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Abstract
Given a domain � ⊂ R

n , the de Rham complex of differential forms arises naturally
in the study of problems in electromagnetism and fluid mechanics defined on �,
and its discretization helps build stable numerical methods for such problems. For
constructing such stable methods, one critical requirement is ensuring that the discrete
subcomplex is cohomologically equivalent to the continuous complex. When � is a
hypercube, we thus require that the discrete subcomplex be exact. Focusing on such
�, we theoretically analyze the discrete de Rham complex built from hierarchical
B-spline differential forms, i.e., the discrete differential forms are smooth splines
and support adaptive refinements—these properties are key to enabling accurate and
efficient numerical simulations. We provide locally-verifiable sufficient conditions
that ensure that the discrete spline complex is exact. Numerical tests are presented
to support the theoretical results, and the examples discussed include complexes that
satisfy our prescribed conditions as well as those that violate them.
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1 Introduction

While many partial differential equations (PDEs) may be couched as minimization
problems, a large swath of them aremore naturally described as saddle-point problems.
Numerical solutions of these PDEs require special care since the discrete problem is
not guaranteed to be well-posed for all choices of finite dimensional spaces even if
the continuous problem is. For instance, it may be necessary to verify (for each com-
bination of finite dimensional spaces) the Ladyzhenskaya–Babuska–Brezzi condition
for problems of interest such as electromagnetism and fluid flows. On the other hand,
the language of exterior calculus provides an abstract framework that can be used to
uniformly discuss a large class of PDEs as well as their discretizations. This frame-
work has yielded an elegant approach, dubbed finite element exterior calculus [2, 3],
for developing well-posed discrete formulations. In this document, and for problems
posed on n-dimensional domains in R

n , n ≥ 1, we provide new theoretical results
that can help build such well-posed discretizations using finite dimensional spaces of
locally-refinable spline functions.

The use of spline functions for numerically solving PDEs has been popularized by
the emergence of isogeometric analysis [16]. A generalization of the classical finite
element method [17], the isogeometric analysis philosophy relies on the use of spline
functions [9, 23] for describing both the domain on which the problem is posed as
well as the discrete solution. One objective of this approach is to greatly simplify the
application of numerical methods to geometries of engineering interest, which are
themselves designed within computer-aided design software using spline functions
[13]. The last two decades have seen this approach applied successfully to challenging
problems such as full scale wind turbine simulations [4] and performance assessment
of cardiac implants [19]. Moreover, recent theoretical developments [5, 22] have also
given credence to the large amounts of numerical evidence that suggested that smooth
splines demonstrate better approximation behaviour per degree of freedom than less
smooth or classical C0 and C−1 finite element spaces [10].

Therefore, in this document we focus onmethods that extend finite element exterior
calculus by utilizing smooth splines in lieu of the classical C0 and C−1 finite element
spaces. The existing approaches [6, 7, 11] in this line of research have predominantly
focused on PDEs that arise as Laplacians of the de Rham cochain complex of (L2

completions of) smooth differential forms. The said approaches either focus on iden-
tifying spline spaces that can be used to stably discretize such PDEs [6, 8, 12, 18,
26], or they use those spline spaces in applications of interest such as magnetohydro-
dynamics [21], where exact satisfaction of physical conservation laws in the discrete
setting is desirable.

When identifying stable discretizations for a PDE arising from some cochain com-
plex, one of the main considerations in (spline-based) finite element exterior calculus
is the identification of discrete spaces that together form a cohomologically-equivalent
subcomplex of the continuous one.1 Evans et al. [12] were the first to study this for
locally refinable spline functions called hierarchical B-splines [20]. Their main result
identifies sufficient conditions for ensuring that the hierarchical B-spline spaces on a

1 The other main considerations (e.g., commuting projections) are outside the scope of the present work.
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rectangular � ⊂ R
2 form an exact subcomplex of the de Rham complex of L2 differ-

ential forms on �. In this manuscript, we generalize and extend this to subdomains
of Rn for any n ≥ 1. The main contribution of this manuscript is the identification of
locally-verifiable sufficient conditions that guarantee the exactness of the complex of
hierarchical B-spline differential forms defined on a box (a.k.a. a hypercube)� ⊂ R

n .
We describe our main result here (albeit a bit imprecisely) so that a reader familiar

with hierarchical B-splines [20] and the complex of B-spline differential forms [6] can
get a flavor of our main result.

Theorem Consider an n-dimensional box � ⊂ R
n and an associated domain

hierarchy

� =: �0 ⊇ �1 ⊇ · · · ⊇ �L ⊇ �L+1 := ∅ .

On each ��, define a complex of tensor-product B-spline differential forms as in
[6] and, assuming nestedness, use Kraft’s selection mechanism [20] to build a
complex of hierarchical B-spline differential forms [12]. Moreover, assume the
following for any � < L.

• ��+1 is the union of supports of level � B-spline 0-forms.
• If a level-� or level-(� + 1) B-spline, φ, is supported on a union A of refined
level-� 0-form B-splines, then there is a “nearby” level-� 0-form B-spline α

such that supp(φ) ⊂ supp(α) ⊂ ��+1.
• If two level � B-spline 0-forms αi and α j are supported on ��+1, and if
the intersections of their supports has a “minimal size”, then there exists a
“shortest chain” of level � B-spline 0-forms from αi to α j , with each B-spline
in the chain supported on ��+1.

Then, the complex of hierarchical B-spline differential forms is exact.

Here, Kraft’s selection mechanism is the selection mechanism of Definition 3.1.

See Definitions 4.1, 4.2, 4.3 and Assumption 3 for the precise statement. Proof of this result is given
in Theorem 4.23.

In the above, by a “chain” of B-splines from αi to α j , we mean a sequence of B-
splines—with the first and the lastB-splines in the sequence beingαi andα j—such that
each B-spline in the sequence is obtained from the preceding one by a unit translation
of its support in index space [16]. By a “shortest chain”, we mean a sequence with
the smallest number of B-splines. Note that this assumption is locally-verifiable, i.e.,
it can be checked in a local manner for any given hierarchical B-spline mesh.

We start this manuscript by recalling the basics of the de Rham complex of differen-
tial forms (Sect. 2) and the construction of the hierarchical B-spline complex (Sect. 3).
Section4 contains our main result, which is derived by using the notion of Mayer–
Vietoris sequences [15]. We discuss implementational aspects and present numerical
tests that complement our theoretical results in Sect. 5 before concluding in Sect. 6.
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2 The de Rham Complex of Differential Forms

Before discussing exactness of the discrete (spline) complex of interest for numerical
analysis, we first briefly introduce the continuous de Rham complex that we aim to
approximate using these splines. For the sake of clarity and brevity, we do not attempt
to fully characterize all of the mathematical objects with which we work. Instead, we
emphasize only those properties that will be necessary for understanding the following
mathematical presentation. A reader more interested in a full picture may want to read
[1] or [24] for a more thorough introduction.

Let� ⊂ R
n be a bounded domainwith a piecewise-smooth Lipschitz boundary and

let Ty� = R
n denote the n-dimensional tangent space at y ∈ �. A smooth differential

j-form f , j = 0, . . . , n, on � is a smooth field such that fy is a real-valued skew-
symmetric j-linear form on Ty� × · · · × Ty�. Let � j (�) denote the space of all
smooth differential j-forms, j = 0, . . . , n.

For j = 0, . . . , n, and f ∈ � j (�), the exterior derivative is a linear map, d j :
� j (�) → � j+1(�), such that d j+1 ◦ d j = 0. By convention, d j is the zero map if
j < 0 or j ≥ n, and � j (�) := 0 if j < 0 or j > n. For our purposes, we will not
need the explicit definition of d j , only its properties will be sufficient.

With L2� j (�) denoting the completion of � j (�) with respect to the L2 inner
product of j-forms (·, ·)L2� j (�), we define H� j (�) as

H� j (�) :=
{
f ∈ L2� j (�) : d j f ∈ L2� j+1(�)

}
. (1)

With (·, ·) := (·, ·)L2� j (�), we equip H� j (�)with the following graph norm-induced
inner-product,

( f , g)H� j (�) := ( f , g) +
(
d j f , d j g

)
. (2)

Note that H�0 = H1(�) and H�n(�) = L2(�). Then, the L2 de Rham complex on
� is the bounded (since all d j are bounded linear operators) and closed (since image
each d j is closed in H� j+1) Hilbert complex defined as

R : H�0(�) H�1(�) · · · H�n(�).
d0 d1 dn−1

(3)

The composition property of the exterior derivative implies that the following con-
tainment holds for all j ,

Im(d j−1) ⊆ Ker(d j ). (4)

Members of H� j in Ker(d j ) are called j-cocycles or closed, and the members of
H� j in Im(d j−1) are called j-coboundaries or exact. The j th cohomology space
associated to the complex R, H ( j)(R), is defined as the following quotient,

H ( j)(R) = Ker(d j )/Im(d j−1). (5)
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The cohomology space H ( j)(R) measures the extent to which the equality in Eq.
(4) fails to hold. When � is contractible, we have H (0)(R) = R and H ( j)(R) = 0,
j = 1, . . . , n.
In this document, we will only consider the variant of R with homogeneous

boundary conditions. This complex is built up from spaces with vanishing bound-
ary conditions,

R0 : H�0
0(�) H�1

0(�) · · · H�n
0(�),

d0 d1 dn−1
(6)

where H�
j
0(�) is the space of j-forms with vanishing trace on ∂�, j = 0, . . . , n −

1, and H�n
0(�) = H�n(�); see [1] for details. When � is contractible, we have

H ( j)(R0) = 0, j = 0, . . . , n − 1 and H (n)(R0) = R.
Finally, wewould like to briefly recall the notion of cochainmaps. LetV = (V , dV )

and W = (W , dW ) be two subcomplexes of R0, i.e., for all j , Vj ,Wj ⊆ H�
j
0 and

d j
V and d j

W are obtained by restrictions of the exterior derivative d j . Then, linear maps
f j : V j → W j are called cochain maps if they commute with the differentials for all
j ,

d j
W ◦ f j = f j+1 ◦ d j

V . (7)

Cochain maps preserve closed and exact forms and, consequently, induce maps
between cohomology spaces of the two complexes, f ∗,( j) : H ( j)(V) → H ( j)(W).
Additionally, if W is a subcomplex of V , the inclusion ι : W → V is a cochain map
and induces a natural map between their cohomologies. If, additionally, there exists a
cochain projection map from V toW , it induces a surjection of cohomologies. In par-
ticular, the dimensions of H ( j)(W) are then bounded from above by those of H ( j)(V)

for all j .

3 Notation and Preliminaries

We now set the framework to define the hierarchical B-spline complex of discrete
differential forms, proceeding largely as in [12], albeit in parametric dimension n.
We begin by describing the univariate scenario. Note that all the spaces defined here
already incorporate the relevant homogeneous boundary conditions.

