. Furthermore, we propose an algorithm to obtain robust strategies for robust
MDPs, which also renders the guarantees that the abstraction satisfies the specification. Fi-
nally, we demonstrate the usefulness of our proposed approaches through several case studies
that involve both linear and nonlinear systems.
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Chapter 1

Introduction

We begin this chapter by motivating our approach through a toy example of controlling a
UAV that is affected by random, uncertain wind, when the specifications are complex in 1-1.
After that, we state our objectives and briefly describe our approach in Section 1-2. Next,
in Section 1-4 we give an outline of the document. Finally, in Section 1-5 we introduce basic
notation that we will use throughout the document.

1-1 Motivation

Consider a physical dynamical system affected by a random disturbance. An example of such
system can be a UAV moving in a two-dimensional space, and disturbed by random gusts of
wind, which we depict in Figure 1-1. However, consider that the probability distribution of the

Figure 1-1: UAV example. The region X ⊂ R2 contains the different regions of interest blue,
green, yellow, red and black, each one represented by a coloured region.

disturbance is unknown to us. Instead, we have access to a nominal probability distribution,
which is an estimation of the true, unknown, one. Furthermore, consider that our problem is
that of controlling the UAV in such a way that the probability of satisfying a given complex

Master of Science Thesis Ibón Gracia Merino (5358779)



2 Introduction

specification is satisfied. An example of such a specification can be the following one, inspired
by the applications in [1] and [2]: “eventually reach red, yellow and green in no particular
order, and then eventually reach blue while avoiding black and never exiting the region X
throughout all the trajectory".

From the point of view of classical control theory, it is not clear how we should approach this
problem: first, the specification is complex and, second, the number of possible motions of
the UAV, due to the continuous nature of its dynamics, is infinite. An approach based on a
single optimization problem is intractable, even if we consider only part of the specification.
Furthermore, the dynamics of the system are not deterministic, but random, and there is
ambiguity with respect to this randomness. Moreover, if the UAV surveillance problem is
safety-critical for example, we are interested in obtaining guarantees that the system satisfies
the specification. However, we cannot achieve this objective with tools from classical control
theory.

Let us start simple, considering that the probability of the disturbance is known, to give a
brief survey of the existing approaches. In this setting, formal methods help us solve problems
like the one previously described [3], [4], [5], in a systematic way. By using tools from this
field, we are able to formulate the motion specification of the UAV as a linear temporal logic
(LTL) formula, which resembles natural language. This kind of formulas are used for model
checking in computer science where, typically, systems with a finite number of states are
analysed. However, physical systems like our UAV are often described by sets of differential
or difference equations and an uncountable state space, which makes it impossible for us to
directly apply tools from formal methods to them. In order to do so, we can construct a finite
state model of the system that can be analyzed with these methods [6], [7]. This procedure
is called abstraction. Furthermore, after analyzing the abstraction, formal methods allow us
to relate the properties of the abstraction to the original system. Such properties can be,
for example, guarantees of satisfying the specification, which we wanted to obtain in the first
place.

Let us go back to the example of the UAV affected by random wind, and let us obtain an
abstraction of said system. In this uncertain setting, we should consider abstractions that
capture the stochasticity of the motion of the UAV due to the wind, such as Markov decision
processes (MDP) [8], [9]. To obtain an MDP abstraction, first, we partition the continuous
space X into a rectangular grid that respects the regions of interest (red, blue, etc.) as
shown in Figure 1-2. Then we define the states of the MDP in such a way that each state
represents a cell qi in the previous partition. We say that current state of the MDP is qi if the
UAV’s position is inside the corresponding cell. With an abuse of notation we refer by qi to
a state of the MDP abstraction and also to a region in the continuous space X. The correct
interpretation should be clear from the context. The MDP depicted in Figure 1-2 has 25
states, which corresponds to a 5 × 5 grid. We can assume that the initial position of the UAV
is inside cell q20, for example, which gives an initial state to our MDP. Next, we associate
an observation to each cell. These observations come from the observations associated to the
continuous state space prior to its discretization. The observation corresponding to each cell
is indicated by its color, and the observation associated to the white cells is the empty set ∅.

After that, we define the possible transitions between the states of the abstraction, which
must resemble the physical motion of the UAV between cells. We can do this by considering
only commanding the UAV to move between adjacent cells in the horizontal and vertical
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1-1 Motivation 3

Figure 1-2: Partition of the continuous space X ∈ R2 and corresponding set of states of the
MDP abstraction.

directions and also commanding it to stay at rest in the current cell. The available actions
of the MDP for every state are therefore af for move forward, ab for move backwards, ar for
move right, al for move left and ac for staying at the current cell, i.e., staying at rest. However,
we must notice that for a fixed current state of the UAV and action, the successor state is
not deterministic, but it is described by a probability distribution. This is due to the wind
disturbances, which are probabilistic. In this setting we define the transition probabilities of
our MDP abstraction in the following way: when the UAV lies at the center of a cell, we
compute how much probability mass of the distribution of the successor state lies over each
cell [10], as we illustrate on the left of Figure 1-3. That is the probability of transitioning to
each state associated to those cells.

Figure 1-3: Transitions of the MDP abstraction of the UAV problem. On the left, probability
distribution of the successor state of the UAV starting from the center of cell qc and for action
ar. On the right, possible transitions of the MDP abstraction at state qc enabled by action ar.
The probability of each transition is indicated in grey above each red arrow.

On the right of Figure 1-3, we show the probability distribution of the continuous state of the
UAV after one time step while commanding it to move to the right. It is important to notice
that the state transitions in the abstraction are also stochastic, and commanding the UAV
to move right, for example, may also lead to the cells denoted by qf,r and qb,r, in Figure 1-3.
For example, consider that the UAV is at the current state q4. Then, commanding the UAV
to move to the cell on its right, q9, can enable the transition to this cell with probability p
but also the transitions to q8 with probability p1 and q10 with probability p2.

Remember that we want to use this MDP abstraction to obtain a strategy for the UAV

Master of Science Thesis Ibón Gracia Merino (5358779)



4 Introduction

that enforces the specification. Since the abstraction is a stochastic model, the algorithms
for MDPs allow us to compute the strategy that maximizes the probability of satisfying
said specification. Furthermore, these algorithms also provide us with such probabilistic
guarantees. Then if, with the computed strategy, we obtained a probability of satisfying the
specification that is below a safe threshold defined by us, we would consider the performance
of the UAV as not safe. In this case, we should redesign either the strategy, the system or
the specification.
Regarding MDP abstractions, we must highlight that an assumption is always made in order
to build the abstraction: in our example we have assumed that the current continuous state
of the UAV is at the center of the cell that corresponds to state qc. Had this state been a
different one inside the cell, the transition probabilities we computed would be different. By
making this assumption, we incur a discretization error in the abstraction, which means that
the abstraction is an approximate model of the original system [9], [10]. This fact implies
that the results we obtain by analyzing an MDP abstraction, such as guarantees of satisfying
the specification, only hold approximately for the original system. In any case, it is always
possible to obtain a more precise abstraction, which leads to more precise results. In our
UAV example we could make the abstraction more precise if the partition of the state space
was finer, and the performance guarantees would be closer to those of the original system [9].
However, a more precise abstraction comes at the expense of a higher computational burden
required to construct the abstraction and also to analyze it using tools from formal methods
[3].
An additional disadvantage of performing an abstraction is that, if a strategy is obtained for
the abstraction such that it maximizes the probability of satisfying some specification, this
strategy may not be optimal for the original system [11]. This is because the abstraction is
either an approximate or a conservative model of the original system. Furthermore, generally,
the performance level that the abstraction attains for a fixed strategy is not an exact guarantee
of the performance level that the UAV will attain with the same strategy. However, for some
classes of abstractions we are able to obtain such guarantees through correctness proofs.
A smart way to completely eliminate the discretization error is to make use of IMDP abstrac-
tions [3], [4]. These are a generalization of MDP models, and can be viewed as a family of
MDPs since, in IMDPs, the transitions have associated ranges of probabilities instead of single
probabilities. In Figures 1-4 and 1-5 we illustrate how we can obtain an IMDP abstraction of
our UAV example. There we can appreciate how we define the bounds in the probability of

Figure 1-4: Position of the UAV after one time step starting from xmin ∈ qc on the left and
from xmax ∈ qc on the right when commanded to move right. For clarity, these cells, although
adjacent to each other, have been depicted as separated.

transitioning between states qc and qr under action ar: they are defined as the minimum and
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1-1 Motivation 5

Figure 1-5: Transition of the IMDP abstraction I corresponding to the continuous dynamics in
Figure 1-4. The bounds in the probability of transitioning from state qc to qr under action ar are
indicated in the figure as pmin and pmax, respectively. Note that only the transition to the cell
on the right of qc is represented here for clarity, while the additional transitions to other cells are
represented only by dashed arrows.

maximum fraction of mass of the successor state that falls inside cell qr when starting from a
point in cell qc. Furthermore, in Figure 1-4 we denote by xmin and xmax the points inside qc

for which the probability of the UAV reaching cell qr in one time step by starting from cell qc

and under action ar is minimized and maximized, respectively. Moreover, in Figure 1-5 we
denote the corresponding probabilities of such events by pmin and pmax. In this way, the range
of transition probabilities of the abstraction includes the transition probabilities that corre-
spond to all possible current positions of the UAV. This is done for every cell and, therefore,
the abstraction considers all behaviours of the original system. Once we have constructed the
IMDP abstraction, we are able to, again, use tools from formal methods to obtain a strategy
that enforces the specification. Additionally, since we did not incur any discretization error,
we are able to prove that the guarantees obtained for the abstraction also hold for the original
system [4], [7], [12]. Note that, in IMDP abstractions, since the transition probabilities are
ranges, the probabilistic guarantees of the UAV satisfying the specification are also a range
of probabilities.

Previously in this section, we have described how we deal with systems whose stochastic
behaviour is known. Now, let us address the problem that the stochastic behaviour of the
system is uncertain. In our UAV example, this can be because we do not know the exact
probability distribution of the wind disturbance. However, we can always obtain information
about this behaviour if we measure the wind speed a finite number of times. Note that
these samples only give us partial knowledge about the true probability distribution of the
disturbances. Another setting is that of robust control: we have a nominal, approximate
probability distribution of the random disturbance, but we want to tolerate small deviations
from this one to obtain guarantees of increased robustness. In order to obtain a strategy
for these ambiguous systems, we can start by obtaining an abstraction that accounts for
this ambiguity. If we make use of IMDP abstractions, then we can use the already existing
approaches to obtain a strategy that enforced the specification while being robust with respect
to the distributional uncertainty. However, in this thesis we will show that usually IMDP
abstractions are not enough, since they provide trivial guarantees in many practical cases.
Therefore we will also make use of more complicated Markovian abstractions, and develop
algorithms that allow us to obtain strategies for these ones. To perform abstractions that
account for the ambiguity in the distribution of the disturbance, we will make use of tools
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6 Introduction

from optimal transport and ambiguity sets.

1-2 Objectives and Approach

Our objective is to synthesize a strategy for a discrete-time, continuous-state system with ad-
ditive disturbance, whose probability distribution is uncertain, under complex specifications.
We consider specifications given as scLTL formulas, since it is easier to check if the system
satisfies such specifications and these are expressive enough. To synthesize a strategy for the
original system, we compute an abstraction of that system. We make use of either IMDPs
or Markov models with a more complex uncertainty set of transition probabilities, which we
call robust MDP. After that, we synthesize a strategy for the abstraction that maximizes
the probability of satisfying the specification, when the transitions between states are such
that reduce the most this probability. Finally, we refine the synthesized strategy to one that
the original system can use. To account for distributional uncertainty about the probability
distribution of the disturbance, we leverage tools from optimal transport and ambiguity sets.

We consider two possible scenarios. In the first one, we consider a data-driven setting, in which
we only have samples from the disturbance, and we want to account for this uncertainty about
its true distribution. However, in this thesis we always consider given ambiguity sets. We
leave the problem of how to compute such an ambiguity set that contains the true distribution
to further research. A possible approach to estimate the size of the ambiguity set from
data is to make use of the measure concentration results from [13]. Using this approach we
would obtain sets that are guaranteed to contain the true probability distribution with some
confidence. Other practical approaches to determine the size of the ambiguity set are cross-
validation tests, bootstrapping or goodness-of-fit tests [14]. On the other hand, we consider
a robust control problem, in which the probability distribution of the disturbance is known,
but we want to tolerate small deviations from this one. The result of both approaches, under
our assumptions, is a formal abstraction, which includes the distributional ambiguity, and
which leads to formal guarantees. We highlight that this second setting is more general, and
the nominal probability distribution does not need to be built from data, but can be any
distribution.

1-3 Contribution

The contributions of this thesis are the following:

• We propose a framework to perform formal strategy synthesis for dynamical systems
with additive, random and ambiguous disturbances under complex specifications.

• We present a novel approach to compute data-driven abstractions of such systems to
IMDPs when we have a finite amount of samples of the disturbance. In this approach,
the size of the ambiguity set is given: the problem of finding the size of the ambiguity
set such that it contains the true, unknown probability of the disturbance is out of the
scope of this thesis.
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1-4 Outline 7

• We propose a new class of Markovian abstractions which account for small variations in
the probability distribution of the disturbance, according to the Wasserstein distance.
We denote said abstractions as robust MDPs,

• We propose a novel synthesis algorithm for robust MDPs that allows us to obtain robust
strategies and satisfaction guarantees under specifications given as scLTL formulas.

• We prove that the satisfaction guarantees obtained for the abstractions hold for the
original system,

• We demonstrate the efficacy of our approaches through several case studies with both
linear and nonlinear systems.

1-4 Outline

This thesis document is structured as follows: first, we give an overview, in Chapter 2 of
the problem of synthesizing a strategy that enforces a complex specification for stochastic
systems, when the stochastic behaviour of the original system is known. For that, we define
tools from formal methods such as LTL in Section 2-1 and automata in Section 2-2, which
allow us to formulate complex specifications and to synthesize a strategy that enforces those.
Additionally, in Sections 2-3 and 2-4, we define Markov models such as MDPs and IMDPs,
respectively, and discuss their use as abstractions. Furthermore, in Section 2-4-1, we describe
how to synthesize a strategy that maximizes the probability of satisfying a given complex
specification for IMDPs. At the end of each section of this chapter, we give a small review
of the previous works related to those Sections. Next, we introduce tools from optimal
transport, such as the Wasserstein distance between probability measures, and the concept of
ambiguity sets in Chapter 3. We need these tools for our purpose of performing abstractions
of stochastic, uncertain systems.

We propose our first approach to synthesize strategies of uncertain stochastic systems in Chap-
ter 4: we describe how to obtain data-driven distributionally robust (DR) IMDP abstractions
of stochastic, uncertain systems. We leverage data from said systems to build IMDP abstrac-
tions that are robust with respect to the uncertainty about the stochastic behaviour of the
system. Additionally, in Chapter 5, we present our second approach. We describe how to
obtain robust MDP abstractions of stochastic, uncertain systems. We aim to leverage tools
from optimal transport to perform abstractions of said systems, when the probability of the
disturbance belongs to a given ambiguity set. Furthermore, we modify the interval value iter-
ation algorithm used used for strategy synthesis in IMDPs to be able to synthesize a strategy
for a robust MDP. The latter approach is general: it is not limited to the data-driven setting.
However, if used in said setting, it leads to less conservative guarantees when there is high
uncertainty about the stochastic behaviour of the original system. After that, we show in
Chapter 6 the results of the approaches described in Chapters 4 and 5 in two case studies:
a linear system and a nonlinear one. Finally, we summarize our results in 7, where we also
point out to possible future work.
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8 Introduction

1-5 Basic Notation

Through this document, we make use of the following notation and mathematical symbols:

We denote by N≥0 = N∪{0} and by [n] the set of integers {1, 2, ..., n}, for all n ∈ N. We also
denote the complement of set Y in X by X \ Y. Additionally, we denote by 1X the indicator
function of set X For a Polish 1 (separable complete metric) space Ξ equipped with a metric
d, B(Ξ) and P(Ξ) denote the Borel σ-algebra of Ξ and the set of Borel probability measures
on Ξ, respectively. Furthermore, for distance d and p ≥ 1, we denote by Pp(Ξ) the set of
Borel probability measures on Ξ, with finite p-th moment :

Pp(Ξ) = {P ∈ P(Ξ) :
∫

Ξ
dp(ξ, ζ0)P (dξ) < ∞ for some ζ0 ∈ Ξ},

where the set Pp(Ξ) does not depend on ζ0 due to the triangle inequality [15]. Notice that
we omit the dependence of Pp(Ξ) on d, since this distance is always clear from the context.
We denote the probability (under probability distribution P ) of event A happening by P (A),
and the expectation operator under the same probability distribution is denoted by EP [·].
We denote as MT the transpose of a matrix M ∈ Rn×m and by ⟨x, y⟩ = xT y the inner
product between two vectors x, y ∈ Rn. For a vector x ∈ Rn, ∥x∥p denotes its p-norm
and ∥x∥p,∗ = sup∥ξ∥p≤1 xT ξ the corresponding dual norm. If the norm is the 1-norm, we
omit the subscript p. For a metric space (X , d), for x ∈ X and Y ⊂ X , we denote by
d(x, Y) = inf{d(x, y) : y ∈ Y} the minimum distance between x and set Y. We also denote
by Br(c; X , d) ⊂ X , r > 0, c ∈ X a ball of radius r with center on c. When (X , d) is
clear from the context, we omit it as an argument and simply write Br(c). Finally, for a
probability space Pp(Ξ) and distance between probabilities on this space W, we denote by
Br(P ; Pp(Ξ), W) ⊂ Pp(Ξ),r > 0, P ∈ Pp(Ξ), a ball based on W with center on P and radius r.
If Pp(Ξ) and W are clear from the context, we omit them as arguments, and use the simpler
notation Br(P ).

1We consider Polish spaces to make use of measures over continuous as well as discrete spaces.
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Chapter 2

Background on Formal Strategy
Synthesis for Markov Processes

In this chapter we give an introduction to formal methods. Formal methods involve analysis
and design of complex systems under complex specifications. The idea is that performing ap-
propriate mathematical analysis can contribute to the reliability and robustness of a system,
and allow the derivation of correct-by-design control systems [16]. Beyond classical speci-
fications in control theory such as stability and controllability of a system or invariance of
a set, etc. [3], in formal methods we use rich specifications. We typically formulate such
specifications using tools like Linear Temporal Logic (LTL), since LTL formulas are able to
represent a broad class of complex properties. Examples of such properties are nothing bad
ever happening (safety), something good eventually happening (liveness) and even more elab-
orate behaviours in time [6]. Furthermore it is possible to formally check if a system satisfies
such specifications using tools like automata or graph theory. Using tools like these is be-
coming increasingly necessary with the new developments in cyber-physical systems. In such
systems, where physical elements and software are closely coupled, tools from formal methods
are needed for analysis and controller synthesis purposes. For example, a crucial aspect in
safety-critical applications is the procurement of formal guarantees [4], which can be achieved
with these tools, and not just with those coming from classical control theory.
Formal methods come from computer science, where they are applied to finite state systems
such as transition systems or MDPs. Therefore, in order to use these tools on more complex
systems such as cyber-physical ones, we need to find adequate, finite state representations of
such systems. Such representations are called abstractions. Roughly, an abstract model can
be seen as a finite transition graph, whose states represent aggregate states of the original
system. Furthermore,the transitions of the abstraction correspond to state trajectories of
the original system [6]. Once we have constructed the abstraction, we can use it to check if
the original system satisfies the specifications and to synthesize a strategy that achieves that
task. Verification and synthesis tasks can be performed by using model-checking tools such
as automata.
A particular type of abstractions which are useful for studying stochastic systems are finite
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10 Background on Formal Strategy Synthesis for Markov Processes

state Markov models. For such models, both verification and strategy synthesis are performed
in a probabilistic setting: through verification we obtain probabilistic guarantees that the
system meets its specifications, and through synthesis we construct a strategy that maximizes
the previous guarantees. Among such abstractions we find MDPs and their variants, like
IMDPs.

This section is organized as follows. First, we introduce LTL in Section 2-1, as a way to
formulate complex specifications. After that, we describe automata theory in Section 2-2 as
the means to check if the behaviour a system satisfies a specification given as LTL. Next, we
describe in detail Markov models such as MDPs and a generalisation of these, called IMDPs,
in Sections 2-3 and 2-4 respectively. Furthermore, we tackle the problem of synthesizing a
strategy that maximizes the probability that an IMDP satisfies a class of LTL formulas, called
syntactically co-safe LTL (scLTL) formulas, in Section 2-4-1.

2-1 LTL

In this section we focus on temporal logic, which we will use in our approach to formulate
complex specifications for our system. Linear temporal logic (LTL) is a logic formalism used
in formal methods that allows to reason about the temporal behaviour of a system. This is
achieved through formulas that include observations, temporal operators and logic operators,
and such formulas allow to formulate complex specifications. An example of the behaviour
that an LTL formula can describe is the following motion plan for a UAV, taken from [1]:
“always avoid obstacles and visit regions a, b, c and d infinitely often", where a, b, c and d
are regions in the physical space. In this section we define the syntax and semantics of these
formulas, and focus on a subclass of LTL: scLTL. The theory that we introduce in this section
is based on [6]. We next, we give a review of temporal logic and we highlight some useful
applications.

Consider the Boolean operators “true", “and" and “negation", denoted as ⊤, ∧ and ¬, respec-
tively. Consider also the temporal operators “next" and “until", which are denoted as ⃝ and
U, respectively.

Definition 2-1.1. (LTL Syntax) A linear temporal logic (LTL) formula ϕ defined over a
set of observations O is recursively defined as:

ϕ = ⊤ | o | ϕ1 ∧ ϕ2 | ¬ϕ | ⃝ ϕ | ϕ1Uϕ2,

where o is an observation and ϕ , ϕ1 and ϕ2 are LTL formulas.

Using the previous rules, the logical operator “or" (∨) and the additional temporal operators
“eventually" (♢) and “always" (□) are defined as

ϕ1 ∨ ϕ2 = ¬(ϕ1¬ϕ2)
♢ϕ = ⊤Uϕ

□ϕ = ¬♢¬ϕ.

LTL formulas are interpreted over infinite words which are made of observations from some
set O of observations. The LTL semantics are defined as follows:
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2-1 LTL 11

Definition 2-1.2. (LTL Semantics) The satisfaction of a formula ϕ over a set of observa-
tions O at position k ∈ N+ by word wO = wO(1)wO(2)wO(3) · · · ∈ Oω, denoted by wO(k) |= ϕ,
is defined recursively as follows [6]:

• wO(k) |= ⊤,

• wO(k) |= o for some o ∈ O if wO(k) = o,

• wO(k) |= ¬ϕ if wO(k) ⊭ ϕ,

• wO(k) |= ϕ1 ∧ ϕ2 if if wO(k) |= ϕ2 and if wO(k) |= ϕ2,

• wO(k) |= ⃝ϕ if wO(k + 1) |= ϕ,

• wO(k) |= ϕ1Uϕ2 if there exists j ≥ k such that wO(j) |= ϕ2 and, for all k ≤ i < j, we
have wO(i) |= ϕ1 .

A word wO satisfies an LTL formula ϕ, denoted as wO |= ϕ, if wO(1) |= ϕ. The language of
infinite words that satisfy formula ϕ is denoted by Lϕ.

We next give an informal interpretation of the rules of LTL semantics for typical LTL formulas:

• ⃝ϕ is satisfied at at current step k if ϕ is satisfied at the “next" step k + 1,

• ϕ1Uϕ2 is satisfied at current step k if ϕ1 is satisfied “until" ϕ2 becomes satisfied,

• □ϕ is satisfied at current step k if ϕ is satisfied at each future step (this is, ϕ is “always"
satisfied),

• □¬ϕ is satisfied at current step k if ¬ϕ is satisfied at each future step k (this is, ϕ is
“never" satisfied),

• ♢ϕ is satisfied at current step k if ϕ becomes satisfied at some future step (this is, ϕ is
“eventually" satisfied),

• ♢□ϕ is satisfied at current step k if ϕ becomes satisfied at some future step and it
remains satisfied for all the following steps (this is, ϕ is satisfied “eventually forever"),

• □♢ϕ is satisfied at current step k if ϕ “always" becomes satisfied at some future step
(this is, ϕ is satisfied “infinitely often").

Specifically, there exists a class of LTL formulas denoted syntactically co-safe LTL (scLTL)
formulas in which only the operators ⃝, U, ♢, ∧, ∨ and ¬ are used. Furthermore, the negation
¬ operator only precedes observations (except for constructing the ∨ operator). Therefore,
the “always" operator is not present in scLTL formulas. The syntax of scLTL formulas is
defined as follows:

Definition 2-1.3. (scLTL Syntax) A syntactically co-safe LTL (scLTL) formula ϕ defined
over a set of observations O is recursively defined as:

ϕ = ⊤ | o | ¬o | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ⃝ ϕ | ϕ1Uϕ2,

where o is an observation and ϕ , ϕ1 and ϕ2 are scLTL formulas.
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12 Background on Formal Strategy Synthesis for Markov Processes

This class of LTL is useful for the following reason: even though scLTL formulas are defined
over infinite words, the satisfaction of one of such formulas by some word, if the latter satisfies
the formula, always happens in finite time. This makes it easier to check if a word satisfies
a formula, as we explain in Section 2-2. Furthermore, if an infinite word wO ∈ Oω satisfies
an scLTL formula ϕ, then that word must contain a finite prefix wO(1)wO(2) . . . wO(n) ∈ On

called good prefix. Furthermore, any infinite word with this prefix satisfies ϕ. The language
of all finite good prefixes of an scLTL formula ϕ is denoted Lpref,ϕ.

Back to our UAV example, we can define the specification stated in Section 1 as the scLTL
formula (2-1) over the set of observations O = {black, red, green, yellow, blue}:

ϕ = (¬black U blue) ∧ (¬blue U red) ∧ (¬blue U green) ∧ (¬blue U yellow). (2-1)

Note that this one belongs to the class of scLTL formulas since it is constructed according to
the rules described in Definition 2-1.3.

We now give a review of formal languages and highlight their applications. We can specify
complex tasks through temporal logic formulas. Such tasks can be avoiding an undesired
set of states, sequentially visiting different sets of states, transitioning between sets with the
highest probability in probabilistic settings, etc, or combinations of these. Therefore, many
authors have suggested the use of, for example, LTL and computation tree logic (CTL), to
define the specifications for several problems in control, such as motion planning [8]. LTL
formulas have been used to formulate specifications in multi-agent motion planning problems
[1], and in verification and synthesis for hybrid systems [11], [4], for example. On the other
hand, CTL can be used to check if all executions of the system satisfy some specification, or
if there exists at least one that does. Since CTL is more complex than LTL, less intuitive,
and the latter already captures a wide spectrum of properties, in this thesis we only use
LTL formulas. Furthermore, despite CTL being more efficient than LTL for model checking
(polynomial vs exponential time in the size of the formula), CTL formulas are longer than
LTL ones when representing the same specification. For this reason, the performance of both
is similar in practice [6].

Besides LTL, another classes of temporal logic exist, such as bounded LTL (BLTL), metric
TL (MTL), propositional TL over the reals (RTL) and the already mentioned CTL. We can
use both BLTL and MTL to specify time intervals on the temporal operators of the formulas.
Such formulas allow us to formulate specifications such as “something eventually happens in
a number of steps between 2 and 4" [6]. RTL, the continuous time version of LTL, is used in
[17] in a motion planning problem. LTL also has probabilistic versions, such as probabilistic
LTL (PLTL), in which the probability of satisfying the formula is stated. Furthermore, the
semantics of a PLTL formula are defined with respect to a Markov decision process (MDP) or
a variant of these models. Analogously, probabilistic CTL (PCTL) also exists. In [3], PCTL
is used along with interval Markov decision processes for strategy synthesis and verification
of stochastic systems.

Temporal logic formulas are commonly used in computer science, and allow us to reason
about the temporal behaviour of discrete state systems. Examples of this kind of systems
are transition systems and MDPs, and in later sections we will define the latter. In this
thesis we focus on scLTL since we consider these formulas to be expressive enough, being
able to describe, although finite, complex behaviours [4], [11]. Furthermore, synthesizing
strategies that enforce such formulas is easier. Moreover, reasoning only over finite behaviours
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makes sense in highly uncertain systems [11]. Nevertheless, straightforward extensions to, for
example, BLTL, exist [4], if specifying bounded-time properties was desired.

2-2 Automata

An automaton is a mathematical object that resembles a finite transition graph and which
has a set of “special" states denoted accepting states. Its state evolves when the automaton
receives observations as inputs. When these observations correspond to an input word, the
evolution of the state of the automaton determines if the word is accepted or not. Due to
this ability of automata, we can use them to check whether the paths of systems with an
observation map, such as MDPs and their variants, satisfy temporal logic formulas. In this
section we formally define automata. We focus on finite state automata but we also mention
other classes like Büchi and Rabin automata and highlight their differences when it comes to
representing an LTL formula. We also cite some off-the-shelf software tools for constructing
automata from LTL formulas and give some applications.

Definition 2-2.1. (Finite State Automaton [6]) A finite state automaton (FSA) is a tuple
A = (Z, z0, O, ∆, Zac), where

• Z is a finite set of states,

• z0 is the initial state,

• O is the input alphabet,

• ∆ : Z × O → Z is a transition function, and

• Zac ⊆ Z is the set of accepting states.

Now we give the intuition behind the operation of an automaton as in [18]. The automaton
starts at the initial state z0. Then, its state is forced to evolve by an input word, which is
a sequence of observations from the input alphabet. The input word is read observation by
observation from left to right. Therefore, the state of the automaton will change from z to
z′ = ∆(z, o) if it receives observation o. This process is then repeated by taking as an input
the following observation of the input word. In the case that the current state q does not
have outgoing transitions for the upcoming observation o, this is, ∆(z, o) = ∅, the state of the
automaton is stuck, and the word is said to be rejected. Once the automaton has read the
complete word, the latter is said to be accepted if and only if the final state reached by the
automaton belongs to the set of accepting states Zac. If this is not the case, the word also is
rejected.

