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Summary

Counterfactual explanations (CEs) are emerging as a crucial tool in Explainable AI (XAI) for under-
standing model decisions. This research investigates the impact of various factors on the quality of
CEs generated for classification tasks. We explore how inter-class distance, data imbalance, balanc-
ing techniques, the presence of biased classifiers, and decision thresholds influence CE quality. To
answer these research questions, we conduct experiments on various datasets, classification models
and counterfactual generators. The datasets include the MNIST and GMSC dataset. The models in-
clude well-established models like MLP and Random Forest, along with the novel NeuroTree model.
The generators include the method proposed by Wachter et al. and the REVISE method. We evaluate
how different factors affect CE quality by performing an extensive experimental analysis. Our findings
demonstrate that increasing inter-class distance degrades CE quality, particularly explanation plausibil-
ity. Data imbalance showedminimal impact, while balancing techniques yielded a slight improvement in
CE plausibility, especially for the minority class. Classifiers biased towards specific subgroups resulted
in lower CE quality for those subgroups. We observed limited evidence for a consistent amplification ef-
fect of decision thresholds. This research utilizes various datasets and classification models, including
the novel NeuroTree model. Our findings contribute to XAI by providing insights into factors affecting
CE quality and highlighting areas for future development, particularly regarding fairness and handling
imbalanced data.
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1
Introduction

Machine learning applications are increasingly popular in domains like the criminal justice system [13],
healthcare [39], and finance [76], directly influencing decisions that impact individuals. As AI systems
gain traction in these real-world applications, there is a growing demand for transparency and explain-
ability. This demand is further emphasized by legal regulations like the General Data Protection Regula-
tion (GDPR) [71] and, more recently, the Artificial Intelligence Act (AI Act) [56] adopted by the European
Parliament. The AI act requires high-risk AI systems to satisfy safety requirements where ”AI systems
are always considered high-risk if it profiles individuals, i.e. automated processing of personal data
to assess various aspects of a person’s life, such as ... economic situation” [42]. Additionally, GDPR
contains a specific policy on the right of citizens to receive an explanation for algorithmic decisions,
placing a legal obligation on explainable decision-making [27]. This type of decision-making has been
the focus of the Explainable AI (XAI) field that has emerged in recent years [88].

There are two primary approaches to achieving XAI: inherently interpretable models and post-hoc ex-
planation techniques. This is the distinction which we adhere by in this work and has also been found
in literature such as the work of Rudin [73] and Guidotti et al. [31]. Inherently interpretable models
are those whose internal workings are readily understandable by humans. Examples include linear
regression, decision trees, and rule sets. These models often provide clear insights into how features
contribute to the final prediction. However, their expressive power can be limited for complex prob-
lems. In contrast, other models, such as random forests and deep neural networks, are often highly
effective but lack inherent interpretability. Their decision-making processes can be opaque, making it
challenging to understand how they arrive at specific outputs.

Several studies have highlighted the prevalence of both interpretable and non-interpretable models in
the fields of criminal justice, healthcare, and finance. The research by Hassani et al. [41], found that
the criminal justice system utilises a variety of classification models, including decision trees, random
forests, and neural networks. Similarly, the choice of model in healthcare is highly problem-dependent,
ranging from decision trees and Support Vector Machines (SVMs) to neural networks [39, 80]. The
financial sector also employs a broad spectrum of machine learning techniques, including random
forests and neural networks, for tasks like credit risk assessment [10]. These findings show that there is
a need for explanation approaches which help to understand a wide range of non-interpretable models.

Counterfactual Explanations (CEs) are a model-agnostic approach, meaning it is not tailored to specific
classification models, which focuses on understanding the relationship between inputs and outputs of
classification models, rather than investigating the internal mechanics of these models directly. CEs
aim to provide individuals impacted by an automated decision-making system with a data point that is
similar to the individual at stake but would be classified as a different class. This can be used as a
diagnostic tool to understand the workings of the model but can also be used to generate (algorithmic)
recourse (AR) first defined by Ustun et al. [81]. AR is about giving non-expert individuals actionable
recommendations on how to change their classification. This is particularly valuable when a clear
distinction exists between desirable and undesirable classifications. Consider the credit risk domain
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Figure 1.1: Counterfactual path using generic counterfactual generator for conventional binary classifier [1].

as an illustrative example. For an applicant whose loan request is rejected (undesirable outcome),
algorithmic recourse generated from a counterfactual explanation can offer actionable feedback that
helps them improve their creditworthiness and potentially secure loan approval (desirable outcome).
Figure 1.1 gives an example of a CE. In the figure we see two classes (orange and blue dots) and the
decision boundary of a classifier depicted as a heatmap. The highlighted orange dots show the path
of a data point to its generated counterfactual (large blue dot).

One key question regarding counterfactual explanation methods is how the distance between classes
impacts CE quality. Since CE generation involves transitioning from a factual instance to the desired
class, it is expected that as this distance increases, the quality of counterfactuals degrades. To the best
of our knowledge, there is currently no existing research that investigates this relationship between inter-
class distance and CE quality. This thesis aims to fill this gap in the literature by examining how the
inter-class distance affects the quality of generated counterfactuals.

Besides explainability and interpretability, the issue of imbalanced data in classification tasks has been
an important direction for research in machine learning and AI. The survey by Haixiang et al. [35] pro-
vides a detailed summary of this research. Among other things, the authors present an extensive list of
studies that tackle imbalanced learning in various application domains. This list includes domains such
as ’chemical, biomedical engineering’ and ’financial management’. Notably, these domains intersect
with healthcare and finance, fields where explainability has been previously highlighted as critical. This
reinforces the notion that the need for interpretable classification models is prevalent in scenarios with
imbalanced datasets. However, existing research on counterfactual explanations lacks investigations
in this specific context. This thesis aims to address this gap by evaluating the quality of CEs generated
for imbalanced datasets.

Furthermore, the interplay between balancing techniques and CEs remains unexplored. Balancing
techniques aim to mitigate the negative effects of data imbalance. This research investigates whether
these techniques can also positively influence CE quality.

The quality of CE has been extensively researched and surveyed. We begin by examining how CE
quality is defined and assessed in Explainable AI before connecting it to the field of CEs. These findings
are crucial for understanding how to evaluate generated counterfactuals in different scenarios.

Beyond the aforementioned aspects, we also explore how classifiers biased towards minority sub-
groups in the data affect CE quality. We introduce a classifier exhibiting negative bias towards a specific
sub-group, extending the concept beyond the minority class. While related to existing research on
fairness in CEs, our approach differs by explicitly considering the potential bias of the classification
model. This novel research direction offers valuable insights into current CE generation methods.

The following section presents the research questions that have been defined to help this research. To
answer these research questions we perform experiments which are described in detail in Section 6.2.
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We perform these experiments on different datasets such as MNIST [50] and Give Me Some Credit
(GMSC) [17]. The experiments will test the behaviour of various counterfactual generators in combi-
nation with different classification models such as Multi-Layer Perceptron (MLP), Random Forest and
the NeuroTree model implemented in [20]. This NeuroTree model combines the differentiability of a
neural network with the performance on tabular data of a Random Forest. This is relevant in the con-
text of CE because many state-of-the-art generators rely on differentiable classifiers. To the best of our
knowledge, this is the first work that utilises the NeuroTree model in the field of CE.

1.1. Research Questions
Research Question 1
How does inter-class distance impact the quality of generated counterfactuals?

By answering this research question, we try to find out whether there is a relationship between the
distance between the factual and target class, and the quality of the generated counterfactual.

Hypothesis: A larger inter-class distance will lead to a lower quality of counterfactuals.

Research Question 2
What is the effect of data imbalance on the quality of counterfactuals?

This question intends to identify whether imbalanced datasets lead to poorer quality of counterfactual
explanations compared to balanced datasets.

Hypothesis: The quality of counterfactuals generated for the minority class of an imbalanced dataset
will be lower than for the same class in a balanced environment.

Research Question 3
How do balancing techniques employed on imbalanced datasets affect the quality of counterfactuals?

We want to see whether using balancing techniques to balance datasets has any effect on the quality
of counterfactuals.

Hypothesis: Balancing imbalanced datasets with techniques such as SMOTE and RUS will have a
positive effect on the quality of the counterfactuals.

Research Question 4
How does the quality of counterfactuals for subgroups in the data which the classifier is biased towards
compare to other data points in the same class?

With this research question we intend to observe whether the quality of counterfactuals generated for
biased subgroups is worse than other points in the dataset. A biased subgroup in this context means a
group of data points bounded by feature constraints for which the classifier will predict a negative label
with a high probability. We want to know whether there is a difference in quality between the counter-
factuals generated for points in the biased subgroup compared to other data points in the negatively
labeled class.

Hypothesis: We hypothesise that the counterfactuals generated for points in the biased subgroup are
of worse quality compared to other points outside the subgroup with the same label.

Each of the research questions described above will have its own set of experiments, presented in Sec-
tion 6.2, that help to answer it. Additionally, we became interested in exploring the potential influence
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of the decision threshold on various factors. The decision threshold is a user-defined value between
0 and 1 that determines the termination point for the counterfactual search. A threshold of 0.5 implies
that a counterfactual crossing the classification boundary is deemed sufficient in the context of binary
classification. Conversely, a value closer to 1 signifies a stricter requirement for the counterfactual to
be confidently classified within the target class. To guide this exploration, we formulated the following
research question and hypothesis:

Research Question 5
How does the decision threshold affect the impact of inter-class distance, data imbalance, balancing
techniques and negatively biased subgroups on the quality of generated counterfactuals?

Hypothesis: The impact of inter-class distance, data imbalance, balancing techniques and negatively
biased subgroups on the quality of generated counterfactuals is larger when the decision threshold is
closer to 1

This research question will not require a separate set of experiments. Instead, we will investigate its
answer throughout the experiments conducted for the other research questions.

1.2. Contributions
Overall, the key contributions of this research can be summarized as follows:

• We investigate the relationship between inter-class distance and the quality of counterfactual
explanations.

• We explore the effect of data imbalance on the quality of counterfactual explanations.
• We analyze the impact of common data balancing techniques on the quality of counterfactual
explanations.

• We evaluate whether biased classifiers exhibit differences in the quality of counterfactual expla-
nations generated for different subgroups of classes.

1.3. Structure
The rest of this report is structured as follows. Chapter 2 provides detailed descriptions of the clas-
sifications models that are utilised in this research. In Chapter 3 we delve into the challenges that
arise in classification tasks due to data imbalance. Additionally, we discuss balancing techniques that
could help to overcome these challenges. Literature on the notions of quality in XAI and how they are
linked to desiderata for CEs is provided in Chapter 4. In Chapter 5 we present the related work of
this research focusing on data imbalance in CE and researching how fairness is evaluated in recourse
and CE. Chapter 6 presents the methodology which consists of the experimental setup and design.
In Chapter 7, the results of the experiments are displayed and analysed. Chapter 8 concludes the
research. Finally, Chapter 9 discusses the research and proposes future work.



2
Classification Models

As discussed in Chapter 1, machine learning applications are increasingly popular domains such as
the criminal justice system, healthcare, and finance. Specifically classification models are commonly
implemented to help the decision-making process. This chapter provides a concise overview of the clas-
sification models employed in this research. Each model’s architecture and functionality are described,
accompanied by an illustrative figure to enhance comprehension. The models covered include the
Multi-Layer Perceptron (MLP), Decision Tree, Random Forest, and the recently introduced NeuroTree
model. In-depth implementation details for the NeuroTree can be found in the referenced work by
Desgagné-Bouchard et al. [20].

2.1. Multi-Layer Perceptron
Artificial neural networks (ANNs) are a powerful tool for machine learning tasks, originally inspired by the
structure and function of the biological brain. A fundamental type of ANN is the Multi-Layer Perceptron
(MLP), also known as a feedforward neural network. MLPs consist of an input layer, an output layer,
and one or more hidden layers, all containing interconnected artificial neurons.

Each neuron applies a weighted sum of its inputs and passes the result through a non-linear activation
function. This function introduces non-linearity into the network, allowing it to model complex relation-
ships between the input and output data. Unlike simpler Perceptrons, which are limited to linearly
separable problems, MLPs can effectively learn non-linear patterns through the stacked layers. The
connections between neurons hold weights, which are adjusted during a training process to minimize
an error function. This training process, typically performed using backpropagation, allows the MLP to
learn intricate mappings from input to output.

Figure 2.1 depicts a simple MLP architecture with one hidden layer. Each circle represents a neuron,
and the arrows denote connections with associated weights. The network progressively transforms the
input data through the hidden layer(s) to generate the desired output.

2.2. Decision Tree
Even though this research does not use the decision tree model for classification, the knowledge of how
the model works is a necessary prerequisite to understand how the Random Forest and NeuroTree
model works.

Decision trees (DTs) are a fundamental supervised learning approach for classification tasks. They
leverage a tree-like structure where internal nodes represent features (attributes) of the data, and
branches represent decision rules based on those features. Leaf nodes, also known as terminal nodes,
contain the final predicted class labels.

During classification, a data point traverses the tree starting from the root node. At each internal node,
the value of the corresponding feature is compared to a threshold or specific value. Based on this
comparison, the data point is directed down the appropriate branch towards the next decision node. The
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Figure 2.1: Example of a Multi-Layer Perceptron architecture [40].

Figure 2.2: Example of a Decision Tree [62].

traversal continues until a leaf node is reached, and the associated class label becomes the predicted
class for the data point.

Figure 2.2 depicts an example decision tree where the gray nodes represent internal nodes and the
blue nodes represent the leaf nodes. The set of green arrows in the figure is an example of a traversal
of a data point.

2.3. Random Forest
Random forests are ensemble learning algorithms that leverage the collective power of multiple de-
cision trees. Each decision tree partitions the data based on features (attributes) to arrive at a final
prediction. By combining the predictions of numerous trees, random forests aim to improve overall
accuracy and address the issue of overfitting present in single decision trees.

During training, random forests construct a multitude of decision trees. Each tree is built using a subset
of the training data drawn with replacement (bootstrapping). Additionally, at each node in the tree, a
random subset of features is considered for splitting the data. This is different from a single decision
tree where for each node, all features are considered. This randomness in tree generation and feature
selection helps prevent the forest from overfitting to the training data.

When making a prediction, each tree in the forest votes on the class or value for a new data point.
In classification tasks, the most popular class among the trees’ votes becomes the final prediction.
For regression tasks, the average predicted value across all trees is considered the final output. An
exmaple of a Random Forest archictecture is given in Figure 2.3.
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Figure 2.3: Example of a Random Forest with multiple decision trees. Each tree makes a prediction based on the data point,
and the final output is determined by aggregating the individual tree predictions (majority vote for classification, average for

regression) [21].

2.4. NeuroTree
In this section we describe how the NeuroTree model works and what its architecture looks like accord-
ing to the description in [62].

The NeuroTree model, like a Random Forest, is a collection of decision trees. Specifically, the decision
trees are complete binary trees which means that they do not have any pruned nodes. Figure 2.2
exemplifies a complete binary tree with a depth of two. The key distinction compared to a Random
Forest lies in NeuroTree’s differentiability, enabling training through first-order gradient-based methods.
This is achieved by employing ”soft decisions” along each tree path instead of the standard ”hard
decisions” in traditional trees.

