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Uncertainty Modelling in Aircraft Trajectory
Predictions

R. Graas

Under supervision of Dr. J. Sun and Prof. Dr. Ir. J.M. Hoekstra
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Delft University of Technology, Delft, The Netherlands

Abstract—Several initiatives are being developed to shift the
current paradigm in Air Traffic Management (ATM) from the
tactical-based approach to more strategic-based coordination of
flights. This transformation of the ATM system relies on the
improvement of predictive models that predict the 4D-trajectory
of an aircraft. Previous studies primarily applied deterministic
models that compute a single predicted trajectory. These models
were assessed on their predictive accuracy. However, the accuracy
of the predictions is highly impacted by uncertainties that affect
the progression of a flight. These uncertainties are commonly
related to the lack of detailed information concerning the flight
intent, or the inaccuracy of positional and weather-related data.
This study applied two probabilistic techniques: the model-
based particle filtering model and the data-driven Gaussian
Process Regression. Both approaches model the uncertainties and
provide a predictive distribution of trajectories that allows for
the evaluation of both the accuracy and the uncertainty of the
predictions. These models were applied to predict the descent
trajectories of aircraft arriving at Amsterdam Airport Schiphol.
The results showed that the uncertainty of the predictions could
be reduced by incorporating flight-plan data and meteorological
data in the predictive models. Also, the accuracy was improved
which demonstrates the importance of these sources of data in
the predictions of aircraft trajectories. The proposed models have
been able to quantify the uncertainty in trajectory predictions
that could be used to further develop and improve the manage-
ment and prediction of 4D-trajectories.

Index Terms—Uncertainty modelling, 4D aircraft trajectories,
Gaussian Process Regression, Particle Filtering

I. INTRODUCTION

Vastly increasing air traffic numbers throughout the last
decades has challenged the field of air traffic management
(ATM). In order to accommodate more flights and improve the
performance of the ATM system under higher traffic demands,
measures should be taken to increase airspace capacity, which
is mostly limited by the workload of air traffic controllers.
Research initiatives like Single European Sky ATM Research
(SESAR), and the USA equivalent NextGen, aim to develop
new, advanced technologies and procedures to improve the ef-
ficiency and effectiveness of the ATM system while sustaining
the level of safety and security [1].

One of the innovative procedures that should characterise
the future ATM system is named Trajectory Based Operations
(TBO), which concerns the separation of aircraft through
strategic, long-term 4D-trajectories, rather than the current

approaches that are based on tactical, short-term interventions
by controllers for conflict resolutions [2]. The 4D-trajectory
represents the flight path from departure to arrival in four
dimensions: latitude, longitude, altitude, and time.

The effective implementation of concepts like TBO relies on
the accurate prediction of the flight path by a Trajectory Pre-
dictor (TP). The quality of these predictions is highly impacted
by the uncertainties that are associated with the evolution
of a flight trajectory. Traditionally, TPs are modelled using
deterministic techniques and models which do not explicitly
capture the sources of uncertainty that affect the predictive
accuracy [3]. These models provide a single trajectory forecast
without expressing the uncertainty of the predictions.

This study proposes two probabilistic approaches that in-
corporate the modelling of uncertainties to predict aircraft
descent trajectories arriving at Schiphol Airport. Both a model-
based- and data-driven technique are applied which provide
a predictive distribution of trajectories rather than a single
estimated trajectory. The predictive distribution allows for the
quantification of the uncertainty of the predictions. This study
aims to apply these probabilistic techniques to model and
quantify the uncertainty of the trajectory predictions.

This paper is structured as follows. Section II describes the
related work in which previous studies are explored and the
main sources of uncertainties are defined. Also, the predictive
techniques and their applications in other studies are described.
Then, the research methodology is explained in Section III
where the probabilistic approaches are elaborated. The results
are presented in Section IV, after which a discussion is
provided in Section V. The conclusions of this project and
recommendations for future work are presented in Section VI
and VII respectively.

II. RELATED WORK

This section elaborates on the performed literature study
that explores previous studies concerning aircraft trajectory
predictions. First, applications of both model-based- and data-
driven approaches are discussed. Subsequently, approaches
used to group trajectories with similar features into clusters are
presented. These clustering techniques are applied to train the
predictive models more effectively. Lastly, different sources of
uncertainties in trajectory predictions are presented, together
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with a selection of probabilistic techniques that are used to
model those uncertainties in predictive models.

A. Model-based trajectory prediction

Classical model-based TPs apply a physics-based Aircraft
Performance Model (APM) of the aircraft to simulate and pre-
dict aircraft trajectories. The structure of such models is based
on kinetic assumptions and the aircraft is usually represented
as a point-mass [4]. The model parameters are estimated based
upon the performance parameters of the aircraft, the expected
atmospheric condition, and the expected operational strategies
of the flight operated by the Flight Management System (FMS)
or the pilot, also referred to as aircraft intent [5]. One of the
most widely applied APM is adopted by the Base of Aircraft
Data (BADA), developed by Eurocontrol. This model has been
widely adopted in the field of ATM research to simulate and
predict aircraft trajectories [6].

The aircraft intent describes the way the aircraft is expected
to be operated by the FMS or the pilot. The most detailed
form of aircraft intent could be derived from the FMS, which
provides more information than found in regular flight plans
filed before the flight. Bronsvoort et al. [7] extracted FMS
trajectory data and used it to derive an extensive description of
the aircraft intent. The study showed a significant improvement
in the predictive accuracy of the descent trajectory when
detailed longitudinal intent is specified.

Apart from the aircraft intent and the APM, an envir-
onmental model, that includes forecasts of meteorological
properties, is a fundamental building block of a model-based
TP. Alligier [8] included temperature and wind fields as
atmospheric properties affecting the climb performance of an
aircraft. De Leege et al. [9] used surface winds and altitude
winds as the meteorological inputs to predict the trajectory of
an aircraft flying a Continuous Descent Operation (CDO). The
implementation of the wind components in the TP positively
affected the predictive accuracy.

Although the use of APMs has positively contributed to the
development of more accurate TPs, most models are limited
due to the simplifications of the flight dynamics. Besides,
assumptions are introduced when aircraft-specific parameters
like the aircraft mass or the fuel consumption are not known
precisely.

B. Data-driven trajectory prediction

The increasing availability of trajectory data has given rise
to the popularity of data-driven techniques that apply machine
learning models to predict aircraft trajectories. Several studies
have extracted trajectory data from radar observations [10]–
[12]. However, the improved accuracy obtained from Auto-
matic Dependent Surveillance-Broadcast (ADS-B) technology
has made ADS-B the preferred source of trajectory data.
ADS-B is a satellite-based surveillance technology that allows
aircraft to transmit identification, velocity, and positional in-
formation to surrounding aircraft and ground stations. Data-
driven approaches often aggregate the trajectory data with
meteorological data and data that expresses the aircraft intent.

The meteorological data could be extracted from various
databases. De Leege et. al [9] extracted wind fields from the
Global Forecast System (GFS), which is a global weather
forecast model produced by the National Centers for Environ-
mental Prediction (NCEP). This model has a spatial resolution
of 28 kilometres and provides meteorological forecasts up to
an altitude of 55 kilometres. Zhang et al. [13] resorted to
the database maintained by the European Centre for Medium-
Range Weather Forecasts (ECMWF), which has a grid res-
olution of approximately 80 kilometres. The ERA5 dataset,
part of the ECMWF, uses a grid resolution comparable to the
GFS model and provides hourly estimates of a large number
of atmospheric variables.

Aircraft intent data is commonly derived from ICAO flight
plans [14]. These plans typically contain the type of aircraft,
cruising speed, cruising level, and waypoints describing the
intended route [15].

A data-driven predictive model aims to exploit different
sources of data to extract relevant features of the trajectory
that could be used to predict the position of the aircraft.
A broad variety of machine learning techniques are applied
in studies that develop data-driven TPs. Hamed et al. [16]
proposed statistical regression models that assumed the aircraft
position to be a function of a set of dependent variables. The
past aircraft positions, current speed, temperature, and wind
conditions were selected as dependent variables. The study
concluded that the regression model obtains more accurate
predictions compared to the model-based approach that used
the BADA APM. De Leege et al. [9] used Generalised Linear
Models (GLM) to predict arrival times of descending aircraft.
The study identified the aircraft type, initial altitude, and initial
ground speed as the input variables with the greatest statistical
power to predict the arrival time. Also, Neural Networks
have been widely adopted in data-driven trajectory predictions
[17], [18]. Wang et al. [5] applied the so-called Multi Cells
Neural Network (MCNN) to predict air traffic in the Terminal
Manoeuvring Area (TMA). The term ’multi cells’ refers to
multiple sets of trajectories that were identified from trajectory
clustering techniques. A Neural Network (NN) was applied to
each of these trajectories.

C. Trajectory clustering

To train predictive models more effectively, the developed
model is commonly trained on sets of trajectories that share
similar features. These sets are found after applying clustering
techniques. One of the most frequently applied methods is the
Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) [19]. DBSCAN groups together trajectories that
are in the vicinity of each other based on a specified distance
metric. The algorithm uses two parameters:

• eps (ε) is a distance threshold used to decide whether two
trajectories are sufficiently close to be in the same cluster.

• MinPts defines the minimum required number of traject-
ories to form a cluster.

This algorithm has proven to be effective in clustering
trajectories while discarding outliers [20], [21].
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D. Performance evaluation of TPs

The majority of studies evaluated the TP on the predictive
accuracy which could either be expressed by the spatial- or
the temporal error between the predicted- and actual trajectory
[7], [14]. Several sources of uncertainty affect the predictive
accuracy. For example, an APM includes simplifications of
the flight dynamics and might require estimations of unknown
parameters like the mass of the aircraft. Besides, weather fore-
casts inherently contain an element of uncertainty, and the lack
of detailed aircraft intent descriptions also introduces a source
of uncertainty. The majority of studies do not consider these
uncertainties and produce a single predicted trajectory, without
stating the level of certainty of the prediction. The following
sections will elaborate on different sources of uncertainty in
trajectory predictions and explain probabilistic techniques that
model these uncertainties.

