

Delft University of Technology

SparkGA2
Production-quality memory-efficient Apache Spark based genome analysis framework
Mushtaq, Hamid; Ahmed, Nauman; Al-Ars, Zaid

DOI
10.1371/journal.pone.0224784
Publication date
2019
Document Version
Final published version
Published in
PLoS ONE

Citation (APA)
Mushtaq, H., Ahmed, N., & Al-Ars, Z. (2019). SparkGA2: Production-quality memory-efficient Apache Spark
based genome analysis framework. PLoS ONE, 14(12), 1-14. Article e0224784.
https://doi.org/10.1371/journal.pone.0224784

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1371/journal.pone.0224784
https://doi.org/10.1371/journal.pone.0224784

RESEARCH ARTICLE

SparkGA2: Production-quality memory-

efficient Apache Spark based genome analysis

framework

Hamid MushtaqID, Nauman Ahmed, Zaid Al-Ars*

Quantum and Computer Engineering, Delft University of Technology, Delft, The Netherlands

* z.al-ars@tudelft.nl

Abstract

Due to the rapid decrease in the cost of NGS (Next Generation Sequencing), interest has

increased in using data generated from NGS to diagnose genetic diseases. However, the

data generated by NGS technology is usually in the order of hundreds of gigabytes per

experiment, thus requiring efficient and scalable programs to perform data analysis quickly.

This paper presents SparkGA2, a memory efficient, production quality framework for high

performance DNA analysis in the cloud, which can scale according to the available compu-

tational resources by increasing the number of nodes. Our framework uses Apache Spark’s

ability to cache data in the memory to speed up processing, while also allowing the user to

run the framework on systems with lower amounts of memory at the cost of slightly less per-

formance. To manage the memory footprint, we implement an on-the-fly compression

method of intermediate data and reduce memory requirements by up to 3x. Our framework

also uses a streaming approach to gradually stream input data as processing is taking

place. This makes our framework faster than other state of the art approaches while at the

same time allowing users to adapt it to run on clusters with lower memory. As compared to

the state of the art, SparkGA2 is up to 22% faster on a large big data cluster of 67 nodes and

up to 9% faster on a smaller cluster of 6 nodes. Including the streaming solution, where data

pre-processing is considered, SparkGA2 is 51% faster on a 6 node cluster. The source

code of SparkGA2 is publicly available at https://github.com/HamidMushtaq/SparkGA2.

Introduction

DNA sequence analysis has become an important tool used in many kinds of applications

from forensics to medicine. The data is usually sequenced using next generation sequencing

(NGS) machines, which produce oversampled data, resulting in a large amount of data to pro-

cess by sequence analysis programs. The size of the whole human genome data produced by

these machines is in the range of hundreds of GBs. In order to process this data fast, we need

large amounts of computational resources.

In this paper, we propose a new Apache Spark [1] based framework called SparkGA2 that

allows the GATK best-practices pipeline [2] to run efficiently and cost-effectively on a scalable

PLOS ONE | https://doi.org/10.1371/journal.pone.0224784 December 5, 2019 1 / 14

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Mushtaq H, Ahmed N, Al-Ars Z (2019)

SparkGA2: Production-quality memory-efficient

Apache Spark based genome analysis framework.

PLoS ONE 14(12): e0224784. https://doi.org/

10.1371/journal.pone.0224784

Editor: Ulrich Melcher, Oklahoma State University,

UNITED STATES

Received: August 16, 2018

Accepted: October 22, 2019

Published: December 5, 2019

Copyright: © 2019 Mushtaq et al. This is an

open access article distributed under the

terms of the Creative Commons Attribution

License, which permits unrestricted use,

distribution, and reproduction in any medium,

provided the original author and source are

credited.

Data Availability Statement: All relevant data

is publicly available as follows: Source code:

https://github.com/HamidMushtaq/SparkGA2.

Datasets used: NA12878D_HiSeqX from https://

allseq.com/knowledge-bank/1000-genome/get-

your-1000-genome-test-data-set/. ftp://ftp.sra.ebi.

ac.uk/vol1/fastq/ERR194/ERR194147 ftp://ftp.sra.

ebi.ac.uk/vol1/fastq/ERR194/ERR194160

Reference files used: We used b37 (For fasta we

used the decoy version) from ftp://gsapubftp-

anonymous@ftp.broadinstitute.org/bundle.

Help on downloading these files can be found on

http://orcid.org/0000-0003-4129-9056
https://github.com/HamidMushtaq/SparkGA2
https://doi.org/10.1371/journal.pone.0224784
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0224784&domain=pdf&date_stamp=2019-12-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0224784&domain=pdf&date_stamp=2019-12-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0224784&domain=pdf&date_stamp=2019-12-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0224784&domain=pdf&date_stamp=2019-12-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0224784&domain=pdf&date_stamp=2019-12-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0224784&domain=pdf&date_stamp=2019-12-05
https://doi.org/10.1371/journal.pone.0224784
https://doi.org/10.1371/journal.pone.0224784
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/HamidMushtaq/SparkGA2
https://allseq.com/knowledge-bank/1000-genome/get-your-1000-genome-test-data-set/
https://allseq.com/knowledge-bank/1000-genome/get-your-1000-genome-test-data-set/
https://allseq.com/knowledge-bank/1000-genome/get-your-1000-genome-test-data-set/
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR194/ERR194147
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR194/ERR194147
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR194/ERR194160
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR194/ERR194160
ftp://gsapubftp-anonymous@ftp.broadinstitute.org/bundle
ftp://gsapubftp-anonymous@ftp.broadinstitute.org/bundle

computational cluster. SparkGA2 uses Spark’s in-memory computation capabilities to

improve the performance of the framework. We also use compression techniques to lower the

memory footprint. In addition, we can configure the framework to require less system mem-

ory at the cost of increased runtime. Due to this feature, it can even be run on clusters with

limited available RAM. Moreover, it uses the pipeline tools unmodified, meaning that one tool

can easily be replaced with another one.

