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Amud budget of the Wadden Sea and its
implications for sediment management

Check for updates

Ana Colina Alonso 1,2 , Dirk Sebastiaan van Maren 1,2,3, Albert Peter Oost4, Peter Esselink5,6,
Robert Lepper 7, Frank Kösters 7, Jesper Bartholdy8, Allert Imre Bijleveld 9 & Zheng BingWang 1,2

The world’s coasts and deltas are progressively threatened by climate change and human activities.
The degree at which coastlines can adapt to these changes strongly depends on the sediment
availability. The availability of muddy sediments is however poorly known. This study aims at
developing a mud budget for the world’s largest system of uninterrupted tidal flats: the Wadden Sea.
The resulting mud budget is nearly closed: ~ 12 million ton/year enters the system on its western
end, ~ 1.5 million ton/year is added by local rivers, while ~ 12 million ton annually deposits or is
extracted by anthropogenic activities. A mud deficit already exists in the downdrift areas, which will
only becomemore pronouncedwith increased sea level rise rates.Mud is thus a finite resource similar
to sand, and should be treated as such in sediment management strategies. Resolving future
challenges will therefore require a cross-border perspective on sediment management.

The world’s coasts and deltas are increasingly influenced by human inter-
ventions. Deltas are subsiding at alarming rates1–3, the influx of fluvial
sediments is reduced because of upstreamdams4,5 or sandmining6,7, and the
alongshore drift is interrupted by coastal structures8,9. Superimposed on
these local interventions are global climate change effects, with sea level rise
(SLR) progressively threatening coastlines worldwide10–12. In the coming
century, both human interventions and climate change will put the liveli-
hoods of millions of people at risk13. Deltas and coastal environments are
dynamic systems in which erosion, transport, and deposition of sediments
provide a delicate balance. The degree to which coastlines will be able to
adapt to future changes, especially in view of SLR, strongly depends on
modifications to coastal sediment budgets.

Coastal systems display a wide variety of types, ranging from exposed
high-energy beaches to estuaries and back-barrier lagoons. Sediment bud-
gets along sandy open-coast beaches are strongly driven by thewave climate
and adapt relatively quickly to SLR or human interventions14,15. Using
empirical formulations16–18, the sediment fluxes along sandy beaches are
relatively well known, and their adaptation to SLR can be reasonably pre-
dicted when assuming the coastal profile to remain constant12 (although
such a simplification is debated19). Sediment transport in estuaries, tidal

basins and lagoon systems is primarily driven by tidal transport of bothmud
and sand. Adaptation of such relatively sheltered systems to SLR requires
enhanced sediment trapping. Predicting this enhanced trapping introduces
two challenges: one is related to the delicate balance in erosional and
depositional processes within the basins, and the other to the availability of
sediments20,21. In many of such basins, the availability of sand will be a
limiting factor, but this may be (partly) compensated with fine-grained
sediments (i.e., mud)22–25. In contrast to sand-dominated systems, the
alongshore fluxes of fine-grained sediments are poorly known. We aim to
develop such a fine-grained sediment flux and highlight the importance of
knowing it for the world’s largest uninterrupted system of barrier islands
and tidal flats—the Wadden Sea.

TheWadden Sea spans a distanceof nearly 500 kmalong the coastlines
of the Netherlands, Germany and Denmark in the Northwestern European
shelf (Fig. 1). As a protectedUNESCOworld heritage site, it provides crucial
habitats for numerous species of fish, mammals and birds. It also plays an
important role as a sink for CO2, in particular by blue carbon storage in its
sediments, seagrass and salt marshes26. Water motion in the Wadden Sea
basins is influenced by tides (with tidal ranges from about 1.5 to over 4
metres), offshore waves generated in the North Sea that penetrate through
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the inlets and smaller locally-generatedwindwaves (Fig. 1d). Besides, wind-
driven currents play an important role in the shallow parts of the basins27,28.
The main freshwater sources enter theWadden Sea through the IJssel Lake
sluices (average yearly discharge of ~ 450m3/s29) and the Ems (~100m3/s30),
Weser (~300m3/s31) and Elbe (~750m3/s30) estuaries. SLR has so far been
limited, with rates of 1.2–2.3 mm/year in the past century32 (Fig. 1d).
Accelerated SLR and subsidence, however, threaten the Wadden Sea’s
existence: if the sediment import cannot keep upwith increased relative SLR
rates, this will result in partial loss or even disappearance of the ecologically
valuable intertidal areas33,34.

