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ABSTRACT

Our world is rapidly changing, leading to various technological achievements in diverse areas of
expertise. Among the most evolving are autonomous robots, machines and vehicles, enormously
extending human capabilities. While this trend became quite familiar for land-based vehicles,

innovations in the underwater domain lag behind, mainly due to the harsh environmental conditions
encountered. This in large contrast with worldwide growing needs for autonomous underwater solutions,
like dredging. Nevertheless, for underwater vehicles becoming autonomously, various technological chal-
lenges must be overcome. The most essential one is finding a proper answer to the question; where in the
underwater world am I?

Autonomous robots are usually be able to operate in complex environments using external reference
systems such as Global Positioning System (GPS) to locate themselves inside their environment. However,
these are not accessible in underwater applications, since water strongly attenuates electromagnetic
signals, notably GPS. Hence, various alternative methods for Simultaneous Localization And Mapping
(SLAM) for underwater applications are employed, among which the method of anchoring inertial mea-
surements on environmental landmarks, perceived with an exteroceptive Sonar. The ultimate goal of
this procedure is to correct for errors in the inertial measurements, using the environmental perception
available in the Sonar scans. Nevertheless, due to practical underwater issues, it still is not readily
available and even barely investigated in open scientific research. This thesis aims at the development of
an underwater localization algorithm, using onboard inertial sensors and Sonar.

The overall system design consists of several individual software procedures, executing certain assign-
ments, together ultimately solving for the localization task. The developed system was tested using ground
truth in form of a real-world dataset obtained several years ago in an abandoned marina. This showed that
most individual procedures were able to provide good results, while having a low computational complexity
in relation to online operations. However, it is quite a challenge to obtain results accurate enough to
properly correct for positional errors, by using the designed system. Although showing potential, it still is
not entirely decent in terms of accuracy and computational burden. This is likely due to the sparsity of
the extracted Sonar measurements. Data is lacking to further verify the system, hence several questions
remain open regarding its universal applicability in case of different scenarios, dynamic environments and
long trajectories.

In this context, more in-depth research is needed into the algorithms that are influenced by the
Sonar measurements, to increase the accuracy of the overall system, while gaining more insight in its
computational behaviour. Additionally, also more real-world experiments are essential, to extensively
verify the designed system. In conclusion, the results showed that it is possible to correct for inertial errors,
using the system developed. Furthermore, it demonstrates that most procedures individually produce good
results in real-time. Hence, this study can be seen as a positive step in the right direction, forming a basis
for future research in solutions that are generically applicable in online real underwater world operations.
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INTRODUCTION

Our world nowadays is rapidly changing, leading to various technological achievements in diverse
areas of expertise. Among the most evolving are autonomous robots, machines and vehicles,
enormously extending human capabilities. While this trend already became quite familiar for

land-based vehicles, innovations in the underwater domain lag behind, mainly due to harsh environmental
conditions encountered. This in large contrast with worldwide growing needs for autonomous underwater
solutions, which is even emphasized by the tendency to continuously tighten up sustainability policies
around the globe. Hence, Autonomous Underwater Vehicles (AUV)s entirely fit in the goals of subsea in-
dustries, waterway authorities and so on to be most competitive, innovative and sustainable. Nevertheless,
for underwater vehicles becoming autonomously, various technological challenges must be overcome. The
most essential one is finding a proper answer to the question; where in the underwater world am I?, before
reasoning about navigational questions like; (1) to which location am I going? and (2) in what manner
shall I get there? [12, 75, 111].

Autonomous robots are usually able to operate in complex environments using external reference
systems such as Global Positioning System (GPS) to locate themselves inside their environment. However,
these are not accessible in underwater applications, since water strongly attenuates electromagnetic
signals, notably GPS [76]. Hence, various alternatives are commonly employed, most frequently in form of
dead reckoning using so-called proprioceptive sensors like a compass, Inertial Measurement Unit (IMU)
and so on [50, 53, 88]. These alternatives are commonly used to estimate the position of an AUV, by
integrating inertial data over time from a known initial position, whether or not augmented with velocity
predictions using a Doppler Velocity Log (DVL) [99]. However, a major disadvantage is the accumulated
error, because of integration drift. Any measurement error, no matter how small, accumulates inside the
continuous integration of acceleration towards velocity and location. Hence, a constant acceleration error
becomes linear in velocity and quadratic in location [120]. Since a new estimate depends on its previous one,
the error is cumulative and evolves unbounded with distance travelled [88, 99]. Consequently, implying
a large inaccuracy in estimated position over time, making dead reckoning impractical for long-term
navigation.
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CHAPTER 1. INTRODUCTION

