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Conditional Multivariate Elliptical Copulas to Model
Residential Load Profiles from Smart Meter Data

Mauricio Salazar, Student Member, IEEE, Pedro P. Vergara, Member, IEEE, Phuong H. Nguyen, Member, IEEE,
Anne van der Molen, Member, IEEE, J.G. Slootweg, Senior Member, IEEE

Abstract—The development of thorough probability models for
highly volatile load profiles based on smart meter data is crucial
to obtain accurate results when developing grid planning and
operational frameworks. This paper proposes a new top-down
modeling approach for residential load profiles (RLPs) based on
multivariate elliptical copulas that can capture the complex cor-
relation between time steps. This model can be used to generate
individual and aggregated daily RLPs to simulate the operation
of medium and low voltage distribution networks in flexible time
horizons. Additionally, the proposed model can simulate RLPs
conditioned to an annual energy consumption and daily weather
profiles such as solar irradiance and temperature. The simulated
daily profiles accurately capture the seasonal, weekends, and
weekdays power consumption trends. Five databases with actual
smart meter measurements at different time resolutions have
been used for the model’s validation. Results show that the
proposed model can successfully replicate statistical properties
such as autocorrelation of the time series, and load consumption
probability densities for different seasons. The proposed model
outperforms other multivariate state-of-the-art methods, such as
Gaussian Mixture Models, by one order of magnitude in two
different distance metrics for probability distributions.

Index Terms—Multivariate copulas, load modeling, stochastic
modeling, Gaussian Mixture Model.

I. INTRODUCTION

THE energy transition comes with increasing penetration
of low carbon technologies in the electrical distribution

grid such as photovoltaic (PV) and wind generation [1].
This transition has also created environmental awareness on
household energy consumption, prompting changes in home
appliances, like the swap from gas to electricity for cooking
and residential heating, and the use of electric vehicles as a
mobility solution. This transformation creates high volatility
and uncertainties in the residential load consumption profiles
(RLPs), which introduces more challenges to the distribution
network operation.
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Modeling RLPs in low voltage (LV) distribution networks
has been an active field of research. Proper stochastic mod-
eling of load consumption is required in different types of
studies such as modern grid planning [2], quantification of
the impact of low carbon technologies [3], [4], finding secure
levels of penetration of PV generation [5], [6] and LV state
estimation [7]. The accuracy that these studies can provide
relies heavily on the quality of the stochastic models that can
capture the variability of the consumption patterns, making the
residential load modeling an essential task for making well-
founded decisions.

In Europe, the smart meter data is protected due to privacy
concerns [8]. Stochastic models have the benefit that the
original data’s statistical behavior is kept, reflecting it in the
simulated profiles, without including any individual measured
data. The future distribution grids will have millions of smart
meters installed. The capability to describe the consumption
patterns with a few parameters in a probabilistic representation
is desired to compress large volumes of data in compact mod-
els. A stochastic model can also generate training databases
of arbitrarily larger size, useful for machine learning tasks [9],
and Monte Carlo methods [10], [11].

A. Literature Review and Contributions

The research on RLPs modeling can be grouped into two
main approaches:

Bottom-up approach implements a Markov chain model
that simulates the dwellers’ behavior inside the households
and their interaction with home appliances [12]. Usually,
these methods are based on social demographic data [13],
or appliances characteristics and consumption duration [14]–
[17]. Bottom-up approaches have good results and usually
are used for testing demand-side management applications.
However, their main drawback is that they require the number
of dwellers in the households and very detailed information
about the use of the appliances. Such modeling is infeasible
for the distribution network operators (DNOs) for network
analysis to scale up to tens or hundreds of households because
of its modeling intensity and privacy concerns.

Top-down approach are more interesting for grid operators
since these models can be built based on existing smart
meter measurements. The main purpose of the top-down
approaches is to capture the statistical properties of the ac-
tual measurement data set. There are two main modeling
methods used for this approach: Markov chain models, and
probabilistic models that use parametric families of probability
distribution functions (PDFs). In the Markov chain models, a
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transition matrix is developed over discretized bins of power
consumption for each time step, and then the model is sampled
using a random walk to create the RLPs [18], [19]. The work
in [20] presents a Markov chain model that also considers
power consumption changes due to seasonality. In [21], load
profiles from a smart meter dataset are clustered, and for each
group, a Markov model is created, improving the quality of
the generated profiles. Nevertheless, the main disadvantage of
these models is that the range of power consumption is not
accurately modeled due to the required discretization at the
consumption levels, creating blind gaps on the edges of the
discretized bins. This can be a critical issue as the model might
not capture the whole range of consumption values adequately,
causing high power consumption underestimation, as shown in
[21] and [22].

In the probabilistic models, each time step of the RLP
is considered as a random variable, and the load profile is
modeled as a joint multivariate probability distribution. Dif-
ferent families of PDFs have been tested to approximate load
consumption, e.g., Log-normal, Weibull, Generalized Extreme
Value [23], [24]. However, [25] shows that load consumptions
do not follow specific PDFs, and it suggested using more
flexible techniques to represent different types of load distri-
butions appropriately. One multivariate probabilistic technique
is the Gaussian Mixture Models (GMMs) [26], extensively
used in the literature due to its flexibility to adapt to unknown
multi-modal and multivariate distributions. The work in [27]
uses a GMM to capture temporal correlations between time
steps of the aggregated RLPs for medium voltage (MV) to
LV distribution transformer loading. However, no analysis was
presented to model RLPs at the LV level. In general, GMMs
are very flexible, but they are limited by the assumption
that any multivariate joint distribution can be constructed
with elliptically symmetric Gaussian probability densities. As
shown later, GMMs can not properly model the complex cor-
relation between time steps of RLPs at the LV level.