E. Modelling uncertainty

Modelling uncertainty in predictive analytics involves the
process of Uncertainty Quantification (UQ), which aims to
describe how the uncertainty in input parameters of a pre-
dictive model affects the uncertainty of the predictions of the
target variable. The initial step to this process involves the
identification of different sources of uncertainty.

A variety of studies have been conducted to identify the
main sources of uncertainty in aircraft trajectory predictions
[22], [23]. When using an APM to simulate the aircraft
trajectory, initial conditions should be specified that describe
the initial state of the aircraft in terms of initial speed,
position, and aircraft mass. Inherent inaccuracy in ADS-B data
introduces uncertainty in position and speed measurement, and
the possibly unknown aircraft mass requires the implement-
ation of estimations [3]. Also, measurements and forecasts
of meteorological parameters inevitably introduce uncertainty
to the model. Besides, the lack of knowledge concerning the
operational strategy of the airline is considered a major source
of uncertainty, since flight plans generally provide limited
information. Besides, the aircraft might deviate from its plan
based on crew preferences or ATC interventions [23], [24].

Uncertainty in parameters is commonly expressed math-
ematically by a Probability Density Function (PDF), where
many studies apply the Gaussian distribution to represent a
variable, with the nominal value as its mean and the level
of uncertainty expressed by the variance of the PDF [24].
Alternatively, Álvaro Rodriguez-Sans et al. [25] modelled the
variable as a nominal value plus a precision error, where the
precision error was modelled by a PDF.

Subsequently, the input uncertainties are propagated through
probabilistic models using computational tools to identify the
joint effect of the stochastic factors on the predictions of the
target variable. These models apply the Bayesian framework
where available prior knowledge is updated with information
of observed data, resulting in a posterior distribution that could
be used to infer predictions. Unlike a deterministic approach,
the predictions are represented by a posterior predictive distri-
bution rather than a single point estimate [26]. This posterior

predictive distribution is used to express the range of possible
outputs at some level of confidence. Commonly, a sensitivity
analysis is applied to analyse the effects of changes in model
inputs on the output of the predictive model [26], [27].

A variety of probabilistic techniques could be used to
model the uncertainties in trajectory predictions. The following
sections will elaborate on two techniques used in this study:
the model-based Particle Filtering method (PF) and the data-
driven Gaussian Process Regression (GPR).

F. Particle Filtering

The Particle Filter (PF), also referred to as Sequential
Monte Carlo method, is a simulation-based technique used for
the estimation of nonlinear system states [28]. The posterior
distribution of interest is represented by a set of weighted
particles. The simulations are performed with a specified state-
and observation model incorporated in a state-space model
defined below (Eq. 1).

xt = f (xt−1) + ωt−1

yt = h (xt) + vt

(1)

where xt and yt represent the set of system states and
observations at time t respectively. The state transition function
and the observation functions are presented by f and h. Both
models incorporate a noise model defined by ωt and vt.

The goal of the PF is to compute the probability of the
system state at time t given all historic observations up till
time t. This posterior distribution is expressed as p (xt | y1:t)
and could be computed using Bayes’ Rule:

p (xt | y1:t) =
p (yt | xt) p (xt | y1:t−1)

p (yt | y1:t−1)
(2)

The PF computes the posterior distribution recursively by
using incoming measurements from the observation model.
Initially, at t = 0, N particles are drawn from the prior initial
state distribution. Each particle is weighted equally. Hereafter,
the PF algorithm repetitively performs the following three
steps [28].

1) Measurement update
The weights of the particles are updated using new
measurements from the observation model. These weights
are updated according to the likelihood of the observation
yt being related to the state at time t xt. Hence, the
weights are proportional to the observation likelihood
p (xt | yt) Finally, the weights are normalised such that
all weights sum to 1 again.

2) Resampling
A new set of particles is chosen based on the importance
weights assigned to them during the measurement update.
After the resampling step, the particles are weighted
equally again.

3) State update
The particles are propagated forward in time using sim-
ulation of the state model.
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The PF has been widely adopted to estimate unknown
parameters and infer predictions in systems that show non-
linear and possibly non-Gaussian behaviour. Sun et al. [29]
applied the PF to estimate the mass of the aircraft and its thrust
setting during the initial phase of the climb. Both states were
initially drawn from uniform distributions, with the mass lim-
ited by the Operating Empty Weight (OEW) and the Maximum
Take-Off Weight (MTOW). A performance model and ADS-B
observations were used to propagate the particles forward in
order to generate the posterior predictive distribution of both
states. Results showed that the PF yielded a mean absolute
error of approximately 4.3% of the true mass. Lymperopoulos
and Lygeros [28] applied the PF to predict aircraft climb
trajectories that were subjected to uncertain parameters due
to inaccurate weather information and unknown mass of the
aircraft. The study showed that, as new measurements arrived,
the predicted trajectory converged to the real trajectory. The
model was able to capture the non-linear dynamics of the
aircraft to accurately predict the position of the aircraft.

G. Gaussian Process Regression

Gaussian Processes (GP) represent a collection of random
variables indexed by time or space, where any finite set of
those variables forms a multivariate normal distribution. The
random variables express the evaluation of a function f(x)
at a possibly multidimensional input location x. The goal
of GPR is to learn the underlying distribution from a set
of specified training data points. The set of training data
could be fitted by potentially infinitely many functions, and
GPR provides an elegant approach to assign a probability
to each of these functions [30]. Hence, the GP defines a
probabilistic distribution over functions. The mean of this
distribution represents the most probable characterisation of
the data.

GPR is a non-parametric regression approach that applies
the Bayesian framework, where the prior information is char-
acterised by a GP formed by its mean function m(x) and
covariance function k(xi, xj) (Eq. 3).

f(x) ∼ GP (m(x), k (xi, xj)) (3)

For simplicity, the mean function m(x) is often assumed
to be zero. The characteristics of f(x) are fully specified
by the selected covariance function, also called the kernel.
The kernel takes two points xi and xj as inputs and returns
a similarity measure. Hence, the kernel is used to specify
the correlation between different data points. The kernel is
evaluated for each pairwise combination of N data points to
retrieve the covariance matrix K(X,X).

K(X,X) =


k (x1, x1) . . . k (x1, xN )

...
. . .

...

k (xN , x1) · · · k (xN , xN )

 (4)

A variety of kernels are discussed in literature [30], [31],
where the most commonly adopted kernel is the Radial Basis
Function (RBF) (Eq. 5) which is applied to model smooth
functions.

k (xi, xj) = σf exp

(
−‖xi, xj‖

2`

)
(5)

The RBF includes two hyperparameters: σf defines the
amplitude that specifies the maximum allowable covariance,
and ` expresses the length scale parameter which specifies the
rate of decay of correlation between points farther away from
each other. These parameters could be tuned to adapt the shape
and smoothness of the function.

When the covariance function is selected, and the hyper-
parameters are learned, GPR is applied to estimate the value
of a function evaluated at any set of new inputs X∗. The joint
distribution of (possibly noisy) observations y and predicted
values y∗ is expressed as a multivariate normal distribution
(Eq. 6).

 y

y∗

 ∼ N
0,

 K(X,X) K (X,X∗)

K (X∗, X) K (X∗, X∗)

 (6)

The predictive distribution y∗, conditional on the training
data (X, y) and the provided test data X∗, is then represented
as follows:

y∗ | X∗, X, y ∼ N (µ,Σ)

µ = K (X∗,X) K(X,X)−1y

Σ = K (X∗,X∗)−K (X∗,X) K(X,X)−1 K (X,X∗)

(7)

An application of GPR to predict a function f(x) is shown
in Figure 1. The 95% prediction interval, depicted by the
shaded grey area, increases when moving further away from
the observations. When the training data is assumed to be
noiseless, the predicted function converges in these data points.
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Figure 1. Example of one-dimensional GPR application to predict f(x) with
the RBF kernel. The noiseless case is presented in the left graph, while the
graph to the right incorporates noisy observations.

Several applications of GPR were found in the literature.
Tran and Firl [32] modelled the speed of a car in x- and
y-direction as two independent GPs in order to model and
predict the traffic near intersections. The same approach was
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used by Goli et al. [31] to model traffic in a road transportation
network. Rong et al. [33] applied GPR to obtain the distribu-
tion of the lateral position of a ship along its trajectory. The
predictions were updated when new positional observations
arrived. The studies described above all made use of the RBF
kernel. Other studies used GPR to estimate aircraft-specific
parameters like the aircraft mass and the fuel flow rate [34],
[35].

III. METHODOLOGY

The project was split up into three phases. The initial phase
concerned the collection and preparation of the dataset, which
also includes the clustering of the trajectories on which the
predictive models were trained. The development of those
models is part of the second phase. Ultimately, the final phase
comprised a predictive analysis that evaluated the accuracy
and uncertainty of the predictive models.

A. Data collection

The previous section emphasised the importance of aircraft
intent and meteorological parameters to improve the accuracy
of a TP. For this purpose, different sources of data were
exploited to construct a set of data that incorporates these
flight features.

1) ADS-B data: The ADS-B data acts as the foundation
of the final dataset. This data was sourced from the ground
station configuration of TU Delft which receives ADS-B
messages with a coverage of approximately 400 kilometres.
A decoded set of ADS-B data contains velocity and position
updates at irregular timestamps [36]. Each data entry is linked
to a specific ICAO code, which was used to uniquely identify
an aircraft. Eventually, DBSCAN used the timestamp and
the ICAO code as main features to cluster ADS-B sequences
to extract and identify continuous flights from the dataset [21].