In the following, we list the contributions of this paper.

• We implemented an on-the-fly compression method of intermediate data that allows us to

decrease the memory footprint by up to 3x.

• SparkGA2 is able to trade off performance at the expense of system resource utilization,

allowing higher speed with more memory, while still allowing proper functionality with

lower amounts of memory.

• By improving the efficiency of data access, we reduce reliance on the Hadoop file system and

improve performance as compared to state-of-the-art tools, such as SparkGA [3].

• We ensured a modular implementation of the framework as three distinct steps that allow us

to optimize the Spark runtime parameters for each step.

This paper is organized as follows. In Section Background, we discuss the different stages

of the GATK best-practices pipelines and related work. Section Methods presents the Apache

Spark framework we implemented to enable pipeline scalability. This is followed by Section

Results and discussion, which discusses the performance and accuracy evaluations. We finally

conclude the paper with Section Conclusions.

Background

In this section, first we discuss the GATK best-practices pipeline and afterwards discuss related

work.

GATK best-practices pipeline

DNA analysis is done with raw over-sampled sequencing reads obtained from a DNA sequenc-

ing machine. Due to oversampling, the sequenced data is quite large, usually in the range of

100s of GB, for the whole genome of a human. A standard way of storing such raw sequenced

reads is the FASTQ file format [4].

GATK best-practices pipeline [2], is an example of a DNA analysis pipeline, where using

tools like Bowtie2 [5] or Burrows-Wheeler Aligner (BWA mem) [6], reads are mapped to the

corresponding positions of the human genome using a reference genome. Afterwards, multi-

ple copies of the same raw reads are marked as duplicates, by using Picard tools for example.

Afterwards, several more steps are performed, such as performing local realignment of reads

around indels (Indel realignment), adjusting quality scores of mapped reads (Base recalibra-

tion) and discovering all the variants (Haplotype caller), before we get the final output in a

VCF file.

In the pipeline, some of the tools scale very well, such as the mapping tools, while the other

tools do not scale as well. Besides that, even the mapping tool cannot run in a distributed fash-

ion on a cluster. Therefore, we have developed a generic framework, which can distribute such

computation on a cluster. We achieve that with the help of Apache Spark.

SparkGA2: Production-quality memory-efficient Apache Spark based genome analysis framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0224784 December 5, 2019 2 / 14

https://gatkforums.broadinstitute.org/gatk/

discussion/1215/how-can-i-access-the-gsa-public-

ftp-server".

Funding: This work was supported by a Microsoft

Azure Sponsorship (e5f5c1c9-0ef8-4179-a58d-

5559956983d3) given to Hamid Mushtaq and

SURF cooperative (https://www.surf.nl/en/

expertises/compute-services) given to Zaid Al-Ars.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0224784
https://gatkforums.broadinstitute.org/gatk/discussion/1215/how-can-i-access-the-gsa-public-ftp-server
https://gatkforums.broadinstitute.org/gatk/discussion/1215/how-can-i-access-the-gsa-public-ftp-server
https://gatkforums.broadinstitute.org/gatk/discussion/1215/how-can-i-access-the-gsa-public-ftp-server
https://www.surf.nl/en/expertises/compute-services
https://www.surf.nl/en/expertises/compute-services

Related work

One of the earliest big data based DNA analysis frameworks is Churchill [7], which utilizes the

available computational resources using a number of proprietary tools in a tightly-integrated

computational pipeline. However, the proprietary closed-source nature of the pipeline makes

it inaccessible in practice.

Another example is Halvade [8], which uses the Hadoop MapReduce framework and allows

the original unmodified GATK pipeline tools to be used. The pipeline execution is divided

into three main parts. First, parallel map tasks are used to perform DNA mapping, the output

of which is collected as<chromosomal region, mapped read> key-value pairs. Then a sorting

step is performed to reorder the mapped reads according to their location in the genome. The

rest of the pipeline is then executed by a set of reduce tasks performing mark duplicates, base

recalibration and haplotype calling, and resulting in an output VCF file.

Since Halvade uses the MapReduce framework, it performs the various steps in the pipeline

primarily in disk rather than in memory. This causes an unnecessary disk access penalty as a

result of the large genomics data sets used in practice. Secondly, it creates chromosomal

regions based on the length of the chromosomes, while not checking the actual number of

reads in each region. This causes some regions to become disproportionately larger than others

resulting in high bottlenecks in the execution of all regions, as the framework waits for the

largest region to finish.

A couple of efforts [9, 10] address the problems with MapReduce based solutions by using a

Spark based implementation of the GATK best-practices pipeline. [10] processes the DNA

pipeline fully in memory, and thus is able to create chromosomal regions based on the number

of reads. However, since its load balancing step is done fully in memory, this results in out of

memory errors for large input files. In addition, it does not differentiate between the require-

ments of the various stages of the GATK pipeline, and runs the whole pipeline as a single run,

thereby not fully optimizing system utilization for each stage. [9] on the other hand does not

have its source code publicly available.