In the following we formally describe the functioning of an automaton as in [4]. A run of
automaton A over a finite word wO = wO(1)wO(2) . . . wO(n) ∈ On is a sequence wZ =
wZ(0)wZ(1) . . . wZ(n) ∈ Zn+1 where wZ(0) = z0 and wZ(k) = ∆(wZ(k − 1), wO(k)) for all
k = 1, 2, . . . n. The word wO is said to be accepted by the automaton A if and only if the
corresponding run ends in an accepting state, this is, wZ(n) ∈ Zac. The set of all words
accepted by A is called the language of A, LA. The FSA we have presented is deterministic.
Nevertheless, non-deterministic finite state automata (NFA) also exist. In NFA, the transition
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14 Background on Formal Strategy Synthesis for Markov Processes

function ∆ can be non deterministic and the initial state can be a set of initial states instead.
However, every NFA has an equivalent FSA representation, and therefore in this document
we only focus on FSA.
To illustrate the previous theoretical concepts, consider again our UAV example. We can
construct a deterministic FSA that captures the language of formula (2-1), which we show
in Figure 2-1. As we can observe, the FSA has 8 states: Z = {z1, z2, . . . , z8}. The set

Figure 2-1: Deterministic FSA that captures the language of the scLTL specification in (2-1),
for the UAV example.

of observations is O = {red, green, yellow, blue, black}. Furthermore, the accepting state
is Zac = z8. Finally, the transitions are represented by the arrows in the figure, with the
observations that trigger said transitions near each arrow.
In this section we have denoted by O the set of inputs of the automata. This is the same
notation we used for the sets of observations we defined in Section 2-1 for LTL. Furthermore, it
is also the same notation that we will use for the observations associated to MDPs and IMDPs
in Sections 2-3 and 2-4, respectively. This is because the automata takes the traces from a
system such as an MDP as an input, to check if they satisfy a temporal logic formula defined
over that set of observations. Given an scLTL formula ϕ, a FSA can always be constructed
such that it accepts all and only prefixes that satisfy ϕ, i.e., LA = Lpref,ϕ [6]. Nevertheless,
this is not the case for general LTL formulas. On the contrary, for an arbitrary LTL formula,
both a non-deterministic Büchi automaton and a deterministic Rabin automaton can always
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2-3 MDPs 15

be constructed such that they accept all and only words from Lϕ. There are slight differences
between Büchi and Rabin automata and FSA, which make these more complex and lead to
higher computational burden. Nevertheless, their semantics are defined over infinite words
wO ∈ Oω, which makes them able to consider infinite behaviours. We can translate an LTL
formula ϕ to the corresponding type of automaton, FSA, Büchi or Rabin, by using off-the-
shelf software tools like “LTL2BA", “LTL2DSTAR" and “SCHECK2". We do not give a
formal definition of Büchi and Rabin automata, since in this thesis we will only make use of
(deterministic) FSA. This is because we focus on specifications that can be given as scLTL
formulas, which can be fully described by FSA, as we have already pointed out. For more
information about Büchi and Rabin automata see [6].

To mention some applications of automata, in [11], FSA are used to check if the traces of an
IMDP satisfy specifications given as scLTL formulas in a problem of strategy synthesis for
unknown systems. Furthermore, FSA are also built from scLTL and BLTL formulas in [4]
for strategy synthesis of IMDP abstractions of hybrid systems. Finally, Büchi automata are
used in [1] together with transition systems in a decentralized motion planning problem.

2-3 MDPs

We have already highlighted the importance of finite-state system models in formal methods.
In this thesis we need a class of models that is useful in stochastic settings. Imagine, for
example, the problem of sending a command to a system through a malfunctioning commu-
nication channel that loses packets with given probability [18]. A kind of simple but powerful
stochastic finite-state models are MDPs, which we describe in this section. In these ones,
the actions or inputs to the MDP enable transitions between its states with given probability
distributions [6]. In our example of the malfunctioning channel, the system could be modelled
by an MDP in which the action “send command" has two possible effects. On the one hand
it can make the system transition from the state “wait for command" to the state “command
received" with probability p, which represents the possibility of the system receiving the com-
mand due to a correct functioning of the channel. On the other hand, the same action can
make the system remain in the same state “wait for command" with probability 1 − p, which
models a packet loss.

MDPs are able to model stochastic decision-making problems in a straightforward way. In
this document we focus on labelled MDPs. These ones have an observation map associated to
them, which assigns an observation to each state. In this section we formally define MDPs and
the concepts of paths and strategies of an MDP. Furthermore, we give the intuition behind
these formal definitions. We will also highlight the usefulness and implications of MDPs in
abstractions of stochastic systems.

Definition 2-3.1. (Markov Decision Process [4], [18], [19]) A Markov decision process
(MDP) is defined as a tuple M = (Q, A, P, O, L) where:

• Q is a finite set of states,

• A is a finite set of actions,
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16 Background on Formal Strategy Synthesis for Markov Processes

• P : Q×A×Q → [0, 1] is the transition probability function such that for all states q ∈ Q
and actions a ∈ A, ∑

q′∈Q

P (q, a, q′) ∈ {0, 1},

• O is a finite set of atomic propositions or observations,

• L : Q → 2O is a labelling function or observation map that assigns to each state in Q a
subset of atomic propositions in O.

An action a ∈ A is said to be enabled at state q ∈ Q if and only if
∑

q′∈Q P (q, a, q′) = 1. The
set of actions enabled at q is denoted by A(q) = {a ∈ A :

∑
q′∈Q P (q, a, q′) = 1} ⊆ A. This

set contains the actions that can be chosen at each state, which are those that have outgoing
transitions with nonzero probability. The transition function has the property of being a
probability distribution over Q for given q ∈ Q and a ∈ A(q), i.e.,

∑
q′∈Q P (q, a, q′) = 1.

Without any loss of generality, in this thesis we consider an arbitrary deterministic initial
state q0 ∈ Q. Furthermore, we only consider IMDPs for which the state-dependent action
set is always non-empty: A(q) ̸= ∅ for all q ∈ Q. The intuition behind the functioning of a
MDP is the following. The MDP starts at the initial state q0. An action is then chosen from
the state-dependent action set A(q), which assigns the transition probability P (q, a, ·) that is
a distribution over the state space. The following state q′ is chosen from Q with probability
P (q, a, q′). This process is repeated forever.

Now we define the notion of paths and traces of the MDP. A path of an MDP M is a sequence
of states [4] wQ = q0

a0−→ q1
a1−→ q2

a2−→ . . . such that at ∈ A(qt), and P (qt, at, qt+1) > 0 for
all t ∈ N≥0. We denote a path of finite length as wfin

Q . Furthermore, a path of finite length
k +1, for k ∈ N≥0 is denoted wk

Q, and the sets of all infinite and finite paths are called PathsQ

and Pathsfin
Q respectively. We also denote the last state of a finite path wk

Q by last(wk
Q)

and the t + 1-th state of a path wQ by wQ(t). A path wQ = q0q1q2... produces a trace
wO = o0o1o2... ∈ Oω in M such that ot = L(qt). The set of all infinite traces produced by
paths of M is called the language of M, LM. This language has infinitely many words.

Next we define the notion of strategy of an MDP.

Definition 2-3.2. (Strategy of an MDP [4]) A strategy σ of an MDP M is defined as a
function σ : Pathsfin

Q → A that maps a finite path wfin
Q of M to an action a ∈ A(last(wfin

Q )).
If the strategy only depends on the last state last(wQ) of the path, it is called a memoryless
or Markovian strategy. Moreover, if the strategy is the same every time step it is called a
stationary strategy. The set of all possible strategies is denoted by Σ.

For a fixed strategy σ, MDP M becomes a Markov chain (MC) [19], with transition proba-
bilities induced by σ. This means that given a strategy σ, a probability measure is induced
over the set of all paths of the resulting Markov chain. Informally, a strategy, also known as
policy or controller, is a function that depends on the finite path that the system has followed
up to the current time step, this is, its history. At every time step, the strategy selects an
action based on the history up to that time step, which makes the state evolve in time. When
equipped with a strategy that makes the decision of selecting actions at each time step, an
MDP becomes a Markov chain, which is an MDP for which only one action is available at
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each state. Therefore a Markov chain is a system that evolves in a stochastic fashion and
in which no decision-making is contemplated. When the strategy is fixed, the paths of the
resulting Markov chain have a uniquely defined probability associated to them.

Once we have introduced MDPs, we motivate their use in abstractions, and explain some
features of MDP abstractions. Continuous-state stochastic systems can be abstracted to
MDPs, by partitioning the original state space, which allows us to use tools from formal
methods on these models. This is due to the finite-state nature of MDP models we described
in Section 2-3. However, by performing the abstraction, we incur an abstraction error due
to the discretization of the continuous state-space. If we compare the difference between the
probability of the paths of the original system and those of the MDP abstraction satisfying a
given specification, we can observe that this error grows with time [9]. Furthermore, this error
is bigger the coarser is the discretization of the state space. This means that we can make the
error as small as we want by making use of a finer discretization. However, since the error
bound obtained in [9] is conservative, it is often found that in order to achieve an acceptable
error, the number of states of the MDP abstraction needs to be huge. This is known as the
state-explosion issue of MDP abstractions [4], and is translated into an increased difficulty for
tools from formal methods to work with the abstraction. Therefore, we encounter a trade-off
between precision of the abstraction and its computational complexity.

To effectively deal with the state-explosion issue, in [10], a tighter bound was found for the
discretization error when abstracting continuous state systems to Markov chains. That same
research proposed an adaptive refinement algorithm that takes into account the dynamics
of the system and the geometry of the state-space partition. Furthermore, since no actions
to the system were considered, the applications of this research were limited to verification.
Furthermore, also to deal with the state-explosion issue, the use of IMDP abstractions was
proposed in [3]. By using these, we do not incur a discretization error error even when we also
discretize the state-space. Instead, we consider every possible behaviour of the real system to
construct a conservative abstraction, which effectively mitigates the state explosion issue [3].
We introduce IMDPs in Section 2-4.

Now, let us give examples of applications of MDPs as abstractions. In [9], a stochastic hybrid
system is abstracted to a Markov chain, which is used for verification in a probabilistic set
invariance problem. The performance of the approach is assessed on a multi-room heating
problem. In [8], an MDP abstraction is constructed in order to perform motion planning of a
robot under specifications given as temporal logic. In this formulation, the transitions repre-
sent several-steps-ahead motions of the robot instead of one-step-ahead predictions, and each
action corresponds to a feedback control primitive. The transition probabilities are computed
using Monte Carlo sampling from simulations in which different sources of uncertainty, like
sensor and actuator noise, are included.

2-4 IMDPs

In this section we describe a generalisation of the MDP formalism called interval Markov
decision process (IMDP), which is particularly useful as an abstraction of a stochastic systems.
An IMDP [4], also referred to as Bounded parameter Markov decision process (BMDP) [3], is
a generalisation of an MDP in which the transition probabilities are not fixed, but instead lay
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18 Background on Formal Strategy Synthesis for Markov Processes

inside of a bounded region. In this document, in the same way that we did with MDPs, we
consider labelled IMDPs. IMDPs can be seen as a family of MDPs that share the same state
space, action space, observation set and observation map, but which have different transition
probabilities. This difference in the transition probabilities can represent uncertainty about
the stochastic behaviour of the system.
As an example, consider again the problem of sending a command over a malfunctioning
communication channel described in Section 2-3. Consider also that now we are uncertain
about the probability of the channel malfunctioning. In this scenario we could consider a
family of MDP models for this system which differ in the probability of transitioning from
state “wait for command" to “command received", to account for the uncertainty about this
probability. Furthermore, the transition probabilities of each MDP could lay on some bounded
interval that represents the uncertainty of the system. This family of MDPs can be represented
as an IMDP. Furthermore, we can then use the theory of IMDPs to perform analysis and
synthesis tasks on this system. Consider that the performance of the system is defined through
some criterion such as the probability of satisfying some specification. Then, we could, for
example, determine if the performance of the channel is still satisfactory in the worst case
possible, this is, if an MDP from the family of MDPs is picked such that the probability of
a malfunction is the highest possible. This is a verification task, and verification of IMDP
models is based on this worst-case analysis. Furthermore, we could also synthesize a strategy
for the IMDP that maximizes the probability of satisfying the specification in a way that it
is robust with respect to the uncertainty about its transition probabilities. This is done by
computing the strategy that maximizes the satisfaction probability in the worst-case scenario.
In our example, this happens when the probability of a malfunction in the channel is the
highest possible.
In this section we formally define IMDPs and the concepts of paths, strategy and adversary of
an IMDP. Furthermore, we give the intuition behind such formal definitions and the way an
IMDP model works. After that, we give a review of the works related to IMDPs and IMDP
abstractions, highlighting some of their applications. After that, we describe the procedure of
synthesizing a strategy for an IMDP under specifications given as scLTL formulas in Section
2-4-1.
Let us begin by formally defining an IMDP.

Definition 2-4.1. (Interval Markov Decision Process [4]) An interval Markov decision
process (IMDP) is a tuple I = (Q, A, P , P , O, L) where:

• Q is a finite set of states,

• A is a finite set of actions.

• P : Q × A × Q → [0, 1] is a function where P (q, a, q′) represents a lower bound in the
probability of transitioning from state q to state q′ under action a ∈ A, such that for all
states q ∈ Q and actions a ∈ A, ∑

q′∈Q P (q, a, q′) ≤ 1,

• P : Q × A × Q → [0, 1] is a function where P (q, a, q′) represents an upper bound in the
probability of transitioning from state q to state q′ under action a ∈ A, such that for all
states q ∈ Q and actions a ∈ A, ∑

q′∈Q P (q, a, q′) is either 0 or ≥ 1,

• O is a finite set of atomic propositions or observations,
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• L : Q → 2O is a labeling function or observation map that assigns to each state in Q a
subset of observations in O.

For all q, q′ ∈ Q and a ∈ A, it holds that P (q, a, q′) ≤ P (q, a, q′). Furthermore, an action
a ∈ A is said to be enabled at state q ∈ Q if and only if

∑
q′∈Q P (q, a, q′) ̸= 0. We refer

to the set of actions enabled at q as state-dependent action set and we denote it by A(q) =
{a ∈ A :

∑
q′∈Q P (q, a, q′) ̸= 0} ⊆ A. This set is equivalent to the one we defined for

MDPs, and it contains the actions that can be chosen at each state. Such actions are those
that have outgoing transitions leaving that state in the sense of the upper bound in the
transition probabilities P . That means that, for such actions, an outgoing transition leaving
that state is possible for some MDP inside the IMDP. In this document we consider an
arbitrary deterministic initial state q0 ∈ Q. Furthermore, we only consider IMDPs for which
the state-dependent action set is always non-empty: A(q) ̸= ∅ for all q ∈ Q.

Furthermore, the transition probability bounds must satisfy that∑
q′∈Q

P (q, a, q′) ≤ 1 ≤
∑

q′∈Q

P (q, a, q′)

for all q ∈ Q and a ∈ A(q). Let D(Q) be the set of discrete probability distributions over Q.
Then, using the nomenclature that is typical in IMDPs [4], [20],[11], given state q ∈ Q and
action a ∈ A(q), we say that γq,a ∈ D(Q) is a feasible probability distribution reachable from
q by a if it fulfills:

P (q, a, q′) ≤ γq,a(q′) ≤ P (q, a, q′)

for each state q′. We denote by Γq,a the set of all feasible transition probabilities from q ∈ Q
by a ∈ A(q):

Γq,a = {γq,a ∈ D(Q) : P (q, a, q′) ≤ γq,a(q′) ≤ P (q, a, q′), for all q′ ∈ Q}, (2-2)

for all q ∈ Q by a ∈ A(q). The nomenclature of “feasible" transition probabilities and set
comes from the fact that set Γq,a will appear as the feasible set of the optimization problems
that we need to solve to synthesize strategies for IMDPs. This is a formal way to define the
set of MDPs contained in the IMDP I: such MDPs are those which, while sharing the same
state and action spaces, observation set and observation map, have transition probabilities in
the range defined by the lower and upper bounds P and P .

The intuition behind the operation of an IMDP is quite similar to that of a MDP. The IMDP
starts at the initial state q0. At a current state q, an action is chosen from the state-dependent
action set A(q), which assigns the transition probability bounds P (q, a, ·) and P (q, a, ·) over
the state space. Then, a feasible transition probability distribution γa

q over the state space
Q is selected in a non-deterministic fashion from the set of feasible transition probability
distributions Γa

q . After that, the following state q′ is chosen with probability γa
q (q′). This

process is repeated forever.

Now we define the notions of paths and strategy of an IMDP, which are analogous to those
of MDPs. A path of an IMDP I is a sequence of states [11] wQ = q0

a0−→ q1
a1−→ q2

a2−→ . . .
such that at ∈ A(qt), and P (qt, at, qt+1) > 0 for all t ∈ N≥0. We denote a path of finite length
as wfin

Q . Furthermore, a path of finite length k + 1, for k ∈ N≥0 is denoted wk
Q, and the
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20 Background on Formal Strategy Synthesis for Markov Processes

sets of all infinite and finite paths PathsQ and Pathsfin
Q respectively. We also denote the last

state of a finite path wk
Q by last(wk

Q) and the t + 1-th state of a path wQ by wQ(t). Now, a
transition of I is feasible if and only if the upper bound P (qt, at, qt+1) is bigger than zero, this
is, there is a MDP M inside I for which this transition has nonzero probability of happening.
Additionally, a strategy σ of an IMDP I is the same as that explained in Definition 2-3.2 for
MDPs.

As we have already pointed out, in addition to the stochastic behaviour that is also present
in MDPs, IMDPs are in some sense non-deterministic models. This is because the transition
probabilities are not fixed as in MDPs, but uncertain, and we have no further information
about how likely it is that any feasible probability distribution is chosen in the end [21].
Therefore, it is necessary that we define an additional ingredient that selects feasible transition
probabilities and which is not present in MDPs. This new element is known as the adversary.

Definition 2-4.2. ((Adversary of an IMDP[4]) Given an IMDP I, an adversary is a
function π : pathsfin × A → D(Q) that, for each finite path wfin

Q ∈ Pathsfin and action
a ∈ A(last(wfin

Q )), assigns a feasible probability distribution γa
q ∈ Γa

q , where q = last(wfin
Q ).

The set of all adversaries is denoted by Π.

Adversaries choose, at each time step, a feasible probability distribution, which defines the
probability of each transition. It can be seen as a means to pick one of the MDPs that form
the IMDP I at each time step. Given a strategy σ and an adversary π for the IMDP I, the
IMDP reduces to a Markov chain, and a probability measure over its set of paths is induced.
As we already explained in Section 2-3, a Markov chain is an MDP for which only one action
is available at each state. This makes it a stochastic process in which no decision-making is
contemplated.

IMDPs were introduced in [21], where their usefulness in aggregate schemes was already
pointed out. With these models, we can capture the variation in the transition probabilities
for different base states which are aggregated together in the same aggregated state can
be captured. In that work, a modified value iteration algorithm for strategy synthesis was
proposed, using the Expected Total Discounted Reward Criterion, as it is typical in MDPs
[19]. We should highlight the efficiency of this algorithm. These results were extended in [22]
to the undiscounted case, which is needed to formulate reachability problems and, ultimately,
to perform synthesis under complex specifications.

In [3], abstractions to IMDPs were used as an alternative to MDP abstractions, since the
former do not incur any discretization error. In this work, verification and synthesis algorithms
were proposed for switching linear systems with additive noise under specifications given as
Probabilistic Computation Tree Logic formulas. Furthermore, a local refinement scheme was
introduced to reduce conservatism. In the previous research, however, little attention was
devoted to the development of tractable algorithms of computing the abstractions. This, on
the contrary, was shown to be the most computationally expensive part. Concerning this issue,
in [4] an efficient procedure of computing IMDP abstractions from stochastic hybrid systems
was proposed, based on convex optimization. The approach assumed that the continuous
dynamics were, for each action, linear in the state and in the noise, being Gaussian the latter.
Furthermore, in [5], an efficient approach to compute IMDP abstractions for Neural network
dynamic models (NNDMs) with additive Gaussian noise is proposed. These abstractions
are later used to synthesize switching strategies under specifications given as scLTL. This
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approach heavily relies on the results of [4] and also in those related to verification of neural
networks [23], [24]. IMDP abstractions have also found applications in event-triggered control.
in [12], the sampling behaviour of periodic event-triggered Control systems is analyzed by
making use of interval Markov chains, since these abstractions allow to compute bounds on
the sampling performance indicators of the system.
In the previous years, interest for verification of unknown systems has also arisen. In [20], ver-
ification of systems whose dynamics are unknown but real data from such systems is available
is treated. The proposed framework makes use of data-driven IMDP abstractions of Gaus-
sian Process regression models and derives formal guarantees for the unknown system. This
approach is applied to systems with switching dynamics. This research is further developed
in [11], where the problem of strategy synthesis for switched systems is tackled. Opposite to
the framework of [11], in our data-driven approach we assume full knowledge of the dynamics
of the system, except for the disturbance. Therefore, we expect to exploit this partial knowl-
edge about the system dynamics, instead of modelling it entirely or partially as a Gaussian
Process: by using our approach that relies on tools from optimal transport and DRO, we aim
to obtain a less conservative abstraction, and tighter bounds in the performance guarantees.
Also in the data-driven setting, we must highlight the research carried out in [25], since the
setting of that work is the closest to ours. That research tackles the problem of synthesizing
strategies for systems with additive i.i.d. disturbances with unknown probability distribution
by making use of IMDP abstractions. The approach uses tools from the scenario approach
that allow to leverage information from samples of the disturbance. Using this approach,
the transition probability bounds of the IMDP are computed with some confidence. The
approach proposed in that research are applied to several scenarios: a UAV motion planning
problem, a building temperature control and a spacecraft rendezvous problem. Opposite to
that approach, we make use of tools from optimal transport and ambiguity sets to account for
the distributional ambiguity. This has a remarkable advantage with respect to the scenario
approach: by using the Wasserstein distance we take into account the distances between
samples and sets to compute the bounds in the transition probabilities. On the other hand,
the scenario approach computes the bounds just by taking into account the number of samples
that lay inside the sets. For example, if we consider that the samples fall outside two cells
q and q′, the scenario approach assigns the same upper bound to both cells, irrespective to
their distance to the samples. This is counter-intuitive, and accounting for these distances
might lead to tighter bounds, or might allow us to construct a practical abstraction when the
number of samples is small. Note that in [25], the number of samples required to construct
the abstraction is always very high. However, using tools from optimal transport and DRO
has the following drawback: we need to determine the size of the ambiguity set that we use
to account for the distributional ambiguity which, in this thesis, we assume given. A second
key difference between the approach proposed in [25] and our approach is that, in order
to compute the transition probability bounds, the approach of [25] relies on a reachability
analysis. However, this one can be computationally expensive, and it is not a trivial problem
when the system dynamics are nonlinear. On the contrary, we do not rely on reachability
computations: instead, we define the set of actions of the abstractions as a finite partition of
the set of control inputs of the continuous system. Furthermore, our abstractions account for
both the distributional robustness and the partitioning of the state-space, which allows us to
easily deal with nonlinear systems.
On the other hand, beyond IMDPs, several works have studied the problem of synthesizing
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strategies for Markov models with sets of transition probabilities more complex than intervals,
characteristic of IMDPs. In [26] the IMDP model was generalized. This work considers
transition probabilities that belong to convex sets. Moreover, convex optimization methods
are proposed to perform verification with respect to probabilistic computational tree logic
(PCTL) specifications. The approach is illustrated in a ZeroConf Dynamic Configuration
Protocol problem for IPv4 Link-Local Addresses. Furthermore, in this example a convex MDP
(CMDP) is obtained as an abstraction of the real system, using a likelihood-based uncertainty
set estimated from data, with some confidence level. This work is further generalized in [27],
in which the case that the transition probabilities may belong to several, even nonconvex,
sets. The framework of that work is that of robust stochastic dynamic programming using
discounted rewards. Another work that uses Markov models whose transition probabilities
belong to ambiguity sets is that in [28]. In this one, algorithms for strategy synthesis for these
models under LTL specifications are proposed. However, to the best of the knowledge of the
author of this document, none of these robust MDP formulations have been used as formal
abstractions of continuous-state stochastic systems.

Related to MDP abstractions with uncertain transition probabilities, is the research in [29].
In that work, a Wasserstein distance-based distributionally robust approach for MDP ab-
stractions with parameter ambiguity is presented. First, an approximate MDP abstraction
is constructed, and then its transition probability is treated as an ambiguous parameter gov-
erned by an uncertain probability distribution. The results of the approach show improved
robustness with respect to ambiguity in the transition probabilities. However, since the ab-
straction is just an approximation of the original system, no formal guarantees regarding the
original system can be obtained from this approach. Opposite to that research, we are formal:
we propose actual approaches to build correct Markovian abstractions from continuous-state
systems, and we treat the transition probabilities of our abstraction as actual probabilities.
These belong to a given ambiguity set, defined using the Wasserstein distance. This means
that the guarantees we obtain are formal, and also hold for the original system. Furthermore,
we consider complex specifications given as scLTL formulas.

2-4-1 Strategy Synthesis for IMDPs

The process of obtaining a strategy that enforces some specification is called synthesis, or
strategy synthesis. Back to our UAV example, consider that an IMDP abstraction of this
one is available. Moreover, consider that our objective is that of synthesizing a strategy that
maximizes the probability of satisfying some specification given as an scLTL formula, while
being robust to the uncertainties of the IMDP model. The specification can be the one we
considered in Section 1-1: “eventually reach red, yellow and green in no particular order,
and then eventually reach blue while avoiding black throughout all the trajectory", which
can be represented by scLTL formula (2-1). Typically, we are interested in the motions of the
UAV that remain in the bounded set X ⊂ Rn. To embed into the IMDP model the additional
specification “while remaining in set X throughout all the trajectory", we make the state qu

that represents region X, absorbing. In this way, we exclude the paths of the IMDP that exit
X, since these will remain there forever, not satisfying the specification.

In this section we describe the process of synthesizing a strategy for an IMDP I that maximizes
the probability of satisfying a complex specification given as an scLTL formula ϕ, while
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being robust to all uncertainties in the model. This process can be seen as a two-player
stochastic game: at each time step, player one, the strategy, chooses an action to maximize
the probability of satisfaction of ϕ, while player two, the adversary, selects the transition
probabilities to minimize said probability. The approach that we describe in this section,
consists in reformulating the synthesis problem as a maximal reachability probability problem
over a different IMDP: the one obtained by taking the product between the IMDP model and
a FSA that captures the language of ϕ. Then we solve the maximal reachability probability
problem via value iteration [30]. We must highlight that strategy synthesis, when compared
to the abstraction process, is way more efficient.

We start denoting by P (wk
Q |= ϕ|wk

Q(0) = q, X, σI , πI) the probability that the paths of IMDP
I satisfy the scLTL formula ϕ within k ≥ 0 steps, while never exiting set X, when the initial
state is q, the memory-dependent strategy σI is followed and the transition probabilities are
chosen by adversary πI . After that, as described in [4], we construct a deterministic FSA
A = (Z, z0, O, ∆, Zac) such that it captures the language of ϕ as explained in Section 2-2.
Then, an additional IMDP Iϕ is constructed by taking the product of the initial IMDP I
with FSA A:

Definition 2-4.3. (Product IMDP [4]) Given an IMDP I as in Definition 2-4.1 and a
FSA A as in Definition 2-2.1, the product IMDP is another IMDP Iϕ = I × A defined as the
tuple Iϕ = (Qϕ, Aϕ, P ϕ, P ϕ, Qϕ,ac) where:

• The set of states Qϕ is defined as Qϕ = Q × Z,

• The set of actions Aϕ is defined as Aϕ = A,

• The lower and upper bounds, P ϕ and P ϕ respectively, of the transition probabilities are
defined as:

P ϕ((q, z), a, (q′, z′)) =
{

P (q, a, q′) if z′ = ∆(z, L(q′)),
0 otherwise

P ϕ((q, z), a, (q′, z′)) =
{

P (q, a, q′) if z′ = ∆(z, L(q′)),
0 otherwise,

(2-3)

for all (q, z), (q′, z′) ∈ Qϕ, a ∈ Aϕ.

• The set of accepting states Qϕ,ac is defined as Qϕ,ac = Q × Zac,

The set of accepting states, Qϕ,ac of Iϕ correspond to the set of accepting states of A. In-
tuitively, the transition probability bounds of Iϕ are defined by only taking into account
transitions between states of Iϕ that generate transitions in A. In this way, we only consider
the paths of Iϕ that are able to produce an accepting run in A. In this product IMDP, the
adversary can pick transition probabilities from the following set:

Γa
qϕ

= {γa
qϕ

∈ D(Qϕ) : P ϕ(qϕ, a, qϕ
′) ≤ γa

qϕ
(qϕ

′) ≤ P ϕ(qϕ, a, qϕ
′), for all qϕ

′ ∈ Qϕ},

for all qϕ ∈ Qϕ, where D(Qϕ) is the set of probability measures over Qϕ.

We must highlight that, from the definition of the FSA A, a path of IMDP I satisfies ϕ if
and only if its trace produces an accepting run in A. Therefore, it becomes clear that we are
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interested in the paths of Iϕ that reach Qϕ,ac. For this reason, solving the strategy synthesis
problem for I is the same as finding the strategy σϕ that maximizes the probability of the
paths of Iϕ reaching Qϕ,ac, in the two-player game point of view we already described. This is
known as maximal reachability probability problem [11], and can be solved via value iteration
[30], as we describe in Section 2-4-1.

Maximal Reachability Probability Problem for IMDPs

The maximal reachability probability problem, defined for MDPs and its variants [30], allows
us to synthesize a strategy that maximizes the probability of reaching a target set of states.
As we described in Section 2-4-1, this problem also arises in strategy synthesis problems under
specifications described as scLTL formulas. This is because such problems can be formulated
as maximal reachability probability problems. In this section we explain how to solve such
problems and describe the characteristics of the solution.