2) Aircraft data: An aircraft database was exploited to
add aircraft-specific parameters to the dataset. The type of
aircraft could be added to each ADS-B observation using
the ICAO registration. To indicate the mass of the aircraft,
which usually is not publicly accessible, the Wake Turbulence
Category (WTC) of the specific aircraft type was included
in the dataset. Wake turbulence is the disturbance of the
air behind an aircraft, and the strength of the turbulence is
primarily dependent on the aircraft’s weight. ICAO specifies
the WTC based on the Maximum Take-Off Weight (MTOW)
of the aircraft.

3) Flight Plan data: The aircraft intent was expressed
using information extracted from flight plans that were
released by Eurocontrol. Eurocontrol provided a selection of
individual months of flight plan data. The most recent month,
June 2018, was chosen for this study. A variety of datasets
were provided (Table I).

Table I
FLIGHT PLAN DATA OBTAINED FROM EUROCONTROL.

Dataset Description

Flights Flight-specific information like:
flight identification (ECTRL
ID), departure- and arrival air-
port, market segment of airline

Filed flight points Sequence of three-dimensional
waypoints over time describing
the intended route of the flight

Actual flight points Updated flight route based on
radar measurements

Each ADS-B observation was aggregated with its corres-
ponding ECTRL ID using the ICAO registration and rounded
timestamps of the actual flight points. The aircraft intent was
expressed by adding the upcoming three waypoints from the
actual flight points to the ADS-B dataset. In order to identify
the next three waypoints for each ADS-B record, the distance
from departure airport was computed to establish a variable
that describes the progress of the flight. Based on this variable,
the next three waypoints were selected from the filed flight
points. Each waypoint comprises the latitude, longitude, and
altitude of the aircraft together with a time component. This
time component (twp) expresses the difference in total flight
time up till the specific waypoint (Tplanned) and the actual
flight time since take-off as observed from the ADS-B record
(Tactual) (Eq. 8).

twp = Tplanned − Tactual (8)

4) Meteorological data: Meteorological forecasts were ex-
tracted from the ERA5 database. This database provides
estimates of a large variety of meteorological parameters on
an hourly basis. The data is formatted in a grid with a spatial
resolution of 30 kilometres and divides the atmosphere into
137 different pressure levels up to a height of 80 kilometres.
For this study, the wind speeds in three dimensions and the
temperature were extracted from the database. Since the avail-
able ADS-B data covers a sub-region of Europe, the extraction
of meteorological data is limited to this region with longitudes
ranging from -10 to 30 degrees and latitudes ranging from 30
to 70 degrees. These boundaries ensure that all flights could
be aggregated with the selected meteorological parameters.
A linear interpolation model was developed to express the
parameters as a function of the four dimensions (latitude,
longitude, altitude, and time). This function was evaluated at
the given ADS-B records, such that each observation would
be aggregated with the meteorological forecasts.

B. Data preparation

As observed from Figure 2, a variety of preparation steps
were executed to construct the final dataset. These steps are
described below.
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Figure 2. Process overview of the collection and preparation of data.

a) Flight phase computation: This study aimed to
predict aircraft trajectories during the descent phase of the
flight, which required the identification of the flight phase.
A Python library, developed by Sun et al. [36], was used
to segment the trajectories into different flight phases, being
climb, cruise, level, and descent. The phases were identified
using fuzzy logic operators that considered the ground speed,
rate of climb, and altitude in order to establish the most
probable flight phase.

b) Data cleaning and filtering: To establish a complete
set of data and ensure that the quality of the data was sufficient
for the predictive analysis, certain cleaning and filtering steps
were performed. These steps include, among others, the
consistent formatting of variables and the linear interpolation
of missing numerical values. Besides, flights that contained
less than 30 records were removed from the dataset. To
obtain regular intervals between the data records, the dataset
was resampled into five-second intervals. The final dataset
comprised partial trajectories of descending aircraft arriving
at Schiphol Airport. Ultimately, a consistent dataset was
established that included partial descent trajectories whose
initial data point was found above 25,000 feet (FL250), while
the final data point was located at the arrival airport.

c) Data transformation: The final step performed to
obtain the final dataset was the transformation of certain
features. The position of the aircraft, originally expressed
in latitude and longitude, was converted to a Cartesian
reference frame with a fixed, random origin to derive x-
and y-coordinates. This was required for the particle filter,
discussed in the later section, which uses a Cartesian reference
frame to model the speed- and position updates of the aircraft.
The categorical features were converted to numeric variables
using one-hot encoding, which splits the categories into

separate columns and assigns binary variables to indicate the
appropriate category. The WTC categorises Heavy (MTOW
>= 136,000 kg), Medium (7,000 kg < MTOW <= 136,000
kg), and Light (MTOW <= 7,000 kg) aircraft. Furthermore,
five different market segments were defined that described
the airlines’ operations: cargo, business aviation, unscheduled
(e.g. charter), low-cost, or traditional scheduled.

An overview of the features that were used as predictors to
the predictive models is found in Table II.

Table II
FEATURES USED IN TRAJECTORY PREDICTION MODELS.

ADS-B FP1 ERA5 Other

rate of climb [ft/min] xi [m] wind x [m/s] WTC [-]

ground speed [kts] yi [m] wind y [m/s] Market [-]

track [deg] alti [ft] wind z [Pa/s]

ti [s] temp. [K]

1 The upcoming three waypoints are included (i ∈ {1,2,3})

C. Clustering trajectories

DBSCAN was used to cluster trajectories into groups of
flight tracks that show similar spatial patterns. The algorithm
used the x- and y-coordinates of the flight trajectories to
specify the spatial pattern. After resampling, each flight track
was represented by 30 data points. Subsequently, the features
of the dataset were scaled such that each feature ranged
between zero and one. The algorithm requires the specification
of two parameters: ε and MinPts. Initially, the MinPts was
specified, after which the optimal value for ε was found using
the k-Nearest Neighbour (k-NN) algorithm [37]. This method
relies on computing the minimum distance of each trajectory to
its k nearest trajectories, where k was set to MinPts. Then, the
computed distances were plotted in ascending order, and the
optimal value for ε was found at the point of greatest curvature.
To compute distances between trajectories, the widely adopted
Euclidean distance metric was used [19].

The performance of the clustering algorithm was evaluated
with a visual inspection together with the evaluation of the
Silhouette coefficient. This metric, ranging between -1 and 1,
specifies the similarity of the trajectory to its own cluster, and
the dissimilarity to other clusters. The higher the coefficient,
the better the clustering results.

D. Development of Particle Filter model

The implementation of the PF is based upon the study of
Sun et al. [29] that applied the PF to estimate the aircraft mass
(m) and thrust setting (δT ) during a 30-second segment right
after take-off. The OpenAP APM was used to simulate the
aircraft trajectories by propagating the particles, that represent
the observable states, forward in time [38]. The weights of the
particles are updated using incoming observations. The observ-
able states comprise the aircraft position and ground speed in
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a Cartesian reference frame with its origin placed at the first
position. Besides, the wind speed (~vw) and temperature (τ )
are part of the observable states. The state- and measurement
vector at time t are:

xt =
[
mt, δT,t, xt, yt, zt, ~va,t, vz,t, ~vw,t, τt

]
yt =

[
x̃t, ỹt, z̃t, ~̃vg,t, ṽz,t, ~̃vw,t, τ̃t

] (9)

The true airspeed (~̃va,t) in the observed states is computed
by subtracting the wind speed vector (~vw,t) from the measured
ground speed (~vg,t). The observations are subjected to noise
caused by sensor errors. An observation noise model is in-
corporated to account for these uncertainties. The observation
noise was assumed to be uncorrelated additive Gaussian noise,
such that the noise model v in Eq. 1 could be modelled as a
multivariate Gaussian distribution. ADS-B transponders need
to comply with regulations that specify the minimum accuracy
of sensors. Uncertainty indicators of the velocity- and position
updates are transmitted through ADS-B. These indicators were
used to select the standard deviation of the measurements to
construct the observation noise model [29].

Sun et al. [29] applied the PF to a 30-seconds segment and
assumed the aircraft mass to be constant. This study, however,
analyses the entire descent trajectory. Therefore, the aircraft
mass was updated at each time step by incorporating the fuel
flow (FF), according to Eq. 10.

mt1 = mt0 − FF (10)

Initially, a set of 50,000 particles were drawn from the
initial distribution p (x0). The majority of the observable
states were drawn from normal distributions, with the mean
equal to the initial measurement, and the standard deviation
obtained from the noise model. The aircraft mass was drawn
from a uniform distribution with the Operating Empty Weight
(OEW) as the lower limit, and the Maximum Landing Weight
(MLW) as the upper limit. The thrust setting, drawn from
a uniform distribution, was was limited by 0.01 and 0.30.
When new measurements arrive, the weights of the particles
were properly adjusted based on the likelihood of the state to
be corresponding to the new measurement. Starting from the
initial observation of the flight, these measurements arrive at a
five-second interval until FL250 is reached. A resampling step
is incorporated every time step to prevent the impoverishment
of the particles. This step redistributes the particles by re-
placing low-weighted particles with high-weighted particles.
Also, certain restrictions were included to remove particles
with unlikely states by assigning zero weight to these particles.
Then the redistributed particles were propagated forward in
time according to the simulation of the model.