As a followup to [10], SparkGA [3] implements a load balancing step that is more memory

efficient. In addition, it runs the program in 3 different steps: DNA mapping & static load bal-

ancing; sorting & dynamic load balancing; and marking of duplicates and variant discovery.

This allows SparkGA to configure each step separately to optimize resource utilization and

overall performance. This solution reduces the memory requirements of the load balancing

step by dividing the genome into regions and only loading each region into memory one at a

time. One drawback of this approach is that it creates too many files after the mapping step, all

of which need to be uploaded to HDFS. This significantly impacts the performance on com-

mercial cloud services where access to HDFS can be slow.

SparkGA2, on the other hand, can adapt the number of files created depending on the avail-

able memory in the cluster, which allows for trading off performance for memory require-

ments. In addition, we reduce the memory footprint by compressing the data before copying it

into the memory.

Methods

We created SparkGA2 based on the Apache Spark framework such that it can parallelize the

execution of the various stages of the GATK pipeline. Most of the tools used in GATK are exe-

cuted in SparkGA2 unchanged with the exception of “sorting” and “SAM to BAM conversion”.

These tools are replaced with native Spark implementations within our framework. A sum-

mary of the used tools is listed in Table 1.

SparkGA2: Production-quality memory-efficient Apache Spark based genome analysis framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0224784 December 5, 2019 3 / 14

https://doi.org/10.1371/journal.pone.0224784

In the following, we first discuss the overview of our optimized parallel GATK approach,

followed by our mapping and compression approach. Next, we discuss our sorting and system

resource tradeoff methods, followed by our method to discover the variants.

Overview

Algorithm 1 Mapping algorithm
procedure DNAMAPPERRUN(fileName)
⊳ RDD is of type <binID, content>

mappedInfo runMapper(fileName)
⊳ Calculate number of reads and compress each bin. RDD is of type
<binID, numReads, compressedContent>

compressedBins compressBins(mappedInfo)
⊳ Write bins to the HDFS

writeBinsToHDFS(compressedBins, mapperOutFolderPath)
⊳ Return information. RDD is of type <binID, numReads>

retArray compressedBins.map(x => (x._1, x._2))
⊳ This RDD simply contains the name of the input fastq chunk files

inputData sc.parallelize(getFilesList(inputFolderPath))
⊳ RDD is of type <binID, numReads>

bwaOut inputData.flatMap(fileName => DNAMapperRun(fileName))
bwaOutStr bwaOut.map(x => x._1 + “:” + x._2)
bwaOutStr.saveAsTextFile(outputFolderPath + “binsInfo”)

The dataflow of the execution of SparkGA2 is shown in Fig 1. In a typical DNA sequencing

experiment, two FASTQ files are generated, which represent the two ends of a pair of

sequences. These two input FASTQ files are divided into interleaved input FASTQ chunks

using a chunk segmentation tool, which also uploads these files to HDFS. Each DNA mapping

task takes such a FASTQ chunk as an input and aligns its reads using BWA mem, producing a

SAM file that contains the mapped reads in the form of SAM records.

The output in our case is a compressed output file containing mapped reads (represented as

SAM records) in compressed form, along with some more information. The load balancer

would decompress those files and extract the SAM records from them, before putting those

SAM records into their corresponding regions. Afterwards, it would sort the SAM records in

those regions, before writing them to BAM files, which would then be processed by the last

stage of variant discovery.

The last step is done in a single task for each chromosomal region. Each of these tasks pro-

duces a VCF file, all of which are then combined at the end to produce the final VCF file.

Unlike [3], where a lot of intermediate files are produced between the first and second step,

here we only produce as many files as the number of input FASTQ chunks. This greatly

reduces access to the HDFS between those two stages.

Table 1. Comparison of tools used in GATK best-practices pipeline and SparkGA2.

Step GATK SparkGA2

Align reads BWA mem BWA mem

SAM to BAM Picard Picard’s Java library

Sort reads Picard Sorting in Scala

Mark duplicates Picard Picard

Indel realignment GATK GATK

Base recalibration GATK GATK

Haplotype caller GATK GATK

https://doi.org/10.1371/journal.pone.0224784.t001

SparkGA2: Production-quality memory-efficient Apache Spark based genome analysis framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0224784 December 5, 2019 4 / 14

https://doi.org/10.1371/journal.pone.0224784.t001
https://doi.org/10.1371/journal.pone.0224784

Moreover, our framework allows input data, which is in gzipped FASTQ format, to be

streamed directly to the HDFS for the data nodes to start processing. The details of this stream-

ing mechanism are explained in [11].

We perform the execution in three different steps: 1. mapping; 2. decompression, sorting,

and load balancing; and 3. variant discovery. This approach allows us to configure the parame-

ters of each step separately to optimize its performance.

Step 1: Mapping and resource tradeoffs

The first step of the implementation is the mapping step. Algorithm 1 describes this step,

which is illustrated in Fig 2. In this step, for each input FASTQ chunk, a mapping task, such as

BWA mem, is executed. The tasks map short reads to a reference and output this information

in the form of SAM records, which are then grouped into bins. Bins here represent parts of

chromosomes, according to their positions. For example, if we set the bin size to 5000, it

would mean that all SAM records in bin 1 of chromosome 1 would have positions from 0 to

4999 of chromosome 1, while bin 2 would have positions from 5000 to 9999. Once BWA is fin-

ished, all these bins are then compressed in parallel, and then written to a file. For each bin, the

file contains information about the bin’s region and the length of its content, so that the next

step can extract them.

