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ABSTRACT

The Automated Fiber Placement process is established in the aerospace industry for the production of composite
components. This technique places several narrow material strips in parallel. Within current industrial Auto-
mated Fiber Placement processes the visual inspection takes typically up to 50 % of overall production time.
Furthermore, inspection quality highly depends on the inspector. Therefore, automation of visual inspection
offers a great improvement potential. To ensure reliable defect detection the segmentation of individual defects
must be investigated. For this reason, this paper focusses on an assessment of defect segmentation algorithms.
Therefore, 29 structural, statistical and spectral algorithms from related work were assessed, theoretically, using
the 12 most relevant criteria as assessed from literature and process requirements. Then, seven most auspicious
algorithms were analysed in detail. For reasons of determinism, Neural Network approaches are not part of
this paper. Manually labelled prepreg defect images from a laser line scan sensor were used for tests. The test
samples contain five defect types with 50 samples of each. Additionally, layups without defects were analysed.
It was concluded that Adaptive Thresholding works best for global defect segmentation. The Cell Wise Standard
Deviation Thresholding performs also quite well, but is very sensitive to grid size. Feasible algorithms perform
reliable defect segmentation for layed up material.

Keywords: Image Segmentation, Automated Fiber Placement, Inline Inspection, Adaptive Thresholding, Com-
puter Vision, Composite Manufacturing, Laser Line Scan Sensor

1. INTRODUCTION

Lightweight structures are essential in the aerospace industry. Some good examples for an increasing demand
on lightweight structural components are the Airbus A350 XWB or Boing 787 wingcover and fuselage manufac-
turing.1,2 Carbon Fiber Reinforced Plastic (CFRP) offers superior stiffness and strength properties compared
to metallic materials. For this reason CFRP is gladly used for lightweight structures. The production of these
mostly complex lightweight structures is often quite expensive. To make this process economical, automated,
high rate production techniques are necessary. To meet aerospace’s high safety requirements a visual inspection
step subseqent to the fibre layup is needed.
Nowadays this manually performed inspection takes usually between 32 %3 to 50 %4 of overall production time.
Furthermore, due to the manual, visual inspection, the inspection quality is sometimes insufficient against the
background of the given requirements. This offers great potential for improvements in terms of quality and
speed.
One critical aspect during the automated inline inspection is the robust and reliable segmentation of defects
within an image. Because a Laser Line Scan Sensor (LLSS) is often used in research and development for inline
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inspection of Automated Fiber Placement (AFP) processes, we are focussing on grey scale depth images from a
LLSS. A LLSS uses the principle of triangulation to calculate geometrical information from a laser beam which
is projected onto a surface and reflected to a camera sensor with a slightly different position than the emitting
laser. Because the AFP technique is relatively novel but also getting established in industry, we selected this
technique for further investigation of the inspection process.
As Hanbay et al.,5 Mahajan et al.6 and Kumar7 summarised, a lot of research has been done in the field of
fabric defect segmentation in the textile industry. Because textiles are somehow very similar to CFRP, research
from this field can be very helpful for algorithm selection. Later on Sacco et al.8 and Zambal et al.9 published
Neural Network based defect detection methods for laser scanner depth images of AFP defects. These methods
are working quite well, but face the challenge of determinism and traceability of Neural Network decisions.
Consequentially, missing in this field is a traceable and deterministic algorithm which performs defect segmen-
tation with the sufficient precision, speed and robustness.
Within this postulation we like to focus on rapid defect detection. This is basically the first task in the inspection
of composite parts. Prior to the determination of defect types or geometrical measures, as many as possible of
the defects have to be found on the manufactured component. For this reason the following research questions
are selected for this publication:

Which algorithms are feasible to perform rapid defect detection for previous defined layup defect types?
What is the actual performance of feasible image segmentation methods for this use case?

Regarding these research questions, this paper uses findings from previous fabric defect detection research and
investigates these algorithms in the field of AFP defect segmentation. The findings of this publication should be
useful for manufacturers of inline inspection systems for AFP processes and will support the certification process
of such systems, especially in the aerospace industry.