E. Development of GPR model

The GPR model was developed using the multivariate GPR
implementation from the scikit-learn library in Python, which
implemented the algorithm as described by Rasmussen and
Williams [30]. To effectively exploit the historical traffic
patterns, each cluster of flights was used to train a GPR

model. The features of each dataset, corresponding to a cluster,
were standardised by removing the mean and scaling to unit
variance. This made sure that the output function would have
zero mean, which is a common assumption in GPR modelling.
Besides, many covariance functions include scale parameters
that are trained more effectively on standardised datasets. The
flights in the standardised dataset were split into two subsets
used for training and testing, where 25% of the flights were
assigned to the training set. To predict the progression of an
individual testing flight, both the data of the historical, training
flights as well as past data of its own flight are used to develop
the model. Therefore, the implementation of GPR is split into
two stages.

Three main building blocks are required to train a GPR
model. First of all, a training dataset was constructed that
contained both the target variables (x, y, and altitude) as
well as the predictor variables. Three different GPR models,
trained on different sets of predictors, were developed on
each cluster of trajectories (Table II). Secondly, a covariance
function (kernel) was selected. This function highly influences
the shape of the predicted trajectory. Three different kernels
were selected that model relatively smooth functions: RBF,
Rational Quadratic, and the Matérn kernel. These kernels have
been combined with a sum-kernel including a linear kernel.
This linear kernel accounts for modelling relatively straight
segments. Thirdly, the alpha parameter is specified to prevent
numerical issues during fitting and could be interpreted as the
additional variance on the training data.

Table III
THREE DIFFERENT GPR MODELS TRAINED ON DIFFERENT SETS OF

PREDICTOR VARIABLES.

GPR Model Predictor variables

GPR-A ADS-B data only

GPR-B ADS-B and Flight Plan data

GPR-C ADS-B, Flight Plan, and ERA5 data

The first stage aimed to develop a GPR model (GPR-
1) based on the training data from historical trajectories in
each cluster. To limit the processing time, the number of
data points that form each trajectory was reduced with the
Ramer-Douglas-Peucker (RDP) algorithm. This algorithm tries
to simplify a curve connected by points, by representing that
curve with fewer points. This required the specification of a
maximum distance that the simplified 3D-trajectory is allowed
to deviate from its original trajectory. This distance was set
to 100 meters, which was established by visually inspecting
whether the simplified trajectories were still able to capture
the turns performed by the aircraft.

The best-fitted kernel and its corresponding hyperparameters
were found after applying k-fold cross-validation. This tech-
nique shuffles the training set and splits it up into k groups.
Then, the model is fitted on k-1 groups and tested on the
remaining group. This is repeated until all groups have been
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assigned as the test group. The predictive accuracy is estimated
for each round, and the results were averaged to determine the
best-fitted model.

To predict the trajectories of the testing flights, each flight
was fitted to a second model (GPR-2) that was trained on a
dataset specifically constructed for each flight. This dataset
comprises not only past historical observations of the partic-
ular flight, but also predicted positions generated by GPR-1.
The start of the prediction horizon, at time T0, is specified at
the point where the trajectory reached FL250. The predicted
positions were obtained by sampling from GPR-1 on unseen
data points of the flight below FL250. To sample from GPR-
1, a dataset containing the predictor variables of the actual
flight below FL250 should be constructed. This required the
estimation of the ADS-B predictors (ground speed, rate of
climb, and track angle) beyond T0. These variables were
predicted using a separate GPR model with an RBF kernel,
which was trained using past trajectory data and training data
from the set of training flights. The FP data and the ERA5
variables were not predicted as the FP data is available prior
to the flight and the meteorological dataset contains forecasts
that cover the predictive horizon. GPR-1 exploited the set
of predictor variables to sample 1000 data points at each
timestamp beyond T0 until the final waypoint of the FP was
reached. The means of the samples were selected to construct
the training dataset for GPR-2. Figure 3 provides an example
of the construction of training data, which shows both the
historical observations (< T0) as well as the GPR-1 samples (>
T0). The finalised training dataset was used to develop GPR-2
using the same procedure that was used to train GPR-1. In
this case, the variance of the samples beyond T0 from GPR-1
was used to specify the alpha parameter on the training data.
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Figure 3. Construction of training data for GPR-2.

F. Analysis of the predictions

The developed predictive models were applied to model
and predict the descent trajectories from a specified altitude
(FL250) to the arrival at Schiphol Airport. While this study
focused on the quantification of the uncertainty of the predic-
tions, the accuracy was also measured. As the models provide

a predictive distribution, both the uncertainty and accuracy
of the predictions could be considered. The mean of the
predictive distribution was considered as the most probable
prediction and thus used to compute the accuracy metrics.
The accuracy of the predictions is related to the spatial and
temporal errors between the actual- and predicted trajectory.
The horizontal- and vertical errors were computed, where the
Horizontal Track Error (HTE) was further specified in the
Along-Track Error (ATE) and the Cross-Track Error (CTE).
The ATE is the longitudinal distance, parallel to the predicted
trajectory, between the predicted- and actual position of the
aircraft. The CTE is the spatial error perpendicular to the
predicted flight track. The computations of the horizontal
errors rely on the flat earth approximation which is justified
by the relatively small distances that are covered. The vertical
error is the difference in altitude between the predicted- and
actual trajectory, with a negative error indicating that the
predicted position is lower than the actual aircraft position.
The temporal error is measured at FL100 and indicates the
difference in time when the predicted- and actual trajectory
have reached this altitude.

The uncertainty was quantified by computing the standard
deviation (σ) of the sampled predictions of the 3D-position,
indicating the spread of the predicted position of the aircraft.
Both accuracy- and uncertainty measures were evaluated at
every 1000 feet starting from the start of the prediction horizon
at T0. Besides, different look-ahead times were evaluated to
analyse the progression of the predictive metrics over time.

IV. RESULTS

A. Constructed dataset

A final dataset was constructed which forms the foundation
on which both the PF as well as the GPR models were
developed. This dataset comprises 9363 partial trajectories of
flights arriving at Schiphol Airport. The majority of flights are
operated by traditional airlines performing scheduled flights.
Most flights are operated by short-haul aircraft like the B737
and the A320. While both the PF and the GPR models are
constructed using this dataset, the PF model only exploits the
ADS-B data and the meteorological data. The flight plan data
is only consulted to train the GPR models. More information
concerning the final dataset is found in Appendix A.

B. Clustering trajectories

Initially, DBSCAN was applied to cluster the flights arriving
at Schiphol Airport. The minimum number of trajectories
required to form a cluster (MinPts) was set to 100. The k-
NN distance plot showed the greatest point of curvature at an
eps (ε) of approximately 0.50. This value does not express
any physical distance because all features were standardised.
To find the optimal combination of MinPts and ε, MinPts was
evaluated over a range between 40 and 800 in steps of 40,
while ε was varied between 0.40 and 0.70 in steps of 0.02.
An extensive analysis of the results for different parameter
combinations is found in Appendix B. The optimum clustering
results were obtained when MinPts was set to 80, with ε equal
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to 0.60. This resulted in a Silhouette score of 0.39. Eventually,
four clusters were identified, and only 6.5% of the flights were
labelled as an outlier. The results showed that the majority
of outliers were flights that were put in a holding pattern
awaiting clearance from ATC to proceed with the landing.
As these irregular flying patterns could disrupt the predictive
algorithms, these flights were removed from the dataset. A
visual representation of the identified clusters is presented in
Figure 4.

0
1
2
3
Outlier

Figure 4. Clusters of trajectories identified by DBSCAN algorithm.

The results showed that DBSCAN has not effectively iden-
tified all groups of similar trajectories. As shown in Figure
4 above, a large set of flights arriving from the East have
been grouped into one cluster. Besides, aircraft arriving from
the Southwest and the Northwest clearly show distinct sets
of trajectories which have not been identified by DBSCAN
with the tuned parameters. To improve the clustering results,
a second clustering step was performed by applying the K-
means algorithm to clusters 0, 1, and 2. This algorithm requires
the specification of the number of clusters. For this purpose,
the number of clusters to be found in the initial clusters 0, 1,
and 2, was set to 2. The resulting clusters, obtained after the
second clustering step, are depicted in Figure 5. The legend
contains the number of flights found in each cluster.

0 (723)
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3 (2378)
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6 (1201)

Figure 5. Refined clusters of trajectories after K-means application.

C. Predicting trajectories

The predictive models were applied to predict the
descent trajectories for each cluster found by the clustering
algorithms. This section discusses the results of a variety of
experiments that have been conducted. These experiments
evaluate the predictive metrics obtained from different models.

1) GPR predictions on clusters: Figure 8 summarises the
accuracy- and uncertainty metrics for all seven clusters. The
results visualise the distribution of the median value for each
metric evaluated over each individual predicted trajectory from
a cluster. Three different GPR models were evaluated. The
mean vertical error is found to be centred around zero for
all clusters and models. However, GPR-A consistently shows
the largest spread of vertical errors. Especially in clusters 0
till 4, GPR-A provides the largest ATE, while GPR-B and
GPR-C show comparable results. The distribution of CTE
shows smaller order of magnitudes compared to the ATE, with
negligible differences among the three models.

The predictive uncertainty is visualised in the bottom row,
which expresses the standard deviation (σ) of the predictive
distribution of x, y, and the altitude. The results show that
the predictive distributions obtained from GPR-A show the
largest spread. Besides, GPR-B generally obtains slightly
lower standard deviations compared to GPR-C. Considering
the standard deviation of the horizontal position (x and y),
it is observed that clusters 0, 1, and 5 show considerable
larger deviations in the predicted x-position compared to the
y-position. While the opposite result is particularly found in
clusters 2, 3, and 4 where σx is smaller than σy . This result is
also visualised in Figure 6, in which the standard deviations
are plotted in a contour plot for each cluster trained with GPR-
A.
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Figure 6. Contour plot showing the average standard deviations of the
prediction of the horizontal position for each cluster obtained from model
GPR-A.