The sediment bed of theWadden Sea, as that ofmany other coasts and
deltas (e.g., Yangtze Delta, Mekong Delta, Nakdong Estuary, San Francisco
Bay), consists of sand and mud. Despite decades of scientific attention to
sandy alongshore sediment budgets35–37 and sand-mud budgets of fluvial
systems38–40,marinemudbudgets remain largely unknown. This is probably
related to the inherent difficultieswithobtaining such abudget. Transport of
mud cannot be predicted with empirical formulae because its transport is
supply-limited and therefore needs to be based on observed bathymetric
changes or detailed measurements of hydrodynamics and sediment con-
centrations. The Wadden Sea provides herein a globally unique case, with
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Fig. 1 | Overview map of the Wadden Sea. a Current bathymetry (combined maps
of 2015–2021 in m to NAP, Netherlands Ordnance Datum). The white dotted lines
indicate the tidal range105. bBed sediment composition plotted as themud content in
the upper bed (top 4–10 cm). The Danish part of the Wadden Sea is not included in

the plot because there is no available data on this area. c Location of theWadden Sea.
d Example of a wave climate on an ebb-tidal delta and in aWadden Sea basin (both
calculated over the period 2015–2018), and average yearly mean sea level (MSL)
from tide gauge records in the Dutch basins over the past century.
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detailed observations of bathymetric changes and grain size distribution41–47.
Such observations can be used to quantify the contribution of sand andmud
to infilling48, thereby providing a sediment budget.

In this study, we expand on previous work by developing a complete
mud budget for the entireWadden Sea by carefully quantifying sources and
sinks.We synthesise earlier studies toobtain thebest estimate for the sources
while we compute sinks using extensive bathymetric and grain size dis-
tribution data. By demonstrating that this mud budget is nearly closed, we
show that mud is, in fact, a commodity that may become a limiting factor
under conditions of accelerated SLR.

Results and discussion
Mud sources and sinks
To establish the mud budget, we determine the magnitude of the main
sources and sinks, focusing on inorganic particulatematter. The largestmud
source is the marine North Sea Continental Flow (NSCF). This flow
transports mud from the Dover Strait (in between France and the United
Kingdom) along the French, Belgian andNetherlands coasts. Its magnitude
at the western end of the Wadden Sea is on average, approximately
10–14.4 million (M) ton/year (see the Methods section). The sediment
plume first deflects to the East, after which it turns northward again in the
German Bight while interacting with the various tidal basins (Fig. 2a).
Although these basins primarily act as sediment sinks, several rivers (from
Lake IJssel and the Ems,Weser and Elbe estuaries) constitute an additional
sediment source, adding a total amount of mud of 1.5 M ton/year into the
Wadden Sea.

The main mud sinks throughout the Wadden Sea can be divided
into four categories: deposition in the basins (7.95M ton/year) and on
the salt marshes (1.84M ton/year), offshore deposition (0.56M ton/
year), and anthropogenic extraction (1.98M ton/year, see Fig. 2b). Most
basin deposition presently takes place in the intertidal areas, especially
along the mainland coast, although abandoned channels also acted as
major mud sinks in the past48,49. The average mud deposition in the
basins and on the salt marshes largely varies per basin (see also Sup-
plementary Tables 1 and 2 and Figs. 1 and 2 in the Supplementary
Information). The main offshore sink is Helgoland, where continuous
deposition rates of about 1.6 mm/year50 amount to a sink of approxi-
mately 0.5M ton/year. Anthropogenic sediment extraction provides the
second biggest sink, even surpassing salt marsh deposition. Hereby we
refer to the removal of sediments by dredging without disposing of the
sediment within the Wadden Sea or in its vicinity in the North Sea.
Although most dredged sediment is redistributed within the Wadden
Sea, some of the sediment dredged from the lower Ems51,52, Weser53,54,
and Elbe estuaries55–57 is disposed on land (either on disposal sites for
contaminated sediments or as coastal protection reinforcement).

