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A B S T R A C T

Low-cost air quality sensors can fill gaps between the sparse measurements done with high-
quality national monitoring grids and might contribute to creating a more complete under-
standing of air pollution in an urban area. However, until there is no agreement on what
degree of sensor accuracy is acceptable, the sensor data quality should be validated before
governmental bodies use it as input for decision-making [Lewis and Edwards, 2016].

This research proposes a method to assess and improve the data quality of low-cost air
quality sensors measuring Particulate Matter (PM). To answer the research question ”How
can accuracy and precision of Particulate Matter measurement results from a low-cost out-
door sensor network be improved by using a correction model, using data from reference
sensors and additional sensors measuring inferencing phenomena?” an experiment setup
with sensors operating under real-world conditions is applied.

Two low-cost sensor nodes, both containing a microcontroller, two low-cost PM sensors, and
a temperature and humidity sensor, are placed at two locations in the city of Rotterdam. At
those two locations, they are placed next to a high-quality air quality monitoring station from
the environmental agency of Rotterdam. These monitoring stations provide benchmark data
for the low-cost sensor nodes. A third data source provides data on air pressure and wind
speed for the whole city of Rotterdam.

The data that originates from both sensor nodes and monitoring stations are matched and
correlated with each other. Subsequently, the measurements from the low-cost sensor nodes
are evaluated. Correlations and cross inferences of PM with other independent variables such
as humidity, ambient temperature, wind speed and air pressure are investigated. Thereafter,
utilizing the Stepwise Multiple Linear Regression method, various correction models are
created that take various combinations of external variables into account. The correction
models vary with respect to the amount of included external environmental variables and
the polynomial degree. From all those possible correction models, the best correction model
per location is selected by evaluating the Root Mean Square Error (RMSE) of the corrected
dataset.

Consequently, the results of the chosen correction model are validated. It is found that
the best performing correction models are those that include only the original PM data and
the effect of adding more independent variables is limited. The best correction models for
the four low-cost PM sensors are able to decrease the RMSE of the observations: the original
normalized RMSE ranged from 0.0918 to 0.1249, while the corrected normalized RMSE range
from 0.03110 to 0.03759. So, it is possible to improve the data quality of low-cost PM sensors
with the stepwise MLR method and setup as shown in this research. However, including
parameters for independent variables humidity, temperature, air pressure or wind speed
does not improve the data quality significantly.

Besides, when an extra sensor node is placed in an air quality monitoring network as
described in this research, it is necessary to create a correction model for that specific sensor.
Like Castell et al. [2017] and Mukherjee et al. [2017] also found, it is necessary to calibrate
each individual low-cost sensor before adding it to an air quality measuring network of the
type as described in this research. Namely, it is found that for each low-cost PM sensor in
the network different correction models are created.
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1 I N T R O D U C T I O N

1.1 smart cities and their technologies
Dutch municipalities like Utrecht, Eindhoven and Enschede deploy sensor networks in their
built environment and use those for monitoring various environmental conditions, for exam-
ple noise levels, urban air quality, and movement of people, products and vehicles [Naafs,
2017]. The European Union provides subsidies to governments and knowledge institutions
for developing so called smart city initiatives, such as with the Urban Innovative Actions pro-
gram [Barrosso, 2014]. Besides being a business concept used by businesses worldwide the
”smart city” has also technical aspects, for example sensor hardware and software [Marshall,
2017; Naafs, 2017]. Next to that, (open) standards are developed in order to improve com-
munication between sensors, applications, and end users of data from the smart city [Liang
et al., 2016].

Proliferation of available low-cost micro-controllers, sensors and actuators has helped the
development of new digital and electronic kits [Salim, 2012]. These sensors are now easier
to configure and accessible to a wider group of users. They can measure phenomena such
as air quality, temperature, humidity, noise, solar radiation, or the current location of people
or assets. This data regarding the urban microclimate can be useful for professionals such as
architects and urban planners [Pijpers-van Esch, 2015]. For example, the Delft University of
Technology and other stakeholders have the ambition to use a new city park as laboratorium
for – urban – climate research.1. At various locations in the new Van Leeuwenhoekpark (see
figure 1.1) climate aspects such as windspeed and temperature will be sensed, giving insight
in the effect of a ”green” area in a mainly concrete environment.

When two or more sensors are connected to each other with communication protocols such
as Wi-Fi, Bluetooth or LoRa, it becomes a sensor network. Advantages of a reliable but low-
cost sensor network is that they can be deployed in high quantities in order to understand
microclimates in cities better. Moreover, due to the existence of a sensor network platform
that uses wireless communication such a platform can be extended with other types of sen-
sors. Some of the projects provide the gathered information as open data. For example the
Dutch government has the ambition to provide government data as open data [Ministerie
I&M, 2015], thereby contributing to a more transparent government. Using data that origi-
nates from low-cost sensor networks would contribute to that ambition. However, a problem
is that in most countries there is no legislation and regulation regarding testing and verifica-
tion of the data from these type of sensor networks [Lewis and Edwards, 2016]. Thus, the
quality of the data from these sensor networks is unknown.

1.2 monitoring air pollution
Epidemiological studies show positive associations between exposure to outdoor air pollution
and human mortality [Bentayeb et al., 2015]. A literature review by Pope and Dockery [2006]
concluded that ”the exposure of humans to fine particulate air pollution has adverse effects
on cardiopulmonary health.” Human health and air pollution are closely linked [Mead et al.,
2013]. Emissions from different sources such as industry, road traffic and intensive livestock
farming all have an influence on local air quality [Van Alphen and Pot, 2014]. Humans who
are exposed to Particulate Matter (PM) have a higher risk of developing cardiovascular and
respiratory diseases and lung cancer [Pijpers-van Esch, 2015]. Air pollution can be in the
form of gas-phase species or in the form of PM.

Since air pollution is omnipresent and affects human health limits for air pollution concen-
trations are defined. Monitoring the concentrations of air pollution is a legal obligation for

1 https://nieuwdelft.nl/portfolio/van-leeuwenhoekpark/
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Figure 1.1: Impression of the new Van Leeuwenhoekpark in Delft by LODEWIJK BALJON
landscape architects. When the construction of the park is ready the Delft Univer-
sity of Technology is going to deploy sensors sensing the microclimate and use it
as a ”living lab”.

public health agencies in The Netherlands.2 This monitoring is often performed with location
bound monitoring stations equipped with certified instruments [Castell et al., 2017]. The in-
struments at the monitoring stations – monitoring instruments – measure regulatory pollutants
such as Carbon Monoxide (CO), Nitrogen Oxide (NO), Ozone (O3) and PM. An example of a
monitoring instrument is the Beta Attenuation Monitor ”BAM-1020” from the manufacturer
MetOne Instruments. This instrument is capable of monitoring Particulate Matter of 1 mm
(PM1), Particulate Matter of 2.5 mm (PM2.5), and Particulate Matter of 10 mm (PM10). These
various sizes of PM particles affect visibility, human health, global climate and the urban mi-
croclimate. When installed, operated and calibrated according to established procedures the
instrument is certified as PM monitoring method for environmental agencies in the United
States and The Netherlands [Mukherjee et al., 2017]. One BAM-1020 monitoring instrument
has a price tag of around e15000.3

In the Netherlands the Rijksinstituut voor Volksgezondheid en Milieu (RIVM) – the Na-
tional Institute for Public Health and the Environment – is responsible for monitoring air
quality. Broadly, RIVM uses three complementary approaches to get a clear insight in the
air quality in the whole of the Netherlands: using a nationwide measurement network, the
registration of emissions, and interpolated pollution models.

• One approach is using measurements on specific locations that together constitute
a nationwide air quality monitoring network: the ”Landelijk Meetnet Luchtkwaliteit
(LML)” [Van Alphen and Pot, 2014]. Most of the monitoring stations in the LML do
the analysis and calibration automatically. RIVM currently uses BAM-1020 monitoring
instruments on these locations to monitor concentrations of PM. In The Netherlands
the PM monitors are located countrywide, though most of them are in and nearby the
Randstad metropolitan area, see figure 1.2.

• The Emissieregistratie – Emission Registration – method takes account of collecting,
managing, editing and reporting of Dutch emission data. With this method are emis-
sions calculated based on the activities per location, the expected air pollution due to
these activities, and nationwide statistical information regarding the extent of these

2 https://wetten.overheid.nl//BWBR0003245//2019-01-01//#Hoofdstuk5

3 https://www.alibaba.com//product-detail//BAM-1020_118816030.html

https://wetten.overheid.nl//BWBR0003245//2019-01-01//#Hoofdstuk5
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Figure 1.2: Locations of the monitoring stations in the Landelijk Meetnet Luchtkwaliteit
(screenshot from www.luchtmeetnet.nl). The colors indicate the real-time air
quality (blue = ”good”, yellow = ”moderate”).

www.luchtmeetnet.nl
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kind of activities. The supply of input data for the Emission Registration is decentral-
ized: it is done by a large amount of stakeholders [Van Alphen and Pot, 2014].

• The third approach is calculation of pollution models. The measurements from the
monitoring instrument network and Emission Registration are input for these interpo-
lation models.

Another initiative to monitor air quality is done by the European Space Agency (ESA). In
October 2017, researchers from this European institution launched the Sentinel 5-p satellite.
This satellite contains the TROPOMI atmosphere measuring instrument, capable of measur-
ing O3, CO, Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2) and aerosol properties [De Vries
et al., 2016]. Data from this satellite has already been provided. However, this initiative
require high investment costs and the resulting data is still on a small – coarse – spatial scale.

Next to that, in another study air quality is monitored with instruments mounted on vehi-
cles. This research demonstrated a measurement approach that revealed local air pollution
patterns in an urban region. The result was a spatial precision that is higher than monitoring
with static monitoring instruments [Apte et al., 2017].

Since a broad range of sources influence air quality, the temporal and spatial distribution
of PM concentrations may vary significantly in a region [Wang et al., 2015]. This asks for
an approach that accounts for those spatial differences. Low-cost sensor networks could
contribute to policy and decision making processes that might result in a healthier built
environment. Especially sensors that monitor air quality and air pollution.

1.3 a low-cost sensor network and data quality
An earth-based low-cost sensor network can help densifying the measurement grid of the
RIVM and can yield measurement results on a larger scale – less coarse – than ESA provides.
Low-cost sensors can fill gaps between the sparse measurements that are done with the mon-
itoring network of RIVM and might contribute to creating a more complete understanding of
air pollution in an area, i.e. on the micro climate level. However, until there is no agreement
on what degree of sensor accuracy is acceptable, those sensor results should be validated
before governmental bodies use it as input for decision-making [Lewis and Edwards, 2016].
As Lewis and Edwards [2016] state it: ”Even sensors that are designed for entertainment or
awareness-raising need appropriate labelling to define their capabilities.”

Low-cost sensors – having prices ranging from e10 to e100 – measuring air pollution can
be categorized in two groups: the ones measuring gasses (e.g. CO, NO, O3) and sensors mea-
suring PM [Castell et al., 2017]. The microcontroller that is part of these sensors transforms
the output signal from the sensor into a digital value. Often, such an air quality sensor is
placed on a sensor node. A sensor node can contain multiple sensors measuring gasses and/or
PM, and a microcontroller that integrates the electronics, stores data, and eventually transmits
the data to a central server via a communication protocol. Kumar et al. [2017] concluded that
for designing a low-cost, energy efficient, portable real-time system for monitoring indoor air
quality a multidisciplinary approach is needed. One needs to have knowledge about accuracy
of measurements, effects of other gases on air quality (interference), wireless communication
networks, data storage and power consumption.

Li and Biswas [2017] performed a laboratory experiment and proposed a method to im-
prove the results from low-cost sensors measuring air quality. Doing outdoor air quality
improvements with more complex aerosols is not investigated yet [Li and Biswas, 2017].

Moreover, the influences of cross-sensitivities, temperature, and humidity on air quality
measurements implies a need for data processing on the sensor node [Postolache et al., 2009].
They suggest four types of data processing on the sensor node: data smoothing, continuous
data calibration to overcome the problem of cross sensitivity, correction for temperature and
humidity dependency, and an aggregation algorithm that sends only when the values change
significantly.

Data quality

Data quality is recognized as a relevant performance issue of decision making activities, inter-
organizational cooperation requirements and operating processes [Batini et al., 2009; Lewis
and Edwards, 2016]. Batini et al. [2009] focus on two main steps in the research on data
quality methodologies: assessment and improvement. Assessment is comparing a value to a
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reference value in order to diagnose the data quality. Improvement relates to the selection of
steps, strategies and techniques in order to reach a new level of data quality [Batini et al.,
2009].

Further, regarding the improvement of data quality Batini et al. [2009] distinguish two
general strategies: data-driven and process-driven. Data-driven strategies improves data
quality by directly modifying the value of a data record, while process-driven strategies
improve quality of data by redesigning the process that create or modify the data [Batini
et al., 2009]. This research utilizes the data-driven strategy for quality improvement. More
precise, this research proposes a method that localizes the error and corrects the error in
the datasets, i.e. identifying and eliminating data quality errors by detecting the records that do
not satisfy a given set of quality rules” [Batini et al., 2009]. Therewith, the proposed method
improves the accuracy – the closeness of a value v to the elements of the corresponding
definition domain D [Batini et al., 2009] – of the data. Other strategies to improve data
quality, such as acquiring completely new datasets when the quality is poor, selecting data
sources based on their trustworthiness, or using the minimization of costs as definition for
quality improvement are not included in this research. Also, other dimensions wherein data
quality can be expressed, such as completeness and consistency, are no part of this research.

1.4 link with geomatics for the built environ-
ment

This research is about tools for measuring spatial-temporal phenomena, which is the focus
of Geomatics for the Built Environment. Namely, the measurements take place in the built
environment and thus have a geo-component. Further, phenomena that are sensed for this
inquiry – i.e. air pollution, relative humidity, temperature, wind speed and wind direction
– change on a regular basis and can be affected by how the built environment is designed
and/or used. Therefore, quality of the urban environment can be increased by doing targeted
interventions that eventually change the values of the phenomena. In order to do so, tools
should be able to deliver data on a large – fine – spatial scale, and these tools should deliver
reliable data from which information and knowledge can be derived.

1.5 research objectives
The problem statement is that the quality of the data from low-cost sensors measuring air
quality in the built environment is unclear, i.e. the accuracy of the data is unknown. On
the other hand, these low-cost sensor systems are deployed and will be deployed in the
future in several cities [Naafs, 2017; Ministerie I&M, 2015]. It is then possible that citizens,
professionals, and/or decision makers attach meaning to information derived from data of
those sensors, which may result in problems when the data is not validated since the data
may be incorrect in the first place [Lewis and Edwards, 2016]. Therefore, the first aspect of
the research objective is to assess the data quality of the original PM data from these low-cost
sensors.

In this research it is assumed that the accuracy and precision of the low-cost sensors is
lower than those of the PM monitors from the Dutch RIVM. Therefore, the second aspect of
the research objective is to improve the data quality from the low-cost sensors. How can the
data quality from the low-cost sensor observations be improved? The proposed approach
in this research is to use an error correction model, which utilizes a formula to manipulate
the accuracy of an observation value. Sensors measuring inferencing phenomena might be
needed for acquiring data to correct the PM measurement results. The performance of the
correction model should be expressed in an unambiguous evaluation metric.

Therefore, the research objective is to investigate how a low-cost sensor network can sup-
port the established high-cost and high-quality PM monitoring network. This makes the air
monitoring network denser, gives more insight in local air quality variances as a result of
different designs of the built environment, and it reduces operation and maintenance costs.
The rationale is that the low-cost sensors are less accurate, precise and reliable compared
with the high-quality monitoring instruments – the ones used by RIVM – although that can
be improved by applying a correction model that corrects for atmospheric and environmental



6 introduction

phenomena such as temperature, humidity, air pressure, wind speed and others. Investigat-
ing how this correction model should look like is the goal of this research.

1.6 research questions
Based on the research objectives is the following main question defined:

How can accuracy and precision of Particulate Matter measurement results from a low-cost out-
door sensor network be improved by using a correction model, using data from reference sensors and
additional sensors measuring inferencing phenomena?

Quality of the low-cost sensor measurements is expressed in accuracy, i.e. how close are
the observed values to the true value of the quantity being measured? The measurement
results of high quality reference air quality monitors is in this research considered as the
’true’ value. The precision of a PM measuring instrument is also considered: the same type
of instrument should yield the same values under similar conditions (time and location).
Moreover, the main research question implies that the sensors are relatively low-cost. This
implies that the proposed methodology can be used in order to scale up sensor projects and
in order to make the sensor grid denser. Another key concept in the main research question
is the validation of the correction model. Because a correction model is created with data
from one location, but should also be able to improve data quality on another location. The
following sub-questions are formulated:

Figure 1.3: Research design

1. How do temperature, humidity, air pressure, and wind speed affect Particulate Matter measure-
ments? The first sub-question focuses on which environmental phenomena influence
the air quality measurements, depicted from a literature review. This first sub question
clarifies which additional sensors are to be included on the sensor nodes and which
external datasets need to be included in the research. Those additional sensors sense
phenomena and this data is input for the correction model.

2. What is a good experimental setup for calibrating air quality measurements and how to develop
this sensor setup? This sub-question focuses on designing, developing and implement-
ing the sensor system: the specific hardware, choices regarding storing and transmit-
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ting the data, sampling interval of the measuring system, and the synchronization with
high quality reference data.

3. What can be acquired from existing correction models in the field of air quality monitoring and
related fields of research? This question implies a literature review on correction models
that are currently used within the field of air quality and related research fields. And
the aspects of these correction models that can be used for the newly developed model
as proposed in this research.

4. How to create the new correction model? Sub-question 4 is about making the correction
model. Results from the air quality sensors and the additional sensors are read and
plotted in graphs in order to find relations between the different phenomena. Insights
from sub question 3 can be used to create the new correction model. Statistics from
the datasets, such as the analysis of variance, can provide insight into the results.