Besides these output files, a hash-map is also stored whose keys are binIDs and values are

the number of reads in each bin. This information is later used in the load balancing step. Note

that the larger the bin size is, the more compact this hash-map becomes. With a bin size of

5000, the size of the hash-map is just a few megabytes.

Fig 1. Data flow of SparkGA2.

https://doi.org/10.1371/journal.pone.0224784.g001

Fig 2. Mapping output in SparkGA2.

https://doi.org/10.1371/journal.pone.0224784.g002

SparkGA2: Production-quality memory-efficient Apache Spark based genome analysis framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0224784 December 5, 2019 5 / 14

https://doi.org/10.1371/journal.pone.0224784.g001
https://doi.org/10.1371/journal.pone.0224784.g002
https://doi.org/10.1371/journal.pone.0224784

Algorithm 2 Load balancing
procedure LOADBALANCER(binsInfoFolderPath)
⊳ RDD is of type <binID, numReads>

binsInfo getBinsInfo(binsInfoFolderPath)
⊳ Sum up the number of reads. RDD is of type <binID, numReads>

numReadsPerBin binsInfo.reduceByKey(_+ _).sortByKey().cache()
⊳ Sum up the number of reads. RDD is of type <binID, numReads>

avgReadsPerRegion numReadsPerBin.map(_._2).reduce(_+ _)/numRegions
⊳ Sum up the number of reads. RDD is of type <binID, numReads>

regionsMap makeRegionsMap(numReadsPerBin, avgReadsPerBin)
⊳ This RDD simply contains the name of the files made by the DNA mapper
part

inputData sc.parallelize(getInputFilesList(mapperOutFolderPath))
⊳ This RDD is of type <regionID, compressedReads>

compressedRegionReads inputData.flatMap(x => getCompressedReads
(x, regionsMap)
⊳ This RDD is of type <regionID, Array[compressedReads]>

compressedRegions compressedRegionReads.mapValues(x => Array
(x)).reduceByKey((a, b) => a + +b)
⊳ Finally build the bam and bed files for each region after decom-
pressing the contents

compressedRegions.foreach(buildBAMandBEDFiles(_._1, _._2)

Our mapping approach is able to trade off performance at the expense of system resources,

allowing higher speed with more memory, while still allowing proper functionality with lower

amounts of memory. This approach is illustrated in Fig 3, where each map task is able to gen-

erate one or multiple SAM chunks for each input FASTQ chunk. For clusters with low

amounts of memory, we can store multiple output files for each map task. This allows process-

ing of smaller files in subsequent pipeline steps such as the load balancing step. For example,

we can identify two genome regions by dividing the whole genome into 2 parts, which will

reduce the memory requirements of the load balancing step by about half, at the expense of a

small extra initialization overhead. The files containing mapped reads that belong to chromo-

somes from Region 1 would be saved in a specific folder, while the chromosomes from Region

2 in another folder. The load balancing step would then be run twice, each time for a different

region. This procedure could improve overall performance on clusters with less memory,

because in that way less data is spilled onto the disk.

Fig 3. Regions and tradeoff.

https://doi.org/10.1371/journal.pone.0224784.g003

SparkGA2: Production-quality memory-efficient Apache Spark based genome analysis framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0224784 December 5, 2019 6 / 14

https://doi.org/10.1371/journal.pone.0224784.g003
https://doi.org/10.1371/journal.pone.0224784

The input to our SparkGA2 framework is either a single end gzipped FASTQ file or a paired

end gzipped FASTQ files. It has to be noted that creating chunks from these gzipped files takes

a significant amount of time. Due to this reason, our framework allows data to be streamed

directly to HDFS, so that data nodes can start processing data as soon as some data is available.

This streaming approach can be done either from URLs directly or gzipped files found on the

local file system of the master node. The mechanism of this streaming is explained in detail

in [11].

Step 2: Sorting and load balancing

The process of doing this step is shown in Algorithm 2. Initially, the files which contains the

information about number of reads produced for each bin are read. Notice that each mapper

task would have created its own such file, so we have to collect this information together by

summing the number of reads together for each bin. This is done by using Spark’s reduceBy-
Key method. Afterwards, we calculate the average number of reads per region, by dividing the

total number of reads in the whole genome by the number of regions that have to be created.

Here, the total number of reads is calculated by summing up the reads of all bins. With this

information, we can identify the regions in which the different bins are located. We can do

this using the makeRegionsMap function in Algorithm 2, which takes the number of reads in

each bin, and the average number of reads per region. This function would assign the appro-

priate region to each bin, and return the regions map containing this information.

Once regions map is created, each output file from the mapping step is read in parallel,

through the getCompressedReads function. This function takes the regions map as input, and

assigns a SAM record to the appropriate region. The output is flat mapped, and we get an

RDD, whose key is regionID and value is the compressed reads belonging to that region.

These compressed reads are then accumulated in arrays, so that we have an RDD, where the

key is the region ID and value is an array of compressed SAM records. Finally, this is given to

the function buildBAMandBEDFiles, which would decompress the SAM records for a region,

sort them, and write them onto a BAM file. Besides a BAM file, a BED file is created as well. A

BED file here is used to tell the tools in the next step to only work on the region specified in

that BED file.