To reduce this drift, inertial systems can be combined somehow with other sensors and methodologies.
The first approach is positioning through an external infrastructure, applying independent acoustic
transponders and modems [76, 88]. Techniques belonging to this category are based on Time-Of-Flight
(TOF) measurements of signals emitted from external predeployed acoustic beacons or modems. Devices
belonging to this category are, among others, Long Baseline (LBL), Short Baseline (SBL), Ultra-Short
Baseline (USBL) and GPS Intelligent Buoys (GIB)s [88, 99]. Nonetheless, making use of this approach
brings forth several disadvantages. When using a support ship, as is common in navigation techniques
based on SBL and USBL systems, it must precisely follow the AUV to ensure coverage [99]. Moreover,
although LBL mostly delivers high accuracy results, only small areas can be covered at once, otherwise
the AUV becomes out of range. Together with the procedure of deployment, calibration and recovery, it is
clear that these types of operations are costly in terms of time and expenditures [50, 99]. Furthermore,
effective deployment of acoustic beacons can be quite challenging in particular scenarios, depending on the
seabed relief [99]. Sometimes it also might be not doable because of the acoustic noise already present
in an environment, like for example signals due to the shipping industry. At last, for vehicles becoming
autonomously, they should be able to localize in whatever kind of conditions, thereby only using onboard
sensor systems without the need of external infrastructures [99].

Correction through environmental landmarks perceived with an exteroceptive sensor is another ap-
proach, known as Simultaneous Localization And Mapping (SLAM) 1 [76]. Generally, a broad spectrum of
sensory devices is available, varying from optical cameras or Light Amplification by Stimulated Emission of
Radiation (Laser) scanners, such as Light Detection And Ranging (LiDAR), up to acoustic imaging systems
in form of SOund Navigation And Ranging (Sonar). By solving for the fundemental SLAM issue, it is
doable to constraint the drift and localize the AUV more accurately in its environment, solely based on pro-
prioceptive and exteroceptive sensors. More formally, it encompasses the synchronous estimation of robotic
poses using proprioceptive measurements and the construction of an environmental model by exteroceptive
readings [44, 53, 88]. While robotic poses consist of location and orientation, the environmental model or
map describes surroundings by representing diverse aspects of interest, like locations of landmarks or
objects, characterized by their features. Obviously this method has its limitations in the unstructured
domain, because environmental characteristics are mostly lacking. However, numerous marine activities,
wherein AUVs can significantly contribute, take place in relatively shallow and structured environments.
Therefore, arriving at underwater SLAM which, due to practical issues, is still not readily available and
even barely investigated in open scientific research. Hence, this thesis aims at the development of an
underwater localization algorithm, using onboard sensors in form of an IMU, DVL and imaging Sonar.

1.1 The concept of SLAM

SLAM examines the problem where a mobile autonomous vehicle or robot is placed in an unknown envi-
ronment and at an unknown location to explore it, having only onboard proprioceptive and exteroceptive
sensors at its disposal [44, 53, 78]. By fusing sensory data, it tries to build a consistent environmental
map, while simultaneously computing its location in this map. The SLAM procedure is also known as the
chicken-and-egg problem, being a causality dilemma since consistent environmental maps are needed for
proper localization, while simultaneously accurate robot positions are a must in collecting these maps

1Or Concurrent Mapping And Localization (CML) [88, 112, 114].
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A.2. SECOND ALGORITHM

in Figure 4.6. Still the algorithm was much too conservative also removing a lot of bona fide measurements,
resulting in quite a loss of detail in each scan. Moreover, the above segmentation process must be applied
with caution since it heavily relies on a fixed distance between the robot and its environment, which in
addition is assumed to be static. Principally this can be seen as taking into account prior knowledge,
expecting the Sonar update rate to be high enough to exclude dynamic surprises. Therefore, the technique
is not really desirable and not considered any further in the investigation.

91





A
P

P
E

N
D

I
X

B
POSE COMPOUNDING OPERATIONS

This appendix briefly explains two concepts commonly used in the literature regarding Simul-
taneous Localization And Mapping (SLAM) solutions, scan matching procedures, robotics and
such. They are closely related to each other and are called the pose compounding and inversion

operator. Their mutual relation will be clarified on the basis of mathematical theory. In doing so, Section
B.1 discusses the pose compounding operation, while Section B.2 elaborates the inverse operator.