5. How to validate the correction model? The time and domain when the correction model
is valid is investigated in the final sub-question. If there is no typical domain when
the correction model is valid, a generic correction model can be applied. That model
corrects the data with one and the same formula for all domains. However, if there are
specific domains for which different formulas need to be created, a specific correction
model is created. These specific domains are for example the time of the day (peak
hours, off-peak hours, night), specific seasons, or when the temperature is within a
certain range. Such a specific correction model consists of more formulas, which one
to take depends on the domain.

With the sub-questions are all steps in the research design of figure 1.3 covered.

1.7 reading guide
In the next Chapter 2 are the theoretical framework and related work in the fields of air
quality monitoring and (error) correction models discussed. A number of relevant air quality
sensor network projects are reviewed and implications for this research are taken into account.
In Chapter 3 is the methodological framework of the research described based on findings
from theory. Chapter 4 elaborates on the implementation of the proposed methodology. The
relationships between the independent and dependent variables and the baseline measurement
are also discussed here. In Chapter 5 are the results of the implemented methodology shown
and discussed. Finally, Chapter 6 concludes this report by answering the research questions
and with recommendations for future work.





2 T H E O R E T I C A L F R A M E W O R K A N D
R E L AT E D W O R K

This chapter elaborates on the theoretical background of this thesis. The focus is on research
in the fields of air quality monitoring, low-cost sensor networks in an outside environment,
and error correction models. Theoretical concepts that are related to the research question are
air quality and air pollution, PM and the monitoring or measurement of PM concantrations,
low-cost and low-energy sensor networks, accuracy and precision. After explaining these
topics an overview of related research in this field is given.

2.1 air quality and air pollution
One branch of the study of urban metabolism is studying a city’s flows of water, materials
and nutrients in terms of fluxes of mass [Kennedy et al., 2011]. Example applications of
urban metabolism studies are urban sustainability indicators, urban greenhouse gas emission
calculations, urban metabolism expressed in mathematical models for policy analysis, and
sustainable urban design. Air pollution and air quality monitoring and analysis can be part
of the sustainable urban design branch.

Definitions of air pollution and Particulate Matter

Air pollution is defined as ”when gases or aerosol particles that are emitted anthropogenically, are
build up in concentrations sufficiently high to cause direct or indirect damage to plants, animals,
other life forms, ecosystems, structures, or works of art” [Monks et al., 2009]. Amounts of several
chemical compositions such as Nitrogen Oxides (NOx), CO, and Carbon Dioxide (CO2), can
affect air quality. Those chemical compositions are not the focus of this research: it only
focuses on PM. The definition of PM is: ”air suspended mixture of solid and liquid particles that
vary in number, size, shape, surface area, chemical composition, solubility, and origin” [Postolache
et al., 2009]. The chemical mixture and mass concentrations of PM can differ per region
[Monks et al., 2009]. PM is subdivided in the following classes [Environmental Protection
Agency, 2016]:

• PM10 are course particles with mass concentrations with sizes of 10µm to 2.5µm and
smaller in aerodynamic diameter. Those particles originate from suspension or resus-
pension of soil, dust and sea salt [Hendriks et al., 2012]. Or from other crustal mate-
rials or events such as roads, mining, farming, volcanic eruptions, and wind storms.
However, the origin for most of the PM10 dust particles observed the Netherlands is
undetermined, see figure 2.1.

• PM2.5 are fine particles with a diameter of 2.5µm to 1µm. Coal burning, wood burning,
use of vehicles with gasoline and diesel engines and industrial proceses are exam-
ples of combustion processes from which fine particles are directly emitted. Volatile
Organic Compounds (VOC) also contribute to the amount of ambient fine particles.
Those are chemical, gaseous products originating from the transformation of organic
aerosols to other products. See figure 2.2.

• Particulate Matter of 1µm (PM1) are called ultra-fine particles or submicron particles
and have a diameter of less than 1µm. Ultra-fine particles also originate from vehicle
exhausts and atmospheric photochemical reactions. These particles can move from the
human lungs into the veins and via there to other parts of the human body [Monks
et al., 2009; Mukherjee et al., 2017].

Figure 2.3 gives insight in the relative sizes of these PM classes. Although PM1 is the
most dangerous class regarding human health, it is also hardest to monitor or sense with
technologies currently available. Therefore RIVM does not measure PM1 but rather PM2.5.
Therefore, since there is no reliable PM1 data available this research focuses only on PM2.5.

9
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Figure 2.1: Origin of PM10 in the Netherlands. 70 to 80% of PM2.5 in the Netherlands is an-
thropogenic [Hendriks et al., 2012]. Notice the high percentage of non-modelled
fraction, which shows the uncertainty of the sources of PM.

Figure 2.2: Origin of PM2.5 in the Netherlands. 80 to 95% of PM2.5 in the Netherlands is
anthropogenic [Hendriks et al., 2012].
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Figure 2.3: PM classes visualized [Environmental Protection Agency, 2016]

One common way to express the amount of PM is in units of mass per volume of ambient
air: it is conventional to use micrograms per cubic meter (µm/m3)1. Another way is to
express it in Parts Per Million (PPM) or Parts Per Billion (PPB), i.e. the volume of pollutant
per million or billion volumes of ambient air. In the Netherlands RIVM expresses PM in
(µm/m3) [Hendriks et al., 2012], the concentration unit which is also used in this research.

Legal norms for PM concentrations

The national legal norm for PM10 is a year average of 40µm/m3. For PM is the year average
norm a concentration of 25µm/m3 [Van Breugel and Van den Elshout, 2018; Juliana et al.,
2009]. The norm for PM2.5 is stricter because it is more dangerous than PM10 since these
particles can penetrate deeper into human lungs. Next to the year average norms are also
peak norms defined, which focus on day peak averages. Per year, the PM10 concentration
may exceed a limit of 50µm/m3 for 35 times. For PM2.5 there is no such norm for day peak
concentration.

In 2017 are the norms for PM2.5 and PM10 in the Rijnmond region in the Netherlands – the
study area – not exceeded [Van Breugel and Van den Elshout, 2018]: see the ”Gem” column
of figure 2.4.

Further, the PM concentrations are close to the World Health Organization (WHO) guide-
line of 20 and 10µm/m3 for PM2.5 and PM10, respectively [WHO, 2006]. Moreover, figure 2.4
shows more key figures for the distribution of the particle concentrations. The ”P50” and
”P98” are the year averages of concentrations in the 50th and 98th percentile, respectively.
The relatively high differences between those averages indicate days with extreme values. In
the ”Max” column are maximum extreme values indicated per street. For PM10 there is the
extra norm that 50µm/m3 may not be exceeded for more than 35 days per year. The informa-
tion in the ”D50” column shows how many days that happened: the norm is not exceeded.
Finally, the ”Aantal” – ”Amount” – column indicates the number of days in 2017 that the
BAM-1020 monitor on each specified location was working correctly.

2.2 measurement of pm
The concentration of PM is monitored for various application scenarios. For example in
waste incinerators of industrial plants, indoor air pollution monitoring, or outdoor urban
air quality monitoring. The latter is the application scenario of this study. Ambient air
pollution is monitored with several types of detection systems. Those can be ”static” – non-
moving, location bound – monitoring instruments, mobile units mounted on vehicles, or

1 https://www2.dmu.dk/AtmosphericEnvironment/Expost/database/docs/PPM_conversion.pdf

https://www2.dmu.dk/AtmosphericEnvironment/Expost/database/docs/PPM_conversion.pdf
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Figure 2.4: Key figures for concentration distribution of PM2.5 and PM10 in 2017 [Van Breugel
and Van den Elshout, 2018].



2.2 measurement of pm 13

hand-held instruments [Apte et al., 2017]. Ambient air pollution monitoring instruments
differ in terms of physical portability, sensitivity, and level of automation [Carminati et al.,
2011], and therewith in market price. Though the most important difference between those
types of detection systems is the used PM measurement technique. These techniques are the
gravimetric weight method, opacimeter light scattering method, triboelectric method, beta
absorption and laser scattering. Since the beta absorption and laser scattering methods are
applied in the current research they are discussed in-depth, while the other three are now
only discussed shortly.

Gravimetric weight method

This is the traditional technique whereby polluted ambient air is forced to flow through a
clean filter of which the mass is known [Yu et al., 2017]. The concentration of PM is measured
by weighting the mass of the filter after a given time. The difference in weight of the sample
filter before sampling and after sampling results in a value for the PM concentration [Carmi-
nati et al., 2011]. The weighting is performed in a laboratory setting and this method is most
accurate.

Opacimeter light scattering

This is an optical technique, which uses the weakening-ratio of a beam of light as basis
to estimate the PM concentration [Carminati et al., 2011]. The particulate matter in the air
sample crosses visible light which is absorbed, reflected or scattered. This light scattering
method uses the Mie scattering theory of particles [Yu et al., 2017].

Triboelectric sensors

Triboelectric sensors use a technique that measures the electrical current of an electrical
charge which is generated by electrostatic mechanical friction. The mechanical friction is
the result of flowing particles that impact with the sensing electrode in the sensor [Carminati
et al., 2011].

2.2.1 Beta absorption method

The beta absorption technique uses beta radiation of a ribbon filter that has been exposed to
the ambient air, which will include a concentration of PM. A Geiger counter measures the
variation of the intensity of beta radiation before and after exposing to the ambient air. The
microcontroller in the sensor calculates a concentration value based on the beta radiation
intensity before and after exposure [Mukherjee et al., 2017; Met One Instruments, 2016].

Official methods for acquiring PM concentrations

In the United States and the European Union – including The Netherlands – there are various
standardized methods to measure PM concentrations with Beta Attenuation Monitors. In the
United States, the official methods are ”EQPM-098-122” and ”EQPM-0308-170” for PM2.5 and
PM10, respectively [US EPA, 2016]. In The Netherlands is the proprietary ”NEN EN 12341”
method the official standardized method, which is in accordance with the ”2008/50/EG”
guideline from the European Union [EU, 2008; NEN, 2014]. The NEN method is the Dutch
implementation for this guideline and describes one possible standard reference method for
PM10 and PM2.5. Regional environmental agencies such as DCMR – responsible for monitoring
in the study area Rotterdam – use BAM-1020 monitoring stations, which in turn use the
Beta Absorption technique (see figure 2.5). When properly installed, operated and calibrated
according to the national standard, this monitoring instrument is the official certified method
for environmental agencies in The Netherlands [Mukherjee et al., 2017], and can therefore be
regarded as high-quality monitoring instruments.

The USA EQPM and NEN standards prescribe how the BAM-1020 monitors should be
installed and configured. For example which type of air inlet to use, the type of cyclone
and fiber tape, which external temperature and barometric pressure sensors to use, valid
firmware versions for the software, measurement times, and sample intervals [US EPA, 2016].
See figure 2.6 for a detailed description of the standard one-hour cycle timeline for the PM

measurements, as done by DCMR. In short, 8 minutes after the start of the hour the particles
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Figure 2.5: The BAM-1020 monitoring station from Met One Instruments.
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in the ambient air is collected, for a total of 42 minutes. The BAM-1020 pulls ambient air
through the machine and the result is a concentration of PM in microgram per m/m3. How
does this process from dust on a filter tape to data on particulate matter concentrations in
ambient air go?

Figure 2.6: Overview of the one-hour timecycle for BAM-1020. Adapted and recreated from
the manual [Met One Instruments, 2010].

Retrieving a value for PM from beta attenuation

The dust being collected on the filter tape in the Beta Attenuation Monitor contains carbon-14,
a naturally occurring carbon isotope [Met One Instruments, 2010]. The carbon-14 undergoes
a beta decay process whereby high-energy electrons are emitted through radioactive decay.
These high-energy electrons are also called beta rays, and the process of the decay of those
beta rays is called beta ray attenuation. Hence the name ”Beta Attenuation Monitor” for this
type of particulate matter monitors. Due to the radioactive decay of carbon-14 the number
of particles reduces over time. Before a clean filter tape in the monitor is exposed to ambient
dust, its beta ray attenuation is determined by a beta ray detection unit, resulting in I0 of
clean filter tape. After collecting dust on this clean filter tape the tape is moved to a unit
that detects beta rays from the – in the meantime dirty – filter tape. Thus, the magnitude
of reduction of counted beta particles is a function of mass of absorbing matter between
the carbon-14 beta source – the filter tape – and the detector [Met One Instruments, 2016].
Formula 2.1 shows this relationship.

I = I0e(−µM
S

) (2.1)

Where I is the measured beta ray intensity from the dusted filter tape in counts per unit
time, I0 is the measured beta ray intensity of the clean filter tap, µ the beta ray absorption
cross section of the material on which the beta rays are absorbed (cm2/mg), M is the aerosol
mass deposited on the filter tape (mg) and S the spot area on the filter tape (cm2) [Met One
Instruments, 2016].

Absorption cross sections µ for species in ambient particulate matter such as iron oxide,
silica, salt or soot are all approximately the same: µ depends only on mass of the absorbing
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species and not on its chemical composition [Met One Instruments, 2016]. Therefore, one
does not need to know ahead of time the chemical compositions of aerosols that are sampled
in order to perform accurate mass measurements with a BAM. The constant value for µ is
determined in the calibration process of the BAM. In this calibration process is a membrane
used of which the mass density (M/S) is known. Repeated measurements of I and I0
are used to acquire µ, according to formula 2.2. Each BAM1020 monitor will give small
variations in the measured µ due to small differences in the types of aerosols in the air and
manufacturing tolerances of the instrument itself. With the membrane calibration process
of formula 2.2 is the response of each BAM1020 for monitoring projects of environmental
agencies – such as DCMR – standardized.

µ =
S
M

ln(
I0
I
) (2.2)

To further improve µ for more BAM1020 monitors, another calibration process is per-
formed whereby a reference BAM1020 monitor is used. They both measure the same aerosol
for a longer period, i.e. 48 or 72 hours. A linear regression of hourly outputs of one BAM1020

that is tested versus the other BAM1020 provides a slope k. This slope k is used for final cal-
ibration of µ. Data from a time period is corrected with the k parameter. In the cases when
µ deviates too much the data from that time period can be labelled as invalid [Met One
Instruments, 2016].

While µ is determined in the calibration process and I and I0 are measured with the beta
ray detector, densities of dusted air x can now be acquired. From Met One Instruments [2010]
is the following formula 2.3 adapted.

x =
1
µ

ln[
I0
I
] (2.3)

In the formula, x is mass density in mg/cm2. It is not a concentration over a specified time
period. In the BAM-1020 monitor however the ambient air is sampled at a constant flow rate
Q for a specified time ∆t. That sampled air is passed through a filter with surface A. The
ambient concentration of particulate matter can be determined when x is determined. The
following formula 2.4 then yields the quantities of ambient particulate matter, in µg/m3

c =
109 A
Q∆tµ

ln[
I0
I
] (2.4)

Where c is the concentration of ambient particulate matter in µg/m3, A the cross sectional
area in cm2, Q the rate at which the particulate matter is being collected on that filter tape
(liters/minute), and ∆t the sampling time (minutes).

Thus the BAM1020 monitor uses beta radiation of the dust aerosols in order to acquire
PM concentrations. With a calibration process is the µ parameter for the filter membrane in
the BAM achieved. The beta attenuation of the clean filter, compared with the attenuation of
the dirty filter and constant factors as shown in equation 2.4 result in a PM concentration in
ambient air. Since ∆t is in minutes, the particles collection time is 42 minutes, and the whole
timecycle is 60 minutes, the resulting PM concentration c relates to an average concentration
for one hour.

2.2.2 Laser scattering

Like with the light scattering technique, laser scattering is a technique whereby particle sizes
can be obtained based on collision of light/laser rays with particles [Yu et al., 2017]. Carmi-
nati et al. [2011] consider laser scattering as the current state-of-the-art technique for real-time
air quality monitoring because of its ability to analyse single particles and their sizes. With
this technique, particles are focused into a single stream of fast flowing air which is gener-
ated by a ventilator. A laser beam is placed orthogonally relative to this air flow. Particles
interacting with the laser beam reflect a scattered light. When the incident light of the laser
passes through the dust particles, as shown in figure 2.7, the light scattering occurs. The
amount of scattered light is counted with the photodetector. A mirror ensures that particle
light scatter in the opposite direction is also collected by the photodetector. The transmitted
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Figure 2.7: The working principle of laser scattering. Particles are focused in a single stream
by flows of clean air. They are detected when a light pulse, originating from
the laser, is scattered by the particle into the photodetector [Carminati et al.,
2011]. The low-cost sensor used in the current research contains an internal
microcontroller that outputs a PM concentration in digital format.

laser beams should not be counted with the photodetector: those laser beams are absorbed
in a light trap.

Scattering is the reflection of Electromagnetic (EM) energy by particles suspended in the
atmosphere. This scattering in the EM spectrum can be subdivided in three types: Rayleigh,
Mie, and non-selective scattering [Lemmens, 2016a]. Rayleigh scattering occurs when the
size of particles are small compared to the wavelength of the EM radiation. The shorter the
wavelength, the more scatter. Mie scattering occurs when the size of the particles are similar
to the wavelength of the EM radiation. For example dust or water vapor in the lower part
of the atmosphere. Finally, non-selective scatter occurs when the size of particles are large
compared to the wavelength of the EM radiation.

The laser scattering method for obtaining the number of PM particles in the lower atmo-
sphere is Mie scattering. The basic assumption of Mie scattering theory is the following: light
scattering occurs when a light beam illuminates an inhomogeneous medium, when there are
particles with sizes that are approximately equal to the wavelengths of the light beam. Then,
the relative scattering intensity varies as a function of the angle of the light beam [Yu et al.,
2017].

The theoretical determination of which variables to use in order to calculate a PM sensor
output, empirical verification of these variables which are sensor-dependent, and determin-
ing the ideal wavelengths and incidence angles of the laser beam fall outside the scope of this
research, therefore I refer to Yu et al. [2017]. In this research the low-cost sensor is perceived
as black-box: the digital sensor output is used for the correction model.