2. STATE OF THE ART

2.1 Fiber Placement

Various Fiber Placement techniques are currently available on the market. Very common methods are AFP,10,11

Dry Fiber Placement (DFP),10,11 Automated Tape Laying (ATL)10 and Direct Roving Placement (DRP).12

These processes apply CFRP material layer by layer onto a tool, which is schematically shown in Figure 113

AFP is a technique which is needed to manufacture complex composite structures. Nowadays, this technique gets
more and more established in industrial aerospace manufacturing. Because this process is quite novel but also
used in industry, we selected this method for further investigations to realise a good transferability of research
results. During the AFP process multiple narrow preimpregnated material stripes, so called tows, are placed
along a previously programmed path, which is named a course.14 Each tow is supplied from an individual spool.
The supplied material consists of the prepreg material and a release film. The release film is removed during
the placement process and stored on another spool. Within the AFP process, composite material e.g. carbon
prepreg material is fed into an effector. This effector guides the material to the tools surface. The material
is heated at the moment of tow placement to achieve better tack properties.10 After placing the material, the
compaction roller presses the material onto the mold. Each final component consists of many CFRP prepreg
layers.13 Due to parallel heating with a heating system, the material adheres to the tool or previous layer. The
AFP process can be used to manufacture various part geometries. Rudberg15 expects that the AFP method will
be used more and more frequently in future applications.
Various defects possibly occur during fibre layup. These defects are often directly related to the lay up process
itself.14 Harik et al.16 have investigated the link between AFP defects and process planning, layup strategies
and machining. Potter17 has analysed factors for variability in AFP production. Referring to Potter17 and Harik
et al.16 all defects which can occur during fibre layup result in geometrical changes and deviations from an
accurate lay up surface. Common AFP defect types are wrinkles, twists, gaps, overlaps and foreign materials
(foil).14,16,18 These defects are presented schematically in Figure 2. Wrinkles and twists have a different but
distinct geometric shape. Gaps and Overlaps are very similar to each other regarding geometrical properties.
Due to their similarities, the differentiation between these two defect types is often quite difficult. The thin
shape of these defects enables the opportunity to analyse algorithms for this scenario. These defect types are
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Figure 1: Common basic principle of all fiber place-
ment methods, which consists of an effector with a
heating system and compaction roller.
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Figure 2: Examples of shape and look of considered
defect types.

also often used as exemplary defects by other researchers.14,16,18,19 Furthermore, foils are very common foreign
materials in manufacturing processes.17,20

