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Abstract

During a viral infection, we expel remnants of the virus. This makes it possible to
conduct wastewater analysis which aid in the efforts to track the evolution of the current
Covid-19 pandemic. It has been shown that by repurposing the kallisto algorithm, the
abundance of SARS-CoV-2 variants in wastewater samples can be estimated. Since this
is a novel method for this scope, its precision could probably be improved by adjusting
certain aspects. In this work, I look at one of those aspects: sequencing particular
genomic regions of the virus rather than the entire genome. I have indeed found that the
regions that code for the spike (S) and nucleocapsid (N) regions and a section around
the region coding for the non-structural protein 3 (nsp3) give particularly accurate
results when sequenced on their own. In addition, in at least one case, combining two
well-performing regions further improves accuracy at lower simulated abundances of
variants. This suggests that sequencing depth is preferred over sequencing breath as
long as the region being sequenced contains enough information to distinguish between
variants. These findings are important as they can aid in the improvement of this
method of variant quantification. Moreover, they can also help in improving other
algorithms applied to the SARS-CoV-2 genome by highlighting the genomic sections
containing the most differentiating information between variants.

1 Introduction
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus responsible for
the Covid-19 disease which was first detected in Wuhan, China in December 2019. Since
then, it was declared a Public Health Emergency of International Concern on 30 January
2020 by the World Health Organization and a pandemic since 11 March 2020 which is
ongoing at the time of writing.

In the effort to counter this pandemic, effective monitoring is essential. To this end, the
European Commission has put forth a number of recommendations [1]. Despite this, the
recommendation to sequence 5-10% of the SARS-CoV-2 positive patient cases was not met
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by most Member States [2]. As such, alternative ways of monitoring the virus is essential in
tracking the spread and evolution of the pandemic.

Wastewater based epidemiology (WBE) can aid in this as it can be done when clinical
sequencing, a laboratory method for determining the genetic makeup of an organism, proves
unavailable or impractical [3]. This is possible as genomic fragments of SARS-CoV-2 are
expelled from the human body through urine and faeces during an infection. WBE has the
added benefits of not being subject to patient sequencing biases and of revealing the spatial
spread of mutations at community and city level [4].

In [3], a method for quantifying the abundance of SARS-CoV-2 variants from wastewater
samples has been proposed. For this, kallisto [5] is employed, a tool initially used for RNA
sequencing (RNA-Seq) quantification. Since the genome is divided into sections that code for
different proteins, the building blocks of life, they also thought to only sequence the genomic
region coding for the spike protein, the one the virus uses to attach to our cells. In this
analysis, they observed greater prediction accuracy. This last fact also motivates the main
question of the work presented in this paper: Which genomic regions should be sequenced in
order to maximize the prediction accuracy for the method proposed in [3]? To answer this,
I first look at how genomic regions coding for specific proteins compare. Since those regions
vary in length, equal length regions within the genome are also analyzed. Finally, I check if
prediction accuracy is further improved if combinations of the best-performing regions from
previous experiments are used in the pipeline.

Adaptive evolution of SARS-CoV-2 mainly affects sites on the already discussed spike
protein and the nucleocapsid protein regions [6]. The role of the nucleocapsid protein is to
bind to the RNA sequence of the virus, which holds the genomic information, and to enter
the host cell. As such, the expectation before performing the experiments was that regions
which include those regions are also especially fit1 for distinguishing between virus variants
when used in the algorithm. This is also partially confirmed in [3] as they found that the
region coding for the spike protein is more fit in the algorithm compared to sequencing the
entire genome.

In my analysis, I also find the spike region to be particularly good at predicting the
correct abundances of variants. In addition, this was also found for the nucleocapsid region
and an area around the middle of the nsp3 region. When good performing regions are
combined, the results seem to indicate that combinations of two confer a slightly better
prediction accuracy at lower simulated abundances, but this does not appear to be the case
for combinations of 3.