Step 3: Variant discovery

In this step, the remaining tools in the GATK pipeline are executed using the BAM and BED

files generated in Step 2. Each task takes a BAM and BED file as input and performs mark

duplicates, base recalibration and haplotype calling to generate a VCF file. The VCF files gen-

erated by all the tasks in Step 3 are used to create a combined VCF file. In this step, three tools

are used to perform variant discovery.

Results and discussion

We tested the results on the Microsoft cloud with different number of nodes. Each node con-

tains an 8 core processor with 56 GB of RAM. We used the best practices GATK pipeline from

the Broad institute to compute the results. We used BWA version 0.7.10, and GATK version 4.

We also tested our framework on the high performance big data cluster provided by SURF-

sara (the Dutch HPC infrastructure), with 6, 24, 48 and 67 nodes. Each node on the SURFsara

cluster has 56 GB of RAM with 8 cores. On the SURFsara cluster, we used BWA version 0.7.10,

and GATK version 3.4 instead of GATK version 4, since the Java run time version found on

the data nodes of the SURFsara cluster did not support running GATK version 4.

SparkGA2: Production-quality memory-efficient Apache Spark based genome analysis framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0224784 December 5, 2019 7 / 14

https://doi.org/10.1371/journal.pone.0224784

For both experiments, we tested and compared SparkGA2 with SparkGA, using the publicly

available NA12878D dataset (https://allseq.com/knowledge-bank/1000-genome/get-your-

1000-genome-test-data-set/), which is 150bp paired-end WGS data having a total size of 272

GB. Moreover, for SURFsara, we used two more benchmarks, the ERR194147 dataset (ftp://

ftp.sra.ebi.ac.uk/vol1/fastq/ERR194/ERR194147) which has a total size of 395 GB, and the

ERR194160 dataset (ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR194/ERR194160) which has a total

size of 389 GB, to compare performance of SparkGA2 with SparkGA on 67 nodes.

First we discuss the scalability of our approach followed by a comparison with SparkGA.

Lastly, we discuss the memory size vs performance tradeoff capabilities of our framework.

Scalability

Table 2 lists the runtime of SparkGA2 on the Microsoft cloud with 4, 5 and 6 nodes. The table

shows the breakdown of the total runtime for each of the 3 steps of the pipeline in terms of

minutes as well as in percentages. The table shows that the performance improves significantly

with more number of nodes, which decreases from 531 minutes on 4 nodes down to 344 min-

utes on 6 nodes. This translates to a reduction of runtime by 54% from 4 to 6 nodes, illustrating

the linear scalability of the framework. We note that the mapping step has the highest execu-

tion time of up to 56% of the whole pipeline, making it the most appropriate step to optimize

performance. It is also interesting to note that each step of the pipeline scales almost equally

with the increasing size of the cluster, thereby keeping the same ratios of execution time for

each step.

Table 3 shows the runtime of SparkGA2 on the SURFSara cluster with 6, 24, 48 and 67

nodes. Here, we can also see significant improvement in performance as the number of nodes

increases, where the total runtime is reduced from 821.5 minutes down to 87 minutes as the

cluster scales up from 6 to 67 nodes. This results in a speedup of about 9.4x on the 67 node

cluster compared to the 6 node cluster, which is slightly sub-linear compared to the expected

11.2x linear speedup. The relative percentage of the various pipeline steps stays similar as the

cluster size increases, indicating little difference in the way the steps scale up. However, there

is a slight decrease in the percentage of Step 1 (mapping), indicating better scalability capabili-

ties of BWA. At the same time, we notice the small increase in the percentage of Step 2 (sorting

Table 2. Runtime of SparkGA2 on Microsoft cloud.

Step 4 nodes 5 nodes 6 nodes

(mins, %) (mins, %) (mins, %)

Step 1 292, 55% 222, 53% 192, 56%

Step 2 79, 15% 66, 16% 48, 14%

Step 3 160, 30% 129, 31% 104, 30%

Total 531, 100% 417, 100% 344, 100%

https://doi.org/10.1371/journal.pone.0224784.t002

Table 3. Runtime of SparkGA2 with NA12878 on the SURFSara cluster.

Step 6 nodes 24 nodes 48 nodes 67 nodes

(mins, %) (mins, %) (mins, %) (mins, %)

Step 1 331.5, 40% 72.5, 38% 38.5, 35% 29, 34%

Step 2 67.5, 8% 15.5, 8% 11, 10% 10, 11%

Step 3 422.5, 51% 101, 53% 62, 56% 47, 54%

Total 821.5, 100% 189, 100% 111.5, 100% 87, 100%

https://doi.org/10.1371/journal.pone.0224784.t003

SparkGA2: Production-quality memory-efficient Apache Spark based genome analysis framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0224784 December 5, 2019 8 / 14

https://allseq.com/knowledge-bank/1000-genome/get-your-1000-genome-test-data-set/
https://allseq.com/knowledge-bank/1000-genome/get-your-1000-genome-test-data-set/
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR194/ERR194147
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR194/ERR194147
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR194/ERR194160
https://doi.org/10.1371/journal.pone.0224784.t002
https://doi.org/10.1371/journal.pone.0224784.t003
https://doi.org/10.1371/journal.pone.0224784

and load balancing), since this step requires heavy network utilization, which becomes a bigger

bottleneck as the size of the cluster increases.