2.2 Sensor technology and Machine Learning

Nowadays, inline inspection for AFP processes is a highly discussed topic in research and industry. InFactory
Solutions,21 Profactor,22 Electroimpact23,24 and Danobat Composites25 have developed LLSS based systems for
inline Quality Assurance (QA) for AFP processes. Electroimpact uses an individual LLSS system for monitoring
each tow. All the other companies mentioned use a single LLSS for inspection of the entire course.
Fraunhofer IIS investigates polarisation camera monitoring systems26,27 and NASA as well as the Institute of
Production Engineering and Machine Tools - University Hanover (IFW) focused on thermographic imaging in-
spection.28–33 These sensors acquire only 2D image data. The suppliers and industrial developers, mentioned
above, have focussed on LLSS based systems. The main advantage of a LLSS system is the ability to measure
3D information, which may be the reason of the success of this measurement technique in this field.21 In 2007,
Schmitt et al.34,35 started investigations on LLSS based techniques for contour scanning of fabrics and preforms.
They also analysed edge detection methods for the detection of misplacement defects of preforms. Schmitt et al.
managed to get sub-pixel accuracy for contour measurement and proof that the LLSS is a valid measurement
system for fabrics and preforms. Subsequently in 2012 Faidi et al.36 worked on ”Wind Turbine Manufacturing
Process Monitoring” in which they investigated laser triangulation systems for CFRP manufacturing. In partic-
ular, their aim was the detection and measurement of wires between 0.5 mm and 1 mm which were laminated
into CFRP laminates. Miesen et al.20 suggested a technique to detect defects with a point measurement laser
displacement system. In their research they explained influencing factors for deviation and investigates the mea-
surement accuracy of such a system. Furthermore, they showed several defect types and corresponding sizes.
Tonnaer et al.37 also have presented an approach for LLSS based inspection for AFP processes. They analysed
the accuracy of edge detection with Otsu’s algorithm38 for defect measurement using LLSS scan data.
Between 2008 and 2016 Hanbay et al.,5 Mahajan et al.6 and Kumar7 have presented plenty of algorithms for
fabric defect segmentation mostly without the use of Neural Networks. They all grouped the algorithms basically
in structural, statistical and spectral methods as well as other more advanced techniques and have compared
their individual strengths and weaknesses. Hanbay et al. have mentioned that especially statistical and spec-
tral analysis methods lead to good fabric defect detection results. They have also pointed out, that spectral
techniques work better for regular texture patterns like fabrics. Mahajan et al. have shared this view but also
suggests the 9th order Markov Random Field model as an alternative, good performing model based approach.
Kumar pointed out, that Gabor filters worked well as an individual method. Combinations of methods however,
can lead to even better results.
Another crucial task in the field of image processing is the smoothing of sensor data and intensity value adjust-
ment. The Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm is one feasible technique for
image contrast equalisation. It was developed in the mid 80s and was used first by Pizer et al.39 in the field of
medical imaging. Unlike global equalisation techniques, the CLAHE method considers small image areas called
”tiles” and performs histogram equalisation for each of these regions. To avoid over amplification of image noise
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Figure 3: The figure presents the setup for acquisition of defect data from CFRP prepreg material. This setup
uses a KUKA Robot with mounted C5 LLSS and performs a linear movement parallel to the lay up surface.

the contrast is limited to a specified value. Pixel values above this relative threshold are shifted to a correspond-
ing neighbour bin.
As mentioned above plenty of algorithms and sensor systems from various fields are already available. Especially
algorithms from textile inspection seam feasible to adapt to our use case. Within this publication we like to use
a feasible selection of algorithms from textile research and apply them to defect detection on LLSS depth images.
Subsequently the methodology to assess these algorithms performances is described.

3. METHODOLOGY

For validation of segmentation algorithms a manageable and heterogeneous set of defect types need to be cho-
sen. Due to the different defect properties mentioned in section 2, we selected wrinkles, twists, gaps, overlaps
and foreign materials (foil) as example defects for the experiments. Figure 2 presents these defects. Generally,
’out of data’ deviations were not considered in this paper. To assess image analysis methods and classification
algorithms, representative data needs to be acquired. This collection of data should be reproducible and rep-
resentative regarding the actual manufacturing process. For this reason, a setting which is independent from
manufacturing influances like heating radiation, undesirable contamination or geometric tilting of the lay up ma-
chine is used. A feasible setup is presented in Figure 3. This setup consisted of an articulated robot from KUKA,
the Automation Technology GmbH (AT) - C5 Sensor40 and a CFRP prepreg material defect sample which has
been mentioned in section 2.1. The AT C5 Sensor acquires 4095 (w) x 500 (h) px, 16-bit grey scale depth images
from a 250 x 150 mm fibre layup sample. The image resolution in the width direction is the maximum available
sensor resolution. The resolution in the height direction is influenced by the exposure time per pixel row and
the time between frames. For this reason the resolution decreases with increasing exposure time. A laser voltage
of 5V and the FIR-PEAK laser line detection algorithm41 was used to acquire the mentioned depth image. The
FIR-PEAK algorithm is a derivative filter, which detects the zero crossing point of the first derivative of the
laser intensity image. The data capturing is done over ethernet connection using the GenICam protocol.42 The
analysis of these images were performed on a computer with Intel Xeon Gold 5122 @ 3.60 GHz CPU, 48 GB RAM
and NVIDIA Quadro P6000 GPU as well as OpenCV 3.4.143 with Python. Relevant calculations for analysis
were performed on the CPU. The GPU was only used for visualisation. Image capturing was done by a linear
robot movement, across the entire length of the defect samples, with a velocity of 200 mm/s.
Various defect segmentation algorithms are available especially from research in fabric defect detection, which