A different multivariate probabilistic technique is the use of
copulas, which have been introduced in the context of energy
systems for clustering [28], wind power and solar irradiance
generation modeling [29]. Most of the load modeling that
employs copulas is for applications on planning and secure
operation on transmission grids [30]–[32], which only use
aggregated residential load profiles and not for individual
households, making the application for distribution systems
relatively new. Moreover, the above-mentioned application
approaches deal exclusively with few variables, e.g., wind,
PV, and load-generation for few buses on the grid. In this
sense, in the technical literature, there has been little effort
to model high-dimensional dependent stochastic variables for
time step correlations from smart meter data, e.g., a problem
with 96 stochastic variables representing a daily profile of
15 minutes resolution. The advantage of copulas is that it
does not model the joint distributions assuming elliptical
distributions; instead, it focuses on the correlations between
the marginal distributions that are modeled independently. As
a result, multivariate copula models can be more flexible than
GMMs for modelling complex correlations between variables.
Additionally, the copula modeling of RLP considers each

time step as a continuous random variable of active power
consumption, overcoming the problem of power discretization
required by the Markov models. The use of copulas to capture
temporal correlation on RLPs has been tested before in [33],
focused on the modeling of marginal distributions for each
time step using GMMs before applying the copula correlation.
Unlike this, the model shown in this paper does not use
any parametric family distribution over the marginals, giving
more flexibility for the copula model to capture complex
correlation between time steps. A more advanced technique
involving copulas applied to RLPs is the use of vines copu-
las [28], [34]. The disadvantage is that the model’s complexity
increases exponentially with the number of variables [35].
Model selection is problematic due to the vines’ hierarchical
nature, and sampling techniques over one or more dependent
variables (conditioned probability model) are not simple [36].
In contrast, our proposed approach keeps using the simplicity
of multivariate elliptical copulas (i.e., multivariate Gaussian
(MVG) and multivariate t-distribution (MVT) copulas), which
is practical to sample and the conditional probability has an
analytical solution.

In most power systems applications, the Gaussian copula
became the default approach for calculating stochastic vari-
ables correlation and scenario generation [29], [31], [37],
[38] without any further consideration on the type of data
to be modeled. Nevertheless, the MVT copula can benefit the
individual RLPs modeling due to its ability to capture high
values variations [39]; this property has not been explored
for the highly volatile RLPs. In this paper, the modeling
approach jointly evaluates the multivariate elliptical copulas
for modeling high dimensional temporal correlations, which
can be applied for both; individual and aggregated RLPs due
to its general mathematical formulation.

Most importantly, no particular attention has been given in
the technical literature to take advantage of conditioning the
joint probability distribution that the copula models, e.g., to
simulate processes when one or more variables are known.
In this paper, we have particularly focused on the simulation
of load profiles conditioned to an annual energy consump-
tion. Nevertheless, the developed multivariate elliptical copula
models can also be use to simulate RLPs conditioned to
weather data e.g., temperature, solar irradiation. In this sense,
our modeling approach gives and an extra tool for DNOs to
evaluate such possible scenarios for LV networks. In summary,
the main contributions of this paper are as follows:
• A proposal for a new top-down modeling approach for

RLPs based on multivariate elliptical copulas that (i)
can capture the high-dimensional temporal correlation
between time steps and annual energy consumption;
and (ii) can reproduce the high volatility of residential
demand accurately. The proposed approach unifies the
consumption modeling for MV and LV levels, simulating
active power consumption scenarios at 15, 30, and 60
minutes resolution for a whole year.

• A new multivariate elliptical copula-based probability
distribution model that simulates RLPs conditioned ac-
cording to an annual energy consumption and daily
weather profiles such as solar irradiance and temperature.
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Fig. 1. Example of active power consumption for weekdays in June, for
ten households with high annual energy consumption (first row), and ten
households with low annual energy consumption (second row).

The remaining paper is organized as follows: Section II
describes the statistical modeling problem for RLPs and the
mathematical formulation of the proposed algorithms. Sec-
tions III presents a case study where the model’s effectiveness
is tested in a comprehensive case study for modeling individual
and aggregated levels. For this, four different smart meter
datasets at different time resolutions were used. Section IV
summarizes and concludes the main results.

II. STATISTICAL MODELING OF RESIDENTIAL LOAD
PROFILES

A. Preliminary Analysis of RLP characteristics

The Fig. 1 shows an example of the difference in the
statistical properties of RLPs between houses with high and
low energy consumption. The left column of Fig. 1 shows
the probability density of the active power consumption of
one time step of the day for ten houses with high and low
energy consumption. As can be seen, the density distributions
have a different shape between the low and high energy
consumption houses, mostly positively skewed, with longer
tail in the high energy consumption case. This difference
can also be seen in the central column of Fig. 1, which
shows the complete profiles of the houses, in which the
5%, 50%, and 95% percentiles of the distribution densities
are highlighted. Additionally, The right column of Fig. 1
shows a scatter plot of active power consumption between two
consecutive time steps i.e., 18:00 and 18:15. Two important
observations can be drawn: First, that there is a dependency
structure between consecutive time steps; and second, that the
dependency structure between time steps in the RLPs also
depends on the annual energy consumption. For the same time
of the day, high energy consumption households have a higher
concentration of power values in the lower-left corner of the
plot, and a heteroskedastic dispersion in the upper right corner.
Furthermore, low energy consumption households have active
power values more concentrated and less dispersed in the
lower-left corner. Therefore, the annual energy consumption
also influences the dependency structure between the time
steps, and it should be considered as an extra variable in the
statistical modeling.

B. Statistical Modeling

In general, a daily RLP of a household with annual energy
consumption W can be discretized into T time steps. Each
time step has an active power consumption value, considered
a continuous random variable Xi ∀ i = 1, ..., T . In this paper,
the use of capital letters is for random variables and small
letters for observed values. i.e., we let X = (X1, ..., XT )
denote the random variable and x = (x1, ..., xT ) its observed
realization for active power consumption. Similarly, w as
an annual energy realization of the random annual energy
consumption variable W . The goal of the proposed model is
to find a probability distribution function

F (x1, . . . , xT , w), (1)

that captures the dependencies between all the random vari-
ables that defines the residential load profile, i.e., Xi and W ,
knowing that each random variable has a different marginal
distributions function, i.e., {F (x1) 6= . . . 6= F (xT ) 6= F (w)}.
The expression in (1) can be seen as a generative model
that can be sampled to simulate plausible load profiles for
a household with a random annual energy consumption.

The probabilistic model in (1) can be conditioned to a
specific value of annual energy consumption ŵ as

F (x1, . . . , xT |W = ŵ). (2)

The condition ŵ modifies the dependency structure of the time
steps transitions according to the annual energy value ŵ. The
conditioned model in (2) should match statistical properties
of a smart meter dataset, consisting of N tuples of actual
smart meter measurements of active power consumption for
households with different annual energy consumption

D = {(x1,n, . . . , xi,n, wn)}Nn=1, (3)

where the sub-index n is used to indicate the instance number
in the data set D.

Four statistical criteria are desired for the model in (2)
that should match the actual data set D. These are: (i) the
density distribution of active power consumption during the
year, (ii) the density distribution of the active power rate
change between time steps, which is crucial for studies where
the temporal behavior or net deviations are important, e.g.,
demand response management [40]; (iii) density distribution
of the active power for each season of the year, divided
by weekends and weekdays; and (iv) the average of the
autocorrelation of the daily load profiles.