It is interesting to note that the total runtime of the 6-node cluster on SURFSara is 2.4x

slower compared to the 6-node Microsoft cloud cluster. This can be attributed to two main

reasons: 1. GATK version 4 (on Microsoft cloud) is much faster than the older GATK version

3.4, and 2. the processors used in the SURFSara cluster are slower than their Microsoft cloud

counterparts. We also note that Step 3 consumes up to 56% of runtime on SURFSara, again as

a result of a slower GATK version 3.4, which makes Step 3 the bottleneck in this case.

Comparison with SparkGA

Table 4 shows a comparison of SparkGA2 with SparkGA. The table lists a comparison of run-

time for each of the three pipeline steps of the two frameworks for 4, 5 and 6 nodes on the

Microsoft cloud, in terms of minutes (m) and relative improvement (imp). The performance

comparison is also shown in Fig 4. Each column in the figure is divided into 3 segments repre-

senting Step 1, 2 and 3 of the pipeline from bottom to top of each column. The figure shows

that the total runtime of both frameworks decreases linearly with an increasing number of

nodes in the cluster. However, SparkGA2 is up to 9% faster than SparkGA on this cluster.

Furthermore, Step 1 of SparkGA2 is up to 18% faster than the corresponding Step 1 in

SparkGA. This shows the advantage in performance gained using the two new techniques in

Table 4. Comparison of SparkGA2 (SGA2) vs SparkGA (SGA) on Microsoft cloud with 4, 5 and 6 nodes.

Step 4 nodes 5 nodes 6 nodes

SGA (m, %) SGA2 (m, %) imp SGA (m, %) SGA2 (m, %) imp SGA (m, %) SGA2 (m, %) imp

Step 1 347, 60% 292, 55% 18% 261, 59% 222, 53% 18% 212, 56% 192, 56% 10%

Step 2 76, 13% 79, 15% -4% 60, 13% 66, 16% -10% 51, 14% 48, 14% 6%

Step 3 155, 27% 160, 30% -3% 124, 28% 129, 31% -4% 113 30% 104, 30% 9%

Total 578, 100% 531, 100% 9% 445, 100% 417, 100% 7% 376, 100% 344, 100% 9%

https://doi.org/10.1371/journal.pone.0224784.t004

Fig 4. Performance comparison with SparkGA on the Microsoft cluster.

https://doi.org/10.1371/journal.pone.0224784.g004

SparkGA2: Production-quality memory-efficient Apache Spark based genome analysis framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0224784 December 5, 2019 9 / 14

https://doi.org/10.1371/journal.pone.0224784.t004
https://doi.org/10.1371/journal.pone.0224784.g004
https://doi.org/10.1371/journal.pone.0224784

Step 1 of SparkGA2: 1. the on-the-fly compression approach which allows for more efficient

in-memory data processing, and 2. the reduction in the amount of data uploaded to HDFS

during the mapping step.

Table 5 shows the results on the SURFsara cluster, where we ran our pipeline with 6, 24, 48

and 67 nodes. The results show that the total runtime of SparkGA2 is 22% faster than SparkGA

on a 67 node cluster, with all stages of the pipeline showing an increase in performance. This

indicates the impact of the optimizations in SparkGA2 on the total runtime. It is interesting to

note that Step 2 shows a particularly high improvement in performance due to the optimized

load balancing methods we used. For 24, 48 and 67 nodes, the SparkGA2 load balancer is 87%,

55% and 30% faster than the SparkGA load balancer, respectively. The performance compari-

son is also shown in Fig 5 for 24, 48 and 67 nodes.

It is also interesting to note that the total runtime in SparkGA2 shows an increased perfor-

mance advantage compared to SparkGA as the cluster size increases. This indicates that

SparkGA2 has better scalability characteristics, while still being able to run on a small cluster,

making it suitable for usage in a practical production environment.

Table 6 shows comparison of SparkGA2’s performance with that of SparkGA for different

benchmarks on 67 nodes. We can see that there is clear improvement for all the benchmarks

for Step 1 and 2. Step 2 is as fast as 50% for one of the benchmark (ERR194160). Overall,

SparkGA2 is up to 22% faster than SparkGA.

Table 5. Comparison of SparkGA2 vs SparkGA on SURFsara cluster with 6, 24, 48 and 67 nodes, for NA12878.

Step 6 nodes 24 nodes 48 nodes 67 nodes

SGA (m, %) SGA2 (m, %) imp SGA (m, %) SGA2 (m, %) imp SGA (m, %) SGA2 (m, %) imp SGA (m, %) SGA2 (m, %) imp

Step 1 316, 38% 331.5, 40% -5% 85, 37% 72.5, 38% 17% 46, 34% 38.5, 35% 19% 37.5, 35% 30, 34% 25%

Step 2 95, 11% 67.5, 8% 41% 29, 13% 15.5, 8% 87% 17, 13% 11, 10% 55% 13, 12% 10, 11% 30%

Step 3 419, 50% 422.5, 51% -1% 117.5, 51% 101, 53% 16% 70.5, 53% 62, 56% 14% 55.5, 52% 47, 54% 18%

Total 830, 100% 821.5, 100% 1% 231.5, 100% 189, 100% 22% 133.5, 100% 111.5, 100% 20% 106, 100% 87, 100% 22%

https://doi.org/10.1371/journal.pone.0224784.t005

Fig 5. Performance comparison with SparkGA on the SURFsara cluster.