The mud budget is nearly closed
The various sediment sources and sinks have been converted into a sedi-
ment pathway (Fig. 2c). Starting West (at Den Helder), where the NSCF
enters the Wadden Sea, it follows the anti-clockwise rotation of the flow
along the barrier islands until the most northern end. With increasing
distance fromDenHelder, the magnitude of the cumulative sinks increases
far beyond the sources along its pathway. With our best estimate for the
initial sediment supply and various sources and sinks, there is only about
1.5M ton/year unaccounted for in the northern end. This can be considered
a small amount given the wide range of apparent uncertainties and the
possible loss of mud to the offshore areas along its pathway.

The largest uncertainty in our estimate is the magnitude of the flux in
the NSCF, followed by the basin deposition, mud extraction and salt marsh
sedimentation. The uncertainty in these latter three includes the variability
in the mud density and sediment composition over time (see the Methods
section). The lower end of the cumulative error band is considered to be
unrealistic since this would imply that there is no mud left after the Elbe
estuary (basin 22), whilemud sedimentationhas been observed in the basins
and on the marshes to its North. The observation that the mud budget is

nearly closed is only limitedly affected by uncertainties in thefluvial sources:
even if those would vary by a factor of 2 (which does not seem to be the case
when comparing our data to other estimates58), the total sources would still
only be slightly larger than the sinks.

The spatial variability of the mud sinks is large throughout the entire
domain (see Fig. 3a). To compensate for the basin size, we determine the
basin deposition per km2, revealing a distinctive trend (Fig. 3b): mud
deposition largely increases with increasing distance fromDenHelder until
km224 (basin 14, inEast Frisia), afterwhich it sharply drops (especially after
the Elbe estuary, km 300). Salt marshes are efficient mud traps. Here,
sedimentation rates are up to anorderofmagnitude larger than in the basins
(although their total area ismuch smaller) and follow the same spatial trend.
Most sediment deposits are on the foreland marshes, while a smaller
amount accretes on the island- and halligmarshes (Supplementary Fig. 2 in
the Supplementary Information). The decline of sedimentation rates in the
last 200 km of the Wadden Sea is even more pronounced in these foreland
marshes (Fig. 3d). These spatial trends in the basin and marsh sedimenta-
tion suggest that there could be amud shortage in this downdrift part of the
Wadden Sea59,60.

Another indicator of the potential mud shortage in the northern
German and Danish parts of the Wadden Sea is the upper bed sediment
composition in the basins. Whereas the mean mud content ranges
between 5% and 25% in the first 300 km without showing a distinctive
spatial trend between the basins, it drops abruptly below 10% afterwards
(Fig. 3e). Even more pronounced is the trend in the bimodality of the
mud content (Fig. 3f). The mud content in the Wadden Sea tends to be
bimodally distributed61, with the sediment bed being either relatively
sandy (mode 1) or relatively muddy (mode 2). This bimodality may
disappear if suspended mud concentrations become low (only mode 1
remains) or high (only mode 2 remains)61. Figure 3f shows that
bimodality disappears after km 300, suggesting that suspended mud
concentrations are lower here, and therefore also indicating a potential
mud shortage compared to the other Wadden Sea basins. Thus, both the
sedimentation rates and the bimodality of the bed sediments indicate that
mud sedimentation in the northern parts of the Wadden Sea might be
supply-limited, which matches the observation that the cumulative mud
budget in these areas is largely reduced. Note, however, that a potential
higher energy exposure in these areas could also be a contributing factor
to this. The western parts of the Wadden Sea appear to be accom-
modation space limited (i.e., sediment deposition rates are restricted by
available space to deposit and not by the supply of sediments). This also
explains the high suspended sediment concentrations observed in many
parts of the Western Wadden Sea, exceeding many g/l even on the
exposed tidal flats28.

Fine sediments as a resource
Intertidal areas comprise nearly half of the surface of theWadden Sea62 and
provide important functions related to safety, ecology and economy. In
combination with salt marshes, the intertidal areas protect the mainland
coast63,64. Intertidal areas also provide habitat for benthic communities and
higher trophic levels, acting as e.g., fish nurseries65 and feeding ground for
birds66. Their disappearancewould lead to a large-scale loss of biodiversity67.
Their economic importance is also evidenced by other ecosystem services
such as fisheries62,68.