We formulate the maximal reachability problem for an IMDP I = (Q, A, P , P , O, L) and
target set Qtgt ⊂ Q. To translate this setting to that of strategy synthesis for an scLTL
specification ϕ, it suffices to consider Iϕ and Qϕ,ac, as defined in Section 2-4-1, instead of I
and Qtgt. We start by considering the worst and best-case probabilities of the paths of I,
under strategy σ ∈ Σ, reaching Qtgt within k steps by starting on q ∈ Q:

min
π∈Π

P (∃t ∈ N≥0 s.t. t ≤ k, wk
Q(t) ∈ Qtgt|wk

Q(0) = q, σ, π)

max
π∈Π

P (∃t ∈ N≥0 s.t. t ≤ k, wk
Q(t) ∈ Qtgt|wk

Q(0) = q, σ, π)
(2-4)

Then, we define the optimal strategy σ∗ ∈ Σ as the one that maximizes the first expression in
(2-4), this is, the strategy that, maximizes the lower bound in the probability of reachability:

σ∗(q) := arg max
σ∈Σ

min
π∈Π

P (∃t ∈ N≥0 s.t. t ≤ k, wk
Q(t) ∈ Qtgt|wk

Q(0) = q, σ, π), (2-5)

for all q ∈ Q, k ∈ N ∪ {∞}. This is a pessimistic way of defining the optimal strategy,
which corresponds to the two-player game we described in Section 2-4-1. An alternative
optimistic criterion, in which σ∗ is defined as the strategy that maximizes the upper bound in
(2-4) also exists [30]. However, in our setting of formal strategy synthesis we are interested in
obtaining the strategy that maximizes the worst-case probability that the abstraction satisfies
the specification. This is because this lower bound is the performance guarantee that we are
looking for [4] and, therefore we want it to be as high as possible. Let us denote by pk and
pk, respectively, the worst and best-case probabilities of the paths of I reaching Qtgt within
k steps under strategy σ∗ ∈ Σ:

pk(q) := max
σ∈Σ

min
π∈Π

P (∃t ∈ N≥0 s.t. t ≤ k, wk
Q(t) ∈ Qtgt|wk

Q(0) = q, σ, π)

pk(q) := max
π∈Π

P (∃t ∈ N≥0 s.t. t ≤ k, wk
Q(t) ∈ Qtgt|wk

Q(0) = q, σ∗, π)
(2-6)

for all q ∈ Q, k ∈ N≥0 ∪ {∞}. Now we state Theorem 2-4.1, which allows us to obtain the
probabilities in (2-6) and the strategy in (2-5).
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Theorem 2-4.1. (Interval Value Iteration) Consider the IMDP I. Then, probabilities
pk in (2-6) are obtained for all k ∈ N≥0 ∪ {∞} recursively, starting from p0(q) = 1 for all
q ∈ Qtgt and p0(q) = 0 otherwise:

pk+1(q) =
{

1 if q ∈ Qtgt

maxa∈A(q) minγq,a∈Γq,a

∑
q′∈Q γq,a(q′)pk(q′) otherwise

. (2-7)

Furthermore, with a small abuse of notation, strategy σ∗ in (2-5) is the Markovian, but time-
dependent strategy σ∗ = {σ∗(·; k)}∞

k=1 that fulfills:

σ∗(q; k + 1) = arg max
a∈A(q)

min
γq,a∈Γq,a

∑
q′∈Q

γq,a(q′)pk(q′), (2-8)

for all q ∈ Q, k ∈ N≥0 ∪ {∞}. Using σ∗, probabilities pk in (2-6) are also obtained for all
k ∈ N≥0 ∪ {∞} recursively, starting from p0(q) = 1 for all q ∈ Qtgt and p0(q) = 0 otherwise:

pk+1(q) =
{

1 if q ∈ Qtgt

maxγq,σ∗(q;k)∈Γq,σ∗(q;k)

∑
q′∈Q γq,σ∗(q;k)(q′)pk(q′) otherwise

. (2-9)

Proof. The proof follows a similar reasoning that the one presented in [30] for stationary
strategies. It is easy to prove that the probabilities pk(q) and pk(q) correspond to the prob-
abilities defined in (2-6), for all q ∈ Q, k ∈ N≥0. Furthermore, since they are monotonically
increasing and upper bounded by 1 for all q ∈ Q, sequences pk(q) and pk(q) converge to the
following fixed points of recursions (2-7) and (2-9), respectively:

p(q) = lim
k→∞

pk(q) = max
σ∈Σ

min
π∈Π

P (∃k ∈ N≥0 s.t. wQ(k) ∈ Qtgt|wQ(0) = q, σ, π)

p(q) = lim
k→∞

pk(q) = max
π∈Π

P (∃k ∈ N≥0 s.t. wQ(k) ∈ Qtgt|wk
Q(0) = q, σ∗, π)

(2-10)

for all q ∈ Q. The previous expressions are the probabilities of the paths of infinite length of
I ever reaching Qtgt under σ∗. Furthermore

lim
k→∞

σ∗(q; k) = σ∗
stat(q),

for all q ∈ Q. Notice that strategy σ∗
stat is stationary, because strategy σ∗(·; k) only depends

on pk−1, as shown in (2-8), and the latter converges for k → ∞.

Notice that, due to Bellman’s optimality principle [19], strategy σ∗ is memoryless, since it
does not depend on the whole path wk

Q of I, but only on last(wk
Q). Furthermore, it is the

same strategy for all initial conditions q ∈ Q. However, this strategy is also time-dependent,
since it depends on current value function pk, which changes over time.

Now, let us discuss the computational features of the value iteration algorithm (2-7), (2-9).
First of all, we highlight that, since iteration (2-7) is independent of pk for all k ≥ 0, we
can compute this recursion, and strategy σ∗ first. Once we have achieved convergence we
can compute the second recursion (2-9) and obtain pk, which is useful to analyze the error
of the solution [4]. Secondly, notice that computing, for example, pk+1, involves solving an
optimization problem over Γq,a for each state q ∈ Q and action a ∈ A(q). In these problems
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the decision variables are the transition probabilities. Since these appear linearly in (2-7) and
set Γq,a is described by linear constraints, as we showed in (2-2), said problems are linear
programs (LPs), which can be solved using off-the-shelf LP solvers. However, there is a
alternative way to solve such problems by taking into account their structure [21]: we begin
by ordering the states q ∈ Q according to the value of pk at each state q in an increasing
fashion, this is, the first states in the ordering are those with the lowest value. After that the
transition probabilities that minimize the output of (2-7) are found as the ones that assign as
much probability as possible to the first states in the ordering. In the case of the maximization
in (2-9) problem, the ordering should be the opposite. This procedure is way more efficient
than solving the linear program with the standard LP solvers.

Results of Strategy Synthesis for IMDPs Under scLTL Specifications

As a starting point, consider that we have solved the maximal reachability problem described
in Section 2-4-1 for the product IMDP Iϕ and target set Qϕ,ac, defined in Section 2-4-1. As
a result, we have obtained the upper and lower bounds in probability pk

ϕ
and pk

ϕ of the paths
of Iϕ reaching Qϕ,ac. Furthermore, we have obtained the strategy σ∗

ϕ of Iϕ that maximizes
the previous lower bound at each time step. In this section we describe how we can translate
those results to the strategy and guarantees of the IMDP I that we seek. In fact, the results
we describe hold for any Markovian strategy σϕ of Iϕ, and when pk

ϕ
and pk

ϕ have been obtained
by solving (2-7) and (2-9) for fixed strategy σϕ.

First, we prove that any Markovian, and possibly time-dependent strategy σϕ in Iϕ maps to
a history dependent strategy σI in the initial IMDP abstraction I.

Lemma 2-4.1. (Translating a Markovian Strategy of the Product IMDP to the
IMDP[11]) Consider the product IMDP Iϕ obtained by taking the product between IMDP I
and FSA A, where the latter captures the language of the scLTL formula ϕ. Consider also
the Markovian strategy σϕ of Iϕ. Then, strategy σϕ can be translated to a memory-dependent
strategy σI of I.

Proof. We first express the state z of FSA A at time step t as a function of of the finite paths
wt

Q of I:

z(t) = ∆(z(t − 1), L(q(t)))
= ∆(∆(z(t − 2), L(q(t − 1)), L(q(t))
= f(z0, L(q(1)), L(q(2)), . . . , L(q(t))
= f̃(z0, wt

Q),

(2-11)

where f(·) and f̃(·) simply denote dependence on the argument. Using Expression (2-11), we
find that the corresponding strategy of I is σI = {σI(wt

Q; k)}∞
k=1, where:

σI(wt
Q; k) = σϕ(qϕ(t); k) = σϕ((q(t), z(t)); k) = σϕ((q(t), f̃(z0, wt

Q)); k), (2-12)

where k is the number of time steps until the end of the horizon. which is a memory-dependent
strategy.
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Secondly, we relate the bounds in the probability of Iϕ reaching Qϕ,ac to those in the proba-
bility of I satisfying the specification ϕ.

Lemma 2-4.2. (Guarantees Of the IMDP Abstraction [4],[11]) Consider the strategy
σ∗

I of I obtained from σ∗
ϕ as described in Lemma 2-4.1. Then it holds that the bounds in the

probability of the paths of I satisfying ϕ within k steps while never exiting X by following
strategy σ∗

I and starting from state q ∈ Q are:

pk
I(q) := inf

π∈Π
P (wk

Q |= ϕ|wk
Q(0) = q, X, σ∗

I , π) = pk
ϕ
(q, z0) (2-13)

pk
I(q) := sup

π∈Π
P (wk

Q |= ϕ|wk
Q(0) = q, X, σ∗

I , π) = pk
ϕ(q, z0) (2-14)

for all q ∈ Q.

Notice that, in practice, we are only interested in the probabilities obtained with initial state
z0 of A, since the runs of the automaton always start at its initial state z0. The probability
bounds in (2-13) are the guarantees of the IMDP abstraction satisfying the specification we
were looking for. Furthermore, we have synthesized the strategy σI∗ that maximizes the
lower bound. The complexity of the interval value iteration algorithm when used on Iϕ is
polynomial in the number of states of Iϕ and exponential in the size of ϕ in the worst case.
Additionally, for infinite horizon k → ∞, although σ∗

ϕ(·; k) converges to a stationary strategy
for Iϕ [30], σ∗

I(·; k) is still a memory-dependent strategy for I [4].
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Chapter 3

Background on Optimal Transport and
Ambiguity Sets

Continuous-state systems can be abstracted to IMDPs so that we can use tools from formal
methods on such systems [3], [4],[11]. However, the approaches proposed in those researches
assume that we have perfect knowledge of the random terms in the dynamics of our system.
An instance in which this is not the case is our UAV system, if we only have an approximate
description of the disturbance obtained from samples of this one. In this uncertain setting
we choose to include the distributional ambiguity into the abstraction, which we denote by
“robust" abstraction. To build such robust abstractions, we use tools from optimal transport
and ambiguity sets, which we introduce in this chapter. Particularly, we focus on defining
ambiguity sets using the Wasserstein distance, and in solving distributionally robust (DR)
uncertainty quantification problems.

This Chapter is organised as follows: in Section 3-1 we give a small survey of optimal trans-
port. In Section 3-1 we describe Kantorovich’ formulation of the optimal transport problem,
and we define the Wasserstein distance. In Section 3-2 we introduce ambiguity sets and we
highlight their usefulness to represent uncertainty about the probability distribution of a ran-
dom variable. In Section 3-2, we discuss tractable reformulations of distributionally robust
uncertainty quantification problems.

3-1 Optimal Transport

In this section we briefly introduce optimal transport, which is necessary to formulate the
Wasserstein distance. This distance is, in turn, necessary to define a class of ambiguity sets
that account for distributional ambiguity. First, we briefly describe optimal transport. After
that, in Section 3-1 we introduce Kantorovich’ formulation of the optimal transport problem,
and relate this formulation to the definition of the Wasserstein distance. Finally, we describe
the dual reformulation of this distance.
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30 Background on Optimal Transport and Ambiguity Sets

Optimal transportation theory is the discipline that deals with the transportation of resources
between two different configurations. This theory includes problems such as finding the least
expensive way to transport a group of objects from one configuration to another. A feature
of this problem is that the cost associated to moving each object from the first configura-
tion to each spot in the second configuration is generally different. Optimal transport has
applications in logistics, transportation networks, economics, etc. Furthermore, it also has
applications in statistics: we might seek the cheapest way of moving the probability mass from
one measure to another, when moving each unit of mass between two points in space incurs
a cost. Furthermore, optimal transport allows us to define distances in probability spaces
such as the Wasserstein distance, that quantify how "far away" two probability measures are
from each other. Such distances have applications in image processing, machine learning and
distributionally robust optimization (DRO), where the last one is of particular interest for
this thesis.

Traditionally, solutions to the optimal transport problem were proposed as assignment prob-
lems: each element of mass in the first measure is assigned to one element in the support
of the second measure. This was achieved, initially, by using permutations, and after that
through Monge maps [31], which allowed for more generality. However, both approaches are
difficult to solve. This is because the the first approach we described has a combinatorial
nature, and in the second one the feasible set of the problem is non-convex. Additionally,
both approaches are not able to provide feasible solutions in the case that the weight vectors
of each measure are not compatible. This implies that, when comparing discrete probability
measures, the mass from one location of one measure is not allowed to be split to several
different locations of the second measure [31]. For example, consider the problem of trans-
porting probability mass from a Dirac measure to a finite number of different locations. Using
the previous approaches, we would not be able to solve this problem, since we would not be
able to split the mass from the original location to the desired ones.

A huge development in of optimal transport was made by the work of Kantorovich, who
proposed to tackle the mass transport problem in a “probabilistic" way, which made mass
splitting possible [32]. His idea was to use couplings to represent the possible assignment of
mass from one location to several others. This formulation allows us to split mass to more
than one destination, which the previous formulations did not. Furthermore, this formulation
results in a linear program, as we describe in Section 3-1.

Kantorovich’ Formulation

Here we describe Kantorovich’ formulation of the optimal transport problem between ar-
bitrary probability measures P and P ′. In this formulation, the optimal transport cost is
defined as the minimum transport cost between these measures that can be achieved by using
a feasible coupling. This one is a joint measure whose marginals are equal to the probability
measures P and P ′. We also use this formulation to define the Wasserstein distance, which
we will, in turn, use later to define ambiguity sets of probability distributions. Additionally,
we state the dual definition of the Wasserstein distance.

First, we define the concept of a push-forward measure, which is needed to formulate the
optimal transport problem in Kantorovich’ formulation.
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Definition 3-1.1. (Push-forward Measure[15], [31]) Consider the measurable spaces Ξ
and Ξ′. Consider a probability measure P ∈ P(Ξ) and a measurable map T : Ξ → Ξ′. The
push-forward measure T#P ∈ P(Ξ′) of P through T is defined as:

T#P (A) = P (T −1(A)) = P ({ξ ∈ Ξ : T (ξ) ∈ A}),

for any measurable set A ∈ B(Ξ′).

The intuition behind the concept of a push-forward measure is that it is the probability
measure obtained by transporting the mass of P from Ξ to Ξ′ by T .

Now, we finally state the optimal transport problem in Kantorovich’ formulation.

Definition 3-1.2. (Kantorovich’ Formulation of the Optimal Transport Problem
[31]) Denote by T i : Ξ × Ξ → Ξ, i = 1, 2, the projections T 1(ξ1, ξ2) = ξ1 and T 2(ξ1, ξ2) = ξ2.
Consider also the coupling π ∈ P(Ξ × Ξ), which is a joint probability measure on the product
space Ξ × Ξ, and the cost c(ξ, ζ) defined over the same product space. The optimal transport
cost between probability measures P, P ′ ∈ P is:

Lc(P, P ′) = min
π∈U(P,P ′)

∫
Ξ×Ξ

c(ξ, ζ)dπ(ξ, ζ), (3-1)

where

U(P, P ′) = {π ∈ P(Ξ × Ξ) : T 1
#π = P, T 2

#π = P ′}.

Taking into account the definition of push-forward measure in Definition 3-1.1, the constraints
that define the set U(P, P ′) are equivalent to imposing the marginal constraints

π(A × Ξ) = P (A)
π(Ξ × B) = P ′(B),

for any measurable sets A, B ⊂ Ξ. Problem (3-1) is a linear program over the space of
probability measures P(Ξ × Ξ). Note that if |Ξ| < ∞, the previous linear program is finite-
dimensional, whereas it is infinite-dimensional otherwise. Furthermore, for continuous cost c
and compact space Ξ, problem (3-1) always has solutions [31].

Once we have formulated a generic optimal transport problem using Kantorovich’s formula-
tion, we define the Wasserstein distance between two probability measures as the solution of
an optimal transport problem.

Definition 3-1.3. (p-Wasserstein Distance[15]) Let the cost in (3-1) be c(ξ, ζ) = dp(ξ, ζ),
where d is a distance in Ξ and p ∈ [1, ∞). The p-Wasserstein distance (based on d), Wp(P, P ′),
between probability measures P, P ′ ∈ Pd

p (Ξ) is defined as

Wp(P, P ′) = Ldp(P, P ′)
1
p . (3-2)

Notice that in Definition 3-1.3 we omit the dependence of Wp on d, since this distance is always
clear from the context. Intuitively, the Wasserstein distance is defined as the minimum cost of
transporting, via a coupling, probability mass from measure P to measure P ′. This distance
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is bigger the more different are both probability measures. The solution of (3-2) is also a
distance in the measure space Pp. Furthermore, there exists an alternative way of defining
the Wasserstein distance using a dual approach. Consider the space L1(P ) of P -integrable
functions. The dual reformulation of the p-Wasserstein distance is:

Wp
p (P, P ′) =

sup
u∈L1(P ),v∈L1(P ′)

{ ∫
Ξ

u(ξ)P (dξ) +
∫

Ξ
v(ξ)P ′(dξ) : u(ξ) + v(ζ) ≤ dp(ξ, ζ), ∀ξ, ζ ∈ Ξ

}
.

The functions u, v are called dual functions or potentials. Additionally, sets L1(P ) and L1(P ′)
can be replaced with Cb(Ξ), where Cb(Ξ) is the set of continuous and bounded real-valued
functions in Ξ. Now, denote by L the space of Lipschitz functions with |f(ξ)−f(ξ′)| ≤ ||ξ−ξ′||
for all ξ, ξ′ ∈ Ξ. When d(ξ, ζ) = ||ξ − ζ|| is the 1-norm on Ξ and p = 1, the W1(P, P ′) is
called the 1-Wasserstein distance, and it has the following dual reformulation, [14]:

W1(P, P ′) = sup
u∈L

{ ∫
Ξ

u(ξ)dP (ξ) −
∫

Ξ
u(ξ)dP ′(ξ)

}
, (3-3)

being u the dual function or potential.

3-2 Ambiguity Sets

In this section we use the theory of optimal transport and specifically the Wasserstein distance
to define ambiguity sets. We also compare different ambiguity sets, and we describe the
advantages of using Wasserstein distance based ones.

We start by motivating the use of ambiguity sets. In many problems involving random quan-
tities, their exact probability distributions is not known exactly. Instead, we might have an
approximate idea of this distribution. However, we want to account for this uncertainty in
our problems, for example, to make decisions that are robust respect to the unknown prob-
ability. In this scenario, ambiguity sets are useful. An ambiguity set is a set of probability
distributions, which we expect to contain the true, unknown probability of the random vari-
able. Since we have an approximate idea of the unknown distribution, we define an ambiguity
set as the one that contains all probability distributions that are “close" to the approximate
one, according to some criterion. We call the approximate probability distribution that was
our starting point by “nominal" probability distribution. The size of the ambiguity set is
crucial: it should contain the true, unknown distribution, since we want to account for it, but
it should not be excessively big. The last part is because, the bigger the ambiguity set, the
more conservative we are. The optimal size of the ambiguity set is the smallest that contains
the unknown probability distribution.

Ambiguity sets are widely used in DRO problems, which are optimization problems in which
random parameters of unknown distribution are present. In DRO problems, ambiguity sets
are used to capture said ambiguity, and a decision that is robust with respect to the ambiguity
is seek. Consider our UAV example in which random gusts of wind disturb the dynamics of
the system. If we are unsure about the probability distribution of these disturbances, we can
opt to consider an ambiguity set of distributions, in which we expect the unknown distribution
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to lie. Then we can seek a strategy that enforces some specification while being robust to
all probabilities in the ambiguity set. In this way, we ensure that the UAV will satisfy the
specification even under the distributional ambiguity of the wind.

We have made clear how ambiguity sets allow us to capture the stochastic behaviour of
random, ambiguous parameters. Furthermore, we have highlighted that the choice of the
ambiguity set is key to make a good decision. Now let us discuss different classes of ambiguity
sets that we can define. When it comes to defining an ambiguity set, several criteria are
possible like those related to the moments of the probability distributions in the set or to the
distance between such distributions. There is a class of ambiguity sets denoted as moment-
ambiguity sets, which contain all probability distributions that satisfy certain constraints on
their moments. Such constraints are usually related to a nominal distribution, like a most
likely one, in the following way: some moments of all distributions in the ambiguity set
should either be the same as those of the nominal one, or at least close to those according
to some tolerance. However, moment ambiguity sets, despite leading to tractable convex
reformulations in many DRO problems, do not make use of all the available information
about the unknown probability distribution. This is because either no data or just sampled
data is available in practice, and the conditions on some moments do not describe everything
that is known about the random variable [15]. Furthermore consider a DRO problem in the
data-driven setting, this is, when the nominal distribution is an empirical one, built from N
samples of the uncertain variable. In this setting and, when the number of samples approaches
infinity [33], the moment ambiguity set does not shrink to the unknown probability. This class
of ambiguity sets have been used for example in [34] for policy synthesis in a distributionally
robust safety problem for continuous state systems.

On the other hand, there is a class of ambiguity sets based on statistical metrics. These sets
are defined as the sets of all distributions such that the metric between any distribution in
the set and the nominal one is less than some tolerance. Examples of such metrics are the
ϕ-divergences or the Wasserstein distance. The KL-divergence, a class of ϕ-divergence, has
become popular lately. However, it has been shown that it is unable to give raise to ambigu-
ity sets constructed from sampled data that contain the true probability distribution if that
distribution is continuous [14]. Furthermore, ϕ-divergences in general have the disadvantage
of not taking into account how far away the mass is being transported from one probabil-
ity distribution to another [15], which is not intuitive. Conversely, the Wasserstein distance
is able to give raise to ambiguity sets that contain both continuous and discrete probabil-
ity distributions, while including a distance-based transport cost. Furthermore, consider a
Wasserstein distance based ambiguity set centered on an empirical distribution built from
data. In this scenario, modern results involving measure concentration show that the true
probability distribution is guaranteed to belong, with some confidence, to the ambiguity set.
Finally, tractable reformulations of DRO problems with Wasserstein ambiguity sets have been
developed lately [14], [15], in the data-driven setting. Because of their desirable features, in
this thesis we make use of Wasserstein distance-based ambiguity sets. Wasserstein ambiguity
sets have found applications in distributionally robust formulations of different problems like
motion planning for robotics [35], [36] and distributionally robust MDPs with parameter am-
biguity [29], for example. In this thesis we use Wasserstein distance-based ambiguity sets of
the form Pamb = Bε(P̂ ). The previous one is a ball in the space of probability distributions
with finite p-th moment Pp(Ξ), of radius ε > 0 and centered on the nominal distribution P̂ .
We illustrate this set in Figure 3-1.
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Consider a Wasserstein ambiguity set in the data-driven setting, and a fixed confidence level.
In [14] it is proven that the ambiguity set shrinks to the true probability distribution as the
number of samples, N , approaches infinity if ε is defined as an appropriate function inversely
proportional to N . Additionally, there exist tractable reformulations of data-driven DRO
problems for some classes of uncertainty sets and cost functions [14], [15]. We explain such
properties of Wasserstein distance-based data-driven DRO problems in the following Sections.

Measure Concentration Results and Wasserstein Ball

In this section we state the properties of data-driven, Wasserstein distance-based ambiguity
sets. To do so, we start by describing modern measure concentration results found in [13].
Consider the random variable ξ ∈ Ξ ⊂ Rn with unknown distribution P true. A key assumption
is that P true is a light-tailed distribution [14], i.e., there exists an exponent a > 1 such that:

a′ =
∫

Ξ
exp ∥ξ∥aP true(dξ) < ∞. (3-4)

Consider the empirical distribution built from N samples {ξ̂i}N
i=1 of ξ:

P̂ N = 1
N

N∑
i=1

δ
ξ̂i ,

where δ
ξ̂i is the Dirac delta that represents a unit of mass concentrated in ξ̂i. Theorem 2

in [13] states that, under assumption (3-4), the following inequality holds in the case of the
1-Wasserstein distance [14]:

Pr(W1(P true, P̂ N ) ≥ ε) ≤
{

c1 exp(−c2Nεmax{n,2}) if ε ≤ 1
c1 exp(−c2Nεa) if ε > 1

, (3-5)

for all N ≥ 1, n ̸= 2 and ε > 0, where c1, c2 are positive constants that only depend on a, a′

and n [14]. Furthermore, for n = 2 similar results hold, but, since the expressions are more
complicated, we do not state them here. The previous results mean that the distance (in
the sense of the 1-Wasserstein metric) between the true distribution P true and the empirical
one P̂ N being bigger than a certain ε has a probability that is upper bounded. Additionally,
this upper bound decreases exponentially with the number of samples N . Now, consider the
following Wasserstein distance-based ambiguity set:

Bε(P̂ N ) = {P ∈ Pp(Ξ) : W1(P, P̂ N ) ≥ ε}.

This ambiguity set is a ball of radius ε centered on the empirical distribution P̂ N , built
from i.i.d. samples {ξ̂i}N

i=1 of ξ. From the structure of this Wasserstein ball, it follows
that the measure concentration results (3-5) provide a lower bound on the probability of the
true distribution P true being inside of Bε(P̂ N ). This means that we can build data-driven
ambiguity sets in a meaningful way, that is, in such a way that they are guaranteed to contain
the true probability distribution with high probability. We illustrate this fact in Figure 3-
1. We can use (3-5) to select the smallest radius of the ambiguity set that is guaranteed
to contain the true, unknown distribution with some confidence. Consider the data-driven
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Figure 3-1: Wasserstein ambiguity set Bε(P̂ N ). The ambiguity set is a ball of radius ε centered
on P̂ N . Note that in this illustration, an empirical distribution has been taken as the nominal
one. A good choice of the radius ε allows the ball to include the true distribution P true, without
being unnecessarily large.

ambiguity set Pamb = BεN (P̂ N ) and a fixed confidence level 1 − β, with β ∈ (0, 1). Then, this
radius is

εN =

( log(c1β−1)
c2N )

1
max{m,2} if N ≥ log(c1β−1)

c2

( log(c1β−1)
c2N )

1
a if N < log(c1β−1)

c2

. (3-6)

Notice that the radius of the ambiguity ball εN is a decreasing function of N . This means that
the higher the number of samples, the smaller the ambiguity set needs to be to guarantee that
it contains the true distribution with confidence 1−β. Furthermore, in [14] it was proved that
if βN is defined as an adequately decreasing function of the number of samples, then DRO
problems using such set are asymptotically consistent: the solution of the DRO problem using
such set converges to the solution of the ambiguity-free problem as N approaches infinity.

However, despite the theoretical results here described, in practice the procedure of selecting
a confidence level 1 − β and then obtaining ε such that said confidence level is guaranteed is
not followed. This is due to the following practical reasons [14]:

• The constants c1, c2 in (3-5) are very difficult to obtain.

• Even if we computed said constants, they would lead to an excessively big ambiguity
set, which means high conservatism.

Due to the previous reasons, in this thesis we always consider, even in the data-driven setting,
ambiguity sets of fixed radius ε, which we choose arbitrarily. Some practical approaches to
determine this parameter are cross-validation tests, bootstrapping or goodness-of-fit tests [14].
Furthermore, in the data-driven setting, we leave the problem of obtaining a value of ε that
leads to formal guarantees, such as those in (3-5), to future researches.
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Uncertainty Quantification

In this section we describe an algorithm to solve uncertainty quantification problems for
variables with ambiguous distributions that belong to data-driven ambiguity sets. These
kind of problems arise, for example, when we want to perform an abstraction of a stochastic
system whose dynamics are ambiguous. Uncertainty quantification is concerned about the
problem of evaluating how much probability mass from a probability measure is inside or
outside of a particular set. This problem may arise for example when we want to quantify
what are the odds that the value obtained by throwing a dice are between 3 and 5. Another
example is the problem of determining the odds that the position of a robot, whose dynamics
are modelled by some stochastic process, ends up in a particular region in space. If we have no
knowledge about the stochastic behaviour of the dice and robot in the previous examples but,
instead, we want to infer it from data, we can use a data-driven DR formulation. This means
using an ambiguity set of probability distributions, and computing the best or worst-case
probabilities of the random variable belonging to the set. In this section we formally state
the DR-version of the uncertainty quantification problem, and describe how to solve it. We
must highlight that, when using Wasserstein ambiguity sets, tractable solutions exist when
the center of the ambiguity set is an empirical distribution built from data [14], [15].

Consider the arbitrary set S ⊂ Rn and the random variable ξ ∈ Rn. Assume that we want
to compute the probability of that random variable belonging to said set. If the probability
distribution of ξ is unknown but, instead, we have access to N samples of ξ, {ξ̂i}N

i=1, we can
make use a data-driven DR-formulation. Two key approaches to solve this kind of problems
are given in [14] and [15], respectively. First, in [14], an exact reformulation of DR-uncertainty
quantification problems was proposed in the form of a convex programs, which becomes linear
if the 1-Wasserstein distance is used. Secondly, in [15] it was found that, for data-driven DR-
uncertainty quantification problems, a finitely-supported worst-case distribution always exists.
Additionally, such structure makes it possible to solve the DR-uncertainty quantification
problem in a very simple, and intuitive way: it is only required to find distances between
the samples {ξ̂i}N

i=1 and the boundary of set S. The solution is then obtained by adding up
these distances until a threshold is exceeded. In this thesis we will only make use of this
second approach, since it is more advantageous when used to obtain our desired data-driven
DR-IMDP abstractions. We will state these advantages in Section 4-2, after we describe the
problems we need to solve to obtain said abstractions. In the following, we will limit ourselves
to describe this approach.

In [15], an approach is presented to to solve problems of the form

inf
P ∈Bε(P̂ N )

P [ξ ∈ S]. (3-7)

Consider the case of the nominal distribution being empirical and constructed from the sample
set {ξ̂i}N

i=1 ⊂ Rn, this is, P̂ = P̂ N =
∑N

i=1 δ
ξ̂i . Without loss of generality, assume that the

samples are ordered according to their distance d(ξ̂k,Rn \ S) to Rn \ S, namely:

d(ξ̂i,Rn \ S) ≤ d(ξ̂j ,Rn \ S) for all 1 ≤ i ≤ j ≤ N. (3-8)

Consider the set [I] with I ≤ N as the set of indices of the samples that lay outside set S.
Furthermore, we say I = 0 if and only if d(ξ̂i,Rn \ S) > 0 for all i ≤ N . Additionally, for all i
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such that I < i ≤ N , this is, for samples inside S, we define ξi
∗ as the point in the boundary

of set S that is the closest to ξ̂i:

ξi
∗ ∈ arg min

ξ∈∂S
d(ξ, ξ̂i). (3-9)

Theorem 3-2.1. (Geometric Solution of DR-Uncertainty Quantification Problems
[15]) Let j∗ = max{j ∈ [N ] ∪ {0} :

∑j
i=1 d(ξ̂i,Rn \ S) ≤ Nε}. Then problem (3-7) has the

following solution:

• If j*=N, then inf
P ∈Bε(P̂ N ) P [ξ ∈ S] = P ∗[ξ ∈ S] = 0, which is attained by a worst-case

distribution

P ∗ = 1
N

I∑
i=1

δ
ξ̂i +

N∑
i=I+1

δξi
∗
.