Consider the highlighted path in Figure 2.2 (node1 → node3 → leaf3). Traditionally, internal nodes
make binary choices (true or false), directing the data point to a specific prediction index (index
3 in this case). An alternative perspective views leaf nodes as offering weights associated with each
prediction. The tree’s prediction then becomes the weighted sum of leaf values and their corresponding
weights. However, with traditional hard decisions at internal nodes, the leaf weights essentially act as
a mask (e.g., [0, 0, 1, 0] for reaching leaf3).

This approach of a weighted sum of the leaves’ values and weights is the basis of the predictions in
the NeuroTree model. By relaxing the hard conditions into soft ones, the mask now becomes a form
of a probability vector where each element of the vector is equal to the weight of the leaf node. This
means that the following holds true:

∑
(leaf_weights) = 1 and leaf_weight = [0, 1].

The NeuroTree model builds upon the weighted sum concept for predictions. The key lies in relaxing
the ”hard conditions” at internal nodes into ”soft decisions.” Consequently, the mask is transformed into
a probability vector. Each element represents a leaf node’s weight, constrained by the conditions:

•
∑

(leaf_weights) = 1 (sum of leaf weights equals 1)
• leaf_weight ∈ [0, 1] (each weight lies between 0 and 1)

This probabilistic approach using soft decisions is the foundation of NeuroTree’s predictions.

Figure 2.4 illustrates the architecture of a single decision tree within the NeuroTree model. We first
focus on the leftmost section, which depicts the internal nodes of the decision tree (from Figure 2.2) as
NW1 - NW3 (node weights). Each NW represents the proportion of data points considered true based
on the corresponding node’s decision condition. For instance, a 50/50 split at a node translates to NW
= 0.5.

We derive the cumulative node weights CNW1-CNW7 from the NW values. As described earlier, each NW
dictates which fraction of data points is considered true and false (illustrated by blue and red arrows in
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Figure 2.4: Example of how a basic decision tree can be represented as a single differentiable tree with the NeuroTree model
[62].

Figure 2.4). Initially, CNW1 = 1 since all data points pass through the root node. Subsequent cumulative
node weights are calculated by multiplying either NW or NW - 1 with the preceding cumulative weight
(calculations shown in Figure 2.4).

The resulting vector CNW1-CNW7 represents the fraction of data points reaching each corresponding
node. In the example (the decision tree in Figure 2.2), leaf nodes correspond to CNW4-CNW7.

Finally, the tree’s prediction is obtained by calculating the dot product of leaf weights LW1-LW4 and leaf
predictions LP1-LP4. During NeuroTree training, both leaf weights (adjusting internal node decisions)
and leaf predictions (altering class predictions for leaf nodes) are optimized.

Lastly, the final prediction of the NeuroTree model is a combination of all the individual trees in the
model, similar to how a Random Forest works. The average of the predictions of the individual trees
is calculated to get the final prediction. As summing and averaging are differentiable operations, this
differentiability allows the NeuroTree model to be trained using gradient-based methods.



3
Data Imbalance in Classification Tasks

This chapter will elaborate on the existing literature on data imbalance in classification tasks. Firstly,
we will discuss the challenges that have been defined in current work. Second, we will discuss the
different forms of sampling techniques which could potentially help to overcome these challenges.

The survey by Haixiang et al. [35] summarises the literature on learning from class-imbalanced data.
In this paper, the authors state that the challenges of learning from class-imbalanced data based on
existing work are fivefold:

1. According to the empirical analysis by López et al. [53], standard classifiers such as logistic
regression, Support Vector Machines (SVMs) and decision trees which are suitable for balanced
training sets often provide suboptimal classification results when facing imbalanced datasets. The
classifier will perform well on the majority examples and perform poorly on the minority examples.

2. In the study by Loyola-González et al. [54], the authors state that guiding the learning process
of a model by global performance metrics such as accuracy induces a bias towards the majority
class. This results in the rare episodes remaining unknown even if the model has a high overall
precision.

3. Beyan and Fisher [9] discuss how rare minority examples may possibly be treated as noise by the
classification model and vice versa because both the minority class and noise are rare patterns
in the data space.

4. The study by Denil and Trappenberg [19] discusses the overlapping problem under imbalanced
datasets. This problem is defined by the fact that minority examples usually overlap wiht other
regions where the prior probabilities of both classes are almost identical.

5. According to the study by Branco et al. [11], a lack of density and small sample size with high
feature dimensionality is a challenge to imbalanced learning.

To overcome the challenges in class-imbalanced classification tasks, balancing techniques have be-
come an important part of the machine learning systems. In the survey by Haixiang et al. [35], the
authors show that resampling techniques are commonly used to rebalance the dataset to alleviate the
effect of skewed class distributions in the learning process. The research categorises the techniques
into three groups:

• Over-samplingmethods: balancing bymeans of creating newminority class samples. Twowidely-
used methods are randomly duplicating the minority samples and SMOTE [15]. This technique
creates synthetic samples by drawing a line between two minority examples and generating a
new data point along that line.

• Under-sampling methods: balancing by means of discarding samples in the majority class. Ran-
dom Under-Sampling (RUS) is the simplest yet most effective method [78].

• Hybrid methods: these are a combination of an over-sampling and an under-sampling method.

9
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Even though various studies have shown how balancing techniques positively impact the performance
of the classification model [54, 90, 61], there has also been some skepticism on the degree to which
these techniques improve performance. More specifically, the paper by Prati et al. [69] proposes an
experimental design that tests how much of the class imbalance performance loss was recovered by
rebalancing the data. In this study, the authors perform performance tests on 22 different datasets
with a variety of classification models such as a decision tree, neural network and SVM. First, the
datasets are artificially imbalanced to different class ratios ranging from 60/40 to 99/1. Next, the original
performance of the classifier is compared to the performance on the imbalanced datasets. Lastly, the
authors compare how much of the loss, which was present for all classifiers, could be recovered by
the sampling techniques. For the sampling techniques, they opted to use SMOTE and two variations
of SMOTE named Borderline-SMOTE [37] and ADASYN [34]. The study concludes that ”the sampling
techniques were able to occasionally recover a significant proportion (between 50 and 60%) of the
performance lost” [69]. The authors continue by stating that in most cases the recovery was below
30% which according to them can be considered as a quite modest recovery rate.



4
Quality of Explanations

This chapter delves into the existing literature on quality within Explainable Artificial Intelligence (XAI)
and Counterfactual Explanations (CEs). First, we will look at how quality of explanations is defined
and assessed in the field of XAI. Next, we will try to link the notions of quality in XAI to desiderata
for CEs. Specifically, we will look at desiderata such as validity, distance, plausibility and robustness.
Additionally, we examine recent surveys in the field of CE. These surveys offer valuable insights into how
researchers are currently evaluating and benchmarking quality and more specifically the desiderata
mentioned before.

4.1. Quality in XAI
Various literature can be found on what defines quality and explainability in Explainable AI and how it
should be evaluated. The works by Vilone et al. [85], Barredo Arrieta et al. [7] and Lipton et al. [52]
have tried to summarise this literature and categorise the different notions and goals around explain-
ability. In these works we find that there are certain notions and goals more profoundly found in the
literature. These include fidelity, actionability, trustworthiness, causality, transferability and robustness.
The remainder of this section presents how different studies define and evaluate these terms in more
detail.

Fidelity
The work by Guidotti et al. [31] defines fidelity as the extent to which an interpretable model is able to
imitate a black-box predictor. This can be measured by comparing the ouputs of the black-box predictor
to the outputs of the interpretable model in terms of accuracy, F1 score, etc. This definition very closely
resembles the definition in [59]. In this work the author further states that ”high fidelity is one of the most
important properties of an explanation, because an explanation with low fidelity is useless to explain
the machine learning model” [59].

Actionability
The term actionability in the field of XAI refers to making sure that users who get explanations can
act upon these explanations. The authors of [48] state that ”both theory and prior empirical findings
suggest end users will ignore explanations when the benefit of attending to them is unclear”. Therefore,
they opt to create actionable explanations in hope of lowering the perceived cost of attending to the
explanation.

Trustworthiness
Trustworthiness is an aspect of XAI that has come up in numerous works and in two different forms
namely trustworthy models and trustworthy explanations. According to [7], several authors agree upon
the fact that the primary goal of XAI should be the search for trustworthy models. These authors include
Fox et al. [25], Ribeiro et al. [72] and Došilović et al. [24]. Besides this notion of trustworthiness, we
also want to make sure that explanations in of itself are trustworthy. This is commonly linked to the
need for causality, transferability and robustness which the following paragraphs delve into.

11
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Causality
According to Vilone et al. [85], several of the papers that were surveyed consider causality as a funda-
mental attribute of explainability. This is further emphasised by the work of Lipton [52], who says that
interpreting models could possibly lead to initially unobserved causal relationships being discovered.
The works by [70] and [87] further back up the idea that explainable models might ease the task of find-
ing relationships that could be tested further for a stronger causal link between the involved variables.
Additionally, in [33], the authors show that assigning causal attribution to events is part of human nature
and systems that provide causal explanations are perceived as more human-like.

Transferability
Transferability in XAI is commonly defined as the capacity of a method to transfer prior knowledge to
unfamiliar situations [85]. Both [7] and [52], state the importance of transferability by giving an example
of a case where transferability was not achieved, namely the study by Caruana et al. [14]. [7] says
that this is an example of a case in which ”the lack of a proper understanding of the model might drive
the user toward incorrect assumptions and fatal consequences”. [52] explains how this is an example
of ”models being deployed in settings where their use might alter the environment, invalidating future
predictions”.

Robustness
In [3] and [4], the authors investigate the robustness of different interpretability methods. They state
that intuitively, if the input being explained is modified slightly - subtly enough so as to not change the
prediction of the model too much - then we would hope the explanation provided by the interpretability
method for that new input does not change much either [4]. Both studies show that currently this is
not always the case for state-of-the-art interpretability methods. The notion used by Alvarez-Melis et
al. is in line with how Hancox-Li talks about robustness in [38]. In their research, the focus lies on
investigating what makes a good explanation. Specifically, the author tries to find out how important
it is that explanations reflect real patterns in the data or the world. They argue that robustness is an
important aspect of this and that it is desirable to the extent that we’re concerned about finding real
patterns in the world [38].

4.2. Quality in CEs
The following sections describe how the notions and goals presented in Section 4.1 are linked to desider-
ata and evaluation metrics in the field of CE. Moreover, we look at surveys of CEs to find out how these
desiderata are being evaluated.

Validity
The validity evaluation metric of CEs which states that a counterfactual is valid if the classification model
classifies it in the target class, is closely linked to the fidelity notion found in XAI. According to Altmeyer
et al. [2], valid counterfactuals always have full local fidelity because counterfactual explanations work
directly with the black-box model. However, the authors also state that full local fidelity is not enough
to guarantee faithfull counterfactual explanations. Therefore, in the following sections we will discuss
further what makes a good counterfactual explanation.

Distance and Sparsity
In the field of CE, actionability is often linked to feasibility [47] or plausibility. We will explore this link
in the following sections and when looking into CE surveys. Besides the link to feasibility, we argue
that actionability can also be linked to the distance between factual and counterfactual. This distance,
which is sometimes also referred to as cost, is an attribute that is commonly minimised in counterfactual
generation methods. The method by Wachter et al. [86] is one of these methods where the distance
from the factual gets penalised during the generation process. In this work, the authors state that
”an ideal counterfactual explanation would alter values as little as possible and represent a closest
world under which score p′ is returned instead of p” where p′ is the counterfactual of the factual p.
The authors continue by saying that in many situations it will be more informative to provide a diverse
set of counterfactual explanations on which case-specific considerations will be relevant rather than a
theoretically ideal counterfactual according to a specific distance metric.
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Another method which tries to minimise the distance to the counterfactual is the work by Mothilal et al.
[60]. Their method, named Diverse Counterfactual Explanations (DiCE), generates multiple counterfac-
tual explanations for each factual because the authors believe that diversity is an important desideratum.
Here, the authors talk about proximity instead of distance which refers to how close the counterfactual
is to the original input. Another interesting desideratum is sparsity which the authors of [60] argue is
closely connected to distance/proximity. Sparsity is here defined as: ”how many features does a user
need to change to transition to the counterfactual class”. Mothilal et al. say that intuitively a counter-
factual will be more feasible if it changes a fewer number of features. When looking at CE surveys in
Section 4.2.1, we will see that sparsity is often part of the desiderata of various counterfactual genera-
tion methods.

Even though distance/cost/proximity is an important aspect of counterfactual explanations, various
studies that look at robustness have shown that close counterfactuals generally are less robust [23,
77, 64]. This shows that the desiderata might not be independent and in order to achieve good quality
counterfactuals, we need to look at a diverse spectrum of desiderata. We go into more detail in the
following sections.

Plausibility
The paper by Del Ser et al. [18], talks about generating trustworthy counterfactual explanations. The
authors present a framework that balances three objectives: plausibility, the intensity of changes, and
adversarial power. In their research, they conclude that this framework improves the overall trustwor-
thiness of the audience in the classification model’s output. This is a clear link between the notion of
trustworthiness in XAI and the plausibility desideratum in CE research.

The work by Mahajan et al. [57], links feasibility and plausibility to causality. The authors formulate
the challenge of feasibility and plausibility as preserving causal relationships among input features.
Furthermore, they state that plausible counterfactuals should respect causal relationships. This link
between feasibility, plausibility and causality is also found in the work of Karimi et al. [46]. In this work,
the authors state that causal relationships need to be investigated before going from counterfactual
explanation to recourse.

In [45] by Joshi et al. the authors propose a recourse algorithm that models the underlying data distri-
bution or manifold. According to the authors, this algorithm results in realistic and actionable recourse
and explanations. Thus here we see a link to the actionability notion of XAI. Additionally, the study by
Altmeyer et al. [2] mentions the work by Joshi et al. as a study towards more plausible explanations.

In [74], the authors state that counterfactual explanations that focus only on closeness have a great
similarity to adversarial examples. They argue that the distinguishing feature between CEs and ad-
versarial examples is interpretability: ”while CEs should interpretable, adversarial examples need not
be”. The study defines an interpretable CE as one that is realistic and unambiguous. According to the
authors, methods such as the one presented in [45] focus largely on generating realistic CEs but do not
consider ambiguity. We argue that this idea of realistic and unambiguous explanations can be seen
as aiming towards more plausible explanations. The authors of [74] also make a link to the robustness
desideratum. They state that even though their proposed method works with ”any classifier that both
offers uncertainty estimates and for which we have access to the gradients”, classifiers that have been
retrained using adversarial training can improve the realism of generated explanations. This resembles
the notion of robustness in XAI where adversarial examples and small perturbations are an important
factor of robustness. In the following section we see how this is applied in more detail in the field of
CEs.

Robustness
The notion that we find of robustness in general XAI research, can also be found in research regard-
ing robustness in CEs. Inspired by [4], Artelt et al. formalise robustness as the ability to withstand
perturbations in the data [5]. They find that plausible explanations are more robust to small perturba-
tions than the closest explanation. Again, we find that the desiderata of plausibility and robustness are
intertwined. Additionally, the authors link the need for robustness and stability to the system’s trustwor-
thiness. They say that ”missing stability and robustness of explanations can lead to unfair explanations
and thus compromise the system’s trustworthiness” [5].
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(a) Illustration of the individuals similar to x based solely on the feature
space (observational) and based on the SCM (counterfactual) [23]. (b) Example of an adversarially robust recourse action [23].