These intertidal systems are composed of sand and mud. Mud plays a
crucial role in creating specific habitats for benthic species45,69,70, and con-
tributing to the current morphological evolution of the intertidal areas48 as
well as their ability to keep pacewith relative SLR71. The rate atwhich sand is
transported towards the intertidal areas is namely largely dependent on the
transport capacity22 and will become a limiting factor under conditions of
accelerated SLR34,72,73. The decline in sand supply will increase with
increasing distance from the inlet, resulting in partial drowning of the
intertidal areas if the sediment deficit is not compensated by mud.
Deposition of fine-grained sediments is supply- or accommodation space
limited and hardly depending on transport capacity.

https://doi.org/10.1038/s43247-024-01315-9 Article

Communications Earth & Environment |           (2024) 5:153 3



The accretion rates on some of the tidal flats presently outpace
SLR22,48,74,75, but this may change in the future for two reasons: First, it is
expected that SLR will accelerate in the coming centuries. The global sea
level has risen 2.1 mm/year since 1970, but this speed is accelerating76,77.
The region-mean SLR in the Wadden Sea has been slower—1.77mm/
year since 1958, most likely due to regional geological, glacio-isostatic
and meteorological effects—but projections of SLR rates range from 2.2
to 18.3 mm/year for the year 210078. Secondly, the current accretion rates

of the tidal flats do not necessarily represent their ability to keep up with
SLR. The present-day development of the Wadden Sea is largely influ-
enced by human interventions, of which the response timescales are long.
The observed sedimentation rates are partly a response to these inter-
ventions, and given the exponential decay of such a response49, it is likely
that sedimentation rates will slow down in the future. Accretion rates will
largely depend on the sediment availability in combination with sedi-
ment management strategies.
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of sources, and the numbered dotted lines the location of individual basins.
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Implications for future sediment management
Ourfindings are important for future sedimentmanagementof theWadden
Sea specifically79, but also in general for muddy environments where fine-
grained sediments are often assumed to be abundantly available. Our work
illustrates that mud is a finite resource, and therefore circularity is key.Mud
is abundantly available in the Western Wadden Sea, leading to regular
maintenance dredging. Here, evenwithout interventions, SLRwill probably
lead to higher sedimentation rates over the supra- and intertidal areas
because of the increase in accommodation space. But even more, a likely
future sediment management strategy will be to progressively trap fine-
grained sediments in anticipation of accelerated SLR. SLR, especially when
combined withmodified sediment management strategies, will then lead to
a downdrift reduction of available fine-grained sediments. With the Wad-
den Sea spanning three different countries, such dependencies illustrate the
importance of cross-border sediment management policies.

With mud being a finite resource and SLR inducing shortages over
time, some of the policies related to the extraction ofmud should potentially
be revisited. In the past, sediments were primarily extracted for the con-
struction of flood safety infrastructure (e.g., dikes, dwelling mounds) and
roads80. Nowadays, the main motivation for extraction is the deepening of
navigation channels (and the costs associated with disposal). Although the
total extracted mud mass has decreased over time53,81, it still amounts to
12–17% of the total mud budget. Sediment extraction may provide a rela-
tively cost-effective methodology of dredging and may also lower the sus-
pended sediment concentrations locally81. However, the negative impact of
sediment extraction over longer timescales and larger spatial scales in the
context of climate change is, at present, not considered in policy frame-
works. Given the expected future demand for sediments in order to keep
pace with SLR, these long-term large-scale impacts should be accounted for
when planning sediment extraction. Such planning would also need to
account for a delayed response resulting from the system’s previous buffer
capacity22,82,83.

Consequently, we stress the need for cross-border sediment manage-
ment strategies fuelled by our findings that not only sand but also mud is
often a finite resource. The accuracy of tools to predict a coastal system’s
response to SLR is limited, posing a challenge for scientists, coastal engi-
neers, and decision-makers. While numerical models may capture short-
term up to decadal morphodynamic evolution—especially after large-scale

distortion of the system84—their ability to predict (natural) long-term
development remains limited85. Moreover, the absence of calibration and
validation data of system response to future SLR conditions introduces
major uncertainties. We believe that understanding this response should
start with a sediment budget on a system scale, i.e., crossing international
borders and national policy frameworks.