• If j∗ < N , then inf
P ∈Bε(P̂ N ) P [ξ ∈ S] = P ∗[ξ ∈ S] = 1 − j∗+p∗

N , which is attained by a
worst-case distribution

P ∗ = 1
N

I∑
i=1

δ
ξ̂i +

j∗∑
i=I+1

δξi
∗

+ p∗

N
δ

ξj∗+1
∗

1 − p∗

N
δ

ξ̂j∗+1 + 1
N

N∑
i=j∗+2

δ
ξ̂i ,

where p∗ = (Nε −
∑j∗

i=I+1 d(ξ̂i,Rn \ S))/d(ξ̂j∗+1,Rn \ S).

The previous worst-case distribution P ∗ corresponds to transporting probability mass from
the samples to the boundary of the set S in a greedy fashion: all the mass from the first sample
ξ̂1 is transported first since its distance to the boundary is the shortest. This procedure is
repeated for the next samples in the ordering until the mass of sample j∗ + 1 cannot be fully
transported since the transport budget ε is exceeded. This constraint violation means that
that distribution would not belong to the Wasserstein set Bε(P̂ N ). Therefore, only a fraction
p∗ of the mass of this last sample is transported, to obtain a distribution that remains in the
ambiguity set. The rest of the samples are not transported and, therefore, are left untouched.
In Figure 3-2 we depict this geometric approach.
Notice that despite the fact that the results stated in Theorem 3-2.1 are given for DR-
uncertainty quantification problems of the form (3-7), Theorem 3-2.1 also allows us to solve
problems of the form

sup
P ∈Bε(P̂ N )

P (ξ ∈ q′), (3-10)

for an arbitrary set q′ ⊂ Rn. We are also interested in solving such problems because similar
ones will arise in Chapter 4, when we describe how to obtain data-driven abstractions. Ex-
pression (3-11) shows how we can obtain a solution to problem (3-10) by using the results of
Theorem 3-2.1:

sup
P ∈Bε(P̂ N )

P (ξ ∈ q′)

= sup
P ∈Bε(P̂ N )

1 − P (ξ ∈ Rn \ q′)

=1 − inf
P ∈Bε(P̂ N )

P (ξ ∈ S),

(3-11)

by saying S = Rn \ q′.
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Figure 3-2: Example of the geometric approach. On the left, the empirical distribution P̂ N

consisting of 6 samples: two samples lay outside set S while the remaining 4 are inside set S.
On the right, the greedy, worst-case distribution P ∗. This worst-case distribution is obtained by
transporting all the mass from samples ξ̂3 and ξ̂4 to the closest points in the boundary, ξ̂3

∗ and ξ̂4
∗ .

Furthermore, a fraction of mass p∗

N of ξ̂5 is transported to ξ̂5
∗ , while the remaining 1−p∗

N fraction
is left in ξ̂5.
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Chapter 4

Strategy Synthesis via Abstractions to
DR-IMDPs

In this chapter we introduce our first approach of synthesizing a strategy for an uncertain
system. We follow an abstraction-based approach: we abstract the system into an IMDP
in a way that the abstraction accounts for the uncertain behaviour of the system. After
that, we synthesize a strategy for the IMDP abstraction using the tools for IMDPs already
described in Section 2-4-1. The setting of this chapter is a data-driven one: we have access
to data from the uncertain system, which we leverage to build the abstraction. We call the
process of obtaining a robust IMDP abstraction of such systems by using samples of their
disturbances “data-driven DR-abstractions to IMDPs". Furthermore, we assume that the
true distribution of said disturbance lies at a distance (in the Wasserstein sense) of at most
ε from the distribution constructed from the samples: the empirical distribution.

This chapter is organized as follows: first, in Section 4-1 we formally define the class of
systems that we abstract to IMDPs, and we formally state our problem. Next, in Section
4-2 we describe in detail our proposed approach. After that, we describe the algorithms that
allow us to synthesize a strategy for the DR-IMDP abstraction in Section 4-3. Furthermore,
in Section 4-4 we correctly translate the strategy and satisfaction guarantees obtained for the
abstraction to the original system.

4-1 Problem Statement

Let us begin by describing the class of systems that we consider. Consider the following
discrete-time dynamical system:

xt+1 = f(xt, ut) + ξt, (4-1)

where xt ∈ Rn is the state, ut ∈ UC is the control input and ξt ∈ Rn is a random disturbance.
This disturbance process is i.i.d. and has probability distribution P true

ξ , which is unknown to

Master of Science Thesis Ibón Gracia Merino (5358779)



40 Strategy Synthesis via Abstractions to DR-IMDPs

us. Furthermore, notice that, for simplicity and without loss of generality, we consider that
the dimension of the disturbance is the same as that of the state space, n ∈ N. Additionally,
we associate to system (4-1) a set of observations OC , and an observation function LC that
assigns an observation o ∈ OC to every state x ∈ Rn of the system. We now define the
transition kernel TC , parametric in the probability Pξ ∈ Pp(Rn), which for any x ∈ Rn,
u ∈ UC assigns a probability measure on the Borel space (Rn, B(Rn)). This is:

TC(D|x, u; Pξ) :=
∫

D
(f(x, u) + ξ)dPξ, (4-2)

for any measurable set D. We need such a parametric kernel because probability distribution
P true

ξ of ξ is unknown. We also define the notion of paths and traces of system (4-1). A path
of system (4-1) is a sequence of states [4] wRn = x0

u0−→ x1
u1−→ x2

u2−→ . . . that, for fixed Pξ

satisfy the dynamics (4-1) and where ut ∈ UC for all t ∈ N≥0 ∪ {∞}. We denote the prefix of
length k + 1, for k ∈ N≥0, of a path wRn by wk

Rn , and the sets of all finite and infinite paths
are called Pathsfin

Rn and PathsRn , respectively. We also denote the last state of a finite path
wfin
Rn by last(wfin

Rn ) and the t + 1-th state of a path wRn by wRn(t). A path wRn = x0x1x2...
produces a trace woC = o0o1o2... ∈ Oω such that ot = LC(xt) for all t ∈ N≥0 ∪ {∞}.

Now let us introduce the concept of a strategy of system (4-1).

Definition 4-1.1. (Strategy of a Continuous-State Dynamical System) A strategy
σC : Pathsfin

Rn → UC of system (4-1) is a function that maps a finite path wk
Rn into a control

input u ∈ UC. The set of all strategies σC is denoted by ΣC.

Then, given Pξ ∈ Pp(Rn), a time horizon [0, k] and a strategy σC , system (4-1) defines a
stochastic process in the space Ω = (Rn)k+1, with Borel sigma algebra B(Ω) [11]. Furthermore,
for initial state x0 ∈ Rn, a probability P is induced over the paths of said process, which is
uniquely defined by TC : for any t ∈ {0, 1, . . . , k − 1}

P (wk
Rn(0) ∈ D) = 1D(x0)

P (wk
Rn(t + 1) ∈ D|xt = x, ut = σC(wt

Rn), Pξ) = TC(D|xt, σC(wt
Rn); Pξ)

for any measurable set D ∈ Rn. Furthermore, for k = ∞, P is also uniquely defined by TC by
the Ionescu-Tulcea extension theorem [37].

In the setting of this chapter we assume that we have access to a finite number of samples
{ξ̂i}N

i=1 from disturbance ξ, that we might have obtained in two different ways: either from
direct measurements of the disturbance or, if we have recorded the state and control input
of a trajectory of the system, by subtracting f(xt, ut) from the state xt+1 for all t available.
Once we have defined the class of systems we consider, let us state our problem. Denote by
P (wk

Rn |= ϕ|wk
Rn(0) = x, X, σC , Pξ) the probability of the paths of system (4-1) for fixed Pξ

satisfying an scLTL formula ϕ within k ∈ N≥0 ∪ {∞} steps while staying inside X ⊂ Rn by
starting from state x ∈ X and following strategy σC .

Problem 4-1.1. (Data-driven Distributionally Robust Strategy Synthesis) Consider
the dynamical system (4-1). Assume that a finite set of samples {ξ̂i}N

i=1, N ≥ 1, from its
disturbance are available, and denote the corresponding empirical distribution P̂ N

ξ . Moreover,
consider the p-Wasserstein distance-based ambiguity set Bε(P̂ N

ξ ), of radius ε > 0 and centered
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on P̂ N
ξ . Consider also a compact set X ⊂ Rn and an scLTL formula ϕ defined over the

regions of interest of X. Then, find a near-optimal strategy σ∗
C that allows to determine if for

given initial state x ∈ X, probability threshold pth and horizon k ∈ N≥0 ∪ {∞}

P (wk
Rn |= ϕ|wk

Rn(0) = x, X, σ∗
C , Pξ) ≥ pth (4-3)

holds for all probabilities Pξ ∈ Bε(P̂ N
ξ ) of the disturbance ξ. Then, if ε has been chosen in

such a way that P true
ξ ∈ Bε(P̂ N

ξ ) holds with high confidence 1, we can easily check if (4-3)
holds for the case of system (4-1) under P true

ξ , since

P (wk
Rn |= ϕ|wk

Rn(0) = x, X, σ∗
C , P true

ξ )
≥ min

Pξ∈Bε(P̂ N
ξ

)
P (wk

Rn |= ϕ|wk
Rn(0) = x, X, σ∗

C , Pξ) · (1 − β),

where 1 − β is the confidence level. However, notice that we leave this last part outside
the statement of problem 4-1.1 because in this thesis we assume given ambiguity sets. The
problem of finding the size of the ambiguity set that contains P true

ξ is out of the scope of this
thesis.

We seek a near-optimal strategy because there is no way of finding the exact strategy that
maximizes the probability in (4-3) [11]. Instead, as we already pointed out in the introduction
of this chapter, we follow an abstraction-based approach to solve Problem 4-1.1. First, we
abstract system (4-1) to an finite-state IMDP, which accounts for both the discretization of
the state-space and the distributional uncertainty regarding the disturbance. Then we syn-
thesize the strategy that maximizes the worst-case probability of the paths of said abstraction
satisfying the specification. We do that using interval value iteration algorithm described in
Section 2-4-1. Finally we translate said strategy into a strategy that system (4-1) is able to
use, while preserving the guarantees obtained for the abstraction.

4-2 Obtaining DR-IMDP Abstractions

As we already pointed out, to solve Problem 4-1.1 we follow an abstraction-based approach.
This one relies on the theory of IMDPs and ambiguity sets explained in Sections 2-4 and 3-2,
respectively. In this section we describe how we obtain these DR-IMDP abstractions.

First, we abstract system (4-1) to the IMDP I = (Q, A, P , P , O, L). Let us begin with the
state space Q. We focus on a compact set X ⊆ Rn of the state space of system (4-1). We
discretize this one into a finite number of non-overlapping regions Q̃ := {q1, q2, . . . , q|Q̃|} such
that:

∪
q∈Q̃

q = X, and q ∩ q′ = ∅ ∀q, q′ ∈ Q̃ and q ̸= q′.

Moreover, in this chapter we restrict the set the set X to be a hyper-rectangle and we only
make use of uniform partitions. Using this kind of partitions is key in our approach to obtain
the transition probability bounds of the abstraction, as we explain later in Section 4-2-1.

1see Section 3-2.
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Now, we assign each region q of the discretization to a different state in the IMDP I. With
an abuse of notation we refer by q to both, a state q ∈ Q̃ of the IMDP, and to a region q ⊂ X.
The correct interpretation should be clear from the context. Furthermore, for the sake of
simplicity, we restrict to the case that the discretization respects the regions of interest: for
every region q ∈ Q̃, all x ∈ q must share the same observations. IMDP abstractions in which
the regions of interest are not respected are also possible [4]. Additionally, we denote by qu

the set Rn \ X, which corresponds to the rest of the state space of system (4-1). Taking this
extra state into account, we define the state space of the IMDP I as Q := Q̃ ∪ {qu}. In this
way we have discretized the entirety of the continuous state space Rn. Next, when it comes to
the observation set O of the I, we let this set be the same as in the original system: O := OC .

Regarding the set of actions A of I, we define it as a finite subset of UC . Furthermore we
make all actions available at each state q, i.e., A(q) = A for all q ∈ Q. This is not necessarily
the only way to define the set of actions of the IMDP, and state-dependent action sets can
exist. However, to simplify the problem, in this document we only consider this case. Next,
we define the observation map of the IMDP I as L(q) := LC(x) for any x ∈ q and for all
q ∈ Q. This means that the observation map of the IMDP assigns to each cell the same
observation that was assigned to that region in the continuous system model. In this way, we
leverage the fact that the discretization respects the regions of interest.

Finally, we state the expressions that the transition probability bounds P , P of I must satisfy.
Such quantities must bound the worst and best-case probabilities of transitioning between
states taking into account the ambiguity introduced by the state discretization and the dis-
tributional uncertainty. Therefore, taking into account the dynamics (4-1) and the ambiguity
set Bε(P̂ N

ξ ), said bounds must fulfill

P (q, a, q′) ≤ min
xt∈q

inf
Pξ∈Bε(P̂ N

ξ
)
Pξ(xt+1 ∈ q′|xt, at = a)

= min
xt∈q

inf
Pξ∈Bε(P̂ N

ξ
)
TC(q′|xt, ut = a; Pξ)

P (q, a, q′) ≥ max
xt∈q

sup
Pξ∈Bε(P̂ N

ξ
)
Pξ(xt+1 ∈ q′|xt, ut = a)

= max
xt∈q

sup
Pξ∈Bε(P̂ N

ξ
)
TC(q′|xt, a; Pξ),

(4-4)

for all q, q′ ∈ Q \ {qu}, a ∈ A, and

P (q, a, qu) ≤ 1 − max
xt∈X

sup
Pξ∈Bε(P̂ N

ξ
)
Pξ(xt+1 ∈ X|xt, at = a)

= 1 − max
xt∈q

sup
Pξ∈Bε(P̂ N

ξ
)
TC(X|xt, ut = a; Pξ)

P (q, a, qu) ≥ 1 − min
xt∈q

inf
Pξ∈Bε(P̂ N

ξ
)
Pξ(xt+1 ∈ X|xt, ut = a)

= 1 − min
xt∈q

inf
Pξ∈Bε(P̂ N

ξ
)
TC(X|xt, a; Pξ),

(4-5)

for all q ∈ Q \ {qu}, a ∈ A. Furthermore, according to Problem 4-1.1, we are only interested
on the paths that never exit X. To account for that extra specification, we make the state qu
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absorbing by defining P (qu, a, qu) = P (qu, a, qu) = 1 and P (qu, a, q′) = P (qu, a, q′) = 0 for all
q′ ∈ Q \ {qu}, a ∈ A.

Obtaining the bounds in expressions (4-4) and (4-5) is the main problem we need to solve to
compute our DR-IMDP abstractions. Now, before describing how we obtain such bounds, let
us begin by looking at the inner optimization problems over the ambiguity set in (4-4) and
(4-5). These problems are, DR-uncertainty quantification problems similar to those in (3-10)
and (3-7) from Section 3-2. Let us remember that in that section we pointed out to two
approaches to solve data-driven DR-uncertainty quantification problems: the one introduced
in [14] based on convex (or linear) programming, and the one presented in [15] that has a
geometrical interpretation. As we already stated in Section 3-2, in our approach, we only
make use of the second method due to the advantages it presents:

• This approach can be used with a generic distance d,

• This approach has a geometric interpretation, and it is easy to find relaxations to the
problem, to speed up computations, as we describe in Section 4-2.3,

• Furthermore, this approach allows us to combine the inner and outer optimization
problems in and (4-4) and (4-5) into a single one when we use said relaxations. This
allows us to obtain bounds analytically, as we discuss in Section 4-2-2,

• Computing distances from sample to set can be done in a very efficient way if the set
is a hyperrectangle: it does not require to solve a number of optimization problems in
which the number of variables scales with the number of samples, N , which can be high.
Instead, we can obtain the distances by using a series of if statements and computing
distances between points and planes in closed form.

Let us remember from Section 3-2 that, DR-uncertainty quantification problems like those in
and (4-4) and and (4-5) only have tractable reformulations when the nominal distribution is
finitely supported. Fortunately, this is the case in the data-driven setting that we consider in
this chapter. Once that we have discussed the tools we have to solve the inner problems in
and (4-4) and and (4-5), let us notice that the solution of these DR-uncertainty quantification
problems is parametric in the variable xt. Then, we need to also optimize the result of the
inner problems over xt. Unfortunately, in general this is not a convex problem, since it depends
on the distribution of the samples, which is random. This means that to get good bounds for
P (q, a, q′) and P (q, a, q′), we need to find tractable ways to deal with this non-convexity.

Taking into account the previous considerations, now we briefly describe how we obtain the
bounds in expressions (4-4) and (4-5). To obtain those in (4-4) we rely on precomputing
a lookup table. Consider a generic state q∗ ∈ Q \ {qu} of the partition. The lookup table
contains the solution of DR-uncertainty quantification problems for the case that the samples
are centered at every point in a grid around this region q∗. After that, we obtain the bounds
by performing a grid search in the lookup table, making use of the reachable set of current
state q ∈ Q \ {qu} by action a ∈ A. Since the disturbance is additive and the regions q ⊂ Rn

are of the same size (except qu), we prove that we only need one lookup table to determine
the bounds between any states q, q′ ∈ Q \ {qu} and action a ∈ A. However, notice that
an additional table over X is needed to obtain the bounds of transitioning to state qu in
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expressions (4-5). This is the first way in which we obtain the bounds in expressions (4-4)
and (4-5), which we describe in detail in Section 4-2-2.

On the other hand, the approach in [15] to solve the DR-uncertainty quantification problems
allows us to formulate efficient relaxations of problems (4-4) and (4-5). Such relaxations
lead to analytical bounds in the transition probabilities of I that are tight when the distance
between the samples of xt+1 and the set q′ is large. Therefore, we make use of these relaxations
when the previous distance goes over a threshold Dth. This is the second way to obtain the
transition probability bounds, which we describe in detail in Section 4-2-2.

4-2-1 Lookup Table

In this section we describe the main way in which we obtain the transition probability bounds
in (4-4) and (4-5) by searching on a lookup table. Actually, we need one lookup table to
compute the bounds in (4-4) and a second one to compute the bounds in (4-5).

Let us first clarify the notation we use in this section. We only make use of distance d =
∥ · ∥p and Wasserstein distance Wp, with p ≥ 1. Furthermore, we make use of balls in the
metric space (Rn, ∥ · ∥p), and balls in the probability space Pp(Rn) based on the distance Wp.
According to Section 1-5, we use the notation B and B, respectively, to refer to such balls.
Furthermore, we omit the spaces Rn, Pp(Rn) and the distances ∥ · ∥p, Wp as arguments of
such balls, since these are clear from the context.

Now, let us start by describing how we obtain the lookup table. After that we describe how
we obtain the bounds in (4-4) by searching in the table.

Definition 4-2.1. (Lookup table) Consider a uniform grid over a region of the state space
which contains an arbitrary rectangle q∗ ⊆ X from the partition of the state space. Denote
the set of centers of the sub-cells of this grid by {yq∗

k }ntable
k=1 , where ntable is the total number

of centers. Let Bδ∗(yq∗

k ) ⊂ Rn be the smallest ball, centered on any yq∗

k , that contains the
corresponding sub-cell. We define the lookup table for q∗ as a table with ntable entries, where
each entry contains both the position of the respective center yq∗

k and the solution of the
following DR-uncertainty quantification problems:

p(yq∗

k ) := inf
Pξ∈Bε+δ∗ (P̂ N

ξ
)
Pξ(yq∗

k + ξ ∈ q∗)

p(yq∗

k ) := sup
Pξ∈Bε+δ∗ (P̂ N

ξ
)
Pξ(yq∗

k + ξ ∈ q∗),
(4-6)

for all k ∈ [ntable].

Uncertainty quantification problems (4-6) correspond to the worst and best-case probabilities
of ξ belonging to set q∗ when the samples of ξ are translated by the position of yq∗

k . For clarity,
we depict the grid, sub-cells, centers of the sub-cells and ball Bδ∗(yq∗

k ) in Figure 4-1. According
to Definition 4-2.1, each entry of the lookup table contains the following information: the
position of the corresponding center yq∗

k of the grid, and the solution to the DR-uncertainty
quantification problems (4-6) corresponding to that center. Without loss of generality, we
define q∗ as the a rectangle centered at the origin. We should also highlight that we have
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Figure 4-1: Illustration of the grid surrounding q∗ and how we obtain the lookup table. The
figure also shows the points that lie at a distance D∗ from q∗ and the disposition of the samples
of yq∗

k + ξ.

increased the transport budget of the ambiguity balls in (4-6) to ε + δ∗. This is to account
for the case that the samples are centered in any point inside the sub-cells that is not the
corresponding center, as we describe in Proposition 4-2.1:

Proposition 4-2.1. Consider the lookup table as described in Definition 4-2.1. Take the entry
of the table with position yq∗

k , which is the center of the corresponding sub-cell subcell(yq∗

k ).
Consider also the corresponding quantities p(yq∗

k ) and p(yq∗

k ) in that entry of the table. Then,
the latter are, respectively, lower and upper bounds on the solution of the DR-uncertainty
quantification problems for set q∗ that correspond to the case that the samples are centered at
any point x ∈ subcell(yq∗

k ):

p(yq∗

k ) ≤ min
x∈subcell(yq∗

k
)

inf
Pξ∈Bε(P̂ N

ξ
)
Pξ(x + ξ ∈ q∗)

p(yq∗

k ) ≥ max
x∈subcell(yq∗

k
)

sup
Pξ∈Bε(P̂ N

ξ
)
Pξ(x + ξ ∈ q∗)

(4-7)

Proof. Consider the sub-cell of the grid centered on yq∗

k . Then we get that

min
x∈subcell(yqj

k
)

inf
Pξ∈Bε(P̂ N

ξ
)
Pξ(x + ξ ∈ q∗) ≥ min

x∈Bδ∗ (yq∗
k

)
inf

Pξ∈Bε(P̂ N
ξ

)
Pξ(x + ξ ∈ q∗). (4-8)

We now define the random variable z := x+ξ and its empirical distribution P̂ N
x+ξ, constructed

from samples of {x + ξ̂i}N
i=1. These ones allow us to reformulate the expression on the right
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hand of (4-8) as

min
x∈Bδ∗ (yq∗

k
)

inf
Pz∈Bε(P̂ N

x+ξ
)
Pz(z ∈ q∗) (4-9)

Now, consider the set of allowed Pz in problem (4-9):⋃
x∈Bδ∗ (yq∗

k
)

Bε(P̂ N
x+ξ). (4-10)

By following the same procedure as in Lemma A.2 of [38], it is possible to obtain an over-
approximation of the set (4-10). First, we define another empirical probability distribution,
P̂ N

yq∗
k

+ξ
, constructed from samples of {yq∗

k + ξ̂i}N
i=1. Then, we seek to bound in the transport

of mass from P̂ N

yq∗
k

+ξ
to P̂ N

x+ξ for all x ∈ Bδq∗(yq∗

k ) by using the Wasserstein distance and the

coupling π∗ := 1
N

∑N
i=1 δ(yq∗

k
+ξ̂i,x+ξ̂i) ∈ Pp(Rn × Rn). It is trivial to check that the marginals

of this coupling are the measures P̂ N

yq∗
k

+ξ
and P̂ N

x+ξ, so it is a feasible coupling. Therefore, the
p-Wasserstein distance between these two measures fulfills:

Wp
p (P̂ N

yq∗
k

+ξ
, P̂ N

x+ξ) ≤
∫
Rn×Rn

||ξ − ζ||ppπ∗(dξ, dζ) = 1
N

N∑
i=1

∥x − yq∗

k ∥p
p = (δ∗)p, (4-11)

for all x ∈ Bδ∗(yq∗

k ). Now, consider an arbitrary probability Pz ∈ Bε(P̂ N
x+ξ). Using the result

in (4-11) and the triangle inequality for Wp, we get that the Wasserstein distance between
probabilities Pz and P̂ N

yq∗
k

+ξ
is

Wp(Pz, P̂ N

yq∗
k

+ξ
) ≤ Wp(Pz, P̂ N

x+ξ)︸ ︷︷ ︸
≤ε

+ Wp(P̂ N

yq∗
k

+ξ
, P̂ N

x+ξ)︸ ︷︷ ︸
≤δ∗

≤ ε + δ∗.

This means that the probability Pz that we considered belongs to a Wasserstein ball of radius
ε + δ∗ and centered on distribution P̂ N

yq∗
k

+ξ
, as we illustrate in Figure 4-2. Using these results,

we over-approximate the set (4-10) of problem (4-9) as follows:

{Pz ∈ Bε(P̂ N
x+ξ), x ∈ Bδ∗(yq∗

k )} ⊆ Bε+δ∗(P̂ N

yq∗
k

+ξ
).

Using this set instead of (4-10) we get a lower bound for equation (4-9), and therefore the
first expression in (4-7) follows. We could also prove that the second expression in (4-9) is
also true by following a similar procedure. However, since this is trivial we only provide a
proof for the first inequality.

Once we have computed the lookup table, we use it to obtain the transition probability bounds
P (q, a, q′), P (q, a, q′) for any combination of current state q ∈ Q, action a ∈ A and successor
state q′ ∈ Q. For that we make use of the forward reachable set of state q by action a. First,
we over approximate such set, and then translate it to be able to perform a search in the
sub-cells of the lookup table whose union contains the resulting set. First, let us define the
forward reachable set R(q, a) of f from q by a as the set

R(q, a) := {f(x, a) ∈ Rn : x ∈ q},

Ibón Gracia Merino (5358779) Master of Science Thesis



4-2 Obtaining DR-IMDP Abstractions 47

Figure 4-2: Graphical representation of the p-Wasserstein distances we considered in the proof
of Equation (4-7)

for all q ∈ Q, a ∈ A. This is the set of successor states that can be reached (deterministically)
starting in x ∈ q by action a ∈ A. Let us now define affine under and overapproximations
f

q
(x, a) and f q(x, a) of f in q such that for fixed a f

q
(x, a) ≤ f(x, a) ≤ f q(x, a) for all x ∈ q,

q ∈ Q. Using these functions we obtain the following overapproximation of R(q, a):

Rapp(q, a) := {y ∈ Rn : f
q
(x, a) ≤ y ≤ f q(x, a), x ∈ q} ⊇ R(q, a). (4-12)

Both sets R(q, a) and Rapp(q, a) are illustrated in Figure 4-3. As shown in [5], we easily
obtain the set Rapp(q, a) as described in Proposition 4-2.2:

Proposition 4-2.2. Consider the vertices {v1, v2, . . . , v(n2)} of the rectangle q of the dis-
cretization of the state-space. Then it holds that Rapp(q, a) corresponds to the convex hull of
the rectangles {rect(f(vk, a), f(vk, a))}(2n)

k=1:

Rapp(q, a) = conv({rect(f(vk, a), f(vk, a))}(2n)
k=1),

Set Rapp(q, a) is a polytope, and way easier to work with than R(q, a). Now, consider the
rectangle q′ ∈ Q \ {qu} and its center cq′ . Then, we translate the set Rapp(q, a) by quantity
cq′ . We denote by Rapp(q, a) − cq′ the translation of set Rapp(q, a) by the quantity cq′ . This
translated set is useful to obtain the bounds of transitioning between states q, q′ ∈ Q \ {qu}
under action a ∈ A by searching in the lookup table. Furthermore, denote by Yq∗(q, a, q′) ⊆
{yq∗

k }ntable
k=1 the subset of all centers yq∗

k of the table such that the intersection between the
sub-cells of the grid with centers in yq∗

k and the translated set Rapp(q, a) − cq′ is nonempty:

Yq∗(q, a, q′) := {yq∗

k ∈ {yq∗

k }ntable
k=1 : subcell(yq∗

k ) ∩ (Rapp(q, a) − cq′) ̸= ∅}, (4-13)

for all q, q′ ∈ Q \ {qu}, a ∈ A. Then, the following theorem allows us to find bounds on the
probability of transitioning from states q ∈ Q to q′ ∈ Q under action a ∈ A by performing a
grid search on the lookup table computed for the region q

∗ :

Theorem 4-2.1. (Tight Bounds in the Transition Probabilities by Searching on
the Lookup Table). Consider the lookup table computed as described in 4-2.1 and the set
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Figure 4-3: Illustration of how we compute the transition probability bounds between q and q′

under a by using Rapp(q, a) and searching in the lookup table. The points in the lookup table
that we should consider, this is, set Yq∗(q, a, q′), are represented in light yellow.

Yq∗(q, a, q′) as defined in (4-13) for all q, q′ ∈ Q \ {qu}, a ∈ A. Then the bounds in (4-4) are
obtained by performing a simple grid search:

P (q, a, q′) := min
yq∗

k
∈Yq∗ (q,a,q′)

p(yq∗

k )

P (q, a, q′) := max
yq∗

k
∈Yq∗ (q,a,q′)

p(yq∗

k ).

Proof. For the proof of Theorem 4-2.1, we need to take into account two things: the forward
reachable set of q by a, and the additivity of the disturbance ξ. First, let us take into account
the reachable set. Consider now the problem of computing the lower bound P (q, a, q′). The
upper bound follows a similar reasoning. Using Rapp(q, a) we reformulate the first problem
in (4-4) as:

min
x∈q

inf
Pξ∈Bε(P̂ N

ξ
)
Pξ(f(x, a) + ξ ∈ q′|x, a) ≥ min

y∈Rapp(q,a)
inf

Pξ∈Bε(P̂ N
ξ

)
Pξ(y + ξ ∈ q′). (4-14)

Furthermore, taking into account that the disturbance is additive, we perform a (negative)
translation of both sets Rapp(q, a) and set q′ by the center of cell q′, cq′ , so that we get
q′ − cq′ = q∗. This means that we obtain the solution of the problem in the right hand side of
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(4-14) by solving a DR-uncertainty quantification problem in set q∗ and where the samples
are centered at a point in the translated reachable set Rapp(q, a) − cq′ :

min
y∈Rapp(q,a)

inf
Pξ∈Bε(P̂ N

ξ
)
Pξ(y + ξ ∈ q′) = min

y∈Rapp(q,a)−cq′
inf

Pξ∈Bε(P̂ N
ξ

)
Pξ(y + ξ ∈ q∗). (4-15)

This equivalence is shown in Figure 4-3. This formulation allows us to make use of the lookup
table we presented in Definition 4-2.1, since it contains the solution of DR-uncertainty quan-
tification problems in a grid that covers q∗. Now, we want to formulate the outer minimization
in the right hand side of expression (4-15) as a finite search on the table. To do so, we start
by further over approximating Rapp(q, a) − cq′ by the union of all the sub-cells of the grid
that have a nonempty intersection with that set:⋃

yq∗
k

∈Yq∗ (q,a,q′)

subcell(yq∗

k ) ⊃ Rapp(q, a) − cq′ . (4-16)

By using the set in (4-16) in the outer minimization of expression (4-15), we get a further
lower bound on its solution. Now, by construction of the table and by taking into account
Proposition 4-2.1, instead of searching in region Rapp(q, a) − cq′ , it suffices to search in the
finite subset of the centers of the grid Yq∗(q, a, q′) defined in (4-13). With this, we have proved
Theorem 4-2.1.