The complex dependency between random variables seen in
Fig. 1 makes the modeling a difficult task. The finite mixture
modeling based on Gaussian distributions [26] is a popular
and flexible option to model (1). These models, known as
GMMs, can also be conditioned as showed in [41] and [27] to
model (2). Based on this, our proposal is referenced against a
conditioned GMM.

C. Multivariate Elliptical Copula Modeling and Selection

For notation simplicity, the set of random variables in (1)
are substituted as

{x1, . . . , xT , w} = {x1, . . . , xd},
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defining sub-index d as d = T + 1.
The Sklar’s theorem [42] shows that a multivariate joint

distribution of random variables Xi can be described by the
distribution function of its marginals Fi(·) and a copula C(·)
for i = 1, . . . , d. The copula models the dependency be-
tween the marginal uniform random variables [U1, . . . , Ud] =
[F1(X1), . . . , Fd(Xd)]. Formally, a function C(·) : [0, 1]d →
[0, 1] is a copula described by

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd))

= C(u1, . . . , ud). (4)

In general, Fi(·) is the transformation function from the
smart meter measurement space X to a uniform space U on
which the copula is modeled. The projection transformation is
described as X → U . Here, the marginal distributions are not
assumed to belong to any parametric probability distribution
model. Therefore, Fi(·) in (4) is the Probability Integral Trans-
form (PIT) using an empirical distribution function (EDF),
described as

FΠi
(xi) =

1

N + 1

N∑

n=1

1{xi,n≤xi} ∀ xi ∈ D, (5)

where 1 is the indicator function.
In literature, there are multiple multivariate copula models

available. The most common classes are the Archimedean, and
the multivariate elliptical copulas. These last are derived from
the MVG and MVT probability distributions. Archimedean
copulas have only one or two parameters of dependence for
their marginal distributions, limiting its applications for multi-
variate cases [43]. Alternatively, multivariate elliptical copulas
offer the possibility to assign different values of dependence
for all the pairs of random variables in (4), which is embedded
in the correlation matrix of the multivariate elliptical functions.
Due to this, multivariate elliptical copulas will be used here.

1) Multivariate Gaussian (MVG) Copula [44]: The MVG
copula can be constructed based on (4) using a multivariate
normal cumulative distribution function Φd(·), with zero mean
vector and correlation matrix Σ ∈ Rd×d, described as

C(u1, . . . , ud) = Φd(Φ
−1(u1), . . . ,Φ−1(ud); Σ)

= Φd(z1, . . . , zd; Σ), (6)

where Φ−1(·) is the inverse function of the univariate standard
normal cumulative distribution. The inverse function can be
seen as a projection from the uniform space to the standardized
elliptical distribution space, i.e., U → Z . The corresponding
MVG copula density can be expressed as

c(u1, . . . , ud; Σ) =
Nd(z1, . . . , zd; Σ)
∏d
i=1 φ(zi)

, (7)

where φ(·) is the univariate standard normal density distribu-
tion function, and Nd(·; Σ) the multivariate normal density
distribution function. The linear correlation between variables
described by matrix Σ has a known relation with Kendall’s
tau [44], denoted by τ , which is a rank-based dependence
measurement between variables xi in the dataset (D). This
relation is described as

ρ(k,l) = sin(
π

2
τ(k,l)). (8)

The subscript (k, l) describes the element position in the
matrix Σ. Therefore, the parameter estimation Σ for the MVG
copula is given by the relation in (8), and it is referred as Σ̂.

2) Multivariate t-distribution (MVT) Copula [39]: Simi-
larly, the MVT copula can be constructed using a multivariate
cumulative t-distribution function Td(·), with zero mean vec-
tor, scale matrix Σ, and ν > 0 degrees of freedom, described
as

C(u1, . . . , ud) = Td(T
−1(u1; ν), . . . , T−1(ud; ν); (Σ, ν))

= Td(z1, . . . , zd; (Σ, ν)). (9)

where T−1(·; ν) is the inverse cumulative distribution function
of the univariate t-distribution with ν > 0 degrees of freedom,
and serves as the projection function U → Z for the MVT
copula model. The MVT copula density is defined as

c(u1, . . . , ud; (Σ, ν)) =
td(z1, . . . , zd; (Σ, ν))
∏d
i=1 tν(zi; ν)

, (10)

where tν(·; ν) is the univariate standard density, and
td(·; (Σ, ν)) the multivariate density t-distribution functions.

The relation in (8) for the parameter estimation of Σ can be
extended to the MVT copula [45]. Therefore, Σ̂ is the same
for the MVG and MVT copulas.

The parameter estimation of ν for the MVT copula is
computed using a maximum pseudo-likelihood estimation
(MPLE) [46], as the model uses a non-parametric approach
over the marginal distributions. The MPLE maximizes the log-
likelihood of the MVT copula density (10) over the N uni-
form pseudo-observations ui,n, which are obtained applying
the transformation (5) on the smart meter dataset (D). The
optimization problem to find the optimal ν̂ is defined as

ν̂ = arg max
ν

N∏

n=1

c(u1,n, . . . , ud,n; (Σ̂, ν)). (11)

The model selection between MVG and MVT copulas that
better describes the dataset D is made using the Bayesian
information criterion (BIC), defined as

BIC ≡ −2 ln(`(D; θ̂)) + ln(N) p, (12)

where `(D; θ̂) is the log-likelihood of the multivariate elliptical
copula on the dataset D, θ̂ are the fitted parameters which
define the multivariate elliptical copula, and p is the number
of parameters of the copula. The BIC balances the model
goodness of fit, measuring the log-likelihood of the multi-
variate elliptical copula on the dataset penalizing the model
complexity by the number of samples N , and the number
of parameters on the model p. The model with the lowest
BIC value is selected, meaning that the model is simpler,
i.e., explaining the actual data with fewer parameters. The log-
likelihood for both multivariate elliptical copulas densities are

`(D; θ̂) =

N∏

n=1

c(u1,n, . . . , ud,n; θ̂). (13)

Here, θ̂ represents the correlation matrix Σ̂, for the MVG
copula, or (Σ̂, ν̂), for the MVT copula. A summary of the
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multivariate elliptical copula parameter fitting and model se-
lection procedure can be found in Algorithm 1.

A visual overview of the multivariate elliptical copula fitting
process discussed in this section can be seen in Fig. 2.
Steps (A) to (C) show an example of the projection of a
bivariate dataset to the uniform space using the PIT in (5).
Step (C) shows the elliptical distribution in Z that fits the
multivariate elliptical copula density in the uniform space
U . Sampling from the fitted elliptical distribution density in
Z space, and projected back to the X space, creates RLPs
with random annual energy consumption that follows the
marginal distribution F (w). In order to control the specific
generation of RLP for a household with given annual energy
consumption, the multivariate elliptical copula model needs to
be conditioned. This conditioning can be done as discussed
next.