Those results should inform future studies attempting to perform wastewater based epi-
demiology using not only kallisto, but also other methods for quantifying variants of the
SARS-CoV-2 virus. Since this is a novel method, the hope is that this work will aid in
further efforts to improve the accuracy of kallisto. For other techniques, focusing on those
well-performing regions, if that is possible in their pipeline, could also be attempted.

2 Experimental Setup
The SARS-CoV-2 virus presents a set of proteins: structural, non-structural, and accessory
as seen in Figure 1. This presents a good starting point in trying to optimize the algorithm
based on the choice of genomic region, as it enables us to compare functional sections of the
virus. I don’t analyze all possible sections as some of them are so small they approach the

1Fitness defined as giving the most accurate results in the kallisto algorithm
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length of a sequencing read (concept explained later in this section). The threshold which
I chose for a section to be included in the analysis is 300, double of 150, the length of a
sequencing read.

Since the spike protein is of much interest, I also look at its composite parts, namely the
subunit 1 (S1) and subunit 2 (S2) regions as seen in the figure. Further, in [7] wastewater
from New York City was sampled and unique, never seen before, mutations on the spike
region were observed by sequencing amino acid residues 412 to 579 for the MiSeq sequencer.
For this reason, I am also interested in how this specific region performs in the analysis
when given to kallisto. Note that in the last-mentioned paper, amino acid residues 434 to
505 were also analyzed for the iSeq sequencer. This was analyzed as it does not pass my set
length threshold.

Figure 1: Genome organization of SARS-CoV-2 with its encoded proteins retrieved from [8]
and modified to also include the S1 and S2 components of the spike protein

This leaves the following regions to be analyzed: the whole genome, all nsps with the ex-
ception of nsp11, orf1a, orf1ab, accessory proteins orf3a, orf7a, and orf8, structural proteins
S, M, and N, and S1, S2, and amino acid residues 412 to 579 from MiSeq sequencing from
the spike region. This first set of experiments already give interesting results (see section
3), but they present one big drawback: those regions are of unequal length, hence those
comparisons are biased in this sense. Therefore, this motivates the next set of experiments,
which is to look at equal length regions throughout the genome and compare them.

Lastly, I look at what happens if the best-performing regions from the previous experi-
ments are combined. I am especially interested in seeing if I am able to improve prediction
accuracy even in situations where the percentage of a variant in a wastewater sample is low.

For all those experiments, I look at the variants of concern (VOCs) alpha, beta, gamma,
delta, and omicron.

Much of the setup is taken from [3] and adapted in order to answer the specific questions
this study is attempting to answer. First, a reference set has to be constructed which kallisto
would use to build an index, followed by simulating different wastewater samples, both of
those being then used in the actual kallisto algorithm, and finally the results are evaluated
using certain plots. Following, is a detailed description of each of those components.

In order to run kallisto, a reference set is first needed. For this, I choose to use data from

3



Connecticut from the entire year of 2021, retrieved from the GISAID EpiCov database [9].
Before using this, I further filter the data using the existing pipeline such that all mutations
frequency of at least 50% are captured at least once. For that, we call each variant compared
to the original SARS-CoV-2 reference (NC_045512.2) and compute allele frequencies per
lineage. To achieve this, VCFtools [10], BCFtools [11], and minimap2 [12] from Bioconda
[13] are used. All the exact epi accession numbers for the strains used in the reference set
can be found in appendix A. After filtering, the indexing routine of kallisto can already be
run.

Initially, I constructed the reference set using data from Connecticut between October
2020 and September 2021. The reason for this is that in the meantime the omicron variant
started gaining ground as a variant of concern, leading to the decision to also include it in
my analysis. Before this, I had already managed to run the first two sets of experiments
based on the first reference set.