3.1 Univariate B-splines

Given polynomial degree p ≥ 1 and an integer m ≥ 1, consider a knot vector, i.e., a
non-decreasing sequence of real numbers called knots, 	 = (ξ1, . . . , ξm+p+1), such
that

ξ1 = · · · = ξp < ξp+1 ≤ · · · ≤ ξm+1 < ξm+2 = · · · = ξm+p+1. (8)
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For simplicity, we will assume that all knot vectors are such that ξ1 = 0, ξm+p+1 = 1.
Note that the first and last knots both appear with multiplicity p. We also assume that
no other knot in 	 appears more than p times.

Given knot vector	, we will define two spaces of piecewise-polynomial functions.
First, denote with X 0(	) the space of piecewise-polynomial functions of degree p
defined on the partition of [0, 1] defined by the unique values of the knots ξi , such
that:

• the functions are C p−r smooth at a knot ξi that appears in 	 with multiplicity r ,
and,

• the functions vanish at ξ = 0 and ξ = 1.

Next, denote withX 1(	) the space of piecewise-polynomial functions of degree p−1
defined on the partition of [0, 1] defined by the unique values of the knots ξi , such that
the functions are C p−r−1 smooth at a knot ξi that appears in 	 with multiplicity r .

The dimension ofX j (	) ism+ j , j = 0, 1, andwe can definem+ j basis functions
that span X j (	). We will choose univariate B-splines as the basis for these spaces

and we will denote them with φ
j
i,p, i = 1, . . . ,m + j ; the set containing these basis

functions will be denoted as B j (	). This basis has many useful properties, and the
ones most interesting for this manuscript are the boundary conditions satisfied by the
functions (by definition) and minimal support.

• Boundary conditions: All B-splines φ0
i,p vanish at positions ξ = 0 and ξ = 1.

Moreover, the only B-splines φ1
i,p that are non-zero at ξ = 0 and ξ = 1 are,

respectively, φ1
1,p and φ1

m+1,p.

• Minimal support: We will need the fact that supp(φ j
i,p) = (ξi , ξi+p− j+1) and,

moreover,φ j
i,p is defined by, and thus can be uniquely identifiedwith, the following

subsequence of 	,

φ
j
i,p ←→ 	[i] j := (ξi , . . . , ξi+p− j+1). (9)

By convention, we will define all supports to be open sets in this manuscript.
Hereafter, we will exclusively employ this unique identification, i.e., instead of
talking about φ j

i,p, we will only talk about 	[i] j .
The last thingswe define in the univariate setting are theBézier andGrevillemeshes.

The knots in 	 partition (0, 1) into a mesh that will be called the univariate Bézier
mesh and denoted as M(	). Moreover, we associate the B-spline 	[i]0 with a point
in (0, 1) called the i th Greville point2 which is defined as

μ(	[i]0) := ξi+1 + · · · + ξi+p

p
, i = 1, . . . ,m, (10)

2 Ignore boundary conditions and consider degree p B-splines defined on the augmented knot vec-
tor (ξ0, 	, ξm+p+2), with ξ0 = 0 and ξm+p+2 = 1. Then, the linear polynomial f (ξ) = ξ can be

expressed as a unique linear combination of the B-splines	[i]0, i = 0, . . . ,m+1 and the pointsμ(	[i]0),
i = 0, . . . ,m + 1, are the corresponding coefficients of linear combination.

123



Foundations of Computational Mathematics

Fig. 1 The one-to-one correspondence between a set of univariate splines with a Greville grid is
shown here in one dimension. On the top, the quadratic B-spline basis B0(	) corresponding to 	 =
{0, 0, 1

4 , 1
2 , 3

4 , 3
4 , 1, 1} is shown. Below this, the spline basis B1(	) is shown. The Greville points G0(	)

and edges G1(	) are shown next. Basis functions of B0(	) are in one-to-one correspondence with points
of G0(	) as indicated with the numerical labeling, while basis functions of B1(	) are in one-to-one-
correspondence with edges of G1(	) through the alphabetically labeled relationship. Finally, the univariate
Bézier mesh, M(	), is shown at the bottom, with ticks indicating vertices

and introduce the convention that μ(	[0]0) := 0 and μ(	[m + 1]0) = 1. By the
assumptions placed on the knots, 0 = μ(	[0]0) < μ(	[1]0) < · · · < μ(	[m]0) <

μ(	[m + 1]0) = 1. The Greville points help partition [0, 1] into (m + 1) intervals.
We will call the interior of the i th interval in this partition a Greville edge identified
with the B-spline 	[i]1,

μ(	[i]1) := (μ(	[i − 1]0), μ(	[i]0)), i = 1, . . . ,m + 1 . (11)

Then, collecting the Greville points in the set G0(	) and the Greville edges in the set
G1(	), themesh and formed by themwill be called aGrevillemesh andwill be denoted
by G(	). Finally, g j (	) will denote the map that performs the above identification of
B-splines with the j-dimensional Greville mesh entities,

g j (	) : B j (	) → G j (	). (12)

Figure1 shows an example of the B-splines in B j (	) and their correspondence to
the members of G j (	). Note that the evaluation of the B-spline basis functions can
be performed, for instance, with the Cox–de Boor recursion formula [9].
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3.2 Tensor-Product B-splines

Using the univariate splines defined above, tensor products can be used to define
multivariate spline spaces and a basis for them. Specifically, on � = (0, 1)n ⊂ R

n , a
tensor product spline space and its B-spline basis are defined by choosing n univariate
knot vectors and taking the tensor-products of the associated univariate spline spaces
and their B-spline bases, respectively.

With a view toward the next sections where we introduce the hierarchical spline
spaces, we describe here the construction of L+1 nested tensor-product spline spaces,
L ≥ 0. Given 0 ≤ � ≤ L , let the knot vectors in the kth direction be denoted by 	�,k ,
k = 1, . . . , n. We assume that these univariate knot vectors satisfy the assumptions
placed on knot vectors in the previous subsection. With p(�,k) denoting the corre-
sponding polynomial degree, we will define the spaces X jk (	�,k), jk ∈ {0, 1} as in
the previous subsection, and the dimension ofX 0(	�,k)will be denoted bym(�,k); the
dimension of X 1(	�,k) will thus be m(�,k) + 1.

Then, given an n-tuple j = ( j1, . . . , jn) such that jk ∈ {0, 1} for all k, we define
the tensor-product spline spaceX j

� as the following tensor product of univariate spline
spaces,

X j
� := X j1(	�,1) ⊗ · · · ⊗ X jn (	�,n). (13)

Remark 3.1 To differentiate notation in the univariate setting from the general tensor-
product setting, we will explicitly incorporate the (local) univariate knot vectors in the
former; the multidimensional knot vectors will not be included in the latter notation.
For instance, we have suppressed the explicit dependence of X j

� on the underlying
knot sequences.

Remark 3.2 Throughout this paper, the multi-index “j” will only appear in super-
scripts, and all of its entries will take values in {0, 1}.
Assumption 1 We assume that the knot vectors are nested. That is, for all k and �′ > �,
if a knot appears in 	�,k with multiplicity r , then its multiplicity in 	�′,k is at least r .
This automatically implies that, for all j,

X j
0 ⊂ X j

1 ⊂ · · · ⊂ X j
L . (14)

Let us now dive into the details of these spaces and identify the B-splines and the
Greville meshes by considering a fixed level 0 ≤ � ≤ L . The i th knot in 	�,k will
be denoted with ξi,�,k . For the kth parametric direction, the ik th univariate B-spline
will be uniquely identified with the local knot vector 	[ik] jk�,k . Consequently, the ith
tensor-product B-spline φ

j
i ∈ X j

� , 1 ≤ ik ≤ m(�,k) + jk for all k, will be identified
with the following Cartesian product of the local knot vectors that define it,

φ
j
i ←→

n×
k=1

	[ik] jk�,k . (15)

123



Foundations of Computational Mathematics

All such B-splines in X j
� will be collected in the set Bj

�. Their support is the Cartesian
product of the univariate B-splines’ support,

supp(φj
i ) =

n×
k=1

supp(	[ik] jk�,k). (16)

The Greville entity in R
n associated to φ

j
j is simply the Cartesian product of those

associated to the univariate B-splines,

μ
(
φ
j
i

)
=

n×
k=1

μ(	[ik] jk�,k). (17)

The set G j
� will contain all Greville entities μ

(
φ
j
i

)
such that |j| = j , where |j| =

∑n
k=1 jk . The map g j

� will perform the one-to-one identification of the B-splines with

the corresponding elements of G j
� ,

g j
� :

⋃
|j|= j

Bj
� → G j

� . (18)

CombiningG j
� for all j , we obtain the cuboidal Greville meshG�. Similarly, the tensor-

product Bézier mesh M will be defined as the Cartesian product of the univariate
meshes defined by the knot vectors 	�,k ,

M� :=
n×

k=1

M(	�,k). (19)

3.3 Tensor-Product Spline Differential Forms

Using the tensor-product spline spaces X j
� , we can now define the space of tensor-

product spline differential j-forms at the �th refinement level as below,

X j
� := ×

|j|= j

X j
�. (20)

Equivalently, we can rewrite the above as follows, noting that all superscripts on the
right are n-tuples,

0-forms, X 0
� := X (0,0,...,0)

� ,

1-forms, X 1
� := X (1,0,...,0)

� × X (0,1,0,...,0)
� × · · · × X (0,...,0,1)

� ,

...

n-forms, X n
� := X (1,1,...,1)

� .

(21)
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As noted in the previous section, j-forms can be naturally identified with j-cells in
the Greville mesh.

3.4 Hierarchical B-splines

For all j-forms, j = 0, . . . , n, we will use the (L + 1) levels of nested tensor-product
spline spaces defined above to build a space of hierarchical B-splines. To do so, we
first build a domain hierarchy

� =: �0 ⊇ �1 ⊇ · · · ⊇ �L ⊇ �L+1 := ∅, (22)

that helps indicate which tensor-product B-splines contribute to the hierarchical space.

Definition 3.1 (Hierarchical B-splines) The set of hierarchical B-splines Hj
L is con-

structed using the following recursive algorithm [12, 20, 28]:

1. Initialization, � = 0:Hj
0 := Bj

0.

2. Recursion, � = 0, . . . , L − 1: Construct Hj
�+1 from Hj

� by setting

Hj
�+1 = Hj

�+1,c ∪ Hj
�+1, f ,

where

Hj
�+1,c := {φ ∈ Hj

� : supp(φ) �⊂ ��+1} ,

Hj
�+1, f := {φ ∈ Bj

�+1 : supp(φ) ⊂ ��+1} .

For � = 0, . . . , L , the spaces of hierarchical splines W j
� are simply defined to be the

span of Hj
�,

W j
� :=

〈
Hj

�

〉
. (23)

Taking inspiration from [12, 28], we place the following assumption on these
domains. This is a common assumption on the construction of hierarchical spline
spaces and places a (level-dependent) lower-bound on the sizes of the refinement
domains.