Algorithm 1
Multivariate elliptical copula parameter fitting and model
selection.

1) Transform the smart meter dataset from the smart meter
measurement space X to the pseudo-observation uni-
form space U , using (5).

2) Compute Kendall’s tau τ(k,l) between variables xi,n of
the smart meter dataset D.

3) Compute scale matrix Σ̂ using relation in (8).
4) Compute the numerical optimization in (11), fixing scale

matrix Σ̂, and finding optimal ν̂.
5) Compute BIC for MVG and MVT copulas using Σ̂ and

ν̂ in (12).
6) Select the multivariate elliptical copula model with the

lowest BIC.

D. Conditioned Copula Model
Here, the expression defined in (2) is modeled to

simulate RLPs for a household with a specific annual
energy consumption ŵ. The following variable vectors
notation is used: x1 = [x1, . . . , xT ]ᵀ, x2 = w
and u1 = [FΠ1(x1), . . . , FΠT

(xT )]ᵀ, u2 = FΠw(w). To con-
dition (2), the Sklar’s theorem is extended to its conditional
form as

F (x1|x2) = C(u1|u2) = Ce(z1|z2; θ̂1|2), (14)

where θ̂1|2 is the conditioned parameters for the multivariate
elliptical copula discussed in Section II-C, and Ce(·) refers
to any of the multivariate elliptical copula models, i.e., either
MVG or MVT copula. Based on this, to condition the mul-
tivariate elliptical copula model, the annual energy value ŵ
should be projected from the smart meter space to the elliptical
distribution space X → Z . Fig. 2, step (C), shows and example
of this projection, which is represented as a red vertical line.
The projection X → U → Z depends on the copula model
selected by the BIC and is expressed as

ẑŵ =

{
T−1(FΠw

(ŵ); ν̂) if Ce(·) is a MVT copula,
Φ−1(FΠw

(ŵ)) if Ce(·) is a MVG copula.
(15)

The annual energy value projected condition the elliptical
distribution parameter to θ̂1|2, using Z2 = ẑŵ. The details
of parameter conditioning can be found in the Appendix.
The conditioned elliptical distribution function is sampled to
generate ẑ = [ẑ1, . . . , ẑT ]ᵀ ∈ RT , which should be projected
to active power units in order to obtain an RLP. The projection
Z → U → X is done by

x̂i =

{
F−1

Πi
(T (ẑi; ν̂)) if Ce(·) is a MVT copula,

F−1
Πi

(Φ(ẑi)) if Ce(·) is a MVG copula.
(16)

An example of the projection (16) in the bivariate case can be
visualized in Fig. 2 in step (D), indicated by the arrows. All the
simulated values follow the original conditioned distribution
function, as shown in (E). A summary of the steps to simulate
RLPs from the conditioned model is described in Algorithm 2.

Algorithm 2
Profile simulation from the conditional multivariate elliptical
copula.

1) Project the annual energy value (ŵ) to the multivariate
elliptical copula function space Z using (15).

2) Condition the parameters of the multivariate elliptical
copula θ̂z1|Z2=ẑŵ using (20) and (21).

3) Draw N samples from the conditioned elliptical distri-
bution {ẑn}Nn=1.

4) Transform the N samples into power units using (16).
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TABLE I
SMART METER DATASETS FOR THE CASE OF STUDY

Country Total houses

Annual Energy
consumption
[MWh/year]

(min) - (max)

Time
Resolution

Netherlands
(NL) [47] 77 (1.00) - (11.17) 15 min.

United States
(USA) [48] 25 (6.29) - (19.62) 15 min.

United
Kingdom
(UK) [49]

300 (0.03) - (8.10) 30 min.

Australia
(AUS) [50] 300 (1.16) - (8.89) 30 min.

III. CASE OF STUDY

In order to assess the effectiveness of the proposed cop-
ula models, an assessment is performed by comparing the
statistical properties discussed in Section II for actual RLPs
measurements and simulated RLPs for different case of study.
Additionally, simulations of RLPs obtained from the condi-
tional GMM are used as a benchmark. These cases of study
consists of four applications to analyze the performance of the
Algorithms 1 and 2, described as:

1) Individual and aggregated residential data modeling at
15-minutes resolution. Results are presented in terms
of parameter estimation analysis and model selection
(Sections III-A and III-B).

2) Modeling RLPs at 15, 30, and 60-minute resolutions
(Section III-C).

3) Modeling over different consumption load profile pat-
terns, testing for multiple smart meter datasets from
different countries (Section III-D). The open dataset
sources used for the different tests in this case study
are summarized in Table I.

4) The conditional copula modeling is extended to include
weather variables i.e., solar irradiance and temperature.
The conditional elliptical copula’s flexibility to model
daily power consumption profiles under different daily
weather conditions is analyzed (Section III-E).

The first test is divided in two cases: (i) aggregated RLPs,
which represents MV/LV distribution transformer loading for
residential areas; and (ii) individual RLPs, which describes
individual household consumption. RLPs for the two cases
have different correlation characteristics, and the purpose is to
evaluate the effectiveness of the methodology in such scenar-
ios. The individual case data set corresponds to smart meter
measurements of active power consumption for 77 households
in the Netherlands (NL) [47], with a 15 min resolution for
one year. The data set for the aggregated case consists of
100 MV/LV distribution transformers, with the same time
resolution and period as the individual case.

Figure 3 shows the actual daily RLPs for the weekdays
in June. The top left plot shows the aggregated RLPs,
which has a range of annual energy consumption between
123 and 160 [MWh/year]. The top right plot shows the
individual RLPs with has annual energy consumption between
11.17 and 1.00 [MWh/year]. The bottom row of Fig. 3 shows
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Fig. 3. RLPs for the weekdays in June. The first column shows the aggregated
RLP, and the second column shows the individual RLP. The bottom row shows
Kendall’s tau correlation matrix in a heat map visualization.

a heat map of Kendall’s tau correlations coefficients between
variables (time steps) of the day. The heat map shows that the
covariance between subsequent time steps is stronger in the
individual case, which varies between (0.52 - 0.75), compared
to the aggregated case that varies between (0.4 - 0.63). Also,
the correlation values vanish quickly in the aggregated case for
shorter time windows, compared to the individual case, which
has correlation values of 0.6 to 0.75 for one hour apart. Based
on this, we can see that aggregated and individual cases have
different correlation structure and uncertainties.