B.1 Compounding operator

Almost everything within robotics has to do with poses. As mentioned earlier, a pose consists of the location
and orientation of an object, having its coordinate frame in multiple dimensions. Normally, poses are
relative to each other or relative to the world coordinate frame, such describing the position and orientation
of one coordinate system with respect to another [105]. In the context of this investigation, a certain
Autonomous Underwater Vehicle (AUV) continously obtains new poses when traversing an environment,
usually relative to their starting pose referred to as the world coordinate system. In the following two-
dimensional (2D) example, consider that the AUV starts at pose xw = [xw, yw,µw]T 1, whereafter it explores
the environment through which the pose varies with ª= wªI = [x, y,µ]T relative to xw before reaching a
new pose xI = [xI , yI ,µI ]T [78]. The latter defines the new coordinate 2 system and can be obtained through
a certain transformation, the so-called compounding operation or head-to-tail relationship, discussed in
among others [78, 105, 107]:

xI =

2

664

xI

yI

µI

3

775= xw ©ª=
"

Tw

Aw

#

(B.1)

1Please note that the poses considered in this appendix are modeled as Random Gaussian Variables (r.g.v.)s in practice. However,
for the sake of simplicity its mathematical description is not taken over in this chapter, but instead the poses are assumed to be
deterministic.

2Usually, an absolute pose represents the position plus orientation of a coordinate frame in a global space, in the 2D case,
consisting of x, y coordinates and direction µ [78].
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APPENDIX B. POSE COMPOUNDING OPERATIONS

Where Tw takes into account both the rotation 3 and the translation due to AUV motion:

Tw = Rw

"
x
y

#

+
"

xw

yw

#

=
"

cos(µw) °sin(µw)
sin(µw) cos(µw)

#"
x
y

#

+
"

xw

yw

#

(B.2)

And Aw is defined as [105]:
Aw = µw +µ (B.3)

Hence, the coordinates are interconnected by [78]:

xI = xw + xcos(µw)° ysin(µw) (B.4)

yI = yw + xsin(µw)+ ycos(µw) (B.5)

µI = µw +µ (B.6)

Generally, a homogeneous transformation can also be established, starting with Tw [38]:

Tw ! Th =

2

664

cos(µw) °sin(µw) xw

sin(µw) cos(µw) yw

0 0 1

3

775

2

664

x
y
1

3

775= Rh

2

664

x
y
1

3

775=

2

664

xI

yI

1

3

775 (B.7)

Consequently, compounding two poses C = D©E equals the multiplication of their corresponding homoge-
neous coordinate matrices RDRE , resulting in the homogeneous matrix of the new pose C [11]. Moreover,
note that the compounding operation is associative and not commutative [78]. Normally, it is used to
compute the location of a mobile robot after a serie of relative movements [107].

B.2 Inversion operator

In general, a new composite transformation can be formed by computing a sequence of previous relative
transformations, using Eq. (B.1). However, frame relationships are directed [107], in close analogy to
the pose-graph representation. Meaning that sometimes one needs to perform a backwards computation
against the forward pose or graph direction to establish a new pose [105, 107]. This reversal can be easily
captured by a mathematical expression called the inverse transformation [107]:

xw°1 =™xw =

2

664

°xw cos(µw)° yw sin(µw)
xw sin(µw)° yw cos(µw)

°µw

3

775 (B.8)

In a similar manner the inverse of compounding can be established, wherein the relative pose is determined
given two poses [78]:

ª= Iªw = xI ™ xw (B.9)

Whose computation results in the following equations:

x = (xI ° xw)cos(µw)+ (yI ° yw)sin(µw) (B.10)

y=°(xI ° xw)sin(µw)+ (yI ° yw)cos(µw) (B.11)

µ = µI °µw (B.12)

3By means of a 2x2 rotation matrix around the z-axis or yaw parametrized by µw.
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B.2. INVERSION OPERATOR

Given this relationship it can be verified that the tail-to-tail combination (™D)©E = E ™D. For more
information regarding pose compounding, derivations in case of three dimensions or rigid-body theory, the
interested reader is referred to one of the excellent sources [38, 78, 105, 107].
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APPENDIX D. SENSORS GENERATING THE DATASET

(a) (b)

FIGURE D.1. (a) Visualization of the Sontek Argonaut DVL. (b) Positioning of the DVL sensor
inside the operating vehicle. The first photo is reproduced from [94], while the second is
obtained from [92].

The operating frequency of the system is 1500 [kHz], while the output rate is around 1.5 [Hz] 1 due to
acoustic limitations [94]. The device is mounted inside the operating platform, having its sensor coordinate
frame with respect to the vehicle frame as depicted in Figure D.1(b). The blue axes represent the local
sensor’s frame 2, in which positive measurements have been established, while the black axes correspond
to the local vehicle reference coordinate frame. Given this information, one is able to construct a rigid-body
transformation resulting in a transformed vector of the form:

TD!R = RD!R{D}+ tD!R (D.1)

In which rotation matrix RD!R and vector tD!R respectively take care of the rotation and translation of
the data in the sensor frame {D} towards the local vehicle frame {R}.