Assumption 2 The subdomain ��+1 is given as the union of supports of 0-form basis
functions from the previous level. That is, for � = 0, . . . , L − 1, there exists S ⊂ B0

�

such that

��+1 =
⋃
α∈S

supp(α). (24)
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3.5 Hierarchical Spline Differential Forms

Using the above definition, and similarly to the tensor-product case, we define the
spaces of hierarchical B-spline differential forms, W j

� , j = 0, . . . , n, � = 0, . . . , L ,
as

W j
� := ×

|j|= j

W j
�. (25)

Equivalently, we can rewrite the above as follows, noting that all superscripts on the
right are n-tuples,

0-forms,W0
� := W(0,0,...,0)

� ,

1-forms,W1
� := W(1,0,...,0)

� × W(0,1,0,...,0)
� × · · · × W(0,...,0,1)

� ,

...

n-forms,Wn
� := W(1,1,...,1)

� .

(26)

For ease of reading, we will reserve certain symbols for referring to (hierarchical)
B-splines and general (hierarchical) splines for certain choices of j ; we tabulate this
in Table 1, below. This notation will be reused for the entirety of this document, and
is also consistent with the notation used thus far.

4 Exactness of the n-Dimensional Hierarchical Spline Complex of
Differential Forms

We now present several results that will be useful for proving exactness of the hierar-
chical spline de Rham complex in n dimensions. Section4.1 collects some elementary
results from algebraic topology without proof, since their proofs can be found in mul-
tiple references; we will use [25] as our main reference. Section4.2 contains the main
result of this paper—a proof of exactness for the n-dimensional hierarchical B-spline
complex under suitable assumptions.

Table 1 To simplify reading of the text, the following symbols will be reserved and consistently reused for
talking about (B-)spline differential forms

j-forms (Hierarchical) B-splines General splines

j = 0 α a

j = n ζ z

Unspecified j φ f
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Table 2 General and shorthand
notation corresponding to Eq.
(27) that will be used extensively
in the following sections for
different choices of Y ⊂ �

Sub-domain (Shorthand) notation for (27)

Y ⊂ � Bj
�
(Y ) X j

�
(Y ) X j

�
(Y ) G�(Y )

Y = ��′ , �′ ≥ � Bj
�,�′ X j

�,�′ X j
�,�′ G�,�′

Y = � Bj
�

X j
�

X j
�

G�

Observe that the notation in the last row above coincides with defini-
tions introduced previously in Sect. 3.2

4.1 Mayer–Vietoris on Spline Functions

We start by defining here some notation and associated shorthand that will be used
extensively in the following. The purpose is to collect and highlight the definitions so
that the reader can easily find them, as well as compare them against similar notations
that will be introduced later in Sect. 4.2. We define a special subset of B-splines in Bj

�

(and the associated spline space, Greville submesh and the space of j-forms), denoted
Bj

�(Y ), that contains B-splines in Bj
� that are supported on Y ⊂ �, i.e.,

Bj
�(Y ) :=

{
φ ∈ Bj

� : supp(φ) ⊂ Y
}

, (27a)

X j
�(Y ) :=

〈
Bj

�(Y )
〉

, (27b)

X j
� (Y ) := ×

|j|= j

X j
� (Y ), (27c)

G�(Y ) :=
⋃

φ∈Bj
�(Y )

0≤|j|≤n

g|j|
� (φ) . (27d)

This notation and the associated shorthand is collected in Table 2 for convenience.
Observe that the last row of Table 2 coincides with definitions introduced previously.

4.1.1 Local Cochain Complexes

For the domain �, the coboundary operator for the de Rham cochain complex of
differential forms is the exterior derivative, d j : H�

j
0(�) → H�

j+1
0 (�), and it

maps j-forms to ( j + 1)-forms and enjoys the property

d j+1 ◦ d j = 0. (28)

For any subspace of H�
j
0(�) (e.g.,X j

� ) the exterior derivative is obtainedby restriction
of d to the subspace. Note that the combination of the (restrictions of) the exterior

derivative with the spaces X j
� for j = 0, . . . , n, we obtain a cochain complex

(X�, d
)
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or simply X�,

X� : X 0
� X 1

� · · · X n
� .

d0 d1 dn−1
(29)

Remark 4.1 For simplicity of notation, and because it will always be clear from the
context, we will remove the superscript from the exterior derivative.

By restricting to a subdomain, Y ⊂ �, we can create subcomplexes of the above
complex. This is encapsulated in the following elementary results.

Lemma 4.1 For Y ⊂ �, the set of spline spaces X j
� (Y ) for j = 0, . . . , n and (restric-

tion of) exterior derivative define a cochain complex
(X�(Y ), d

)
, that is a subcomplex

of
(X�, d

)
.

Corollary 4.2 Let X ⊂ Y ⊂ �. Then the cochain complex
(X�(X), d

)
is a subcomplex

of
(X�(Y ), d

)
.

With the above definitions in place for the cochain complex
(X�(Y ), d

)
, we define

the following spaces that respectively contain the �-th level j-forms that are in the
kernel and range of the exterior derivative,

Ker j�(Y ) :=
{
f ∈ X j

� (Y ) : d f = 0
}

, Im j−1
� (Y ) :=

{
d f : f ∈ X j−1

� (Y )
}

.

(30)

The corresponding j-th cohomology group is then defined as

H ( j)
� (Y ) := Ker j�(Y )/Im j−1

� (Y ). (31)

4.1.2 Construction of Mayer–Vietoris Sequences

Let A, B ⊂ � be domains with cochain complexes
(X�(A), d

)
and

(X�(B), d
)
.

Similarly, define the spline complexes
(X�(A ∪ B), d

)
and

(X�(A ∩ B), d
)
. Also, we

define

B j
� (A � B) := B j

� (A) ∪ B j
� (B) , (32a)

X j
� (A � B) :=

〈
B j

� (A � B)
〉
= X j

� (A) + X j
� (B) . (32b)

Then, we obtain a short exact sequence of chain complexes,

X�(A ∩ B) → X�(A) ⊕ X�(B) → X�(A � B), (33)

as shown explicitly in the following commutative diagram.
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Lemma 4.3 The following commutative diagram of short exact sequences holds

0 0 0

· · · X j−1
�

(A ∩ B) X j
�

(A ∩ B) X j+1
�

(A ∩ B) · · ·

· · · X j−1
�

(A) ⊕ X j−1
�

(B) X j
�

(A) ⊕ X j
�

(B) X j+1
�

(A) ⊕ X j+1
�

(B) · · ·

· · · X j−1
�

(A � B) X j
�

(A � B) X j+1
�

(A � B) · · ·

0 0 0

d d

ϕ

d

ϕ

d

ϕ

d d

ψ

d

ψ

d

ψ

d d d d

where

ϕ : φ �→ (φ, φ), ψ : (φ1, φ2) �→ φ1 − φ2.

Moreover, from the above commutative diagram and the Snake Lemma [25, Theo-
rem 2], we obtain a long exact sequence connecting the different cohomologies of the
three complexes.

Corollary 4.4 The following long exact sequence connects the cohomologies and is
called the Mayer–Vietoris sequence,

· · · H ( j)
�

(A ∩ B) H ( j)
�

(A) ⊕ H ( j)
�

(B) H ( j)
�

(A � B) H ( j+1)
�

(A ∩ B) · · ·ϕ∗ ψ∗
∂∗

Due to nestedness of the multi-level spline spaces, the level � spline spaces are
contained in the level �′ spline spaces, �′ ≥ �. These inclusions imply the following
commutative diagram between the corresponding long exact sequences of cohomolo-
gies.

Theorem 4.5 For domains A, B ⊂ �, � ≤ �′ ≤ L, and the spaces that appear in the
Mayer–Vietoris sequence above, the inclusion operator ι�,�′ : X�(·) → X

�′(·) induces
a function on cohomology ι∗

�,�′ : H ( j)
� (·) → H ( j)

�′ (·) for j = 0, . . . , n, such that the
following Mayer–Vietoris sequences commute:

· · · H ( j)
�

(A ∩ B) H ( j)
�

(A) ⊕ H ( j)
�

(B) H ( j)
�

(A � B) H ( j+1)
�

(A ∩ B) · · ·

· · · H ( j)
�′ (A ∩ B) H ( j)

�′ (A) ⊕ H ( j)
�′ (B) H ( j)

�′ (A � B) H ( j+1)
�′ (A ∩ B) · · ·

ϕ∗

ι∗
�,�′

ψ∗

ι∗
�,�′

∂∗

ι∗
�,�′ ι∗

�,�′
ϕ∗ ψ∗

∂∗

Finally, the following result of this section follows from the Five Lemma [15]
applied to the commuting diagram from Theorem 4.5.

Corollary 4.6 Consider the commuting diagram of Mayer–Vietoris sequences from
Theorem 4.5. If any two of the following vertical maps are isomorphisms for all j ,

• H ( j)
� (A ∩ B) → H ( j)

�′ (A ∩ B),

• H ( j)
� (A) ⊕ H ( j)

� (B) → H ( j)
�′ (A) ⊕ H ( j)

�′ (B),

• H ( j)
� (A � B) → H ( j)

�′ (A � B),

then so is the third map.
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4.2 Application of Mayer–Vietoris to Exactness

We are now ready to embark on the exactness proof. The proof has three main steps:
decomposition of ��+1 into small overlapping subdomains; proof that the level �

and � + 1 spline complexes on these subdomains are cohomologically equivalent;
and, finally, piecing together the subdomains to show the same for the level � and
� + 1 spline complexes on all of ��+1. Along the way, we will need to introduce one
additional assumption for the third step.

Remark 4.2 All our results are based on the relationship between the refinement
domains at two successive levels, and therefore all our figures will only show two
levels of refinement.

As in Sect. 4.2, we start by defining some notation and associated shorthand that
will used extensively in what follows. In particular, for s ∈ {0, 1}, we define a subset of
B-splines in Bj

�+s (and the associated spline space, Greville submesh and the space of

j-forms), denoted Bj
�+s,�+1(Y ), that contains the B-splines in Bj

�+s that are supported

on supp(α) where α ∈ B0
� is itself supported on Y ∩ ��+1,

Bj
�+s,�+1(Y ) :=

{
φ ∈ Bj

�+s : ∃α ∈ B0
� , supp(φ) ⊂ supp(α) ⊂ Y ∩ ��+1

}
,

(34a)

X j
�+s,�+1(Y ) :=

〈
Bj

�+s,�+1(Y )
〉

, (34b)

X j
�+s,�+1(Y ) := ×

|j|= j

X j
�+s,�+1(Y ) , (34c)

G�(Y ) :=
⋃

φ∈Bj
�(Y )

0≤|j|≤n

g|j|
� (φ) . (34d)

This notation and the associated shorthand is collected in Table 3 for convenience.
Observe that the shorthand notation in the second row of Table 3 is the same as the
notation in the second and third rows of Table 2—they refer to the same objects that
can be defined using both Equations (27) and (34).