have been presented in section 2.2. The mentioned segmentation algorithms were assessed on a theoretical basis
with a focus on the overall inline inspection system. This means, that this defect segmentation needs to proceed
fast and find most defects, but a less accurate defect segmentation is acceptable. Therefore, nine quantitative
performance criteria were specified, weighted and the algorithms were assessed, which is presented in Table 1.
This table contains all structural, statistical and spectral algorithms found during the literature review in the
computer vision fields medical imaging, autonomous driving and textile inspection. Additionally, the four qual-
itative criteria ’functional principle’, ’algorithms features/ decision criterion’, ’estimated sensitivity for defect
types’ and ’type of invariances’ are considered for evaluation. For algorithm selection, we rated algorithms from
Table 1 using performance assessments available in literature. The corresponding references are given in the
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Table 1: Table for theoretical assessment of defect segmentation algorithms. 29 algorithms from literature were
assessed by nine quantitative criteria from related research. The table summarises all algorithms which were
found during the literature review. The range of weights goes from unimportant (1) to very important (5). The
range of assessment values lies between 0 (no match) and 5 (entirely true). ”-” means: Not enough information
available. The algorithms which were investigated in this paper are marked in grey.
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Weights [1-5] 2 5 1 5 3 5 3 4 5
Edge detection 3 5 4 3 3 4 3 3 3 3.48 44–46