D.2 Motion Reference Unit

The Xsens MTi is a small low-cost and gyro-enhanced Motion Reference Unit (MRU) providing acceleration,
attitude, heading and rate of turn measurements all in 3DOF [92, 94]. The output rate of the device
is around 10 [Hz]. However, because of the small accelerations experienced by the vehicle, their linear
measurements in 3DOF became inaccurate [94]. Nevertheless, angular estimations seem to be more
reliable. Moreover, the output rate is much higher compared to the DVL. Hence, this sensor is the main
source for the prediction of the vehicle’s attitude and heading information [94]. Figure D.2(a) shows the
MTi device, while Figure D.2(b) describes its position with respect to the operating platform. The blue and
black coordinate frames are completely similar to the ones explained in Section D.1, except for the former

1Although some internal sensors are able to produce measurements at higher rates [94].
2Consisting of both positive linear and angular directions.

106



bbbb
bbbb

bbbb

bbbb
bbbb

bbbb

bbbb

bbbb
bbbb

bbbb

bbbdasdfasdfasdfadfbFor confidentiality reasons this page is not displayed.



bbbb
bbbb

bbbb

bbbb
bbbb

bbbb

bbbb

bbbb
bbbb

bbbb

bbbdasdfasdfasdfadfbFor confidentiality reasons this page is not displayed.



bbbb
bbbb

bbbb

bbbb
bbbb

bbbb

bbbb

bbbb
bbbb

bbbb

bbbdasdfasdfasdfadfbFor confidentiality reasons this page is not displayed.



bbbb
bbbb

bbbb

bbbb
bbbb

bbbb

bbbb

bbbb
bbbb

bbbb

bbbdasdfasdfasdfadfbFor confidentiality reasons this page is not displayed.



bbbb
bbbb

bbbb

bbbb
bbbb

bbbb

bbbb

bbbb
bbbb

bbbb

bbbdasdfasdfasdfadfbFor confidentiality reasons this page is not displayed.



bbbb
bbbb

bbbb

bbbb
bbbb

bbbb

bbbb

bbbb
bbbb

bbbb

bbbdasdfasdfasdfadfbFor confidentiality reasons this page is not displayed.



bbbb
bbbb

bbbb

bbbb
bbbb

bbbb

bbbb

bbbb
bbbb

bbbb

bbbdasdfasdfasdfadfbFor confidentiality reasons this page is not displayed.



bbbb
bbbb

bbbb

bbbb
bbbb

bbbb

bbbb

bbbb
bbbb

bbbb

bbbdasdfasdfasdfadfbFor confidentiality reasons this page is not displayed.



bbbb
bbbb

bbbb

bbbb
bbbb

bbbb

bbbb

bbbb
bbbb

bbbb

bbbdasdfasdfasdfadfbFor confidentiality reasons this page is not displayed.



APPENDIX D. SENSORS GENERATING THE DATASET

FIGURE D.11. Photograph of the operating platform and buoy, wherein the DGPS is located.
The buoy is fixed by four anchor-points to ensure it will always be located directly above the
vehicle. The figure is reproduced from [92].
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IMAGE PROCESSING

This appendix briefly describes the two main mathematical techniques being employed in the
beam segmentation procedures, as explained in Section 3.3 and Appendix A. In doing so, the
Gaussian blur filter as particular type of spatial filtering is explained in Section E.1, whereas

Section E.2 discusses the Erode operation.

E.1 Filtering in spatial domain

Presumably the most used categorie nowadays is filtering in the spatial domain using a two-dimensional
(2D) sliding window, being equivalent to filtering in the frequency domain [30]. Spatial filters make use
of a pixel-by-pixel transformation of an image, not only depending on the pixel value being processed,
but also on its neighbouring pixel values [30, 59]. Hence, this procedure is also known as neighborhood
processing. It defines a center pixel for which an operation is performed, by taking into account predefined
neighboring pixels. Generally, the operation is presented by a matrix with dimensions equal to the amount
of predefined neighboring pixels. By computing the operation stated in the matrix 1, a new value for the
center pixel is obtained. By sliding the matrix over a two-dimensional image, the process is repeated
for each pixel within it. An example of the process is visualized in Figure E.1. The matrix or 2D sliding
window is also known as filter, mask or kernel [30, 59]. The first metonym orginates from functions in the
frequency domain. For convenience, it is commonly named a spatial filter to emphasis its spatial operation
[59]. The calculation of a new value for the center pixel can depend in a linear or non-linear fashion on
its neighboring pixel values in combination with specific weighting coefficients [30, 102]. A mathematical
expression of a spatial linear filter g is given by 2 [108]:

g(i, j)=
aX

k=°a

bX

l=°b
w(k, l) f (i+k, j+ l) (E.1)