Part 1: Decomposing ��+1 into small subdomains
The purpose of this section is to define a set of subdomains that will act as the primary
building block used throughout the remainder of the proof, and to clarify some the
characteristics of these subdomains. The results presented in this part are mostly
technical and intermediate results, but are necessary to rigorously characterize these
domains. To understand the remainder of the document, the following key takeaway
should be understood.
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Table 3 General and shorthand notation corresponding to Eq. (34) that will be used extensively in the
following sections for different choices of Y ⊂ � and s ∈ {0, 1}
Sub-domain and levels Notation for (34)

Y ⊂ �, s ∈ {0, 1} Bj
�+s,�+1(Y ) X j

�+s,�+1(Y ) G�+s,�+1(Y )

Y = ��+1, s = 0 Bj
�,�+1 X j

�,�+1 G�,�+1

Y = ��+1, s = 1 Bj
�+1,�+1 X j

�+1,�+1 G�+1,�+1

Observe that the shorthand notation in the second and third rows above is the same as the notation in the
second row of Table 2

Key takeaway from Part 1:
The domain��+1 can be decomposed into smaller subdomains, denoted�

j
�+1(i)

(Lemma 4.9), which are all topological balls (Proposition 4.10).

The smaller subdomains �
j
�+1(i) referenced above will be defined via unions of

supports of certain 0-form B-splines. To proceed in a rigorous manner, we need
to introduce some new notation. However, we would like to emphasize that this
notation—specifically, the notation in (35)–(39)—is only useful for the intermedi-
ate results that appear in Part 1; it is never explicitly needed in Part 2 and Part 3.
Therefore, the reader need only understand this new notation insofar as it it necessary
to understand the above key takeaway. To aid in comprehension, representative con-
cepts from this part are illustrated in Fig. 2. The reader may find it useful to refer to
this figure as new ideas and notation are introduced.

We start by defining extended knot domains for each parametric direction as

λ
j
i :=

n×
k=1

	̂[ik] jk�,k, (35)

where the extended univariate knot domains 	̂[ik] jk�,k are defined as

	̂[ik] jk�,k := (
ξik ,�,k, ξik+p(�,k)− jk+2,�,k

) ⊂ R. (36)

It should be noted that when j = 1, then the extended knot domain λ
j
i is equal to

support of a 0-form B-spline with the same index, i.e.,

λ1i = supp(αi).

With j = ( j1, j2, . . . , jn), we will denote the set of all potential extended local knot
domains as

X
j
� =

{
λ
j
i : 1 ≤ ik ≤ m(�,k) + jk − 1, k = 1, 2, . . . , n

}
, (37)
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Remark 4.3 For any practical numerical analysis problem, one would pick spline
spaces such that m(�,k) ≥ 2 for all k and �, thus making the set Xj

� non-empty. We
therefore assume thatm(�,k) ≥ 2 for the rest of the document. However, for complete-
ness we comment here on the special case whenm(�,k) = 1 for at least one k—this will

mean Xj
� is an empty set when jk = 0. In such cases, the results of this work still hold

but the proofs (which use finite induction on the number of parametric dimensions)
would need to be modified to omit the directions wherem(�,k) = 1 since the inductive
argument holds automatically in such directions. To keep notation clean from this
special case, we thus assume that m(�,k) ≥ 2 henceforth.

Next, we define certain index sets associated to those extended knot domains. For
any αi ∈ B0

� , define I
j
�(i) as the set of indices of j-extended knot domains that are

index-space neighbours of αi,

I
j
�(i) := {

i : jk − 1 ≤ ik − i k ≤ 0 , k = 1, . . . , n
}
. (38)

We use the convention that, if i ∈ I
j
�(i) is such that any ik ≤ 0 or ik ≥ m(�,k) + jk ,

then λ
j
i := ∅. Then, if i ∈ I

j
�(i) then for λ

j
i �= ∅, λji ⊇ supp(αi) for any j; the converse

is not true in general. Moreover, I0�(i) has cardinality ≤ 2n (the inequality holding
only when i corresponds to a boundary-adjacent zero form B-spline) while I1�(i) has
cardinality 1.

Denote with I
j
�,�+1 the union of such index-space neighbours for all αi ∈ B0

�,�+1,
i.e.,

I
j
�,�+1 :=

⋃

αi∈B0
�,�+1

I
j
�(i). (39)

Next, if i is the index of an index-space neighbour, define Dj
�,�+1(i) as the set containing

supports of 0-form B-splines that are supported on ��+1 as well as the given index-
space neighbour,

Dj
�,�+1(i) := {

i : supp(αi) ⊂ ��+1 and jk − 1 ≤ ik − i k ≤ 0 , k = 1, . . . , n
}
.

(40)

Observe that D1
�,�+1(i) has cardinality ≤ 1 while D0

�,�+1(i) has cardinality ≤ 2n .

Remark 4.4 Since each 1-extended knot domain can be interpreted as the support of
a zero form B-spline, notice that Ij�,�+1 and Dj

�,�+1(i) are sort of “inverses” of each
other—the former contains the indices of all j-extended knot domains that are index-
space neighbours of zero form B-splines supported on ��+1, while the latter contains
the indices of all zero form B-splines supported on ��+1 for which a given j-extended
knot domain is an index-space neighbour. This observation is encapsulated in Lemma
4.7 below.
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Lemma 4.7 Let i and i be such that, for all k,

jk − 1 ≤ ik − i k ≤ 0.

If αi ∈ B0
�,�+1, then i ∈ I

j
�,�+1 and i ∈ Dj

�,�+1(i).

Proof By definition, λ
j
i is an index space neighbour of αi and the latter is supported

on ��+1, thus implying i ∈ I
j
�,�+1. Clearly, λ1

i
= supp(αi) ⊂ ��+1, and thus i ∈

Dj
�,�+1(i). ��

The union of all 1-extended knot domains with indices in Dj
�,�+1(i) forms a subset

of ��+1, we denote this subset with �
j
�+1(i),

��+1 ⊃ �
j
�+1(i) :=

⋃

i∈Dj
�,�+1(i)

supp(αi) (41)

Here, if Dj
�,�+1(i) = ∅, it implies that �j

�+1(i) = ∅.
Figure2 depicts a potential refinement scenario on a spline space of two levels and

highlights interpretations of the aforementioned notation. Particularly of consequence
are the domains, �j

�+1(i), which in the following results are shown to be topological
balls when non-empty, the unions of which can reconstruct ��+1.

Corollary 4.8 �
j
�+1(i) is non-empty if and only if i ∈ I

j
�,�+1.

Proof If i ∈ I
j
�,�+1, there is a 0-form B-spline αi supported on λ

j
i ∩ ��+1 such that,

for all k,

jk − 1 ≤ ik − i k ≤ 0.

Then, from Lemma 4.7, �j
�+1(i) ⊃ supp(αi).

Conversely, if �
j
�+1(i) is non-empty, there exists some αi ∈ B0

�,�+1 with i ∈
Dj

�,�+1(i). Then by definition of i ∈ Dj
�,�+1(i), the inequality of Lemma4.7 is satisfied,

meaning that i ∈ I
j
�,�+1. ��

Lemma 4.9 The domain ��+1 can be constructed by taking the union of �
j
�+1(i) over

all i ∈ I
j
�,�+1 for any j, i.e.,

��+1 =
⋃

i∈Ij�,�+1

�
j
�+1(i). (42)

Proof The claim follows from Lemma 4.7 and Corollary 4.8. ��
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Fig. 2 This figure shows the quantities defined throughout Part 1 of Sect. 4.2 by taking a 2-level spline space
as an example.We consider the level-0 knot vector as	0,1 = {0, 0, 0, 0, 1

9 , 2
9 , 3

9 , 4
9 , 5

9 , 6
9 , 7

9 , 8
9 , 1, 1, 1, 1},

and the level-1 knot vector 	1,1 is defined through dyadic refinement. The associated 0-form B-splines,

B0
0,1 and B0

1,1, are shown above. In particular, with the refinement domain chosen as �1 = (0, 2
9 )∪ ( 13 , 1),

inactive and active splines on both levels are displayed in dashed and solid lines, respectively. Tabulated
below these figures are sets I00(ī) and I

1
0(ī) that define the index-space neighbors of splines on level 0;

index sets D0
0,1(i) and D1

0,1(i) for 1-extended knot domains supported on�1; respectively, their associated

subsets�0
1(i) and�1

1(i); and the unions of index-space neighbors in I
0
0,1 and I

1
0,1. This example also shows

how �0
1(i) can be larger than the support of a single 0-form, as is the case for �0

1(7)
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Proposition 4.10 If i ∈ I
j
�,�+1 then �

j
�+1(i) is a ball.

Proof As i ∈ I
j
�,�+1, �

j
�+1(i) is not empty. In fact, by definition, �j

�+1(i) is equal to

the union of the supports of at most 2n 0-form B-splines. Specifically, �j
�+1(i) is the

union of one or more members of the set

{
n×

k=1

	̂[i k]1�,k : ∀k , 0 ≤ i k − ik ≤ 1

}
.

Observe that all members of the above set are n-dimensional hypercubes (and thus are
all convex) and contain supp(ζ ), where ζ is an n-form B-spline defined as

ζ :=
n×

k=1

	[ik + 1]1�,k .

Therefore, �j
�+1(i) is open and star-shaped with respect to any point in supp(ζ ). As a

result [14], �j
�+1(i) is an open ball. ��

Part 2: Cohomologically equivalent spline complexes on the subdomains
Similarly to Part 1, the results here are mostly technical intermediate results. We
therefore start by summarizing the key takeaway that will be useful for Part 3. Given
this result, the reader can skip ahead if desired.

Key takeaway from Part 2:
Not only are �

j
�+1(i) topologically trivial domains, but the level � and � + 1

splines supported on them also form cohomologically equivalent subcomplexes
(Corollary 4.15).

Thus, the results of Part 1 and Part 2 can together be summarized as follows:
the domain ��+1 can be decomposed into topologically trivial subdomains and, on
each such subdomain, the level � and � + 1 spline subcomplexes are cohomologically
equivalent.

Lemma 4.11 If B ⊂ A, then

Bj
�+s,�+1(B) ⊂ Bj

�+s,�+1(A),

X j
�+s,�+1(B) ⊂ X j

�+s,�+1(A),

G�+s,�+1(B) ⊂ G�+s,�+1(A).

Proof The claim follows from the definitions of the three objects. ��
Proposition 4.12 Let A = �

j
�+1(i) and s = 0 or 1. A is empty if and only if

G�+s,�+1
(
A
)
is empty. Moreover, if A is a topological ball then so is G�+s,�+1

(
A
)
.
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Proof By definition of A = �
j
�+1(i) and G�+s,�+1

(
A
)
, one being empty implies the

other must be empty.
Then assume that A is non-empty and thus is a ball, as shown in Corollary 4.8 and

Proposition 4.10. We proceed as in Proposition 4.10. Recall from that proof that A is
the union of the supports of at most 2n 0-formB-splines. Then, for each such zero form
α, and with ζ defined to be the n-form B-spline used in the proof of Proposition 4.10,
supp(ζ ) ⊂ supp(α) ⊂ A. Observe that each G�+s,�+1

(
supp(α)

)
is an n-dimensional

hypercube (and thus convex) and, from Lemma 4.11, contains G�+s,�+1
(
supp(ζ )

)
.