Region operations 0 4 4 2 2 2 2 2 2 2.24 44–49

Laplaceian of Gaussian 3 4 4 2 1 1 3 2 2 2.27 44

Projection (hor./vert.) 1 5 4 4 3 3 4 3 3 3.45 50

Local Binary Patterns 1 4 4 4 3 4 4 4 2 3.42 51–53

Principle Comp. Analysis 0 5 4 3 2 2 3 2 1 2.48 52,54

Linear discr. analysis 0 5 2 3 2 2 3 2 1 2.42 55

STD per cell thresholding 2 4 4 3 3 4 4 3 2 3.21 5,44

Histogram approach 2 4 4 3 3 3 1 3 2 2.78 5,44,45

OTSU 2 5 4 4 3 4 4 3 4 3.81 38,44,56,57

Adaptive Thresholding 3 5 4 5 5 5 4 4 4 4.48 6,7, 44,48,57

Fractal dimension 1 4 3 4 2 1 1 3 3 2.61 6,7

First-/ Sec. order statistic 2 4 4 3 3 3 4 3 2 3.06 6

Texture energy by Laws 0 3 4 3 3 3 2 3 3 2.76 6,58

Cross correlation analysis 0 3 2 4 2 2 2 3 1 2.30 7

Auto correlation 0 2 3 4 4 3 1 3 1 2.42 5,53

Morphological operations 3 4 3 4 4 4 4 3 4 3.79 5,7, 44,45,49

Co-occurrence matrix 1 3 3 4 3 3 3 2 1 2.61 5–7,53

Eigen filters 0 4 3 3 3 3 1 1 1 2.24 7,59

Rank-order histogram 2 5 4 3 3 3 3 3 4 3.42 7

Local linear transforms 0 0 0 0 0 0 0 0 0 0 7

(Discrete) Fourier Trafo. 3 4 3 4 3 4 1 2 2 3.00 5–7

Optical Fourier Transform - - - - - - - - - - 7

Windowed Fourier Trafo. 3 4 2 4 3 3 3 3 2 3.12 5–7

Gabor transform 2 4 3 5 4 4 4 4 4 4.00 5–7

Optimized FIR Filters 1 3 2 4 2 2 4 4 1 2.67 7

Wigner Distributions 1 1 3 4 2 2 4 3 4 2.73 7

Wavelet Transform 1 3 2 4 4 4 3 4 2 3.21 5–7

Hotelling T2 statistic 1 3 1 4 4 4 4 3 2 3.15 60
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right column. Subsequently, we calculated a weighted performance value. The ten algorithms with the great-
est performance values, which means a performance value ≥ 3.21, were considered for further investigations.
The edge detection with Gradient Thresholding (GT), Image Projection (IP), Cell Wise Standard Deviation
Thresholding (CT), OTSU Thresholding (OT), AT, Morphological Segmentation (MS) and Gabor Filter Seg-
mentation (GF) algorithms have been identified for further investigations in this paper. These algorithms are
highlighted in Table 1 and were implemented for validation purposes. The basic principle of the algorithms and
this selection are briefly explained below.
Due to traceability, it is crucial to use algorithms which can be easily parametrised by simple parameter adjust-
ment and do not require comparative data. For this reason, the Local Binary Patterns segmentation was rejected.
The Rank- order histogram technique sorts bins of grey values according to the number of containing pixels. In
this way the distribution of pixel values can be displayed but it is not possible to distinguish between areas with
and without defects. Furthermore, this is a global criterion that does not allow the localization of prominent
areas. For these reasons the Rank- order histogram is not usable for defect detection. The ’cell wise histogram
analysis’ calculates the statistical measures ’mean’ and ’standard deviation’ for each individual cell in a large,
image-spanning grid. Cells standard deviations greater than a given threshold are marked as conspicuous region,
which can be used to estimate and localise defects. With signal evaluation by means of wavelet transformation,
some basis function is used to analyse the input signal. For image analysis a matrix with this basis function is
shifted over the image and thus individual areas are examined. One popular and easy to use example for a base
function is the Gaussian function, which is used for the so called Gabor filtering. For this reason, we selected
the OpenCV implementation of the GF,61 which is also commonly used in fabric inspection.
The GT was implemented by using a Sobel filter. This method performs a convolution operation Gi = Si ∗A on
the image matrix A in the x and y directions with two individual convolution masks Si. The results are added

up as G =
√
G2

x +G2
y. The edges are estimated applying binary thresholding on matrix G.62 IP calculates a

dimensional reduction vector ri for each row rr(i) and each column rc(j) using ri =
∑n,m

i,j=0(I(i, j)).63 This
technique treats each image row/ column as an individual vector and accumulates the corresponding values.
Afterwards, a matrix of ones with size equal to the original image Jn,m is multiplied by the projection vectors
ri which means Pr = Jn,mrr and Pc = Jn,mrc. Subsequently, the overall projection matrix P is calculated by
P = Pr + Pc with binary thresholding applied to find the defect areas. OT looks for the threshold t which
minimises the variance between two classes, which is defined as the weighted variance of these two classes.64 Put
this as equation σ2

w(t) = w0(t)σ2
0(t) + w1(t)σ2

1(t) where wi are the weights and σi are the standard deviations
of these classes.38 AT transforms the input image I(i,j) into a binary image Ib according to Ib(i, j) = 255 if
I(i, j) ≥ T (i, j) otherwise Ib(i, j) = 0 with T (i, j) as a pixel wise individual threshold.64 MS in this paper
explains a morphological closing operation which is a dilatation operation followed by an erosion operation like
(I ⊕ K) 	 K with input image I and morphological kernel K.65 To assess the segmentation behaviour, previ-
ously acquired data were labeled, manually, with the python tool ’LabelImg’66 and were used as ’ground truth’
for comparison of various algorithms. The validation criteria are similar to the selection criteria from Table 1.
For evaluation, 50 defect samples per class were used as the maximum amount of test data currently available.
Furthermore, the two best performing algorithms were analysed in detail.
Due to the large number of zero value pixels within the raw image, a pre-processing is necessary, in order to
reduce their influences. First the images were dilated to increase the number of information-containing image
pixels. With the aim to use the whole available value range a contrast equalisation was performed. To smooth
edges from the dilatation step a subsequent Gaussian filtering was performed. Finally the image was resized to
a constant size of 1000 x 1000 px. For further analysis the image borders were cropped by 60 px at the top and
the bottom as well as 40 px at the left and right edge with aim to compensate for artefacts from the dilatation
and filtering steps. In pre-tests the kernel size ksize = 3 × 3 was used and the number of dilatation steps were
varied between 4 - 12, with aim of finding the best performing configuration. The contrast equalisation was per-
formed with the CLAHE algorithm with variing tile sizes from 5 - 25 px squared. The clipping limit was varied
between 2 and 26 to find the best performing configuration. The image padding used the same parameter as
the cropping step before, to compensate for the resulting defect position error. These settings has been inspired
by configurations from Ma et al.67 and Muniyappan et al.68 The Gaussian kernel was set to size ksize = 5 × 5
with σ = 0.5. This raw image pre-processing procedure is presented in the flow chart in Figure 4. Regarding
the optimisation approach it is possible, that the pre-processing settings have influences on the decision of the
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Figure 4: This flow chart shows the sequence of calculations for raw image pre-processing with CLAHE algorithm.