2.3 correction models

To create a correction model for low-cost ambient air quality sensors empirical data is needed.
Empirical data is data or evidence that originates in or is based on observation or experience.
Data for environmental phenomena such as temperature, relative humidity, air pressure,
wind speed and wind direction, and particulate matter are also time series datasets. Time
series datasets show long or short-term behavior of multiple phenomena, plotted against a
time unit [Liao and Phillips, 2014].
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2.3.1 Vector Autoregression models and cyclostationary processes

For analysis of time series is the Vector Autoregression (VAR) model one of the most com-
monly used, successful, flexible and easy to use [Zivot and Wang, 2006]. An autoregressive
regression model uses previous values of a time series in order to do forecasting [Xiong and
Connor, 2002]. Besides, VAR models are useful to describe the dynamic behavior of time
series. For VAR models it does not matter if time series are stationary or non-stationary, i.e.
if the data fluctuates around a deterministic trend or if the data does not fluctuate around a
deterministic path [Zivot and Wang, 2006; Nelson and Plosser, 1982].

Testing if a time series variable is stationary or non-stationary can be conducted with the
augmented Dickey-Fuller test [Tseng et al., 2017]. The goal of the test if to check if the dataset
has a unit root characteristic. In the test, the null hypothesis is that the dataset has a unit root
characteristic, also known as random walk, and is therefor non-stationary. The alternative
hypothesis is that the dataset has no unit root and is therefore stationary [Dickey and Fuller,
1979].

Environmental phenomena such as temperature and humidity follow a day-night and
seasonal rhythm, and amounts of PM have over days a rush hour - non rush hour rhythm.
Therefore, like many processes encountered in nature, they have a periodic rhythm. This
type of data has than statistical characteristics that vary periodically with time and they are
called cyclostationary processes [Gardner et al., 2006].

In the field of real-time river flow forecasting, Xiong and Connor [2002] analyzed four
types of autoregressive models: the linear autoregressive model, a ”piecewise” linear model,
a ”piecewise” linear model with fuzzy thresholds, and a neural network. Xiong and Connor
[2002] compared those four error correction models, to improve the model simulated river
flows with daily time resolution [Pianosi et al., 2014], i.e. to improve one dataset with help of
another reference dataset of ”ground truth”. They concluded that the simpler linear models
provide equivalent performance compared to the more sophisticated models [Pianosi et al.,
2014].

2.3.2 Vector Auto Correction Models

Like economic variables, variables regarding environmental phenomena may exhibit upward
and downward movement through time. When in a stationary time series dataset a set of
integrated variables change jointly through time, they are called co-integrated [Engle and
Granger, 1987]. Then, linear combinations of those integrated variables are stationary. The
linear combinations that link those variables of different datasets to a common trend path
are the co-integration relationships [Kilian and Lütkepohl, 2017].

Using a Vector Error Correction Model (VECM) is a convenient parametrization of a VAR

model [Kilian and Lütkepohl, 2017]. VECMs models are mostly used for predicting interde-
pendent time series systems and for analyzing dynamic impulses from random interferences
in a system [Tseng et al., 2017]. A VECM can be used for empirical research, to observe
dynamic relationships among factors affecting a phenomenon.

2.3.3 Correction model as part of a correction system

Pianosi et al. [2014] their research was on the improvement of forecasts of water flows in
river catchment areas by applying a correction model. In their research one correction model
would be applicable if particular meteorological or hydrological conditions were met, while
another correction model should be used if for other meteo-hydro conditions. Thus, de-
pending on these different modes of the system, different correction models should be used.
Therefore, Pianosi et al. [2014] proposed the use of a classification system that identifies the
current mode of the river system, before applying a correction model that would improve
the forecast of the water flows in the river area.

In the research of Pianosi et al. [2014] three system modes were identified: I) low rainfall
forecast (r) and low-flow conditions (q), II) low rainfall forecast and high-flow conditions,
and III) high rainfall forecast. In their work, the classification is reproduced with if-then
rules:

• if r < R and q < Q, then use ”Mode I”

• if r < R and q ≥ Q, then use ”Mode II”

• if r ≥ R, then use ”Mode III”
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Where R and Q are thresholds for rainfall forecast and the height of the river flow, re-
spectively. The ”Mode” specifies which correction model should be applied under those
conditions [Pianosi et al., 2014].

In the current research, on improving data from low-cost PM sensors with help of a correc-
tion model from high-quality reference monitors, also different ”modes” of the system could
be identified. For example the wind direction, the time of the day, or the season could be the
system classifiers in the research.

2.4 related work in the field of low-cost air
quality monitoring

This section elaborates on four studies regarding the utilization of a low-cost air quality
sensor networks. For some of these research projects is data acquisition – and in some cases
also data processing – executed using a distributed Wireless Sensor Network (WSN).

2.4.1 Multivariate correction model HDMR

Cross et al. [2017] researched the performance of low-cost gas sensors measuring NO in an
ambient setting. Their tests with sensors from the manufacturer Alphasense showed that
drift resulting from temperature changes can exceed a bias of 600 parts-per-billion, which is
equivalent to 480µm/m3 of NO, if temperature changes are unaccounted for in calibration of
the sensor. Thus, temperature has a significant effect on the sensed value of NO concentration.
Although the Alphasense organization provided instructions for correcting for temperature,
accompanied with a correction table, that approach gave only stable results when tempera-
ture was below 20 degrees Celsius.

Therefore, [Cross et al., 2017] used a multivariate model: they created a High-Dimensional
Model Representation (HDMR). That is a numerical method for capturing input-output sys-
tem behavior without reliance on a physics-based model or an empirical correction procedure
which would be provided by the sensor manufacturer. It consists of a general set of quantita-
tive model assessments and analyses of this input-output behavior. A HDMR can produce a
model that captures interdependencies of the input variables and can provide a mathematical
description of the system. When applied for air quality data, this method can identify and
quantify the sensor response to interfering gas species and multiple environmental variables
simultaneously. The modeling procedure of HDMR involves the following steps:

1. Specify the maximum amount of variables that are used in the algorithm;

2. Do a statistical test – F-test – to identify the input variables and combinations of input
variables that contribute significantly to the variation in the output of the phenomenon
of interest;

3. Calculate coefficients for the correction formulas using Least Squares Analysis, mini-
mizing the deviation between the HDMR model prediction and training data.

In the work of Cross et al. [2017] were various metrics used in order to evaluate the model.
Those were the slope and intercept of a linear least squares regression of the model output
with reference measurements, the coefficient of determination of the linear fit (R2), RMSE,
Mean Absolute Error (MAE), and Mean Bias Error (MBE). Outputs of the HDMR model are
plotted against raw sensor data, training data, and test data. See table 2.1 for more of their
results and conclusions.

2.4.2 Evaluate performance of each individual sensor node

Castell et al. [2017] researched performance of low-cost AQMesh air quality sensors measur-
ing CO, NO, NO2, O3 and PM2.5. The research objective was performance evaluation of the
individual sensors: not creating or applying a correction method on their output data. Their
research was performed in both a laboratory and ambient setting, of which only the latter is
relevant for this current research. Castell et al. [2017] their conclusion was that each of the
AQMesh nodes yield slightly different data outputs for the same location and time. There-
fore, examining the quality of output data from each node before deploying it in the sensor
network is important.
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2.4.3 Quantify performance of sensors under real-world conditions

Mukherjee et al. [2017] quantified the performance of two types of PM sensors over a period
of 12 weeks in an ambient setting. Performance was expressed in accuracy, precision and
reliability. One of the objectives of their study was whether the PM sensors could be used
as part of an ”early warning system” for supporting decision making, in order to reduce
human exposure to excessively high concentrations. The OPC-N2 and AirBeam PM sensors
used in the study cost respectively around $450 and $250, and are therewith in a higher price
class than the sensor nodes used for the current study. Outputs from these PM sensors are
not corrected for interference effects: the results are compared with reference monitor results
without applying a correction.

The authors found that sampling orientation has a major major effect on the correlation
coefficient and the linear regression coefficients, when compared to the reference monitors.
Further, Mukherjee et al. [2017] concluded that measurements were influenced by aerosol size
distribution and the meteorological environment, and that ”quantification of performance of
sensors under real-world conditions is a requisite step to ensure that sensors will be used in
ways commensurate – proportional – with their data quality” [Mukherjee et al., 2017].

Mead et al. [2013] acknowledged the importance of PM in air quality but focused in their
research on the capability of electrochemical sensor which do gas-phase measurements of NO,
NO2 and CO concentrations. In the study were mobile and static sensor nodes used, where
only the latter is relevant for this study. For an overview of the discussed studies in the field
of low-cost air quality monitoring see table 2.1.

2.5 conclusion related work
To conclude, when a sensor system is deployed in ambient conditions are calibration proto-
cols of low-cost air quality sensors needed to overcome potential measurement error [Lewis
and Edwards, 2016; Cross et al., 2017]. The lifetime of an air quality sensor can also im-
ply a need for a time-dependent sensitivity that should be corrected for: contaminants can
be trapped in the sensor, wide variations in temperature and relative humidity exposure, or
evaporation of the electric components can influence the sensitivity of the sensor [Cross et al.,
2017]. However, new sensors will be used during the data collection period of one month in
the current study: drift caused by lifetime issues can be neglected.

Further, in related work is stated clearly that air pollution concentrations – among with
PM – can be affected by interferences from other environmental conditions such as tempera-
ture, relative humidity, wind speed, wind direction, and air pressure [Postolache et al., 2009;
Cross et al., 2017]. Therefore, these conditions should be measured, correlated with PM and
eventually corrected for in the research.





3 M E T H O D O LO GY

In this chapter the methodology for this research is discussed. The chapter is subdivided into
sections that cover an important topic or step in the proposed methodology. These steps are:
designing and engineering the sensor nodes, data collection, data preprocessing, reliability
of the sensor node, baseline measurement, relations between independent and dependent
variables, creating correction models with the stepwise Multiple Linear Regression (MLR)
method, and finally the validation of the correction models. Figure 3.1 shows an overview
of this proposed methodology. This chapter focuses on the theoretical background and re-
quirements regarding the methodology. The next chapter – Implementation of the methodology
– elaborates on the practical implementation and intermediate results.

Figure 3.1: Systematic overview of the methodology

3.1 create sensor nodes
Regarding hardware, the minimal requirements to conduct this research are two low-cost
sensor nodes, placed at two locations. Those sensor nodes contain two low-cost particulate
matter sensors, two temperature and humidity sensors, and a microcontroller which reads
these sensors and stores the data. Besides, the hardware should be installed in a water-tight
enclosure while at the same time allowing ambient air to flow along the sensors.

3.2 study area and data collection
For this research three different data sources are used from where data is acquired. The
datasets contain data on PM2.5, PM10, relative humidity, air temperature, barometric air pres-
sure, wind speed, and wind direction. For a period of at least 3 weeks the data will be
collected.

3.3 sensor node reliability
The next steps in the methodology are combining the sensor data with reference data, based
on time and location, and assessing the reliability of the sensor data. First, the sensor node
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reliability is discussed, containing of the identification of gross errors, identification of sys-
tematic instrument error and creation of a noise model for visualizing the random errors.
This data cleaning process starts with removing the gross errors from the PM data acquired
with the low-cost sensors. Thereafter, the systematic errors are removed. The high-quality
reference dataset is not adapted.

Removing gross errors

Gross errors can be a result of user error or equipment failure. The amount of times this
type of error shows up is infrequent [Fisher and Tate, 2006]. When the sensing instrument
malfunctions the dataset will contain such a gross error or outlier. Using the data snooping
method the outliers are removed from the PM datasets. Data snooping utilizes the Least
Squares Adjustment (LSA) approach in order to acquire a mathematical model fit of the data
[Jazaeri and Amiri-Simkooei, 2013]. Based on the chosen polynomial degree, this model fit
yields an amount of coefficients. Consequently, those coefficients are used to calculate new
values, using the original observation. The difference of the new value with the original
observation is the residual. If the maximum residual exceeds a threshold, then the original
observation to which the residual belongs is removed from the dataset. This process is
repeated until there are no more residuals exceeding the threshold. The threshold is often a
value that is based on the dataset itself: for example one, two or three standard deviations of
the error. How many standard deviations there will be used in this research is determined
heuristically, i.e. by trial-and-error.

After the removal of outliers from the dataset, the systematic error is removed from the
PM2.5 time series.

Removing systematic error

Systematic errors are the result of a deterministic system which, if known, may be repre-
sented by a relationship [Fisher and Tate, 2006]. Systematic error is also called ”Mean Error”
and indicates the systematic under- or over estimation of measured values – bias – in the
dataset [Fisher and Tate, 2006]. It can be either positive or negative. If the systematic error
is relatively big, there is a greater difference between RMSE and standard deviation. If the
systematic error is small or zero, RMSE and standard deviation are the same. Systematic
error is calculated with the following formula from Lemmens [2017]:

SE =
1
n

n

∑
i=1

zM
i − 1

n

n

∑
i=1

zR
i (3.1)

Where zM
i and zR

i are the observations from the low-cost sensor and reference monitors,
respectively.

Systematic error is removed from the datasets before evaluating the performance of the
correction model with the RMSE metric. This implies that data from a reference monitor is
necessary. However, in a real-world scenario not all low-cost sensor nodes will be colocated
with reference monitors during the whole data collection period. Therefore, in order to
calculate the systematic error of an individual sensor node it should then be colocated with
a reference monitor instrument for a short period (e.g. one week) to collect enough data to
assess the systematic error, and should then be relocated to the initial place in the network.
This is in line with Castell et al. [2017] who stressed the importance of examining output
data from each sensor node before deploying it in a sensor network.

Finally, each dataset contains some random error, which are errors with zero mean. Ran-
dom errors are represented by random variations around the true reference value. The
amount of random errors may increase if the amount of measurements increases [Fisher
and Tate, 2006]. The objective for the correction model in this research is to decrease the
random error of the low-cost sensor.

3.4 combine various datasets
Based on date, time and the location in the study area the datasets from different sources
are combined into two separate datasets: one for each of the two sensor node locations. An
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algorithm 1 performs this combination. The first steps for preprocessing in the proposed
methodology are resampling and normalization. Resampling and normalization are neces-
sary to make the time series comparable which is needed before the correction model can be
created.

Resampling with interpolation

When the temporal sampling frequencies are unequal the values from the datasets may be
incomparable. Therefore, in the reference datasets and sensor node datasets the temporal
sample frequencies should be resampled. Sensor data that is not recorded on an hourly basis
is averaged to one-hour values, therewith using the same approach as in the work of Borrego
et al. [2016].

Normalization

With feature scaling is each value for the various variables normalized to a 0 to 1 scale, so
the time series have a consistent distribution. The following equation 3.2 is used.

zi =
xi − min(x)

max(x)− min(x)
(3.2)

In equation 3.2 is each min(x) and max(x) the minimum respectively maximum value of a
specific variable. For example, the minimum and maximum value for PM2.5 low-cost sensor
1, low-cost sensor 2 and the reference monitor. Further, xi is the current data value and zi
is the normalized data value. The feature scaling procedure is applied after removing gross
errors and systematic errors.

3.5 calculate baseline measurement statistics
After removing the gross errors from the data collection of the PM sensors is the baseline
measurement conducted. The baseline measurement is the ”before” measurement: before any
corrections are done on the datasets except for preprocessing. The data quality is expressed
in accuracy and precision. Accuracy is how close a measurement is to the true value, ex-
pressed in RMSE, revealing the random error of the measurements. Precision is how close an
estimate is to the mean estimate, expressed in Standard Deviation (SD), revealing the system-
atic measurement error. Accuracy and precision are equal if the mean error is zero. The error
of the given set of low-cost sensor measurements is determined by comparison with another
set of known and more accurate measurements. That data is the ”reference” data and it is
assumed that it is error free [Fisher and Tate, 2006].

Although Cross et al. [2017] investigated a gaseous air pollution indicator – Nitrogen
Oxide – they used relevant criteria for evaluating the correction model. Those include Root
Mean Square Error, coefficient of determination R2, and the slope and intercept of the linear
least squares regression of the model output with reference measurements. Next to those
evaluation criteria are also the Standard Deviation and Systematic Error calculated in order
to evaluate the instrument precision during the baseline measurement. Besides, a noise
model is created: that shows the error distribution model graphically.

Evaluation metric: RMSE

In the current research is the RMSE used as evaluation metric for the assessment of the cor-
rection model performance, and not for example the MAE According to Chai et al. [2014], the
requirements for choosing RMSE as evaluation metric are that the error is expected to follow
a Gaussian distribution, the sample size is large (> 100), and the error should be unbiased,
i.e. distributed randomly. The RMSE is chosen since the error distribution for the low-cost
sensor is expected to be a Gaussian distribution, and there are over 600 samples. Moreover,

1 https://github.com/NiekB4/aqs

https://github.com/NiekB4/aqs
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after removing the systematic measurement error the only error left in the dataset should be
random error. The formula for RMSE is shown in equation 3.3:

RMSE =

√
∑n

i=1(z
M
i − zR

i )
2

n
(3.3)

Where zM
i is the observation from the low-cost sensor, zR

i the observation from the high-
quality reference monitor from the same location and time interval, and n the number of
observations. In this study, RMSE is used as evaluation criterium, i.e. to assess the perfor-
mance of various correction models and consequently select the best one.

Coefficient of correlation and coefficient of determination

The coefficient of correlation – R – is calculated according to equation 3.4. This coefficient
is relevant for the baseline measurement and for investigating the correlations between the
candidate independent variables. To calculate R2 square R.

R =
σxy

σxσy
(3.4)

Where x is the vector of observations for the low-cost sensor and y the vector of observa-
tions for the reference monitor.

Noise model

With the noise model the observation error of the low-cost sensors is indicated graphically.
The graph can then reveal the type statistical distribution (e.g. normal (Gaussian), La Place,
binomial, skewed distributions) [Forbes et al., 2011]. As indicated by Chai et al. [2014], a re-
quirement for using the RMSE metric as evaluation criterium is that the unbiased observation
error has a normal distribution. Thus, the error of the observations in this research should
also be unbiased: the error distribution should have zero mean. Figure 3.2 shows the normal
(Gaussian) distribution of the error of two randomly generated vectors (n=1000), with and
without bias. The error distribution of the low-cost sensor dataset should look like the green
graph in 3.2, before the baseline RMSE is calculated.

3.6 relationships between the variables
Which independent variables should be included in the correction model? Datasets for the
following candidate environmental phenomena are available at the study area: humidity,
temperature, air pressure, wind speed, and wind direction. Each variable is investigated
separately, whereby the correlation of the variables with PM are calculated.