https://doi.org/10.1371/journal.pone.0224784.g005

SparkGA2: Production-quality memory-efficient Apache Spark based genome analysis framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0224784 December 5, 2019 10 / 14

https://doi.org/10.1371/journal.pone.0224784.t005
https://doi.org/10.1371/journal.pone.0224784.g005
https://doi.org/10.1371/journal.pone.0224784

Profiling results for SparkGA and SparkGA2 on the 6-node Microsoft cloud cluster are

shown in Figs 6 and 7, respectively. In those figures, the x-axis represents time and the y-axis

represents the percentage of resource utilization. CPU usage is expressed in terms of user time

and idle time, while I/O usage in terms of io wait time. From those figures we can see that for

Step 1, the idle time in the case of SparkGA is much higher than in the case of SparkGA2. The

reason is that SparkGA has to upload a lot more files to HDFS as compared to SparkGA2. For

Step 2, the profile of SparkGA shows an increase in disk access, causing io wait time as com-

pared to a negligible io wait time for SparkGA2. This can be explained by the large number of

files that need to be created and accessed in SparkGA for each of the genome regions created

in Step 1, which creates I/O access conflicts.

Table 7 compares the runtime of SparkGA and SparkGA2 on the 6-node Microsoft cloud

using the streaming solution for input data. Streaming of input data eliminates the need to

spend execution time separately on uncompressing the input FASTQ files, making smaller

input chunks for mapping, and uploading them to the HDFS. This is done by a chunking util-

ity, which performs chunking in parallel to the mapping. The chunking utility here is run on

Table 6. Comparison of SparkGA2 vs SparkGA on SURFSara cluster with 67 nodes, with different benchmarks.

Step ERR194147 ERR194160 NA12878

SGA (m, %) SGA2 (m, %) imp SGA (m, %) SGA2 (m, %) imp SGA (m, %) SGA2 (m, %) imp

Step 1 41, 36% 35, 34% 17% 43.5, 39% 34, 34% 28% 37.5, 35% 30, 34% 25%

Step 2 14.5, 13% 10, 10% 45% 15, 13% 10, 10% 50% 13, 12% 10, 11% 30%

Step 3 57.5, 51% 58.5, 56% -2% 54, 48% 56, 56% -4% 55.5 52% 47, 54% 18%

Total 113, 100% 103.5, 100% 9% 112.5, 100% 100, 100% 12.5% 106, 100% 87, 100% 22%

https://doi.org/10.1371/journal.pone.0224784.t006

Fig 6. Profile of a node with SparkGA on the 6-node Microsoft cloud cluster.

https://doi.org/10.1371/journal.pone.0224784.g006

SparkGA2: Production-quality memory-efficient Apache Spark based genome analysis framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0224784 December 5, 2019 11 / 14

https://doi.org/10.1371/journal.pone.0224784.t006
https://doi.org/10.1371/journal.pone.0224784.g006
https://doi.org/10.1371/journal.pone.0224784

the master node. When streaming of input data is taken into account, SparkGA2 is 51% faster

than SparkGA, due to SparkGA2’s ability to have input data streamed directly to the HDFS,

while data nodes are processing that data. In this way, it can completely overlap such chunking

with mapping.

Efficient memory utilization

We also checked the impact of our approach to trade off performance with system resource

utilization in the mapping step, specifically the amount of memory utilization as a result of

increasing the number of genome regions. The maximum memory needed to store the regions

in-memory is dependent on the number of genome regions in the pipeline. Table 8 lists the

amount of memory consumed for 1 to 10 genome regions. The table shows that memory

requirements decrease from 122 GB with 1 region down to 20 GB with 10 regions. This indi-

cates that by increasing the number of regions, we can significantly reduce the memory

Fig 7. Profile of a node with SparkGA2 on the 6-node Microsoft cloud cluster.

https://doi.org/10.1371/journal.pone.0224784.g007

Table 7. Runtime in minutes using the streaming approach on Microsoft cloud with 6 nodes.

Step SparkGA SparkGA2

mins mins

Chunking 143.5 -

Step 1 212 192

Step 2 51 48

Step 3 113 104

Total 520 344

https://doi.org/10.1371/journal.pone.0224784.t007

SparkGA2: Production-quality memory-efficient Apache Spark based genome analysis framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0224784 December 5, 2019 12 / 14

https://doi.org/10.1371/journal.pone.0224784.g007
https://doi.org/10.1371/journal.pone.0224784.t007
https://doi.org/10.1371/journal.pone.0224784

requirements of the cluster, making our framework executable even for a smaller cluster (albeit

with an increased runtime).

The impact on runtime is shown in Table 9, which lists the runtime results of Step 2 (sort-

ing and load balancing) for the 6-node Microsoft cluster. The table shows that the total time

for Step 2 increases with increasing number of regions, from 48 minutes (6 regions) up to 56

minutes (10 regions), due to the startup overhead for Spark for each of the regions. For lower

than 6 regions, the cluster is not able to run the pipeline, due to the increased memory con-

sumed by Spark for storing region data, causing the cluster to go out of memory.