RLPs for both cases (aggregated and individual) have an
intrinsic seasonal trend during the year and have different con-
sumption patterns between weekdays and weekends. Hence,
for this case of study, the datasets are split into separate
disjoint groups, dividing them into weekdays and weekends,
and for each month of the year, creating 24 smaller datasets for
each case. Thus, the copula models and the GMM used for
the benchmark are fit for each of these datasets to simulate
a daily RLPs for different months of the year. A bootstrap
technique [51] was applied for building the models and test
the performance evaluation. To this end, 70% of the dataset
was used for parameter estimation and model selection, while
the remaining 30% was reserved as the original dataset for
evaluation purposes. The bootstrapping was repeated 1000
times to compute the probability distance metrics named the
Energy (ED), Kolgomorov-Smirnov (KS), and Wasserstein
distances (WD). Algorithms 1, 2, and conditional GMM were
implemented in Python 3.8 and run on an Intel i7 @2.8 GHz
PC with 8 cores and 32 GB of Memory.

A. Parameter Estimation and Model Selection
The results presented here are related to the modeling proce-

dure of the expression in (1) using Algorithm 1. Additionally,
the building procedure of the GMM based on [26] is also
presented. The GMM is used for comparison purposes.

Figure 4 shows the parameter estimation results for the
GMM and the multivariate elliptical copula models for the
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Fig. 4. Parameter fitting for the GMM and multivariate elliptical copula
models. The top row is the best number of components for the GMM. The
bottom row shows the negative likelihood values for the multivariate elliptical
copulas. The first column is for individual residential consumption, the second
column is for aggregated residential consumption.

weekdays of November. The top row shows the number
of components for the GMM, defined after running the
expectation-maximization algorithm using 1 to 20 components
and deciding the optimal number using the BIC. As can
be seen in Fig. 4, the optimal number of components that
best describes the data set is equal to K = 2, for both the
individual and aggregated case. The bottom row of Fig. 4
shows the multivariate elliptical copula parameter estimation.
In the individual case, the negative log-likelihood curve for
the MVT copula has a minimum in ν̂ = 19.38 with a
negative log-likelihood value lower than the MVG model. The
BIC value of the MVT copula was also computed, giving
a value of −151 376, and the BIC for the MVG copula is
−133 325, selecting the MVT copula model for the individual
case. Results show similar results for the rest of the months,
where the MVT copula is selected for all individual cases.

In the aggregated case, which is shown in the second column
of Fig. 4, the negative log-likelihood of the MVT copula has
a flatter behavior than the individual case; this trend is also
seen for the rest of the months. The MVT copula has an
optimal ν̂ = 144.44 with BIC of −188 069, and the BIC of
the MVT copula is −187 524, which is a difference of BIC of
less than 0.3%. It should be recalled that as ν →∞, the MVT
distribution tends towards an MVG distribution, which means
that both copula models are almost identical. Even though
the BIC in the MVT copula is lower than the MVG copula,
there is no substantial difference between both types of copula
models when the degrees of freedom is high [52]. Results show
that for values of ν > 200, both elliptical copula models are
indistinguishable.

In order to visually assess the capability to reproduce the
complex correlations seen in Fig.1, all the fitted models are
sampled to simulate RLPs for both cases. The results are
presented in Fig. 5 for the time step transition between 17:00
and 17:15 for one weekday in November. For the individual
case, the dependency structure between time steps on the
original smart meter measurements (D), can be modeled by
the multivariate elliptical copula (E). However, the GMM
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Fig. 5. Comparison between power values of the original dataset and N=1500
simulations for GMM and multivariate elliptical copula models, for the time
step transition between 17:00 and 17:15 a weekday in November. The top
row is the aggregated case, the bottom row is the individual case.
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Fig. 6. Simulation results of the conditioned multivariate elliptical copulas
for nine households randomly selected and grouped by different annual
energy consumption ranges. The red vertical line represents the annual energy
consumption value were the models are conditioned. Percentage shows the
error between the mean of the simulations and the conditioned energy value.

has a poor representation due to the restriction to fit only
Gaussian-shaped distributions (F). This difference highlights
the flexibility of the copulas, which can model complex
dependence structures seen on RLPs. For the aggregated case,
a simpler correlation is seen in the original dataset (A), with a
more Gaussian-like distribution. In this case, the multivariate
elliptical copula and GMM perform similarly.

B. Simulations with Conditioned Multivariate Elliptical Cop-
ula Models

The results presented here are related to the modeling pro-
cedure of expression in (2) using the conditioned multivariate
elliptical copula model shown in Algorithm 2. Additionally,
the building procedure of a conditioned GMM based on [41]
is also presented. To quantify the differences between the
active power values simulated by the developed copula models
and the original dataset, the Energy Distance (ED) [53] and
Kolgomorov-Smirnov (KS) distances are used as a probability
distance metric.

The multivariate elliptical copula and GMM models are
conditioned to each household’s annual energy consumption
and transformer for the individual and aggregated case, re-
spectively. Simulations are executed for N = 300 annual
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TABLE II
SUMMARY OF RESULTS FOR INDIVIDUAL RESIDENTIAL DATA - NETHERLANDS DATASET

Energy Distance Kolgomorov-Smirnov Distance Autocorrelation
Root Mean Squared Error (RMSE) [%]

Day of the week Season Conditional
Mult. elliptical copula

Conditional
GMM

Conditional
Mult. elliptical copula

Conditional
GMM

Conditional
Mult. elliptical copula

Conditional
GMM

Weekday

Winter 0.012 0.401 0.016 0.342 3.26 5.71
Spring 0.016 0.357 0.020 0.327 2.80 4.66

Summer 0.015 0.364 0.024 0.369 2.38 5.64
Autumn 0.017 0.227 0.022 0.256 2.99 7.52

Weekend

Winter 0.031 0.477 0.024 0.393 3.93 3.15
Spring 0.036 0.301 0.031 0.280 3.40 5.09

Summer 0.024 0.510 0.030 0.457 2.69 6.50
Autumn 0.029 0.313 0.022 0.287 3.70 6.26
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Fig. 7. Density distributions and energy distance metrics of the active power
consumption every 15 minutes, for one year for the original data set, and
the simulated profiles using conditional multivariate elliptical copula and
conditional GMM.

scenarios. Fig. 6 shows simulation results with the elliptical
copula models for nine randomly selected households with
different annual energy consumption values. The average
errors between the conditioned annual electricity consumption
values and the mean of the simulations are 4.9%.

The top row in Fig. 7 shows the distribution density of
active power values for all the houses (individual case) and
transformers (aggregated case) for a year. The results in (A)
and (C) show that both techniques have similar performance
in the aggregated case, with maximum ED differences of just
4.7%. However, for the individual case in (B) and (D), the
conditional copula performs better, improving the ED by 20
times, which means that our proposal outperforms the GMM
significantly.