When a sequencer is used to analyze a sample containing genomic information, it does
not read genomes in their entirety, but rather it takes multiple smaller overlapping regions,
named sequencing reads, that can be used to reconstruct the actual genomes. The wastewa-
ter samples are simulated using ART [14], based on Illumina sequencers, with a sequencing
depth of 100, meaning that each base is read an average of 100 times. In order to make
the simulations better approximate real wastewater samples, each of the benchmarks also
contains background virus variants, meaning that they are not from variants of concern
amongst the variant which is being simulated. For those, I use sequences sampled on the
1st of March in Connecticut, while for the VOCs, B.1.1.7 (EPI_ISL_4371224), B.1.351
(EPI_ISL_4372166), B.1.617.2 (EPI_ISL_2035068), P.1 (EPI_ISL_3104694), and BA.1
(EPI_ISL_8185077) samples are used as representative of alpha, beta, gamma, delta, and
gamma respectively, all retrieved from the GISAID EpiCov database. The sublineage BA.1
was used in the case of omicron instead of the original B.1.1.529 lineage as there were no
samples of it at the selected time and location. For each VOC and for each region I test,
I have built different benchmarks based on the simulated abundance of the VOCs being
analyzed: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 per cent of the
wastewater sample.

Now having a reference set, the kallisto index, and simulated wastewater samples, the
quant routine of kallisto can be run, the results of which are turned in abundance esti-
mations of each VOC. Finally, having those results, the relative predictions error can be
plotted against the simulated VOC frequency or the region of the genome, depending on the
experiment being performed. For plotting, matplotlib is used [15]. The relative prediction
error is calculated as follows:

relative_prediction_error = estimated_abundance/true_abundance ∗ 100

Of note is that pandas [16] is extensively used throughout the descried pipeline.
For the first set of experiments, where I look at functional regions of the genome, the

actual simulated region is larger by a buffer of 150 nucleotides on each side. That is for
two reasons, the first one being that the regions don’t start at the exact position for each
genomic sample as each one can present insertion or deletion mutations at different locations.
Secondly, because of how sequencing works, the density of reads is less at the very ends of
a region and therefore a buffer region is able to account for that. The length of 150 was
specifically chosen because this is also the length of the sequencing reads when simulating
with ART.

Equal length regions are analyzed in the second set of experiments. The nucleotide
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lengths chosen for analysis are as follows: 250, 450, 750, 1000, 1500, 2000, 3000, 4000, 5000,
6000, and 7500. Lengths 250 and 450 are used as they reflect standard sequencing protocols
(Illumina ISeq and Illumina MiSeq respectively). Since analyzing every possible region for
each of those lengths quickly becomes computationally infeasible, I opted for choosing them
so that the starting positions of consecutive regions are at a distance of a fifth of the region
length from each other (ex. for the 1000 nucleotide length, the analyzed regions are: 1 to
1001, 201 to 1201, 401 to 1401 etc.).

Finally, depending on the results of the second experiment, those best performing regions
are combined in order to determine if this would lead to even better accuracy compared to
sequencing them alone. The way in which those regions were selected can be found at
the start of section 3.3, while the results that motivated it is present in section 3.2. All
non-overlapping combinations of best-performing regions were analyzed. This was done by
concatenating the fastq files representing the simulated sequencing reads of a genome and
then applying the quant routine of kallisto on them.

3 Results
Throughout this section, the results which I considered to be most significant are presented.
Their interpretation can be found in section 5. Throughout this section, I keep mentioning
the new and old reference sets/ results. Those refer to the experiments done with the data
from the entire year of 2021 and from October 2020 to September 2021 respectively. The
full set of results can be found on data.4tu.nl at DOI 10.4121/18532973.

At the end of this section, I also reflect on possible biases that might have influenced the
results due to the choice of reference and simulation data.

3.1 Specific regions
As discussed in section 2, the first set of experiments consists of looking at regions associated
with actual proteins of the genome.

In Figure 2 the performance of the spike region, together with its subregions is shown
for the new set of experiments which include the omicron variant. Here, it does not seem
like looking at subregions gives any significant advantage over taking the entire spike region,
which is at odds with the results from the experiments made on the old reference set. The
results of those for the spike region can be seen in Figure 3. Only having the latter, one could
have assumed that region S1 of the spike region would be advantageous over the others.