Figure 4.1

The work by Slack et al. [77] also investigates whether counterfactual explanations are vulnerable to
small perturbations. The authors show how counterfactual explanations generated by state-of-the-art
generators such as Wachter [86] and DiCE [60] can be manipulated. This entails that the generators
are not robust and therefore the trustworthiness of counterfactual explanations is brought into question.

In [58], the authors link the robustness desideratum to the notion of transferability. The paper extends
the robustness literature by introducing robustness to model changes. The authors claim that when
an existing model is updated, it is often desirable that the already provided explanations to individuals
should remain valid under the new classification model. For instance, consider an applicant who was
denied loan, and the counterfactual explanation provided to the applicant was to increase their income
by 10K. Now suppose that they indeed increase their income by 10K and reapply for the loan. If the
model is no longer the same, there is no guarantee that their loan will now be approved, leading to
potential mistrust and liability concerns for the counterfactual explanations [58].

This link between transferability and robustness is also found in [64]. In this work, the authors compare
”sparse” approaches such as Wachter et al. [86] and Mothilal et al. [60] to ”data support” approaches
such as Joshi et al. [45] and Mahajan et al. [57] on robustness. They show that ”data support” ap-
proaches are more robust and thus more transferable across different classifiers. This also shows
the link between distance and robustness, and plausibility and robustness. The ”sparse” approaches,
minimising distance, score worse on robustness. Whereas, the ”data support” approaches, leading to
more plausible explanations, score better on robustness. The following studies also show how solely
minimising distance might lead to worse robustness of CEs.

Dominguez-Olmedo et al. [23] argue that counterfactual explanations, in their work referred to as
recourse recommendations, should be robust to modest feature uncertainty for the individual seeking
recourse. This property, termed adversarial robustness, is formally defined as:

For some classifier h, individual x ∈ X, and uncertainty set B(x), a recourse action a is adversarially
robust if it is valid for all individuals in the uncertainty set B(x).

The uncertainty set encompasses individuals similar to the observed instance x based on a known
structural causal model (SCM) [66]. Figure 4.1a illustrates an uncertainty set (dotted line) compared
to individuals similar only in the feature space (solid line). It is important to note that here the term
”counterfactual” does not refer to counterfactual explanations of the observed instance x but rather to
counterfactuals generated by the SCM. Figure 4.1b presents an example of an adversarially robust
recourse action.

The study demonstrates that generators minimizing recourse cost (distance between factual and coun-
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(a) Low recourse cost and low recourse
robustness (e.g. Wachter et al. [86]

(b) Medium recourse cost and medium
recourse robustness (PROBE)

(c) High recourse cost and high recourse
robustness (e.g. Dominguez-Olmedo et al.

[23])

Figure 4.2: Pictorial representation of the recourses (counterfactuals) output by various state-of-the-art recourse methods and
our framework [65]

Figure 4.3: Illustration of the intuition behind the Stability notion for three instances a, b and c. [49]

terfactual) often fail to achieve adversarial robustness according to this definition. Furthermore, the
authors propose methods for generating adversarially robust recourse for linear and differentiable clas-
sifiers.

The research by Pawelczyk et al. [65] extends upon the research by Dominguez-Olmedo et al. [23]
by introducing the Probabilistically ROBust rEcourse (PROBE) framework. This method lets the user
choose the probability with which a recourse could get invalidated if small changes are made to the
recourse. The figures in Figure 4.2 show how the PROBE method compares to a state-of-the-art
generator, e.g. the work of Wachter et al. [86], and the approach of Dominguez-Olmedo et al. [23].

The work by Laugel et al. [49] also dives into the need for robustness (in this case referred to as stability)
for Counterfactual Explanations and how with the current definition (as defined by Alvarez-Melis et al.
in [4]) it is difficult to properly assess whether a counterfactual generator is stable. They argue that it
is not clear when an observed variation in explanations is the consequence of a lack robustness of the
explainer or of normal variation in the data and in the decision boundary [49]. This can be illustrated
with the example shown in Figure 4.3.

In Figure 4.3, we see three data points which are close to each other and thus similar in the data
domain. However, the explanations (shown as E(a), E(b) and E(c)) are very different where especially
the explanation of the b instance is found in completely different part of the feature domain than the
other explanations. This shows that specific information of the data point and the decision boundary of
the classification model influence the stability metric. Therefore, while the notion of stability is intuitively
important to engender trust to the user, it still lacks a proper definition [49].

4.2.1. Surveys
We look into multiple surveys and benchmarks of Counterfactual Explanations to find out how the
aforementioned desiderata are being evaluated and surveyed. We do this by investigating three specific
surveys, namely the surveys by Guidotti [31], Verma et al. [84] and Karimi et al. [47].
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Guidotti [30] mentions all of the described desiderata explicitly. The author talks about validity as
one of the desirable properties for counterfactual explanations. Additionally, almost all the surveyed
counterfactual generation methods evaluate validity in their studies. The distance desideratum is here
named similarity and the author adds that it is also often referred to as proximity. Furthermore, they
describe the minimality or sparsity desideratum with the following logical expression: counterfactual
x′ of factualx is minimal iif ∄x′′ s.t. |δx′,x′′ | < |δx,x′ | where |δa,b| is the amount of different attribute value
pairs between a and b. Besides mentioning the properties of similarity and minimality as desirable, they
are also part of the benchmarking study as evaluation metrics.

The survey also mentions plausibility as one of the desirable properties of a counterfactual explanation.
According to the author it is practically defined as a counterfactual not having higher/smaller values that
those observable in existing examples, and that the counterfactual should not be labeled as an outlier
with respect to existing examples. To test this property in the benchmark study, the author implements
an implausibility metric which measures the distance from the counterfactual to the closest instance in
the known dataset.

For the robustness desideratum, we find a similar definition as in [4] which is the following: given two
similar instances x1 and x2 obtaining the same classification from the classifier b, i.e., y = b(x1) = b(x2),
then an explainer f should return two similar set C1, C2 of counterfactuals. Moreover, the research
performs a benchmarking study which also utilises an instability metric. This metric measures to which
extent the counterfactuals C obtained for x are close to the counterfactuals C̄ obtained for x̄ ∈ X ,
where x̄ is the closest instance to x and x̄ receives the same black-box decision of x, i.e., b(x) = b(x̄).

In the survey by Verma et al. [84], the authors cite the work by Wachter et al. [86] when talking about
the validity desideratum. They state that the objective of a counterfactual explanation should be to min-
imise the distane between the counterfactual and the original datapoint subject to the constraint that the
output of the classifier on the counterfactual is the desired label. This means that they incorporate the
distance into the validity desideratum. Sparsity is also mentioned as a desideratum for counterfactual
explanations by the authors. In this work, the plausibility desideratum is named Data Manifold close-
ness. The authors state that ”it would be hard to trust a counterfactual if it resulted in a combination
of features that were utterly unlike any observations the classifier has seen before” [84]. Even though
robustness is not a part of the initial survey, when discussing research challenges, the paper mentions
that there are three kinds of robustness needs:

1. Robustness to model changes when models are retrained.
2. Robustness to the input datapoint (two individuals with a slight change in features should be given

similar CFEs).
3. Robustness to small changes in the attained CFE (a CFE with minor changes to the originally

suggested CFE should also be accepted).

Moreover, the research presents the current progress when it comes to this challenge. Among other
things, they mention the earlier described studies by Slack et al. [77] and Artelt et al. [5].

Lastly, the study presents a list of evaluation metrics that can be used to measure the ease of acting on
a recommended counterfactual. This list includes the mentioned desiderate in the form of the following
metrics: validity, proximity, sparsity, closeness to the training data.

The survey by Karimi et al. [47] does not explicitly mention the idea of validity in counterfactual ex-
planations. For the distance between counterfactual and factual, the study talks about dissimilarity.
Additionally, it presents that distance and cost of actions can not be seen as a general 1-1 mapping.
The sparsity desideratum is explicitly mentioned by the authors. They state that ”it is often argued that
sparser solutions are desirable as they emphasize fewer changes (in explanations) or fewer variables
to act upon (in recommendations) and are thus more interpretable for the individual” [47].

The work summarises existing literature on plausibility in three categories:

1. Domain-consistency, restricts the counterfactual instance to the range of admissible values for
the domain of features.

2. Density-consistency, focuses on likely states in the (empirical) distribution of features.
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3. Prototypical-consistency, selects counterfactual instances that are either directly present in the
dataset or close to a prototypical example.

Lastly, the authors mention robustness in the context of the interplay of recourse and ethical Machine
Learning (ML). They state that ”giving the right of recourse to individuals should not be considered in
a vacuum and independently of the effect that providing explanations/recommendations may have on
other stakeholders (e.g., model deployer and regulators), or in relation to other desirable properties
(e.g., fairness, security, privacy, robustness), broadly referred to as ethical ML”. When discussing the
current literature describing robustness, previously described works [4, 3, 49, 38] are presented among
other studies.



5
Related Work

In this chapter we will delve into the existing literature on data imbalance and fairness in the field
of recourse and CEs. First, we discuss the role of data imbalance in the context of CE. Next, we
look into a collection of studies that evaluate fairness and propose a framework or method for fair
recourse/CEs. Here, the goal is to find out how fairness is evaluated by looking at the utilised metrics
and the experimental setup.

5.1. Data Imbalance in CE
To the best of our knowledge there exists only one study that compares the quality of CEs under imbal-
anced datasets. This is the work of Li et al. [51]. The study investigates the effect of class imbalance
on counterfactual explanations generated for churn prediction datasets. The authors compare different
counterfactual generation methods on different datasets in the churn prediction domain. They conduct
experiments on artificially imbalanced datasets and on real-world datasets that are inherently imbal-
anced. To evaluate the quality of the counterfactuals, the authors report validity, distance, sparsity
and a metric which they refer to as credibility and is similar to plausibility metrics in other CE literature.
The study concludes by saying that it ”experimentally proves that there are obvious differences in the
success rate of finding a counterfactual explanation, the distance between counterfactual explanation
and the original instance (i.e. proximity), the proportion of feature change (i.e. sparsity), and the de-
gree of proximity support (i.e. credibility) with the original instance in different instance locations and
unbalanced data sets” [51]. However, after our own analysis of the research we believe that these
conclusions were too easily drawn. In some cases, the authors draw conclusions based on values that
we were not able to find in the reported results.

5.2. Fairness in Recourse and CE
In the work by Ustun et al. [81], the authors state that their tools will allow a range of stakeholders
to answer a list of questions. One of these questions is: ”Are there disparaties in recourse between
subgroups in the target population?”. The authors propose that fairness can be evaluated with two
approaches: cost of recourse and flipsets. The cost of recourse is defined by the authors as a function
of percentile shifts per feature. The benefit of this approach is stated as follows: ”Unlike standard

Figure 5.1: Example of a flipset for a person who is denied credit by a classification model [81].
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Figure 5.2: Overview of recourse disparities between males and females in the target population. On the top row, we plot the
distribution of the cost of recourse for males and females based on their predicted risk and true label: we plot the cost for

individuals where =+1 (left) and = 1 (right) [81].

(a) Fitness values when race and gender attributes are
muted (FitnessM) and unmuted (FitnessU) for three

people [75].
(b) Burden on different groups belonging to a particular race in the UCI

adult dataset [75].

Figure 5.3

Euclidean distance metrics, cost functions based on percentiles do not depend on the scale of features,
and account for the distribution of features in the target population.” [81]. Flipsets, on the other hand,
are essentially a collection of actions that a person has to take to flip their predicted label (example in
Figure 5.1). To assess the disparities in recourse between subgroups, one can compare the cost of
recourse and the flipsets between subgroups and see whether differences can be found.

Ustun et al. present an example of an assessment by training a logistic regression model on the german
dataset [44] and generating individual recourse. In the experiment, the training of the model is done on
the dataset without the gender feature to assess the disparities between male and female subgroups.
The model predicts a risk percentage between 0 and 100% where individuals with a risk percentage
above 50% are labeled in the yi = −1 class. The results of the cost of recourse comparison is given in
Figure 5.2. The authors conclude that the cost of recourse can vary between males and females in the
target population. Furthermore, the authors present the flipsets of a male and female individual with
identical true labels and similar predicted risks. Again, the authors state that disparities between the
subgroups can be found.

In [75], the authors state that machine learningmodels need to be rigorously audited for fairness, robust-
ness, transparency, and interpretability. They propose a model-agnostic approach which addresses
these issues in unison called CERTIFAI (Counterfactual Explanations for Robustness, Transparency,
Interpretability, and Fairness of Artificial Intelligence models). The approach is able to audit fairness
from an individual’s perspective and from a group’s perspective. Both times, the fairness is assessed
using the distance from the individual to the counterfactual. In the case of individual fairness, it is evalu-
ated by comparing the fitness of a counterfactual in a ’muted’ and ’unmuted’ scenario. Fitness refers to
the inverse of the distance, meaning a higher fitness equals to a counterfactual closer to the individual.
Muting in this case refers to making sure that certain can (unmuted) or can not (muted) be changed.
For example, if one would like to calculate the individual fairness based on a gender attribute, they can
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compare the fitness of the counterfactual generated when gender is muted and unmuted. If the fitness
values differ, the individual could claim that the audited model is unfair. To get the group fairness of a
specific group, the average distance from an individual in the group to its counterfactual is calculated
which the authors refer to as the burden.

An example of a fairness evaluation is given by performing an experiment on the UCI adult dataset
[8]. Figure 5.3a shows the results for the individual fairness evaluation of three different individuals.
Here, the features race and gender are tested for fairness. The group fairness is evaluated by creating
groups based on the race feature and comparing the burden of each group. The results are shown in
Figure 5.3b.



6
Methodology

This chapter details the methodology employed throughout this work. First, in Section 6.1 we give an
overview of the components (datasets, classification models, and counterfactual generators) which are
necessary for the experiments. Section 6.2 delves into the design of specific experiments, linking them
back to the research questions and hypotheses defined in Section 1.1. This section also discusses
the technical components chosen for the experiments with justifications for their selection. Lastly, in
Section 6.3 we will present the evaluation metrics and discuss how they are evaluated.

6.1. Experimental Setup
The setup comprises several components: datasets, classification models, and counterfactual gener-
ation methods. The following sections will provide a concise overview and explanation of each com-
ponent. Section 6.2 details the selection of components for each experiment. We deviate from an
exhaustive, cartesian product approach by strategically choosing components that directly address the
corresponding research question guiding the experiment. Justifications for these targeted selections
will be presented within Section 6.2 as well.

6.1.1. Datasets
To conduct the experiments, we will use multiple datasets that belong to the credit-risk domain and the
MNIST dataset [50], commonly used for image recognition tasks. We specifically chose the credit-risk
domain because it is typically studied in the context of CE and AR. Moreover, the visual aspect of the
MNIST dataset allows for better comparisons of generated counterfactuals. A summary of which credit-
risk datasets are found in related work is shown in Table 6.1. Based on the usage of datasets in the
related work, we have decided to conduct experiments on the German Credit [44], Credit Default [89]
and GMSC [17] datasets. Additionally, we have added the Adult [8] dataset because it is particularly
interesting to use in the experiments that aim to answer Research Question 4.