Methods
North Sea mud sources
The biggest source of mud transported into the Wadden Sea is the North
Sea, where mud transport follows the long-year residual current patterns.
The North Sea Continental Flow (NSCF, sometimes referred to as Con-
tinental Coastal Water) is the most relevant path to theWadden Sea’s mud
import. We reconstruct an estimate of its magnitude based on data and
model results reported in the literature, as explained below.

The mud flux transported by the NSCF originates from the Dover
Strait, where a net inflow of water and suspended particulate matter is
transported into theNorth Sea86,87. Themagnitude of themud flux has been
widely researched, but the results show a large variety originating from the
high temporal and spatial variability of mud fluxes in combination with the
methodologies that have been used88. An extensive recent study, where the
net flux was calculated based on satellite images as well as on numerical
model simulations, indicates a mud flux through the Dover Strait of
22.26–31.74M ton/year88. Approximately 60% of this flux enters the NSCF,
whereas the remaining 40% is transported in theEastAnglia Plume (EAP)88.

As the NSCF travels North, it transports mud along the French and
Belgian coasts toward theNetherlands. Transport fromFrance toBelgium is
estimated at 15.5M ton/year, and further on to the SW Netherlands at
12.8–14.5M ton/year89. North of the Netherlands–Belgian border, but
before reaching the Wadden Sea, the NSCF encounters mud sinks in the
Eastern Scheldt and around the Port of Rotterdam, aswell as a fluvial source
from the Rhine River. Together, this results in a net sink of 0.1M ton/year90,
resulting in 12.7–14.4M ton/year of mud reaching the coastal zone just
South of the Wadden Sea. Other research91 reports slightly lower values of
around 10M ton/year. We therefore assume a range between 10 and
14.4M tons/year of mud reaching the Wadden Sea.

The EAP is another North Sea current that transports suspended
matter from the Dover Strait, the Thames estuary and cliff erosion to the

Fig. 3 | Spatial variation of sinks and indicators of
a decreasing mud availability. a, b Scatter plot of
the total mud sinks in the basins. Tidal basins are
indicated by a dot, and estuaries by a cross. Basin
sinks per km2 show a clear spatial trend along the
Wadden Sea coast. c Histogram of the average salt
marsh sinks per km2. dHistogram of the salt marsh
sinks in foreland salt marshes. This type of marsh
has the largest contribution to the total marsh sinks
(see also Supplementary Fig. 2 in the Supplementary
Information). e Average mud content (pmud,mean) in
the upper sediment bed of the basins. fModes of the
probability density function (PDF) of the mud
content in the sediment bed (pmud,modes, plotted per
basin), representing the equilibriummud content in
the bed61. Bimodality is detected up to km 300 (Elbe
estuary).
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North East along the southern English coast88,92. So far, the amount of
suspended matter travelling with the EAP that can reach the Wadden Sea
coast seems limited90,92,93. Instead, observations and modelling studies
indicate that it is transported via the Oyster Grounds directly to the Ska-
gerrak and the Norwegian Channel93,94.

Main fluvial mud sources
Similar to themarinemud sources,wehave collecteddata fromthe literature
to estimate the averagemagnitude of themain fluvial sources. These are the
freshwater inputs from Lake IJssel (via the sluices den Oever and Korn-
werderzand) and the Ems,Weser, and Elbe estuaries. Their magnitudes are
shown in Table 1.

Atmospheric deposition
Webase our estimateof the atmospheric contribution to themud sources on
previously published data. Studies in the North Sea yielded average atmo-
spheric deposition rates of 1.6–2.2 tons/km2/year95. Applied to the total area
of the Wadden Sea (11,400 km2), this results in a contribution of
0.018–0.025M ton/year. This contribution is orders of magnitude smaller
than that of the marine and fluvial sources. We therefore consider it to be
negligible.