The original dataset and simulation results are split into
seasons, weekdays, and weekdays. The results are shown in
Fig. 8. The box plots in (A) and (C), which are for the aggre-
gated case, shows that the RLPs generated by the conditional
elliptical copula has similar distributions based on the first and
third quantiles. However, the GMM tends to underestimate the
lower power consumption in the aggregated case, which can
be seen in the lower whiskers. For the individual case, (B) and
(D), the proposed model outperforms the GMM for all seasons.
In (D), the GMM underestimates the high power consumption,
simulating just 70% of the highest consumption values, which
can be seen in the boxplot’s upper fliers. This could be
critical for network planning studies, as the equipment could
be undersized, resulting in lower grid security. The differences
between the density distributions for Fig. 8 are summarized in

Fig. 8. Load consumption of one year split into seasons, weekends, and
weekdays. The conditional multivariate elliptical copula can model the original
data set for both aggregated and individual residential consumption cases
successfully.

Table II. Based on the distance metrics values, the multivariate
elliptical copula models RLPs accurately, outperforming the
GMM by one order of magnitude.

The simulated profiles for the weekdays in June are dis-
played in Fig. 9. (A) and (B) show that the conditional
elliptical copula generates profiles that keep household con-
sumption behavior volatility. The conditional GMM is more
conservative, underestimating the high power consumption
spikes, as discussed in Fig. 8. Subplots (C) and (D) of
Fig. 9 show a heatmap of Kendall’s correlation matrix of both
models’ simulated profiles. The heatmaps should be similar to
the original shown in Fig. 3 (D), similar structure means that
models can capture the correlation between time steps in the
generated profiles. The correlation matrix of the conditional
elliptical copula shows similarity to the correlation matrix of
the original dataset, with a mean difference of 4%. In contrast,
the conditional GMM has a poor structure and a maximum
difference of 60%.

It is also important to note that a comparable correlation
matrix does not necessarily imply a similar probability dis-
tribution for each time step transitions. A two-dimensional
Wasserstein distance is computed to quantify the similarity of
the probability distributions of time step transitions between
the original and simulated datasets. The tests were carried out,
showing the results as a heatmap in the subplots (E) and (F) in
Fig. 9. The color bar scales for the WD heatmaps show that the
conditional elliptical copula is almost one order of magnitude
smaller than the conditional GMM. The largest WD values
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Fig. 9. Simulation results of the conditional multivariate elliptical copula
and the conditional GMM for the 15-min resolution models over the NL
dataset. (A)-(B) daily profiles simulated from both models. (C)-(D) Kendall’s
correlation matrix on the simulated profiles. (E)-(F) Show the 2-D Wasserstein
distance between the simulated profiles and the original profiles, (G)-(I)
Highlight one example of the cross-plot that shows a time transition used
to compute the Wasserstein metric.

are 0.074 and 0.688 for the conditional elliptical copula and
conditional GMM, respectively. The WD heatmaps highlight
one example of active power transition between 19:00 and
19:15, for the original dataset (G), simulated by conditional
copula (H) and conditional GMM (I). In (H) and (I), in the
upper right corner is shown the WD metric for the specific
time step transition on the heatmap. The conditional elliptical
copula can simulate the consumptions seen in the tails of the
original dataset, e.g., consumptions above 4 kW, which agree
with the findings from Fig. 8.

The daily consumption profile is a time series that can be
characterized by an autocorrelation plot. Figure 10 shows the
autocorrelation signals’ averaged value for the weekdays in
June between all the houses in the NL dataset for the original
and simulated RLPs. The autocorrelation plot shows how is
the dependency structure of consumption between the current
and past demand values. The plot indicates that the past 20
and 10 times steps are the most significant values for the
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Fig. 10. Averaged daily autocorrelation plots for the aggregated case (A),
and the individual case (B) for one year of data.
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Fig. 11. Probability distribution comparison between original dataset and
simulated power profiles with Cond. Copula and Cond. GMM, for profiles
with different time resolutions

aggregated and individual cases, respectively. It is also shown
that all the simulated values, e.g., the 96-time step vector
sampled from the probability models, of the simulated RLPs
from the conditional elliptical copula models have the same
time series structure of the original profiles for the aggregated
and individual cases. The root mean squared error (RMSE) is
used to quantify the similarity of the simulated RLPs and the
original datasets. The RMSE values in Table II show that the
conditional copulas have an average error of only 3.1%, and
the GMM models are 5.6%, meaning that the proposed model
almost halved the error.

C. Modeling at Different Time Resolutions

Smart meters deployed in field can gather data at different
temporal resolutions, e.g., 15, 30, and 60 minutes. For the
second case of study, this subsection analyses the model
performance at different time resolutions using the NL and
USA datasets. Both datasets originally consists of energy data
(Wh) at 15 min resolution. An down-sampled for 30 and
60 minutes is done, using a sum of the active power of the
corresponding time intervals and then converted to power units
(kW).

Figure 11 shows the active power consumption in June for
both datasets at different time resolutions. The conditional
elliptical copula shows a consistent small ED across time res-
olutions. The conditional GMM shows an improvement when
the resolution is decreasing, reducing the ED by 70%. Two
observations are noticed at lower resolutions: The volatility of
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Fig. 12. Box plot comparison between original datasets and simulated active
power consumption for different datasets and time resolutions, for the smart
meter readings in Fig. 13

power peaks is reduced (lower probability distribution tails),
and the median of consumption is shifted to higher values.
The conditional GMM has an improvement when the load
profile is less uncertain. This can also be seen in Fig. 12,
subplots (A) and (B), on which the first and third quantiles
of the boxplot for all the models have similar values at
60 minutes resolution. Nevertheless, the conditional elliptical
copula shows a consistent good behavior on modeling the high
consumption peaks for all time resolutions.

Simulated profiles with the proposed conditioned multi-
variate elliptical copula at higher resolutions, e.g., 1 and
5-minutes, showed an accuracy decay. At higher data fre-
quencies, an actual RLP shows a ”squared-wave” time-series
profiles [54] since the use of home appliances is more ev-
ident, i.e., it is visible with the devices on/off switching.
Additionally, at higher time resolutions, the time of use of
the home appliances becomes an important variable. Bottom-
up modeling approaches, discussed in Sec. I, can capture
such dynamic behaviors of the household profile for relevant
demand-response applications.