Now, let us remember that we have only described the procedure to obtain the bounds in
(4-4). In order to also compute the bounds in (4-5), we follow the same approach, with the
only difference that now we make use of a second lookup table. This second table is analogous
to the one in Definition 4-2.1:

Definition 4-2.2. (Lookup table Over X) Consider a uniform grid over a region of the
state space which contains the rectangle X that defines the workspace. Denote the set of centers
of the sub-cells of this grid by {yX

k }ntable,X
k=1 , where ntable,X is the total number of centers. Let

BδX (yX
k ) ⊂ Rn be the smallest ball centered on any yX

k that contains the corresponding sub-
cell. We denote he radius of this ball by δX > 0. We define the lookup table for X as a table
with ntable,X entries, where each entry contains both the position of the respective center yX

k

and the solution of the following DR-uncertainty quantification problems:

p(yX
k ) := inf

Pξ∈Bε+δ∗ (P̂ N
ξ

)
Pξ(yX

k + ξ ∈ X)

p(yX
k ) := sup

Pξ∈Bε+δ∗ (P̂ N
ξ

)
Pξ(yX

k + ξ ∈ X),
(4-17)

for all k ∈ [ntable,X].

Uncertainty quantification problems (4-6) correspond to the worst and best-case probabilities
of ξ belonging to set X when the samples of ξ are translated by the position of yX

k . Then, for
state q, ∈ Q \ {qu} and action a ∈ A we make use of the reachable set of q by a, Rapp(q, a), to
obtain the bounds in (4-5) by searching in the lookup table of Definition 4-2.2. Furthermore,
we denote by YX(q, a) ⊆ {yX

k }ntable,X
k=1 the subset of all centers yX

k of the table over X such
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that the intersection between the sub-cells of the grid with centers in yX
k and set Rapp(q, a)

is nonempty:

YX(q, a) := {yX
k ∈ {yX

k }ntable,X
k=1 : subcell(yx

k) ∩ Rapp(q, a) ̸= ∅}, (4-18)

for all q, ∈ Q \ {qu}, a ∈ A. Finally, we state a theorem, analogous to Theorem 4-2.1, that
allows us to compute the transition probability bounds in (4-5):

Theorem 4-2.2. (Tight Bounds in the Transition Probabilities to qu by Searching
on the Lookup Table Over X). Consider the lookup table computed as described in 4-2.2
and the set YX(q, a) as defined in (4-13) for all q ∈ Q \ {qu}, a ∈ A. Then we obtain the
bounds in (4-5) by performing a simple grid search:

P (q, a, qu) := 1 − max
yX

k
∈YX(q,a)

p(yX
k )

P (q, a, qu) := 1 − min
yX

k
∈YX(q,a)

p(yX
k ).

The proof of Theorem 4-2.2 is analogous to that of Theorem 4-2.1 and, therefore, we omit it
for simplicity.

Using the lookup tables defined in this section results in a remarkable increase in the efficiency
of the abstraction. This is because we only need to compute the lookup tables for q∗ and
X once, and then use these same tables find every transition probability bounds. Note that
the computational burden needed to compute the lookup table is way higher than the one
required to search for values on it. Furthermore, once we have obtained the lookup table, the
burden that computing the rest of the abstraction requires is independent of the number of
samples, since we have already included this information on the lookup table. Therefore, the
increase in efficiency of using the lookup table is more noticeable the higher the number of
samples is. However, this increases the time required to compute the table. However, let us
remember that we also make use of an alternative way to obtain the transition probability
bounds, that we denote “overapproximation method" which we describe in detail in Section
4-2-2. Since the latter is less computationally demanding than searching in the lookup table,
in practice, we proceed as follows: first, we compute the distance between samples and the
successor set q′, Dmin. Then, if we find out that this distance is bigger than some threshold,
Dth, we use the overapproximation method to obtain the bounds. If that is not the case, then
we use the lookup table.

To finish this subsection, we must state the minimum extension of the grids of the lookup
tables. These should fully cover the area in which any successor point might land (determinis-
tically) when we do not make use of the overapproximation method, this is, when Dmin ≤ Dth.
However, since we have not defined the previous parameters yet, we discuss the extension of
the grids in Section 4-2-2, and not here.

4-2-2 Overapproximation Method

In section 4-2-1 we described a way to obtain the transition probability bounds in (4-4) and
(4-5). However, the solution relied on precomputing a lookup table, and then searching on
it, which can be relatively inefficient if used to find the transition probabilities between every
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pair of states q, q′ ∈ Q and under every action a ∈ A. In this section we describe a second
way to obtain the bounds in (4-4) and (4-5) in an alternative way. We rely on relaxing the
DR-uncertainty quantification problems on the right hand side of (4-4) and (4-5) to obtain
analytical bounds on those problems. Therefore, we refer to this alternative way of obtaining
the transition probability bounds as “overapproximation method". Obtaining the bounds in
this way is way more efficient than searching in the lookup table. However, this procedure
only yields tight bounds in the transition probabilities when the distances from the samples
of the successor state xt+1 to the successor region q′ is large.
This section is structured as follows. We focus on the inner problem of the second expression
in (4-4). First, we prove that, if all the mass from the random variable xt+1 was concentrated
in the sample of this same variable that is the closest to q′, then the problem would have an
analytical solution. Furthermore, we prove that this analytical solution is an upper bound on
the inner problem in the second expression of (4-4). Additionally, we leverage this analytical
solution to obtain a closed-form bound on the outer problem in this same expression. We
prove that obtaining the desired upper bound P (q, a, q′) is as simple as finding a distance.
Furthermore, we also leverage this distance to obtain the lower bound P (q, a, q′) in the first
expression of (4-4), and the bounds in expression (4-5).
Let us start by considering the following DR-uncertainty quantification problem for a fixed
current state xt and action at:

sup
Pξ∈Bε(P̂ N

ξ
)
Pξ(f(xt, at) + ξ ∈ q′), (4-19)

where q′ is an arbitrary rectangle of the discretization of the state space. Problem (4-19) is
the inner one in (4-4), which we need to solve when we want to compute the upper bound of
a transition probability. Now, we formulate problem (4-19) in the form of (3-10). To do so,
consider the empirical probability distribution P̂ N

xt+1 = 1
N

∑N
i=1 δx̂i

t+1
constructed from the set

of samples {x̂i
t+1}N

i=1 = {f(xt, at) + ξ̂i}N
i=1. Using this probability distribution we obtain that

(4-19) is the same as:

sup
Pxt+1 ∈Bε(P̂ N

xt+1 )
Pxt+1(xt+1 ∈ q′), (4-20)

Problem (4-20) is a DR-uncertainty quantification problem in the form of (3-10), which we
can solve using identity (3-11) and the results of Theorem 3-2.1. However, obtaining the
solution requires computing a high number of distances between the samples {x̂i

t+1}N
i=1 and

the set q′. To reduce this computational burden, we propose an approximated way to solve
(4-20), which turns out quite effective when said samples are far away from q′. We illustrate
this procedure in Figure 4-4 and we describe it in the following. We start by considering a
bounded set T ⊂ Rn which contains the set of samples: {ξ̂i}N

i=1 ⊂ T . This new set should be
easy to work with, so we define it as the smallest ball T = Brs(cs) centered on cs and with
radius rs that contains all the samples. Furthermore, for fixed state xt and action at, ball
Brs(cs) allows us to over-approximate the samples of {x̂i

t+1}N
i=1 by performing a translation:

{x̂i
t+1}N

i=1 ⊂ {x = f(xt, at) + ζ : ζ ∈ Brs(cs)} = Brs(cs + f(xt, at)).

This new ball corresponds to a translation of Brs(cs) by quantity f(xt, at). Once we have
obtained the overapproximating set Brs(cs + f(xt, at)), consider the problem of transporting
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as much mass as possible from said set to q′. This is a simplification of problem (4-20). To
formulate such problem, let us define the points ξT and ξq′ as the points in Brs(cs + f(xt, at))
and q′ that are the closest to q′ and Brs(cs + f(xt, at)), respectively. This is:

ξs, ξq′ := arg min
ξ∈Brs (cs+f(xt,at)),ζ∈q′

d(ξ, ζ).

Then it is possible to obtain analytical bounds on the problem of transporting as much mass
as possible from Brs(cs + f(xt, at)) to q′, as we state in Proposition 4-2.3:

Proposition 4-2.3. (Analytical Solution of DR-Uncertainty Quantification Prob-
lems when the Nominal Distribution is a Singleton) Denote by δξs the probability that
concentrates a unit of probability mass at ξs. Furthermore, let q′ be an arbitrary rectangle of
the discretization of the state space. Additionally, denote by D(xt) := d(ξs, ξq′) the distance
between ξs and ξq′, which is the minimum distance between points of sets Brs(cs + f(xt, at))
and q′, for action a ∈ A. Finally, consider the maximum probability mass that we can trans-
port from probability δξs to set q′ without exceeding a p-Wasserstein distance of ε. Then the
following holds:

sup
Pxt+1 ∈Bε(δξs )

Pxt+1(xt+1 ∈ q′) =

( ε
D(xt))p ⇐⇒ ε

D(xt) ≤ 1
1 ⇐⇒ ε

D(xt) > 1
, (4-21)

Proof. The analytical solution to problem (4-21) follows from taking into account (3-11) and
using the geometric interpretation described in Theorem 3-2.1.

Now, we use the results described in Proposition 4-2.3 as an upper bound on (4-20):

Theorem 4-2.3. The solution of (4-21) is an upper bound of problem (4-20), that is:

sup
Pxt+1 ∈Bε(P̂ N

xt+1 )
Pxt+1(xt+1 ∈ q′) ≤ sup

Pxt+1 ∈Bε(δξs )
Pxt+1(xt+1 ∈ q′). (4-22)

Proof. Let us start by considering the approximated problem (4-21). From this definition we
obtain that:

sup
Pxt+1 ∈Bε(δξs )

Pxt+1(xt+1 ∈ q′) ≥ P̃xt+1(xt+1 ∈ q′) for all P̃xt+1 ∈ Bε(δξs).

To prove (4-22), we just need to find a probability P̃xt+1 ∈ Bε(δξs) whose fraction of mass
inside set q′ is the same as the solution of problem (4-20), this is:

P̃xt+1(xt+1 ∈ q′) = sup
Pxt+1 ∈Bε(P̂ N

xt+1 )
Pxt+1(xt+1 ∈ q′). (4-23)

Then, (4-22) would follow, since:

sup
Pxt+1 ∈Bε(P̂ N

xt+1 )
Pxt+1(xt+1 ∈ q′) = P̃xt+1(xt+1 ∈ q′) ≤ sup

Pxt+1 ∈Bε(δξs )
Pxt+1(xt+1 ∈ q′).
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(a) Empirical probability distribution P̂ N
xt+1 . (b) Worst-case probability distribution P ∗

xt+1
of problem (4-19).

(c) Set Brs (cs + f(xt, at)) and probability distri-
bution δξs .

(d) Worst-case probability distribution P̃ ∗
xt+1 of

problem (4-21).

Figure 4-4: Approximated way of solving (4-20) when q′ is a polytope. In 4-4 and 4-4a we depict
problem (4-20). In 4-4a the point on the corner of Brs

(cs + f(xt, at)) contains mass transported
from two samples of the empirical distribution and a fraction of a third sample. In the same
way, in 4-4b and 4-4c we depict problem (4-21). In 4-4c a fraction of all the mass at ξ

T̃ (xt) is
transported to ξq′ .

Now, from Theorem 3-2.1, we know that worst case distributions that attain the supremum
in (4-20) and (4-21) exist. We denote these worst-case distributions by P ∗

xt+1 and P̃ ∗
xt+1 ,

respectively:

sup
Pxt+1 ∈Bε(P̂ N

xt+1 )
Pxt+1(xt+1 ∈ q′) = P ∗

xt+1(xt+1 ∈ q′)

sup
Pxt+1 ∈Bε(δξs )

Pxt+1(xt+1 ∈ q′) = P̃ ∗
xt+1(xt+1 ∈ q′).

Furthermore, from Theorem 3-2.1, we know that the worst case distributions P ∗
xt+1 P̃ ∗

xt+1 are
supported on at most N + 1 points. Additionally, we know that these points correspond to
either points in the support of the empirical distributions P̂ N

xt+1 and δξs , respectively, or points
that are the closest in q′ to said support points. We denote these worst-case distributions by
P ∗

xt+1 and P̃ ∗
xt+1 , respectively. Therefore, for this proof it suffices to consider p-Wasserstein

distances between discrete distributions. Let us express the empirical P̂ N
xt+1 and worst-case

P ∗
xt+1 distributions as the following discrete distributions:

P̂ N
xt+1 =

N∑
i=1

aiδi = 1
N

N∑
i=1

δi, P ∗
xt+1 =

N+1∑
j=1

bjδj ,

where ai, bj are the weights of such measures and δi represents unit mass concentrated at point
i of the support of the corresponding measure. This allows us to express the p-Wasserstein
distance between measures P̂ N

xt+1 and P ∗
xt+1 in Kantorovich’ formulation as:

Wp
p (P̂ N

xt+1 , P ∗
xt+1) = min

π∈U(P̂ N
xt+1 ,P ∗

xt+1 )

N∑
i=1

N+1∑
j=1

dp
i,jπi,j , (4-24)
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where

U(P̂ N
xt+1 , P ∗

xt+1) = (4-25)

{π ∈ RN×(N+1) :
N∑

i=1
πi,j = bj for all j ∈ [N + 1],

N+1∑
j=1

πi,j = ai for all i ∈ [N ]}. (4-26)

In the expressions (4-24) and (4-25), πi,j is the coupling that determines how much probability
mass is transported from sample x̂i

t+1 of the empirical distribution P̂ N
xt+1 to point j of P ∗

xt+1 .
Furthermore, we denote by di,j the distance between these two points.
Now, remember that we needed to find a probability P̃xt+1 such that it contains the same
fraction of mass inside q′ than P ∗

xt+1 . For this reason, we choose P̃xt+1 as the probability
supported in two points, ξs and ξq′ , as shown in Figure 4-4d:

P̃xt+1 := P ∗
xt+1(xt+1 ∈ q′)δξq′ + P ∗

xt+1(xt+1 /∈ q′)δξs .

This probability is the result of concentrating all mass of the worst-case probability P ∗
xt+1

that lies inside q′ in ξq′ , and all the mass that lies outside of q′ in ξs. Measure P̃xt+1 can also
be considered as a probability supported on N + 1 points in the same way that P ∗

xt+1 is, but
where these points overlap in either ξs or ξq′ . Figure 4-4d helps to visualize this fact. Note
that, by definition of probability P̃xt+1 , its probability mass inside of q′ is the same as the
solution of problem (4-20). Now, we prove that this probability lies inside the p-Wasserstein
ball Bε(δξs). The intuition behind this proof is related to noticing that the amount of mass
this distribution concentrates in ξq′ , P ∗

xt+1(xt+1 ∈ q′), is lower than the one P̃ ∗
xt+1 concentrates

in that same point. This is due to the fact that the distance d(ξq′ , ξs) is lower than the one
between any sample xi

t+1 for all i ≤ N and set q′. This allows us to transport more mass to q′

with the same budget ε. We denote by π∗ the coupling that attains the minimum in (4-24).
The p-Wasserstein distance between the measures δξs and P̃xt+1 is:

Wp
p (δξs , P̃xt+1) = min

π∈U(δξs ,P̃xt+1 )

N∑
i=1

N+1∑
j=1

d̃p
i,jπi,j , (4-27)

where d̃i,j denotes the distance between points i and j in the support of both measures. Now,
we notice that the coupling π∗ that attained the minimum transport cost between measures
P̂ N

xt+1 and P̃ ∗
xt+1 is a feasible coupling in problem (4-27), that is, π∗ ∈ U(δξs , P̃xt+1). Taking

this consideration into account in (4-27) we get that:

min
π∈U(δξs ,P̃xt+1 )

N∑
i=1

N+1∑
j=1

d̃p
i,jπi,j ≤

N∑
i=1

N+1∑
j=1

d̃p
i,jπ∗

i,j . (4-28)

Furthermore, we notice that all transport distances d̃i,j between points in the support of δξs

and P̃xt+1 , when compared to distances di,j between points in the support of P̂ N
xt+1 and P ∗

xt+1

are always smaller: d̃i,j ≤ di,j for all i ∈ [N ], j ∈ [N + 1]. This follows from the way we have
defined ξs and P̃xt+1 . Using this result and the right-hand side of expression (4-28), we have
that:

N∑
i=1

N+1∑
j=1

d̃p
i,jπ∗

i,j ≤
N∑

i=1

N+1∑
j=1

dp
i,jπ∗

i,j .
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Notice that the right-hand side of the last expression is the p-Wasserstein distance (4-24).
From this result it follows that:

Wp(δξs , P̃xt+1) ≤ Wp(P̂ N
xt+1 , P ∗

xt+1) ≤ ε,

which means that probability P̃xt+1 fulfills that P̃xt+1 ∈ Bε(δξs). Therefore, Theorem 4-2.3
follows.

Since the approximated problem (4-21) has an analytical solution, using his method effectively
reduces the computational burden of the DR-uncertainty quantification problem: we do not
need to compute N distances to solve (4-20). As a drawback, the approximation is conser-
vative: it leads to a higher upper bound in the transition probabilities, especially when the
distances between samples {x̂i

t+1}N
i=1 and set q′ are large. We should also highlight that any

choice of the overapproximating set T is valid. Furthermore, we could also over-approximate
the set q′ by a simpler set, and then work with this set instead. The objective of doing so
is to reduce the complexity of the problem we need to solve to compute the distance D(xt).
However, this reduction in computational burden entails, as a trade-off, an increase in the
conservatism of the results obtained. This means that choosing simpler over-approximating
sets leads to a higher value of the solution of problem (4-20). For example, the simplest
sets we can think of are balls that over approximate {ξ̂i}N

i=1 and q′. Computing the distance
D(xt) in this case is trivial, but the obtained value of D(xt) is relatively conservative with
respect to other choices. A different choice could be to choose polytopes to over-approximate
our sets. With this choice, computing D(xt) requires that we solve a convex optimization
problem, which is quadratic if the distance is the euclidean one (p = 2). These shapes lead
to a less conservative result, since the distance D(xt) is smaller than if we use spheres.

When computing the transition probability bounds in (4-4) and (4-5), the set q′ is always a
rectangle. However, we make the final decision to only use balls to overapproximate the set
of samples since, in this case, we are able to compute the minimum distance to set q′ without
having to solve any optimization problem: we only need to compute the distance from the
center of the ball Brs(cs + f(xt, at)) that over approximates the set {x̂i

t+1}N
i=1 to q′ by using a

set of logical “ifs". This is because the distance from the center cs + f(xt, at) to the faces that
define the rectangle q′ has a closed form expression. Then we obtain the distance D(xt) by
subtracting the radius rs of the overapproximating ball. The complexity of this approximated
way of obtaining the bounds in (4-4) is the following: for fixed xt ∈ q, at ∈ A, we compute
once the over-approximating ball Brs(cs + f(xt, at)) and then D(xt) for each q, q′ ∈ Q. When
compared to also having to compute N distances and additional computations in the exact
case, the approximated method highly reduces the computational burden.

Analytical Transition Probability Bounds Using the Approximate Approach

Previously in this section we have obtained an analytical upper bound on problem (4-19).
Consider that we have computed said upper bound as described in in Proposition 4-2.3. Now,
to obtain the upper bound in the transition probabilities P (q, a, q′) we need to solve the outer
optimization problem over xt, as we notice in the second inequality of (4-4). In this section
we leverage the results we obtained previously to obtain the transition probability bounds in
(4-4) and (4-5) analytically.
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The organisation of this section is the following. First, we show that, when making use of
the overapproximation method described previously in this section, solving the maximization
over xt is equivalent to finding the smallest distance min D(xt) when xt ∈ q. We also show
that, fortunately, this outer optimization problem is, in fact, a convex program when the
dynamics f of the system are linear. Furthermore, we prove that, in the general case that
the dynamics are nonlinear, we are still able to obtain the upper bound P (q, a, q′) in the
second problem of (4-4) in an efficient way by obtaining an under estimator of the distance
previously mentioned. Additionally, we prove that obtaining this distance also allows us to
find the lower bound P (q, a, q′) in (4-4) in some cases. Moreover, we prove that we are able to
obtain also the bounds in (4-5) in a similar way. Furthermore, we define a threshold condition
that must be fulfilled to use this method instead of the one that relies on the lookup tables.
Finally, we also define the minimum extension that the grids for which we have computed the
lookup tables in Section 4-2-1 must cover.

We begin by stating the following theorem, which defines the upper bound P (q, a, q′) as a
function of the smallest distance min D(xt) when xt ∈ q:

Theorem 4-2.4. (Analytical upper Bound in the Transition Probabilities using the
overapproximation Method) Consider that we make use of the overapproximation method
from Proposition 4-2.3 to obtain an upper bound on the solution of the inner problems in
the second expression of (4-4). Finally, for fixed q, q′ ∈ Q \ {qu}, a ∈ A, denote by D the
minimum distance between ball Brs(cs + f(xt, at)) and set q′, for all possible values of xt ∈ q.
Then P (q, a, q′) has the following analytical expression:

P (q, a, q′) =

( ε
D )p if ε

D ≤ 1
1 if ε

D > 1
. (4-29)

Proof. The proof follows by using the results in Theorem 4-2.3 and Proposition 4-2.3 in the
second expression of (4-4):

max
xt∈q

sup
Pξ∈Bε(P̂ N

ξ
)
Pξ(f(xt, at) + ξ ∈ q′) ≤ max

xt∈q
sup

Pxt+1 ∈Bε(δξs )
Pxt+1(xt+1 ∈ q′) (4-30)

=

maxxt∈q( ε
D(xt))p = ( ε

D )p if ε
D ≤ 1

1 if ε
D > 1

. (4-31)

Therefore, if we are able to find the xt that minimizes the distance D(xt) from set Brs(cs +
f(xt, at)) that contains the samples to the polytope q′, we could easily compute the upper
bound P (q, a, q′). When the set q′ is convex, we can obtain the minimum distance D by
solving the following optimization problem:

D := min
xt∈q

D(xt) = min
xt∈q

min
ξ∈Brs (cs+f(xt,at)),ζ∈q′

d(ξ, ζ) = min
xt∈q,ξ∈Brs (cs+f(xt,at)),ζ∈q′

d(ξ, ζ), (4-32)

which is convex if the dynamics are linear in xt, since d is a convex function and the constraints,
including ξ ∈ Brs(cs + f(xt, at)), are convex.
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In practice, all sets q ∈ Q \ {qu} are rectangles for simplicity. Furthermore, if we used a
polytopic approximation of the samples instead of a ball, and we use the euclidean distance,
problem (4-32) would become a quadratic program. However, we chose to use balls since,
it allows us to further reformulate the problem in such a way that no optimization problem
needs to be solved, as we already pointed out at the end of Section 4-2-2. This method
works also when the dynamics are nonlinear and, therefore, we describe it in detail only in
the context of such systems. However, remember that we can also make use of that method
when the dynamics are linear in the state. Opposite to the linear case, when the dynamics
are nonlinear in f for any fixed action a, the problem becomes nonconvex due to the non-
convexity of constraint ξ ∈ Brs(cs + f(xt, at)) in (4-32). However, obtaining D exactly as
defined in that expression is not needed: it suffices to find an under estimator Dmin of that
distance. Then we could obtain the upper transition probability bound by using Dmin instead
of D in (4-29). In the following theorem we define such under estimator Dmin:

Theorem 4-2.5. (Under estimator of D) Consider the same states q, q′ ∈ Q \ {qu} and
action a ∈ A as in Theorem 4-2.4. Denote by La the Lipschitz constant of the function f(·, a)
for fixed action a. Consider also the smallest ball Bδq (cq) ⊃ q with center at some point cq

and radius δq that contains the set q. Then the distance

Dmin := min
ξ∈BLaδq+rs (f(cq ,a)+cs),ζ∈q′

d(ξ, ζ) (4-33)

is an under estimator of D.

Proof. In this proof we drop the time index in state x and action a for simplicity. Using the
Lipschitz constant La we obtain an overapproximation of the set reached from q under a:
R(q, a) = {f(x, a) ∈ Rn : x ∈ q} ⊂ BLaδq (f(cq, a)). Using this reachable set, we obtain an
overapproximation of the set to which ξ belongs in (4-32):⋃

x∈q

Brs(cs + f(x, a)) (4-34)

⊂
⋃

x∈Bδq (cq)
Brs(cs + f(x, a)) (4-35)

⊂
⋃

y∈BLaδq (f(cq ,a))
Brs(cs + y) (4-36)

=BLaδq+rs(f(cq, a) + cs). (4-37)

From expressions (4-34) we get:

D ≥ min
ξ∈BLaδq+rs (f(cq ,a)+cs),ζ∈q′

d(ξ, ζ).

Therefore Theorem 4-2.5 follows.

In Figure 4-5 we depict the distance Dmin. Computing Dmin as defined in Theorem 4-2.5
requires solving a convex program. Furthermore, since the set of allowed values of ξ is a
ball, as we described before, we can compute this distance without the need to solve any
optimization problem: we can use a set of “ifs", and obtain the distances from the center
f(cq, a) + cs of the ball to the faces that define the rectangle q′ in closed form. After that we
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Figure 4-5: Graphical representation of the procedure used to obtain an lower bound of D:
Dmin. Note that in this figure, cs = 0 for clarity.

just need to pick the minimum distance from those and subtract the radius rs + Laδq of the
ball. Throughout the entirety of Section 4-2-2 we have only focused on obtaining an upper
bound in the transition probabilities in (4-4). However, now we prove that the results of this
section allow us to also obtain a tight lower bound, without the need to resort to the more
expensive method that relies on a lookup table.

Theorem 4-2.6. (Analytical Lower bound in the Transition Probabilities using the
Overapproximation Method) Consider the states q, q′ ∈ Q \ {qu} and action a ∈ A.
Consider also the distance Dmin as defined in Theorem 4-2.5. Then the following holds: if
Dmin > 0, then P (q, a, q′) = 0.

Proof. Consider the right-hand-side of the upper inequality in (4-4). Then we get that:

P (q, a, q′) ≤ min
x∈q

inf
Pξ∈Bε(P̂ N

ξ
)
Pξ(f(x, a) + ξ ∈ q′) ≤ min

x∈q
P̂ N

ξ (f(x, a) + ξ ∈ q′).

Furthermore, the condition Dmin > 0 means that all samples {f(x, a) + ξ̂i}N
i=1 lay outside q′

for all x ∈ q:

d(f(x, a) + ξ̂i, q′) ≥ Dmin for all x ∈ q, i ∈ [N ].

Therefore, Theorem 4-2.6 follows.

Finally, we describe how we obtain the bounds in (4-5), which are those in the probability
of transitioning to qu. We follow a similar approach than the one we used to compute the
bounds in (4-4). We first notice that the results of Proposition 4-21 and Theorems 4-2.3 and
4-2.6 still hold when q′ is an arbitrary set, for example, X, or Rn \ X. Then we state the
following theorem, which is analogous to Theorem 4-2.4:
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Theorem 4-2.7. (Analytical Bounds in the Transition Probabilities to qu using
the Overapproximation Method) Consider a fixed state q ∈ Q \ {qu} and action a ∈ A.
Furthermore, consider that we have obtained the under estimators Dmin,X and Dmin,qu of the
distances between samples {f(xt, at)+ ξ̂i}N

i=1 and set X and Rn\X, respectively, for all xt ∈ q.
Then, if Dmin,qu > 0, the following holds

P (q, a, qu) =

( ε
Dmin,qu

)p if ε
Dmin,qu

≤ 1
1 if ε

Dmin,qu
> 1

P (q, a, qu) = 0

(4-38)

On the other hand, if Dmin,X > 0, the following holds

P (q, a, qu) = 1

P (q, a, qu) =

1 − ( ε
Dmin,X

)p if ε
Dmin,X

≤ 1
0 if ε

Dmin,X
> 1

(4-39)

The proof of Theorem 4-2.7 is similar to that of Theorems 4-2.4 and 4-2.6. Therefore, we omit
it for simplicity. Notice that we have not specified the way in which we have found the under
estimators Dmin,X and Dmin,qu , which allows for generality: the results of Theorem 4-2.7 are
useful when the dynamics are both linear and nonlinear.

By using the overapproximation method, we reduce the computational burden required to
compute the bounds, since no search in the lookup table needs to be performed. Furthermore,
all the auxiliary operations required to compute the set Rapp(q, a) and its translated equivalent
are no longer required. We just need to use the results of Theorem 4-2.5 and Theorem 4-2.4
to obtain the desired upper bound P (q, a, q′). We need to solve problem (4-33) only once for
each q, q′ ∈ Q and a ∈ A. Furthermore, using the results from Theorems 4-2.4 and 4-2.6, we
obtain the desired lower and upper bounds P (q, a, q′) and P (q, a, q′), if Dmin is found to be
bigger than zero. Furthermore, the complexity of this method is independent of the number
of samples N , since we only need to compute the overapproximation T of the sample set
once. This is due to the additive nature of the disturbance. Practical results show that this
methods is way faster than the one that relies on the lookup table. However, since it only
leads to tight bounds when the computed distance Dmin is relatively large, we only make use
of it when this distance exceeds some threshold: Dmin ≥ Dth. This threshold depends of the
problem at hand: mainly in how fine the state discretization is and in how spread the samples
are.

To finish this section, we use the parameters that we defined here to compute a lower bound
in the extension of the grids of the lookup tables that we used in Section 4-2-1. Let us
take into account the biggest Lipschitz constant L of the dynamics f(·, a) for all actions:
L = max{La : a ∈ A}. Let us also consider the radius δq of the smallest ball Bδq (cq) containing
the region q of the state space discretization and the radius rs of the ball that contains the
samples. Then, we find a lower bound for the distance D∗: D∗ ≥ Dth + 2Lδq + rs, up to
which the grids should extend from q∗ and X, respectively. This distance is also depicted in
Figure 4-1 for the case of the grid that covers q∗.
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4-3 Strategy Synthesis for DR-IMDP Abstractions

In Section 4-2 we described the process of obtaining a DR-IMDP abstraction I of system (4-1)
that accounts for the distributional ambiguity in its disturbance. Once we have obtained said
abstraction, we synthesize a strategy for this one by making use of the approach described
in Section 2-4-1 for IMDPs, which yields the following results: strategy σ∗

I , and the bounds
pk

I(q) and pk
I(q) in the probability of the paths of I satisfying ϕ within k ∈ N≥0 ∪ {∞} steps

while never exiting X by following strategy σ∗
I and starting from state q ∈ Q. Furthermore,

strategy σ∗
I is a memory-dependent strategy that maximizes the lower bound pk

I(q) for each
q ∈ Q, k ∈ N ∪ {∞}.