Descriptions of the datasets and why they are relevant for our research are given below:

• MNIST: This dataset consists of 70,000 grayscale images of handwritten digits, each resized to

Table 6.1: Summary of credit-risk datasets found in related work.

Dataset Research Papers
Home Equity Line of Credit (HELOC)1 [28]
German Credit [44] [32] [36] [81]
Credit Default [89] [32] [36] [45] [81]
HMDA [43] [36]
Give Me Some Credit (GMSC) [17] [32] [81]
Propublica2 [32]

21
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28x28 pixels. Each pixel value ranges from 0 (black) to 1 (white), representing the pixel intensity.
Due to its widespread adoption, standard classification models achieve high accuracy on MNIST.
This allows us to focus on counterfactual generation rather than optimizing model performance.
Additionally, the visual aspect of the dataset makes it a relevant dataset for our research because
it allows for a visual comparison of generated counterfactuals. This visual comparison can also
be found in related work, namely in [22], [74], [75] and [83].

• German Credit: This dataset is widely used for credit risk assessment tasks. It comprises 1,000
data points, each representing an individual described by 20 attributes related to their loan appli-
cation and financial situation. Each data point is labeled as either ”good credit” (0) or ”bad credit”
(1), signifying the loan repayment risk associated with the individual. The dataset comes in two
forms, one with categorical features and one with solely numerical features. For our research
we will work with the numerical form because it makes the preprocessing of the data simpler.
The dataset is particularly useful for our research because of its manageable size, allowing for
efficient experimentation.

• Credit Default: This dataset is commonly used for investigating credit card default prediction. It
consists of approximately 30,000 data points, each representing a credit card customer in Taiwan.
Each data point is characterized by 23 attributes, including demographic information, credit card
usage statistics, and payment history. Additionally, each data point is labeled as either ”paying
customer” (0) or ”defaulted” (1), indicating the customer’s credit card repayment behavior.

• GMSC: This is a benchmark dataset used for credit-risk classification tasks. The dataset consists
of 150,000 data points, each representing an individual and characterized by various attributes
related to their banking information. The data points are labeled as either ”good credit” (0) or
”bad credit” (1), signifying the loan repayment risk associated with the individual. Moreover, the
dataset is imbalanced with only 7% of the data belonging to the ”bad credit” class. This makes
GMSC a relevant dataset for our research as we investigate the impact of class imbalance and
balancing techniques on counterfactual generation.

• Adult: This widely-used dataset is employed for research on income prediction. It comprises
approximately 48,000 data points, each representing an individual described by 14 attributes, in-
cluding demographic information, education level, work history, and occupation. Each data point
is labeled as either ”less than $50K” or ”greater than $50K” annual income. The Adult dataset
presents a valuable resource for our research, particularly in the context of the experiments de-
scribed in Section 6.2.4. Specifically, the dataset’s inclusion of various social features (e.g., edu-
cation, occupation) facilitates the creation of a negatively biased group. Nevertheless, it is also
useful for other experiments because it resembles a real-world situation in the financial domain
for which CE’s are interesting.

Data Preprocessing
We keep the MNIST dataset how it comes out-of-the-box because it is already standardised in such a
way that all the pixel values are between 0 and 1. For the other datasets we employ the same data
preprocessing. We standardise the feature values by fitting an MLJModels.Standardizer3 on each
feature column. The code in Listing 6.1 displays the Julia code to perform the preprocessing.

Listing 6.1: Preprocessing using an MLJBase transformer.
1 transformer = MLJModels.Standardizer(; count=true)
2 mach = MLJBase.fit!(MLJBase.machine(transformer , df[:, DataFrames.Not(:target)]))
3 X = MLJBase.transform(mach, df[:, DataFrames.Not(:target)])
4 X = Matrix(X)
5 X = permutedims(X)

6.1.2. Classification Models
Based on the datasets presented in Section 6.1.1, we will utilise three different classification models for
our research. Two of these are common models in the ML/AI space, namely a Multi-Layer Perceptron
(MLP) and a Random Forest model. The last model is called a NeuroTree which combines a Neural
Network with a Decision Tree and has been implemented for Julia in [20]. A detailed description of how

3https://alan-turing-institute.github.io/MLJ.jl/v0.5/built_in_transformers/#MLJModels.Standardizer

https://alan-turing-institute.github.io/MLJ.jl/v0.5/built_in_transformers/#MLJModels.Standardizer
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this classification model works can be found in Section 2.4. The following list presents the relevance
of these classification models to our research:

• Multi-layer perceptron (MLP): A multi-layer perceptron (MLP) is employed as the primary classifi-
cation model for the MNIST dataset. Notably, while the MLP achieves satisfactory performance
on MNIST which has been investigated in [6], [16] and [67], the research in [12] and [26] shows
that it may not be the optimal choice for tabular datasets in the credit risk domain.

• Random Forest: This is a model that is known to generally perform well on tabular datasets in the
credit risk domain. Both [12] and [26] present this with various experiments. The down-side of
the Random Forest model is that it is not differentiable which limits the options of counterfactual
generators since most state-of-the-art generators rely on differentiable classification models.

• NeuroTree: The NeuroTree model combines the differentiability of neural networks with the per-
formance of decision trees on tabular data4.

6.1.3. Counterfactual Generators
The employed counterfactual generators can be categorized into two categories: gradient-based and
non-gradient-based. The gradient-based generators are:

• Wachter [86]: This generator performs gradient descent in the feature space. It generates coun-
terfactuals that achieve the desired outcome whilst making minimal changes to the original data,
thus keeping the recourse cost low.

• Greedy [74]: This generator aims to generate unambiguous and realistic counterfactuals by using
the predictive uncertainty of the classification model. More specifically, the authors talk about two
types of uncertainty: epistemic and aleatoric uncertainty. The research suggests that focusing on
counterfactuals where the classifier has low uncertainty of both types leads to more unambiguous
and realistic results. To achieve this, they extend the Jacobian-based SaliencyMapAttack (JSMA)
[63] to find which feature changes result in the best possible counterfactual.

• REVISE [45]: This generator performs gradient descent on the latent space, which is learned
through a generative model, instead of the feature space. According to the research, this ap-
proach has two advantages:

1. The generated counterfactuals will be realistic because they will follow the data-generation
process encoded in the latent space.

2. The latent space is a compressed version of the feature space which means the generation
process is less costly.

However, a disadvantage of this generator is the need for a well-specified generative model that
can learn the latent embeddings accurately. In our research, we will use a Variational Auto-
Encoder (VAE) for this task.

The non-gradient-based generator is:

• FeatureTweak [79]: This generator is specifically designed to generate counterfactuals for binary
Random Forest classifiers. It examines the various trees in the forest and tries find which feature
tweak results in flipping the prediction of most trees. This will eventually make sure that the
classifier will predict the opposite label of the factual.

To facilitate the analysis of the decision threshold’s impact and effectively address Research Question
5, we differentiate between generators based on their decision threshold values. This is achieved by
appending a suffix of ”-0.5” or ”-0.95” to the generator name throughout the research. For instance,
”REVISE-0.5” denotes the REVISE generator employing a decision threshold of 0.5.

6.2. Experiments
This section details the experimental design employed to address the research questions outlined in
Section 1.1. Each subsection focuses on a specific research question and describes the corresponding

4A comparison of the NeuroTree implementation with other classification models on various benchmark datasets can be found
at https://github.com/Evovest/MLBenchmarks.jl

https://github.com/Evovest/MLBenchmarks.jl
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Figure 6.1: Visualisation of the MNIST dataset using t-SNE for dimensionality reduction

experiments designed to investigate it. We present the chosen experimental setup for each experiment,
justifying the selection of specific datasets, classification models, and counterfactual generation meth-
ods. As described earlier, Research Question 5 does not have a dedicated set of experiments that
helps to answer it. Instead, it will be answered throughout the other experiments.

To ensure consistency across all experiments, a uniform approach is adopted. We randomly sample
one hundred data points from the factual class. For each data point, a counterfactual is generated
within the target class. To mitigate the effects of randomness in data point selection on the overall
outcomes, this process is cross-validated five times. During cross-validation, we split the data in a
training and test set corresponding to a 80/20 split. The training set is used for all the experimental
steps up until the counterfactual generation step and the test set is used to generate counterfactuals.
Section 6.3 elaborates on the evaluation methodology employed to assess the quality of the generated
counterfactuals.

6.2.1. Inter-class Distance
This experiment addresses Research Question 1:

How does inter-class distance impact the quality of generated counterfactuals?

To address this question, we require a dataset with classes exhibiting varying inter-class distances. We
assess the suitability of the MNIST handwritten digit classification dataset [50]. A common technique
to analyse this dataset is the t-SNE dimension reduction technique [82]. With this technique we can
compress the high-dimensional MNIST data into two dimensions and plot the results.

As observed in Figure 6.1, inter-class distances are not uniform. The separation between classes ”0”
and ”1” appears larger compared to the separation between ”7” and ”9”. This aligns with our intuitive
understanding of digit similarity: ”7”, and ”9” share visual characteristics, while ”0” and ”1” are visually
distinct. These varying inter-class distances make the MNIST dataset well-suited to investigate the
impact of inter-class distance on counterfactual quality.

All the other datasets that have been described in 6.1.1 are not suitable for investigating the impact of
inter-class distance on counterfactual quality due to their limited number of classes (two). Consequently,
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Table 6.2: Hyperparameters used to train the MLP model on the MNIST dataset.

Hyperparameter Value
Epochs 100
Hidden layers 1
Hidden dimensions 32
Activation function ReLU
Optimiser Adam

Table 6.3: Hyperparameters used to train the VAE on the MNIST dataset.

Hyperparameter Value
Epochs 100
Learning rate 0.0001
Latent dimensions 28
Hidden dimensions 50
Optimiser Adam

they lack the inter-class distance variation necessary for our analysis.

As detailed in Section 6.1, Multi-Layer Perceptrons (MLPs) achieve good performance on the MNIST
dataset. For this research we have trained the MLP with the parameters shown in Table 6.2. This led
to a test set accuracy of 97.6% with 5-fold cross-validation. Additionally, Wachter, Greedy, and REVISE
generators are all differentiable, making them compatible with the MLP classifier and therefore useful
for this experiment. This means that we also have to train a VAE to serve as the generative model
for the REVISE generator. The hyperparameters of this model can be found in 6.3. This leads to the
following experimental steps:

1. Distance Measurement: We will calculate the pairwise distances between all digits in the MNIST
dataset. These distances will be calculated by taking the Euclidean distances between the av-
erages of each class. They will then be analyzed alongside the evaluation metrics to identify
potential correlations with counterfactual quality.

2. Counterfactual Generation: Counterfactuals will be generated for each digit pair in the MNIST
dataset using the Wachter, Greedy, and REVISE generators. The MLP model will be employed
for classification.

6.2.2. Data Imbalance
This experiment addresses Research Question 2:

What is the effect of data imbalance on the quality of counterfactuals?

Evaluating the impact of data imbalance requires a dataset with both imbalanced and balanced distribu-
tions such that we can compare the counterfactuals and understand what the effect of data imbalance
is. While the GMSC dataset exhibits inherent imbalance, it lacks a balanced counterpart for compari-
son. In Section 6.2.3, we will see how it, however, is useful for finding out what the effect of balancing
techniques is on the quality of counterfactuals. Conversely, the German Credit, Credit Default and
Adult datasets offer the flexibility to be manipulated for controlled imbalance. The following steps will
be taken to perform this experiment:

1. Introduce Imbalance: Undersampling is employed to introduce imbalance in each of the datasets.
The imbalance is introduced in such a way that the resulting class ratio is equal to 90/10.

2. Train Models: We train a Random Forest and a NeuroTree model on the original and imbalanced
versions of each dataset for classification. For the REVISE generator, we train a VAE to serve as
the generative model.

3. Counterfactual Generation: Counterfactuals will be generated for all datasets using the Wachter,
Greedy, REVISE and FeatureTweak generators. We will use the NeuroTree and Random Forest
models for classification.
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Table 6.4: The sizes of the original and imbalanced versions of the datasets.

Dataset Original Size Imbalanced Size
German Credit 800 622
Credit Default 4000 2222
Adult 26049 21973

Table 6.5: Hyperparameters used train the Random Forest on the data imbalance datasets.

Dataset Amount of trees Maximum depth
German Credit Original 100 50

Imbalanced 25 25
Credit Default Original 50 25

Imbalanced 10 25
Adult Original 100 50

Imbalanced 100 50

The following sections describe steps 1 and 2 of this experiment in more detail.

Introduce Imbalance
As described above, we use undersampling to introduce imbalance in each of the datasets. This means
that we randomly undersample the positive class such that the desired class ratio of 90/10 is achieved.
Table 6.4 gives an overview of the datasets and their sizes.

Train Models
As described in Section 6.1.2, MLPs do not perform well on tabular data such as the datasets in the
credit-risk domain. Random Forest models, on the other hand, have better performance on these types
of datasets. The hyperparameters used to train the Random Forest model and the performance results
can be found in Table 6.5 and Table 6.6, respectively. Because each dataset has a different size and
amount of features, we perform hyperparameter tuning on each dataset.

In the experimental setup in Section 6.1, we discussed how theNeuroTreemodel can solve the issues of
a Random Forest not being differentiable. Additionally, the team behind this model has benchmarked
it with various datasets and it has proven to perform similarly to other state-of-the-art classification
models5. We present the hyperparameters of the NeuroTree in Table 6.7 and the performance of the
model in Table 6.8. For the NeuroTree we found with hyperparameter tuning that the same set of
parameters performs best on all the datasets therefore the table only presents one set of parameters.

Lastly, for the REVISE generator we have to train a VAE to serve as the generative model. The hyper-
parameters for training the VAE are shown in Table 6.9.

6.2.3. Balancing Techniques
These experiments address Research Question 3:

How do balancing techniques employed on imbalanced datasets affect the quality of counterfactuals?

With the previous experiments, we aim to find out what the effect is of imbalance on the quality of
counterfactuals. As described in Chapter 3, to mitigate the effect of imbalance on the prediction results
in classification problems, balancing techniques have become an important part of machine learning. In

5https://github.com/Evovest/MLBenchmarks.jl

Table 6.6: Performance of the Random Forest on the data imbalance datasets.

Dataset Accuracy F1 Score AUC
Original Imbalanced Original Imbalanced Original Imbalanced

German Credit 0.743 ± 0.03 0.906 ± 0.01 0.458 ± 0.04 0.186 ± 0.07 0.827 ± 0.02 0.941 ± 0.01
Credit Default 0.78 ± 0.01 0.902 ± 0.01 0.77 ± 0.01 0.163 ± 0.04 0.85 ± 0.01 0.937 ± 0.01
Adult 0.928 ± 0.01 0.943 ± 0.00 0.929 ± 0.01 0.644 ± 0.01 0.977 ± 0.00 0.983 ± 0.00

https://github.com/Evovest/MLBenchmarks.jl
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Table 6.7: Hyperparameters used to train the NeuroTree model on the data imbalance datasets.