Moreover, the multicollinearity between the candidate should be minimal [Ausati and
Amanollahi, 2016]. The multicollinearity is the collinearity between each independent (can-
didate) variable. With the Variance Inflation Factor (VIF) metric multicollinearity between the
independent variables can be detected. If the VIF between two independent variables is above
5 those independent variables are multi-collinear and should not be included in the model
[Ausati and Amanollahi, 2016; Berninger et al., 2018]. VIF is calculated as:

VIF =
1

(1 − R2)
(3.5)

Where R2 is the coefficient of determination, i.e. the square of the coefficient of correlation
(equation 3.4).

Correlations with related environmental phenomena

Where the VIF is calculated to check for multicollinearity of two independent variables, the
scatterplots and correlation coefficients are created and calculated to check for correlation
between the independent and dependent variables. Using scatterplots and correlation co-
efficients – calculated using equation 3.4 – are relevant related environmental phenomena
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Figure 3.2: Noise models with and without Systematic Error

selected. The candidate phenomena which are suggested in the related work and for which
data is collected are relative humidity, temperature, air pressure, and wind speed.

3.7 calculate correction model parameters for
various settings

Before creating a correction model it is useful to have a specification of the type of correction
model beforehand. In this paragraph four typologies for the correction models are proposed
– A, B, C and D – which vary in two dimensions: the amount of parameters and the domains
(see figure 3.3).

Proposed typologies for correction models

First, the variables that can affect the PM concentrations are a dimension in which correction
models vary in this research. This can be expressed in the amount of parameters that are
included.

For the most basic correction model in this study are influences of other environmental
phenomena neglected. Besides a constant value, there is then only one parameter introduced
that corrects the given PM concentration. This is a correction model of type A or C as shown
in figure 3.3. Introducing one or more environmental phenomena to the correction model re-
sults in more parameters that are included in the mathematical correction model, resulting in
a model of type B or D. Those parameters correct for the collected quantitative environmental
phenomena humidity, temperature, air pressure or wind speed. A particular implementation
of a correction model can consist of various combinations, e.g. a parameter for PM and hu-
midity only but not for the other variables, or only for PM and air pressure, or parameters
for both of the PM sensors on a sensor node and temperature, etcetera. As long as there is at
least one PM time series included in the training dataset.

Another dimension in which a correction model varies is the amount of domains for which
the correction model is specified. The domains are for example a time domain (peak hours
and off-peak hours, seasons), the wind direction, or a specific temperature domain. The
basic correction model is a generic model that is used on the whole dataset: there are no



28 methodology

Figure 3.3: Typologies for the correction models

domains of the other variables where the correction model is not used. This would be a
generic correction model of the proposed type A or B (figure 3.3). On the other hand, a
specific correction model takes account of those domains (type C or D). It is then possible
that there will be different parameters used in the correction model: there are basically more
correction models and which one to use depends on the value of an external variable. Like
in the work of Pianosi et al. [2014], the current mode of the system can then be classified, in
this case the current mode for air quality in the built environment. For example, when it is
peak hour the correction model could use different parameters than during off-peak hour, or
depending on the wind direction another set of parameters could be used. The domains are
empirically determined. Using more of those domains introduces more complexity to the
model.

Finally, it is not necessary that the domain to select is classified based on quantitative data
from variables in the correction model. The classes can also be categorical. For example, the
moment on the day or the wind direction can be a classifier, although it is not included as
variable in the correction model. Hence a ”Type C” model can exist.

Calculating parameters

Parameters for all four model types are calculated using the polynomial regression method.
These polynomial regression models vary based on (I) the amount of environmental phe-
nomena that are taken into account, and (II) the degree of the polynomial regression.

First, for a correction model there could for example only one parameter be calculated,
which takes only the PM2.5 value of the low-cost sensor into account: type A or type C. This
is polynomial regression with degree 1 and thus simple linear regression. On the other hand,
also a parameter for other candidate environmental variables can be introduced in the cor-
rection model, for example parameters for humidity and air pressure (type B or D). In that
case, the method used is Multiple Linear Regression MLR. The MLR method is chosen since it is
the most used linear model in the field of air quality forecasting, and MLR models have high
interpretation of accuracy [Pires and Martins, 2011; Ausati and Amanollahi, 2016]. ”Multi-
ple” in multiple regression relates to the the amount of independent variables. ”Multiple”
thus not refers to the amount of dependent variables. The method which takes more than
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one independent as well as more than one dependent variables into account is Multivariate
Regression.

Moreover, there are various versions of correction models created, varying in amount
of independent variables included and the polynomial degree. These models are created
according to the stepwise method: each time when a new variable is included or another
polynomial degree is used, a new correction model is created which could result in the
”best” performing correction model. With this method, the various correction models and
their results are stored, whereafter the performance of the correction models is evaluated.

In this research, two possible correction models for improving the accuracy of low-cost PM

sensor data are distinguished. Those are MLR models with a polynomial degree of 1 and MLR

models with higher polynomial degrees.
The first has the form of equation 3.6:

Y = a + p1X1 + p2X2 + ... + pkXk (3.6)

With the dependent variable Y as the predicted value for PM2.5, the intercept a, the param-
eters p1, p2 ... pk from the linear fit, and the predictor variables X1, X2 ... Xk, i.e. values from
the dataset for the phenomena taken into account (PM, humidity, air pressure, etcetera).

A MLR correction model take would take higher polynomial degrees into account has the
form of equation 3.7:

Y = a + p1X1 + p2X2
1 + ... + pkXk

1 (3.7)

Where X1 is PM or a related environmental variable – e.g. humidity, wind speed, etcetera.
The equation 3.7 can then be extended with X2, X3 ... Xk, representing data from from related
environmental variables. Thus in those MLR models are the terms – values from the dataset
– in some cases squared.

How to achieve the values for the parameters? There is no exact solution to calculate the
unknown parameters. Namely, for there is no line of the form Y = a+ bX that goes trough all
data points in the time serie datasets. Since there are many observations available compared
to the amount of unknown parameters it is an over-determined system. Then a least squares
fit can be used to calculate the unknown parameters. Besides, the samples in the dataset are
collected with instruments that are sensing in the outdoor environment and can thus contain
some error. The least squares method allows the data – observations – to change a small
amount. The least squares approximation is the best estimate for a line which goes through
nearly all data points [Lemmens, 2016c].

As described in Lemmens [2016b], Lemmens [2016c] and Jazaeri and Amiri-Simkooei
[2013], the general requirement of the leas squares approximation is to minimize the sum
of squares of the residuals. To find the unknown parameters of the least squares fit, find the
values for x in equation 3.8.

x = (AT A)−1 ATy (3.8)

Where the result x is a vector with the intercept and coefficients from the linear fit, A
is a matrix that represents the observations from the included time series and y a vector
representing the ground truth data. The intercept and coefficients will be used to calculate
new values – ”corrected values” – for PM2.5.

Algorithm

Various correction models will be investigated. To evaluate the performance of each correc-
tion model and to validate the performance on data from a sensor node on another location
is an algorithm designed and implemented (see figure 3.4 and algorithm 3.1). This algorithm
takes various datasets and settings as input, such the normalized and cleaned sensor data,
reference data, the amount of polynomial degrees, how many parameters to use and for
which variables. First, the baseline measurement is conducted: the RMSE of the PM data is
calculated. Then, using the various inputs, the parameters are calculated according to the
MLR method. Consequently, using those parameters, new values for PM are calculated. Fi-
nally, the RMSE of the new dataset is computed. Algorithm 3.1 is the proposed algorithm in
pseudocode.
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Figure 3.4: Schematic overview of the proposed algorithm

Algorithm 3.1: Algorithm for creating and evaluating correction models
Data: List with normalized sensor datasets
Data: List with normalized reference monitor datasets
Data: List with normalized environmental sensor datasets
Data: List with polynomial degrees to use for the iteration
Result: Evaluation statistics showing performance of correction model

1 initialization;
2 for dataset in list with normalized sensor datasets do
3 Set currentSensorDataset;
4 Set currentReferenceMonitorDataset;
5 Set currentEnvironmentalSensorDatasets;
6 Set degrees;
7 Calculate evaluation metric RMSE;
8 for c do
9 item in degrees

10 A = matrix with sensor observations;
11 B = vector with ground truth;
12 Param = solve linear system with LSA;
13 for c do
14 i in len(Parameters)

15 newSensorDataset = Param[i]*currentSensorDataset[i]**degrees[i]
residualsCurrentSensor = currentSensorDataset - newSensorDataset;

16 Calculate evaluation metric RMSE again;

Example of the implementation

Finally, the last paragraph of the experimentation chapter describes an example given where
all various correction model parameters are logged in a table. The example elaborates on
the situation of the most basic correction model: only one parameter for the sensed PM2.5

value and no parameters for other eventually related environmental phenomena. The table
includes the parameters, the sum of the squared residuals, RMSE and the correlation coeffi-
cient R. Further, the parameters that are achieved with the polynomial fit. Besides, the noise
model that represents the random instrument error is included in the example implementa-
tion.
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3.8 performance of the correction model
Using the best behaving correction models from the previous step, the statistics for the cor-
rected datasets after applying those correction models are calculated. Those statistics are
calculated using MLR correction models from the same sensor location as for which those
correction models are designed. The evaluation metric for the performance of the model is
RMSE, as discussed in paragraph 3.5.

3.9 validation of correction models
In this final step are the parameters in the MLR correction model from the dataset of sensor
node location 1 used for the dataset of sensor node location 2, and vice versa. The correction
model that produces at the other locations datasets with the lowest RMSE is most reliable.

3.10 conclusion methodology
Figure 3.1 shows a systematic overview of this methodology. When all those steps are exe-
cuted successfully the main research question and its subquestions can be answered.





4 I M P L E M E N TAT I O N O F T H E
M E T H O D O LO GY

Details of the implementation of the presented methodology and the various experiments
that have been conducted are discussed in this chapter. It follows the same structure as the
previous chapter.

4.1 create sensor nodes
Since this research involves accuracy analysis of the low-costs PM sensor that is the most
important hardware component. Further, the microcontroller which reads and stores the data
is also of high importance. Other hardware components, i.e. the temperature and humidity
sensors, are of less importance since this data can eventually be acquired via external sources
– like with air pressure, wind speed and wind direction.

Particulate Matter sensor

The chosen low-cost air quality sensor is the ”Plantower” PMS5003
1 optical particle counter.

This PM sensor measures scattered laser light from a stream of aerosol particles from which
the particulate mass concentration is reconstructed, as discussed in section 2.2.2.

This sensor is chosen because it uses the laser scattering method, there is an exhaustive
manual available, the sensor itself is already in stock at the University, and the price of e20

makes it a low-cost sensor. The PMS5003 works on an electrical voltage of 5V and contains a
fan which creates the air flow through the sensor. One disadvantage is that at the beginning
of this research there was no reliable (open source) software library available in MicroPython.
Namely, the used microcontroller needs to be configured with that programming language.

For this project, one sensor node will contain two PMS5003 sensors. Namely, two sensors
are the minimum amount to provide data for the precision measurement of this instrument.
Given that the PMS5003 uses the UART interface for the data output, two UART interfaces
on the microcontroller is a must.

Microcontroller

For reading, storing, and transmitting the sensor data is the Pycom LoPy2 used. This micro-
controller is chosen because it contains an Espressif ESP32 chipset which features Wi-Fi and
Bluetooth communication. The controller can be scripted with the MicroPython program-
ming which is a lightweight version of the Python language. This controller has 520KB RAM
processing memory and 8MB flash memory for storage and works on input voltages ranging
from 3.5V to 5.5V. Moreover, the LoPy features LoRaWAN communication, the availability of
the two required UART interfaces, two I2C interfaces, and ample analogue and digital input
and output pins for hardware. The LoPy is available for a price of around e35 per unit.

Temperature and humidity

The chosen temperature and humidity sensor is the digital AM2302
3 sensor, available for

around e8 but already in stock at the University. The AM2302 works on input voltages
ranging from 3.3V to 5.5V. This sensor is chosen because it is pre-calibrated, has low power
consumption, and there is a MicroPython library available for reading the AM2303 sensor
data.

1 http://www.aqmd.gov/docs/default-source/aq-spec/resources-page/

plantower-pms5003-manual_v2-3.pdf

2 https://pycom.io/wp-content/uploads/2018/08/lopy-specsheet.pdf

3 https://www.adafruit.com/product/393
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Assembly

Each of the two sensor nodes contain additional components next to the individual sensors
and microcontrollers. These are: a breadboard and wires for physically connecting the sen-
sors and microcontroller; a LM2596

4 step-down converter to decrease the voltage in cases of
sudden peaks; a MT3608

5 step-up converter to increase the voltage to a stable 5V which is
needed for the PMS5003; a plastic waterproof box for the microcontroller compartment (e6

at local hardware store); half-open cover material for the sensor compartment (sponsored by
the regional environmental agency); a plastic waterproof box (e3) for the electricity cable
(e8); and a mobile phone charging adapter (e12). The total costs for hardware of one sensor
node is thus e123.50. Figure 4.1 is a schematic overview of the sensor and microcontroller
on the sensor node.

Figure 4.1: Schematic overview of the sensors and microcontroller on a sensor node.

Configuring software for sensor nodes

In parallel with the process of making two sensor nodes, each individual sensor was also
configured with scripting software in the MicroPython language. The scripts can be found
on the accompanying GitHub page6. The flowchart for the software on each sensor node is
depicted in figure 4.2.

There are three main functions for the software on the LoPy microcontroller. The first main
function is reading raw data from sensors. Each sensor has an own MicroPython library that
fulfills this task. Second, in the main function are the sensors’ sample intervals configured.
This main is an ongoing loop – which would restore if there is an error – and creates one long
string with all the data for a measuring round. This string of data is stored in a .csv file on
the internal storage of the LoPy. Third, software on the LoPy connects via the Telnet protocol
over Wi-Fi with the personal computer to upload the data from the internal storage of the
LoPy to the harddisk storage of the personal computer. This uploading is done once a week,
so the LoPy will not be overloaded with data. Next to that, by visiting the physical sensor

4 http://www.ti.com/lit/ds/symlink/lm2596.pdf

5 https://www.olimex.com/Products/Breadboarding/BB-PWR-3608/resources/MT3608.pdf

6 https://github.com/NiekB4/aqs

http://www.ti.com/lit/ds/symlink/lm2596.pdf
https://www.olimex.com/Products/Breadboarding/BB-PWR-3608/resources/MT3608.pdf
https://github.com/NiekB4/aqs
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Figure 4.2: Flowchart of the software on the sensor node. The main.py is one continuous
loop that would restore itself in case of an error.

node location the state of the sensor nodes can be checked visually and it can be validated
that the data is collected correctly.

Configuring software for reference datasets

The ”ground truth” reference data for PM must be of high quality to create a correction model
for the low-cost sensors. DCMR is the regional institution that installs, operates and manages
those kind of high quality air quality measurement stations in the region of Rotterdam. One
manager of the Air Quality Department of DCMR was the main contact person during the
design and data collection phases of this research. DCMR also provided transportation of the
sensor nodes to and from both locations in Rotterdam.

The measuring network of DCMR for monitoring PM consists of BAM-1020 monitors –
discussed in section 2.2.1 – on ten different locations in the Rijnmond region. Those BAM-
1020 monitors are configured for an hourly cycle. The microcontrollers are configured for a 15

minute cycle, thus for every data record from the BAM-1020 there are four data records from
the sensor nodes. This redundancy in the dataset allows to smooth the data after afterwards:
it allows to execute a resampling operation whereby outliers could be removed and random
errors can be smoothened using the median or average value for the hour.

DCMR publishers their data from the BAM-1020 monitors in three ways as open data. One
possibility is to use the online viewer7 on a website of RIVM, which is live and unvalidated
data. Another possibility is to gather the data in .csv format from the website. That is
validated by extra reference stations using the gravimetric weight method and if necessary
extra corrected for weather influences.

In this research is chosen for the third way of retrieving the data, which is via an Application
Program Interface (API), owned by the initiators of www.luchtmeetnet.nl and free to use un-
der the CC BY-ND 4.0 license. With HTTP GET requests one can retrieve live data from all
monitoring stations that are connected. The data is updated every hour with the newest data
– thus from the previous hour. The HTTP response is in the JavaScript Object Notation (JSON)
format. Because the API uploads during the whole day and night the PostgreSQL database
must also be 24/7 online and is therefore hosted on a virtual machine of the University. With

7 www.luchtmeetnet.nl/

www.luchtmeetnet.nl/
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the programming tool Node-RED is this JSON response stored in a PostgreSQL database. The
settings for Node-RED gathering and storing Luchtmeetnet data are included in Appendix B
of this report.

Figure 4.3: The variables, their data types, and relations between the datasets from different
sources. Only the bold attributes are used in this research. The underlined
attributes are the dependent and independent variables.

While the Luchtmeetnet API provides near-live data on PM2.5 and PM10 for the monitor-
ing stations, another API provides data on the meteorological conditions air pressure, wind
speed and wind direction. That is the Weerlive API which forwards data from the Dutch
meteorological institute KNMI. As with the Luchtmeetnet API, HTTP GET requests are used
and the response is in JSON format, and the data is gathered using Node-RED, see Appendix
C. Figure 4.3 shows the relationships between the different dataset in a UML diagram. Data
for the luchtmeetnet and weerlive tables are both stored in the PostgreSQL database. The
sensordata is stored in .csv files.

4.2 location of the sensor nodes and data col-
lection

Since the goal of this research is to create a correction model for PM measurements, preferably
PM2.5, the created sensor nodes should be located close to the monitors that supply the
ground truth. At 7 of ten locations where DCMR monitors particulate matter where also PM2.5

concentrations monitored. Of those locations are two sufficient locations chosen, based on
two requirements. The locations must be relatively close to each other but must have two
distinct profiles.

The chosen monitoring stations are those at Pleinweg and Zwartewaalstraat, both in Rot-
terdam, the Netherlands, see figure 4.4. The profiles of those locations are distinctive since
the Pleinweg station located between a busy inner-city road and a service road. The Zwarte-
waalstraat monitor, on the other hand, is a ”background” monitor. It is located next to a small
park and a – by then – vacant building in a residential district (figure 4.5). The historic key
figures from the DCMR data collection at both locations for the year 2017 are shown with a
yellow background in figure 2.4.