D. Modeling Different Smart Meter Datasets

The third case of study is analyzed in this subsection,
where the effectiveness of the model is quantified for different
consumption habits across countries. Fig. 13 from rows (1) to
(4) in column (A) shows the difference in profiles for one day
in June for the smart meter measurements in Table I. The USA
dataset has households with the highest energy consumption
per year and has the most evident pattern showing a peak
consumption around 6:00 p.m. More volatile patterns are seen
in the AUS readings, with higher power values than the NL
and UK, which can be observed in Fig. 12. It should be noted
that these high consumption peaks are explained because of
the winter season (in June) in AUS.

All profiles have a different correlation dependency struc-
ture, as shown in Fig. 13 from rows (5) to (8) in column (A).
The profile simulations and the correlation matrices can be
seen in columns (B), (D), (E), and (F). For all datasets, the

TABLE III
PROBABILITY DISTANCE METRICS FOR ALL DATASETS

ED KD WD

Resolution Country
Cond.

elliptical
copula

Cond.
GMM

Cond.
elliptical
copula

Cond.
GMM

Cond.
elliptical
copula

Cond.
GMM

15 min. NL 0.014 0.351 0.024 0.352 0.038 0.376
USA 0.028 0.524 0.022 0.261 0.242 1.187

30 min.

NL 0.051 0.171 0.084 0.231 0.062 0.173
USA 0.031 0.352 0.016 0.184 0.217 0.764
UK 0.032 0.158 0.058 0.208 0.041 0.197

AUS 0.030 0.243 0.044 0.261 0.085 0.412

60 min.

NL 0.036 0.119 0.058 0.190 0.052 0.263
USA 0.014 0.146 0.014 0.067 0.198 0.500
UK 0.016 0.048 0.030 0.091 0.033 0.186

AUS 0.022 0.218 0.030 0.168 0.080 0.368

MVT copula is selected by Algorithm 1 as the best model.
In general, the conditional elliptical copulas closely replicates
the correlation structure with a mean error over all correlation
matrices of 6.8%, while the conditional GMM has 10.9%.
For the same month, the profiles are down-sampled to 60
minutes resolution, using the same procedure as in Sec. III-C,
and the results are shown in the columns (D) to (F) in the
same Fig. 13. The up-sampling has a smoothing effect on the
correlation heatmaps and reduces the volatility of the load
profiles. The underestimation of peaks from the conditional
GMM can be seen in the simulation profiles of UK, i.e.,
subplots (3C) and (3F), in which power values above 2 kW are
rarely seen. All probability distance metrics are summarized
in Table III, which shows that both models perform better at
a lower resolution. Nevertheless, the conditional copula keeps
the best scores by one order of magnitude for all the datasets at
different resolutions. Finally, Fig. 12 shows that the conditional
elliptical copulas models can simulate all the range of power
peaks for all 60-minutes resolution cases.

E. Modeling Including Weather Variables

The previous subsections focused on the modeling of the
residential profiles conditioned to specific annual energy con-
sumption. Load consumption profiles’ changes due to weather
factors such as temperature and irradiance, were implicit in the
modeling when the datasets were split into 24 disjoint groups.
This was done to cope with the seasonal changes during a
year. This subsection extends the model in (1) to consider the
weather variables into one explicitly joined dataset modeling.
To accomplish this, the multivariate copula modeling now
includes the continuous random variables irradiance, Q ∈ Rr,
and temperature, O ∈ Rs, with random realizations q and o:

F (x1, . . . , xT , w, q1, . . . , qr, o1, . . . , os), (17)

where r and s represent the index of the time step discretiza-
tion of the irradiance and temperature profiles, respectively.
e.g., for 1-hour resolution of temperature data s = 24. The
dataset in (3), used to compute the extended model in (17) with
Algorithm (1), is also extended to consider meteorological
measurements, which were collected at the same time as the
active power consumption measurements. Thus, the model
(17) is then conditioned using Algorithm 2, based on the
energy, temperature, and irradiance variables, such as

F (x1, . . . , xT , |W = ŵ,Q = q̂,O = ô), (18)
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Fig. 13. Simulation results for the smart meter datasets of Table I. Columns (A) and (D) show the original load profiles from one day in June at 30 and 60
minutes resolution. Thick black lines show the median RLP for each dataset. Simulations from the conditional elliptical copula models are shown in columns
(B) and (E). Simulations form cond. GMM are in columns (C) and (F). The heat maps of the correlation matrix from (1) to (5) show correlation structures,
meaning different consumption profiles patterns from each dataset.

where q̂ = (q̂1, . . . , q̂r) is the daily profile of irradiance, and
ô = (ô1, . . . , ôs) is a daily profile of temperature. To validate
this extended model, an original dataset is used consisting of
active power readings of 97 distribution transformers, 71 smart
meters (both at 15-minute resolution), and meteorological
measurements (at 1-hour resolution) for one year. The number
of solar irradiance variables was reduced to those time steps

with significant sunlight (8:00 - 18:00). Therefore, the number
of dimensions for irradiance variables is s = 10. Thus, the
models in (17) and (18) have a total of 131 variables.

Figure 14 summarizes the conditioned copula model’s sim-
ulation results, compared to the original dataset, for multiple
scenarios using the bootstrapping method. Due to the model’s
high dimensionality and heterogeneity of the dataset, the
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Fig. 14. Summary of the analysis of the aggregated and individual daily profiles changes seen in (A) and (F), considering different factors such as: Winter
and summer seasons (B) and(G), high and low annual energy consumption (C) and (D), temperature change during peak hours, i.e., 16:00 - 19:00, (D) and
(I), and active power change due to irradiance during sunlight ours (8:00 - 18:00) for meters with and without PV installations (E) and (J). The datasets
correspond for loading profiles from January until July. The red dashed lines in all subplots are the quantiles’ results from the simulations from the conditional
elliptical model that considers weather variables as shown in (17).

conditional GMM could not be computed for this case. In
Fig. 14, the meter readings on (A) and (D) have combined
measurements of service areas (aggregated level) and house-
holds (individual level) with and without PV installations.
The different profiles could have different correlations with
the irradiance variable, e.g., in sunlight hours, reverse power
flow may exist into the grid, visible as a duck curve in
the profile. Figure (B) and (G) segregates the profiles based
on seasons for winter and summer. The differences over
the median between seasons are highlighted in grey. These
differences are assumed to be mainly caused by temperature
changes and global irradiance profiles between both seasons.
A significant difference is seen in the peak hours for the
aggregate and individual cases, while the consumption remains
nearly the same in the nighttime. This means that changes in
weather conditions do not equally change the load profile in
a linear way for all the time steps in the daily profile. For the
aggregated case, the sunlight hours also significantly differ in
the medians due to the transformers with high PV penetration.
The maximum error between the medians of the simulated
profiles and the original dataset is 4%.