Therefore, as before, G�+s,�+1(A) is open and star-shaped with respect to any point in
G�+s,�+1

(
supp(ζ )

)
, and is thus an open ball. ��

Using the above and given a domain A, we now define spline complexX�+s,�+1(A),
s = 0, 1, as

X�+s,�+1(A) : X 0
�+s,�+1(A) X 1

�+s,�+1(A) · · · X n
�+s,�+1(A).

d d d (43)

Lemma 4.13 shows that, for certain domains A, the complex X�+s,�+1(A) is the same
as X�+s(A). Moreover, Corollary 4.14 shows that these complexes are exact.

Lemma 4.13 Let A ⊂ ��+1 is a union of supports of a subset of B0
�,�+1 such that for

any φ ∈ Bj
�+s(A), s = 0, 1, there exists α ∈ B0

�,�+1(A) such that supp(φ) ⊂ supp(α).
Then, for all j ,

X j
�+s(A) = X j

�+s,�+1(A). (44)

Proof It is clear that X j
�+s,�+1(A) ⊂ X j

�+s(A) from the definitions. For the inclusion

in the other direction, notice that if there is a B-spline φ ∈ X j
�+s(A), then there exists

a j, |j| = j , such that φ ∈ Bj
�+s(A). However, by the assumption on A, there exists an

α ∈ B0
�,�+1(A) such that supp(φ) ⊂ supp(α). Then, by definition, φ ∈ X j

�+s,�+1(A).
��

When X�+s,�+1(A) = X�+s(A) for some choice of A, then we will denote the

j-cohomology of both X�+s,�+1(A) and X�+s(A) with H ( j)
�+s(A). One such choice is

when A is a union of supports of splines in B0
�,�+1, as in Lemma 4.13.

Corollary 4.14 For A = �
j
�+1(i) �= ∅, X�+s,�+1(A) is exact, s = 0, 1, i.e.,

H ( j)
� (A) = H ( j)

�+1(A) =
{
0, j = 0, 1, . . . , n − 1,

R, j = n.
(45)

Proof Theproof follows the sameargument as in [12,Corollary 5.12] anduses standard
results from homology and cohomology. From Propositions 4.10 and 4.12 and direct
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computation [15, Chapter 2],

H(n− j)(A) ≈ H(n− j)
(G�,�+1(A)

) ≈ H(n− j)
(G�+1,�+1(A)

) ≈
{
R, j = n,

0, otherwise.

By the correspondence between the tensor-product splines and their Greville grids
[12], we also have for s = 0, 1,

H ( j)
�+s(A) ≈ H ( j)(G�+s,�+1(A), ∂G�+s,�+1(A)

)
, s = 0, 1.

Then, the claim follows from the Lefschetz duality theorem [15, Theorem 3.43] which
states that

H ( j)(G�+s,�+1(A), ∂G�+s,�+1(A)
) ≈ H(n− j)

(G�,�+1(A)
)
, s = 0, 1.

��
Corollary 4.15 Let A = �

j
�+1(i) for any multi-index i. Then, the inclusion operator

ι�,�+1 : X�,�+1(A) → X�+1,�+1(A) induces an isomorphism on cohomology.

Proof If A �= ∅, this follows directly from Corollary 4.14. Otherwise, A = ∅ and the
result holds trivially. ��
Remark 4.5 As was done in [12], it is also possible to show Corollary 4.15 by defining
projection operators �̂ j : X j

�+1,�+1(A) → X j
�,�+1(A) via the following problem,

(
�̂ j f , d j−1g

)
= ( f , d j−1g) , ∀g ∈ X j−1

�,�+1(A) , (46a)
(
d j�̂ j f , d j g

)
= (d j f , d j g) , ∀g ∈ X j

�,�+1(A) , j = 0, . . . , n − 1 , (46b)
∫

A
�̂n f =

∫

A
f . (46c)

In the above system, the first sub-equation helps determine the part of �̂ j f that is
exact. Then, from Propositions 4.10 and 4.12, the remaining part of �̂ j f that needs
to be determined is co-exact for j = 0, . . . , n − 1, and harmonic for j = n; these are
respectively determined by the second (recall that we are working with homogeneous
boundary conditions here) and third sub-equations.

Part 3: Piecing together the subdomain complexes
We now piece-together the subdomain complexes to show that the hierarchical spline
complex is exact, given that an additional assumption (Assumption 3) is satisfied. We
get to this final result (Theorem 4.23) by building upon the key takeaways from Part
1 and Part 2 that were highlighted earlier, and we again summarize key results from
this section in the following.
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Key takeaway from Part 3:
Theorem 4.23 is the main result here. The hierarchical complex W�+1, which
is obtained from W� by refining ��+1, can be equivalently constructed via an
inductive process whereby certain groups of �

j
�+1(i) are successively refined.

Theorem 4.23 states that, given Assumption 3, the cohomological structure of
the complex stays the same at each step of this latter inductive process.

Main steps in the inductive proof :
Lemma 4.17 helps understand the relationship between unions and intersections
of the level-(� + 1) refinement domain at consecutive steps in the inductive pro-
cess. Lemmas 4.18 and 4.20 show that the level � and � + 1 spline complexes
supported on such unions and intersections are well-behaved. Finally, Propo-
sitions 4.21 and 4.22 establish the claimed cohomology-invariance during the
inductive process.

Definition 4.1 (An (n−1, �+1)-intersection) Let αi, αi+�i ∈ B0
�(��+1) and, without

loss of generality, assume that�i is component-wise non-negative. We say that αi and

αi+�i share an (n − 1, � + 1)-intersection if there exists i
′
, k0 such that

supp(αi) ∩ supp(αi+�i) ⊇
n×

k=1

Ik , (47a)

Ik :=
⎧
⎨
⎩

(
ξi

′
k ,�+1,k, ξi

′
k+p(�+1,k),�+1,k

)
, k �= k0 ,

{ξi ′k ,�+1,k} , k = k0 .
. (47b)

If needed, we will say that αi and αi+�i share an (n − 1, � + 1)-intersection w.r.t. the
direction k0.

Definition 4.2 (A chain) Let αi, αi+�i ∈ B0
�,�+1. There is said to be a chain between αi

and αi+�i if there is some positive integer r and a set of B-splines αi+�il
∈ B0

�,�+1, l =
0, . . . , r such that

• �i0 = 0, �ir = �i;
• �il − �il−1 is zero in all components but one, and the sum of all components is
equal to ±1 for all l = 1, . . . , r .

Definition 4.3 (A shortest chain) Let αi, αi+�i ∈ B0
�,�+1 and, without loss of general-

ity, assume that �i is component-wise non-negative. A chain between αi and αi+�i is
a shortest chain if

• r := ∑
k �i k ;

• �il − �il−1 is component-wise non-negative, with the sum of all components
being equal to 1 for all l = 1, . . . , r .
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Fig. 3 In the above figures, we consider two levels of a maximally regular hierarchical spline space defined
using p(�,k) = 2 for all � and k. The shaded cells (of any colour) constitute ��+1. In particular, the two

biquadratic 0-form B-splines αi, αi+(2,3) ∈ B0
�,�+1 share an (n − 1, � + 1) intersection, depicted in red.

Here, αi is on the lower-left and its support is shaded blue, while αi+(2,3) ∈ B0
�,�+1 is on the upper-right

and its support is shaded yellow; the rest of��+1 is shown in grey. In figure (a), there are no other B-splines
in B0

�,�+1, and thus no chain of indices traversing from one to the other. In figure (b), the refinement pattern

supports a shortest chain between the 0-form B-splines, with numbers indicating the magnitude of �il , as
in Definition 4.3. On the right, the refinement supports a chain, with numbers also indicating the number l
in �il , but the chain is not a shortest chain

Remark 4.6 Wewould like to highlight a notational subtlety here that the reader should
keep in mind: bold fonts (with or without subscripts) are used to denote multi-indices,
while normal font (with subscripts) is used to denote components of the multi-indices.
For instance, see Definition 4.3 where �i, �il−1 and �il are all multi-indices, while
�i k are the components of the multi-index �i.

Lemma 4.16 Let there be a shortest chain between αi, αi+�i ∈ B0
�(��+1). Then the

closure of the support of any B-spline in the shortest chain contains supp(αi) ∩
supp(αi+�i).

Assumption 3 The following hold.
(a) Let αi, αi+�i ∈ B0

� (��+1). If αi and αi+�i share an (n − 1, � + 1)-intersection,
then there exists a shortest chain between them.

(b) Let A ⊂ B0
�(��+1) and let φ ∈ Bj

�+s(��+1), s = 0, 1, be such that
supp(φ) ⊂ ⋃

α∈A supp(α). Then there exists α0 ∈ B0
� (��+1) such that supp(φ) ⊂

supp(α0) and supp(α0) is contained in the smallest axis-aligned bounding box that
contains

⋃
α∈A supp(α).

Figure3 illustrates the concept of (n − 1, � + 1) intersections, chains, and shortest
chains between two 0-forms under different refinement scenarios. Of these configura-
tions, only that of subfigure 3(b) satisfies the conditions of Assumption 3. Assumption
3 also guarantees that Lemma 4.13 holds for the refined domains employed in this
work.
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For this final part of the proof and for given 0 ≤ � ≤ L − 1, define the following
“slices” of ��+1, where i, j, r and m are n-tuples,

Sji [m] :=
m1⋃
r1=0

· · ·
mn⋃
rn=0

�
j
�+1(i + r), (48)

and recall that each �
j
�+1(i + r) = ∅ or is a ball by Corollary 4.8 and Proposition

4.10. Note that, from Lemma 4.9, if mi = m(�,i) for all i then

Sj1[m] =
m(�,1)⋃
r1=0

· · ·
m(�,n)⋃
rn=0

�
j
�+1(1 + r) = ��+1. (49)

Lemma 4.17 Let Assumption 3 hold. For a fixed 1 ≤ k ≤ n, let δk be an n-tuple
with the value 1 in index k and 0 elsewhere, and let i, j and m be given. Then, with
r := (r1, . . . , rk−1, 0, rk+1, . . . , rn) and with

Aj
i := Sji [m],

Bj
i :=

m1⋃
r1=0

· · ·
mk−1⋃
rk−1=0

mk+1⋃
rk+1=0

· · ·
mn⋃
rn=0

�
j
�+1(i + r + (mk + 1)δk),

C j
i := Sji [m + δk],

the following hold,

Aj
i ∩ Bj

i ⊃ Bj+δk
i for jk = 0 , (50)

Aj
i ∪ Bj

i = C j
i for jk = 0, 1 . (51)