4-4 Correctness

Once we have synthesized a strategy for the DR-IMDP abstraction by following the procedure
we described in Section 2-4-1, we need to address the following questions. The first one is:
how can the original system use this strategy of the DR-IMDP? Furthermore, the second
one is: how are we sure that, when the original system uses this strategy, the probabilistic
guarantees found for the abstraction hold also for the original system? In this section we
address the previous two problems: first we translate strategy σ∗

I of I to the (also memory-
dependent) strategy σ∗

C of system (4-1). Secondly, we prove that the probabilistic guarantees
pk

I and pk
I obtained for the DR-IMDP abstraction hold for the original system, when this one

follows strategy σ∗
C . This is referred to as correctness of the abstraction [11], [4],[7].

First, we refine strategy σ∗
I of I into a strategy σ∗

C of system (4-1) that maps a finite path of
the latter into an action a ∈ A. To do so we first define a function J : Rn → Q that maps
the continuous state x ∈ Rn to the corresponding discrete state q ∈ Q of I. Formally, for
any x ∈ Rn, J(x) = q if and only if x ∈ q. We can also use this function to map finite paths
wt
Rn = x(0)x(1) . . . x(t) of the system (4-1) to finite paths wt

Q = q(0)q(1) . . . q(t) of I. With
a small abuse of notation, we say

wt
Q = J(wt

Rn) = J(x(0))J(x(1)) . . . J(x(t)) = q(0)q(1) . . . q(t)

when J(x(i)) = q(i) for all i ∈ {0, 1, . . . , t}. The previous result allows us to refine strategy
σ∗

I into strategy σ∗
C = {σ∗

C(wt
Rn ; k)}∞

k=1 of the original system as follows:

σ∗
C(wt

Rn ; k) := σ∗
I(J(wt

Rn); k), (4-40)

where k ∈ N ∪ {∞} is the number of steps until the horizon of the bellman recursion (2-7).

Secondly, we want to prove that the guarantees obtained for the abstraction hold for the
original system. To do that, we begin by stating Lemma 4-4.1:

Lemma 4-4.1. Consider the ambiguity set Bε(P̂ N
ξ ) of distributions of the disturbance ξ, and

the arbitrary distribution Pξ ∈ Bε(P̂ N
ξ ). Assume that system (4-1) has been abstracted into the

DR-IMDP I as described in Section 4-2. Consider, for fixed state q ∈ Q and action a ∈ A the
transition probability bounds P (q, a, ·) and P (q, a, ·) of I. Moreover, consider the continuous
state x ∈ q ⊂ Rn. Now, denote by Pxt+1 the probability of the (continuous) successor state
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xt+1 from x under a and for Pξ. Using the kernel TC in (4-2), the previous distribution is
obtained as:

Pxt+1(D) := TC(D|x, a; Pξ)

for any measurable set D. Then the state of system (4-1) after one time step, xt+1, lies on
cell q′ ∈ Q with probability Pxt+1(q′) ∈ [P (q, a, q′), P (q, a, q′)], for all q′ ∈ Q, Pξ ∈ Bε(P̂ N

ξ ).

Proof. The proof follows directly from the fact that the transition probability bounds of I
must fulfill expressions (4-4) and (4-5).

Denote by P (wk
Rn |= ϕ|wk

Rn(0) = x, X, σ∗
C , Pξ) the probability of the paths of system (4-1),

for Pξ, satisfying ϕ within k steps, while remaining in the safe region X ⊂ Rn, by following
strategy σ∗

C and starting from x ∈ Rn. Now we state the theorem that ensures that the
guarantees obtained for the abstraction hold for the original system:

Theorem 4-4.1. (Correctness of the Probabilistic Guarantees Of the DR-IMDP
Abstraction) Consider system (4-1), ambiguity set Bε(P̂ N

ξ ), and the DR-IMDP abstraction
I of such system obtained as in Section 4-2. Furthermore, consider an scLTL formula ϕ,
and the strategy σ∗

I and bounds pk
I and pk

I of I obtained for such specification as explained in
Section 4-3. Consider also strategy σ∗

C of system (4-1), as defined in expression (4-40). Then
for any x ∈ Rn where x ∈ q, and for any Pξ ∈ Bε(P̂ N

ξ ) it holds that

P (wk
Rn |= ϕ|wk

Rn(0) = x, X, σ∗
C , Pξ) ∈ [pk

I(q), pk
I(q)]

for all k ∈ N≥0 ∪ {∞}.

We provide a detailed proof of Theorem 4-4.1 in Appendix C. Said proof, despite being tailored
to the more general setting of robust MDP abstractions, also holds for DR-IMDPs: we only
need to consider Γq,a, for all q ∈ Q, a ∈ A as the feasible sets of transition probabilities.

Now, if ε has been chosen in such a way that P true
ξ ∈ Bε(P̂ N

ξ ) holds with high confidence 2,
we can easily compute a lower bound in the satisfaction probability of system (4-1) under
P true

ξ : for any x ∈ Rn where x ∈ q it holds that

P (wk
Rn |= ϕ|wk

Rn(0) = x, X, σ∗
C , P true

ξ ) ≥ (1 − β) · pk
I(q),

where 1 − β is the confidence level.

2see Section 3-2.
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Chapter 5

Strategy Synthesis via Abstractions to
Robust MDPs

In this chapter we introduce our second approach of synthesizing a strategy for an uncertain
system. Again, we follow an abstraction-based approach: we abstract the system to a class
of MDP with uncertain transition probabilities in a way that the abstraction accounts for the
uncertain behaviour of the system. After that, we synthesize a strategy for the abstraction.
However, the setting we consider here is more general that the data-driven one: we have access
to a nominal distribution for the disturbance, which does not need to be finitely-supported,
and we want to be robust with respect to small deviations from this one. This includes
distributions built from samples, Gaussian distributions, etc. We call such abstractions of
systems under this distributional ambiguity “robust MDPs". Once we have obtained the
robust MDP abstraction, we synthesize a strategy for this one that is robust with respect to
all ambiguities of the abstraction. With that purpose, we propose a modified value iteration
algorithm for reachability, which is analogous to the one described in 2-4-1 for IMDPs.

This chapter is structured as follows: first, in Section 5-1 we formally define the class of
systems that we abstract to robust MDPs, and we formally state our problem. Next, in
Section 5-2, we formally define said robust MDP abstractions, and we describe how to obtain
them. After that, in Section 5-3 we describe the algorithms that allow us to synthesize a
strategy that enforces a complex specification for these abstractions. Then, in Section 5-4 we
correctly translate the strategy and satisfaction guarantees obtained for the abstraction to
the original system.

5-1 Problem Statement

In this section we formally state our problem, however, let us begin by describing the class of
systems that we consider. Consider the following discrete-time dynamical system:

xt+1 = f(xt, ut) + ξt, (5-1)
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where xt ∈ Rn is the state, ut ∈ UC is the control input and ξt ∈ Rn is a random disturbance.
This disturbance process is i.i.d. and has probability distribution P true

ξ , which is unknown to
us. Furthermore, notice that, for simplicity and without loss of generality, we consider that
the dimension of the disturbance is the same as that of the state space, n ∈ N. Additionally,
we associate to system (5-1) a set of observations OC , and an observation function LC that
assigns an observation o ∈ OC to every state x ∈ Rn. Furthermore, we also associate to system
(5-1) the transition kernel (4-2). The concept of paths, traces and strategy of (5-1) are the
same as those defined in 4-1 and, therefore, we do not sate them again to avoid repetition.

Once we have defined the class of systems we consider, let us state the problem that we need
to solve. Denote by P (wk

Rn |= ϕ|wk
Rn(0) = x, X, σC , Pξ) the probability of the paths of system

(5-1), for probability Pξ of ξ, satisfying the scLTL formula ϕ within k ∈ N≥0 ∪ {∞} steps
while staying inside X ⊂ Rn by starting from state x ∈ X and following strategy σC .

Problem 5-1.1. (Distributionally Robust Strategy Synthesis) Consider the dynamical
system (5-1). Consider also the p-Wasserstein distance-based ambiguity set Bε(P̂ξ), of radius
ε > 0 and centered on a nominal distribution P̂ξ. Consider also a compact set X ⊂ Rn and
an scLTL formula ϕ defined over the regions of interest of X. Then, find a near-optimal
strategy σ∗

C that allows to determine if for given initial state x ∈ X, probability threshold pth
and horizon k ∈ N≥0 ∪ {∞}

P (wk
Rn |= ϕ|wk

Rn(0) = x, X, σ∗
C , Pξ) ≥ pth (5-2)

holds for all probabilities Pξ ∈ Bε(P̂ N
ξ ).

Then, if the ambiguity set is such that P true
ξ ∈ Bε(P̂ N

ξ ), we have formal guarantees that (5-2)
will hold for the original system (5-1) under the true distribution P true

ξ of ξ. However, again,
notice that we leave this last part outside the statement of problem 5-1.1 because in this
thesis we assume given ambiguity sets. The problem of finding the size of the ambiguity set
that contains P true

ξ is out of the scope of this thesis.

We seek a near-optimal strategy because there is no way of finding the exact strategy that
maximizes the probability in (4-3) [11]. Instead, as we already pointed out in the introduction
of this chapter, we follow an abstraction-based approach to solve Problem 5-1.1. First, we
abstract system (5-1), for fixed distribution of the disturbance P̂ξ, into an IMDP Î, which
accounts only for the discretization of the state-space. We denote this IMDP as “nominal".
Then we expand the set of feasible transition probabilities of Î to account for the distributional
uncertainty about the disturbance. We denote the resulting abstraction “robust MDP". Then
we synthesize the strategy that maximizes the worst-case probability of the paths of said
robust MDP satisfying the specification. To do so, we use a modified value iteration algorithm,
which we name “robust value iteration". Finally we translate said strategy into a strategy
that system (5-1) is able to use, while preserving the guarantees obtained for the abstraction.

5-2 Obtaining Robust MDP Abstractions

As we already pointed out, we solve Problem 5-1.1 by following an abstraction-based approach.
This one relies on the theory of IMDPs and the Wasserstein distance explained in Sections 2-4
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and 3-1 respectively. In this section we describe how we obtain these robust MDP abstractions.
We rely on precomputing an IMDP abstraction of the original system when the probability
of the disturbance is assumed to be the fixed to the nominal probability P̂ξ. This nominal
abstraction accounts for the ambiguity introduced by the state discretization. After that, we
obtain an additional abstraction MR that also accounts for the distributional ambiguity by
expanding the set of feasible transition probabilities of Î. We denote the resulting abstraction
“robust MDP". We start by formally defining the nominal IMDP abstraction in Section 5-2-1.
After that, we describe how to use it to obtain the desired robust MDP abstraction in Section
5-2-2.

5-2-1 Nominal IMDP Abstraction

The process of obtaining a robust MDP abstraction relies in precomputing an IMDP abstrac-
tion of the original system (5-1) when the probability of the disturbance is assumed to be
the fixed nominal probability P̂ξ. We denote this IMDP abstraction by “nominal" IMDP,
Î = (Q, A, P , P , O, L), which we formally define in this section.

We obtain the state space Q, action A and observation O sets and observation function L
of Î in the following way. Let us begin with the state space. We focus on a compact set
X ⊆ Rn of the state space of system (5-1). We discretize this one into a finite number of
non-overlapping regions Q̃ := {q1, q2, . . . , q|Q̃|} such that:

∪
q∈Q̃

q = X, and q ∩ q′ = ∅ ∀q, q′ ∈ Q̃ and q ̸= q′.

In the setting of this chapter, unlike in Chapter 4, we allow the partition to be non-uniform,
since there is no advantage from using such partitions. Now, we assign each region q of the
discretization to a different state in the nominal IMDP Î. With an abuse of notation we refer
by q to both, a state q ∈ Q̃ of Î, and to a region q ⊂ X. The correct interpretation should
be clear from the context. Furthermore, for the sake of simplicity, we restrict to the case
that the discretization respects the regions of interest: for every region q ∈ Q̃, all x ∈ q must
share the same observations. However, IMDP abstractions in which the regions of interest
are not respected are also possible [4]. Additionally, we denote by qu the set Rn \ X, which
corresponds to the rest of the state space of system (5-1). Taking this extra state into account,
we define the state space of Î as Q := Q̃ ∪ {qu}. In this way we have discretized the entirety
of the continuous state space Rn. Next, when it comes to the observations of Î, we let this
observation set be the same as that of the original system: O := OC .

Regarding the set of actions A of Î, we define it as a finite subset of UC . Furthermore we
make all actions available at each state q, i.e., A(q) = A for all q ∈ Q. This is not necessarily
the only way to define the set of actions of the nominal IMDP, and state-dependent action
sets can exist. However, to simplify the problem, in this document we only consider this
case. Next, we define the observation map of Î as L(q) := LC(x) for any x ∈ q and for all
q ∈ Q. This means that the L assigns to each cell the same observation that was assigned
to that region in the continuous system model. In this way, we leverage the fact that the
discretization respects the regions of interest.

Now we define the transition probability bounds P , P of Î. Consider states q, q′ ∈ Q \ {qu}
and action a ∈ A. Furthermore, consider the transition kernel TC in (4-2), for fixed probability
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P̂ξ. Then we define P , P as the bounds in the probability of system (5-1) transitioning from
region q to region q′ under action a:

P (q, a, q′) ≤ min
x∈q

P̂ξ(xt+1 ∈ q′|xt = x, at = a) = min
x∈q

TC(q′|x, a; P̂ξ),

P (q, a, q′) ≥ max
x∈q

P̂ξ(xt+1 ∈ q′|xt = x, at = a) = max
x∈q

TC(q′|x, a; P̂ξ).
(5-3)

Additionally, since X = Rn \ qu, we define the bounds in probability of transitioning to qu

from any q ∈ Q \ {qu} and for any a ∈ A as:

P (q, a, qu) ≤ 1 − max
x∈q

P̂ξ(xt+1 ∈ X|xt = x, at = a) = 1 − max
x∈q

TC(X|x, a; P̂ξ),

P (q, a, qu) ≤ 1 − min
x∈q

P̂ξ(xt+1 ∈ X|xt = x, at = a) = 1 − min
x∈q

TC(X|x, a; P̂ξ).
(5-4)

Furthermore, according to Problem 5-1.1, we are only interested in the paths of C that never
exit X. To account for that extra specification, we make the state qu of Î absorbing by
defining P (qu, a, qu) = P (qu, a, qu) = 1 for all a ∈ A and P (qu, a, q) = P (qu, a, q) = 0 for all
q ∈ Q \ {qu}.

Now, let us remember from the theory of IMDPs in Section 2-4 the concept of feasible tran-
sition probabilities of an IMDP. Consider the set of probability distributions over the state
space Q of Î, D(Q). We denote by Γ̂q,a the set of transition probabilities of Î from q ∈ Q by
a ∈ A that fulfill:

Γ̂q,a = {γ̂q,a ∈ D(Q) : P (q, a, q′) ≤ γ̂q,a(q′) ≤ P (q, a, q′), for all q′ ∈ Q}, (5-5)

for all q ∈ Q by a ∈ A. The nomenclature of “feasible" transition probabilities and set comes
from the fact that set Γ̂q,a will appear as the feasible set of the optimization problems that
we need to solve in this chapter to synthesize a strategy.

We must highlight that in this chapter we only give the formal definition of the transition
probability bounds of Î, but we do not describe the procedure we follow to obtain them. This
is because obtaining an IMDP abstraction for an arbitrary nominal distribution is not the goal
of this thesis. Therefore, in this chapter we assume that the nominal distribution is such that
it allows us to easily compute a nominal IMDP abstraction using existing approaches. For
example, efficient algorithms to obtain IMDP abstractions have already been proposed when
the disturbance is Gaussian, for systems with switched linear dynamics [4] and for systems
modelled as Neural Network Dynamic Models [5]. Furthermore, when the distribution of
the nominal disturbance is finitely-supported, which is the case in the data-driven scenario,
we could obtain an IMDP abstraction as follows: we could follow the approach described in
Chapter 4, being the nominal distribution the empirical one P̂ N

ξ , but setting the transport
budget ε to zero. Therefore, our approach is also general with respect to the way we obtain
the IMDP abstraction.

5-2-2 Robust MDP Abstraction

In this section we formally define our desired robust MDP abstractions, which account for
both, the state discretization and the distributional ambiguity. We do that by expanding
the set Γ̂q,a of feasible transition probabilities of the nominal IMDP Î, to also account for
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distributional uncertainty. We start by defining a Wasserstein distance between probabilities
supported on the discrete state space Q of the Î. After that, we use that distance to define
the set of feasible distributions of MR. Finally, we discuss the advantages and disadvantages
of robust MDP abstractions, when compared to DR-IMDP ones, in the data-driven setting.

Let us begin by defining a p-Wasserstein distance between distributions over Q. This p-
Wasserstein distance is based on distance (see Definition 3-1.3) dij , which we define as the
minimum distance between states qi, qj ∈ Q:

dij := min{∥x − y∥p : x ∈ qi, y ∈ qj}, (5-6)

for p ≥ 1. To simplify the notation we denote it by Wp, which is the same notation we use
for the p-Wasserstein distance between distributions over Rn. Whether we refer to one or the
other is clear from the context, since one takes as arguments distributions over Rn whereas
the other is defined for distributions over Q. Furthermore, notice that when distributions P
and P ′ in Definition 3-1.3 are finitely supported, Wp(P, P ′) is defined as the solution of a
finite linear program [31]. This is because the transport of mass between a finite number of
points in Q is carried out through finitely supported couplings defined over Q×Q. This result
is useful to define the algorithms that allow us to synthesize strategies for robust MDPs.

Now, we define the feasible set of probability distributions of our robust MDP abstraction
MR. We begin by considering an IMDP abstraction Î of the original system under the
nominal probability P̂ξ. Once we have obtained such abstraction, consider its set Γ̂a

q ⊂ D(Q)
of feasible transition probabilities for every q ∈ Q by a ∈ A as defined in (5-5). We recall that
the nomenclature of “feasible" is related to the fact that such set appears as the feasible set of
the strategy synthesis algorithms for IMDPs. Then, to include the distributional ambiguity
into the abstraction we expand set Γ̂a

q . We denote the set of feasible transition probabilities
of MR for fixed q ∈ Q, a ∈ A by Γ̂a

q ⊕ ε. Furthermore, we define this set as the subset of
D(Q) that contains all distributions which lay at a distance of at most ε from set Γ̂a

q :

Γ̂a
q ⊕ ε =

⋃
γ̂q,a∈Γ̂a

q

Bε(γ̂q,a). (5-7)

The feasible set Γ̂a
q ⊕ ε, together with the sets Q, A and O and observation function L of

IMDP Î uniquely define the robust MDP MR. Notice that MR only differs from Î in its
set of feasible transition probabilities. The concepts of paths, strategy and adversary of a
robust MDP are identical to the case of MDPs (see Section 2-3). However, notice that in a
robust MDP the adversary chooses probabilities from set Γ̂a

q ⊕ ε, which is defined by more
constraints than just intervals.

To finish this section, we discuss the usefulness of robust MDP abstractions in the data-
driven setting, despite the setting that we consider in this chapter being general. In this
setting, a finite number of samples {ξ̂i}N

i=1 from the disturbance are available. We leverage
this information and build a robust MDP abstraction in the following way: we begin by
constructing an empirical distribution from the samples, which we take as the nominal one.
After that, we obtain the nominal IMDP abstraction using this empirical distribution and
following the approach described in Chapter 4, but setting the radius of the ambiguity set ε
to zero. In this way the nominal IMDP only accounts for the state discretization. Then, we
build a robust MDP abstraction as we described in this section.
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The advantage of using, in a data-driven setting, robust MDPs instead of the DR-IMDPs
discussed in Chapter 4 is that the set of feasible transition probabilities of the former is
tighter than the one of the latter. In the case of DR-IMDPs, this set can be excessively big
for some practical values of the radius ε of the ambiguity set. This is translated into a big
range of probabilities of satisfying the specification, which does not provide useful information.
In other words, by making use of the DR-IMDP abstractions described in Chapter 4, we are
providing the adversary with too much freedom. The cause of this undesired behaviour is the
way in which we have defined the transition probability bounds of the DR-IMDP in expressions
(4-4). As an example, consider the upper bound P (q, a, ·) for fixed q ∈ Q and a ∈ A: we
compute it allowing to transport as much mass as possible, with budget ε from the samples
of xt+1 to region q′, and we do this for every q′ ∈ Q. However, this is counter-intuitive since,
for example, if transporting as much probability mass to a state q′ ∈ Q already consumes all
the budget, it should not be possible to further transport mass to other states. Nevertheless,
there is no constraint that enforces this behaviour in the approach we described in Chapter
4. Opposite to DR-IMDP abstractions, robust MDPs avoid this issue, since the set of feasible
transition probabilities is defined by more constraints. These constraints couple the mass
transported across the state space of the abstraction, and enforce the budget limitation. On
the other hand and, as a trade-off to this reduction in conservatism, synthesizing a strategy
for a robust MDP abstraction is way less efficient than for the case of DR-IMDPs, as we show
in Section 5-3.

5-3 Strategy Synthesis for Robust MDP Abstractions

In Section 5-2 we described how to obtain a robust MDP abstraction of the system in (5-1)
that accounts for both the state discretization and the distributional uncertainty. In this
section we focus on the problem of synthesizing a strategy for this abstraction that enforces
the satisfaction of an scLTL formula ϕ. Remember that, in Section 2-4-1, we explained how
synthesizing such a strategy for an IMDP boils down to to solving a maximal reachability
probability problem for a more complex IMDP. For this reason, in this section we just describe
how to synthesize a strategy for robust MDPs in the setting of reachability. The extension
to the setting of enforcing more complex specifications given as scLTL formulas follows the
same reasoning described in Section 2-4-1.

Maximal Reachability Probability Problem for Robust MDPs

Consider the robust MDP MR and target set Qtgt ⊂ Q. We start by considering the worst
and best-case probabilities of the paths of MR, under strategy σ ∈ Σ, reaching Qtgt within
k steps by starting on q ∈ Q:

min
π∈Π

P (∃t ∈ N≥0 s.t. t ≤ k, wk
Q(t) ∈ Qtgt|wk

Q(0) = q, σ, π)

max
π∈Π

P (∃t ∈ N≥0 s.t. t ≤ k, wk
Q(t) ∈ Qtgt|wk

Q(0) = q, σ, π)
(5-8)

Then, we define the optimal strategy σ∗ ∈ Σ the one that maximizes the first expression in
(5-8), this is, the strategy that, maximizes the lower bound in the probability of reachability:

σ∗ := arg max
σ∈Σ

min
π∈Π

P (∃t ∈ N≥0 s.t. t ≤ k, wk
Q(t) ∈ Qtgt|wk

Q(0) = q, σ, π), (5-9)
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for all q ∈ Q, k ∈ N ∪ {∞}. This is a pessimistic way of defining the optimal strategy, which
corresponds to the two-player game we described in Section 2-4-1 for IMDPs. However, in our
setting of formal strategy synthesis we are interested in obtaining the strategy that maximizes
the worst-case probability that the abstraction satisfies the specification. This is because this
lower bound is the performance guarantee that we are looking for [4] and, therefore we want
it to be as high as possible. Let us denote by pk and pk, respectively, the worst and best-case
probabilities of the paths of MR reaching Qtgt within k steps under strategy σ∗ ∈ Σ:

pk(q) := max
σ∈Σ

min
π∈Π

P (∃t ∈ N≥0 s.t. t ≤ k, wk
Q(t) ∈ Qtgt|wk

Q(0) = q, σ, π)

pk(q) := max
π∈Π

P (∃t ∈ N≥0 s.t. t ≤ k, wk
Q(t) ∈ Qtgt|wk

Q(0) = q, σ∗, π)
(5-10)

for all q ∈ Q, k ∈ N≥0 ∪ {∞}.
Now we state Theorem 5-3.1, which allows us to obtain the probabilities in (5-10) and the
strategy in (5-9).

Theorem 5-3.1. (Robust Value Iteration) Consider the robust MDP MR, whose set of
feasible transition probabilities is Γ̂q,a ⊕ ε for each q ∈ Q, a ∈ A. Then, probabilities pk in
(5-10) are obtained for all k ∈ N≥0 ∪{∞} recursively, starting from p0(q) = 1 for all q ∈ Qtgt
and p0(q) = 0 otherwise:

pk+1(q) =

1 if q ∈ Qtgt

maxa∈A(q) min
γq,a∈Γ̂q,a⊕ε

∑
q′∈Q γq,a(q′)pk(q′) otherwise,

(5-11)

Furthermore, with a small abuse of notation, strategy σ∗ in (5-9) is the Markovian, but time-
dependent strategy σ∗ = {σ∗(·; k)}∞

k=1 that fulfills:

σ∗(q; k + 1) = arg max
a∈A(q)

min
γq,a∈Γ̂q,a⊕ε

∑
q′∈Q

γq,a(q′)pk(q′), (5-12)

for all q ∈ Q, k ∈ N≥0 ∪ {∞}. Using σ∗, probabilities pk in (5-10) can be obtained for all
k ∈ N≥0 ∪ {∞} recursively, starting from p0(q) = 1 for all q ∈ Qtgt and p0(q) = 0 otherwise:

pk+1(q) =

1 if q ∈ Qtgt

max
γq,σ∗(q;k)∈Γ̂q,σ∗(q;k)⊕ε

∑
q′∈Q γq,σ∗(q;k)(q′)pk(q′) otherwise . (5-13)

We denote the previous iterative process by robust value iteration.

Proof. The proof follows a similar reasoning that the one presented in [30] for IMDPs under
stationary strategies. Notice that, despite the fact that here the set of feasible transition
probabilities is Γ̂q,a ⊕ ε, this fact does not affect the proof. It is easy to prove that the
probabilities pk(q) and pk(q) correspond to the probabilities defined in (5-10), for all q ∈ Q,
k ∈ N≥0. Furthermore, since they are monotonically increasing and upper bounded by 1 for
all q ∈ Q, sequences pk(q) and pk(q) converge to the following fixed points of recursions (5-11)
and (5-13), respectively:

p(q) = lim
k→∞

pk(q) = max
σ∈Σ

min
π∈Π

P (∃k ∈ N≥0 s.t. wQ(k) ∈ Qtgt|wQ(0) = q, σ, π)

p(q) = lim
k→∞

pk(q) = max
π∈Π

P (∃k ∈ N≥0 s.t. wQ(k) ∈ Qtgt|wk
Q(0) = q, σ∗, π)

(5-14)
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for all q ∈ Q. The previous expressions are the probabilities of the paths of infinite length of
MR ever reaching Qtgt under σ∗. Furthermore

lim
k→∞

σ∗(q; k) = σ∗
stat(q),

for all q ∈ Q. This is because strategy σ∗ only depends on pk, as shown in (5-12), and the
latter converges for k → ∞.

Notice that, due to Bellman’s optimality principle [19], strategy σ∗ is memoryless, since it
does not depend on the whole path wk

Q of MR, but only on last(wk
Q). Furthermore, it is the

same strategy for all initial conditions q ∈ Q. However, this strategy is also time-dependent,
since it depends on current value function pk, which changes over time.

Results of Strategy Synthesis for robust MDPs Under scLTL Specifications

As a starting point, consider the FSA A that captures the language of ϕ, and the product
robust MDP MR

ϕ := MR × A. The latter is defined in a similar way as the product IMDP
was defined in Definition 2-4.3. The only difference is that now, we need to define the set of
feasible transition probabilities of MR

ϕ , which we denote by Γ̂ϕ
(q,z),a ⊕ ε. This set corresponds

to set Γ̂q,a ⊕ε whenever a transition in MR generates a transition in A1. Consider also target
set Qϕ,ac. This set is analogous to the one defined in Definition 2-4.3 for the product IMDP.
Now, assume that we have solved the maximal reachability problem described in Section 5-3
for MR

ϕ . As a result, we have obtained the upper and lower bounds in probability pk
ϕ

and pk
ϕ

of the paths of MR
ϕ reaching Qϕ,ac. Furthermore, we have obtained the strategy σ∗

ϕ of MR
ϕ

that maximizes the previous lower bound at each time step. In this section we describe how
we can translate those results to the strategy and guarantees of the IMDP I that we seek. In
fact, the results we describe hold for any Markovian strategy σϕ of Iϕ, and when pk

ϕ
and pk

ϕ

have been obtained by solving (5-11) and (5-13) for fixed strategy σϕ.

First, we prove that any Markovian, and possibly time-dependent strategy σϕ in MR
ϕ maps

to a history dependent strategy σMR in the initial robust MDP abstraction MR.

Lemma 5-3.1. (Translating a Markovian Strategy of the Product Robust MDP to
the Robust MDP) Consider the product robust MDP MR

ϕ obtained by taking the product
between robust MDP MR and FSA A, where the latter captures the language of the scLTL
formula ϕ. Consider also the Markovian strategy σϕ of MR

ϕ . Then, strategy σϕ can be
translated to a memory-dependent strategy σMR of MR.

Proof. The proof is identical to the proof of Lemma 2-4.1 for IMDPs.

Secondly, we relate the bounds in the probability of MR
ϕ reaching Qϕ,ac to those in the

probability of MR satisfying the specification ϕ.
1This is analogous to how we define the transition probabilities of a product IMDP in (2-3). However, for

simplicity, we do not state the definition of Γ̂ϕ
(q,z),a

⊕ ε here.
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Lemma 5-3.2. (Guarantees Of the robust MDP Abstraction) Consider the strategy
σ∗

MR of MR obtained from σ∗
ϕ as described in Lemma 5-3.1. Then it holds that the bounds

in the probability of the paths of MR satisfying ϕ within k steps while never exiting X by
following strategy σ∗

MR and starting from state q ∈ Q are:

pk
MR(q) := inf

π∈Π
P (wk

Q |= ϕ|wk
Q(0) = q, X, σ∗

MR , π) = pk
ϕ
(q, z0) (5-15)

pk
MR(q) := sup

π∈Π
P (wk

Q |= ϕ|wk
Q(0) = q, X, σ∗

MR , π) = pk
ϕ(q, z0) (5-16)

for all q ∈ Q.

Proof. The proof follows the same reasoning as in the case of IMDPs: a path of MR satisfies
ϕ if and only if it generates an accepting run in A. Since this is the same as the corresponding
path of MR

ϕ reaching Qϕ,ac, Lemma 5-3.2 follows.