Table 2: The table lists the pre-processing parameter which are modified using specific step size, with aim to find
the best parameter configuration for each segmentation algorithm, which generates the best detection results.

Parameter Interval Step size
Dilatation steps [4,12] 1
CLAHE - Clip Limit [2,26] 6
CLAHE - Tile size [5,25] 4
Thresh Img. Dilat. x - Kernel [3,9] 1
Thresh Img. Dilat. y - Kernel [3,9] 1
Thresh Img. Dilat. Steps x [6,12] 2
Thresh Img. Dilat. Steps y [6,12] 2

actual defect detection algorithms. For this reason, every combination of pre-processing configuration and defect
detection algorithm setting was cross checked automatically by the computer. The best performing configuration
for the combination of certain pre-processing and segmentation algorithms, considering all defect types, was used
for further assessments in this paper. Because the lowest possible number of undetected manufacturing defects
is desirable for the manufacturing process, the optimisation criterion was the reduction of undetected defect
areas, which means the reduction of false negative values. The investigated defect segmentation step is only the
first stage in overall defect analysis within the inspection application. For this reason excess area value up to
100 % can be tolerated. This means, that the segmentation area can be up to twice as large as the labelled
’ground truth’ area. This optimisation was performed iteratively for each considered segmentation algorithm.
The pre-processing was optimised in parallel to each segmentation algorithm. The optimisation criterion for
this step is the maximisation of defect detection accuracy, ideally to the optimum of 100 %. Subsequent to
both optimisation steps, the performance of each considered algorithm was determined and compared. The
parameters from Table 2 were varied with a given step size to estimate the parameter setting with the best
overall detection performance with respect to the previously mentioned optimisation conditions. With the aim
to find the best parameter combination, defect detection results were automatically assessed by the computer
for every possible parameter combination. The discussed results in this publication are always based on the best
performing configuration for each particular case of consideration. The parameters from Table 3 were varied
in parallel to the pre-processing configuration with the aim to test every possible parameter combination and
to find the best setting for defect segmentation algorithms. For evaluation, eight measurements were analysed,
which are related to the literature criteria from Table 1. The calculation time was analysed to reject algorithms
with a huge computational time. Defect accuracy and the counter part false negatives rate were investigated
to estimate the algorithms detection performance. The false positive values were measured and divided into
number based and area based false positive detections to separate between size and counts of these measure-
ments. Regarding correctly detected defects, the excess area and the overlap area were calculated to investigate
unnecessary selected data and superfluously marked areas.