Hyperparameter Value
Epochs 10
Amount of trees 64
Maximum depth 5

Table 6.8: Performance of the NeuroTree model on the data imbalance datasets.

Dataset Accuracy F1 Score AUC
Original Imbalanced Original Imbalanced Original Imbalanced

German Credit 0.755 ± 0.01 0.905 ± 0.01 0.53 ± 0.02 0.19 ± 0.05 0.83 ± 0.01 0.949 ± 0.01
Credit Default 0.719 ± 0.01 0.902 ± 0.00 0.704 ± 0.01 0.314 ± 0.02 0.797 ± 0.01 0.937 ± 0.00
Adult 0.878 ± 0.00 0.916 ± 0.00 0.883 ± 0.00 0.405 ± 0.07 0.948 ± 0.00 0.974 ± 0.00

this research we opt to use SMOTE, RUS and a hybrid method which combines these techniques and
we will refer to as SMOTE/RUS. By answering the research question above, we want to see whether
balancing techniques can have a positive effect on the counterfactual generation process. In order for
us to do this, we will make use of the datasets and models that have been introduced in Section 6.2.2.
We will apply the aforementioned balancing techniques to these imbalanced datasets to find out what
the effect is on the quality of the counterfactuals. This leads to the following experimental design:

1. Balance Datasets: We take the imbalanced datasets and balance them using SMOTE, RUS and
SMOTE/RUS.

2. Train Models: We train both the Random Forest and the NeuroTree model on the newly balanced
datasets. For the REVISE generator, we train a VAE to serve as the generative model.

3. Counterfactual Generation: We generate counterfactuals for the imbalanced and balanced datasets
and compare them. The Greedy, Wachter and REVISE generator are used in combination with
the NeuroTree model and the FeatureTweak generator is used in combination with the Random
Forest.

The following sections describe steps 1 and 2 in more detail.

Balance Datasets
To balance the datasets, we take each of the imbalanced datasets from the previous experiments and
apply SMOTE, RUS or a combination of SMOTE/RUS to balance them. Additionally, as mentioned
before, the GMSC dataset is also suitable for these experiments. We refer to the original GMSC dataset
as imbalanced because it is inherently imbalanced. Even though the class ratio of the GMSC dataset is
approximately 93/7, which is not the same as the class ratio of 90/10 found in the manually imbalanced
dataset, we keep the dataset as it is. When balancing the datasets we always want to create the same
class ratio. For the SMOTE technique we apply a desired class ratio of 50/50. In the case of RUS, we
undersample the majority class such that the class ratio becomes 75/25. When both techniques are
applied together, we first undersample such that the class ratio becomes 75/25 and then apply SMOTE
which leads to a 50/50 class ratio. Table 6.10 gives an overview of all the datasets that we will generate
counterfactuals for in these experiments.

Table 6.9: Hyperparameters used to train the VAE on the data imbalance datasets.

Hyperparameter Value
Epochs 200
Learning rate 0.0001
Latent dimensions 5
Hidden dimensions 2
Optimiser Adam
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Table 6.10: An overview of the dataset sizes used for the balancing techniques experiments.

Dataset Imbalanced Size SMOTE Size RUS Size SMOTE/RUS Size
German Credit 622 800 248 372
Credit Default 2222 4000 888 1332
Adult 26049 39551 8789 13183
GMSC 96136 178904 26736 40104

Table 6.11: Accuracy of the Random Forest and NeuroTree model on the balanced datasets.

Model Dataset Imbalanced SMOTE RUS SMOTE/RUS
Random Forest German Credit 0.904 ± 0.00 0.819 ± 0.01 0.873 ± 0.01 0.876 ± 0.01

Credit Default 0.908 ± 0.00 0.867 ± 0.03 0.898 ± 0.00 0.871 ± 0.01
Adult 0.942 ± 0.00 0.930 ± 0.00 0.913 ± 0.00 0.886 ± 0.00
GMSC 0.934 ± 0.00 0.851 ± 0.01 0.906 ± 0.00 0.821 ± 0.01

NeuroTree German Credit 0.905 ± 0.01 0.783 ± 0.03 0.842 ± 0.03 0.710 ± 0.04
Credit Default 0.902 ± 0.00 0.799 ± 0.01 0.884 ± 0.00 0.810 ± 0.00
Adult 0.916 ± 0.00 0.808 ± 0.00 0.891 ± 0.00 0.805 ± 0.01
GMSC 0.931 ± 0.00 0.774 ± 0.02 0.924 ± 0.00 0.779 ± 0.03

Train Models
To train the models for this experiment we utilise the same method as for the Imbalance Experiments
described in Section 6.2.2. The hyperparameters employed for training the Random Forest and Neu-
roTree models on the balanced datasets remain consistent with those used for the original datasets,
as documented in Table 6.5 and Table 6.7, respectively. Furthermore, a VAE is trained on the bal-
anced datasets using the hyperparameters specified in Table 6.9. The classification performance of
these models is evaluated using accuracy, F1 score, and AUC, which are presented in Table 6.11,
Table 6.12, and Table 6.13, respectively.

6.2.4. Negatively Biased Groups
This experiment addresses Research Question 4:

How does the quality of counterfactuals for subgroups in the data which the classifier is biased
towards compare to other data points in the same class?

To address this, we first define bias as a higher probability of being classified as the negative class
compared to the overall dataset. For example, if our classifier predicts the negative class for 25% of
the dataset and there exists a subgroup of data points for which the classifier predicts the negative
class 75% of the time, then we can say that the classifier is biased for that subgroup. We identify a
subgroup by specifying boundaries for a set of features, e.g., all data points with ”age < 35”. We then
compare the quality of counterfactuals generated for the subgroup against those generated for other
points within the same class. For this experiment, we utlise the Adult dataset as described earlier in
6.1.1. This leads to the following experimental design:

1. Define Subgroup: We will define a subgroup based on features that according to a SHAP analysis
have a high likelihood of getting classified as the positive label.

Table 6.12: F1 Score of the Random Forest and NeuroTree model on the balanced datasets.

Model Dataset Imbalanced SMOTE RUS SMOTE/RUS
Random Forest German Credit 0.146 ± 0.07 0.294 ± 0.05 0.325 ± 0.05 0.337 ± 0.03

Credit Default 0.277 ± 0.03 0.397 ± 0.04 0.408 ± 0.03 0.386 ± 0.02
Adult 0.637 ± 0.01 0.646 ± 0.01 0.611 ± 0.01 0.564 ± 0.01
GMSC 0.268 ± 0.03 0.345 ± 0.01 0.431 ± 0.02 0.346 ± 0.01

NeuroTree German Credit 0.190 ± 0.05 0.303 ± 0.03 0.318 ± 0.09 0.308 ± 0.02
Credit Default 0.314 ± 0.02 0.315 ± 0.01 0.442 ± 0.02 0.367 ± 0.00
Adult 0.405 ± 0.01 0.448 ± 0.01 0.514 ± 0.02 0.456 ± 0.01
GMSC 0.269 ± 0.04 0.308 ± 0.02 0.396 ± 0.00 0.309 ± 0.02
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Table 6.13: AUC of the Random Forest and NeuroTree model on the balanced datasets.

Model Dataset Imbalanced SMOTE RUS SMOTE/RUS
Random Forest German Credit 0.744 ± 0.03 0.722 ± 0.04 0.737 ± 0.07 0.732 ± 0.02

Credit Default 0.773 ± 0.02 0.759 ± 0.03 0.772 ± 0.02 0.755 ± 0.02
Adult 0.927 ± 0.01 0.930 ± 0.01 0.923 ± 0.01 0.918 ± 0.00
GMSC 0.849 ± 0.01 0.821 ± 0.02 0.853 ± 0.03 0.840 ± 0.01

NeuroTree German Credit 0.949 ± 0.01 0.875 ± 0.02 0.931 ± 0.02 0.787 ± 0.03
Credit Default 0.937 ± 0.00 0.864 ± 0.02 0.932 ± 0.00 0.826 ± 0.00
Adult 0.973 ± 0.00 0.914 ± 0.00 0.962 ± 0.00 0.908 ± 0.01
GMSC 0.971 ± 0.00 0.815 ± 0.02 0.966 ± 0.00 0.810 ± 0.03
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Figure 6.2: SHAP analysis of the Adult dataset.

2. Create Biased Classifier: Based on the subgroup, we will modify the dataset to make sure that
the classifier becomes negatively biased. This will also be tested by predicting the labels of newly
generated data points that belong to the subgroup.

3. Counterfactual Generation: Due to a limitation of time, we will only generate counterfactuals with
the Greedy, Wachter and REVISE generators and the NeuroTree model as classifier.

The following sections describe steps 1 and 2 in more detail.

Define Subgroup
We perform a SHAP analysis [55] on the Adult dataset to identify features with high positive importance
values for the positive class. The SHAP framework assigns each feature an importance value for a
particular prediction, allowing us to visualize how each feature value influences the prediction outcome.
Figure 6.2 presents the SHAP analysis results for the Adult dataset.

In Figure 6.2, we observe a clear positive importance value when the feature Marital Status has
a low value (corresponding to Never-married in the original dataset). Similarly, a high value in the
Education-Num feature (corresponding to Bachelors, Masters, Prof-school, and Doctorate) also
exhibits positive importance. Based on these features, we define a subgroup where 80% of the data
points belong to the positive class, serving as a starting point for our biased classifier.

Create Biased Classifier
To induce bias towards the defined subgroup, we remove all subgroup data points with negative labels.
This enforces a positive association between the subgroup and the positive class within the modified
dataset, which is subsequently split into training and testing sets. Bias evaluation is conducted in two
ways:
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1. Predicting labels of test set subgroup data points: This results in 100% classification as the posi-
tive class.

2. Predicting labels of newly generated subgroup data points: To further assess bias, we gener-
ate 100 data points with values that belong to the subgroup for the defining features. Random
values based on the mean and standard deviation of each feature are used for the remaining fea-
tures. Our biased classifier predicts the negative class for approximately 70% of these generated
data points, significantly higher than the overall dataset’s 20% negative classification rate. This
confirms the classifier’s bias towards the subgroup.

6.3. Metrics and Evaluation
This section will first give an overview of all the evaluation metrics which we assess to answer the
research questions. Secondly, we will discuss how we aim to evaluate the metrics both visually and
statistically.

6.3.1. Metrics
Our approach leverages a combination of established metrics and novel approaches. Firstly, we will
discuss the established metrics in the CounterfactualExplanations.jl package [1]. These are the metrics
that are readily available in the package:

1. validity: assesses whether the generated counterfactual is accurately classified as the target
class by the classification model.

2. distance: the distance between the factual and the counterfactual in the feature space.
3. redundancy: the proportion of features that remain unchanged between the original data point

and the counterfactual.

In the literature that was discussed in Chapter 4, we found that counterfactuals are often evaluated on
validity, distance and sparsity. Therefore, the already implemented metrics of the CounterfactualExpla-
nations.jl package are suitable and will be used in this research.

Additionally, we found that plausability is another important way of comparing the quality of counterfac-
tuals. It assesses how closely the counterfactual resembles other data points within the target class.
We discussed that various research has tried to specify this metric in more detail [30, 45, 68, 74]. How-
ever, there is no consensus yet on how to exactly measure it. In this research, we will start by looking
at how the authors of [2] have defined implausability. We choose to look at this definition because to
our understanding it is the latest research on implausibility for CE’s. This means that the authors incor-
porate the findings of other research surrounding this topic. They specifically focused on the work by
Guidotti et al [30]. In this research, an implausibility metric is proposed that that measures the distance
of the counterfactual from its nearest neighbour in the target class. In [2], however, the metric is defined
by the average distance of a sampled set of nearest neighbours. The authors propose that this way
they avoid the risk that the nearest neighbour of the counterfactual itself is not plausible. Equation (6.1)
presents the metric’s mathematical notation.

impl(x′, Xy+) =
1

|Xy+ |
∑

x∈Xy+

distance(x′, x) (6.1)

• Xy+ is the set of randomly sampled data points in the target class.
• x′ represents the counterfactual.
• distance is some form of distance metric.

The implausability metric can be implemented using two approaches:

1. Label-based: taking the sampled points based on the original labels.
2. Prediction-based: taking the sampled points based on the predictions of the classification model

[2] utilises the label-based approach to ensure that the generated counterfactuals comply with the
true and unobserved data-generating process (DGP). However, a limitation is that the underlying data
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distribution does not reflect how the classifier predicts new data, especially if the model struggles to ac-
curately predict the target class. Therefore, we introduce the prediction-based approach which reveals
if generated counterfactuals align with the model’s perception of the target class. However, it is sus-
ceptible to the model’s performance limitations. A poorly performing classifier could lead to misleading
implausibility scores for counterfactuals.

As described in Chapter 4 when discussing the robustness desideratum, Laugel et al. [49] state that it is
difficult to evaluate this desideratum under its current definition. Therefore, we opt to leave robustness
out of the evaluation metrics.

Lastly, we introduce a new metric specifically for the inter-class distance experiments. We introduce a
relative distance metric which addresses the influence of inter-class distance on the standard distance
metric. This metric normalizes the distance between the factual and counterfactual data points by
dividing it by the average distance between the factual and target class. This normalization effectively
removes the bias introduced by inherent differences between classes.

We prioritize the evaluation of validity for counterfactuals. Distance, redundancy and implausibility
metrics are meaningless for invalid counterfactuals. Therefore, we establish validity before proceeding
to other evaluations.
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Results

7.1. Inter-class Distance
In this section we will discuss the results of the experiments that were described in Section 6.2.1 and
we try to answer Research Question 1. We analyze the results using two complementary approaches:
quantitative evaluation based on metric values and qualitative assessment of the visually-represented
counterfactuals. We begin by examining the quantitative results in Figure 7.1, which compares various
metrics with inter-class distance. As outlined in Section 6.2, we generate 100 counterfactuals per
factual-target pair and perform 5-fold cross-validation. The figures depict lines fitted to the average
values obtained across cross-validation runs.

We begin by analyzing the validity metric in Figure 7.1a. This figure demonstrates that all generators,
with the exception of the REVISE-0.5 generator, achieve high validity scores. Notably, the REVISE-0.5
generator is the only one clearly affected by inter-class distance, exhibiting a decrease in validity as the
distance increases. The other generators are minimally impacted by the change in inter-class distance
maintaining very high, near-perfect validity scores across various inter-class distances.

Next, we examine the distance and relative distance metrics presented in Figure 7.1b and Figure 7.1c,
respectively. As expected, the distance scores increase with a larger inter-class distance, although
differences in the actual distance values between the generators are observed. The results for the
relative distance metric demonstrate a decrease as the inter-class distance increases. When consid-
ered in combination with the distance scores, this indicates that while the distance between factual and
counterfactual increases, it does not increase at the same pace as the inter-class distance does.

For the redundancy metric, presented in Figure 7.1d, the conclusion can be drawn swiftly: the inter-
class distance has a negligible effect on redundancy for all generators. We can also try to explain why
the redundancy seems to be centered around the value of 0.4. In a 28x28 image, 40% of the pixels
is equal to approximately 313 pixels. Notably, the three outermost layers encompass precisely 310
pixels. This observation suggests that, on average, these outer layers represent black pixels across
various digits. Consequently, these pixels are likely left unchanged during the counterfactual generation
process, contributing to the redundancy values consistently hovering around 0.4.