Notice that, in practice, we are only interested in the probabilities obtained with initial state
z0 of A, since the runs of the automaton always start at its initial state z0. The probability
bounds in (5-15) are the guarantees of the robust MDP abstraction satisfying the specification
we were looking for. Furthermore, we have synthesized the strategy σ∗

MR that maximizes
the lower bound. The complexity of the interval value iteration algorithm used on MR

ϕ is
polynomial in the number of states of MR

ϕ and exponential in the size of ϕ in the worst case.
Additionally, for infinite horizon k → ∞, although σ∗

ϕ(·; k) becomes a stationary strategy for
MR

ϕ , σ∗
MR(·; k) is still a memory-dependent strategy for MR, as a result of Lemma 5-3.1.

Complexity of Robust Value Iteration

Now, let us discuss the computational features of the value iteration algorithm introduced in
Theorem 5-3.1 to solve a maximal reachability probability problem. First of all, we highlight
that, since iteration (5-11) is independent of the lower bound in probability, we can compute
this recursion and obtain the strategy in (5-12) first. Once we have achieved convergence we
can compute the second recursion (5-13) and obtain the upper bound in probability, which is
useful to analyze the error of the solution [4]. Secondly, formulate the inner problem present
in recursion (5-11) as a linear program. The same theorem applies to (5-13) by just changing
the min operator to a max.

Theorem 5-3.2. (Robust Value Iteration as a Linear Program) Consider the robust
value iteration recursion (5-11) for the robust MDP MR. Consider also, for fixed state q ∈ Q,
action a ∈ A, and probability pk, the inner optimization problem over set Γ̂q,a ⊕ ε. Then the
folowing holds:

min
γq,a∈Γ̂q,a⊕ε

∑
qi∈Q

γq,a(qi)pk(qi) = min
γq,a∈R|Q|,γ̂q,a∈R|Q|,π∈R|Q|2

∑
qi∈Q

γq,a(qi)pk(qi), (5-17)
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where γq,a, γ̂q,a and π must satisfy the following constraints:

P (q, a, qj) ≤ γ̂q,a(qj) ≤ P (q, a, qj) qj ∈ Q (5-18a)∑
qj∈Q

γ̂q,a(qj) = 1 (5-18b)

πij ≥ 0, qi ∈ Q, qj ∈ Q (5-18c)∑
qi∈Q

πij = γ̂q,a(qj), qj ∈ Q (5-18d)

∑
qj∈Q

πij = γq,a(qi), qi ∈ Q (5-18e)

∑
qi∈Q

∑
qj∈Q

πijdp
ij ≤ εp. (5-18f)

Proof. First, we prove that, for fixed state q ∈ Q and action a ∈ A, the set of feasible
transition probabilities Γ̂q,a ⊕ ε defined in (5-7) is a polytope. We do this by defining this set
in the following alternative way: Γ̂q,a ⊕ ε is defined as the set of all transition probabilities
γq,a such that there exists a γ̂q,a ∈ Γ̂q,a and a coupling π that transports mass between γ̂q,a

and γq,a with a cost smaller than ε. Consider now set Γ̂q,a in (5-5) and the p-Wasserstein
distance in Definition 3-1.3. Set Γ̂q,a is already defined by linear constraints. Furthermore,
Wp(γq,a, γ̂q,a) is defined as the minimum cost of an LP, which for the case of finitely supported
distributions is finitely dimensional [31]. This means that γq,a satisfying constraints (5-18)
for some γ̂q,a, π is equivalent to γq,a ∈ Γ̂q,a ⊕ ε. Secondly, consider, for fixed state q ∈ Q,
action a ∈ A and probability pk, the inner minimization over the set Γ̂q,a ⊕ ε in (5-11). Since
the transition probabilities γq,a appear linearly in the cost of this expression, this completes
the proof.

Now we describe the constraints in (5-18). The first and second constraints are those that come
from the feasible set of distributions of the IMDP Î. These constraints are the same as picking
a feasible distribution from the IMDP Î, this is, γ̂q,a ∈ Γ̂q,a. The remaining constraints are
those that come from Definition 3-1.3 of the p-Wasserstein distance Wp, between probabilities
over Q: the third constraint imposes non-negativity of the coupling π. The fourth and fifth
constraints impose that the mass transported to every state qi ∈ Q must come from the
mass of γ̂q,a. This transport is carried out through the component πij of the coupling, which
transports mass from γ̂q,a(qj) to γq,a(qi), for all qi, qj ∈ Q. Finally, the last constraint imposes
that the cost of transporting mass from γ̂q,a to γq,a should be less than the budget ε.

Despite the problem (5-17) - (5-18) being an LP, we cannot solve it by using the efficient
algorithm that we described in Section 2-4-1 for IMDPs. Instead, standard LP solvers like
the interior point algorithm must be employed. In practice, this means that synthesizing a
strategy for robust MDPs is computationally heavier than doing so for IMDPs. Furthermore,
the number of variables and constraints in Problem (5-17) - (5-18) is way higher, as we show
in Table 5-1:

As we can observe in Table 5-1, the complexity of LP (5-17) - (5-18) grows with the number
of states |Q| of the abstraction: both the number of variables and the number of inequality
constraints are quadratic in |Q|. Moreover, most of the computational complexity comes from
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IVI Robust VI Relaxed Robust VI
# Variables |Q| |Q| · (|Q| + 2) |Q| + (|Qq,a

c | + 2) · |Qq,a
s |

# Inequality constraints 2|Q| |Q| · (|Q| + 2) + 1 |Qq,a
s | · (|Qq,a

c | + 3) + 1
# Equality constraints 1 2 · |Q| + 1 |Qq,a

c | + |Qq,a
s | + 2

Table 5-1: Complexity of the inner problems present in different value iteration recursions. The
comparison is made when no redundant constraints have been eliminated in (5-18) and (5-20).

the fact that the coupling is defined over the product space Q × Q, which is a space of high
cardinality. In the following we will describe how we can reduce said complexity. First, we
state the following definition:

Definition 5-3.1. (Support of the Nominal Transition Probabilities) We define the
support Qq,a

s of the nominal transition probabilities γ̂q,a ∈ Γ̂a
q , for fixed current state q ∈ Q

and action a ∈ A, as

Qq,a
s =

⋃
P (q,a,q′)>0

q′.

intuitively, this is the set that contains all states to which the IMDP abstraction Î is able
to transition in one step. Notice that Qq,a

s ⊆ Q holds always, and Qq,a
s ⊂ Q only if the

support of the disturbance ξ is bounded. This is the case, for example, in the data-driven
setting, in which the nominal distribution is empirical, this is, built from a finite number of
samples of ξ. If Qq,a

s ⊂ Q, then we are able to reduce the complexity of LP (5-17) - (5-18)
by considering couplings over the space Qq,a

s × Q, whose cardinality is smaller than |Q × Q|.
To further reduce the complexity of LP (5-17) - (5-18), we consider couplings defined over a
simplification of state space Q. First, consider a smaller, state and action-dependent, subset
Qq,a

c , with cardinality |Qq,a
c | of the state space such that Qq,a

s ⊂ Qq,a
c ⊂ Q. The set Qq,a

c

should contain states closer to those in Qq,a
s in the sense of distance dij , up to a threshold

distance. This makes sense because we expect mass to only be transported a few cells away
from Qq,a

s , since the cost of transporting mass is higher the longer the transport distance.
In addition to set Qq,a

c , from the point of view of mass transport, we consider all remaining
states qi ∈ Q \ Qq,a

c as a single state qr. Taking into account sets Qq,a
s , Qq,a

c and state qr, we
consider couplings π defined over (Qq,a

c ∪ qr) × Qq,a
s , which are lower-dimensional than the

ones used in (5-18). This means that we consider mass transport from set Qq,a
s to set Qq,a

c ,
and also to states Q \ Qq,a

c as if it was a single state qr. The mass transported to qr then will
be shared between states in Q \ Qq,a

c , while fulfilling the budget constraint. Let us also define
the following distance:

dis := min{dij : qj ∈ Qq,a
s }, (5-19)

for all qi ∈ Q\Qq,a
c . Notice that dis is an under estimator of dij for all qi ∈ Q\Qq,a

c , qj ∈ Qq,a
s .

Taking into account the previous elements we can define the following set:

Definition 5-3.2. Consider, for fixed state q ∈ Q and action a ∈ A, the support of the
nominal transition probabilities Qq,a

s as defined in Definition 5-3.1. Furthermore, consider
a set of states Qq,a

c such that Qq,a
s ⊂ Qq,a

c ⊂ Q. Consider also the additional state qr and
a discrete coupling π over the product space (Qq,a

c ∪ qr) × Qq,a
s . Additionally, consider the
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distance dis as defined in (5-19). We define set Γa
q as the set of all γq,a ∈ Rn for which there

exist γ̂q,a ∈ R|Qq,a
s | and π ∈ R(|Qq,a

c |+1)×|Qq,a
s | that satisfy the following constraints:

P (q, a, qj) ≤ γ̂q,a(qj) ≤ P (q, a, qj) qj ∈ Qq,a
s

(5-20a)∑
qj∈Qq,a

s

γ̂q,a(qj) = 1 (5-20b)

πij ≥ 0, qi ∈ Qq,a
c ∪ qq,a

r , qj ∈ Qq,a
s

(5-20c)∑
qi∈Qq,a

c

πij + πrj = γ̂q,a(qj), qj ∈ Qq,a
s

(5-20d)∑
qj∈Qq,a

s

πij = γq,a(qi), qi ∈ Qq,a
c

(5-20e)∑
qj∈Qq,a

s

πr,j =
∑

qi∈Q\Qq,a
c

γq,a(qi) (5-20f)

∑
qi∈Qq,a

c

∑
qj∈Qq,a

s

πijdp
ij +

∑
qi∈Q\Qq,a

c

γq,a(qi)dp
is ≤ εp. (5-20g)

Now we describe the meaning of the constraints that describe Γq,a in Definition 5-3.2. The
first and second constraints are the same as those in (5-18). However, now the first one is
defined over a reduced space Qq,a

s , and the sum in the second one is performed over this
same set. The third constraint imposes non-negativity of the coupling, now defined over the
reduced space (Qq,a

c ∪ qr) × Qq,a
s . The fourth constraint imposes that the amount of mass

transported by the coupling to all the state space comes from γ̂q,a(qj). In the same way, the
fifth constraint imposes that the amount of mass that state qi ∈ Qq,a

c receives comes from
the coupling. Additionally, the sixth constraint imposes that the amount of mass that is
transported to the rest of the state space Q \ Qq,a

c , also comes from the coupling. Finally, the
seventh constraint imposes that the cost of transporting mass must be less than the budget
εp. Notice that the mass that is transported to state qi ∈ Q \ Qq,a

c is weighed by distance dis

defined in (5-19). In this way, we are not considering the individual cost of transporting mass
from qj ∈ Qq,a

s to qi ∈ Q \ Qq,a
c , but a reduced cost, based on dis. We do this because we are

not considering individual couplings between such states. Notice that, from the structure of
the fourth and fifth constraints in (5-20), we could eliminate the variables γ̂q,a and γq,a(qi),
qi ∈ Qq,a

c to further reduce the complexity of the problem. However, for clarity we leave the
set of constraints (5-20) as it is. The different sets considered in Definition 5-3.2 are illustrated
in Figure 5-1.

Using set Γq,a, we define an alternative iterative algorithm to the robust value iteration one
introduced in Theorem 5-3.1 to solve reachability problems:

Definition 5-3.3. (Relaxed Robust Value Iteration) Consider robust MDP MR and the
value iteration algorithm introduced in Theorem 5-3.1. We denote by relaxed robust value
iteration the algorithm we obtain by using set Γq,a instead of Γ̂q,a ⊕ ε in expressions (5-11),
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Figure 5-1: Graphical representation of the regions Qq,a
s and Qq,a

c for fixed state q and action a.
In this illustration, the nominal IMDP Î has been constructed considering an empirical distribution
of the disturbance as the nominal one. All distributions in the nominal set of feasible distributions
Γ̂a

q are supported on the four states that compose set Qq,a
s , since those are the states that contain

the green samples. Furthermore, the cardinality of set Qq,a
c is |Qq,a

c | = 36. Additionally, distance
dis is depicted in the figure for an arbitrary state qi ∈ Q \ Qq,a

c .

(5-13) and (5-12) for every q ∈ Q and a ∈ A. This algorithm yields the sequences {prel}∞
k=0

and {prel}∞
k=0 and strategy σ∗

rel.

Furthermore, relaxed robust value iteration yields bounds in the satisfaction probabilities
that contain the ones obtained from robust value iteration. We formally state this result in
Theorem 5-3.3.

Theorem 5-3.3. Consider robust MDP MR and sequences {p}∞
k=0 and {p}∞

k=0 obtained
by performing robust value iteration as described in Theorem 5-3.1. Furthermore, assume
sequences {prel}∞

k=0 and {prel}∞
k=0 have been computed by performing relaxed robust value

iteration as described in Definition 5-3.3. Then, the following holds:

pk
rel(q) ≤ pk(q)

pk
rel(q) ≥ pk(q)

(5-21)

for all q ∈ Q, k ∈ N≥0 ∪ {∞}.

Proof. We provide the proof of Theorem 5-3.3 in Appendix A.

The complexity of the LPs that we need to solve to perform relaxed robust value iteration
is way lower than that of robust value iteration. We compare the complexity of such LPs in
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Table 5-1. This reduction is further expressed as a percentage in Figure 5-2, where we compare
the two LPs in the following case: first, the coupling π in (5-18) is defined over a reduced space
Q × Qq,a

s . Secondly, all redundant variables in (5-18) and (5-20), have been eliminated. Note
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Figure 5-2: Reduction in the complexity of the LPs involved in relaxed robust value iteration
when compared to those present in robust value iteration. These results were obtained for a
robust MDP with |Q| = 1601, |Qq,a

s | = 9.

that, as the dimension of Qq,a
c grows, the reduction is less relevant. However, for a practical

value of |Qq,a
c | ≈ 200 cells of a state space of |Q| = 1601, this reduction is still remarkable:

both the number of variables and the number of inequality constraints are reduced by a
factor of around 87%. This indicates how beneficial it can be to perform relaxed robust value
iteration. However note that, in Figure 5-2, the number of inequalities practically unaltered.
This is because, as Table 5-1 shows, the number of equality constraints is only increased by
one.

However, despite benefits of performing relaxed robust value iteration instead of value itera-
tion, the former entails a disadvantage: as Theorem 5-3.3 points out, the relaxed robust value
iteration algorithm yields more conservative results than robust value iteration. Therefore,
there exists a trade-off between computational complexity and conservatism when using this
relaxed algorithm to perform strategy synthesis.

5-4 Correctness

Once we have synthesized a strategy for the robust MDP abstraction by following the pro-
cedure we described in Section 5-3, we need to address the following questions. The first
one is: how can the original system use this strategy of the robust MDP? Furthermore, the
second one is: how are we sure that, when the original system uses this strategy, the proba-
bilistic guarantees found for the abstraction hold also for the original system? In this section
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we address the previous two problems: first we translate strategy σ∗
MR of MR to the (also

memory-dependent) strategy σ∗
C of system (5-1). Secondly, we prove that the probabilistic

guarantees pk
MR and pk

MR obtained for the robust MDP abstraction hold for the original sys-
tem, when this one follows strategy σ∗

C . This is referred to as correctness of the abstraction
[11], [4],[7].

The procedure we follow is exactly the same we described for DR-IMDP abstractions in 4-4.
First, we obtain strategy σ∗

C of system (5-1) using an expression analogous to (4-40). Secondly,
we want to prove that the guarantees obtained for the abstraction hold for the original system.
To do that, we begin by stating Lemma 5-4.1:

Lemma 5-4.1. Consider an arbitrary distribution Pξ ∈ Bε(P̂ξ) of the disturbance ξ. Assume
that system (5-1) under probability P̂ξ of the disturbance has been abstracted into the nominal
IMDP Î, as described in Section 5-2-1. Consider also, for fixed state q ∈ Q and action a ∈ A
the set of feasible probability distributions Γ̂q,a of Î. Moreover, consider the continuous state
x ∈ q ⊂ Rn. Now, denote by γx,a the transition probability from from x under a and for
distribution Pξ of ξ:

γx,a(q′) := TC(q′|x, a; Pξ)

for all q′ ∈ Q. Finally, consider the set Γ̂q,a ⊕ ε as defined in (5-7). Then, γx,a ∈ Γ̂a
q ⊕ ε.

Proof. A detailed proof of Lemma 5-4.1 is given in Appendix B.

The intuition behind Theorem 5-4.1 is that set Γ̂q,a ⊕ ε contains the transition probability
γx,a obtained by starting from any x ∈ q, under a ∈ A and for any Pξ ∈ Bε(P̂ξ). Notice that
Lemma 5-4.1 is analogous to Lemma 4-4.1 for DR-IMDPs.

Denote by P (wk
Rn |= ϕ|wk

Rn(0) = x, X, σ∗
C , Pξ) the probability of the paths of system (5-1), for

probability Pξ of ξ, satisfying ϕ within k steps, while remaining in the safe region X ⊂ Rn,
by following strategy σ∗

C and starting from x ∈ Rn. Now we state the theorem that ensures
that the guarantees obtained for the abstraction hold for the original system:

Theorem 5-4.1. (Correctness of the Probabilistic Guarantees Of the Robust MDP
Abstraction) Consider system (5-1) and the robust MDP abstraction MR of the former
obtained as in Section 5-2. Furthermore, consider an scLTL formula ϕ, and the strategy σ∗

MR

and bounds pk
M and pk

MR of MR obtained for such specification as explained at the beginning
of Section 5-4. Consider also strategy σ∗

C of system (5-1), obtained from σ∗
MR in a similar

way to (4-40). Then for any x ∈ Rn where x ∈ q, and for any Pξ ∈ Bε(P̂ξ) it holds that

P (wk
Rn |= ϕ|wk

Rn(0) = x, X, σ∗
C , Pξ) ∈ [pk

MR(q), pk
MR(q)]

for all k ∈ N≥0 ∪ {∞}.

We present a detailed proof of Theorem 5-4.1 in Appendix C.
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Chapter 6

Experimental Results

In this Chapter we show the results, through simulations, of our proposed approaches to syn-
thesize strategies for uncertain systems under complex specifications. Although the approach
described in Chapter 5 is useful in a more general setting, here we always consider a data-
driven one for simplicity: the disturbance ξ has unknown probability distribution P true

ξ , and
a finite amount of samples {ξ̂i}N

i=1 from ξ is available. Furthermore, the ambiguity sets we
consider are Wasserstein balls Bε(P̂ N

ξ ) centered on the empirical distribution P̂ N
ξ built from

the samples, and with given radius ε > 0. Furthermore, we always use the 2-Wasserstein
distance for the two following reasons: first, it penalizes more the transport of mass from the
samples, allowing us to use bigger values of ε. Secondly, this means that the distance over
the state space Rn will be the euclidean norm, ∥ · ∥2. This, in turn, allows us to implement
very fast algorithms to find distances between samples and rectangles, leading to shorter
abstraction times.

We prove the effectiveness of our approaches in two different systems, a linear and a nonlinear
one. Furthermore, the disturbances we consider in this section are either Gaussian or Gaussian
Mixtures with two components. We provide results for several sizes N of the sample set and
radius ε. The complex specification we consider is always the same: ϕ := ¬obsUdes, where
obs and des are the observations that correspond, respectively, to an obstacle and to the
desired region. The previous specification is commonly denoted as “reach-avoid" problem. We
synthesize strategies by running the value iteration algorithms until we achieve convergence.
Consider the bounds in probability pk, pk obtained in the value iteration algorithms. We
consider that the solution of said algorithms has converged when the following stopping
criteria is fulfilled:

sup
q∈Q

(pk+1(q) − pk(q)) ≤ tolVI

sup
q∈Q

(pk+1(q) − pk(q)) ≤ tolVI
,

where tolVI is the tolerance in value iteration. We always set tolVI = 0.02. Furthermore,
consider the converged bounds in the probability of satisfying the specification p, p. We define
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the “Average error" eavg as:

eavg = 1
|Q|

∑
q∈Q

(p(q) − p(q)). (6-1)

This error allows us to assess the conservatism of the solution.
First, in Section 6-1 we describe the dynamics of the systems that we consider here. After
that, in Section 6-2 we present the results of the approach we described in Chapter 4. Next,
in Section 6-3 we show the results of the approach we explained in Chapter 5.

6-1 System Dynamics

Linear System

In this section we describe the linear system that we use in our simulations. This one is a
simplified model of the kinematic unicycle system. We consider a discrete-time version of the
continuous-time unicycle model [39], which we obtain by using the Euler approach with a
time discretization of ∆t = 1. To obtain a simpler system, we consider that the velocity v is
fixed, and we also consider no dynamics in the orientation angle θ, being this one the control
input:

xt+1 = xt + ∆t(v
[
cos (θt)
sin (θt)

]
+ ξt). (6-2)

The states of the system are the position in the 2-dimensional space, xt ∈ R2. The control
input is the angle θ, as we already highlighted, which can take values in the continuous range
UC = [0, 2π). Finally, the random term ξ ∈ R2 is an external i.i.d. disturbance, for example,
wind, that disturbs the position of the unicycle with probability P true

ξ for all t. In this section
we always consider a velocity of v = 1.

Nonlinear System with 4 Modes

The nonlinear system we chose is the same one employed in [11] to synthesize strategies for
partially-known switched stochastic systems using IMDP abstractions. The dynamics of said
system are the following:

xt+1 = xt + f̃(xt, ut) + ξt, (6-3)
where

f̃(x, u) =


[0.5 + 0.2 sin(x(2)), 0.4 cos(x(1))]T if u = 1
[−0.5 + 0.2 sin(x(2)), 0.4 cos(x(1))]T if u = 2
[0.4 cos(x(2)), 0.5 + 0.2 sin(x(1))]T if u = 3
[0.4 cos(x(2)), −0.5 + 0.2 sin(x(1))]T if u = 4

(6-4)

In (6-4), x(i) denotes the i-th component of the state. The states of the system are the
position in the 2-dimensional space, xt ∈ R2. The control input is the switching control input
u, which switches between the modes in (6-4) by takes values in UC = {1, 2, 3, 4}. Finally, the
random term ξ ∈ R2 is an external i.i.d. disturbance, that disturbs the position of the system
with probability P true

ξ for all t.
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# Exp. ε eavg Abstraction Time Synthesis Time
1 10−3 0.021 8.6 + 5.7 min 1 min (24+12 it)
2 2 × 10−3 0.094 8.76 + 4.8 min 1.2 min (31+11 it)
3 3 × 10−3 0.338 9.5 + 5.5 min 1.2 min (33+11 it)
4 5 × 10−3 0.83 8.5 + 4.5 min 0.6 min (10+10 it)

Table 6-1: Summary of the experiments performed for the linear system (6-2). Side note: the
abstraction time is indicated as t1 + t2, being t1 and t2 the time required to compute the lookup
tables and to perform the rest of the abstraction, respectively. Furthermore, we state both the
time and the number of iterations required to perform strategy synthesis. We express the latter
as (nlower + nupper it), being nlower and nupper, respectively, the number of iterations required to
achieve convergence of the lower and upper bounds in probability.

6-2 Results of the Approach Based on DR-IMDP Abstractions

In this section we describe the results of the approach we described in Chapter 4. We start
by showing the results in the linear system of Section 6-1, and then we focus on the results
obtained for the nonlinear system in that same section.

Results of the Approach Based on DR-IMDP Abstractions on the Linear System

For this system, the workspace we consider is always the set X = [0, 1] × [0, 1] ⊂ R2. Further-
more, we always use the same discretization of the state space, which is a uniform grid that
leads to a state space of the abstraction Q of cardinality |Q| = 1601. The set of actions of the
DR-IMDP abstraction is obtained as a uniform partition of UC : A = {0, 2π 1

na
, . . . , 2π na−1

na
}.

Furthermore, we choose na = 8. Additionally, P true
ξ is a Gaussian Mixture with two com-

ponents, centered at [−0.01, 0] and [0.01, 0], respectively, where both components have a
standard deviation of 0.005. This means that the centers of both components are separated
by a distance close to the size of the state discretization. Moreover, we always use a set of
N = 500 samples to obtain the abstraction. The lookup tables we computed for q∗ and X
have, respectively, 279596 and 83716 entries, which we arranged as follows: we made the grid
finer in regions closer to q∗ and X, and coarser in the more distant regions. We also highlight
that, to speed up the process of searching in the lookup tables, we clustered the data of
said tables: the final size of the tables is of 3700 and 5852 entries, respectively. This highly
reduces the abstraction time. Furthermore, we set the value of the distance threshold that
switches between using the lookup table and the overapproximation as described in Chapter
4 to Dth = 0.04. Then we used the approach in4 to perform strategy synthesis. We give
a summary of the results in Table 6-1. Furthermore, the lower bounds we obtained in the
probability of satisfying ϕ are shown in Figure 6-1. Additionally, since the same upper bound
in the probability of satisfying ϕ was found for Experiments #1-#4, we show this single plot
in Figure 6-2.

The results observed both in Table 6-1 and in Figures 6-1 and 6-2 show, as we expected, that
a bigger size of the ambiguity set leads to looser bounds of satisfying the specification. In this
case, we observe that the bigger the ambiguity, the smaller is the value of the lower bound
in the probability of satisfying ϕ. Regarding the time required to build the abstraction, its
similar for all the experiments. This is because we have not changed the number of samples
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Lower Bound in Probability of satisfying 
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(a) Experiment #1.
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(c) Experiment #3.
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Figure 6-1: Results of Experiments in Table 6-1. Lower bound in the probability of satisfying ϕ.
The three blue trajectories correspond to Monte Carlo simulations of the system taking samples
from the true probability distribution of the disturbance.

N , Dth, or the number of entries of the lookup tables, which greatly influence the abstraction
time. Furthermore, we observe that the number of iterations needed to achieve convergence
is almost the same for every choice of ε in experiments #1-#3. However, this is not the case
in Experiment #4, for which convergence is quickly achieved. This is because the bounds in
the probability of satisfying ϕ are almost trivial for ε = 5 × 10−3: we observe a lower bound
closer to zero in most of the state space in Figure 6-1d, and an upper bound of one where
there are no obstacles in Figure 6-2.

We also plot the vector field corresponding to the system in closed-loop with the synthesized
strategies in Experiments #1-#4 in Figure 6-3. The strategies we observe are almost the same
for all the experiments, even when the bounds we obtained are loose, as in Experiment #4.
Moreover, we found these bounds very conservative, by performing Monte Carlo simulations
in which we took new samples from the true distribution every time step: for 1000 MC
simulations starting on the lower-right corner of the workspace, we found that all of them
satisfied ϕ, for strategies #1 to #4.
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Upper Bound in Probability of satisfying 
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Figure 6-2: Results of the experiments in Table 6-1. Upper bound in the probability of satisfying
ϕ.
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Figure 6-3: Results of Experiments in Table 6-1. Synthesized strategy.
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# Experiment ε eavg Abstraction Time Synthesis Time
5 2 × 10−3 0.04 1.2 + 12 min 0.96 min (63+19 it)
6 4 × 10−3 0.13 1.2 + 13.2 min 0.9 min (61 + 17 it)
7 5 × 10−3 0.16 1.3 + 11.7 min 1 min (63+17 it)
8 7 × 10−3 0.6 1.2 + 11.7 min 0.6 min (33+16 it)

Table 6-2: Summary of the experiments performed for the nonlinear system (6-3). Side note:
the abstraction time is indicated as t1 + t2, being t1 and t2 the time required to compute the
lookup tables and the to perform the rest of the abstraction, respectively. Furthermore, we state
both the time and the number of iterations required to perform strategy synthesis. We express
the latter as (nlower + nupper it ), being nlower and nupper, respectively, the number of iterations
required to achieve convergence of the lower and upper bounds in probability.

Results of the Results of the Approach Based on DR-IMDP Abstractions on the Nonlinear
System

For this system, the workspace we consider is always the set X = [−2, 2] × [−2, 2] ⊂ R2.
Furthermore, we always use the same discretization of the state space, which is a uniform
grid, yielding a state space of the abstraction Q of cardinality |Q| = 1601. The set of actions
of the DR-IMDP is the same as the set of modes of system (6-3): A = UC . Additionally, P true

ξ

is a Gaussian Mixture with two components, centered at [−0.05, 0] and [0.05, 0], respectively,
where both components have a standard deviation of 0.02. Again, this means that the centers
of both components are separated by a distance close to the size of the state discretization.
Moreover, we always use a set of N = 20 samples to obtain the abstraction. The lookup
tables we computed for q∗ and X have, respectively, 844204 and 286336 entries, which we
arranged as follows: we made the grid finer in regions closer to q∗ and X, and coarser in the
more distant regions. As we did in the case of the linear system, to speed up the process
of searching in the lookup tables, we clustered the data of said tables: the final size of the
tables is of 62052 and 24136 entries, respectively. Furthermore, we set Dth = 0.15. Then we
used the approach in4 to perform strategy synthesis. We give a summary of the results in
Table 6-2. Furthermore, the lower bounds we obtained in the probability of satisfying ϕ are
shown in Figure 6-1. Additionally, since we obtained the same upper bound in the probability
of satisfying ϕ as in the case of the linear system, we do not show this result here: we limit
ourselves to point out to Figure 6-2.

The results observed both in Table 6-2 and in Figures 6-4 show that the radius of the ambiguity
set ε has the same effect as in the case of system (6-2): the bigger the ambiguity set, the looser
are the bounds in probability of satisfying the specification. Regarding the time required
to build the abstraction, its similar in Experiments #5-#8. This is because the number
of samples N , Dth and the number of entries of the lookup tables is the same in these
experiments, which highly influence the abstraction time. However, we note that, when
compared to the results obtained in Table 6-1, the lookup tables require less time to be
computed, whereas the abstraction takes more time. The first result is due to the fact that
in this section we set N = 20, as opposed to the N = 500 samples used for system (6-2).
Furthermore, in this section, the clustered tables have a bigger number of entries than those
used for system (6-2). For this reason, the time required to search in the tables is bigger in
this case, even when the number of actions of system (6-4) is half the number of those of
system (6-2). The previous results highlight the effect of the number of samples and the size
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Figure 6-4: Results of Experiments in Table 6-1. Lower bound in the probability of satisfying ϕ.
The three blue trajectories correspond to Monte Carlo simulations of the system taking samples
from the true probability distribution of the disturbance.

of the lookup tables in the complexity of obtaining the abstraction.

The effect of ε in the number of iterations required to achieve convergence of interval value
iteration is the same observed in Table 6-2: it is almost the same for Experiments #5-#7,
but different for Experiment #8, for which convergence is achieved faster. This last part is
because the bounds in the satisfaction probability of Experiment #8 are almost trivial in a
big portion of the state space: we observe a lower bound closer to zero in almost half the state
space in Figure 6-4d, and an upper bound of one where there are no obstacles in Figure 6-2.