2) Comparison between GPR models: The previous section
evaluated the predictive capability obtained from three GPR
models trained on each cluster. This section elaborates on
the accuracy and uncertainty of the predictions of the cluster
with the most flights: cluster 3. The predictive metrics are
evaluated at different flight levels to analyse the progression
of the predictive capability over the descent profile (Figure 9).
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Until FL070, the distribution of vertical errors is centred
around zero with GPR-C showing the smallest variance in
predictive errors. During the final stage of the descent, below
FL070, all models tend to overestimate the altitude of the
aircraft. Initially, at FL240, the ATE does not deviate among
the three models. Hereafter, GPR-B and GPR-C produce
significantly smaller errors. Below FL070, the three models
produce comparable results in terms of the ATE. While GPR-B
and GPR-C improve the spatial accuracy along the flight track
in the initial stage of the prediction horizon, the CTE does not
differ among the different models. The CTE remains constant
in the initial stage of the descent but rapidly increases once
the altitude drops below FL070. Eventually, the errors decrease
again once the aircraft gets closer to its final destination.

The spread of the predictive distributions, expressed by the
standard deviation, is higher for GPR-A compared to GPR-B
and GPR-C. This means that the sampled predictions from a
GPR model become more concentrated if the model is trained
on ADS-B data enriched with FP-data and meteorological
data. The uncertainty of the predictions quickly rises until
it reaches the maximum at FL200. Hereafter, the standard
deviation of the predictive distributions in x, y, and altitude
all decrease until FL100 is reached. The results show that
the relative difference in σ between the three models is
comparable in each position.

3) Effect of aircraft- and airline type: The effect of the
aircraft- and airline type was evaluated by extending model
GPR-C with training data that incorporated predictor variables
describing the WTC category and the airline market segment.
Half of the flights in cluster 0 are operated with WTC M air-
craft, while the other half is operated by WTC H aircraft. The
vast majority of airlines operate in the traditional scheduled
market segment. The indices of the predictive metrics, relative
to model GPR-C, are presented in Table IV to show the relative
difference between the models. A comparison of both models
shows that the standard deviation of the predicted 3D-position
increases by 33%, while the horizontal and vertical errors of
the predictions are comparable (Table IV).

Table IV
COMPARISON BETWEEN MODEL GPR-C, INDEXED AT 100, AND AN

EXTENDED MODEL INCLUDING AIRCRAFT- AND AIRLINE DATA.
(CLUSTER 0)

Model HTE VE σx σy σalt

GPR-C 100 100 100 100 100

GPR-C (extended) 104 98 133 133 133

4) Comparison between GPR and PF: Just like the GPR
models, the PF model generates a predictive distribution of
the position of the aircraft. This section compares the results
obtained from the model-based PF and the data-driven GPR
models.

The time error defines the temporal difference when the
predicted- and actual trajectory have reached FL100. As
presented in Figure 7, the distribution of time errors from the
GPR models generally centres around zero seconds with no
remarkable differences among the different clusters. On the
contrary, the PF is more likely to overestimate the change in
altitude resulting in negative temporal errors at FL100.
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Figure 7. Temporal error measured at FL100 for different models and different
clusters. A negative value indicates that the predicted trajectory reached FL100
before the actual trajectory.

Figures 10 and 11 present the accuracy- and uncertainty
metrics for all models evaluated at different look-ahead times
for flights from cluster 3. Again, the GPR models generate
distributions of vertical errors centred around zero meters, with
GPR-C providing the most consistent results. The PF model is
more likely to overestimate the change in altitude, with average
vertical errors of -415 m at a look-ahead time of 10 minutes.
In comparison, GPR-A, GPR-B, and GPR-C provide average
vertical errors of 120 m, 60 m, and -54 m respectively. The
PF model generates the smallest ATE for look-ahead times up
to five minutes. Also, the CTE is smaller or comparable to
the GPR models for these look-ahead times. This effect was
observed in all clusters. An overview of the predictive results
for all clusters is found in Appendix C. When the look-ahead
time further increases, both spatial errors gradually increase
while this effect is less visible for the GPR models. At a
look-ahead time of 15 minutes, the spatial errors of the PF
become significantly higher compared to the results obtained
from GPR-C.

The top row of Figure 11 shows how the standard deviations
of the predictions from the PF model evolve over increasing
look-ahead times. The standard deviation of the predicted
altitude (σalt) increases drastically until it reaches a maximum
and starts decreasing again. The standard deviation in the
predicted horizontal positions (σx and σy) gradually increase
over time with larger deviations in the predicted x-position,
compared to the y-position. Generally, the uncertainty of
the predictions from the PF model is considerably higher
compared to the GPR models. However, at a look-ahead time
of only one minute, the standard deviation of the predicted
x- and y-position are comparable or slightly smaller than the
results of the GPR models.
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Figure 8. Predictive metrics of all clusters showing the predictive errors (top row) and the standard deviation of the predictive distributions (bottom row).
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Figure 9. Predictive metrics of cluster 3 showing the predictive errors (top row) and the standard deviation of the predictive distributions (bottom row) for a
variety of flight levels.

13



1 min 5 min 10 min 15 min
Look-Ahead Time

3000

2000

1000

0

1000

2000

3000

Ve
rti

ca
l E

rro
r [

m
]

1 min 5 min 10 min 15 min
Look-Ahead Time

0

10000

20000

30000

40000

50000

60000

Al
on

g-
Tr

ac
k 

Er
ro

r [
m

]

1 min 5 min 10 min 15 min
Look-Ahead Time

0

10000

20000

30000

40000

50000

60000

Cr
os

s-
Tr

ac
k 

Er
ro

r [
m

]

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

GPR-A
GPR-B
GPR-C
PF

Figure 10. Comparison of predictive accuracy between the PF model and the GPR models for increasing look-ahead times in cluster 3.
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Figure 11. Comparison of the predictive uncertainty, expressed by the standard deviation of the predictions, between the PF model and the GPR models for
increasing look-ahead times in cluster 3.

V. DISCUSSION

A. Clustering trajectories

DBSCAN used the standardised x- and y-coordinates of
resampled trajectories as features to distinguish different sets
of trajectories using a density-based approach. The results
showed, that this approach was ineffective in capturing all
clusters of trajectories. Only four clusters were identified.
Tuning the parameters showed that if more clusters were
identified, this was accompanied by a significant increase in
the share of outliers that would exceed 25% of the total flights.
The selected DBSCAN model identified roughly 6% of the
flights as outliers, and these flights were removed as they
showed irregular flight tracks. The effective identification of

these outliers is one of the advantages of DBSCAN. A second
clustering step, using K-means on the starting positions of the
trajectories, turned out to be an effective follow-up step to
identify all clusters.

B. Gaussian Process Regression

Three different GPR models with varying sets of predictor
variables were trained on the identified clusters of trajectories.
The results showed that the predictive accuracy could be im-
proved when incorporating flight plan data and meteorological
data when training the GPR models. Generally, the distribution
of the results obtained from GPR-C shows smaller variances,
which indicates that this model obtains more consistent results
compared to GPR-A. The major improvements were observed
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in clusters 0 up till 4, which showed significant reductions
in the ATE. The differences in spatial accuracy between
the models in clusters 5 and 6 were less distinct. These
clusters are less distinctive as both show a larger spread
in trajectory shapes. The effect of including more predictor
variables diminishes when the model is trained on less distinct
clusters. This proves the importance of the effective clustering
of trajectories before training the data-driven models.

The results also showed that the predictive uncertainty,
expressed by the standard deviation of the predictions, of
GPR-A is considerably higher compared to GPR-B and GPR-
C. Together with the improvement in accuracy, this proves
the impact of introducing aircraft intent to train predictive
models. Further extending the model with meteorological data
did not result in a reduction of the standard deviation of
the predictions. The standard deviation of the predicted x-
and y-position is largely dependent on the direction of the
flight track. Trajectories oriented in either a Northerly or
Southerly direction (Cluster 2, 3, 4) showed larger deviations
in the prediction y-coordinate, while the opposite effect was
found for trajectories flying in either an Easterly or Westerly
direction (Cluster 0, 1).

The predictive metrics were evaluated for different flight
levels to investigate the progression of the predictive capability
of the models along the descent profile. Above FL100, the
effect of including aircraft intent and meteorological data
results in the reduction of the ATE compared to model GPR-
A. However, the results showed the difficulty of predicting the
final stage of the descent trajectory below FL040, where both
the vertical error and the CTE increase significantly for all
models. During this final stage, the flights are subjected to ATC
commands that guide the aircraft to the appointed runway. This
causes the flight tracks, within a single cluster, to diverge in
this final stage of the flight as aircraft are assigned to different
approach tracks. This complicates the training of the models
and results in larger predictive errors, with large increases
in the CTE. Also, the number of waypoints in a filed FP
below FL100 is sparse. Generally, only two or three waypoints
describe the aircraft intent in this final stage. This causes the
effect of FP data to diminish in this final stage. The initial
stage of the descent, between the top of descent and FL100, is
usually represented by more waypoints. The uncertainty of the
predictions, quantified by the GPR models, initially increases
right after the start of the prediction horizon. Hereafter, the
standard deviation gradually decreases until FL100 is reached.
The Initial Approach Fix (IAF) is located at this flight level.
The aircraft proceeds from the en-route segment to the IAF to
start the initial segment of the instrument approach. Therefore,
many routes will converge to the IAF, which is captured by
the GPR models as shown by the decreasing uncertainty until
FL100 is reached. Even though, particularly the CTE increased
around FL040, the standard deviations do not increase during
this stage. This is caused by the fact that the position of the
arrival destination, as found in the flight plan, was added as a
training data point. Therefore, the uncertainty decreases until
this location is reached.