1Which is generally a linear combination of its neighboring pixel values with specific weigth coefficients [102].
2Note that Eq. (E.1) is a cross-correlation operation H≠F rather than a convolution H§F in which the kernel is flipped both

horizontally and vertically [108].
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APPENDIX E. IMAGE PROCESSING

FIGURE E.1. Visualization of a spatial filter, as applied to a random two-dimensional image.
This figure is duplicated from [30].

In which g is the output after filtering, f equals a digital input image of size MxN and w represents
the filter kernel of size wmxwn. The dummy variables are a = wn°1

2 and b = wn°1
2 . Linear filtering in the

spatial domain is basically an application of the convolution operator [51, 59, 90]. Filter performance
depends, among others, on kernel dimensions which must be specified by the user. Different sizes result in
diverse output images, based on the level of noise and intended result one wants to obtain. However, the
kernel always needs an odd number of pixels in rows and columns to ensure a single unique center pixel
[30]. Usually, for a 2D image a square kernel with sizes of 3x3, 5x5, 7x7 pixels gives satisfactory results
[102]. The edges of an image must be treated carefully, since the kernel is partly outside the image space
[59]. Several approaches exist to solve for this issue. One solution is to pad the outer edges of an image, by
adding zeros around the image at the expense of a slightly darker outer edge. Another preferable solution
would be to mirror the pixel values of an image around its edges [59]. In this way, no new information is
added to an image and the edges will not be distorted. This approach is equivalent to ignoring the values
where an image and the kernel do not overlap, albeit easier to implement.

E.1.1 Square Gaussian weighted average filter

One low-pass filtering technique is the square Gaussian weighted average filter, sigma filter or Gaussian
blur filter developed to improve on the capabilities of the mean kernel filter [3, 73, 89, 102]. Rather than
defining coefficients equal to w(k,l)

wmwn
= 1

wmwn
|8k 2 [°a,a]\ l 2 [°b,b], as is the case for average filtering, they

are sampled from a Gaussian bell whose width is a user-defined number of standard deviations [66, 102]:

g(i, j)=
aX

k=°a

bX

l=°b
w(k, l) f (i°k, j° l) (E.2)

with:

w(k, l)= 1
2ºæ2 e°

k2+l2
2æ2 (E.3)
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E.2. MORPHOLOGICAL OPERATIONS

FIGURE E.2. A binary image A is eroded by a cross-shaped structuring element B. The figure is
reproduced from [126].

Where æ is the standard deviation. The normalized kernel coefficients are related to the specified width by
the probability density region covered. For example, two standard deviations cover 95% of the Gaussian
bell, wherein the coefficients will be computed [102]. Main idea is that pixels closely located to the central
one more likely belong to the same image region. Consequently, neighboring pixels located closest to the
central have heigher weighting coefficients in the average calculation, whereas pixels further away recieve
lower weights [102].

E.2 Morphological operations

This section briefly explains the morphological erosion operator. Commonly, its input is a binary image
consisting of only two Boolean values for each pixel, namely zero or one [126]. It makes use of a spatial
window in analogy to Section E.1. However, the official term used to describe morphology is a binary
structuring element, rather than a kernel or window [30, 126]. It interacts with a given image and
influences its geometric structure [126]. Selecting the proper shape or size for it, depends on the shapes
and sizes of the targets in the image [126]. Mostly used are octagonal, disk-shaped, rectangle, line segment,
diamond or square structuring elements. The morphological operation places the structuring element over
each pixel in a binary image, whereafter it performs a logical test [30]. Hence, it affects the image and
is able to effectively reduce noise and enhance objects. Let A be the input image and B the structuring
element. The definition of erosion is [73, 126]:

A™B =
\

b2B
A°b ! A™B(m,n)= min{A(m+ i,n+ j)|(i, j) 2 B} (E.4)

Wherein ™ is the Minkowski subtraction [73] and
T

stands for the intersection between the structuring
element and the image. Thus erosion shrinks objects, separates fragemented characteristics and removes
small targets, by combining both sets due to the vector subtraction of all elements b [126]. The result of an
erosion process is displayed in Figure E.2.
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