Proof Given rk , let r := r + rkδk . Then, since ∪mk+1
rk=0 =

(
∪mk
rk=0

)
∪ (∪rk=mk+1

)
, the

second equality follows from definitions of the domains,

C j
i =

m1⋃
r1=0

· · ·
mk−1⋃
rk−1=0

mk+1⋃
rk=0

mk+1⋃
rk+1=0

· · ·
mn⋃
rn=0

�
j
�+1(i + r)

=
⎛
⎝

m1⋃
r1=0

· · ·
mk−1⋃
rk−1=0

mk⋃
rk=0

mk+1⋃
rk+1=0

· · ·
mn⋃
rn=0

�
j
�+1(i + r)

⎞
⎠

⋃
⎛
⎝

m1⋃
r1=0

· · ·
mk−1⋃
rk−1=0

mk+1⋃
rk+1=0

· · ·
mn⋃
rn=0

�
j
�+1(i + r + (mk + 1)δk)

⎞
⎠ ,

= Aj
i ∪ Bj

i .
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Fig. 4 The above figures correspond to amaximally regular hierarchical spline space defined using p(�,k) =
3 for all � and k. Here, m(0,k) = 10 and m(1,k) = 19 for all k. Figures (a), (b) and (c) depict domains Aji ,

Bj
i , and B

j+δk
i , respectively, as defined in Lemma 4.17 for k = 2. Here, dashed lines indicate the extents

of 0-form B-splines whose support could potentially contribute to the domain, while the shaded cells of
the same color correspond to the actual domain. Greyed-out sections are portions of ��+1 that are not
contained in the referenced domain. This refinement pattern obeys all assumptions of this paper, so the

inequality of equation (50) holds and takes the form of Aji ∩ Bj
i �= ∅ = B

j+δk
i

The inclusion Bj+δk
i ⊂ Aj

i is clear from the definitions so we only need to show

the containment Bj+δk
i ⊂ Bj

i . Consider a Bézier element contained in Bj+δk
i . Then,

there exists a 0-form B-spline αi whose support is contained in Bj+δk
i and containing

this Bézier element, i.e., i ∈ Dj+δk
�,�+1(i + r + (mk + 1)δk) for some r. Thus, (i − i −

r − (mk + 1)δk) is a non-negative n-tuple that is component-wise less than or equal
to (1 − j − δk), and thus component-wise less than or equal to (1 − j). Therefore,
i ∈ Dj

�,�+1(i + r + (mk + 1)δk) and thus supp(αi) ⊂ Bj
i . ��

Remark 4.7 The relationship of equation (50) in Lemma 4.17 may actually be an
equality ormay be strict, depending on the refinement pattern of��+1. Figure4 depicts
one scenario in which the subset relationship is a proper subset relationship because
Aj
i ∩ Bj

i is not empty but Bj+δk
i is. If, however, the two refined 0-form domains of

this picture had a shortest chain connecting each other, the subset relationship would
actually be an equality.

Lemma 4.18 Let Assumption 3 hold. For a fixed 1 ≤ k ≤ n, let δk be an n-tuple with
the value 1 in index k and 0 elsewhere, and let i, j andm be given with jk = 0. Then,
with r := (r1, . . . , rk−1, 0, rk+1, . . . , rn) and with

Aj
i := Sji [m],

Bj
i :=

m1⋃
r1=0

· · ·
mk−1⋃
rk−1=0

mk+1⋃
rk+1=0

· · ·
mn⋃
rn=0

�
j
�+1(i + r + (mk + 1)δk),

the following holds for s = 0, 1,

B∗
�+s,�+1(A

j
i) ∩ B∗

�+s,�+1(B
j
i ) = B∗

�+s,�+1(A
j
i ∩ Bj

i ) = B∗
�+s,�+1(B

j+δk
i ) . (52)
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Here, a superscript of ∗ denotes that the statement is true for all sets of B-splines, i.e.,
for all possible superscripts.

Proof If φ ∈ B∗
�+s,�+1(A

j
i) ∩ B∗

�+s,�+1(B
j
i ), then by definition there must exist an

n-form ζ ∈ B1
�+1,�+1 and two 0-form B-splines αi, αi+�i ∈ B0

�,�+1, such that

supp(ζ ) ⊂ supp(φ) ⊂ supp(αi) ⊂ Aj
i,

supp(ζ ) ⊂ supp(φ) ⊂ supp(αi+�i) ⊂ Bj
i .

Without loss of generality, assume that�i is component-wise non-negative. The above
implies that αi and αi+�i share an (n−1, �+1)-intersection and thus, by Assumption

3, there exists a shortest chain between them. Moreover, from the definitions of Aj
i

and Bj
i , there exist r0 and r1 such that i ∈ Dj

�,�+1(i + r0) and i + �i ∈ Dj
�,�+1(i +

r1 + (mk + 1)δk). Thus, the following inequalities hold component-wise,

j − 1 ≤ i + r0 − i ≤ 0,

j − 1 ≤ i + r1 + (mk + 1)δk − i − �i ≤ 0.

In particular, the second inequality implies that

ik + (mk + 1) − i k ≤ �i k .

Next, since a shortest chain exists between αi and αi+�i, let �̂i be such that it
satisfies the following conditions:

• component-wise, 0 ≤ �̂i ≤ �i;
• �̂ik = ik + (mk + 1) − i k ≤ �i k ;
• αi+�̂i ∈ B0

�,�+1 and supp(ζ ) ⊂ supp(φ) ⊂ supp(αi+�̂i) ⊂ Bj
i .

Such a �̂i exists because of Assumption 3. In particular, the last condition implies that
there exists r2 such that

j − 1 ≤ i + r2 + (mk + 1)δk − i − �̂i ≤ 0,

with equality holding on the right for the kth component because of the definition of
�̂ik . Therefore, we see that the following inequality holds component-wise,

0 ≤ i + �̂i − i − r2 − (mk + 1)δk ≤ 1 − j − δk .

Therefore, i + �̂i ∈ Dj+δk
�,�+1(i + r2 + (mk + 1)δk) and consequently supp(αi+�̂i) ⊂

Bj+δk
i . This implies that

B∗
�+s,�+1(A

j
i) ∩ B∗

�+s,�+1(B
j
i ) ⊂ B∗

�+s,�+1(B
j+δk
i ) ⊂ B∗

�+s,�+1(A
j
i ∩ Bj

i ).
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Finally, from Lemma 4.11, if φ ∈ B∗
�+s,�+1(A

j
i ∩ Bj

i ) then φ ∈ B∗
�+s,�+1(A

j
i) and

φ ∈ B∗
�+s,�+1(B

j
i ). As a result

B∗
�+s,�+1(A

j
i ∩ Bj

i ) ⊂ B∗
�+s,�+1(A

j
i) ∩ B∗

�+s,�+1(B
j
i ).

The claim of equation (52) follows. ��

Corollary 4.19 With Aj
i and Bj

i defined as in Lemma 4.18,

X�+s(�) = X�+s,�+1(�) (53)

for � ∈ {Aj
i, B

j
i , B

j+δk
i , Aj

i ∩ Bj
i }.

Proof For � ∈ {Aj
i, B

j
i , B

j+δk
i }, equation (53) follows directly from Lemma 4.13 and

application of Assumption 3. It remains to show thatX�+s(A
j
i ∩ Bj

i ) = X�+s,�+1(A
j
i ∩

Bj
i ). By definition, X�+s(A

j
i ∩ Bj

i ) ⊃ X�+s,�+1(A
j
i ∩ Bj

i ). The reverse inclusion holds
since

f ∈ X�+s(A
j
i ∩ Bj

i ) ,

⇒ f ∈ X�+s(A
j
i) ∩ X�+s(B

j
i ) ,

⇒ f ∈ X�+s,�+1(A
j
i) ∩ X�+s,�+1(B

j
i ) , (Lemma 4.13)

⇒ f ∈ X�+s,�+1(A
j
i ∩ Bj

i ) (Equation (52)) .

��
Lemma 4.20 For a fixed 1 ≤ k ≤ n, let δk be an n-tuple with the value 1 in index k and
0 elsewhere, and let i, j andm be given. Then, with r := (r1, . . . , rk−1, 0, rk+1, . . . , rn)
and with

Aj
i := Sji [m],

Bj
i :=

m1⋃
r1=0

· · ·
mk−1⋃
rk−1=0

mk+1⋃
rk+1=0

· · ·
mn⋃
rn=0

�
j
�+1(i + r + (mk + 1)δk),

C j
i := Sji [m + δk],

the following holds for s = 0, 1,

B∗
�+s,�+1(A

j
i) ∪ B∗

�+s,�+1(B
j
i ) = B∗

�+s,�+1(A
j
i ∪ Bj

i ) = B∗
�+s,�+1(C

j
i ) . (54)

In the above a superscript of ∗ denotes that the statement is true for all B-splines, i.e.,
for all possible superscripts.
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Proof FromLemma4.17, Aj
i∪Bj

i = C j
i , and sowe focus only on thefirst equality of the

claim. However, the containment B∗
�+s,�+1(A

j
i) ∪B∗

�+s,�+1(B
j
i ) ⊂ B∗

�+s,�+1(A
j
i ∪ Bj

i )

again follows from Lemma 4.11.
For the other direction, if φ ∈ Bj

�+s,�+1(A
j
i ∪ Bj

i ), then by Assumption 3 and

Lemma 4.13, there exists some α0 ∈ B0
� (A

j
i ∪ Bj

i ) = B0
�+�+1(A

j
i ∪ Bj

i ) such that

supp(φ) ⊂ supp(α0). But then supp(α0) ⊂ Aj
i or supp(α0) ⊂ Bj

i by construction. As

a result, φ ∈ Bj
�+s,�+1(A

j
i) or φ ∈ Bj

�+s,�+1(B
j
i ). ��

We are now ready to show how the above results and Eq. (49) can be used to show
exactness of the hierarchical spline complex. We will do this by considering some
special slices Sji [m]. In the following, we fix i = (i1, . . . , in), j = ( j1, . . . , jn), and
for k ≥ 1 define

ik :=
k∑

l=1

δl +
n∑

l=k+1

ilδl , jk :=
n∑

l=k+1

jlδl , (55a)

S[k,mk] :=
m(�,1)⋃
r1=0

· · ·
m(�,k−1)⋃
rk−1=0

mk⋃
rk=0

�
jk
�+1

(
ik +

k∑
l=1

rlδl
)

, (55b)

S[k] := S[k,m(�,k)] . (55c)

Observe that, from Eq. (49), S[n] = ��+1. Moreover, we will say that a domain, say
B, is an S[k]-type domains if it is defined as above but with possibly different choices
of i and j.

Proposition 4.21 Let Assumption 3 hold. Then, the inclusion operation

ι�,�+1 : X�,�+1

(
S[1]

)
→ X�+1,�+1

(
S[1]

)
(56)

induces an isomorphism on the cohomology of the spline spaces.