An extended GPR model trained with categorical data,
containing the aircraft WTC category and the airline market
segment, did not provide any improvements. The accuracy
was not affected, while the uncertainty of the predictions
increased. It was found that the relative change of the standard
deviation of each predicted spatial dimension (σx, σy , and
σalt) was nearly identical among the different models. This
trend was observed in all experiments that compared the
GPR models. This suggests that the multivariate GPR imple-
mentation in scikit-learn ineffectively considers the correlation
among the output variables: x, y, and altitude. Most GPR
implementations, found in the literature study, treated the
multidimensional case by modelling each response variable
individually without considering the correlation between the
variables [31]. The key challenge in modelling multivariate
response variables in GPR is the specification of a covariance
function that both incorporates the correlation between data
points as well as the correlation between the target variables
[39].

C. Particle Filtering

While GPR is trained on historical data obtained from
other flights in combination with past observation of the
flight to be predicted, the PF model only makes use of past
observations from the particular trajectory. The PF model uses
the observations starting from the top of descent until FL250
is reached, after which the predictions are generated using the
performance model of the aircraft. The short-term predictions
of the PF model, with look-ahead times shorter than five
minutes, showed more accurate results with smaller ATE and
CTE compared to the GPR models. However, the PF model
generally overestimates the change in altitude of the aircraft
resulting in negative vertical errors. On average, the predicted
trajectory reached FL100 approximately 90 seconds before
the actual flight did. These errors are likely to be caused by
inaccurate estimation of aircraft mass and thrust rating which
both affect the performance of the aircraft. The uncertainty
metrics at short look-ahead times of the PF model were
comparable to the GPR results. However, when predicting
further in time, the PF model is outperformed by all GPR
models. This was expected since the PF model, in contrast
with the GPR models, does not exploit any other training
data of other flights. The PF model only exploits historical
observations of the trajectory to be predicted. The uncertainty
increases over time as no new observations are used by
the PF model. However, σalt eventually decreases since the
lower limit of the altitude is specified at zero ft. Therefore,
each particle is removed from the set once it has reached
negative altitudes. This decreases the prediction interval of the
predictions, thus the standard deviation. Overall, the PF model
would be more accurate in predicting the initial stage of the
descent from FL250, which is mostly linear. However, in the
long term, the accuracy- and uncertainty of the predictions
deteriorate due to model simplifications, assumptions related
to the aircraft mass and thrust setting, and the lack of data
used in the final stage of the descent.
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VI. CONCLUSION

While the majority of studies concerning trajectory predic-
tion focused on the measurement of the predictive accuracy,
this thesis aimed to also quantify the uncertainty of predicted
descent trajectories. The model-based Particle Filtering tech-
nique and the data-driven Gaussian Process Regression were
applied and both provide a predictive distribution that allows
for the quantification of accuracy- and uncertainty metrics.
Before the application of GPR, the trajectories of flights
arriving at Schiphol Airport were clustered using the density-
based technique DBSCAN. Even though the DBSCAN did
not effectively capture all clusters, it was used to identify and
remove outliers. Eventually, the application of K-means on
the starting positions of the partial trajectories was efficient to
cluster all sets of similarly shaped trajectories. The clustering
of trajectories contributed to the improvement of the predictive
accuracy of the data-driven models.

The application of the GPR models showed that the uncer-
tainty of the descent trajectory predictions could be reduced
by incorporating flight plan data when training the models.
Adding meteorological data to the set of predictor variables
did not result in a reduction of the uncertainty, but did show an
improvement in predictive accuracy. The main improvements
were observed throughout the initial stage of the descent. The
uncertainty of the GPR predictions decreased until FL100 is
reached, which is the effect of the IAF that represents the
position where the aircraft trajectories are merged to initiate
the approach segment. In the final stage of the descent, the
predictive errors are likely to increase. Besides, the additional
value of the FP data diminishes because of the sparsity of
this dataset, which generally only includes a limited number
of waypoints in this final stage. Also, training a GPR model
in this stage is more complicated because the evolution of
trajectories is dependent on the arrival procedure of the airport
and ATC commands that guide the aircraft to the appointed
runway.

The Particle Filter model showed to be more accurate in
predicting the horizontal spatial coordinates of the trajectory
for look-ahead times shorter than five minutes. However, the
PF model tended to overestimate change in altitude, resulting
in larger vertical errors compared to the GPR models. While
the uncertainty of the predictions was comparable to the GPR
models for short look-ahead times, the uncertainty of the PF
model increases rapidly for longer look-ahead times. This
was expected as the PF model solely relies on past historical
observations until the start of the prediction horizon.

Both models have been able to model and quantify the
uncertainty in trajectory predictions. An advantage of GPR is
the fact that the characterisation of the sources of uncertainty
is not required. Also, the effect of different predictor variables
on the predictive uncertainty could be evaluated by training
several GPR models. The quantification of the predictive
uncertainty could contribute to the improvement of the pre-
diction and management of 4D-trajectories. As expected, the
uncertainty in the predictions obtained from the GPR models

was considerably lower compared to the PF model, since the
GPR models also exploit training data from historical flights.
Especially, the introduction of flight plan data contributed to
the reduction in uncertainty of the predictions. It should be
noted that a reduction in the spread of the predictions does
not necessarily mean that the predictive model can be more
certain about the correctness of the predictions. Especially in
the final stage of the descent, both models have proven the
difficulty of accurately estimating the aircraft position.

VII. RECOMMENDATIONS

To further investigate the application of the proposed mod-
els, and potentially improve the predictive accuracy, several
recommendations could be provided. The results of the GPR
models showed that the expression of the aircraft intent, using
FP data, could contribute to the reduction in uncertainty of
the trajectory predictions. However, the FP data generally
encompasses only a few waypoints that describe the final
stage of the descent. It is recommended to explore methods or
data sources that could extend the description of the intended
trajectory of the aircraft. It is expected that the GPR models
could be further improved when more extensive data is taken
into account. Also, the clustering of trajectories has proven
to contribute to better predictive results using the data-driven
GPR. The predictive results are likely to be further improved
when the clusters of trajectories are even more refined.

This study evaluated the predictive models on the descent
segment of the flight. Additional research could be performed
to apply the probabilistic predictive models to different phases
of the flight, like the climb- or cruise phase. Also, this
study focused on the prediction of single trajectories without
considering the interactions with other aircraft. A collaborative
trajectory predictor that fuses the predicted trajectories of
multiple aircraft has the potential to further improve the
predictive accuracy.

The multivariate GPR implementation from the scikit-learn
library was applied to predict the 3D-position of the aircraft.
However, the predictive results suggested that the model did
not effectively take into account the correlation between the
predicted spatial dimensions. Further research is required to
incorporate the correlation between the three spatial dimen-
sions when applying GPR in the multivariate case.

Finally, it is expected that the PF model could be improved
when more accurate estimations of the mass and thrust setting
are included in the model. These parameters highly influence
the performance of the aircraft, thus impact the progression of
the flight predictions.
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A
Data exploration

A.1. Data exploration on the complete trajectory set
The dataset that was used to develop and analyse the predictive models contained 9363 partial tra-
jectories of flights arriving at Schiphol Airport in June 2018. Figure A.1 shows the distribution of the
market segments of the airlines together with the ten most frequently found aircraft types in the com-
plete dataset. The vastmajority of flights (65%) are operated by traditional airlines executing scheduled
operations. Also, 30% of the flights are operated by low-cost airlines that generally operate short-haul
flights with narrow-body aircraft. As observed in the right graph, narrow-body aircraft like the B738,
B737, and the A320 were the most frequently found aircraft in the dataset.
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Figure A.1: The distribution of the airline market segment (left) and the aircraft types (right) of
the flights in the complete trajectory set.
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A.2. Data exploration on the clusters of trajectories
A total of seven clusters of trajectories with similar spatial patterns were identified. Figure A.2 below
depicts the top five departure airports and aircraft types found in each cluster. The majority of flights
originated from European airports. However, a significant share of intercontinental flights is found in
clusters 0 and 1, with flights arriving from the USA and the Caribbean.
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Figure A.2: Top five departure airports (left) and aircraft types (right) in each cluster of
trajectories.



B
Trajectory clustering with DBSCAN

TheDSBSCANalgorithmwas applied to group trajectorieswith similar spatial patterns. The algorithm
comprises two parameters that have to be tuned: eps (𝜖) and MinPts. 𝜖 specifies a maximum distance
between trajectories. Two trajectories would be grouped into the same cluster when the distance be-
tween both trajectories is smaller than 𝜖. MinPts defines the minimum number of trajectories required
to form a cluster. These parameters should be tuned to effectively cluster the trajectories. If 𝜖 is tuned
too small, a large set of trajectories would be assigned as outliers. On the contrary, if the selected value
of 𝜖 is too high, the majority of trajectories would be assigned to the same cluster. An initial selection
of 𝜖 was made by computing the distance to the closest neighbour for each trajectory using the k-NN
algorithm. The computed distances were plotted in ascending order, resulting in the following graph
(Figure B.1).
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Figure B.1: Distance to closest trajectory in ascending order.

The optimal value of 𝜖 lies at the point of maximum curvature, which is approximately at a distance
of 0.50. Eventually, 𝜖 was varied from 0.40 till 0.70 to find the optimum parameter. The clustering
algorithm was evaluated by analysing the Silhouette score, the percentage of outliers, and a visual in-
spection to identify whether a sufficient number of clusters was identified. The clustering results, for a
range of parameter combinations, are depicted in Figure B.2. The results show that the Silhouette score
increases when 𝜖 gets higher. When the MinPts parameter increases, the Silhouette score decreases
while the percentage of outliers increases. The third figure presents the obtained number of clusters
(including a cluster of outliers). Ultimately, 𝜖 was set to 0.60, while MinPts was set to 80. This resulted
in a Silhouette score of 0.39, while 6.5% of the flights were labelled as an outlier. DBSCAN identified
four clusters of trajectories (excluding the outliers) using these parameter settings.
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Figure B.2: DBSCAN clustering results for a range of parameter combinations.