The subplots (C) and (H) on Fig. 14 also highlight in grey
the median differences between measurements coming from
service areas and households with high and low annual energy
consumption. It is clear from these subplots that the annual
energy consumption (w) plays a notable role in changing
the loading profiles, affecting all time steps during the day,
compared to the seasonal factor. In order to further analyze
the impact of temperature in the load profiles, subplots (D)
and (I) show the active power consumption from peak hours
(16:00 to 19:00) versus temperature, which are the most
affected hours according to subplots (B) and (G). The power
consumption is inversely proportional to the temperature until
a minimum point, depicted by an orange circle in subplots (D)

and (I), in which the power consumption starts to be directly
proportional. This behavior could be attributed to installed
cooling systems, on which the minimum point could be the
average of the cooling devices’ temperature setpoints.

The simulated power at higher temperatures starts to diverge
(dashed red line on subplots (D) and (I)). The divergence
is explained by the fact that there is a bimodal behavior in
the correlation between the two marginals, e.g., at 18:00, the
power could have the same power consumption based on two
completely different temperatures. One mode is negative, and
the other is positively correlated. This means that for high
temperatures, e.g., heat waves, a single conditional elliptical
copula could underestimate the power consumption, limiting
the simulated scenarios under those circumstances. The con-
ditioned elliptical copula model has an error of 5% between
the medians of the original and simulated profiles for the
temperature analysis.

The changes in power due to the global irradiance are shown
in subplots (E) and (J) for the serviced areas/households with
and without PV installations. The simulation has a maximum
error of 7% of the aggregated case with no PV subplot (E).
The simulations from the model diverge at high irradiance due
to the same reason of the temperature analysis. Irradiance and
temperature are highly correlated, e.g., on Fig 15, conditioned
weather column. Meaning that the temperatures are also high
at higher irradiance values, on which the cooling systems start
to work, and consumption climbs up; this creates a slight
divergence at the end between the original and simulated
medians. The effect of bimodality is reduced by the active
power measurements affected by the PV installations. Higher
irradiance values mean higher PV energy production, which
lowers the active power consumption from the grid. The model
over the data with PV installations has a maximum error
of 1.1%.
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Fig. 15. Simulations of the weather variables from model (17) (top row).
Active power simulation results from the conditioned elliptical copula model
in (18), for a day in winter and summer at two different annual energy
consumption values, for the aggregated and individual case (mid and bottom
row).

Figure 15 shows the simulation results for a year of
the weather variables from the generative model in (17),
on which the 0.05, 0.5, and 0.95 percentiles are overlayed
between the original and simulated profiles. The maximum
difference on the median is about 1.5% for temperature and
2.3% for irradiance. The mid and bottom row on Fig. 15
shows 300 scenarios for active power consumption with the
conditioned model in (18) for one a sunny in summer (high
irradiance) and one day in winter (low temperature), for
the cases of a household/serviced area with high and low
energy consumption. In the aggregated case, it is observed
the increase of consumption at lower temperatures and the
decrease of the duck curve during the sunlight hours when
the irradiance is low. In the individual case, the low annual
energy consumption household with PV installation shows a
higher generation in sunlight hours in summer than winter.
In the case of the high annual energy household, the median
of the consumption increases due to the lower temperatures.
The simulation examples show that the conditional elliptical
copula model can generate profiles consistent with multiple
weather conditions.

It should be emphasized that the model in (17) could have
both weather profiles at different time resolutions. Suppose
the weather variables are increased due to a higher sampling
resolution, e.g., 15-min resolution. In that case, the model’s

dimensionality increases, which can cause an ill-conditioned
covariance matrix Σ̂. A numerical approximation for the
nearest correlation matrix can be used to overcome the prob-
lem [55] but could potentially decrease the accuracy of the
conditional elliptical copula modeling.

IV. CONCLUSION

In this paper, a new top-down approach based on multivari-
ate elliptical copulas was presented. The proposed approach
builds a probabilistic model that is able to capture the statisti-
cal properties of any smart meter measurement data set. The
model is used to simulate RLPs specifying different annual
energy consumptions and different daily weather conditions
of temperature and solar irradiance.

Different from conventional top-down approaches based
in Markov models, the proposed model does not require
active power consumption discretization for each time step.
Additionally, a benchmark against a GMM for two cases:
aggregated and individual consumption, was also presented.
Results showed that the GMM had a fair representation of
the true probability distribution of the smart meter dataset at
the aggregated level. However, the heteroskedastic dependency
structure seen for individual RLP makes the GMM technique
less flexible for modeling individual households. Due to this,
the multivariate elliptical copula outperforms the GMM in
one order of magnitude in the Energy and Kolgomorov-
Smirnov distance metrics, and also was found to be 1.8 times
better on the RMSE metrics for the autocorrelation plots.
On the aggregated case, special preference was seen for the
conditional MVG copulas, different from the individual case
that the conditional MVT copula models had better fit. Five
different smart meter datasets at different time resolutions had
been tested, showing the general application of the presented
algorithms. Finally, the proposed model is fully flexible in
order to capture and simulate the complex correlations and
changes caused by temperature and irradiance fluctuations to
the daily profiles’ time steps.

APPENDIX

The conditioned elliptical distributions functions are defined
using the following notation:

X =

(
X1

X2

)
, µ =

(
µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
, (19)

where {X,µ} ∈ Rd1+d2 for d1 + d2 = d, and block matrices
Σ11 ∈ Rd1×d1 , Σ22 ∈ Rd2×d2 , Σ12 = Σᵀ

21 ∈ Rd1×d2 .
An elliptical density distribution function fe(·, θ), named

MVT distribution or MVG distribution, conditioned as X1

given X2 = x2 is another elliptical distribution fe( · ;θ1|2),
defining θ1|2 = (µ1|2 , Σ2|1) for the MVG distribution and
θ1|2 = (µ1|2 , Σ2|1, ν1|2) for the MVT distribution. The
conditional mean vector and covariance matrix are

µ1|2 = µ1 −Σ12Σ
−1
22 (x2 − µ2)

Σ1|2 = Σ11 −Σ12Σ
−1
22 Σ21.

(20)
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For the conditional MVT distribution, the conditioned mean
µ1|2 is the same as the MVG distribution. The conditioned
scale and degrees of freedom for the MVT are given by

Σ1|2 =
ν + (x2 − µ2)T Σ−1

22 (x2 − µ2)

ν + d1
(Σ11 −Σ12Σ

−1
22 Σ21)

ν1|2 = ν + d1.
(21)
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