Figure 4.6 shows a schematic overview of the placement of the sensor node and reference
monitor. The air inlets are placed at a height of 3 and 2.2 meters, for the reference monitor
and sensor node respectively. These heights correspond to the guideline from the European
Union, which states that those heights should be between 1.5 meters and 4 meters [EU,
2008]. The maximum distance between the air inlets of sensor node and reference monitor
is 0.8 meters. Since the inlets are not exactly on the same place it cannot be guaranteed
that the instruments will sense the same concentrations at the same moments. However,
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Figure 4.4: Locations of the sensor nodes in the Rotterdam study area. Dienst Centraal
Milieubeheer Rijnmond (DCMR) has reference monitors on those two locations.
These locations are chosen because they are close to each other and have a dis-
tinctive profile.

Figure 4.5: Sensor node location ”Pleinweg” (left) and ”Zwartewaalstraat” (right). One is
located near a busy inner-city road while the other is located in a calm area of a
residential district. Both are located close to each other.
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Figure 4.6: Schematic overview of the placement of the sensor node and the reference
monitor. The reference monitor from DCMR is placed in accordance with the
2008/50/EG guideline [EU, 2008]. The low-cost sensor node is also placed in
accordance with that guideline, but placed on .
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Sensor node location Data collection period
Observations
in dataset

Missing
observations

Uptime

Pleinweg
16-05-2018 09:30 until
10-06-2018 23:30

635 4 99.3%

Zwartewaalstraat
16-05-2018 10:30 until
10-06-2018 23:30

657 0 100%

Table 4.1: Information regarding the data collection of the sensor nodes at Pleinweg and
Zwartewaalstraat.

the concentration from the BAM2-1020 reference monitor is valid for at least the immediate
surrounding, thus also for the location where the low-cost sensor node is located.

The casing of the low-cost sensor is open, allowing the air samples to flow through the
sensor node. Possible ways in which the casing can affect the air stream through the sensor
node and the performance of the sensors is not the focus of this research. The goal of this
research is to assess and improve the data quality from the low-cost sensors. Both sensor
nodes are identical thus it is assumed that at both sensor nodes the casing will affect sensor
performance in the same way. So it is assumed that the experiment setup will not affect the
data quality for this research.

During one month – from 16th of May 2018 until 19th of June 2018 – data was collected.
The two sensor locations at Pleinweg and Zwartewaalstraat were visited weekly in order to
download the data from the microcontroller. When the data was downloaded new .csv files
are stored on the harddrive of the personal computer. Next to that, the data from this new
file is copied to a .csv file that contains all data from the corresponding street which has been
collected until that particular moment.

For the sensor location at the Pleinweg are in total 3258 data records collected. The accom-
panying .csv file is 171kB. At the Zwartewaalstraat the sensor node yielded 3273 data records
in total, stored in a .csv file of 176kB.

4.3 sensor node reliability
Concentrations of PM, humidity, and temperature are monitored with the engineered sensor
nodes. Next to that, the reference monitors also measure PM. And the Weerlive reference
monitor measures humidity, temperature, wind speed, wind direction and air pressure. The
raw data originating from the sensor nodes is stored in separate .csv files, while the raw
reference data is stored in a PostgreSQL database. Due to an error with the database storage
the reference data was missing from the 11th of June 2018 onwards. Therefore, only the data
from 16th of May 2018 11:00 until 10th of June 2018 24:00 is selected for further analysis.
During preprocessing are the sensor node and reference datasets combined based on time
and location and stored in two datasets: one for the location Pleinweg and one for the location
Zwartewaalstraat. Each of this combined and resampled dataset contains one sample per
hour, during 26 days. During the data collection period, the engineered sensor node at the
Zwartewaalstraat worked without errors: there are no time gaps in the time series plots. On
the other hand, the engineered sensor node at Pleinweg malfunctioned. At the morning of
25th of May the data samples of 7:30 and 8:30 are missing, and the first two samples of 28th
of May (0:30 and 1:30) are missing, resulting in a sensor node reliability of 99.3%.

4.3.1 Data quality assessment of low-cost Particulate Matter sensors

Both PM sensors mounted on the nodes at two measurement locations had no remarkable
shortcoming regarding reliability. These scores for the PM sensors correspond to the sensor
nodes general reliability scores (table 4.1).

Figures 4.7 and 4.8 are time series plots of the original PM datasets. Red and orange lines
represent the two PM sensors on the nodes, while the green line represents reference data.
Overall, at both locations the two sensors on the sensor node follow more or less the same
trend compared to the reference monitors. However, the PM data from the sensor nodes are
at most times a factor higher than the reference PM data. It seems that when the PM data
from the reference monitors increases the PM data from the low-cost sensors increases with
a factor. Moreover, both the original and smoothened datasets show high peaks at some
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T=1SD T=2SD T=3SD T=4SD T=5SD
Deg=2 Deg=3 Deg=2 Deg=3 Deg=2 Deg=3 Deg=2 Deg=3 Deg=2 Deg=3

PW sensor 1

Average 185 191 41 36 12 11 2 3 0 0

Median 185 191 40 35 13 11 2 2 0 0

PW sensor 2

Average 155 155 26 23 6 6 0 0 0 0

Median 154 154 27 23 4 4 0 0 0 0

ZW sensor 1

Average 294 298 57 50 16 14 3 5 0 0

Median 291 296 52 48 15 15 2 5 0 0

ZW sensor 2

Average 239 266 41 34 11 9 2 2 1 1

Median 234 263 41 35 10 8 2 2 1 1

Table 4.2: Amount of detected outliers per selected threshold and polynomial degree (N
around 600)

moments. Those can be outliers, although in a large number of cases the peaks are observed
for both sensors at the same time. This can imply that the sensors are sensitive to and affected
by weather conditions or that the value is indeed high in those cases.

Data cleaning

Data cleaning starts with identifying the standard deviation, RMSE and systematic error of
the original observations (table 4.4). Since the calculated systematic error is not zero for all
four sensors, it can be concluded that there is a systematic error in the instruments.

Next to that, possible gross errors or outliers in the original dataset are identified. Fol-
lowing the data snooping method is first a threshold calculated. This threshold is based
on the standard deviation – of the PM values in the sensor node dataset – multiplied by a
heuristically determined factor. Consequently, the unknown parameters are calculated using
least squares adjustment. The polynomial degree is also set based on heuristics. New values
are calculated by using these parameters and the original observations. The residual is the
difference between the original observation and this new value.

The results of table 4.2 indicate that the sensor at the Zwartewaalstraat node has most
outliers. Various settings are used for the polynomial degree and threshold. Figures 4.9
and 4.10 show the outliers in the time series plot. These figures show that values above
200 µg/m3 are gross errors and should be removed. Other high values are not regarded as
outliers and should therefore not be removed.

Instead of removing the whole record from the dataset, and therewith also the temperature,
humidity etc. values, it is chosen to replace the outlier with the median outlier of its 2

neighbors on each side. The advantage of replacing instead of removing is that the arrays of
both sensor 1 and sensor 2 keep the same length, which would not be the case if the outliers
were removed.

The identified outliers, their value in the original dataset, and the replace values are de-
picted in table 4.3. Only the detected outliers with polynomial degree two and a threshold of
4 standard deviations are included in this table. Notice the differences between the original
value and replace value: those are in most cases still relatively limited. The only exception
is the outlier of Zwartewaalstraat sensor 2, where an outlier is detected of size 215.0 but
replaced with 44.0, which is the median of the two neighbors at both sides. After the outlier
removal the dataset is again saved as .csv file.

4.3.2 Assess quality of not-PM datasets

Temperature and humidity sensor

On both sensor nodes, one of the two temperature and humidity sensors yielded no data be-
cause of a hardware error. The other temperature and humidity sensor yielded data, though
for Pleinweg only ±42% and for Zwartewaalstraat ±56% of the dat records are reliable.
Namely, for around half of the data samples the values are ”0”. That means both tempera-
ture and humidity are really 0 degrees Celsius and 0% humidity at those moments, which is
unlikely taking into account the season when the data is collected and the overall trend of the
other data. This happened most of the times for only one observation: the next observation
the sensor was performing well and gave results, so there is a gap of 15 minutes without
data. However, in some cases the data ulaty of the temperature and humidity sensor was
very poor, for example when it yields no data for six observations in a row, i.e. 1.5 hours no
data.
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Figure 4.7: Time series plot for the PM data at Pleinweg, with air quality from PM sensor 1

(red), air quality from PM sensor 2 (orange), and the reference air quality (green).
The time range is from the 16th of May 2018 10:30 until the 10th of June 2018

24:00.
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Figure 4.8: Time series plot for the PM data at Zwartewaalstraat, with air quality from PM

sensor 1 (red), air quality from PM sensor 2 (orange), and the reference air quality
(green). The time range is from the 16th of May 2018 11:00 until the 10th of June
2018 24:00.
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Index in dataset Original value Replace value

PW sensor 1

Average
321

322

205.5
198.0

166.5
167.63

Median
321

322

205.0
199.0

167.75

168.63

PW sensor 2

Average no outliers
Median no outliers

ZW sensor 1

Average
345

346

204.75

206.5
182.13

177.19

Median
345

346

351

203.5
205.5
196.75

170.0
170.0
177.63

ZW sensor 2

Average
345

67

171.0
213.0

145.75

47.5

Median
345

67

172.5
215.0

146.5
44.0

Table 4.3: Detected outliers, their original value and replace value (Threshold = 4 Standard
deviations, Polynomial degree = 2).
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Figure 4.9: Timeseries of Pleinweg with outliers. The most extreme outliers are indicated
with a red cross: those are removed from the dataset.

PM2.5 sensor
Resampling
method

Standard
deviation

RMSE
Systematic
error

SE after outlier
removal

RMSE after oulier
and SE removal

PW sensor 1

Average 32.76 34.93 25.94 25.83 22.91

Median 33.01 35.09 25.94 25.83 23.17

PW sensor 2

Average 26.81 25.42 18.31 18.31 17.63

Median 26.86 25.40 18.26 18.26 17.65

PW reference N.A. 11.76 N.A. N.A. N.A. N.A.

ZW sensor 1

Average 32.20 40.63 33.83 34.03 22.16

Median 32.45 40.65 33.70 33.56 22.18

ZW sensor 2

Average 26.87 31.39 25.23 25.13 17.08

Median 26.92 31.23 25.01 24.71 17.07

ZW reference N.A. 12.24 N.A. N.A. N.A. N.A.

Table 4.4: Standard deviation, RMSE and systematic error of the separate datasets, before
outlier removal and normalization.
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Figure 4.10: Timeseries of Zwartewaalstraat with outliers. The most extreme outliers are
indicated with a red cross: those are removed from the dataset.

See the upper graph in figure 4.11, where all temperature and humidity data from the low-
cost sensor at both locations is included. Since there is missing data those missing values for
temperature and humidity must be interpolated. Formula 4.1 is used for interpolation.

Replacevaluei =
∑[si−w; si−1] + ∑[ei+1; ei+w]

2 + w
2

(4.1)

Where si−1 is the last known value before a missing value i; ei+1 is the first known value
after that missing value; and w represents the user-defined minimal search window size, i.e.
how many known values before and after the missing value are used for the averaging. The
Python implementation is on the GitHub page8. The middle graph of figure 4.11 shows the
effect of applying the interpolation method on the data. There are no zero-values any more
and the temperature and humidity values follow a clear trend.

However, there are still some peaks in the humidity data. Those peaks are partly removed
with the resampling method of paragraph 4.4, which acts as a median filter on the low-cost
sensor data. The effects of this filter are depicted in the bottom graph of figure 4.11.

4.4 combine various datasets
Combination

Datasets from the sensor nodes are saved in Comma Separated Values (CSV) files, while
reference data from Luchtmeetnet and Weerlive are saved in a PostgreSQL database. This
data from different sources is combined in two separate CSV files: one for each sensor node
location. The data is matched based on date and time. For the matching operation is the
combineDatasets.py9 module used.

Resampling

A resampling procedure is needed since the sensor node datasets contains records collected
with an interval of 15 minutes; the DCMR reference dataset has an interval of 60 minutes;

8 https://github.com/NiekB4/aqs

9 https://github.com/NiekB4/aqs

https://github.com/NiekB4/aqs
https://github.com/NiekB4/aqs
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and the Weerlive reference dataset an interval of 20 minutes. The moments that the reference
data is collected are also included in figure 4.12, depicted with red bars. Ideally, the sampling
interval is brought back to 60 minutes, which is done with interpolation. The blue vertical bar
in figure 4.12 indicates the place of the resampled values in the time domain. For data that
originates from the sensor nodes is this resampled value an average of four measurements
and for weather reference data an average of three measurements. Those averages are cou-
pled with every second measurement of the hour from the sensor node, i.e. the measurement
that occurs at the 30th minute.

Figure 4.12: Time intervals and moments of data collection of the datasets (red bars); resam-
pled values (blue bars)

Since the resampling procedure aggregates the data from the low-cost sensor nodes it
behaves as a filter. Choosing the aggregation method therefore results in different outcomes.
In this case there are two options considered: using the median as aggregate and using the
average as aggregate.

Normalization

When different types of time series are compared with each other the normalized time series
have to be used. Normalization equation 3.210 is then used. The normalization is performed
after the data cleaning process, thus after removing the gross errors and systematic instru-
ment error. Therefore, these errors does not affect the scale of the normalized PM2.5 time
series.

4.5 calculate statistics for baseline measurement
This section elaborates on the implementation of the baseline measurement statistics for the
low-cost PM sensors. First, the scatterplots of the low-cost PM sensors plotted against the
reference sensors are discussed.

Baseline measurement of RMSE

The Root Mean Square Error before outlier removal was calculated in paragraph 4.3.1. How-
ever, that was not-normalized data, while from now on normalized data is used. After outlier
removal, the RMSE is calculated again and after removing systematic instrument error it will
be calculated for a third time. Table 4.5 contains these calculated RMSE scores, together with
the Standard Deviation and Systematic Error of the normalized sensor data. Together they
represent the baseline measurement statistics to which the results from the correction model
will be evaluated.

Noise models

Noise models represent the mean and deviation of the random measurement error. Random
error of the sensors – represented by random variations around the true reference value
[Fisher and Tate, 2006] – is shown in two various ways in figure 4.14: using histograms and
using a Gaussian PDF. Besides, there are three representations for random error includes in
those plots.

10 https://github.com/NiekB4/aqs

https://github.com/NiekB4/aqs
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Figure 4.13: Top row: scatterplots of the normalized PM datasets before Systematic Error
is removed. Bottom row: after removal of Systematic Error from the original
observations.

RMSE
normalized data

Standard Deviation
normalized data

R
RMSE after SE
removal data

Standard Deviation
after SE removal

PW sensor 1 0.1813 0.1702 0.86 0.1249 0.1756

PW sensor 2 0.1327 0.1403 0.87 0.0918 0.1448

ZW sensor 1 0.2045 0.1620 0.86 0.1706 0.1714

ZW sensor 2 0.1527 0.1316 0.83 0.1256 0.1392

Table 4.5: Statistics for the normalized data after the removal of outliers from table 4.3. Con-
sequently, after subtracting the Systematic Error RMSE was calculated again.
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First, the noise model for both low-cost PM sensors on the sensor nodes, which show the
deviation around the mean value of the random error and therefore indicating the precision
of the low-cost instruments. Since the histogram and PDF plots are relatively tight – they
fall within two standard deviations σ after error removal – the precision of the instruments
seems to be relatively good.

Second and third, the noise models for PM sensor 1 respectively sensor 2 on the sensor
node. In these cases are the values from the DCMR reference dataset used. These noise models
show the deviation around the true reference values and therefore indicate the accuracy of
the low-cost instruments. The histograms and PDF plots in the figure are relatively broad
thus the accuracy of the instruments is relatively poor.
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Figure 4.14: Noise models for the low-cost PM2.5 sensors. The orange histograms and Gaus-
sian PDF plots represent the noise of the low-cost sensors compared with each
other. The green and dark green ones show the noise models of the low-cost
sensors against the reference monitors.

4.6 relationships between the variables
This section is a discussion on the relations between the PM datasets and the other environ-
mental phenomena: Which of those environmental phenomena should be included in the
correction model? First, each of the candidate environmental variables are compared with
each other to check for multicollinearity. Thereafter, the correlations with PM2.5 are investi-
gated.

4.6.1 Relationships between the independent variables

The scatterplots in figure 4.15 show the relations between each of the candidate environ-
mental variables, for Pleinweg (left) and Zwartewaalstraat (right). They show no strong
relationships between the independent variables. Using equation 3.5 the VIF between each of
the candidate independent variables are calculated, in order to check for the multicollinearity
between the independent datasets. The VIF and correlation coefficient between each indepen-
dent dataset is shown in table 4.6. The table shows that none of the VIF values are above
5. Moreover, the p-values are all under 0.05 (5%). Thus the null hypothesis that there is no
difference between the independent datasets can be rejected: a significant difference exists.

So none of the independent variables are dependent on each other, therefore for now all
independent variables could be used for the MLR correction models.
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Set VIF R (Pearson) p value
Humidity - Temperature 1.0848 -0.28 < 0.05

Humidity - Windspeed 1.2312 -0.43 < 0.05

Humidity - Airpressure 1.0767 -0.27 < 0.05

Temperature - Windspeed 1.0114 0.11 < 0.05

Temperature - Airpressure 1.5648 -0.60 < 0.05

Airpressure - Windspeed 1.0309 0.17 < 0.05

Set VIF R (Pearson) p value
Humidity - Temperature 1.2296 -0.43 < 0.05

Humidity - Windspeed 1.3206 -0.49 < 0.05

Humidity - Airpressure 1.0695 -0.25 < 0.05

Temperature - Windspeed 1.0503 0.22 < 0.05

Temperature - Airpressure 1.3781 -0.52 < 0.05

Airpressure - Windspeed 1.0316 0.17 < 0.05

Table 4.6: The Variance Inflation Factor (VIF) multicollinearity metric per set of independent
variables. Above: Pleinweg, below: Zwartewaalstraat.