Figure B.3 depicts the flights that have been labelled as an outlier. As shown, the majority of these
flights were put in a holding pattern by Air Traffic Control.

Figure B.3: Outliers identified by DBSCAN.



C
Prediction results

C.1. Comparison between GPR and the PFmodel
The GPR model that was trained on ADS-B data, flight-plan data, and meteorological data (GPR-C)
was the best performing GPR model. The predictive results of this model are compared to the Particle
Filtering model as shown in Figure C.1. The PF model was found to obtain negative vertical errors,
while the GPR-C obtained more accurate position predictions in the vertical plane. A consistent trend
among all clusters was found in the other spatial errors (ATE and CTE) in which the PF model obtains
more accurate results for look-ahead times shorter than ten minutes.
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Figure C.1: Comparison between GPR-C and the PF model showing the median values of the
spatial errors over increasing look-ahead times.
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Figure C.2 below depicts the uncertainty of the predictions of the position of the aircraft over varying
look-ahead times. The uncertainty in the predictions obtained from the PF model is strictly higher
compared to the GPR-C results. Also, the uncertainty increases when the look-ahead time gets longer.
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Figure C.2: Comparison between GPR-C and the PF model showing the median values of the
standard deviations in the predictions of x, y, and the altitude over increasing look-ahead

times.
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C.2. Complete overview of predictive results
A complete overview of the accuracy metrics, expressed by the spatial errors, obtained on all clusters
with different models is shown in Table C.1.

Table C.1: Predictive results showing the mean (𝜇), median, and standard deviation (𝜎) of the predictive accuracy expressed by
the spatial errors of the predictions.

Cluster Model VE [m] ATE [m] CTE [m]

𝜇 Median 𝜎 𝜇 Median 𝜎 𝜇 Median 𝜎

0

GPR-A 79 62 512 8383 6331 7951 5596 3346 6298
GPR-B 119 89 588 8149 6104 7660 6217 4360 6356
GPR-C 4 6 303 6729 5135 6449 5746 4127 5788
PF -280 -188 883 15767 6348 21896 17114 9702 21763

1

GPR-A 199 127 539 8586 6728 7720 4743 2558 6221
GPR-B 15 22 453 4662 2895 5300 5193 3108 6071
GPR-C 30 18 284 5069 3618 5193 4669 2913 5344
PF 29 88 803 11758 4802 18139 13918 3925 22753

2

GPR-A -214 -100 553 10483 8347 8564 6686 4375 7810
GPR-B 47 34 509 7288 5460 6801 6607 4497 7166
GPR-C 29 7 294 6350 4666 6014 6422 4481 6717
PF -335 -229 943 21005 7676 30843 21728 13361 25518

3

GPR-A 112 91 613 11577 8196 11124 5475 3498 6716
GPR-B 186 161 535 7780 5535 7596 5669 3841 6286
GPR-C 10 17 331 6922 5063 6549 5329 3922 5461
PF -31 35 888 15906 6092 23738 12387 6135 16831

4

GPR-A 164 106 637 11163 8239 10684 8059 4340 10002
GPR-B 165 137 590 9613 7348 8644 7462 5131 7534
GPR-C 59 36 339 7916 5825 7518 6727 4438 7193
PF -324 -213 958 34316 15039 43246 44535 29230 49083

5

GPR-A 4 4 477 8975 5904 10467 7773 4174 9310
GPR-B -68 -5 596 8420 5407 10365 7973 4784 9146
GPR-C -43 -5 344 7626 4787 9622 6970 4655 7718
PF 285 336 788 19234 5831 30453 24164 8048 33964

6

GPR-A 16 3 519 10386 7322 10389 7840 4505 8888
GPR-B 137 110 598 9609 7077 8716 9425 6241 9478
GPR-C 33 17 334 8715 6370 8243 8171 5798 8077
PF -9 43 821 15277 5483 23437 12740 3865 19270
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Acomplete overviewof the uncertaintymetrics, expressed by the standard deviation of the predictions,
obtained on all clusters with different models is shown in Table C.2.

Table C.2: Predictive results showing the mean (𝜇), median, and standard deviation (𝜎) of the predictive uncertainty expressed
by the standard deviations of the predictions.

Cluster Model 𝜎alt [m] 𝜎x [m] 𝜎y [m]

𝜇 Median 𝜎 𝜇 Median 𝜎 𝜇 Median 𝜎

0

GPR-A 294 358 118 7357 8953 2953 2316 2820 931
GPR-B 138 142 58 3459 3567 1434 1090 1124 452
GPR-C 162 168 70 4058 4196 1753 1278 1318 553
PF 1096 1138 506 11689 9993 8959 24361 19849 19915

1

GPR-A 262 316 99 6541 7861 2469 1990 2391 752
GPR-B 149 151 64 3720 3758 1604 1132 1144 487
GPR-C 157 160 67 3917 3998 1665 1192 1215 506
PF 1067 1097 501 10056 8767 7876 21549 16252 18981

2

GPR-A 174 194 58 2632 2942 883 3666 4101 1228
GPR-B 105 108 38 1589 1629 580 2213 2276 804
GPR-C 119 122 47 1806 1849 718 2514 2574 998
PF 1081 1111 490 23094 18858 18827 13254 10692 10807

3

GPR-A 247 295 94 3258 3887 1240 6862 8189 2614
GPR-B 87 90 36 1152 1192 468 2428 2511 988
GPR-C 103 106 40 1363 1395 528 2874 2940 1112
PF 1093 1127 503 23007 18433 19035 13680 11591 10552

4

GPR-A 316 365 142 3612 4180 1620 7971 9221 3582
GPR-B 118 114 58 1350 1299 665 2982 2872 1467
GPR-C 133 136 68 1523 1560 774 3365 3444 1724
PF 1126 1152 502 22676 19018 17913 20010 16552 15894

5

GPR-A 373 470 172 9507 11951 4392 3595 4516 1664
GPR-B 136 134 83 3466 3413 2130 1312 1291 795
GPR-C 136 136 83 3474 3455 2112 1316 1309 788
PF 1015 1027 509 12635 9807 11337 19906 14455 17759

6

GPR-A 350 437 149 6134 7665 2619 7143 8932 3054
GPR-B 108 105 49 1890 1839 852 2205 2146 995
GPR-C 114 112 50 1991 1962 873 2323 2290 1018
PF 1034 1042 500 17522 13310 15326 18439 13666 16313
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1
Introduction

This chapter discusses the context of this project that evolves around the prediction of aircraft trajec-
tories and the main incentive of this research project is clarified (Section 1.1). The research objective
of this project is phrased (Section 1.2) and the outline of this preliminary report is provided (Section 1.3)

1.1. Context
Air TrafficManagement (ATM) concerns the dynamic, integratedmanagement of air traffic and airspace
by the safe, economic, and efficient provision of air traffic services, airspacemanagement, and air traffic
flowmanagement [4]. Until the outbreak of the Coronavirus in 2020, air traffic numbers have increased
steadily over the past few years. The air traffic network in the Eurocontrol area has experienced an in-
crease of 1.5 million flights in 2019 compared to 2013 [5]. This increase in the number of flights has had
its effect on the congestion of the airspace sectors, which has led to the deterioration of performance
measures such as punctuality and flight delays. In order to accommodate more flights and improve
the performance of the ATM system under higher traffic demands, measures should be taken in or-
der to increase airspace capacity, which is mostly limited by the workload of air traffic controllers.
Even though the positive trend in air traffic numbers has ended abruptly due to the ongoing pandemic
and corresponding travel restrictions, the objective to improve the efficiency and the performance of
the ATM system still remains in place. Research initiatives like Single European Sky ATM Research
(SESAR), and the USA equivalent NextGen, aim to develop and introduce new, advanced technolo-
gies and procedures to improve the efficiency and effectiveness of the ATM system while sustaining
the level of safety and security.

One of the main pillars of these research programmes is the paradigm shift from a tactical to a strategic
ATM system. In the conventional ATM system, airspace users file a flight plan and air traffic controllers
provide tactical interventions (clearances) as the flight progresses. To accomplish the aforementioned
objectives, the concept of 4D trajectorymanagement is introduced. This new concept, also described as
Trajectory-BasedOperations (TBO) forms the basis of the future strategic ATM system. When introduc-
ing TBO, airspace users, Air Navigation Service Provider (ANSP), and airports agree on a negotiated
aircraft trajectory. The objective of TBO is to define a trajectory that is as close as possible to the desired
intentions of the airspace user. ANSPs and airports facilitate this trajectory while the airspace users fly
along the agreed track with the required accuracy and precision in three spatial dimensions (altitude,
longitude, latitude) and time [6]. When implementing the concept of TBO, decisions are made on a
strategic basis, which improves the ATM system efficiency while reducing the number of tactical in-
terventions made by air traffic controllers which affects the predictability of the flight. With increased
predictability of flights and the reduction of tactical actions, the airspace capacity would be increased
as controllers would be capable of managing more flights [7].

The vision of TBO is enabled when the automation of the ATM system progresses, where the human
actors in the system increasingly rely on highly sophisticated Decision Support Tools (DST) like air-
craft trajectory predictors. In order to ensure the safe separation of all individual flights, all having
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their defined trajectory, it is essential to have trajectory predictions in place in order to identify po-
tential conflicting situations among these different flights. Therefore, trajectory prediction capabilities
are fundamental building blocks to the implementation of TBO, where the management of air traffic
is more strategic-based. A trajectory predictor (TP) estimates the future flight path given an aircraft
performance model, flight intent, and meteorological conditions. Given these sources of information,
the TP aims to compute the latitude, longitude, and altitude of the aircraft at a particular look-ahead
time [8]. TPs are being applied by different stakeholders in the aviation system for different purposes.
These purposes comprise demand assessment and capacity planning in Air Traffic FlowCapacityMan-
agement (ATFCM), the execution and planning of flights by airspace users, and conflict detection and
resolution by Air Traffic Control (ATC). These different objectives by different parties require different
TPs with varying look-ahead times [9].