4. RESULTS

The individually optimised pre-processing settings from Table 4 and segmentation algorithms from Table 5 were
used for all of the following tests. These settings were estimated using the individual optimisation approach
described above and specified in Table 3. Figure 5 graphically represents the calculation times for each selected
algorithm from Table 6. The MS, AT and OT performed the segmentation swiftest. They need less then 31 ms
for Full Image (FI) implementation and less then 10 ms for Grid Based (GB) implementation per input image.
The GF performes most unpalatably with a mean calculation time of greater than 300 ms. Figure 6 shows the
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Table 3: The table presents the variations of detect detection algorithms configurations.
Algorithm Parameter Interval Step size

GT
Kernel size sobel filter [3,7] 2
Sobel threshold x [120,150] 10
Sobel threshold y [120,150] 10

CT

Cell size x [10,40] 10
Cell size y [10,40] 10
Cell overlap [0,0.5] 0.5
Threshold STD [4,10] 1

IP
Numb. rot. x [0,3] 1
Threshold [90,140] 10

OT None None None
AT Thresh. Offset [-40,-10] 4

GF

Kernel size x [7,31] 4
σ [1,10] 1
λ [1,10] 1
Threshold Gabor filter [5,10] 1

Table 4: The table shows the calculated best performing image pre-processing parameter configuration for each
detection algorithm using a combination of dilatation and CLAHE algorithm.
Legend: Single values: < FI = GB > | Different values < FI >;< GB > | ” same value as cell above
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Table 5: The table presents the variations of defect detection algorithms configurations which were used for tests.
The same configuration was used for FI and GB.

Algorithm Parameter Configuration

GT
Kernel size sobel filter 5
Sobel threshold x 130
Sobel threshold y 140

CT

Cell size x 10
Cell size y 10
Cell overlap 0.5
Threshold STD 7

IP
Numb. rot. x 1
Threshold 130

OT None None
AT Thresh. Offset -20

GF

Kernel size x 31
σ 10
λ 10
Threshold Gabor filter 10

MS None None

Figure 5: The radar charts compare the calculation times in Milliseconds [ms] of each individual detection
algorithm.

Table 6: The table presents the calculation times and standard deviations in Milliseconds [ms] for all considered
algorithms for FI and GB configuration.

Calculation time [ms]

Algorithm FI GB
GT 67.9 (σ = 3.9) 22.9 (σ = 1.0)
CT 143.4 (σ = 8.4) 69.8 (σ = 0.6)
IP 51.3 (σ = 3.9) 11.8 (σ = 1.0)
OT 30.7 (σ = 3.2) 8.0 (σ = 1.6)
AT 30.0 (σ = 4.0) 7.6 (σ = 0.1)
GF 340.5 (σ = 49.3) 320.6 (σ = 8.6)
MS 21.0 (σ = 1.9) 3.0 (σ = 0.6)
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Figure 6: Radar charts for comparison of FI and GB detection accuracies and corresponding false negative rates
with individual best performing pre-processing, considering all defect types. Co-Domain: [0,1]

Table 7: Defect detection results for AT and CT are presented in detail, considering all defects. The values are
given in %

FI AT GB AT FI CT GB CT
Detection accuracy 81.0 (σ = 28.5) 100.0 (σ = 0.0) 97.6 (σ = 6.1) 98.2 (σ = 4.1)
Position accuracy 67.9 (σ = 28.8) 77.9 (σ = 24.5) 76.8 (σ = 24.3) 77.9 (σ = 24.5)
False neg. rate 18.7 (σ = 28.4) 0.0 (σ = 0.0) 2.4 (σ = 6.1) 1.8 (σ = 4.1)
False pos. rate (Number) 22.3 (σ = 20.3) 44.2 (σ = 33.3) 29.2 (σ = 23.5) 35.7 (σ = 30.4)
False pos. rate (area) 3.1 (σ = 0.9) 8.7 (σ = 4.6) 14.8 (σ = 6.2) 11.8 (σ = 4.8)
Excess area 64.1 (σ = 16.2) 69.0 (σ = 24.2) 61.4 (σ = 22.4) 68.3 (σ = 16.8)
Overlap area 11.6 (σ = 10.6) 9.0 (σ = 10.1) 9.9 (σ = 9.1) 15.7 (σ = 11.6)