4.6.2 Relationships between the independent and dependent variables

Humidity

The bottom plot in figure 4.11 is a time series plot of the interpolated humidity data from
the sensor nodes and from the reference dataset – depicted with grey lines. Clearly, the data
from both locations as well as from the reference location follow the same trend. However,
the extreme values in some cases differ up to 15%. Next to that, the humidity data from
the sensor node at Pleinweg has a high amount of maximum (100%) values which is caused
by the malfunctioning hardware and the interpolation. It is clear that this type of low-cost
sensor is more likely to yield errors when humidity is high (±90%) over a longer period. The
sensor at Zwartewaalstraat, on the other hand, shows less extreme high humidity values.
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Figure 4.16: Top row: Scatterplots for humidity versus PM2.5 at Pleinweg and Zwartewaal-
straat before systematic error is removed. Bottom row: Scatterplots for humidity
versus PM2.5 at Pleinweg and Zwartewaalstraat after systematic error removal.
The plot includes the deviation of the low-cost PM sensors – orange and green
– as well as the high-quality BAM monitors – blue – against humidity from the
sensor node.
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Figure 4.16 shows two scatterplots of humidity versus PM concentrations in the Pleinweg
and Zwartewaalstraat. Remarkable regarding those scatterplots is the moderate positive rela-
tionships between humidity and PM2.5 from the low-cost sensor nodes – ranging from R=0.48

to R=0.57. At the same time, the correlation coefficient between humidity and PM2.5 from the
high-quality reference stations is weaker: R=0.39 and R=0.32 for Pleinweg and Zwartewaal-
straat, respectively. This finding from the collected data is in line with the suggestions from
Postolache et al. [2009] and Cross et al. [2017]: that low-cost PM sensors are affected by cross
interference with humidity. This indicates that in this research the correction model should
include a component that corrects PM when humidity is within a specific range.

Temperature

In the original dataset there were three extreme values in the temperature dataset. Those
occured at Pleinweg on the 27th of May 22:30 and at Zwartewaalstraat at 29th of May 18:30

and 5th of June 6:30. Remarkably, the extreme maximum value at Pleinweg occured just
before the sensor node would quit collecting data for around two hours, i.e. there was an
error during those two hours.

Except for those three extreme values, the temperature data from the low-cost sensor
nodes and the reference data follow the same trend, although the minimum values for the
reference dat are most of the times around 3

◦C lower than from the sensor nodes. Also, the
temperature data from Zwartewaalstraat is often around 3

◦C higher than at Pleinweg, which
can be caused by the placement of the sensor nodes: the first is placed at a sunny location,
the latter under the canopy of trees.

The scatterplots of figure 4.17 show the correlation between the collected temperature and
PM data. Clearly, there is no correlation between temperature and PM since the coefficients of
correlation are all below 0.20. There is however a high peak at the 18

◦C to 20
◦C range. Those

peaks are visible for temperature plotted against data from the low-cost sensor nodes, as well
as plotted against the reference data. The peak around those temperature values makes sense
since during daytime the temperature is higher and also the amount of traffic and industry
activities is higher, therefore a higher concentration of PM is a logical consequence. This
indicates that the relationship between temperature and PM from the low-cost sensors could
be non-linear.

0 0.5 1
Temperature Pleinweg

0

0.5

1

PM
2.
5 
Pl
ei
nw

eg
wi

th
 S
ys

te
m
at
ic 

Er
ro
r

Reference vs Temp: R=0.19
Sensor 1 vs Temp: R=0.16
Sensor 2 vs Temp: R=0.14

0 0.5 1
Temperature Pleinweg

0

0.5

1

PM
2.
5 
Pl
ei
nw

eg
wi

th
ou

t S
ys

te
m
at
ic 

Er
ro
r

Reference vs Temp: R=0.19
Sensor 1 vs Temp: R=0.16
Sensor 2 vs Temp: R=0.14

0 0.5 1
Temperature Zwartewaalstraat

0

0.5

1

PM
2.
5 
Zw

ar
te
wa

al
st
ra
at

wi
th
 S
ys

te
m
at
ic 

Er
ro
r

Reference vs Temp: R=0.11
Sensor 1 vs Temp: R=-0.0
Sensor 2 vs Temp: R=-0.01

0 0.5 1
Temperature Zwartewaalstraat

0

0.5

1

PM
2.
5 
Zw

ar
te
wa

al
st
ra
at

wi
th
ou

t S
ys

te
m
at
ic 

Er
ro
r

Reference vs Temp: R=0.11
Sensor 1 vs Temp: R=-0.0
Sensor 2 vs Temp: R=-0.01

Figure 4.17: Top row: Scatterplots for temperature versus PM2.5 at Pleinweg and Zwarte-
waalstraat before systematic error is removed. Bottom row: Scatterplots for tem-
perature versus PM2.5 at Pleinweg and Zwartewaalstraat after systematic error
removal.
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Air pressure

The air pressure data is from the Weerlive reference dataset, so for the whole city of Rotter-
dam. A scatterplot of this data versus the various PM datasets is shown in figure 4.18. That
figure reveals that both the reference and sensor node PM data yield higher values when air
pressure is in the range of 1012 to 1015 hPa – 0.1 to 0.3 on the normalized scale of the scatter-
plot. Moreover, at Zwartewaalstraat are relatively high values at the 2024-2025 hPa range –
0.9 to 1.0 on the normalized scale. These high values are not shown in the reference dataset,
neither in the Pleinweg dataset.

Overall, there is only a weak negative relationship between air pressure and PM. However,
at Pleinweg the relationships between this independent variable and PM from the low-cost
sensors (R=-0.34 and R-0.32) are stronger than between the independent variable and PM

from the reference monitor (R=-0.22). The R-value for Zwartewaalstraat does not show this
difference, although the scatterplot indicates look similar to the scatterplot of Pleinweg.

Therefore, the independent variable air pressure will be included in the correction model,
despite the weak relationship with the dependent variable.
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Figure 4.18: Scatterplots for air pressure versus PM2.5 at Pleinweg and Zwartewaalstraat. The
plot includes the deviation of the low-cost PM sensors – orange and green – as
well as the high-quality BAM monitors – blue – against air pressure from the
reference dataset from KNMI.

Wind speed

Wind speed is included in the search for related environmental variables since the sensitive
particles sensors could be affected by high wind speeds: the sensor would yield high PM

values. On the other hand, high wind speeds could ”clean” the air, i.e. remove the particles
from the air, and therefore the PM sensor would sense lower concentrations.

The results from the scatterplot of the data collection at both study locations are in line
with the second theory. It shows that the low-cost sensors on the node are not necessarily
heavier affected by wind than the high-quality BAM monitors used for the reference data.
When wind speed increases, it seems that with both type of PM monitoring techniques lower
particle concentrations are found. This is also reflected with the – weak – negative correlation
coefficient for both monitoring techniques.

So the relationship of wind speed with PM look similar to the relationship of air pressure
with PM. Namely, despite the relationship is weak, the relationship between this independent
variable and the low-cost PM sensor data is still stronger than the relationship between this
independent variable and the data from the reference PM monitor. Therefore, for the same
reason the independent variable of wind speed will not be excluded from the correction
model.
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Figure 4.19: Scatterplots for wind speed versus PM2.5 at Pleinweg and Zwartewaalstraat. The
plot includes the deviation of the low-cost PM sensors – orange and green – as
well as the high-quality BAM monitors – blue – against wind speed from the
reference dataset from KNMI.

4.6.3 Conclusion for relationships between the variables

The analysis of the relationships between the independent variables shows that there is no
multicollinearity among the independent variables, therefore all variables may be included
in the correction model. However, there is also no strong relationships between any of the
independent and dependent variables. There exist only moderate relationships between hu-
midity and PM, between windspeed and PM, and between air pressure and PM. However,
despite those weak relationships, the relationships with PM from the low-cost sensors are
still stronger than the relationships with PM from the reference monitors. Therefore, they are
included in the next section, where the parameters for the correction models are calculated.
Finally, Temperature shows no linear relationship with PM from the low-cost sensor, though
only a weak non-linear relationship when investigating the scatterplots.

4.7 calculate correction model parameters for
various settings

This paragraph elaborates on one example implementation of a correction model for type A
and B models. Then the proposed domains for Type C and D models are discussed.

Example implementation of type A and B models

The example for type A and B models is the most basic correction model, containing one
parameter for the sensed PM2.5 value and no parameters for other eventually related environ-
mental phenomena. The results are shown in table 4.7.

In this example are the parameters for the dataset of PM2.5 sensor 1 at Pleinweg calculated.
The least squares fit is implemented with ready-to-use Python software11. For this example,
the constant value is 0.075657 and the parameter 0.312259. Consequently, using these param-
eters are new values for PM2.5 calculated for the same time series data. Obviously, this would
benefit the data quality of this particular time series significantly. The evaluation statistics
column in the table indeed shows an increase of the data quality. Then, the same paramaters

11 The numpy linalg.lstsq package, see https://docs.scipy.org/doc/numpy-1.13.0/reference/

generated/numpy.linalg.lstsq.html

https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.lstsq.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.lstsq.html
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Correction Model Implementation and Evaluation
Sensor #1
Pleinweg

Constant: 0.151969...
Parameter: 0.312259...

RMSE
Standard
Deviation

R

Baseline Measurement sensor#1 Pleinweg 0.1249* 0.1756 0.8643

After parameters applied on sensor data 0.0319 0.0548 0.8643

Baseline Measurement sensor#2 Pleinweg (”other”) 0.0952* 0.1448 0.8674

After parameters applied on sensor data 0.0331 0.0452 0.8674

Baseline Measurement sensor#1 Zwartweaalstraat 0.1192* 0.1714 0.8639

After parameters applied on sensor data 0.0334 0.0535 0.8639

Baseline Measurement sensor#2 Zwartewaalstraat 0.0918* 0.1392 0.8344

After parameters applied on sensor data 0.0381 0.0435 0.8344

Table 4.7: An example of the implementation of a correction model. This is the basic correc-
tion model which includes only parameters for PM (* values from table 4.5).

are applied to the second sensor, but on the same sensor node at Pleinweg. The evaluation
statistics again show an increase for the data quality.

Finally, for the validation part of this implementation of the correction model are the
calculated parameters used on the time series for the low-cost PM sensors on the other sensor
node: the one at Zwartewaalstraat. The evaluation statistics indicate that the data quality
increased, therefore this correction model is valid. So the basic correction model which uses
only correction parameters for PM already performs well. The resulting noise models are
shown in figure 4.20.

Proposed domains for Type C and D models

In this research are two domains proposed for type C and D models: wind direction and
the time interval. Wind direction is chosen because as categorical data type it can be distin-
guished in groups (North, East, South, West) and data on the wind direction for Rotterdam is
available in the Weerlive API. Next to that, different wind directions could result in different
concentrations of PM2.5, since high-pollutant industrial activities in Rotterdam are placed in
various parts of the city. For example, in the harbor area are most industrial activities and
that area is located in the west part of the city. Therefore, it can be expected that if the wind
direction is West, the PM2.5 concentrations are higher.

Time interval is chosen since environmental conditions change during the 24 hours of the
day: splitting the day in subsets of equal size having from the same hours could yield better
parameters for those subsets. For this research the data will be collected during one month
and with an sample interval of one observation per hour – the sample of the DCMR reference
data – 744 observations are expected. Therefore, it is chosen to split to use time periods of
four hours, thus six subsets, where each ”time period subset” will have 124 observations.
That is enough to use RMSE as evaluation metric, as argued by Chai et al. [2014].

• 00:00 - 04:00

• 04:00 - 08:00

• 08:00 - 12:00

• 12:00 - 16:00

• 16:00 - 20:00

• 20:00 - 00:00

4.8 conclusion for implementation chapter
The performance and validation of datasets that are modified using the correction models
part of the results of this research. Therefore, they are included in the next section.

This chapter described the implementation of the methodology that was proposed in chap-
ter 3. The PM data is normalized, outlier are removed and systematic errors are removed. All
relationships between the independent variables and between the independent variables and
dependent variable are investigated. All quantitative candidate independent variables – hu-
midity, temperature, wind speed, air pressure – are sufficient to be included variants of the
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Figure 4.20: Noise models before and after applying the correction model with parameters
for PM only. Notice the different ranges on the axes.

correction model. So the data is now prepared for creating correction models with the –
stepwise – MLR method, applying those correction models and assessing the performance.



5 R E S U LT S A N D D I S C U S S I O N

5.1 introduction
The previous chapter ended with the table containing evaluation statistics and the noise
model of only one variant of a correction model. That correction model included only pa-
rameters for PM, and was calculated only for low-cost sensor #1 at Pleinweg. This chapter
shows the results of the implemented stepwise MLR method. The proposed algorithm is
therefore applied. All the correction models and their RMSE evaluation metrics are shown
and discussed. First, the correction models of Type A and B are discussed. Thereafter, Type
C and D models are discussed.

5.2 correction models of type a and b
Figures 5.1 and 5.2 show the results of applying various correction models on the PM datasets.
These are correction models for only one domain, but with varying amounts of parameters.
Therefore, it are ”type A” or ”type B” correction models as depicted in figure 3.3.

The figures show the evaluation criterium – RMSE – per implemented correction model.
Besides, the baseline measurement of RMSE is included in the bar chart (grey bar). In each
bar chart are the correction parameters calculated for the first location, applied on the data
for that location, applied on the data for the other sensor on the same location, and applied
on data originating from the two sensors at the other location. The ”other” sensor location is
the location where the performance of the correction model is validated.

For example, for the top bar chart of figure 5.1 are the correction parameters calculated
with the data from Pleinweg sensor 1; the parameters are applied on the data from this sensor
(”PW#1”, the red bars); the parameters are applied on the data from the other sensor at the
same location (”PW#2”, orange bars); and for validation are the parameters applied on the
data from sensors at the other location (”ZW#1”, blue bars and ”ZW#2”, purple bars).

Both figures 5.1 and 5.2 include various correction models. The first correction model that
is included contains parameters for only PM (”PM”), the second correction model parame-
ters for PM and humidity (”PM+H”), then PM and temperature (”PM+T”), until all external
datasets are included in the model (”PM+H+T+WS+AP”).

Furthermore, per type of correction model there are three versions calculated, depending
on the chosen polynomial degree. The polynomial degrees are one, two or three. Therefore
there are always three bars included. In order to improve the visualization, the transparency
of the bars in the bar chart is alternated per set of three. Besides, the results of applied
with correction models using polynomial degrees > 3 are excluded from figures 5.1 and
5.2. Namely, while they improve the data quality at the sensor location for which such a
correction model is created, it does not further improve the data quality on the other sensor
location.

Overall, both figures indicate that the correction model decreases the RMSE error for the ob-
servations. Therewith it seems to improve the accuracy of the data. Also when the correction
parameters calculated for one street are transferred to the other street, the RMSE decreases.
So the parameters can be transferred to other locations and improve the data quality at that
other location.

However, the figures already indicate that including parameters for more variables than
only PM does not really improve the data quality. That is a logical results since in the previous
chapter 4 was already found that the independent variables have weak relationships with the
dependent variable PM. On the other hand, including more independent variables neither
decreases the data quality on the validation location. Which are good performing correction
models for the two PM sensors on each of the two locations and which independent variables
are included?

55



56 results and discussion

PW
#1

PW
#2 (validation at sam

e location)
ZW

#1 (validation at other location)
ZW

#2 (validation at other location
Applied correction m

odels grouped per street [N=635]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

RMSE

W
ithout correction

W
ithout correction

W
ithout correction

W
ithout correction

PM
PM+H
PM+T
PM+WS
PM+AP
PM+H+T
PM+H+WS
PM+H+AP
PM+T+WS
PM+T+AP
PM+WS+AP
PM+H+T+WS
PM+H+T+AP
PM+H+WS+AP
PM+T+WS+AP
PM+H+T+WS+AP

PM
PM+H
PM+T
PM+WS
PM+AP
PM+H+T
PM+H+WS
PM+H+AP
PM+T+WS
PM+T+AP
PM+WS+AP
PM+H+T+WS
PM+H+T+AP
PM+H+WS+AP
PM+T+WS+AP
PM+H+T+WS+AP

PM
PM+H
PM+T
PM+WS
PM+AP
PM+H+T
PM+H+WS
PM+H+AP
PM+T+WS
PM+T+AP
PM+WS+AP
PM+H+T+WS
PM+H+T+AP
PM+H+WS+AP
PM+T+WS+AP
PM+H+T+WS+AP

PM
PM+H
PM+T
PM+WS
PM+AP
PM+H+T
PM+H+WS
PM+H+AP
PM+T+WS
PM+T+AP
PM+WS+AP
PM+H+T+WS
PM+H+T+AP
PM+H+WS+AP
PM+T+WS+AP
PM+H+T+WS+AP

PW
#2

PW
#1 (validation at sam

e location)
ZW

#1 (validation at other location)
ZW

#2 (validation at other location)
Applied correction m

odels grouped per street [N=635]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

RMSE

W
ithout correction

W
ithout correction

W
ithout correction

W
ithout correction

PM
PM+H
PM+T
PM+WS
PM+AP
PM+H+T
PM+H+WS
PM+H+AP
PM+T+WS
PM+T+AP
PM+WS+AP
PM+H+T+WS
PM+H+T+AP
PM+H+WS+AP
PM+T+WS+AP
PM+H+T+WS+AP

PM
PM+H
PM+T
PM+WS
PM+AP
PM+H+T
PM+H+WS
PM+H+AP
PM+T+WS
PM+T+AP
PM+WS+AP
PM+H+T+WS
PM+H+T+AP
PM+H+WS+AP
PM+T+WS+AP
PM+H+T+WS+AP

PM
PM+H
PM+T
PM+WS
PM+AP
PM+H+T
PM+H+WS
PM+H+AP
PM+T+WS
PM+T+AP
PM+WS+AP
PM+H+T+WS
PM+H+T+AP
PM+H+WS+AP
PM+T+WS+AP
PM+H+T+WS+AP

PM
PM+H
PM+T
PM+WS
PM+AP
PM+H+T
PM+H+WS
PM+H+AP
PM+T+WS
PM+T+AP
PM+WS+AP
PM+H+T+WS
PM+H+T+AP
PM+H+WS+AP
PM+T+WS+AP
PM+H+T+WS+AP

Figure
5.1:R

esulting
R

M
SE

for
various

correction
m

odels.These
m

odels
are

created
w

ith
param

eters
for

Pleinw
eg

sensor
1

(top)
and

Pleinw
eg

sensor
2

(bottom
).