Lastly, Figure 7.1e and Figure 7.1f present the results for the implausibility label-based metric and
implausibility prediction-based metric, respectively. We observe a near-identical pattern in the scores
for both metrics. This can be explained by revisiting the performance of the MLP model on this dataset,
where it achieved a test set accuracy of 97.6%. This implies an almost perfect classification of the
different classes. Consequently, both implausibility metrics are highly similar because the labels and
predictions are nearly identical. We further observe an increase in implausibility for all generators as the
inter-class distance increases, even though the implausibility is lower for the REVISE generators. This,
when combined with the validity scores, suggests that while the various generators can still generate
valid counterfactuals with a larger inter-class distance, these counterfactuals are less plausible.

We proceed with a qualitative evaluation by visually inspecting counterfactuals. For each MNIST class

32
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(c) Relative Distance vs Inter-class distance for each generator
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(d) Redundancy vs Inter-class distance for each generator
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(e) Implausibility (label-based) vs Inter-class distance for each
generator
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Figure 7.1: A comparison of the CE metrics versus the Inter-class Distance.
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Figure 7.2: Visual representations of counterfactuals generated by the REVISE-0.5 generator.

Figure 7.3: Visual representations of counterfactuals generated by the REVISE-0.95 generator.

digit, we generate and present a visual representation of a counterfactual produced by each generator.
These counterfactuals are ordered by their inter-class distance from the factual digit, allowing us to
observe how visual quality changes with increasing distance. To ensure conciseness, a representative
subset of these visualizations is presented in this section; the complete set can be found in Appendix A.

First we will analyse the counterfactuals generated by the REVISE generators. Figure 7.2 and Fig-
ure 7.3 depict counterfactuals for digits 4 and 9, generated by the REVISE-0.5 and REVISE-0.95 gen-
erators, respectively. We observe that counterfactuals closer to the factual label (shown to the left in
the figures) exhibit higher visual quality, particularly those generated by REVISE-0.95. These coun-
terfactuals are readily classifiable by humans, demonstrating their plausibility. However, as we move
towards larger inter-class distances (rightward in the figures), the digits become increasingly malformed
and implausible, aligning with our prior quantitative assessment.

Next, we examine visual representations of the counterfactuals generated by the Greedy and Wachter
generators which can be found in Figure 7.4, Figure 7.5, Figure 7.6 and Figure 7.7. We immediately
observe a generally higher level of implausibility in these counterfactuals compared to those generated
by REVISE generators. This is again consistent with the quantitative results. However, these visualiza-
tions do not conclusively confirm or refute the trend of increasing implausibility with inter-class distance
observed in Figures 7.1e and 7.1f. This is because all counterfactuals appear equally implausible,
making visual distinction between them challenging.

Our experiments, designed to investigate Research Question 1, demonstrate that the impact of inter-
class distance varies across different metrics. Notably, validity and redundancy metrics exhibit minimal
sensitivity to changes in inter-class distance. As anticipated, the distance metric increases with larger
inter-class distances, demonstrating a positive correlation. However, the relative distance metric re-
veals a slower increase in the distance between factual data and counterfactuals compared to the inter-
class distance itself. Finally, and most interestingly, inter-class distance has a clear negative effect on
implausibility. This results in counterfactuals that are valid but appear increasingly implausible.

Additionally, we can make some initial conclusions regarding Research Question 5. With respect to
the effect of the decision threshold on the impact of inter-class distance, we can state that it is minimal.
Except for the REVISE generator, which showed a clear difference only for the validity, all the other
generators did not show any major difference when the decision threshold was changed. This holds
for both the quantitative and the qualitative assessment.
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Figure 7.4: Visual representations of counterfactuals generated by the Greedy-0.5 generator.

Figure 7.5: Visual representations of counterfactuals generated by the Greedy-0.95 generator.

Figure 7.6: Visual representations of counterfactuals generated by the Wachter-0.5 generator.

Figure 7.7: Visual representations of counterfactuals generated by the Wachter-0.95 generator.
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Table 7.1: The metric scores for the data imbalance experiments.

Data Model Generator Validity ↑ Distance ↓ Implausibility (Label-based) ↓ Implausibility (Prediction-based) ↓
Original Imbalanced Original Imbalanced Original Imbalanced Original Imbalanced

German Credit NeuroTree Wachter-0.5 0.992 ± 0.01 0.274 ± 0.06 8.691 ± 0.20 3.444 ± 0.38 6.33 ± 0.10 5.812 ± 0.06 6.334 ± 0.10 2.094 ± 0.36
Wachter-0.95 0.67 ± 0.09 0.58 ± 0.07 3.646 ± 0.40 6.6 ± 1.17 6.091 ± 0.08 7.451 ± 0.56 6.039 ± 0.09 6.453 ± 0.37
Greedy-0.5 1.00 ± 0.00 1.00 ± 0.00 2.885 ± 0.08 2.196 ± 0.12 6.263 ± 0.10 6.445 ± 0.26 6.275 ± 0.10 6.47 ± 0.33
Greedy-0.95 1.00 ± 0.00 1.00 ± 0.00 10.729 ± 0.15 5.545 ± 0.38 6.202 ± 0.08 5.839 ± 0.52 6.201 ± 0.14 5.914 ± 0.47
REVISE-0.5 1.00 ± 0.00 1.00 ± 0.00 14.059 ± 0.30 17.512 ± 2.39 4.618 ± 0.01 4.593 ± 0.12 4.618 ± 0.01 4.593 ± 0.12
REVISE-0.95 0.98 ± 0.01 1.00 ± 0.00 15.086 ± 0.69 20.371 ± 1.54 4.575 ± 0.05 4.548 ± 0.43 4.537 ± 0.02 4.535 ± 0.44

Random Forest FeatureTweak-0.5 0.93 ± 0.01 1.00 ± 0.00 3.553 ± 0.35 5.59 ± 0.61 6.259 ± 0.72 7.066 ± 1.03 6.215 ± 0.76 7.033 ± 0.88

Credit Default NeuroTree Wachter-0.5 0.997 ± 0.01 0.903 ± 0.03 11.097 ± 0.13 9.705 ± 0.07 6.386 ± 0.20 7.481 ± 0.38 6.411 ± 0.14 7.217 ± 0.08
Wachter-0.95 0.98 ± 0.25 0.76 ± 0.08 11.73 ± 4.77 9.445 ± 2.95 6.478 ± 0.41 6.048 ± 0.38 6.542 ± 0.50 5.808 ± 0.35
Greedy-0.5 0.937 ± 0.11 1.00 ± 0.00 3.181 ± 0.65 2.939 ± 0.26 5.941 ± 0.12 6.444 ± 0.53 5.99 ± 0.16 6.439 ± 0.51
Greedy-0.95 1.00 ± 0.00 1.00 ± 0.00 3.507 ± 2.82 4.72 ± 0.97 5.937 ± 0.19 6.322 ± 0.13 5.993 ± 0.21 6.403 ± 0.14
REVISE-0.5 0.997 ± 0.01 0.997 ± 0.01 13.055 ± 0.09 13.617 ± 1.27 4.216 ± 0.13 5.2 ± 0.93 4.133 ± 0.15 5.151 ± 0.90
REVISE-0.95 0.98 ± 0.05 1.00 ± 0.00 15.117 ± 1.26 13.307 ± 1.00 4.161 ± 0.13 4.156 ± 0.20 4.153 ± 0.07 4.168 ± 0.19

Random Forest FeatureTweak-0.5 0.81 ± 0.02 0.97 ± 0.07 4.424 ± 0.75 3.1 ± 0.51 5.547 ± 0.91 5.758 ± 0.88 5.476 ± 0.92 5.676 ± 1.01

Adult NeuroTree Wachter-0.5 0.977 ± 0.01 0.953 ± 0.02 6.454 ± 0.20 5.515 ± 0.27 5.397 ± 0.09 5.594 ± 0.14 5.371 ± 0.11 5.541 ± 0.15
Wachter-0.95 0.91 ± 0.01 0.87 ± 0.05 5.647 ± 0.39 5.414 ± 0.23 5.311 ± 0.29 5.346 ± 0.26 5.282 ± 0.29 5.334 ± 0.26
Greedy-0.5 0.98 ± 0.01 0.957 ± 0.03 2.048 ± 0.16 2.156 ± 0.17 5.394 ± 0.13 5.57 ± 0.23 5.369 ± 0.13 5.509 ± 0.22
Greedy-0.95 0.95 ± 0.01 0.947 ± 0.03 4.283 ± 0.43 4.591 ± 0.08 5.336 ± 0.03 5.594 ± 0.31 5.318 ± 0.03 5.538 ± 0.30
REVISE-0.5 0.993 ± 0.01 1.00 ± 0.00 8.434 ± 0.54 9.148 ± 0.37 3.961 ± 0.13 3.811 ± 0.05 3.948 ± 0.16 3.775 ± 0.07
REVISE-0.95 0.993 ± 0.01 1.00 ± 0.00 9.643 ± 0.40 10.386 ± 0.72 3.998 ± 0.20 3.568 ± 0.05 3.989 ± 0.21 3.555 ± 0.04

7.2. Data Imbalance
This section delves into the results of the data imbalance experiments outlined in Section 6.2.2, aiming
to address Research Question 2:

What is the effect of data imbalance on the quality of counterfactuals?

We analyze the results for each dataset individually, initially focusing on specific counterfactual gener-
ation methods before drawing broader conclusions across all methods. Additionally, we examine the
influence of the decision threshold (Research Question 5) within this context. To make this section
more concise, we have left out the redundancy metric because all values were either equal or very
close to 0.

7.2.1. German Credit
First of all, we take a look at the results for the German Credit dataset. We prioritise the validity metric,
as low validity renders other metrics less meaningful (as described in Section 6.3). Greedy, REVISE,
and FeatureTweak generators show high validity scores for both the original and imbalanced datasets.
Wachter-0.5 shows high validity on the original dataset but severely drops for the imbalanced dataset,
potentially indicating that the generators has trouble with handling class imbalance. Interestingly, the
implausibility metrics of Wachter-0.5 deviate when comparing label-based and prediction-based cal-
culation methods. This aligns with our expectation that the classifier, specifically in the case of an
imbalanced dataset, might perceive the counterfactual as plausible (low prediction-based score), while
it remains factually implausible (high label-based score). Wachter-0.95 performs moderately on both
datasets, with low validity scores limiting the interpretability of other metrics.

For the Greedy, REVISE, and FeatureTweak generators, the distance metric results are mixed. RE-
VISE and FeatureTweak show larger distances for the imbalanced dataset, suggesting a potential de-
crease in counterfactual quality. Conversely, Greedy exhibits a shorter distance, indicating potentially
better quality. Implausibility generally appears similar between both datasets, with the imbalanced
dataset occasionally showing higher values, potentially indicating decreased quality.

In general, the German Credit dataset reveals that Wachter generators struggle with validity under data
imbalance, while other methods maintain high performance. Implausibility seems relatively unaffected,
and the distancemetric showsmixed results. This could be partially attributed to the relatively small size
of the GermanCredit dataset, where the randomness inherent in selecting data points for counterfactual
generation might play a more critical role than desired. Therefore, in the context of the German Credit
data, data imbalance does not appear to impact the overall quality of generated counterfactuals in a
major way.

7.2.2. Credit Default
Next, we discuss the results for the Credit Default dataset. Similar to the German Credit dataset, the
Credit Default dataset reveals a clear drop in validity for the Wachter generator under data imbalance.
Interestingly, the FeatureTweak generator exhibits a contrasting behavior, with a low validity score for
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the original dataset but a high score for the imbalanced dataset.

The distance metric generally shows lower values for the imbalanced dataset. This can be partially
explained by the inherent effect of class imbalance on classification boundaries. When a dataset is
imbalanced, the classifier tends to favor the majority class, shifting the decision boundary closer to the
minority class. Consequently, counterfactuals classified as the majority class might appear closer to
the original data point. However, we expect this shift to be accompanied by increased implausibility,
indicating that these counterfactuals are not necessarily of good quality. Specifically, label-based im-
plausibility should rise as the classifier perceives the counterfactual surrounded by misclassified minor-
ity class data points. This trend is observed for some generators, including Wachter-0.5, both Greedy
variants, and REVISE-0.5. Other generators show either similar implausibility results across datasets
or a decrease in implausibility for the imbalanced dataset. Additionally, the high similarity between both
implausibility variants deviates from our initial expectations.

Overall, data imbalance seems to have varying effects on different generators in the Credit Default
dataset. Similar to the German Credit analysis, the Wachter generators struggle with validity under
imbalance. While implausibility generally increases for the imbalanced dataset for other generators,
the distance metric shows a decrease, potentially due to the aforementioned shift in the classification
boundary.

7.2.3. Adult
Lastly, we analyse the results of the experiments performed on the Adult dataset. The Adult dataset
analysis reveals minimal impact of data imbalance on counterfactual quality across all generators. All
methodsmaintain high validity scores, with only minor differences observed, particularly for theWachter
generators.

Regarding the distance metric, the Wachter generators exhibit a decrease in distance for the imbal-
anced dataset, potentially indicating closer counterfactuals. Conversely, the other generators show an
increase in distance. However, these changes are not large enough to draw definitive conclusions.

Implausibility metrics remain remarkably similar across both datasets and generator variants. This
suggests that data imbalance does not affect the perceived plausibility of generated counterfactuals in
this context.

Generally speaking, the Adult dataset analysis indicates that data imbalance has the least noticeable
effect on counterfactual quality compared to the other datasets. While minor variations exist in the
distance metric, the overall impact is negligible. Combined with the consistent implausibility scores, we
can conclude that data imbalance does not seem to drastically influence the quality of counterfactuals
generated for the Adult dataset.

7.2.4. Conclusion
Combining the findings across all datasets, we can conclude that data imbalance has a minimal effect
on the quality of generated counterfactuals, as addressed in Research Question 2. While some specific
combinations of generators and datasets exhibit slight variations in certain metrics, these changes lack
consistent patterns and are not considerable enough to definitively attribute them to data imbalance
itself. Therefore, we can generally state that data imbalance does not substantially impact the quality
of counterfactuals in this study.

An additional consideration is the direction of counterfactual generation. In our experiments, we fo-
cused on generating counterfactuals for the minority class towards the majority class. This leverages
the knowledge of the majority class, which is typically well-represented in the data. Future work could
explore the mirrored scenario, where counterfactuals are generated from the majority class to the mi-
nority class. This poses a potentially greater challenge, as the generator would need to learn a more
nuanced understanding of theminority class from a limited number of samples. This is further discussed
in Section 9.1.

Furthermore, our analysis of the decision threshold’s influence revealed a clear impact on the Wachter
generator. As the decision threshold increases, data imbalance affects this generator more notice-
ably. However, such a clear relationship was not observed for other generators. Overall, the decision
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Table 7.2: The validity and distance scores for the balancing techniques experiments.