results for defect accuracies and false negative rates when considering all defect data. We see that the AT and
CT algorithms in the FI and the GB implementations perform best for the experimental setup. The 5th most
precise algorithm is the FI GT algorithm. All the other algorithms show detection rates below 50 %, which is
not usable for this application. For this reason, we focus on the AT and CT algorithms in both variations, for
further investigation in this paper.
Subsequently both variants of AT and CT are investigated in detail, due to the good segmentation results in
all considered cases. Figure 7 shows the test results for these two segmentation techniques. The results of both
techniques are presented in Table 7. The GB AT algorithm shows the best overall detection result with 100 %
detection accuracy, followed by GB CT algorithms with 98.2 % (σ = 4.1 %) detection accuracy. A similar
result can be seen for the defect position accuracy. Therefore the GB AT and both CT algorithms show position
accuracies around 78 % followed by the FI AT algorithm with a position accuracy around 68 %. Surprisingly, the
number based false positives rates are much lower for both FI implementations than for the GB implementations.
Furthermore, it is notable, that the average ground truth regions and the automatically segmented areas do only
overlap by around 15 % for both methods, but the excess area for detected defects is quite high.
Especially the detection results for the analysis of all considered defects are much better than for the competing
algorithms. For an inspection application the region of interest would need to be enlarged artificially.
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Figure 7: Detection results for best performing algorithms AT and CT considering all defect types. The bars
represent the standard deviation.

5. DISCUSSION

In comparison to the Neural Network based defect detection results from e.g. Schmidt et. al,31,32 the classical
image segmentation techniques mentioned in this paper generate very usable results. The selected segmentation
algorithms from fabric inspection worked quite well except the GF algorithms, which produce bad detection
results. Regarding this issue, Hanbay et al.5 mentioned in their work that GF is only feasible for relatively
uniform structured image data. The prepreg material LLSS data in this publication contains not evenly dis-
tributed artefacts. Taking this effect into account, the behaviour of the GF algorithms is comprehensible. The
OT algorithms also deliver a weaker performance compared to Tonnaer et al.37 This is probably caused by the
brightness gradient in the image, which causes the algorithms to segment a very large image area. An improved
pre-processing which is more tolerant for changes in brightness may reduce this issue. It should also be noted,
that the CLAHE image adjustment algorithm is very sensitive to the assigned settings, particularly with regard
to its ’clip limit’. The clip limit is a previously defined value. The area of the histogram above this clip limit is
distributed over the entire base of the histogram and thus adjusts the resulting image histogram. In general it
can be seen that pre-processing is crucial in terms of noise reduction. This step needs to be adjusted individually
for each setup and production process.
With regard to the research questions, it should be noted, that the AT and CT algorithms are feasible for defect
detection for CFRP prepreg material. The GT algorithms also perform acceptably defect detection results but
only for geometrically larger defects or as GB implementation.
For most cases AT and CT show detection accuracies > 95 % and for protruding defects even up to 100 % mean
detection accuracy. The positioning accuracy estimates defect position with acceptable accuracy with mostly less
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than 30 % deviation from labelled ground truth defect position. Unfortunately, the actual defect segmentation
with regard to segmentation area is much worse, for both overlap and excess area.
In future work, the influences of various materials and changing LLSS settings needs to be investigated. Espe-
cially varying optical material properties can have an impact on some algorithms. For this reason, these optical
material properties will need to be investigated and linked to the previous findings. Furthermore a detailed
analysis of the defect detection performance for individual defect types or geometrical groups of defects need
to be investigated. In addition it should be mentioned, that the pre-processing can be optimised for better
performance, which was not part of this publication, as mentioned above.

6. CONCLUSION

In summary, it can be stated that Grid Based Adaptive Thresholding and both Cell Wise Standard Deviation
Thresholding implementations enable detection accuracies > 97 % with defect position accuracies > 75 %. It is
worth noting that the algorithm performance is highly influenced by the pre-processing or rather the input data.
For this reason, the pre-processing step needs to be adjusted for each material, process, sensor and algorithm,
individually. The segmentation of particular defect regions performs even worse with overlapping below 20 % in
average, which is a noteworthy result.
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