5.2 correction models of type a and b 57

ZW
#1

ZW
#2

 (v
al
id
at
io
n 
at
 sa

m
e 
lo
ca
tio

n)
PW

#1
 (v

al
id
at
io
n 
at
 o
th
er
 lo
ca
tio

n)
PW

#2
 (v

al
id
at
io
n 
at
 o
th
er
 lo
ca
tio

n)
Ap

pl
ie
d 
co
rre

ct
io
n 
m
od
el
s g

ro
up
ed
 p
er
 st
re
et
 [N

=6
57

]

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

RMSE
W
ith

ou
t c
or
re
ct
io
n

W
ith

ou
t c
or
re
ct
io
n

W
ith

ou
t c
or
re
ct
io
n

W
ith

ou
t c
or
re
ct
io
n

PM
PM+H
PM+T
PM+WS
PM+AP
PM+H+T
PM+H+WS
PM+H+AP
PM+T+WS
PM+T+AP
PM+WS+AP
PM+H+T+WS
PM+H+T+AP
PM+H+WS+AP
PM+T+WS+AP
PM+H+T+WS+AP

PM
PM+H
PM+T
PM+WS
PM+AP
PM+H+T
PM+H+WS
PM+H+AP
PM+T+WS
PM+T+AP
PM+WS+AP
PM+H+T+WS
PM+H+T+AP
PM+H+WS+AP
PM+T+WS+AP
PM+H+T+WS+AP

PM
PM+H
PM+T
PM+WS
PM+AP
PM+H+T
PM+H+WS
PM+H+AP
PM+T+WS
PM+T+AP
PM+WS+AP
PM+H+T+WS
PM+H+T+AP
PM+H+WS+AP
PM+T+WS+AP
PM+H+T+WS+AP

PM
PM+H
PM+T
PM+WS
PM+AP
PM+H+T
PM+H+WS
PM+H+AP
PM+T+WS
PM+T+AP
PM+WS+AP
PM+H+T+WS
PM+H+T+AP
PM+H+WS+AP
PM+T+WS+AP
PM+H+T+WS+AP

ZW
#2

ZW
#1

 (v
al
id
at
io
n 
at
 sa

m
e 
lo
ca
tio

n)
PW

#1
 (v

al
id
at
io
n 
at
 o
th
er
 lo
ca
tio

n)
PW

#2
 (v

al
id
at
io
n 
at
 o
th
er
 lo
ca
tio

n)
Ap

pl
ie
d 
co
rre

ct
io
n 
m
od
el
s g

ro
up
ed
 p
er
 st
re
et
 [N

=6
57

]

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

RMSE

W
ith

ou
t c
or
re
ct
io
n

W
ith

ou
t c
or
re
ct
io
n

W
ith

ou
t c
or
re
ct
io
n

W
ith

ou
t c
or
re
ct
io
n

PM
PM+H
PM+T
PM+WS
PM+AP
PM+H+T
PM+H+WS
PM+H+AP
PM+T+WS
PM+T+AP
PM+WS+AP
PM+H+T+WS
PM+H+T+AP
PM+H+WS+AP
PM+T+WS+AP
PM+H+T+WS+AP

PM
PM+H
PM+T
PM+WS
PM+AP
PM+H+T
PM+H+WS
PM+H+AP
PM+T+WS
PM+T+AP
PM+WS+AP
PM+H+T+WS
PM+H+T+AP
PM+H+WS+AP
PM+T+WS+AP
PM+H+T+WS+AP

PM
PM+H
PM+T
PM+WS
PM+AP
PM+H+T
PM+H+WS
PM+H+AP
PM+T+WS
PM+T+AP
PM+WS+AP
PM+H+T+WS
PM+H+T+AP
PM+H+WS+AP
PM+T+WS+AP
PM+H+T+WS+AP

PM
PM+H
PM+T
PM+WS
PM+AP
PM+H+T
PM+H+WS
PM+H+AP
PM+T+WS
PM+T+AP
PM+WS+AP
PM+H+T+WS
PM+H+T+AP
PM+H+WS+AP
PM+T+WS+AP
PM+H+T+WS+AP

Fi
gu

re
5.

2:
R

es
ul

ti
ng

R
M

SE
fo

r
va

ri
ou

s
co

rr
ec

ti
on

m
od

el
s.

Th
es

e
m

od
el

s
ar

e
cr

ea
te

d
w

it
h

pa
ra

m
et

er
s

fo
r

Z
w

ar
te

w
aa

ls
tr

aa
ts

en
so

r
1

(t
op

)a
nd

Z
w

ar
te

w
aa

ls
tr

aa
ts

en
so

r
2

(b
ot

to
m

).



58 results and discussion

Best correction models when the parameters are calculated for PW#1
Pleinweg sensor node Validation: Zwartewaalstraat sensor node
PW#1 PW#2 ZW#1 ZW#2

1
PM+H+T+WS+AP, deg=3

RMSE: 0.02940

PM+H+T+WS+AP, deg=3

RMSE: 0.03112

PM+T+WS+AP, deg=3

RMSE: 0.03192

PM+T, deg=2

RMSE: 0.03759

2
PM+H+T+AP, deg=3

RMSE: 0.02955

PM+T+WS+AP, deg=3

RMSE: 0.03117

PM+T+AP, deg=3

RMSE: 0.03197

PM+T, deg=1

RMSE: 0.03759

3
PM+H+WS+AP, deg=3

RMSE: 0.02970

PM+H+T+WS, deg=3

RMSE: 0.03124

PM+H+T+WS+AP, deg=3

RMSE: 0.03223

PM, deg=3

RMSE: 0.03766

4
PM+H+T+WS, deg=3

RMSE: 0.02976

PM+H+T+AP, deg=3

RMSE: 0.03133

PM+H+T+AP, deg=3

RMSE: 0.03225

PM+T+WS, deg=1

RMSE: 0.03770

5
PM+T+WS+AP, deg=3

RMSE: 0.02977

PM+T+AP, deg=3

RMSE: 0.03135

PM+T+AP, deg=2

RMSE: 0.03239

PM+T+WS, deg=2

RMSE: 0.03773

Best correction models when the parameters are calculated for PW#2
Pleinweg sensor node Validation: Zwartewaalstraat sensor node
PW#2 PW#1 ZW#1 ZW#2

1
PM+H+T+WS+AP, deg=3

RMSE: 0.02907

PM+H+T+WS, deg=3

RMSE: 0.03203

PM+T+WS+AP, deg=3

RMSE: 0.03237

PM+T+WS+AP, deg=3

RMSE: 0.03552

2
PM+H+T+AP, deg=3

RMSE: 0.02935

PM+T+WS+AP, deg=3

RMSE: 0.03204

PM+T+AP, deg=3

RMSE: 0.03250

PM+T, deg=2

RMSE: 0.03573

3
PM+H+WS+AP, deg=3

RMSE: 0.02938

PM+H+T+WS+AP, deg=3

RMSE: 0.03210

PM+T+AP, deg=2

RMSE: 0.3310

PM+T+WS, deg=2

RMSE: 0.03581

4
PM+T+WS+AP, deg=3

RMSE: 0.02938

PM+T+AP, deg=3

RMSE: 0.03215

PM+T+WS+AP, deg=2

RMSE: 0.03319

PM+T+AP, deg=3

RMSE: 0.03583

5
PM+H+T+WS, deg=3

RMSE: 0.02942

PM+H+T, deg=3

RMSE: 0.03218

PM+H+T+WS, deg=2

RMSE: 0.03330

PM+H+T+WS+AP, deg=3

RMSE: 0.03587

Best correction models when the parameters are calculated for ZW#1
Zwartewaalstraat sensor node Validation: Pleinweg sensor node
ZW#1 ZW#2 PW#1 PW#2

1
PM+H+T+WS+AP, deg=3

RMSE: 0.02990

PM+H+T+WS+AP, deg=3

RMSE: 0.03460

PM+H+T+WS+AP, deg=2

RMSE: 0.03125

PM+T+WS+AP, deg=3

RMSE: 0.3116

2
PM+T+WS+AP, deg=3

RMSE: 0.03002

PM+T+WS+AP, deg=3

RMSE: 0.03464

PM+H+T+AP, deg=2

RMSE: 0.03128

PM+H+T+WS+AP, deg=3

RMSE: 0.03126

3
PM+H+T+AP, deg=3

RMSE: 0.03016

PM+T+AP, deg=3

RMSE: 0.03507

PM+T+AP, deg=2

RMSE: 0.03134

PM+T+AP, deg=3

RMSE: 0.03130

4
PM+T+AP, deg=3

RMSE: 0.03026

PM+H+T+AP, deg=3

RMSE: 0.03511

PM+T+AP, deg=1

RMSE: 0.03140

PM+H+T+AP, deg=3

RMSE: 0.03132

5
PM+H+T+WS, deg=3

RMSE: 0.03103

PM+T+WS, deg=3

RMSE: 0.03563

PM+H+T+AP, deg=1

RMSE: 0.03140

PM+T+AP, deg=2

RMSE: 0.03135

Best correction models when the parameters are calculated for ZW#2
Zwartewaalstraat sensor node Validation: Pleinweg sensor node
ZW#2 ZW#1 PW#1 PW#2

1
PM+H+T+WS+AP, deg=3

RMSE: 0.03304

PM+H+T+WS+AP, deg=3

RMSE: 0.03157

PM+WS, deg=3

RMSE: 0.03400

PM+H+T+WS+AP, deg=2

RMSE: 0.03110

2
PM+T+WS+AP, deg=3

RMSE: 0.03330

PM+T+WS+AP, deg=3

RMSE: 0.03175

PM, deg=3

RMSE: 0.03400

PM+T+AP, deg=2

RMSE: 0.03119

3
PM+H+T+AP, deg=3

RMSE: 0.03358

PM+H+T+AP, deg=3

RMSE: 0.03185

PM+WS+AP, deg=3

RMSE: 0.03445

PM+H, deg=1

RMSE: 0.03120

4
PM+T+AP, deg=3

RMSE: 0.03378

PM+T+AP, deg=3

RMSE: 0.03199

PM+AP, deg=3

RMSE: 0.03447

PM+H+T+AP, deg=2

RMSE: 0.03121

5
PM+H+T+WS, deg=3

RMSE: 0.03435

PM+H+T+WS, deg=3

RMSE: 0.03258

PM+T, deg=3

RMSE: 0.03448

PM+H, deg=2

RMSE: 0.03121

Table 5.1: Top 5 for each variant of the correction models, type A and B
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Top-5 best correction models for type A and B

Table 5.1 shows each top-five correction model per variant. This table reveals how good each
correction model variant worked. Choosing a higher polynomial degree improves the data
at the location for which the parameters are calculated: at all four locations the correction
model with the highest polynomial degree (i.e. 3) results in the lowest RMSE and therefore
scores best, when applied on the dataset for which the parameters are calculated. This was
expected, since the least squares method tries to fit data from one dataset to another dataset
and calculates the parameters that effectuate that ”best” situation: in this case fitting data
from the low-cost PM sensors to the high-quality PM monitors, with or without parameters
for external environmental phenomena. And, the higher the polynomial degree, the more
parameters, and thus the better the fit.

Also when applied to the datasets from the other sensor – but still on the same sensor
node – the correction models that has included most parameters often yields the lowest RMSE

values. This result was also expected since the low-cost PM sensors at the two sensor nodes
have a similar noise model, see figure 4.14.

When transferred to the ”other” street – for validation– the resulting RMSE scores do not
decrease when more parameters are included. Also, for each top-5 the combination of in-
dependent variables is different, making it difficult to create one correction model for one
domain. Thus only a factor for PM would be enough to improve the RMSE, and therewith the
accuracy, already significantly. So when a correction model is created for one domain, it is
not necessary to include parameters for external environmental phenomena in the correction
model.

Influence of the parameters

What are the calculated parameters of each best performing correction model per sensor?
Table 5.2 shows the parameters of those best performing correction models and the resulting
RMSE evaluation metric for the validation locations. The parameters of the model reveal
why including more independent variables does not increase the data quality significantly:
the parameters for those independent variables are I) relatively small or II) they cancel each
other out.

Figures 5.3 and 5.4 show the influence of the separate parameters for the best four cor-
rection models. Instead of using an observation from the empirical dataset, ”dummy” data
is now used, with a value of 0.5 for each ”dummy” observation. The value 0.5 is chosen
because it is the mean of a normalized dataset with observations ranging from 0 to 1 when it
has a normal distribution. The parameters for the four best performing correction models are
included in the figures, as well as the intercept. Consequently, the new (theoretical) values of
the dummy observations are calculated using those parameters. Then, the figures show the
absolute and relative influence of each of the included variables in the model.

The last column in the figures 5.3 and 5.4 shows the relative influence of the included
variables. First, it seems that wind speed has a negative effect on the corrected value. Second,
when air pressure is included as independent variable, its influence seems to be relatively
high. Also temperature seems to have a high influence on the ”dummy” observations.

However, the influence of those independent variables should not be overestimated, since
the relationships between the independent variables and PM are relatively weak, as indicated
in Chapter 4 (figures 4.16 to 4.19). Moreover, of those independent variables, humidity has
the highest correlation with PM, while at the same time it is not included in the best correction
models or only for a small degree. Finally, figures 5.1 and 5.2 show clearly that including
more variables does not decrease RMSE – i.e. improve the data quality – when the parameters
are applied on the empirical data.

Therefore, based on the findings showed in figures 5.1 and 5.2 is concluded that for Type A
and Type B models it is not necessary to include parameters for other independent variables
in order to improve the data quality. Namely, if those factors are included, it only has a
negligible effect on the improvement of the data quality.

5.2.1 Applying the best performing correction models on the datasets

Finally, the figures 5.5 and 5.6 show the time series plots for each of the four datasets, with
parameters from the best assessed correction models that are depicted in table 5.2. The blue
and purple lines in the figures show each time the validation of the best correction model on
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Parameters calculated with data from Pleinweg sensor 1
Best correction