Proof We will show the claim for S[1] by considering S[1,m1] and inducting on m1.
For the base case of m1 = 0, the claim follows from Corollary 4.15. Assume that the
claim is true for some m1 ≥ 0 and, as in Lemmas 4.18 and 4.20, define

A := S[1,m1], B := �
j1
�+1(i1 + (m1 + 1)δ1), C := S[1,m1 + 1].

Thus, the induction hypothesis is that the following map induces an isomorphism on
the spline cohomology,

ι�,�+1 : X�,�+1(A) → X�+1,�+1(A),

and our objective is to show that the same is true for

ι�,�+1 : X�,�+1(C) → X�+1,�+1(C).
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First, observe that Lemma 4.13 implies that X�+s,�+1(�) = X�+s(�) for any � ∈
{A, B,C}, and Corollary 4.19 implies X�+s,�+1(A ∩ B) = X�+s(A ∩ B). Moreover,
from Theorem 4.5, the following diagram commutes,

· · · H ( j)
�

(A ∩ B) H ( j)
�

(A) ⊕ H ( j)
�

(B) H ( j)
�

(A � B) H ( j+1)
�

(A ∩ B) · · ·

· · · H ( j)
�+1(A ∩ B) H ( j)

�+1(A) ⊕ H ( j)
�+1(B) H ( j)

�+1(A � B) H ( j+1)
�+1 (A ∩ B) · · ·

Using Corollary 4.15 and Lemma 4.18, the first vertical map is an isomorphism for
all j . By the inductive hypothesis and Corollary 4.15, the same is true for the second
vertical map. Then, from Corollary 4.6, the third vertical map is also an isomorphism.
This proves the claim since, from Lemma 4.20, the spline complex X�+s(A � B) is
the same as X�+s(A ∪ B) = X�+s(C) for s = 0, 1. ��
Proposition 4.22 Let Assumption 3 hold. Then, the inclusion operation

ι�,�+1 : X�,�+1

(
S[n]

)
→ X�+1,�+1

(
S[n]

)
(57)

induces an isomorphism on the cohomology of the spline spaces.

Proof We proceed by looking at S[k] and inducting on k. The claim follows for the
base case k = 1 from Proposition 4.21. Next, given k ≥ 1, assume that the following
inclusion induces an isomorphism on spline cohomology,

ι�,�+1 : X�,�+1

(
S[k]

)
→ X�+1,�+1

(
S[k]

)
. (�)

Our objective is to show that the same is true for k + 1,

ι�,�+1 : X�,�+1(S[k + 1]) → X�+1,�+1(S[k + 1]) . (∗)

This will complete the proof and we proceed by inducting on subdomains of S[k+1].
Nested induction for S[k + 1,mk+1]: We will show the claim for S[k + 1] by con-
sidering S[k + 1,mk+1] and inducting on mk+1. The base case of mk+1 = 0 follows
from the induction hypothesis in (�) since S[k + 1, 0] = S[k]. Assume that the claim
is true for some mk+1 ≥ 0 and, as in Lemma 4.18, define

A := S[k + 1,mk+1], C := S[k + 1,mk+1 + 1]

Bjk+1
ik+1

:=
m(�,1)⋃
r1=0

· · ·
m(�,k)⋃
rk=0

�
jk+1
�+1

(
ik+1 +

k∑
l=1

rlδl + (mk+1 + 1)δk+1

)
.

Simple two-dimensional examples of such domains are shown in Fig. 5, while more
involved three-dimensional examples are shown in Fig. 6. Thus, the induction hypoth-
esis is that the following map induces an isomorphism on the spline cohomology,

ι�,�+1 : X�,�+1(A) → X�+1,�+1(A),
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and our objective is to show that the same is true for

ι�,�+1 : X�,�+1(C) → X�+1,�+1(C).

First, note thatB∗
�+s,�+1(A∩Bjk+1

ik+1
) = B∗

�+s,�+1(B
jk+1+δk+1
ik+1

) by Lemma 4.18. Since

both Bjk+1
ik+1

and Bjk+1+δk+1
ik+1

are domains of S[k]-type domains, the following inclusion
map induces an isomorphism on the spline cohomology from the induction hypothesis
(�),

ι�,�+1 : X�,�+1(�) → X�+1,�+1(�) , � ∈
{
Bjk+1
ik+1

, Bjk+1+δk+1
ik+1

}
. (†)

Next, for any� ∈ {A, Bjk+1
ik+1

,C, A∩ Bjk+1
ik+1

}, Lemma 4.13 and Corollary 4.19 imply
that X�+s,�+1(�) = X�+s(�), s = 0, 1. Then, following the same line of reasoning
as in Proposition 4.21, Theorem 4.5 implies the following commuting diagram,

· · · H
( j)
�

(A ∩ B
jk+1
ik+1

) H
( j)
�

(A) ⊕ H
( j)
�

(B
jk+1
ik+1

) H
( j)
�

(A � B
jk+1
ik+1

) H
( j+1)
�

(A ∩ B
jk+1
ik+1

) · · ·

· · · H
( j)
�+1(A ∩ B

jk+1
ik+1

) H
( j)
�+1(A) ⊕ H

( j)
�+1(B

jk+1
ik+1

) H
( j)
�+1(A � B

jk+1
ik+1

) H
( j+1)
�+1 (A ∩ B
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) · · ·

The first vertical map is an isomorphism for all j from (†), and the second vertical map
is an isomorphism for all j from the induction hypotheses on A = S[k+1,mk+1] and
(†). Therefore, so is the third vertical map from Corollary 4.6. Since, from Lemma
4.20, the spline complexX�+s(A�Bjk+1

ik+1
) = X�+s(A∪Bjk+1

ik+1
) = X�+s(C) for s = 0, 1,

this completes the induction on mk+1 and, consequently, on k. ��
Theorem 4.23 Let Assumption 3 hold. Then, the hierarchical chain complex

0 W0
� W1

� · · · Wn
� R 0⊂ d d d

∫
(58)

is exact for any 0 ≤ � ≤ L.

Proof Since S[n] = ��+1 for i = 1, Theorem 5.5 of [12] states that the hierarchical
B-spline complex is exact as the following inclusion induces isomorphisms on spline
cohomology ∀�,

ι�,�+1 : X�,�+1(��+1) → X�+1,�+1(��+1).

��
5 Implementation and Validation

A thorough investigation of the numerical stability of these spline spaces, as well
as a discussion of practical implementation and refinement strategies, is outside of
the scope of this paper. Instead, we discuss some basic ideas for computationally
verifying that assumptions are satisfied for a particular refinement configuration and

123



Foundations of Computational Mathematics

Fig. 5 The above figures correspond to amaximally regular hierarchical spline space defined using p(�,k) =
2 for all � and k. For k = 1, andwith the proof of Proposition 4.22 as reference (the part on nested induction),

example domains A, B
jk+1
ik+1

, B
jk+1+δk+1
ik+1

andC are shown for this hierarchical configuration formk+1 = 6

then investigate the (in)exactness of various refinement configurations. Future work
will explore numerical stability, approximation power of the spline spaces, and a-
posteriori error analysis.

5.1 Verifying Assumption 3 for a Given Refinement Configuration

Given a hierarchical refinement configuration, it is clear from the formulation of
Assumption 3 that its verification only requires information from pairs of successive
refinement levels.
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Fig. 6 The above figures correspond to amaximally regular hierarchical spline space defined using p(�,k) =
3 for all � and k. For k = 2, andwith the proof of Proposition 4.22 as reference (the part on nested induction),

example domains A, B
jk+1
ik+1

, B
jk+1+δk+1
ik+1

andC are shown for this hierarchical configuration formk+1 = 3

In this subsection, we explicitly state how Assumption 3 can be verified in a com-
puter implementation.

Condition 1 Let 0 ≤ � ≤ L − 1, i be the index of a 0-form B-spline of level �, and
define I k,−�,�+1 and I k,+�,�+1 to be the following maps,

I k,−�,�+1(i) := min
{
l : ξl,�+1,k = ξik ,�,k

}
,

I k,+�,�+1(i) := max
{
l : ξl,�+1,k = ξik+p(�,k)+1,�,k

}
.

Consider αi, αi+�i ∈ B0
�,�+1 and, without loss of generality, let�i be component-wise

non-negative. Then,
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supp(αi), supp(αi+�i) share an(n − 1, � + 1) − intersection

�(
I k,+�,�+1(i) ≥ I k,−�,�+1(i + �i) ∀k ∈ {1, . . . , n}

)
and

(
I k,+�,�+1(i) − I k,−�,�+1(i + �i) ≥ p(�+1,k) ∀k ∈ I ⊂ {1, . . . , n}, |I| ≥ (n − 1)

)

This is how we can check whether these splines share an (n − 1, � + 1) intersection,
as in Assumption 3. If they do not, then there is no need to check the second condition
and the assumption is satisfied. On the other hand, such an intersection exists, then we
need to check that the shortest path condition holds. This can be done as follows.
Condition 2Assume that supp(αi) and supp(αi+�i) share an (n−1, �+1)-intersection.
Then, a simple computation reveals that there are at most�n

k=1(�ik+1) shortest paths
between αi and αi+�i. Each such shortest path will consist of B-splines αi+�̂i such
that 0 ≤ �̂ik ≤ �ik holds for all k. Moreover, we also have �ik ≤ p(�,k) since
supp(αi) ∩ supp(αi+�i) contains at least one Bézier cell, a conservative upper bound
that ignores the effect of repeated knots. Therefore, a brute force check on these limited
number of shortest paths can be performed to verify that the second condition from
Assumption 3 holds. For instance, for a potential shortest path, each B-spline αi+�̂i
in it must be such that all Bézier cells in its support have been refined.

Finally, let B(i,�i) ⊂ B0
�,�+1 be the set of B-splines that form a shortest path

between αi and αi+�i; by convention we assume that αi, αi+�i ∈ B(i,�i). Then, the
shortest-path check does not need to be performed again for any αa, αb ∈ B(i,�i)
since the shortest path relation is commutative (the shortest path from αa to αb is also
the shortest path from αb to αa) and obeys the following recursion condition: if there
is a shortest path from αa to αc containing αb, a subset of this path is a shortest path
between αa and αb and another subset is a shortest path between αb and αc. This
further reduces the computational workload behind this verification task.

Remark 5.1 While the above explicit and conservative approaches may not be the
most efficient ones, they are easy to understand and illustrate how the conditions in
Assumption 3 can be verified in a local manner for any given hierarchical refinement
configuration, with the basic process amounting to a sequence of counting operations.

5.2 Example Applications and Limitations of Theorem 4.23

Toverify that the current theory holds computationally,we construct the hierarchicalB-
spline complex of discrete differential forms for a variety of refinement configurations
using extensions of GeoPDEs [27]. The computations involve finding the nullity of the
matrix corresponding to themixed discretization of the j-formHodgeLaplacian for the
de Rham complex [1, Chapter 4] (e.g., using a QR or singular value decomposition)
for all j . Specifically, this matrix corresponds to the following weak problem: find
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(g, f ) ∈ W j−1
L × W j

L such that

(v, g) − (dv, f ) = 0, v ∈ W j−1
L ,

(w, dg) + (dw, d f ) = 0, w ∈ W j
L .