In Figure 4 I show the comparison between sequencing the entire genome and sequencing
the S, M, and N regions for the new set. With the exception of the beta variant, the N
region, even though not as much as the spike region or the whole genome, seems to also be
good at predicting the correct variant abundance.

3.2 Equal length regions
For the second set of experiments, I look at equal length regions. Namely, I analyze regions
of 250, 450, 750, 1000, 1500, 2000, 3000, 4000, 5000, 6000, and 7500 nucleotides.

Some of the results of the second set of experiments (those for regions of length 750,
1500, and 3000 with VOCs simulated at 80% abundance) can be observed in figures 5 and
6 for the new and old reference sets respectively. The rest of the graphs relating to different
simulated abundances can be found on data.4tu.nl at DOI 10.4121/18532973.
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Figure 2: Graphs showing the new results from sequencing the region coding for the spike
protein (S) together with sub-regions of it: S1, S2, and 412-579 from the New York City
wastewater [7]. Each of the (a), (b), (c), (d), and (e) are associated with the variants of
concern alpha, beta, gamma, delta, and omicron respectively
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Figure 3: Graphs showing the old results from sequencing the region coding for the spike
protein (S) together with sub-regions of it: S1, S2, and 412-579 from the New York City
wastewater [7]. Each of the (a), (b), (c), and (d) are associated with the variants of concern
alpha, beta, gamma, and delta respectively
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Figure 4: Graphs showing the results from sequencing the whole genome compared with the
regions coding for the membrane (M), nucleocapsid (N), and spike (S) structural proteins.
Each of the (a), (b), (c),(d), and (e) are associated with the variants of concern alpha, beta,
gamma, delta, and omicron respectively
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Those support the findings of the previous experiments as the areas appertaining to the
S and N regions seem to be particularly good at predicting abundances for all variants, with
the exception, again, of the beta variant in the case of the new reference set. The beta variant
proves to be particularly hard to predict, especially for the new reference set. Analyzing the
results, it turns out that kallisto misassigns reads from the beta variant to other background
variants from the simulated wastewater samples which leads to underestimation of the true
abundance.

In addition to S and N, it appears that a section around the middle of the region coding
for the non-structural protein 3 (nsp3) is also particularly good at predicting the correct
abundances in both the new and old results.

Figure 5: Graphs showing the new results from sequencing equal length region at a simulated
abundance of 80% for the new reference set. The x-axis is a mapping to the actual position in
the genome, while the y-axis represents the relative prediction error. A data point represents
the middle of an analyzed region. The shown graphs are for the regions of length 750 (a),
1500 (b), and 3000 (c). At the bottom left of each graph, there is a red line that shows the
nucleotide length being analyzed relative to the x-axis. Just above the horizontal axis, there
is also a bar showing how each position maps to a specific functional region which helps in
interpreting the results.
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To better visualize the good performing regions, I plot those that have a relative pre-
diction error of 20 or under, for true simulated abundances of 20 and higher for all variants
except beta with the new reference set (see Figure 7). The choice to exclude beta was made
as its inclusion would have resulted in way less of those regions since this variant is partic-
ularly hard to predict accurately. The highlighted regions are even better as they also have
20 or smaller relative prediction error for simulated abundance 10, again, with the exception
of the beta variant. This goes to confirm my initial observation regarding nsp3, S, and N
regions. In addition, those best performing regions are also the ones that are used in the
last set of experiments where combinations of regions are analyzed.

3.3 Combining regions
The final set of experiments consists in combining those regions I found to be best performing
from the previous experiments. This was done only for the new reference set.

The specific regions which were chosen are the ones that had 20 or under relative pre-
diction error for simulated abundances of 10 or higher for all variants except beta. The
beta variant was excluded as it is uniquely hard to predict compared to the others. Note
that those regions are also the ones highlighted in Figure 7. I analyze all the possible non-
overlapping combinations of those regions. Thus, the maximum number of regions in a
combination is three, as can also be intuitively deduced by looking at the last-mentioned
figure.