We also plot the vector field corresponding to the system in closed-loop with the synthesized
strategies in Figure 6-5. The strategies we observe are almost the same for Experiments #5-
#7. However, the one obtained in Experiment #8 is quite different, and does not lead to a
good closed-loop performance: the paths that start in the dark regions in Figure 6-4d under
this strategy do not satisfy the specification in most of the cases. Notice that in Figure 6-4d,
the trajectory starting in the upper-right corner does not satisfy ϕ. Furthermore, from 1000
Monte Carlo simulations performed by starting in the upper-right corner, none satisfied the
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Figure 6-5: Results of Experiments in Table 6-2. Synthesized strategy.

specification. This was not the case, however, for Experiments #5-#7, for which all Monte
Carlo trajectories starting in that region satisfied ϕ.

6-3 Results of the Approach Based on Robust MDP Abstractions

In this section we describe the results of the approach we described in Chapter 5. We limit
to show the effectiveness of this approach in the linear system (6-2). Furthermore, all results
we show in this section are obtained for a radius of the ambiguity ball ε = 0.01. The reason
behind the reduced number of results we present here, when compared to Section 6-2 is that
the approach of Chapter 5 is very expensive to use. Furthermore, for simplicity, we also use
this approach in a data-driven setting, this is, when the center of the ambiguity set is an
empirical distribution built from data.

For system (6-2), we consider the same workspace, state discretization and actions that we
considered in Section 6-2 for this same system. However, here we obtain results for two
classes of unknown distributions P true

ξ : the first one a Gaussian with zero mean and standard
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deviation of 0.005. The second one is a Gaussian Mixture with two components, centered
at [−0.01, 0] and [0.01, 0], respectively, where both components have a standard deviation of
0.005. Again, this means that the centers of both components are separated by a distance
close to the size of the partition of the state space. Moreover, we always use a set of N = 10
samples to obtain the empirical distribution. Then, we obtain the nominal IMDP by using
the approach in Chapter 4 and setting ε = 0 and Dth = 0. The lookup tables we computed
for q∗ and X have, respectively, 2057500 and 9966780 entries, which we arranged as follows:
we made the grid finer in regions closer to q∗ and X, and coarser in the more distant regions.
We also clustered the data of said tables: the final size of the tables is of 12176 and 59632
entries, respectively. Then we used the approach in Chapter 5 to perform strategy synthesis.
We give a summary of the results in Table 6-3. Furthermore, the lower bounds we obtained

# Experiment P true
ξ eavg Abstraction Time Synthesis Time

9 Gaussian 0.18 7 + 2.4 min 24.4 h (40 + 9 it)
10 Gaussian Mixture 0.18 7 + 3 min 23.8 h (40 + 8 it)

Table 6-3: Summary of the experiments performed for the linear system (6-2). Side note: the
abstraction time is indicated as t1 + t2, being t1 and t2 the time required to compute the lookup
tables and the to perform the rest of the nominal IMDP abstraction, respectively. Furthermore,
we state both the time and the number of iterations required to perform strategy synthesis. We
express the latter as (nlower + nupper it), being nlower and nupper, respectively, the number of
iterations required to achieve convergence of the lower and upper bounds in probability.

in the probability of satisfying ϕ are shown in Figure 6-6. Additionally, since the same upper
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Figure 6-6: Results of Experiments in Table 6-3. Lower bound in the probability of satisfying ϕ.
The three blue trajectories correspond to Monte Carlo simulations of the system taking samples
from the true probability distribution of the disturbance.

bound in the probability of satisfying ϕ was found for Experiments #9-#10, we show this
single plot in Figure 6-7.

The results observed both in Table 6-3 and in Figures 6-6 and 6-7 show, as we expected, that
the approach based on robust MDP abstractions is able to provide good results even when
the ambiguity set is relatively big. Notice that the results in this section are obtained for
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Upper Bound in Probability of satisfying 
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Figure 6-7: Results of the experiments in Table 6-3. Upper bound in the probability of satisfying
ϕ.

ε = 0.01, whereas Experiments #3 and #4 in Section 6-2 already yielded more conservative
results for ε = 3 × 10−3 and ε = 5 × 10−3, respectively. Regarding the time required to
build the abstraction, its similar for both experiments. This is because we have not changed
the number of samples N , Dth, or the number of entries of the lookup tables, which greatly
influence the abstraction time. Furthermore, we observe that it takes way more time to
synthesize a strategy for these abstractions than for DR-IMDPs used in Section 6-2, as we
expected.

We also plot the vector field corresponding to the system in closed-loop with the synthe-
sized strategies in Experiments #9-#10 in Figure 6-8. The strategies we observe are almost
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Figure 6-8: Results of Experiments in Table 6-3. Synthesized strategy.

identical for both experiments.
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Chapter 7

Conclusion

In this thesis we presented two approaches to synthesize strategies for dynamical systems with
random, uncertain disturbances, under specifications given as scLTL formulas. In order to
capture the uncertainty in the distribution of the disturbance we used ambiguity sets based
on the Wasserstein distance. The two proposed approaches rely on performing an abstraction
of the original system: the first one relies on abstracting the system into an IMDP, which we
denote DR-IMDP. After that, a strategy that enforces an scLTL formula is synthesized using
already existing algorithms for IMDPs. On the other hand, the second approach employs a
robust MDP abstraction of the original system. In order to synthesize a strategy that enforces
an scLTL specification, we proposed a modified value iteration algorithm called robust value
iteration. The proposed approaches effectively account for the ambiguity in the distribution of
the disturbance, leading to robust strategies that enforce complex specifications. Furthermore,
we proved that the probabilistic guarantees that the abstractions satisfy the specifications also
hold for the original, uncertain system.

While the first approach relies on the assumption that the center of the ambiguity set is an
empirical distribution, the second one works in a more general setting: the the center of the
ambiguity set does not need to be an empirical distribution. Furthermore, as we described in
Chapter 5, robust MDPs are less conservative abstractions than DR-IMDPs, and yield less
conservative satisfaction guarantees. Moreover, as the results from Chapter 6 show, it is easier
to perform a robust MDP abstraction than a DR-IMDP one. This is because, to obtain a
robust MDP abstraction, the only computationally intensive part is to compute the nominal
IMDP. Furthermore, less problems need to be solved to obtain a nominal IMDP than to obtain
a DR-IMDP abstraction. On the other hand, synthesizing a strategy for a DR-IMDP is way
more efficient than doing so for a robust MDP. This is because the interval value iteration
algorithm for IMDPs and DR-IMDPs is way more efficient than robust value iteration for
robust MDPs. The overall result is that using the approach that relies in robust MDP
abstractions is way less efficient. Therefore, we find a trade-off between conservatism and
efficiency: using robust MDP abstractions for strategy synthesis we obtain less conservative
results than using DR-IMDPs, but the approach based on the latter is faster to use.

In Chapter 6 we tested our approaches in the data-driven setting, this is, when the ambiguity
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ball is centered in an empirical distribution obtained from data. This was for the sake of
simplicity, since we already highlighted in Chapter 5 that our second approach can also be
employed when the uncertainty model is more general. We showed how our approaches are
able to synthesize robust strategies that enforce scLTL specifications for both linear and
nonlinear systems. Moreover, we presented results for different sizes of the sample set and
shapes of the unknown data-generating distribution. Furthermore, we showed how, the bigger
the ambiguity, the more conservative the satisfaction guarantees become. One of the key
results of Chapter 6 is that we demonstrated experimentally the previously mentioned trade-
off between conservatism of the solution and efficiency. We showed that using the approach
in Chapter 5 we obtain tighter guarantees than using the approach in Chapter 4 even when
the ambiguity ball is bigger. Furthermore, we demonstrated that synthesizing a strategy for
a robust MDP is way less efficient than doing so for a DR-IMDP.

7-1 Future Work

We now give a brief summary of the possible future research directions regarding the topics
involved in this thesis.

• Obtain results for different ambiguity models than the data-driven one considered in
Chapter 6. For example, we could consider a Wasserstein-based ambiguity set centered
on a gaussian distribution. Then, we could use the approaches in [4] and [5] to obtain
the nominal IMDP abstraction, and then easily define the robust MDP that accounts
for all the probabilities in the ambiguity set.

• Find more efficient ways of performing robust value iteration. Making use of entropic
regularization of optimal transport [31] might be useful.

• Obtain robust MDP abstractions using different ambiguity sets than Wasserstein balls.

• Since the unknown probability distribution of the disturbance is always the same, find a
way to enforce this constraint. This would be translated into a coupling of the transition
probabilities that are chosen by the adversary at each state, reducing conservatism of
the solution.

• Obtain results for higher order systems.

• Propose an algorithm to deal with systems in which the disturbance only affects part of
the dynamics. Exploit this structure to formulate more efficient algorithms that allow
to obtain abstractions of higher order systems.

• Combine robust value iteration with adaptive refinement algorithms that allow to obtain
acceptable results while employing a smaller state space, as in [3], [5]. Doing this would
reduce the complexity of the abstraction and increase the efficiency of the robust value
iteration algorithm.
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Appendix A

Proof of Theorem 5-3.3

First of all, if the nominal distribution P̂ξ of ξ has a bounded support, we only consider
(discrete) nominal distributions γ̂q,a defined over Qq,a

s . Therefore, the couplings π we consider
are defined over the product space Q×Qq,a

s . Taking into account the previous considerations,
(5-18) becomes:

P (q, a, qj) ≤ γ̂q,a(qj) ≤ P (q, a, qj) qj ∈ Qq,a
s (A-1a)∑

qj∈Qq,a
s

γ̂q,a(qj) = 1 (A-1b)

πij ≥ 0, qi ∈ Q, qj ∈ Qq,a
s (A-1c)∑

qi∈Q

πij = γ̂q,a(qj), qj ∈ Qq,a
s (A-1d)

∑
qj∈Qq,a

s

πij = γq,a(qi), qi ∈ Q (A-1e)

∑
qi∈Q

∑
qj∈Qq,a

s

πijdp
ij ≤ εp. (A-1f)

We now leave the first and second constraints in (A-1) are left as they are. However, we write
the fourth constraint as: ∑

qi∈Q

πij = γ̂q,a(qj), qj ∈ Qq,a
s

⇐⇒
∑

qi∈Qq,a
c

πij +
∑

qi∈Q\Qcq,a

πij = γ̂q,a(qj), qj ∈ Qq,a
s .

(A-2)

Furthermore, we separate the fifth constraint in (A-1) as the following two sets of constraints:∑
qj∈Qq,a

s

πij = γq,a(qi), qi ∈ Q

⇐⇒
{∑

qj∈Qq,a
s

πij = γq,a(qi), qi ∈ Qq,a
c∑

qj∈Qq,a
s

πij = γq,a(qi), qi ∈ Q \ Qq,a
c

.

(A-3)
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Additionally, we relax the second constraint in (A-3) as follows:∑
qj∈Qq,a

s

πij = γq,a(qi), qi ∈ Q \ Qq,a
c =⇒

∑
qj∈Qq,a

s

∑
qi∈Q\Qq,a

c

πij =
∑

qi∈Q\Qq,a
c

γq,a(qi). (A-4)

Furthermore, when it comes to the last constraint in (A-1), we relax it by using the distance
dis defined in (5-19), which is an under estimator of dij for all qi ∈ Q \ Qq,a

c , qj ∈ Qq,a
s :∑

qi∈Q

∑
qj∈Qq,a

s

πijdij ≤ ε

⇐⇒
∑

qi∈Qq,a
c

∑
qj∈Qq,a

s

πijdij +
∑

qi∈Q\Qq,a
c

∑
qj∈Qq,a

s

πijdij ≤ ε

=⇒
∑

qi∈Qq,a
c

∑
qj∈Qq,a

s

πijdij +
∑

qi∈Q\Qq,a
c

dis

∑
qj∈Qq,a

s

πij ≤ ε.

(A-5)

Furthermore, using the last expression in (A-3) we get∑
qi∈Qq,a

c

∑
qj∈Qq,a

s

πijdij +
∑

qi∈Q\Qq,a
c

dis

∑
qj∈Qq,a

s

πij ≤ ε

=
∑

qi∈Qq,a
c

∑
qj∈Qq,a

s

πijdij +
∑

qi∈Q\Qq,a
c

disγq,a(qi) ≤ ε.
(A-6)

Taking a look at expressions (A-2) and (A-4), we notice that the variables πij for all qi ∈
Q\Qq,a

c , qj ∈ Qq,a
s never appear separated, but always as a sum. Therefore, we get rid of said

individual variables by defining

πrj :=
∑

qi∈Q\Qq,a
c

πij , qj ∈ Qq,a
s . (A-7)

Note that πrj is non-negative by the third expression in (A-1). Using this new variable,
expressions (A-2), and (A-4) become:∑

qi∈Qq,a
c

πij + πrj = γ̂q,a(qj), qj ∈ Qq,a
s∑

qj∈Qq,a
s

πrj =
∑

qi∈Q\Qq,a
c

γq,a(qi)
(A-8)

We choose to use the notation of πrj for the following reason: this variable concentrates all
probability mass assigned from state qj ∈ Qq,a

s to all states outside of Qq,a
c . This is the same

as regarding the whole set Q \ Qq,a
c as a single state qr, to which mass can be transported

from Qq,a
s . Therefore, we can consider the variable πrj as a component of a coupling defined

over a reduced product space (Qq,a
c ∪ qq,a

r ) × Qq,a
s , where qq,a

r represents set Q \ Qq,a
c .

Now, consider the first and second constraints in (A-1). Consider also the non-negativeness
constraint on π and the constraint obtained in (A-3) for all qi ∈ Qq,a

c . Finally, consider the
relaxed constraints in (A-6) and (A-8). It becomes clear that said set of constraints is the
same as Γq,a, as defined in (5-20). Furthermore, since we have obtained the constraints in
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(5-20) by relaxing those in (5-18), it follows that Γq,a ⊃ Γ̂q,a ⊕ε. Therefore, for any p : Q → R
we obtain

min
γq,a∈Γq,a

∑
qi∈Q

γq,a(qi)p(qi) ≤ min
γq,a∈Γ̂q,a⊕ε

∑
qi∈Q

γq,a(qi)p(qi),

for all q ∈ Q, a ∈ A. The previous result allows us to prove that sequence {prel(q)}∞
k=0 is

lower bounded by sequence {p(q)}∞
k=0, for all q ∈ Q. Therefore, Theorem 5-3.3 follows.
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Appendix B

Proof of Lemma 5-4.1

Let us first establish a relation between the p-Wasserstein distance between probabilities over
Rn and the one between probabilities over Q:

Lemma B-0.1. Consider two distributions, P , and P ′, defined over Rn. Let us define the
discrete distributions γ and γ′ over Q, such that each entry γ(q′) and γ′(q′) contains the
fraction of mass of P and P ′ inside state q′, respectively: γ(q′) = P (q′) and γ′(q′) = P (q′) for
all q′ ∈ Q. Finally, consider the p-Wasserstein distance Wp(P, P ′) based on the p-norm, and
the p-Wasserstein distance Wp(γ, γ′) based on distance (5-6). Then, for ε > 0, the following
holds:

Wp(P ′, P ) ≤ ε ⇒ Wp(γ′, γ) ≤ ε.

Proof. From the definition of Wasserstein distance in (3-2) between the distributions P ′ and
P we get:

Wp
p (P ′, P ) = inf

π∈U(P ′,P )

∫
Rn×Rn

∥x − y∥p
pdπ(x, y) =

∫
Rn×Rn

∥x − y∥p
pdπ∗(x, y),

where π∗ is the coupling that attains the infimum. Let us define the function J(x) that assigns
a point x ∈ q to the region it belongs, q: J(x) = q ⇐⇒ x ∈ q, for all q ∈ Q. Using this
definition we get that

Wp
p (P ′, P ) = inf

π∈U(P ′,P )

∫
Rn×Rn

∥x − y∥p
pdπ(x, y) =

∫
Rn×Rn

∥x − y∥p
pdπ∗(x, y)

≥
∫
Rn×Rn

dp
J(x),J(y)dπ∗(x, y),

since dp
J(x),J(y) ≤ ∥x − y∥p

p for all x, y ∈ Rn. Furthermore, we prove that∫
Rn×Rn

dp
J(x),J(y)dπ∗(x, y) ≥ inf

π∈U(P ′,P )

∫
Rn×Rn

dp
J(x),J(y)dπ(x, y). (B-1)
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Now, consider a bigger feasible set for the problem on the right of expression (B-1):

U(P ′, P ) := {π ∈ Pp(Rn × Rn) : π(Rn, A) = P ′(A), π(B,Rn) = P (B) for all A, B ∈ B(Rn)}
⊂U ′(P ′, P ) := {π ∈ Pp(Rn × Rn) : π(Rn, qi) = P ′(qi), π(qj ,Rn) = P (qj) for all qi, qj ∈ Q}.

Using this set we get

inf
π∈U(P ′,P )

∫
Rn×Rn

dp
J(x),J(y)dπ(x, y) ≥ inf

π∈U ′(P ′,P )

∫
Rn×Rn

dp
J(x),J(y)dπ(x, y). (B-2)

Given the special shape of the cost function in the problem on the right of (B-2), it suffices
to look for discrete couplings of the form π = πijδij ∈ Pp(Rn × Rn), where δij is the Dirac
measure concentrated at any points x, y such that x ∈ qi, y ∈ qj :

inf
π∈U ′(P ′,P )

∫
Rn×Rn

dp
J(x),J(y)dπ(x, y), (B-3)

which is equivalent to the following finite linear program:

inf
π∈R|Q|×|Q|

≥0

∑
qi∈Q,qj∈Q

dp
ijπij (B-4a)

s.t.
∑

qj∈Q

πij = P ′(qi) ∀qi ∈ Q (B-4b)

∑
qi∈Q

πij = P (qj) ∀qj ∈ Q. (B-4c)

Note that, in problem (B-4), with an abuse of notation, we refer as π to the discrete coupling:
πi,j represents the amount of probability mass transported from state qi ∈ Q to state qj ∈
Q. This is the notation that we employ from now on when considering couplings between
discrete measures. Finally, notice that LP (B-4) is precisely the definition of the Wasserstein
distance Wp between distributions over Q based on distance dij . Therefore we conclude that
Wp(P ′, P ) ≥ Wp(γ′, γ), which completes the proof.

The intuition behind Lemma B-0.1 is the following: if two measures over Rn lay at a Wasser-
stein distance distance of at most ε, then their discrete equivalents over Q do not lay at a
bigger distance (based on dij).

Now we are finally able to prove Lemma 5-4.1. Since the disturbance in (5-1) is additive,
Pξ ∈ Bε(P̂ξ) implies Pxt+1 ∈ Bε(P̂xt+1) for fixed x ∈ Rn, a ∈ A. This last expression is the
same as Wp(Pxt+1 , P̂xt+1) ≤ ε. Now, consider the transition probabilities from x ∈ q, q ∈ Q,
under a ∈ A and for probability P̂ξ of the disturbance:

γ̂x,a(q′) := TC(q′|x, a; P̂ξ)

for all q′ ∈ Q. By construction of the IMDP Î, γ̂x,a ∈ Γ̂a
q for all x ∈ q. Then, from Lemma B-

0.1, we get that Wp(γx,a, γ̂x,a) ≤ ε for all x ∈ q, since γx,a, γ̂x,a are the equivalent probabilities
over Q of Pxt+1 , P̂xt+1 . Therefore Theorem 5-4.1 follows.

Ibón Gracia Merino (5358779) Master of Science Thesis



Appendix C

Proof of Theorem 5-4.1

This proof has been inspired by the one presented in [12] and has been adapted to the setting
of reachability. This consideration means that we need to take into account different theorems
that guarantee convergence of value iteration. We begin the proof by considering the original
system and its robust MDP abstraction. Then we define a (deterministic) FSA that captures
the language of the specification, given as a scLTL formula. After that we define the products
between the original system (and its abstraction) with the FSA. Next we define strategies
for all the previous systems. Then we highlight that proving correctness for the case of
specifications given as scLTL formulas is equivalent to proving correctness in the simpler case
of reachability. Therefore, we limit to this scenario. For this one, we prove that the sequence
of value functions of the original system obtained via value iteration is bounded by those
obtained by performing robust value iteration on the abstraction. This completes the proof.
Consider the stochastic system (5-1) defined in Section 5-1. We can express this class of
systems as a parametric, continuous-state MDP C. To do so, we define as AC = UC the set of
actions of said MDP, where UC can be uncountable. Furthermore, we consider kernel TC in
(4-2) as the transition kernel of said MDP. Using the previous elements, we formally define
system (5-1) as the following parametric, continuous-state MDP:

Definition C-0.1. (Parametric, Continuous-State MDP) A parametric, continuous-
state MDP is a tuple C = (Rn, AC , T , OC , LC), where:

• Rn, with n ∈ N, is the (uncountable) set of states,

• AC is a (possibly uncountable) set of actions,

• T : B(Rn) × Rn × AC × Pp(Rn) → [0, 1] is a stochastic transition kernel such that it
assigns to each x ∈ Rn, a ∈ AC and Pξ ∈ Pp(Rn) a probability measure on the Borel
space (Rn, B(Rn)),

• OC is a finite set of atomic propositions or observations,

• LC : Rn → 2OC is a labelling function or observation map that assigns to each state in
Rn a subset of atomic propositions in OC.
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98 Proof of Theorem 5-4.1

The concept of paths, traces and strategy of C are the same as those defined in 4-1 and,
therefore, we do not sate them again to avoid repetition.

Next, consider the FSA A = (Z, z0, OC , δ, Zac) that represents the scLTL formula ϕ. We can
now define a stochastic hybrid system as the product Cϕ := C × A, which can be described
as another (parametric) MDP over the hybrid state Rn × Z [9]. Note that MDP Cϕ has a
set of accepting states, Rn × Zac, which correspond to states in the accepting set Zac of A
[4]. The transition kernel of Cϕ, for fixed Pξ is equivalent to kernel (4-2) whenever this one
leads to a transition that corresponds to an actual transition in A1. Next, we obtain a robust
MDP abstraction MR of the continuous system as we explained in Section 5-2, and we build
the product robust MDP MR

ϕ := MR × A as we described in Section 5-3. Notice that the
robust MDP MR

ϕ also has a set of accepting states, Q×Zac, which correspond to states in the
accepting set Zac of A. Using the robust value iteration algorithm described in that section,
we obtain the (time-dependent) Markovian strategy σ∗

ϕ of MR
ϕ . Moreover, this proof is valid

for any Markovian strategy of MR
ϕ . Furthermore, let us refine said strategy to the strategy

σ∗
Cϕ

of Cϕ by use making use of the function J defined in Section 4-4:

σ∗
Cϕ

((x, z); k) := σ∗
ϕ((J(x), z); k)

for all (x, z) ∈ Rn × Z, k ∈ N≥0. Additionally, let us translate strategy σ∗
Cϕ

into a memory-
dependent strategy σ∗

C over the finite paths wk
Rn of C, by using Lemma 5-3.1. Notice that we

stated Lemma 5-3.1 for robust MDPs, but it still holds for both IMDP models, since robust
MDPs are a generalization of the latter.

When it comes to satisfying ϕ, it is evident that the paths of C that, under strategy σ∗
C ,

satisfy ϕ are those that correspond to paths in Cϕ that reach the accepting set Rn ×Zac under
strategy σ∗

Cϕ
. In the same way, the paths of MR that satisfy ϕ are those that correspond to

paths in MR
ϕ that reach Q×Zac under strategy σ∗

ϕ. Therefore, proving correctness boils down
to proving that the probability of Cϕ reaching its accepting set is bounded by the probability
interval of MR reaching this set, both under their respective strategies. Since the exact proof
would be very difficult for a reader to understand due to the complex notation, we follow an
alternative approach: inspired by the proof of Theorem 2 in [7], we provide a proof in the
scenario of reachability for C and its robust MDP abstraction MR, forgetting about their
products with A. Furthermore, assume that the optimal strategy σ∗

MR has been obtained as
described in Section 5-3 as the solution of the maximal reachability probability problem for
target set Qtgt. Refine said strategy to the strategy σ∗

C of C as follows:

σ∗
C(x; k) := σ∗

MR(J(x); k),

for all x ∈ Rn, k ∈ N∪∞. Denote by Xtgt ⊂ Rn the region of the state space that corresponds
to Qtgt:

Xtgt :=
⋃

q∈Qtgt

q.

Moreover, let us denote by P (∃t ∈ N≥0 s.t. t ≤ k, wk
Rn(t) ∈ Xtgt|X, wk

Rn(0) = x, σ∗
C , Pξ) the

probability of C, for distribution Pξ of ξ, reaching the target set Xtgt within k steps while
1This is analogous to how we define the transition probabilities of a product IMDP in (2-3). However, for

simplicity, we do not state the definition of this kernel here.
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staying in set X ⊆ Rn under strategy σ∗
C and by starting in state x ∈ Rn. Furthermore,

consider the value function pk(x), for all x ∈ Rn, k ≥ 0, recursively defined for an arbitrary
Pξ ∈ Bε(P̂ξ) by

pk+1(x) =


1 if x ∈ Xtgt

0 if x ∈ Rn \ X∫
Rn pk(x′)TC(dx′|x, σ∗

C(x; k); Pξ) otherwise
(C-1)

and with p0(x) = 1 if x ∈ Qtgt and p0(x) = 0 otherwise. It is evident that, for all k ≥ 0

pk(x) = P (∃t ∈ N≥0 s.t. t ≤ k, wk
Rn(t) ∈ Xtgt|X, wk

Rn(0) = X, σ∗
C , Pξ)

for all x ∈ Rn [7]. Additionally, from Lemma 1 in [7] it holds that limk→∞ pk(x) = P (∃k ∈
N≥0 ∪ {∞} s.t. wRn(k) ∈ Xtgt|wk

Rn(0) = x, σ∗
C , Pξ) for all x ∈ Rn. The latter is the probability

of the paths of C, for distribution Pξ of ξ, ever reaching Xtgt while always staying in X by
starting from x ∈ Rn and by following strategy σ∗

C . For ease of notation, from now on we
refer to a strategy σ∗

MR of MR simply as σ, and to strategy σ∗
C of C simply as σC . Let us

state the following lemma:

Lemma C-0.1. (Bounds in Value Function of the Original System) Consider the
sequence of value functions {pk}k≥0 of the original system C as defined recursively in (C-1)
for an arbitrary Pξ ∈ Bε(P̂ξ). Furthermore, consider the sequences {pk}k≥0 and {pk}k≥0
obtained by performing robust interval value iteration on MR as described in Section 5-3.
Then, pk(q) ≤ pk(x) ≤ pk(q) for x ∈ q and for all q ∈ Q, k ≥ 0.

Proof. We will prove Lemma C-0.1 for the case of the lower-bounding sequence {pk}k≥0. The
proof of the case of the upper bound follows a similar reasoning. Let us start by considering
the robust interval value iteration introduced in Theorem 5-3.1. Now let us obtain the proof
for the case that x ∈ X. Consider an arbitrary Pξ ∈ Bε(P̂ξ). We begin by defining the
following choice of the adversary at iteration k, for all q, q′ ∈ Q:

γ∗
q,σ(q;k)(q

′; k) :=
∫

q′
TC(dx′|x∗,k, σ(q; k); Pξ)

where we define x∗,k := arg minx∈q pk+1(x), for all k ≥ 0. Notice that, from Lemma 5-4.1,
this is a feasible transition probability of MR, this is, γ∗

q,σ(q;k)(·; k) ∈ Γ̂q,σ(q) ⊕ ε for all q ∈ Q,
k ≥ 0. 2 We prove Lemma C-0.1 by induction: first, we assume that

pk(q) ≤ min
x∈q

pk(x) (C-2)

for all q ∈ Q. Then, we prove that, under assumption (C-2) we obtain

pk+1(q) ≤ min
x∈q

pk+1(x) (C-3)

for all q ∈ Q. We start from the base case at k = 0, where assumption (C-2) holds trivially:

p0(q) = min
x∈q

p0(x) =
{

1 if x ∈ Xtgt

0 otherwise
(C-4)

2In the case of DR-IMDPs, Lemma 4-4.1 proves that γ∗
q,σ(q;k)(·; k) ∈ Γq,σ(q) for all q ∈ Q, k ≥ 0, where

Γq,σ(q) is the set of feasible transition probabilities from q by σ(q) of the IMDP.

Master of Science Thesis Ibón Gracia Merino (5358779)



100 Proof of Theorem 5-4.1

for all x ∈ q, q ∈ Q. Using the initial condition in (C-4), we notice that Lemma C-0.1
trivially holds for x ∈ Xtgt and x ∈ Rn \ X: pk(q) = pk(x) = 1 for all x ∈ q, q ∈ Qtgt and
pk(qu) = pk(x) = 0 for all x ∈ Rn \ X, for all k ≥ 0. Now, let us perform the induction step
for q ∈ Q \ Qtgt:

pk+1(q) = max
a∈A

min
γq,a∈Γ̂q,a⊕ε

∑
q′∈Q

γq,a(q′)pk(q′)

= min
γq,σ(q;k)∈Γ̂q,σ(q;k)⊕ε

∑
q′∈Q

γq,σ(q;k)(q′)pk(q′)

≤
∑

q′∈Q

γ∗
q,σ(q;k)(q

′; k)pk(q′)

=
∑

q′∈Q

∫
q′

TC(dx′|x∗,k, σ(q; k), Pξ)pk(q′)

=
∑

q′∈Q

∫
q′

pk(q′)TC(dx′|x∗,k, σC(x∗,k; k), Pξ)

≤
∑

q′∈Q

∫
q′

(min
x′∈q′

pk(x′))TC(dx′|x∗,k, σC(x∗,k; k), Pξ)

≤
∑

q′∈Q

∫
q′

pk(x′)TC(dx′|x∗,k, σC(x∗,k; k), Pξ).

(C-5)

Now, let us express the last case in Equation (C-1) as:

pk+1(x) =
∫
Rn

pk(x′)TC(dx′|x, σC(x; k), Pξ) =
∑

q′∈Q

∫
q′

pk(x′)TC(dx′|x, σC(x; k), Pξ). (C-6)

Finally, comparing the right-most expression in (C-6) with the last one in (C-5) and taking
into account the definition of x∗,k, we get that∑

q′∈Q

∫
q′

pk(x′)TC(dx′|x∗,k, σC(x∗,k; k), Pξ) ≤ pk+1(x),

which completes the proof.

Furthermore, since we have proved Lemma C-0.1 for an arbitrary distribution Pξ ∈ Bε(P̂ξ),
Theorem 5-4.1 follows. Notice also that Lemma C-0.1 implies that value function pk(q) is
always a lower bound of pk(x), for x ∈ q, for all q ∈ Q, k ≥ 0. We must also highlight that,
while in this appendix we have provided a proof for Theorem 5-4.1, the proof of Theorem
4-4.1 follows the same reasoning: it suffices to consider the set Γq,a of transition probabilities
of the DR-IMDP, as defined in expression (2-2) instead of Γ̂q,a ⊕ ε, for all q ∈ Q, a ∈ A.
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