Conclusions

This paper proposed SparkGA2, a production quality, general purpose Spark framework

which can run post sequencing DNA analysis pipelines on public clouds in an efficient man-

ner. Our framework implements an on-the-fly compression method of intermediate data to

reduce memory requirements by up to 3x. Furthermore, it uses a superior load balancing tech-

nique to reduce accesses to the HDFS. At the same time, our framework can hide data pre-pro-

cessing time by streaming and pre-processing input data while the analysis pipeline is running.

As compared to the state of the art GATK best-practices pipeline, SparkGA2 is up to 22% faster

on a large big data cluster of 67 nodes and up to 9% faster on a smaller cluster of 6 nodes. This

indicates that SparkGA2 has better scalability characteristics compared to existing solutions,

while still being able to run on a small cluster, making it suitable for practical production envi-

ronments. Including the streaming solution, where data pre-processing in parallel is consid-

ered, SparkGA2 is 51% faster on a 6 node cluster. The source code of SparkGA2 is publicly

available at https://github.com/HamidMushtaq/SparkGA2.

Acknowledgments

We would like to acknowledge support from the Microsoft Azure for Research program (to

Hamid Mushtaq) for providing their cloud computing resources for free to conduct this

research. In addition, some experiments have been performed on the Dutch national e-infra-

structure with support from the SURF cooperative.

Author Contributions

Conceptualization: Hamid Mushtaq.

Formal analysis: Hamid Mushtaq.

Funding acquisition: Hamid Mushtaq, Zaid Al-Ars.

Methodology: Hamid Mushtaq.

Table 8. Maximum memory consumed by number of regions.

No. of regions 1 2 4 6 8 10

Memory 122 GB 69 GB 37 GB 29 GB 20 GB 20 GB

https://doi.org/10.1371/journal.pone.0224784.t008

Table 9. Runtime in minutes for Step 2 on Microsoft cloud with 6 nodes, with different number of regions.

No. of regions 6 8 10

Time 48 min 51 min 56 min

https://doi.org/10.1371/journal.pone.0224784.t009

SparkGA2: Production-quality memory-efficient Apache Spark based genome analysis framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0224784 December 5, 2019 13 / 14

https://github.com/HamidMushtaq/SparkGA2
https://doi.org/10.1371/journal.pone.0224784.t008
https://doi.org/10.1371/journal.pone.0224784.t009
https://doi.org/10.1371/journal.pone.0224784

Resources: Zaid Al-Ars.

Software: Hamid Mushtaq.

Supervision: Zaid Al-Ars.

Validation: Hamid Mushtaq.

Writing – original draft: Hamid Mushtaq.

Writing – review & editing: Hamid Mushtaq, Nauman Ahmed, Zaid Al-Ars.

References
1. Zaharia M, Chowdhury M, Franklin MJ, Shenker S and Stoica I. “Spark: cluster computing with working

sets”, HotCloud’10, USENIX Association, Berkeley, CA, USA.

2. Van der Auwera GA, Carneiro M, Hartl C, Poplin R, del Angel G, Levy-Moonshine A, et al. “From FastQ

Data to High-Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline”, Current

Protocols in Bioinformatics, 43:11.10.1–11.10.33, 2013.

3. Mushtaq H, Liu F, Costa C, Liu G, Hofstee P and Al-Ars Z. “SparkGA: A Spark Framework for Cost

Effective, Fast and Accurate DNA Analysis at Scale”, Proc. ACM Conference Bioinformatics, Computa-

tional Biology and Health Informatics, 2017.

4. Jones DC, Ruzzo WL, Peng X and Katze MG. “Compression of next-generation sequencing reads

aided by highly efficient de novo assembly”, Nucleic Acids Research, 2012. https://doi.org/10.1093/nar/

gks754

5. Langmead B and Salzberg SL. “Fast gapped-read alignment with Bowtie 2”, Nature Methods, vol. 9,

no. 4, pp. 357–359, 2012. https://doi.org/10.1038/nmeth.1923

6. Li H. “Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM”,

arXiv:1303.3997 [q-bio.GN], 2013.

7. Kelly BJ, Fitch JR, Hu Y, Corsmeier DJ, Zhong H, Wetzel AN, et al. “Churchill: an ultra-fast, determin-

istic, highly scalable and balanced parallelization strategy for the discovery of human genetic variation

in clinical and population-scale genomics”, Genome Biology, vol. 16, no. 6, 2015.

8. Decap D, Reumers J, Herzeel C, Costanza P and Fostier J. “Halvade: scalable sequence analysis with

MapReduce”, Bioinformatics, btv179v2–btv179, 2015.

9. Deng L, Huang G, Zhuang Y, Wei J and Yan Y. “HiGene: A high-performance platform for genomic data

analysis”, Proc. IEEE Inte’l Conf. Bioinformatics and Biomedicine, (BIBM16), Shenzhen,

China, pp. 576–583, 2016.

10. Mushtaq H and Al-Ars Z. “Cluster-based Apache Spark implementation of the GATK DNA analysis

pipeline”, 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Washington,

DC, pp. 1471–1477, 2015.

11. Mushtaq H, Ahmed N and Al-Ars Z. “Streaming Distributed DNA Sequence Alignment Using Apache

Spark”, 17th IEEE International Conference on BioInformatics and BioEngineering, 2017.

SparkGA2: Production-quality memory-efficient Apache Spark based genome analysis framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0224784 December 5, 2019 14 / 14

https://doi.org/10.1093/nar/gks754
https://doi.org/10.1093/nar/gks754
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1371/journal.pone.0224784