model for data from:
Included variables

Poly.
degree

Formula
RMSE

baseline
RMSE
corrected

Pleinweg sensor 1 PM + H + T + WS + AP 3

0.1052412

+ 0.39386163*PM - 0.10467195*PM2 + 0.05906324*PM3

+ 0.02345433*H + 0.02007415*H2 - 0.05694579*H3

- 0.0269377*T + 0.10067003*T2 - 0.0463558*T3

- 0.10344781*WS + 0.18950852*WS2 - 0.08786302*WS3

+ 0.26917627*AP - 0.55468182*AP2 + 0.35617762*AP3

Pleinweg sensor 2 PM + H + T + WS + AP 3

0.1052412

+ 0.39386163*PM - 0.10467195*PM2 + 0.05906324*PM3

+ 0.02345433*H + 0.02007415*H2 - 0.05694579*H3

- 0.0269377*T + 0.10067003*T2 - 0.0463558*T3

- 0.10344781*WS + 0.18950852*WS2 - 0.08786302*WS3

+ 0.26917627*AP - 0.55468182*AP2 + 0.35617762*AP3

Zwartewaalstraat sensor 1 PM+T+WS+AP 3

0.10521865
+ 0.32571039*PM + 0.02614938*PM2 - 0.02604104*PM3

- 0.05075344*T + 0.23718998*T2 - 0.14359434*T3

- 0.07727786*WS + 0.12505315*WS2 - 0.03975862*WS3

+ 0.19756856*AP - 0.3963041*AP2 + 0.27752979*AP3

0.11920 0.03192

Zwartewaalstraat sensor 2 PM+T 2

0.14395276
+ 0.29300555*PM + 0.02165059*PM2 + 0.02158459*T

0.09180 0.03759

Parameters calculated with data from Pleinweg sensor 2
Best correction

model for data from:
Included variables

Poly.
degree

Formula
RMSE

baseline
RMSE

corrected

Pleinweg sensor 2 PM + H + T + WS + AP 3

0.10096747

+ 0.40961805*PM + 0.04190396*PM2 - 0.04531164*PM3

+ 0.00554755*H + 0.05702176*H2 - 0.07533136*H3

- 0.00899824*T + 0.06051606*T2 - 0.02020797*T3

- 0.12458092*WS + 0.20477308*WS2 - 0.08450959*WS3

+ 0.23936033*AP - 0.49638581*AP2 + 0.32622517*AP3

Pleinweg sensor 1 PM + H + T + WS 3

0.16476838

+ 0.37458374*PM + 0.16242578*PM2 - 0.1651006*PM3

+ 0.03161421*H + 0.01537049*H2 - 0.0590057*H3

- 0.11033826*T + 0.19645722*T2 - 0.08609555*T3

- 0.15359734*WS + 0.284778*WS2 - 0.14488627*WS3

Zwartewaalstraat sensor 1 PM+T+WS+AP 3

0.10308161
+ 0.33042186*PM + 0.21356825*PM2 - 0.17282954*PM3

- 0.04008598*T + 0.20258153*T2 - 0.11972426*T3

- 0.09919916*WS + 0.14195414*WS2 - 0.0372197*WS3

+ 0.1804492*AP - 0.36541455*AP2 + 0.2614511*AP3

0.11920 0.03237

Zwartewaalstraat sensor 2 PM+T+WS+AP 3

0.10308161
+ 0.33042186*PM + 0.21356825*PM2 - 0.17282954*PM3

- 0.04008598*T + 0.20258153*T2 - 0.11972426*T3

- 0.09919916*WS + 0.14195414*WS2 - 0.0372197*WS3

+ 0.1804492*AP - 0.36541455*AP2 + 0.2614511*AP3

0.09180 0.03552

Parameters calculated with data from Zwartewaalstraat sensor 1
Best correction

model for data from:
Included variables

Poly.
degree

Formula
RMSE

baseline
RMSE

corrected

Zwartewaalstraat sensor 1 PM + H + T + WS + AP 3

0.03507838

+ 0.20432782*PM + 0.37726713*PM2 - 0.24901711*PM3

+ 0.15644497*H - 0.29806265*H2 + 0.16205383*H3

+ 0.24621526*T - 0.2637472*T2 + 0.11191071*T3

- 0.04089487*WS - 0.02085173*WS2 + 0.06011192*WS3

+ 0.32861135*AP - 0.75922945*AP2 + 0.53588285*AP3

Zwartewaalstraat sensor 2 PM + H + T + WS + AP 3

0.03507838

+ 0.20432782*PM + 0.37726713*PM2 - 0.24901711*PM3

+ 0.15644497*H - 0.29806265*H2 + 0.16205383*H3

+ 0.24621526*T - 0.2637472*T2 + 0.11191071*T3

- 0.04089487*WS - 0.02085173*WS2 + 0.06011192*WS3

+ 0.32861135*AP - 0.75922945*AP2 + 0.53588285*AP3

Pleinweg sensor 1 PM + H + T+ WS + AP 2

0.15058079
+ 0.30209301*PM + 0.06611508*PM2 -
0.01837796*H + 0.04144995*T
-0.01775492*WS + 0.01195488*AP

0.12490 0.03125

Pleinweg sensor 2 PM + T + WS + AP 3

0.05299849
+ 0.19726337*PM + 0.3741821*PM2 - 0.23821822*PM3

+ 0.24289341*T - 0.24101784*T2 + 0.09724556*T3

- 0.02775145*WS - 0.0451983*WS2 + 0.07310478*WS3

+ 0.31729333*AP - 0.72695767*AP2 + 0.51855344*AP3

0.09520 0.03116

Parameters calculated with data from Zwartewaalstraat sensor 2
Best correction

model for data from:
Included variables

Poly.
degree

Formula
RMSE

baseline
RMSE

corrected

Zwartewaalstraat sensor 2 PM + H + T + WS + AP 3

0.01199191

+ 0.14270135*PM + 0.70301122*PM2 - 0.54949727*PM3

+ 0.2275337*H - 0.45204605*H2 + 0.28251691*H3

+ 0.33109401*T - 0.34690918*T2 + 0.13506901*T3

- 0.08418381*WS + 0.02324964*WS2 + 0.05705981*WS3

+ 0.28603361*AP - 0.69737815*AP2 + 0.52268564*AP3

Zwartewaalstraat sensor 1 PM + H + T + WS + AP 3

0.01199191

+ 0.14270135*PM + 0.70301122*PM2 - 0.54949727*PM3

+ 0.2275337*H - 0.45204605*H2 + 0.28251691*H3

+ 0.33109401*T - 0.34690918*T2 + 0.13506901*T3

- 0.08418381*WS + 0.02324964*WS2 + 0.05705981*WS3

+ 0.28603361*AP - 0.69737815*AP2 + 0.52268564*AP3

Pleinweg sensor 1 PM + WS 3

0.16373851
+ 0.18891569*PM + 0.60009925*PM2 - 0.47379366*PM3

-0.10048174*WS + 0.19601084*WS2 - 0.11051505*WS3
0.12490 0.03400

Pleinweg sensor 2 PM + H + T+ WS + AP 2

0.1295599
+ 0.32312096*PM + 0.10592578*PM2

+ 0.0041597*H + 0.05082098*T
- 0.02241293*WS + 0.01180015*AP

0.09520 0.03110

Table 5.2: Best correction models per location. The bold formulas yield lowest RMSE values
at the other sensor location, i.e. at the validation location.
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Figure 5.3: Influence of the parameters on ”dummy” observations, for best correction models
from Pleinweg



62 results and discussion

Figure 5.4: Influence of the parameters on ”dummy” observations, for best correction models
from Zwartewaalstraat
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that specific location. These time series plots reveal that the ”best” correction models indeed
perform relatively well: the data in the time series is corrected and it follows the same trend
as the high quality reference data (green line).

5.3 correction models of type c and d
The suggested ”Type C” correction models are correction models where only parameters
for PM are used – no other environmental variables – but for various domains. ”Type D”
correction models on the other hand use parameters for a varying amount of environmental
variables and take domains into account. In this research are the following domains analyzed:

• Wind direction
• Peak or off-peak

Wind direction

For the wind direction domain is the dataset filtered based on the wind direction group. Four
groups are defined: North (n=389) East (n=74), South (n=44) and West (n=150). Thus, the
amount of records per group is not equal. However, if N is large enough the parameters can
be calculated.

For the North and East groups of Pleinweg the resulting RMSE scores are lower compared
to the the scores when no wind direction groups are taken into account. The same is true for
the North and East groups of Zwartewaalstraat. On the other hand, the parameters for the
South and West groups applied to the sub-datasets yields worse RMSE scores. One reason
could be the low n-value: using a larger dataset could improve correction capability of the
model. Therefore, for the ”wind direction” domain no conclusions can be drawn in this
research.

Moment on the day

The ”Moment on the day” domain consists of six groups. This amount of groups was chosen
because they will have an equal size of around N=100, referring to the amount of observations
for which RMSE can be used successfully as evaluation metric [Chai et al., 2014], as discussed
in Chapter 4.

• 00:00 - 04:00

• 04:00 - 08:00

• 08:00 - 12:00

• 12:00 - 16:00

• 16:00 - 20:00

• 20:00 - 00:00

When for each of these groups and for each combination of variables the parameters are
calculated and consequently applied on the sub-dataset, there are various results in RMSE val-
ues. For some time intervals the evaluation criterium value decreases, which would improve
the dataset, while on the other hand for other time intervals the RMSE increase. Namely, for
most of the time intervals on both locations the data quality for the dataset from the sensor
wherefore the parameters are created improved. When transferred to the other location for
validation, the RMSE results are sometimes higher and sometimes lower when compared to I)
the baseline RMSE measurement and II) the RMSE of the type A and B correction models. Per
time interval and per location are the five best performing correction models included in the
following figure 5.7.

Subdividing the datasets in subgroups for the moment on the day – groups of 4 hours –
yields interesting results. It is found that the data quality of four of these groups – 00:00 to
04:00, 12:00 to 16:00, 16:00 to 20:00 and 20:00 to 00:00 – improves for all four sensors. That is,
it improves when compared to the results of the top-5 of the best correction models for that
location. On the other hand, the data quality for the 08:00 to 12:00 group degenerated. The
data quality of the 04:00 to 08:00 group alternates between improving and degenerating.

A reason for the better performance of the mentioned groups is that they are during off
peak hours, while the 04:00 to 08:00 is during peak hour. The PM concentrations shows higher
peaks during those moments, therefore the data is less suitable to fit a model to. Moreover,
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04:00 to 08:00 and 08:00 to 12:00 groups are both during the morning, when the changes
of environmental variables such as temperature, humidity and wind speed are less smooth,
when compared to the changes during afternoon and evening. However, this theory should
be validated with more experiments.

5.4 conclusion results
In this chapter are the results of the correction models shown and discussed. The stepwise
MLR method is successfully applied on the PM datasets. One finding is that for Type A
and Type B models there is no need to include parameters for more independent variables
in order to improve the data quality. Namely, when those factors are included there is a
negligible effect on the improvement of the data quality.

Humidity, temperature or air pressure are no independent variables that improve the ac-
curacy of the data from low-cost PM sensors, when the stepwise MLR method is applied as
described in this research.

Finally, subdividing the datasets in subgroups for wind-direction yields no reliable cor-
rection models in this research, since the dataset contains not enough observations from the
East and South directions.





6 C O N C L U S I O N A N D F U T U R E W O R K

This section is the conclusion of the research performed in this report. First, the research
questions are answered, starting with the sub-questions and then the main research question.
That is followed by a reflection on the research process and finally recommendations for
future work.

6.1 research questions
How do temperature, humidity, air pressure, and wind speed affect Particulate Matter
measurements?

The discussion in Chapter 4, paragraph 4.6, elaborated on this question. It is found that
temperature does not affect PM from the low-cost sensors: there are no relationships found.
Humidity, wind speed and air pressure have weak to moderate relationships with PM from
the low-cost sensors. Postolache et al. [2009] and Cross et al. [2017] already indicated that
low-cost PM sensors could be affected by cross interference with humidity. In this research
the relationship between low-cost PM sensor data and humidity is investigated and range
between R=0.48 and R=0.57. At the same time, the relationship between the data from the
PM reference monitor and humidity ranges between R=0.32 and R=0.39. Thus, although the
relationship is not strong, it is stronger than the relationship with the reference data and can
therefore be included in the correction model.

The same is true for air pressure and wind speed. Air pressure has a weak negative
correlation with PM from low-cost sensors, ranging from R=-0.32 to R=-0.34, which is higher
than R=-0.22 to R=-0.26 for the reference monitors. For wind speed the correlations are also
weak and negative: R=-0.34 to R=-0.38 versus R=-0.28 to R=-0.31.

Since for air pressure and wind speed the correlations with PM are also stronger for PM

from the low-cost sensor nodes than for PM from the monitoring station, these independent
variables are also included in the correction model as possibility.

What is a good experimental setup for calibrating air quality measurements and how
to develop this sensor setup?

An air quality monitoring network, containing low-cost sensor nodes and a high-quality
monitoring system on two different locations in Rotterdam, is used to acquire the data. Two
locations – ”Pleinweg” (PW) and ”Zwartewaalstraat” (ZW) – for sensor nodes are chosen
because then it is possible to create a correction model at one location and validate the
correction model at the other location. So, the data from one location is used as training data
to calculate the coefficients in the MLR correction model. Consequently, the correction model
is applied to data from another location in order to assess the performance.

What can be acquired from existing correction models in the field of air quality mon-
itoring and related fields of research?

The Multiple Linear Regression method is used because it is the most used linear model in
the field of air quality monitoring [Pires and Martins, 2011; Ausati and Amanollahi, 2016].
Each correction model will contain a parameter for the original PM value. Parameters for
more independent variables are also included. RMSE is a suitable metric to assess the perfor-
mance of these correction models [Cross et al., 2017], as long as the error follows a Gaussian
distribution, there is a sample size of n=100 or more, and the error is unbiased, i.e. there is
no systematic error [Chai et al., 2014].

In the field of correction models for air quality datasets there are no papers found that
utilize autoregressive models.
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”How to create the new correction model?” and ”How to validate the correction
model?”

First, the relationships among the independent variables are investigated. The relations
among the independent variables – multicollinearity – should be low, i.e. a VIF < 5 and low
correlation coefficients [Ausati and Amanollahi, 2016]. Then, the experiments are conducted
as follows:

• Preprocessing (outlier removal, systematic error removal, normalization).

• Baseline measurements of the RMSE metric.

• Create correction models with the (Stepwise) MLR method.

• Calculate RMSE for the corrected datasets at the location for which the correction model
is created.

• Calculate RMSE for datasets from the other location, i.e. validation.

• Select the correction model with the best performance, i.e. the lowest RMSE at the other
location.

An algorithm performs all these steps for various input datasets. A schematic overview
of this algorithm is shown in figure 3.4 and written in pseudocode in algorithm 3.1. The
GitHub repository contains the Python implementation of this algorithm.

Main research question

The main research question was defined as follows:

How can accuracy and precision of Particulate Matter measurement results from a low-cost outdoor
sensor network be improved by using a correction model, using data from reference sensors and addi-
tional sensors measuring inferencing phenomena?

Without applying a correction model the normalized RMSE ranged from 0.0918 to 0.1249,
after removing the systematic instrument error (see table 4.5). The correlations between
various candidate independent variables and the dependent variable PM2.5 are investigated
and it is found that humidity correlates strongest with PM from the low-cost sensors. The
method used in this research to create the correction model is the stepwise MLR method,
which uses LSA to find the values for the intercept and parameters in the model. Since
the correlations between the independent variables and PM are all moderate to weak, it is
unlikely that the best correction model would include those variables.

Indeed, for the proposed Type A and Type B models, that take only one domain into
consideration, it is found that the ”best” correction models are those that include only the
original PM data and the effect of adding more independent variables is limited. Figures 5.1
and 5.2 show the results of the correction models when applied on the empirical data. All
correction models are able to decrease the RMSE of the observations: the original normal-
ized values ranged from 0.0918 to 0.1249, while the corrected normalized values range from
0.03110 to 0.03759, see table 5.2. So, it is possible to improve the data quality of low-cost
PM sensors with the stepwise MLR method and setup as shown in this research. However,
including parameters for independent variables humidity, temperature, air pressure or wind
speed does not improve the data quality significantly.

For the proposed Type C and Type D correction models, the ”moment on the day” subdi-
vision – into groups of 4 hours – it is found that the data quality for four groups improved
(00:00 to 04:00, 12:00 to 16:00, 16:00 to 20:00 and 20:00 to 00:00). For one group (08:00 to 12:00)
the data quality degenerated, and for one group (04:00 to 08:00) the effect of the correction
model for the sub-group alternates between improvement and degeneration. These findings
are included in figure 5.7 and are valid for all four sensors. An explanation for those differ-
ences could be that the groups that increase in performance are during off peak hours, while
the 04:00 to 08:00 is during peak hour. Next to that, the 04:00 to 08:00 and 08:00 to 12:00

groups are both during the morning, when temperature, humidity, air pressure and wind
speed are less smooth when compared to the afternoon and evening time slots. That results
in more varying data in these time series, with more peaks, thus fitting a linear model as
with the used MLR method is less suitable. However, this theory should be validated with
more experiments.

Finally, like Castell et al. [2017] and Mukherjee et al. [2017] also mentioned, it is necessary
to calibrate each individual low-cost sensor before adding it to an quality measuring network
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of the type as described in this research, and to quantify the performance of each sensor.
Namely, each sensor will have different parameters in the correction model and in some
cases the independent variable wind speed is included in the correction model.

6.2 reflection
The objective of this research was to create a correction model for air quality measurements
using a low-cost sensor network. This objective consisted of two parts: assessing the data
quality and improving the data quality. An error correction model is used to improve the
data quality. Although the proposed methodology yielded satisfying results – it is validated
that the correction model improved the data quality – there are some remarks regarding the
research process.

For a long time during the research process it was not clear that there were actually two
research objectives: assessing the data quality and improving the data quality. If this division
of research objective was clear from the beginning onwards, conducting the research would
have been easier. For example, the evaluation metric (RMSE) was chosen relatively lately in
the research process, while it should be clear that the aim of the methodology is to improve
the data quality expressed with that metric.

On the other hand, the choice to use a correction model as the means to improve the data
quality was made relatively early in the research process. Alternatives were not considered
at that moment and in the final report only described in the introduction section – referring
to the work of Batini et al. [2009]. At the beginning of the research process most time was
spent on creating the sensor nodes: not on justifying the choices regarding the methodology
and the describing the steps of the methodology. Especially the assembly of the sensor nodes
took a significant amount of time in the early research process. The major reason why that
took a relatively large amount of time was that wireless communication protocols – LoRa,
WiFi, and MQTT – to transmit the data were considered but did not yield satisfying results.
In the end, it was chosen to store the data locally – on microcontroller of the sensor node –
which was satisfactory. However, using a wireless communication protocol to transmit the
data is favorable when a project like this is scaled up, and therefore recommended for future
work. Moreover, real-time sensor data can then be used, allowing to correct the sensor data
real-time.

Finally, instead of first focusing on creating sensor nodes, spending a month on data
collection, and then creating the methodology, this process should have been turned around.
Thus, first creating the complete methodology as a proof of concept, possibly using random
generated ”dummy” data, then creating the sensor nodes and data collection. That way, the
results of the raw data can not influence how the researcher creates the methodology. Namely,
I can imagine – and experienced – that results of the raw data fascinates, overwhelms or
harms the objectivity of the researcher in another way.

6.3 future work
Besides redoing the research but with a larger dataset, there are various suggestions for
taking this research to the next step.

One suggestion is to use real-time sensor data, where the parameters can be applied to
the new data immediately and whereby the parameters can be updated at regular intervals.
Although the parameters from this research could be applied to new data, it does not have
real-time calibration. How can the proposed methodology for correcting low-cost PM data be
integrated in an infrastructure that supplies real-time air quality data?

Another recommendation for future work would be to include the data from the reference
stations as extra input variables in the correction model. Then the reference data will have
an extra ”task” besides functioning as ”ground truth” for creating the correction models.
So while in this research – in some cases – data for the input variables humidity, tempera-
ture, wind speed and air pressure is included, this could be extended with also using the
high-quality reference data as input variable. In that case, the low-cost sensor data would
contribute to interpolation of the high-quality monitoring network. Besides, the distance of
a low-cost sensor node to the set of high-quality monitoring stations in the vicinity can be
expressed in a weight parameter.
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Figure A.1: Results of various correction models.
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Figure A.2: Results of various correction models (continued).





B N O D E - R E D S E T T I N G S F O R
L U C H T M E E T N E T DATA

b.1 overview of the luchtmeetnet nodes

Figure B.1: Overview of the Node-RED nodes for the Luchtmeetnet API

b.2 separate luchtmeetnet nodes

Figure B.2: Settings for the ”inject” node 20 minutes interval

81



82 node-red settings for luchtmeetnet data

Figure B.3: Settings for the ”http” node HTTP request api.luchtmeetnet.nl (Pleinweg)

Figure B.4: Settings for the ”http” node HTTP request api.luchtmeetnet.nl (Zwartewaal-
straat)

Figure B.5: Settings for the ”function” node Add timestamp

Figure B.6: Settings for the ”function” node Add location Pleinweg (same for Zwartewaal-
straat)

Figure B.7: Settings for the ”function” node SQL inset Query



b.2 separate luchtmeetnet nodes 83

Figure B.8: Settings for the ”Postgres storage” node PostgreSQL Static database





C N O D E - R E D S E T T I N G S F O R W E E R L I V E
DATA

c.1 overview of the weerlive nodes

Figure C.1: Overview of the Node-RED nodes for the Weerlive API

c.2 separate weerlive nodes

Figure C.2: Settings for the ”inject” node 20 minutes interval

85



86 node-red settings for weerlive data

Figure C.3: Settings for the ”http” node HTTP request weerlive.nl

Figure C.4: Settings for the ”function” node Add timestamp

Figure C.5: Settings for the ”function” node SQL insert Query

Figure C.6: Settings for the ”Postgres storage” node PostgreSQL Static database
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