Here I only discuss 2 sets of combinations, as seen in Figure 8, because of space limita-
tions. The full results can be found on data.4tu.nl at DOI 10.4121/18532973.

In Figure 8.I, it seems that combining two regions gives a slight advantage over only
applying the algorithm to single regions. This advantage does not seem to increase with
the number of regions in a combination, since, as seen in Figure 8.II, the three-region
combination consisting of regions 5001-7500, 20801-24800, and 27001-29500 only seems to
have a clear advantage over the two-region combination consisting of regions 5001-7500 and
27001-29500.

3.4 Possible biases
Lastly, I would like to draw attention to the fact that the genomic strains used for delta
(EPI_ISL_2035068) and omicron (EPI_ISL_8185077) variants for simulating wastewater
samples are also present in the new reference set. This is not the case for the other variants
which might confer the delta and omicron variants an unfair advantage when their results
are compared with the others’ results.

More than that, since omicron is a new variant, at the time the data was retrieved for
the year 2021 for Connecticut there was only this one omicron variant left to be used in
the reference set, which could have clearly given it a big advantage in my analysis. It can
indeed be observed that omicron is usually more easily predicted than the other variants.
The question stands if omicron is indeed easier to predict overall or if this is just a result of
my experimental setup.

4 Responsible Research
All scripts that I created and used to achieve my results are available on data.4tu.nl at DOI
10.4121/18532973. I am not, however able to share the data directly share this data because
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Figure 6: Graphs showing the new results from sequencing equal length region at a simulated
abundance of 80% for the old reference set. The x-axis is a mapping to the actual position in
the genome, while the y-axis represents the relative prediction error. A data point represents
the middle of an analyzed region. The shown graphs are for the regions of length 750 (a),
1500 (b), and 3000 (c). At the bottom left of each graph, there is a red line that shows the
nucleotide length being analyzed relative to the x-axis. Just above the horizontal axis, there
is also a bar showing how each position maps to a specific functional region which helps in
interpreting the results.
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Figure 7: Graph showing those regions that have a relative prediction error of 20 or under,
for true simulated abundances of 20 and higher for all variants except beta with the new
reference set. Additionally, the regions represented by a thicker line also have 20 or smaller
relative prediction error for simulated abundance 10, with the exception of the beta variant.
They are also the ones used in the last set of experiments where good performing regions
are combined.

this would be against the terms of use that I signed before gaining access to the GISAID
EpiCov database. Nevertheless, it is generally easy for someone interested to gain access to
this database themselves.

This can be done by registering on their platform at www.gisaid.org. To do this, it is
necessary to provide your identity and accept the terms of use. It is mentioned on their
FAQ page that "This requirement is not only essential to help uphold the integrity of the
GISAID user community, but necessary to enforce the GISAID sharing mechanism that
assures reciprocity of the data for future generations".

All epi accession numbers for the strains used in the new reference set, for creating the
background virus variants and for representing each variant of concern can be found in
appendix A. Having those, someone interested in reproducing the experiments could find
and retrieve the SARS-CoV-2 genomes used here. Unfortunately, I did not think to also
keep the epi accession numbers for the old reference set as well and, consequently, I cannot
provide those. Despite this, in section 2 I provide the process of retrieving and filtering the
data from GISAID to create this reference set. Therefore, someone interested in also redoing
my old experiments could in theory recreate the old reference set.

Also relevant to the responsible research section, is that I lay out my concerns of how
the way in which I set up my experiments might give advantages to certain variants in the
final analysis. Those can be found in section 3.4.