Data Model Generator Validity ↑ Distance ↓
Imbalanced SMOTE RUS SMOTE/RUS Imbalanced SMOTE RUS SMOTE/RUS

German Credit NeuroTree Wachter-0.5 0.274 ± 0.06 1.00 ± 0.00 0.946 ± 0.03 0.91 ± 0.01 3.444 ± 0.38 9.518 ± 0.19 7.62 ± 0.36 8.26 ± 0.18
Wachter-0.95 0.517 ± 0.07 0.807 ± 0.177 0.33 ± 0.217 0.357 ± 0.13 5.369 ± 1.17 8.291 ± 1.43 3.213 ± 1.05 3.502 ± 0.50
Greedy-0.5 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 2.196 ± 0.12 2.219 ± 0.07 2.515 ± 0.06 2.616 ± 0.04
Greedy-0.95 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 5.811 ± 0.38 4.763 ± 0.39 10.706 ± 0.08 9.316 ± 0.68
REVISE-0.5 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 17.512 ± 2.39 14.285 ± 0.88 14.959 ± 1.01 14.487 ± 0.70
REVISE-0.95 1.00 ± 0.00 0.99 ± 0.02 1.00 ± 0.00 0.987 ± 0.02 20.08 ± 1.54 15.902 ± 0.91 15.182 ± 1.70 14.736 ± 0.84

Random Forest FeatureTweak-0.5 1.00 ± 0.00 0.32 ± 0.11 0.78 ± 0.15 0.56 ± 0.1 5.59 ± 0.55 2.828 ± 0.25 3.278 ± 0.29 3.206 ± 0.32

Credit Default NeuroTree Wachter-0.5 0.903 ± 0.03 1.00 ± 0.00 0.957 ± 0.01 0.547 ± 0.04 9.705 ± 0.74 10.787 ± 0.38 11.453 ± 0.33 4.263 ± 0.17
Wachter-0.95 0.715 ± 0.08 0.773 ± 0.12 0.425 ± 0.11 0.62 ± 0.24 8.45 ± 2.95 5.402 ± 1.39 2.693 ± 0.06 3.759 ± 0.79
Greedy-0.5 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.87 ± 0.23 2.939 ± 0.26 2.707 ± 0.01 2.876 ± 0.18 3.526 ± 1.33
Greedy-0.95 1.00 ± 0.00 1.00 ± 0.00 0.98 ± 0.03 0.963 ± 0.06 5.836 ± 0.97 4.564± 0.50 10.324 ± 1.09 7.529 ± 2.01
REVISE-0.5 0.997 ± 0.01 0.973 ± 0.03 1.00 ± 0.00 0.987 ± 0.02 13.617 ± 1.27 14.859 ± 0.72 12.508 ± 1.25 13.169 ± 0.69
REVISE-0.95 1.00 ± 0.00 0.973 ± 0.05 0.973 ± 0.03 0.717 ± 0.12 14.316 ± 1.00 17.947 ± 1.61 14.387 ± 0.89 13.569 ± 1.03

Random Forest FeatureTweak-0.5 0.97 ± 0.01 0.14 ± 0.01 0.77 ± 0.05 0.22 ± 0.03 3.1 ± 0.32 2.982 ± 0.21 3.166 ± 0.34 3.025 ± 0.28

Adult NeuroTree Wachter-0.5 0.953 ± 0.02 0.987 ± 0.01 0.96 ± 0.01 0.987 ± 0.02 5.515 ± 0.27 6.448 ± 0.26 6.084 ± 0.08 6.315 ± 0.08
Wachter-0.95 0.87 ± 0.05 0.883 ± 0.04 0.587 ± 0.07 0.767 ± 0.13 5.414 ± 0.23 6.124 ± 0.36 2.901 ± 0.18 4.833 ± 0.60
Greedy-0.5 0.957 ± 0.03 0.993 ± 0.01 0.987 ± 0.01 0.993 ± 0.01 2.156 ± 0.17 1.177 ± 0.04 1.723 ± 0.07 1.797 ± 0.124
Greedy-0.95 0.937 ± 0.03 0.983 ± 0.01 0.98 ± 0.01 0.993 ± 0.01 4.591 ± 0.08 3.263 ± 0.11 5.831 ± 0.85 3.843 ± 0.18
REVISE-0.5 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.02 9.148 ± 0.37 8.081 ± 0.46 8.589 ± 0.63 8.17 ± 0.48
REVISE-0.95 1.00 ± 0.00 0.987 ± 0.02 0.99 ± 0.02 1.00 ± 0.00 10.368 ± 0.72 8.797 ± 0.38 10.391 ± 0.46 9.631 ± 0.23

GMSC NeuroTree Wachter-0.5 0.93 ± 0.02 0.993 ± 0.01 0.967 ± 0.01 0.99 ± 0.02 3.68 ± 0.04 3.91 ± 0.233 4.203 ± 0.09 4.067 ± 0.32
Wachter-0.95 0.9 ± 0.03 0.993 ± 0.01 0.557 ± 0.24 0.843 ± 0.18 3.688 ± 0.10 4.578 ± 0.53 2.764 ± 1.29 3.563 ± 1.24
Greedy-0.5 0.933 ± 0.02 0.99 ± 0.01 0.97 ± 0.03 0.987 ± 0.01 1.609 ± 0.14 1.155 ± 0.08 1.409 ± 0.22 1.163 ± 0.06
Greedy-0.95 0.933 ± 0.05 0.993 ± 0.01 0.977 ± 0.02 0.993 ± 0.01 2.8 ± 0.5 1.683 ± 0.09 9.482 ± 0.41 2.197 ± 0.22
REVISE-0.5 0.96 ± 0.05 0.963 ± 0.06 0.97 ± 0.02 0.993 ± 0.01 3.941 ± 0.31 4.216 ± 0.75 4.851 ± 0.21 4.117 ± 0.09
REVISE-0.95 0.95 ± 0.03 0.92 ± 0.06 0.978 ± 0.02 0.81± 0.03 4.709 ± 0.43 6.023 ± 0.96 5.207 ± 0.16 4.377 ± 0.21

Table 7.3: The implausibility scores for the balancing techniques experiments.

Data Model Generator Implausibility (Label-based) ↓ Implausibility (Prediction-based) ↓
Imbalanced SMOTE RUS SMOTE/RUS Imbalanced SMOTE RUS SMOTE/RUS

German Credit NeuroTree Wachter-0.5 5.812 ± 0.06 6.418 ± 0.06 6.201 ± 0.07 6.27 ± 0.09 2.094 ± 0.36 6.453 ± 0.06 6.235 ± 0.09 6.244 ± 0.07
Wachter-0.95 6.816 ± 0.56 6.524 ± 0.08 6.41 ± 0.45 6.136 ± 0.29 6.171 ± 0.37 6.534 ± 0.57 6.297 ± 0.57 6.128 ± 0.32
Greedy-0.5 6.445 ± 0.36 6.308 ± 0.2 6.721 ± 0.54 6.257 ± 0.12 6.47 ± 0.33 6.35 ± 0.15 6.749 ± 0.5 6.315 ± 0.9
Greedy-0.95 6.207 ± 0.52 6.37 ± 0 6.844 ± 0.24 6.451 ± 0.15 6.246 ± 0.47 6.406 ± 0.05 6.879 ± 0.2 6.458 ± 0.27
REVISE-0.5 4.593 ± 0.12 4.614 ± 0.1 4.705 ± 0.01 4.599 ± 0.02 4.593 ± 0.12 4.629 ± 0.06 4.695 ± 0.04 4.584 ± 0.08
REVISE-0.95 4.829 ± 0.43 4.702 ± 0.11 4.674 ± 0.01 4.605 ± 0.04 4.813 ± 0.44 4.694 ± 0.14 4.664 ± 0.04 4.577 ± 0.12

Random Forest FeatureTweak-0.5 7.066 ± 0.62 6.134 ± 0.44 6.34 ± 0.28 6.168 ± 0.23 7.033 ± 0.69 5.994 ± 0.19 6.202 ± 0.25 6.151 ± 0.32

Credit Default NeuroTree Wachter-0.5 7.481 ± 0.2 6.212 ± 0.11 6.766 ± 0.2 6.221 ± 0.09 7.217 ± 0.08 6.23 ± 0.1 6.713 ± 0.17 6.223 ± 0.08
Wachter-0.95 6.522 ± 0.38 5.747 ± 0.17 5.802 ± 0.06 5.771 ± 0.25 6.226 ± 0.35 5.717 ± 0.21 5.352 ± 0.23 5.716 ± 0.42
Greedy-0.5 6.444 ± 0.53 5.612 ± 0.26 6.312 ± 0.07 5.596 ± 0.22 6.439 ± 0.51 5.616 ± 0.21 6.342 ± 0.06 5.658 ± 0.23
Greedy-0.95 6.452 ± 0.13 5.793 ± 0.23 6.736 ± 0.4 5.8 ± 0.08 6.474 ± 0.14 5.807 ± 0.27 6.772 ± 0.43 5.853 ± 0.1
REVISE-0.5 5.2 ± 0.93 4.83 ± 0.24 4.638 ± 0.15 4.383 ± 0.13 5.151 ± 0.9 4.788 ± 0.27 4.636 ± 0.15 4.34 ± 0.06
REVISE-0.95 4.232 ± 0.2 4.607 ± 0.33 4.581 ± 0.28 4.413 ± 0.32 4.224 ± 0.19 4.535 ± 0.27 4.505 ± 0.26 4.318 ± 0.36

Random Forest FeatureTweak-0.5 5.758 ± 0.25 5.47 ± 0.21 5.621 ± 0.19 5.599 ± 0.33 5.676 ± 0.18 5.028 ± 0.27 5.532 ± 0.14 5.211 ± 0.11

Adult NeuroTree Wachter-0.5 5.594 ± 0.14 5.162 ± 0.13 5.054 ± 0.05 4.982 ± 0.13 5.541 ± 0.15 5.284 ± 0.14 5.066 ± 0.07 5.08 ± 0.13
Wachter-0.95 5.346 ± 0.26 4.861 ± 0.05 4.985 ± 0.11 4.849 ± 0.04 5.334 ± 0.26 4.912 ± 0.05 4.896 ± 0.14 4.833 ± 0.09
Greedy-0.5 5.57 ± 0.23 4.787 ± 0.04 5.025 ± 0.13 4.886 ± 0.11 5.509 ± 0.22 4.97 ± 0.03 5.056 ± 0.13 5.057 ± 0.09
Greedy-0.95 5.594 ± 0.31 4.823 ± 0.05 4.94 ± 0.18 4.835 ± 0.09 5.538 ± 0.3 4.95 ± 0.03 4.944 ± 0.17 4.946 ± 0.08
REVISE-0.5 3.811 ± 0.05 3.903 ± 0.25 3.649 ± 0.03 3.739 ± 0.11 3.775 ± 0.07 3.98 ± 0.25 3.673 ± 0.04 3.847 ± 0.12
REVISE-0.95 3.568 ± 0.05 3.796 ± 0.21 3.647 ± 0.03 3.65 ± 0.11 3.555 ± 0.04 3.848 ± 0.23 3.63 ± 0.04 3.681 ± 0.13

GMSC NeuroTree Wachter-0.5 6.08 ± 0.25 3.211 ± 0.3 4.019 ± 0.5 3.335 ± 0.3 5.91 ± 0.27 3.179 ± 0.28 3.992 ± 0.48 3.236 ± 0.3
Wachter-0.95 5.254 ± 0.87 3.331 ± 0.11 4.439 ± 0.25 3.912 ± 0.23 5.152 ± 0.83 3.255 ± 0.11 4.668 ± 0.1 3.791 ± 0.21
Greedy-0.5 5.959 ± 0.76 3.496 ± 0.59 4.517 ± 1.08 3.496 ± 0.75 5.843 ± 0.72 3.448 ± 0.6 4.463 ± 1.1 3.415 ± 0.74
Greedy-0.95 5.404 ± 1.9 3.2 ± 0.24 4.641 ± 0.98 3.481 ± 0.22 5.239 ± 1.77 3.169 ± 0.24 4.591 ± 0.95 3.432 ± 0.24
REVISE-0.5 4.129 ± 2.27 2.666 ± 0.18 3.491 ± 0.64 2.502 ± 0.01 4.006 ± 2.14 2.616 ± 0.15 3.388 ± 0.59 2.406 ± 0.05
REVISE-0.95 4.498 ± 1.23 3.752 ± 0.49 3.084 ± 0.55 2.532 ± 0.36 4.329 ± 1.11 3.734 ± 0.52 3.008 ± 0.55 2.49 ± 0.39

threshold’s influence on the effect of data imbalance appears limited.

7.3. Balancing Techniques
In this section we will analyse the results of the experiments that try to answer Research Question 3:

How do balancing techniques employed on imbalanced datasets affect the quality of counterfactuals?

Similar to the data imbalance analysis, we discuss the results for each dataset individually before
drawing broader conclusions. As this research focuses on the general impact of balancing techniques
rather than specific methods, we will analyze these techniques collectively, only highlighting results
from individual techniques if deemed necessary. Additionally, we examine the influence of the decision
threshold, as discussed previously (Research Question 5). The results are presented in two tables:
table 7.2 summarises validity and distance metrics, while table 7.3 presents the implausibility metrics.

7.3.1. German Credit
We begin by analysing the counterfactuals generated for the German Credit dataset. As with previ-
ous analyses, we prioritise the validity metric. Greedy and REVISE generators demonstrate excellent
performance when balancing techniques are applied. Wachter-0.5 exhibits a large increase in valid-
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ity compared to the imbalanced dataset, while Wachter-0.95 performs better with SMOTE but shows
lower validity for other techniques. Conversely, FeatureTweak experiences a decrease in validity for all
balancing techniques compared to the imbalanced dataset. Due to this low validity, we will not focus
on FeatureTweak for this dataset.

The distance metric reveals clear patterns for Greedy and REVISE generators. Greedy generators
maintain similar distances with SMOTE and experience an increase with RUS or SMOTE/RUS. RE-
VISE generators show a decrease in distance for all balancing techniques compared to the imbalanced
dataset. The results for Wachter generators are less clear. Wachter-0.95’s low validity makes drawing
conclusions from other metrics difficult. Wachter-0.5 exhibits an increase in distance with balancing
techniques, which might be interpreted negatively. However, considering the validity increase, it is
possible that valid but further away counterfactuals are preferable to invalid closer ones.

Implausibility metrics are largely unaffected by balancing techniques for most generators. The only
notable change is observed for Wachter-0.5, which shows a reversed pattern compared to the data
imbalance experiments, with implausibility increasing to the original dataset level. Additionally, the
FeatureTweak generator exhibits some differences in implausibility, but due to its low validity, these
results are inconclusive.

To conclude, balancing techniques have a minor impact on validity and implausibility for most genera-
tors in the German Credit dataset. However, their effect on the distance metric varies depending on
the generator used, with either positive or negative changes observed.

7.3.2. Credit Default
Similar to the German Credit dataset, the Credit Default data reveals consistent trends in validity
scores. Wachter-0.95 maintains low performance overall, with further decreases observed for RUS
and SMOTE/RUS balancing techniques. FeatureTweak also performs poorly, replicating the results
observed in the German Credit analysis. Consequently, we will again exclude FeatureTweak from
further discussion in this dataset.