Tidal basin sinks
To calculate the average deposited mud mass in the basins, we follow a
previously developedapproach thatmakes use of bathymetry changedata in
combination with sediment composition data to calculate the contribution
ofmud to theobservedmorphodynamic evolution48.Net sedimentationand
erosion volumes (ΔV) are calculated by subtractingmeasured bathymetries.
Next, these volumes are multiplied by the volumetric mud fraction in the
upper bed (top 4–10 cm) to obtain the volumetric contribution of mud
(ΔVmud). Our sediment composition data provides information about the
mass fraction of the sediment, for which we use a density relation for sand-
mud mixtures in the Wadden Sea96 to derive the volumetric mud fraction.
We subsequently transform the calculated volumetricmud sinks into amud
mass by assuming that puremud in the tidal basins has an average density of
700 kg/m3, while in the estuaries it is slightly lower (500 kg/m3).

We use Dutch bathymetry data of the Vaklodingen dataset (resolution
of 20 × 20m)41 and German data collected within the EASY-GSH project
(resolution of 10 × 10m)42,46. Sediment composition information is based
on the Sediment Atlas (sediment samples taken in the ’90s in Netherlands
parts of the Wadden Sea, resolution of 500 × 500m in the channels, and
1000 × 1000m on the intertidal flats)43, SIBES (sediment samples taken in
2008–2018 in the Netherlands parts of the Wadden Sea, based on 50,000
surface sediment samples of approximately 7400 locations,with a resolution
of 1000 × 1000m in the channels, and500 × 500mon the intertidalflats)44,45

and EASY-GSH datasets (German parts of the Wadden Sea, based on
45,000 surface sediment samples which are interpolated on a 10 × 10m
grid)46.

Calculations are performed for the period 1996–2015 (based on data
availability) on a computational grid with a resolution of 250 × 250m. We
determine an uncertainty band by assuming that the calculated volumes
might vary 40% (20% higher and 20% lower) because of variations in the
sediment density of sand-mud mixtures48 and of sediment composition
changes within the observed period (i.e., between Sediment Atlas data and

SIBES data). No detailed bathymetric evolution or sediment composition
data of the Danish basins is available, for which we have based the results of
these mud sinks on existing literature97.

Salt marsh sinks
Similarly, we make use of bed composition data in combination with
accretion rates98 to calculate the mud sinks on the salt marshes. The size
of salt marshes in the study area was derived from literature98 and is
based on surveys carried out between 2004 and 2014. For sedimentation,
we follow the terminology for sedimentation where this is expressed as
the amount of sediment that is deposited in the marsh per unit area and
time, i.e., kg/m2/year99. No adjustments were made for organic matter
since Wadden Sea salt marshes are generally minerogenic and thereby
low in organic matter. Salt marsh vegetation does contribute to an
enrichment of organic matter in the upper sediment layers of the marsh
bed, but this organic matter appears to be lost at greater depth when it is
buried by new sediment layers100. Similar to the calculations of the basin
sinks, we account for an uncertainty range of 40% total in the salt marsh
sinks calculations, originating from variations in the sediment density
and in the sediment composition.

Data availability
• Bathymetry data of the Dutch Wadden Sea (Vaklodingen) is publicly
available and can be requested through the Data Servicedesk of Rijks-
waterstaat: https://www.rijkswaterstaat.nl/formulieren/contactformulier-
servicedesk-data.

• Bathymetry data of the German Wadden Sea (EasyGSH) are available at
(Bundesanstalt Für Wasserbau): https://doi.org/10.48437/02.2020.K2.
7000.0002.

• Sediment composition information was obtained from the SIBES data set
(to be viewed and downloaded from: https://viewer.openearth.nl/wadden-
viewer), the Sediment Atlas Wadden Sea43 (https://svn.oss.deltares.nl/
repos/openearthrawdata/trunk/rijkswaterstaat/, register at oss.deltar-
es.nl), and via the EasyGSH data set46 (https://doi.org/10.48437/02.2020.
K2.7000.0005).

• Salt marsh data was retrieved from: https://qsr.waddensea-worldheritage.
org/reports/salt-marshes

• Hydrodynamic data from the Dutch parts of the Wadden Sea and the
North Sea (including wave climates and water levels) was retrieved from
the Data Servicedesk of Rijkswaterstaat: https://www.rijkswaterstaat.nl/
formulieren/contactformulier-servicedesk-data.
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