5 Discussion
In [3], the paper that first looked at kallisto as a means to estimate variant abundance for
the Sars-Cov-2 virus in wastewater samples, Baaijens et al. have already found that their
results are more accurate when simulating reads only for the genomic region coding for the
spike protein (S). As they pointed out, it suggests that the algorithm prefers sequencing
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Figure 8: Graphs showing the results from combining sequencing data from regions that
perform very well on their own. Those on the top, denoted with (I), show a comparison
between combining 2 regions (namely 4501-12000 and 19501-27000) and analyzing them
alone, while those on the bottom, denoted with (II), compare combinations of 3 (namely
5001-7500, 20801-24800, and 27001-29500) with combinations of 2. Each of the (a), (b),
(c), and (d) are associated with the variants of concern alpha, gamma, delta, and omicron
respectively 13



death over sequencing breath, but the selected region also needs to uniquely identify the
virus variants.

In Figure 9, I plotted the allele frequency of the variants that I analyzed. An allele is
a specific variant of a gene, while the allele frequency refers to the number of times this
variant of the gene appears in a specific population compared to the number of individuals
in that population. In order to count alleles, there also needs to be an original strain from
which to compare the others and for that, I used the NC_045512.2 strain. The populations
I used for plotting this are made up of the strains that are used in the new reference set,
with the exception of the omicron variant which also contains three additional strains that
got uploaded for Connecticut in the year 2021 after the reference set was built.

Figure 9: Plot showing the allele frequency for each of the variants of concern compared to
the original SARS-CoV-2 reference (NC_045512.2)

What is obvious from looking at this plot is that all variants are mostly defined by
changes present at the last quarter of the genome, especially in the spike area. Except for
beta, they also have many defining alleles at the end of the genome, around where the N
region starts. Beta seems to have the least amount of defining alleles which would in part
explain the difficulty kallisto had in predicting its correct abundance.

In [6] it was shown that the evolution of SARS-CoV-2 is mostly characterized by puri-
fying selections (removal of deleterious alleles), but there are also some positive selections
(selection for fit alleles) on certain sites. The spike region, specifically the receptor-binding
domain, and the nucleocapsid (N) region, specifically the area associated with nuclear local-
ization signals, were shown to be particularly enriched with those positive selections. This,
together with the graph where I plotted the allele frequencies for the analyzed variants,
supports my finding that the genomic regions coding for the spike and nucleocapsid proteins
are particularly good at accurately predicting virus variant abundances.

The most surprising result is that a section around the middle of the nsp3 region is
particularly fit in terms of prediction accuracy for this method of abundance quantification.
According to [17], the nsp3 is a ’papain-like proteinase’ which ’functions as a protease to
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separate the translated polyprotein into its distinct proteins’.
Lastly, it seems like combining two good performing regions confers a slight advantage

over using one on those alone. This is not usually the case for combining three of those
regions as there are cases in which two-region combinations are found to be better. This
is perhaps because by increasing sequencing breath, relative sequencing depth is lost and,
since kallisto seems to prefer sequencing depth over breath, accuracy is lessened.

6 Conclusions and Future Work
Using kallisto, it is possible to quantify different variants of SARS-CoV-2 in wastewater
samples. In this research, I showed that it is possible to further improve this technique by
only sequencing for specific segments of the genome, as opposed to looking at the whole.
Specifically, simulating reads from the spike protein, the region coding for the nucleocapsid
protein, and a section around the middle of the non-structural protein 3 give the most
accurate results in this method of quantifying abundances. Further, I have shown that
combining sequencing reads from two good performing regions appears to slightly improve
the results.

Those results should inform those actually conducting wastewater analysis as they could
focus on those regions which I found to be the best performing. Furthermore, they can
also use combinations (of two) of those to further increase prediction accuracy at lower
abundances.

Future work should be aimed at further improving the prediction accuracy of this tech-
nique. A logical follow up would be to address the concerns expressed in section 3.4 by
making sure all strains used to simulate the wastewater samples don’t also appear in the
reference set which should also contain more strains from the omicron variant.

The area around the nsp3 middle section giving good results in distinguishing between
variants suggests that this region, in particular, carries certain important information which
is able to distinguish between variants. Hypothesising about the role of this information in
the SARS-CoV-2 virus could be of much interest to someone more well versed in the biology
part of bioinformatics.
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