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Research activities and areas of impact

Advancing Renewable Aero-Propulsion

• Grand challenge: air-transportation/energy security/combustion
- Reduced emission of pollutants from aircraft NOx, CO, CO2, UHC, and soot
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“Deep insight into multiscale chemical 
interactions can only be obtained from 
spectroscopic measurements garnered 
in spatial and temporal correlation.”

Challenge the future
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Temperature maps

Large Eddy Simulation



Time- and spatially resolved optical 
diagnostics for combustion analysis
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• Challenges: Parameter determination in reacting flows
– Major- and transient species detection            Particulate chemistry

– Temperature field           Mixture fraction          Flow field

– Spatial- and temporal correlation (multiscale analysis)

CARS imagery in 
flames:

• Strategy: Snap-shot coherent Raman imagery 
– Simultaneous hyperspectral imaging (x, y, λ) in a single-laser-shot.  

– Benchmarking: Accuracy, Precision, Sensitivity, Resolution and Field-of-view.
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Time- and spatially resolved optical 
diagnostics for combustion analysis

• Strategy: Snap-shot coherent Raman imagery 
– Simultaneous hyperspectral imaging (x, y, λ) in a single-laser-shot.  

– Benchmarking: Accuracy, Precision, Sensitivity, Resolution and Field-of-view.

• Challenges: Parameter determination in reacting flows
– Major- and transient species detection            Particulate chemistry

– Temperature field           Mixture fraction          Flow field

– Spatial- and temporal correlation (multiscale analysis)

• Objectives: High-fidelity experiments in combustion systems 
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Experiments informs 
theory and vice versa

Device validation

Development of predictive engineering models

- Flameless Combustor 
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Actual 
temperature

Inaccuracy ~2-3%                                             
Single shot precision ~4-5%
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• Most accurate technique for thermometry in reacting flows        
(wide range of operational conditions).

Why should we use CARS? 

Background nanosecond CARS

Evaluated 
temperature

Evaluated 
temperature

Actual 
temperature

Advanced nanosecond CARS

Improved Accuracy – Spectroscopic modelling (Raman linewidths, ...) 

Inaccuracy ~0% ?                                            
Single shot precision ~4-5%

Improved Precision – Experimental setup (Laser system, ...)

Goal!
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1-2 mm

True temperature
Evaluated temperature
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• Vibrational CARS, Rotational CARS

• Nanosecond CARS characteristics:
– Non-intrusive, in-situ probe
– High temporal resolution (~10 ns)
– High spatial resolution (~100 µm x 100 µm x 1-2 mm)
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Inaccuracy ~2-3%                                             
Single shot precision ~4-5%

• Most accurate technique for thermometry in reacting flows        
(wide range of operational conditions).
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Why should we use CARS? 



< 0.5 mm

• Two-beam femtosecond/picosecond CARS
– Picosecond temporal resolution                          
(Near collision independent - Raman linewidths)

– Improved spatial resolution                                  
(40 µm x 40 µm x 0.5 mm)

– 1D and 2D imaging capabilities 

Inaccuracy  < 2-3%  
Single shot precision ~1%

• Vibrational CARS, Rotational CARS
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1-2 mm

True temperature
Evaluated temperature

Inaccuracy ~2-3%                                             
Single shot precision ~4-5%

• Most accurate technique for thermometry in reacting flows        
(wide range of operational conditions).

• Nanosecond CARS characteristics:
– Non-intrusive, in-situ probe
– High temporal resolution (~10 ns)
– High spatial resolution (~100 µm x 100 µm x 1-2 mm)

Why should we use CARS? 