The hierarchical complex is exact in position j if thematrix corresponding to the above
problem is of full rank for j < n and has a nullity of one for j = n. Any increments in
the nullity are in one-to-one correspondence with so-called discrete harmonic forms,
i.e., spline functions in W j

L that are cocycles and are orthogonal to coboundaries.
Existence of harmonic forms means the hierarchical spline complex is inexact, and
the Hodge Laplacian is well-posed only up to these harmonic forms.

5.2.1 Inexact Refinement Configurations and Resulting Harmonics

In this section, we build various hierarchical configurations that violate one or more
assumptions leading up to Theorem 4.23. These are minimal examples for which
sprurious harmonic j-forms exist for j > 0. Spurious harmonic 0-forms cannot be
created here because the imposition of homogeneous boundary conditions makes the
0-form Hodge Laplacian well-posed.

Two-dimensional examples In two dimensions, representative configurations that are
inexact and their accompanying Greville meshes G0,1 and G1,1 (which manifest the
change in the spline space topology) are shown in Fig. 7. The harmonic forms that
are introduced as a result of this change in topology are shown in Fig. 8. In all cases,
it can be seen that the homology of the Greville mesh changes between G0,1 and
G1,1 to produce a spurious harmonic form. Introducing a new component (e.g. by
violating Assumption 2) introduces additional harmonic 2-forms. Harmonic 1-forms
are createdby eithermerging twoconnected components ofG0,1 into a single connected
component in G1,1 or by modifying the topology of G0,1 from being a topological
ball into a topological annulus on G1,1. In the case of Fig. 7 configuration (d), the
refinement pattern introduces two harmonics because it transitions from refinement
of two topological balls to a single connected component (introducing a harmonic 1-
form) with non-trivial first homology group (introducing another harmonic 1-form).

Three-dimensional examplesExamples of refinement configurations resulting in spu-
rious harmonics in three dimensions are depicted inFig. 9. Similarly to twodimensions,
each of these harmonics corresponds to a change in topology between G0,1 and G1,1.
Specifically, harmonic 3-forms are introduced by violating Assumption 2 and includ-
ing splines in the fine space that do not correspond to removal of splines in the coarse
space. Harmonic 2-forms are introduced both by modifying G0,1 from a topological
ball to a topological solid torus on G1,1 or by modifying G0,1 from being two topo-
logical balls into a single topological ball in G1,1. Similarly, harmonic 1-forms are
produced by refinement patterns converting G0,1 from a topological ball into a config-
uration in G1,1 with an internal cavity or by refinement that converts G0,1 from being
a solid torus into a topological ball in G1,1.
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Fig. 7 Beziér meshes (left), coarse Greville subgrids G0,1 (center), and refined Greville subgrid G1,1 (right)
for various inexact refinement schemes are shown. Inexactness can be visualized by the changes in the
topology between G0,1 and G1,1 for the various configurations. Here, the filled disks correspond to Greville
0-cells, filled triangles correspond to Greville 1-cells, and filled squares correspond to Greville 2-cells
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Fig. 8 Spurious harmonic forms introduced by refinement patterns of Fig. 7 are shown

5.2.2 Exact Refinement Patterns

Having characterized various harmonic forms and described minimal examples show-
ing how changes in topology of theGrevillemeshes affect exactness of the hierarchical
spline complex, we now turn our attention to certain configurations that lead to exact
hierarchical spline complexes.

Two-dimensional examples In two dimensions, Fig. 10 shows a maximal regularity
bi-degree (6, 6) hierarchical configuration where the refinement domain is built as the
union of two 0-form B-splines; different subfigures correspond to different choices of
the two B-splines. Table 4 compares these different configurations based on the local
exactness characterization of [12] and our local exactness characterization presented
herein. It can be seen that in some cases, the theory of [12] can capture refinements
that violate at least one of our assumptions: this is because [12] permits refinement
of 2-form B-splines rather than just 0-form B-splines (see Assumption 2). That said,
Assumption 3 of this work can be much less restrictive than Assumption 5.7 of [12]—
particularly for high-degree splines with high smoothness. In the example shown, our
proposed assumptions admits five of the six hierarchical configurations that are exact,
while [12] only allows for two of them. This is largely because our result only requires
identical topology between the coarse and fine Greville grids, while that of [12] is
based on the more restrictive assumption requiring identical topologies for both the
Beziér meshes and Greville grids. On the other hand, the assumptions proposed in this
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Fig. 9 Inexact refinement patterns in three dimensions are shown for trivariate splines of degree p(�,k) = p
and maximal smoothness for all � and k. Each refinement pattern leads to G0,1 to G1,1 with different
topologies. Pattern (a) introduces a new component in G1,1, pattern (b) transitions from a ball topology
in G0,1 to a solid torus in G1,1, pattern (c) transitions from two disconnected balls in G0,1 to one in G1,1,
pattern (d) transitions from a ball in G0,1 to a simply connected volume with a void in G1,1, pattern (e)
transitions from a solid torus in G0,1 to a simply connected volume with a void in G1,1, and pattern (f)
transitions from a solid torus in G0,1 to a ball in G1,1

work can also be restrictive in other situations as they require refinement along paths
of 0-forms (see Definition 4.3).

Three-dimensional examplesAvariety of exact refinement patters in three dimensions
are depicted in Figs. 11 and 12. Figure11 exhibits exact refinement patterns that are
permitted by this work, while Fig. 12 shows exact refinements that are not permissible
given our assumptions.

Since the local exactness condition of [12] does not apply for n > 2, we do not
compare exact refinement patterns of this work to those of others. That said, in [12,
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Fig. 10 The above figures show hierarchical meshes used for building maximally smooth hierarchical B-
splines with p(�,k) = 6 for all � and k. The domain ��+1 is defined to be the union of the supports of two
0-form B-splines at level �. Different subfigures correspond to different choices of the two B-splines and
each subfigure progressively leads to a greater overlap of their respective supports. Refinement patterns
(e–g) are not exact, while all others are. The assumptions given in this document allow for each of the exact
refinement patterns except figure (h), while those of [12] are more restrictive in this respect and cannot
capture three of them

Table 4 For the refinement patterns shown in Fig. 10, the table below presents whether the corresponding
hierarchical complexes are exact, and whether the local exactness constraints of this work and those of [12]
are met

Refinement pattern Exact Assumption 5.7 [12] Assumption 3

Figure10a Yes Yes Yes

Figure10b Yes No Yes

Figure10c Yes No Yes

Figure10d Yes No Yes

Figure10e No No No

Figure10f No No No

Figure10g No No No

Figure10h Yes Yes No

Since refinements are performed by combining the supports of two 0-forms, Assumption 2 of this work and
Assumption 5.6 of [12] are always satisfied and so we do not include them in the table

Remark 5.9] it is conjectured that the hierarchical B-spline complex would be exact
if the intersection between the support of any j-form of �� and the complement of
��+1 is homologically trivial (i.e. the zeroth homology group has rank one and all
others are of rank zero). This is a direct extension of [12, Assumption 5.7] to higher-
dimensional spaces. The results of this paper do not contradict this claim. Nonetheless,
our results show that this conjecture may be more restrictive than is necessary. Indeed,
Assumption 3 does not require the topology of the coarse and fine Greville grids
to match that of the underlying Beziér mesh, as the conjecture of [12] would. The
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exact refinement patterns of Fig. 11 permissible under this work illustrate this point:
refinements presented in subfigures (a)-(c) would be supported by the extension of
[12] to three dimensions, while the refinement patterns in subfigures (d)-(k) would be
inadmissible. We believe that in higher dimensions permissible refinement patterns
under the conjecture of [12] would be similarly much too restrictive.

Finally, the results of this numerical study appear to indicate that our proposed
refinement strategy on 0-forms may be more restrictive than a refinement pattern that
simply relies on refinement of n-forms, as does [12]. We postulate that Assumptions
2 and 3 could be modified to only operate on n forms, rather than 0-forms, and
still produce a sufficient local exactness result. Arriving at such a proof, however,
would require more advanced techniques than available herein and, in particular, may
preclude the use of theMayer-Vietoris sequence.We expect that such a result, however,
would both generalize and unify the theory of this work and that of [12].

6 Conclusions

The incorporation of smooth, locally-refinable splines within the framework of finite
element exterior calculus can help build stable, accurate and efficient numerical meth-
ods. Motivated by this, we have presented a theoretical analysis of a discrete de Rham
complex built using hierarchical B-splines on a hypercube � ⊂ R

n . In particular,
we have presented locally-verifiable conditions that are sufficient for ensuring exact-
ness of this discrete de Rham complex. These theoretical results are accompanied by
numerical tests to showcase their applicability. These numerical tests help us investi-
gate the different refinement patterns allowed by our assumptions and, in the special
case of n = 2, allow us to contrast our approach with the one from [12]. We find that
our approach is applicable to certain refinement patterns disallowed by [12] and vice
versa. Future work should aim to unify the strengths of each approach. There are other
promising lines of theoretical and applied research that can follow this manuscript,
and in the following we briefly introduce some extensions of interest.

For applications, perhaps the most obvious case of interest is the use of our results
for building stable adaptive numerical methods for problems in electromagnetism and
fluid mechanics on domains in R

3. A first interesting open problem here is, given
meshes that do not satisfy Assumption 3, how to transform them into meshes that
do by adding minimal number of degrees of freedom. Another practical extension is
the incorporation of boundary conditions other than Dirichlet boundary conditions.
Alternatively, for solving problems on an arbitrary domain �, it will be interesting to
build a discrete complex by performing a cuboidal decomposition of � and piecing
together the discrete spline complexes defined on each cuboidal subdomain.

There are also several theoretical follow-ups that are of interest in numerical anal-
ysis. Since exactness of the discrete complex is only one of the ingredients in the
construction of stable numerical methods, an interesting question is whether there
exist commuting projection operators from the continuous complex to the exact dis-
crete subcomplexes that we consider in this document. Similarly, constructivemethods
for building local commuting projection operators is of interest for both theoretical
and applied studies.
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Fig. 11 Examples of refinement patterns for splines of maximal smoothness allowed by the proposed local
exactness condition are shown above. The Greville gridsG0,1 toG1,1 for the refinement patterns in each row
are, respectively, a single contractible domain, two disconnected contractible domains, a single component
with a non-trivial loop, and a single component with a void
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Fig. 12 Refinement patterns that are not supported based on the proposed local exactness condition, but that
are exact, are shown above. In the first row, there is no shortest path of translation operators going between
the two refined 0-form basis functions: to meet the proposed criteria, additional refinement would need to
be made, e.g., as in the first row of Fig. 11. In the second row, refinements are made using the support of
three-form basis functions, rather than 0-form basis functions
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