For Greedy and REVISE generators, the impact of balancing techniques on validity appears minimal.
While a slight decrease in validity is observed for the SMOTE/RUS dataset across both generators, the
overall effect is minimal. Wachter-0.5 exhibits a similar trend, suggesting that balancing techniques do
not drastically impact the validity of generated counterfactuals in this context.

Analyzing the distance metric proves challenging to draw definitive conclusions. Focusing on gener-
ators with consistently high validity (Greedy and REVISE), the results appear inconsistent. SMOTE
seems to reduce the distance for Greedy generators, while other techniques increase the value. Con-
versely, REVISE generators show the opposite pattern, with SMOTE increasing the distance and other
techniques reducing or maintaining it.

Implausibility metrics, however, indicate a potential positive effect of balancing techniques. Across all
generators, the techniques either have no impact or lead to a reduction in implausibility. While the
differences are not substantial, they suggest a potential benefit of balancing techniques in improving
counterfactual quality.

In conclusion, the Credit Default dataset analysis suggests a potentially positive impact of balancing
techniques on counterfactual quality, primarily through the observed reduction in implausibility. Validity
scores remain relatively stable, and the distance metric shows mixed results, making it difficult to draw
solid conclusions.

7.3.3. Adult
The Adult dataset analysis reveals generally high or similar validity scores for all generators compared
to the imbalanced dataset, with one exception. Applying RUS to the Wachter-0.95 generator results in
a drastic drop in validity.

The distance metric shows an increase for Wachter generators when balancing techniques are applied,
except for the aforementioned RUS-Wachter-0.95 case, which we disregard due to its low validity. Con-
versely, Greedy generators exhibit a general decrease in distance with balancing techniques. REVISE
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generators show either a decrease or no clear difference in distance compared to the imbalanced
dataset.

Implausibility metrics display a consistent trend across all generators: balancing techniques either
reduce or maintain the implausibility level compared to the imbalanced dataset. While not all observed
reductions in implausibility are large, the general trend indicates that balancing techniques could be
beneficial for enhancing counterfactual quality.

To summarise, the Adult dataset analysis aligns with the Credit Default analysis, suggesting a generally
positive impact of balancing techniques on counterfactual quality. Validity remains stable, implausibility
generally decreases, and the distance metric shows mixed results, but the overall trend points towards
improvement.

7.3.4. GMSC
Lastly, we present the analysis of the GMSC dataset. Similar to the Adult dataset, validity scores for
the GMSC dataset remain generally high, with the recurring exception of Wachter-0.95 when applying
RUS. This consistent observation suggests a potential limitation of the Wachter-0.95 generator when
dealing with undersampled data. The heavy undersampling of the majority class during RUS might
leave insufficient training data for the classifier, hindering its ability to generate valid counterfactuals
for new data points. However, the lack of a similar effect on other generators necessitates further
investigation.

The distancemetric again exhibits mixed results. The exceptionally high distance value for Greedy-0.95
with RUS is particularly noteworthy. This could be attributed to the increased randomness introduced
by random undersampling in RUS, potentially leading to outlier results. However, the consistently high
distance and low standard deviation in this case suggest a more substantial influence. Further explo-
ration is necessary to find out what is exactly happening. Regarding other distance metrics, Wachter
generators show a general increase (excluding the low-validity RUS case), while Greedy generators
remain relatively stable except for the outlier mentioned above. REVISE generators also seem to show
an increase, although the trend is less clear.

Implausibility metrics align with the Credit Default and Adult datasets, demonstrating a decrease with
balancing techniques. This effect appears to be most clearly visible in the GMSC dataset, however.
This can potentially be attributed to the large size of the GMSC dataset. This could reduce the random-
ness induced by the experiments, thus leading to the clearest results.

Our conclusion of the GMSC analysis mirrors previous findings. Validity remains largely unaffected ex-
cept for specific cases involving RUS andWachter-0.95. Distance metrics offer mixed results. Implausi-
bility consistently improves with balancing techniques, suggesting a potential benefit for counterfactual
quality in this context.

7.3.5. Conclusion
Across all datasets, balancing techniques exhibited a nuanced impact on counterfactual quality. While
validity remained mostly stable and distance metrics showed mixed results, a consistent decrease in
implausibility suggests potential improvement in the perceived quality of generated counterfactuals.

As concluded for the data imbalance experiments in Section 7.2, changing the direction of counterfac-
tual generation could also be an interesting approach for future work that considers applying balancing
techniques in the field of CEs. This is discussed in more detail in Section 9.1.

Moreover, looking at the impact of the decision threshold to answer Research Question 5, we can see
that generally the impact of the decision threshold is minimal. However, when looking more closely
at the distance and implausibility metrics, we find that a higher decision threshold results in clearer
differences between imbalanced datasets and datasets that have been balanced. This is in line with
our expectations, which were that changing the decision threshold would result in larger effects on the
quality of counterfactuals.

7.4. Negatively Biased Subgroups
Table 7.4 presents the results of the experiment addressing Research Question 4:
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Table 7.4: The implausibility scores for the negatively biased subgroup experiments.

Generator Validity ↑ Distance ↓ Implausibility (Label-based) ↓ Implausibility (Prediction-based) ↓
Original Biased Original Biased Original Biased Original Biased

Wachter-0.5 0.983 ± 0.01 0.91 ± 0.05 6.088 ± 0.19 6.617 ± 0.37 5.1 ± 0.29 5.959 ± 0.26 5.075 ± 0.27 5.92 ± 0.28
Wachter-0.95 0.893 ± 0.02 0.867 ± 0.04 5.27 ± 0.09 5.859 ± 0.33 4.984 ± 0.16 5.899 ± 0.29 4.955 ± 0.14 5.865 ± 0.28
Greedy-0.5 0.983 ± 0.02 0.943 ± 0.03 1.829 ± 0.09 3.054 ± 0.34 4.99 ± 0.06 5.946 ± 0.13 4.978 ± 0.06 5.909 ± 0.14
Greedy-0.95 0.97 ± 0.02 0.96 ± 0.03 3.943 ± 0.33 5.311 ± 0.18 4.998 ± 0.23 5.592 ± 0.27 4.963 ± 0.22 5.562 ± 0.26
REVISE-0.5 1 ± 0.00 0.997 ± 0.00 8.303 ± 0.33 10.075 ± 0.38 3.867 ± 0.09 3.878 ± 0.06 3.836 ± 0.06 3.844 ± 0.08
REVISE-0.95 1 ± 0.00 1 ± 0.00 9.42 ± 0.21 11.662 ± 0.2 4.007 ± 0.04 4.159 ± 0.03 3.975 ± 0.03 4.12 ± 0.03

How does the quality of counterfactuals for subgroups in the data which the classifier is biased
towards compare to other data points in the same class?

We begin by examining the validity metric. Across all generators, the difference between the original
and biased datasets remains negligible. However, the distance metric reveals a clear trend: the dis-
tance increases for the biased subgroup when generating counterfactuals with all generators. Further-
more, this difference between original and biased groups generally amplifies as the decision threshold
increases. For instance, the REVISE generator exhibits a distance difference of 1.772 between the
two groups at a decision threshold of 0.5, which increases to 2.242 at a threshold of 0.95.

The implausibility metric also shows clear differences between the original and biased groups when
using the Wachter and Greedy generators. However, this clear difference is not apparent for the RE-
VISE generator, potentially due to its generally lower implausibility values compared to the others. This
suggests that REVISE might be better at generating plausible counterfactuals, mitigating the negative
impact on the biased subgroup.

To sum up, counterfactuals generated for the biased subgroup exhibit lower quality compared to the
general data points. While the validity remains unchanged, both distance and implausibility metrics
show degradation for the biased group. Furthermore, increasing the decision threshold has an impact
on this effect specifically for the distance between factual and counterfactual.
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Conclusion

This research investigated the impact of several aspects on the quality of counterfactual explanations.
We explored the influence of inter-class distance, data imbalance, balancing techniques, and the pres-
ence of biased subgroups. We can summarise our key findings as follows:

• Inter-class distance: Our findings confirmed our initial hypothesis, demonstrating that increasing
inter-class distance leads to a decrease in counterfactual quality. Specifically the plausibility of
explanations was an issue when inter-class distance increased.

• Data imbalance: Contrary to our initial hypothesis, data imbalance did not significantly impact
counterfactual quality. While some specific cases showed an effect, it was inconsistent and
lacked a clear positive or negative direction. Further research is necessary to drawmore definitive
conclusions.

• Balancing Techniques: While the effect was minimal, we observed a general positive impact of
balancing techniques on counterfactual plausibility. This aligns with our hypothesis and suggests
that balancing can contribute to improved quality of counterfactuals for minority classes. Addition-
ally, our findings support the notion that balancing techniques, known to improve classification
performance, do not negatively impact counterfactual generation.

• Biased Subgroups: Our research supported the hypothesis that biased subgroups experience
lower counterfactual quality compared to the overall data points. This highlights the need for
further development in counterfactual generation methods to ensure fair treatment across all sub-
groups, especially those already negatively affected by the classifier.

• Decision Threshold: Our initial hypothesis that higher decision thresholds amplify the observed
effects was not fully supported. While specific cases, such as biased subgroups, exhibited ampli-
fication, it was not a consistent trend across all experiments.
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Discussion

This chapter delves into observations and limitations encountered during the research, along with po-
tential avenues for future work that build upon the present study.

Beyond the scope of our primary research objectives and questions, several noteworthy findings emerged.
Notably, the implausibility metrics exhibited minimal variation between the label-based and prediction-
based approaches throughout the study. As discussed in Section 7.1, this could be attributed to the
MLP model’s exceptional performance on the MNIST dataset. While the NeuroTree and Random For-
est models performed significantly worse on imbalanced datasets, the implausibility metrics remained
virtually identical. Currently, the metric involves randomly sampling target class points and calculating
their distance to the counterfactual. An intriguing alternative would be to sample target class points
specifically near the counterfactual, since this proximity to the decision boundary is where the classi-
fication model is most likely to misclassify instances. Here, we expect a more pronounced difference
between label-based and prediction-based implausibility. Another limitation of our work is that the size
of the neighbourhood that we compare the counterfactual to, stays equal across all dataset sizes. This
approach is inherently flawed, as smaller datasets need a smaller neighborhood to avoid averaging
over the entire dataset’s distance.

While analyzing credit-risk datasets, we observed a general decrease in standard deviations within
the data imbalance and balancing technique experiments as the dataset size increased. This aligns
with the established notion that larger datasets yield more consistent results. However, it is crucial to
acknowledge that small datasets like German Credit and Credit Default might not be suitable for data
imbalance experiments. Future investigations should prioritize datasets like Adult and GMSC.

Furthermore, limitations were encountered within the negatively biased subgroup experiments, par-
ticularly concerning the biased classifier. When trying to create a biased model we found that the
Random Forest model exhibited stronger signs of bias than the NeuroTree model. However, due to
time constraints, counterfactual generation for this model was not feasible. Exploring this avenue could
potentially reveal even more pronounced discrepancies in counterfactual quality between the biased
group and the remaining data.

Another limitation arises from the handling of categorical features, prevalent in credit-risk datasets. Our
current approach utilises a standard integer encoding, which might not be optimal. This encoding could
lead the classification model and counterfactual generator to misinterpret the feature values as rankings
rather than distinct categorical values. Additionally, the counterfactual generation process disregards
these categorical values, resulting in counterfactuals with values that do not correspond to specific
integer encodings. Future research building upon this work should consider these limitations when
evaluating counterfactual quality.
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9.1. Future Work
We propose three distinct research directions that hold promise for advancing the field of counterfactual
explanations:

• Evaluating Counterfactual Quality through Distribution Analysis: This approach involves
analyzing the distributions of generated counterfactuals and comparing them via their mean or a
distribution comparison technique like Maximum Mean Discrepancy (MMD).

• Investigating Feature Mutability and Bias: This research area delves into the relationship be-
tween feature mutability and counterfactual quality, particularly within the context of negatively
biased subgroups.

• Experimenting with Data Imbalance Ratios and Balancing Techniques: This direction in-
volves exploring the impact of varying data imbalance ratios and different parameter settings for
balancing techniques on the quality of generated counterfactuals. Moreover, as discussed in both
Section 7.2 and Section 7.3, changing the direction of the counterfactual explanation might also
provide interesting insights.

9.1.1. Counterfactual Distribution Analysis
Our research primarily focused on measuring a counterfactual metric, averaging it across a large num-
ber of counterfactuals, and comparing it to another group. Instead of relying on such proxy metrics, an
intriguing alternative lies in analyzing the actual distributions of the generated counterfactuals and their
positioning within the feature space. This approach directly compares the counterfactuals themselves
rather than relying on intermediary metrics. If discrepancies emerge in the counterfactual distributions,
it suggests potential quality concerns as counterfactuals from different groups occupy distinct regions
in the feature space. A simple comparison method involves analyzing the average counterfactual of
each group. Another interesting approach might be to use the MMD metric which has been proposed
in [29]. This metric has been proven to work well when comparing distributions and might therefore be
interesting in comparing counterfactual distributions as well.

9.1.2. Feature Mutability
The relationship between feature mutability and counterfactual quality presents another interesting re-
search area. For certain features like gender or race, the ability to mutate these values is crucial, as
individuals cannot change them in reality. In the context of biased classifiers, this approach could reveal
insights into the fairness of the counterfactual generation process. If significant quality discrepancies
exist between generators capable of mutating these features and those that cannot, it suggests that
these features are an important part of the counterfactual process, which is undesirable. This could fur-
ther extend our negatively biased subgroup experiment. By disabling the mutation of features known to
be associated with classifier bias, we expect to observe larger differences in counterfactual explanation
quality, further highlighting potential fairness issues.

9.1.3. Data Imbalance and Balancing Techniques
A comprehensive future investigation could involve applying our research findings to datasets with
varying levels of data imbalance and different balancing technique parameters. We anticipate that
more severe class imbalances might lead to more pronounced differences in counterfactual quality
compared to our observations. Additionally, optimizing balancing techniques for optimal classification
model performance, followed by a comparison of the resulting counterfactual quality, could provide
valuable insights into this topic. Regarding the direction of the counterfactual explanations, initial ex-
periments show that generating counterfactuals from majority to minority classes leads to differences
in quality compared to CEs for balanced datasets. Further research is necessary to find out whether
these differences are impactful and whether these situations are applicable to real world scenarios.
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Figure A.1: Counterfactuals generated with the Greedy-0.5 generator. For each factual, the counterfactuals are ordered by
inter-class distance.
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Figure A.2: Counterfactuals generated with the Greedy-0.95 generator. For each factual, the counterfactuals are ordered by
inter-class distance.
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Figure A.3: Counterfactuals generated with the REVISE-0.5 generator. For each factual, the counterfactuals are ordered by
inter-class distance.
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Figure A.4: Counterfactuals generated with the REVISE-0.95 generator. For each factual, the counterfactuals are ordered by
inter-class distance.
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Figure A.5: Counterfactuals generated with the Wachter-0.5 generator. For each factual, the counterfactuals are ordered by
inter-class distance.
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Figure A.6: Counterfactuals generated with the Wachter-0.95 generator. For each factual, the counterfactuals are ordered by
inter-class distance.
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