Measurement object
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Two-beam femtosecond/picosecond CARS  

Simplified generic phase-matching- and impulsive excitation scheme.
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Laser driven transitions (Q and S)

Spectroscopy in the time-domain

Δk = kphysical – kgeometrical > 0 

Molecular internal energy levels 
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N2 spectra at two different temperatures  
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Air (79% N2 and 21% O2) at room temperature

Measurement object
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Two-beam femtosecond/picosecond CARS  

Broadband Laser Narrowband Laser
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Examples of coherent Raman spectra for some               
combustion relevant species 

• Specific selection rules (transitions)                                                                                       
ro-vibrational O-, Q-, S-branch (Δ𝑣 = 1, Δ𝐽 = 0, ±2),                                                        
pure-rotational O, S-branch (Δ𝐽 = ±2)

Challenge the future
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Direct coherent Raman temperature imaging 
and wideband chemical detection

Fuel + oxidizer
N2 / Air

10 l/min
N2 / Air

Premixed burner principle

Burner design (Michelsen group, Sandia) 

• Canonical sooting 
hydrocarbon flat-flame 
used to benchmark the 
new techniques.

10 mm

Photo: M. Campbell
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HAB=2mm
T~1750 K 

HAB=1mm
T~800 K 

Ethylene/air 
φ=2.35
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Burner design (Dreizler group, TU Darmstadt) 

Photo: C. Jainski

• Motivation

Flame-wall interaction plays a key 
role in the formation of pollutants 
in a combustion chamber, such as 
UHC and CO.

Side wall quenching burner
- 1D-CARS temperature- and chemical imaging
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• Automatically overlapped pump/Stokes fields, temporally and spatially, 

makes the technique more robust and higher pulse energy available.  
• Spatial sectioning (probe volume):

~ 40 μm (Beam waist) x 40 μm (Coherent point-spread function) x 0.5 mm (Interaction length).

Two-beam 1D-CARS near-wall imaging 

Relay imaging 

Cylindrical lenses 
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Multiparameter spatio-thermochemical 
probing of flame-wall interactions 

• The excellent imaging resolution 
allows for thermochemical states 
of the thermal boundary layer to 
be probed to within ~40 μm of 
the interface.

• Concurrent detection of N2, O2, 
H2, (CO), CO2, and CH4 is 
achieved. 
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FWI at enhanced turbulence intensities
(Work-in-progress)

• Single-shot spatially dependent statistics of the 1D flame-front gradient 
/ thickness / position become possible (improving heat transfer models)
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Photo: C. Jainski



Single-shot hyperspectral CARS in the gas-phase

Wideband chemical imagingTemperature imaging
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Nd:YAG, 30mJ@532 nm, 70ps, 20 Hz

Ti:Sapphire, 3mJ@800 nm, 45fs, 1 kHz
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• Tunable spectral dispersion, enabling multispecies 

detection and probing of a larger 2D field.

• Vector diagram to orientate each location of the spatially 
resolved measurement.

Simultaneous planar imaging and 
multiplex spectroscopy in a single-shot
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Dispersive Fourier Transform detection 
of short pulsed CARS/CSRS signals
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Synchronized ps/fs laser system 
for time-resolved non-linear 
optical spectroscopy/microscopy 
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Femtosecond laser (ultrafast amplifier) 

7 mJ/pulse @ ~780-810 nm (~35 fs)

Picosecond laser (SHBC) 

2.0 mJ/pulse @ 400 nm (~10 ps)

Snap-shot chemiluminescence flexible hyperspectral imagery
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It is equally fun to buy an air-treatment system, 
as it is to buy a vacuum cleaner  

Challenge the future
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Courtesy of Dr. Arvind Gangoli Rao
Challenge the future
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Distributed auto-ignition combustion modes 
with reduced NOx emission 
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Conclusions

• Two-beam femtosecond/picosecond CARS 
- Relevant for 0D, 1D, and 2D temperature measurements in flames when 

high-fidelity information is needed (inaccuracy <2-3%, precision ~1%)

- Single-shot quantitative measurements for major species in combustion 
are within reach (species specific dephasing times, spectroscopy models)

• Can this advanced laser diagnostics technique be employed 
for measurements in engines?

- Technical challenges for the stability of operation (facility temperature 
and humidity control, propagating TL-beams through optical ports)

• This ultrafast 1D-CARS technique has been successfully 
employed at:

1. Flame-wall interaction burner (head-on and side-wall quenching)  
2. Sooty flames provided on a McKenna burner

Challenge the future
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Thank you for your attention!
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