The performance of the TP is assessed on its predictive accuracy, which is measured by computing
the difference between the predicted- and actual trajectory of the aircraft through space and time. The
accuracy of these TPs is highly impacted by the uncertain nature of the execution of a flight that is
subjected to a variety of parameters that are not always precisely known throughout the entire flight.
For example, weather forecasts always contain an inherent element of uncertainty and aircraft-specific
parameters like the cost index and the take-off weight are not always known as this information is
not openly shared. Therefore, the prediction of an aircraft trajectory is a stochastic problem due to the
inherent uncertainties of the parameters that influence the evolution of the trajectories. Several studies
have investigated the predictions of aircraft trajectories and aimed to obtain correct predictions with
high levels of accuracy. However, due to the uncertain nature of the evolution of the trajectories, further
research is required to investigate the uncertainty that is associated with the obtained predictions.

1.2. Research objective
Traditionally, a deterministic approach is applied when predicting aircraft trajectories. This approach
neglects the uncertainties that are associated with the relevant parameters that affect the trajectory.
These techniques only produce point estimates, being a single predicted trajectory that is the most
likely to be traversed by the aircraft. These predictions are then assessed on their accuracy by measur-
ing the deviation of the predictions from the actual trajectories. Deterministic techniques suffer from
degraded accuracy since these methods do not consider uncertainties that are associated with the air-
craft trajectory predictions. Naturally, the evolution of a trajectory is subjected to a variety of input
parameters that are not always precisely known, which characterises the stochastic nature. Hence, a
stochastic, also referred to as probabilistic, technique is desired to compute the predictions. Common
uncertainties are associated with aircraft-specific performance parameters, weather conditions, and in-
tended flight operations. Even though some studies have applied a stochastic approach to incorporate
the uncertainties in the predictions, further research is required to identify how the uncertainties in
particular input parameters affect the overall predictive capability of a TP, which translates into the
following research objective:

The research objective of this thesis is to quantify and model the uncertainties that are associated with the
predictions of aircraft trajectories by making use of stochastic prediction techniques.

1.3. Report outline
A literature review is conducted to elaborate on the state-of-the-art in terms of the prediction of air-
craft trajectories and to discover existing techniques that could be applied to model the uncertainties
in aircraft trajectory predictions. Chapter 2 elaborates on the methodologies related to the prediction
of aircraft trajectories, which involves both model-based and data-driven techniques. Chapter 3 elab-
orates on the principles of uncertainty modelling, which discusses the entire process to incorporate
uncertainties in a predictive model. Subsequently, Chapter 4 explores and reviews various applicable
probabilistic techniques. Chapter 5 elaborates on the approach of this project, which is broken down
into three phases. The first phase, which involves the collection and preparation of data, is described
in Chapter 6. Subsequently, Chapter 7 discusses the model development and the experimental setup
that is used to evaluate the results. Ultimately, the planning of this project is provided in Chapter 8.



2
Trajectory prediction methodologies

This chapter reviews the state-of-the-art concerning the principle of predicting aircraft trajectories.
Commonly, there are two approaches to the prediction of aircraft trajectories: model-based or data-
driven. Section 2.1 elaborates on the former approach and discusses the fundamentals of model-based
predictive models. Section 2.2 elaborates on the data-driven approach that exploits several sources of
data in the predictive models. Usually, these data-driven models are applied to individual clusters of
trajectories with similar temporal and spatial features. This requires the application of trajectory clus-
tering techniques to identify these groups of trajectories. Themajority of studies evaluate the predictive
models by analysing the predictive accuracy. Common measures of predictive accuracy are discussed
in Section 2.3. Ultimately, the state-of-the-art in terms of the prediction of aircraft trajectories is evalu-
ated and the main research gap is addressed in Section 2.4

2.1. Model-based Trajectory Prediction
A Trajectory Predictor (TP) computes the predicted 4D-trajectory that the aircraft is expected to follow.
Hence, the output consists of three spatial dimensions (altitude, longitude, latitude) defining the posi-
tion plus time acting as the fourth dimension to indicate at what point in time the position is reached.
Mathematically, the trajectory could be expressed by a set of vectors, ordered in time, containing the
aircraft states. Apart from the position and time, the state vectors might also contain other aircraft
states like speed, attitude, and weight. Classical TPs are model-based and commonly apply a deter-
ministic approach based on formulations of the aircraft’s equations of motion. This approach is widely
used and has already shown promising levels of accuracy. It should be noted that these approaches
simplify the behaviour of the aircraft to obtain results with reasonable computational costs [10]. The
outputs of the TP are computed using the aircraft intent, a meteorological model including historical
observations and forecasts, and a model of the aircraft performance that includes the initial state of the
aircraft.

Figure 2.1 provides a schematic overview of the TP process. The flight intent describes the goals, prefer-
ences and constraints for a particular flight executed by the aircraft operator. The constraints that apply
to the flight originate from airport resources, airspace capacity, aircraft characteristics, and safety re-
quirements [1]. The flight intent is ambiguous as multiple trajectories could be flown with the same
flight intent. The Intent Generation Infrastructure (IGI) solves this ambiguity by imposing enhanced
user preferences, constraints, and operational context. This eventually results in the generation of a
unique aircraft intent, which provides the TP with a description of how the flight is being operated to
meet the objectives of the operator while complying with the specified constraints [1]. The Trajectory
Engine (TE) in the Trajectory Computation Infrastructure (TCI) computes the predicted trajectory by
subsequent integration of the equations of motion. The TEmakes use of two other models that provide
additional information. The Aircraft Performance Model (APM) provides aircraft-specific information
concerning the performance of the aircraft. These models mathematically describe the forces and mo-
ments that act on the aircraft throughout the flight. This information is used to define the equations of
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motion. The Environmental Model (EM) includes meteorological parameters, like wind, temperature,
and pressure that affect the performance of the aircraft [7].

Figure 2.1: Schematic overview of the TP process [1]

2.1.1. Aircraft intent
As discussed in the previous section, the aircraft intent describes the way the aircraft is to be com-
manded manually by the pilot and/or automatically by the Flight Management System (FMS). There-
fore, the aircraft intent plays a crucial role in the prediction of the trajectory as it defines how the aircraft
is expected to operate throughout the flight. The information contained in the aircraft intent defines
the configuration of the aircraft (deployment of landing gear or extension of flaps) but also involves
operational procedures (hold a given airspeed or altitude) [7]. The aircraft intent could be derived from
FMS, which could provide detailed trajectory information. However, an unambiguous description of
the aircraft intent is not always accessible in studies that aim to involve aircraft intent in a TP. Therefore,
this requires the introduction of assumptions to define the aircraft intent, which increases the level of
uncertainty associated with the outputs of the TP. In order to enhance the used aircraft intent informa-
tion by the TP, several studies have tried to make accurate inferences concerning the aircraft intent by
using aircraft-derived data. Some results of these studies are discussed below.

Konyak et al. [11] tested the hypothesis that the communication of aircraft intent would improve the
accuracy of a ground-based TP applied to a single flight following an optimised descent profile. This
study identified that TPs that only made use of a flight plan filed before the execution of the flight
only had access to limited information about the aircraft intent. This gap of information has risen the
desire to generate intent inference algorithms in order to enhance the available information regard-
ing the way the aircraft is being operated throughout the flight. The most accurate description of the
intended trajectory could be obtained from the FMS onboard the aircraft. The FMS has full access to
aircraft performance capability, airspace constraints, and airline procedures. However, the study had
no access to the FMS data, which is why the study resorted to other available data sources. The study
used flight plans, ATC clearances, and extensive notes made by the crew. These notes contain, among
others, cruise speeds, descend speeds, communications with ATC, wind data, and fuel weights. Using
the available data, a detailed description of the aircraft intent was generated, which eventually would
be provided to the TP to obtain more accurate predictions. The aircraft intent was described using the
Aircraft Intent Description Language (AIDL) developed by Boeing Research Technology Europe.

The AIDL provides a formal standardised language to describe the aircraft intent. The AIDL format
is characterised by a set of instructions and a set of rules. The set of instructions are used to model
certain commands. The set of rules uses combinations of instructions to conceptualise specific actions
resulting in the aircraft intent. The instructions could be subdivided into the following five groups [12]:

• Set instructions identify a change of a particular parameter, from an initial value to a target value,
that influences the configuration or motion of the aircraft (e.g. throttle, flaps, speed brakes, land-
ing gear)

• Law instructions model the advancedmodes and guidance laws of controlling the aircraft. These
commands control any state of the motion of the aircraft (e.g. speed, altitude, throttle). Usually,
these instructions capture dependencies between state variables (e.g. law that describes the de-
pendency between the Mach number and altitude)



2.1. Model-based Trajectory Prediction 35

• Hold instructions model commands that are used when a motion or configuration should be
maintained (e.g. hold constant speed)

• Open loop instructions model commands of the pilot that directly affect the configuration of the
controls (e.g. change in path angle after elevator deflection).

• Track instructions model the guidance along a predefined geometry. This could either be a bi-
dimensional or tri-dimensional geometric representation of the trajectory.

Asmentioned, the set of rules make sure that a sequence of instructions is generated to unambiguously
define an aircraft trajectory. This is known as the aircraft intent. The study of Konyak et al. [11] used
the available track data to reverse-engineer back to the aircraft intent, which subsequently was format-
ted using the AIDL language. The results showed that the predictive accuracy improved significantly
when incorporating the AIDL format to specify the aircraft intent in the TP. The results also discovered
that regular TPs are more susceptible to changes in the aircraft motion from the steady-state. Regular
TPs required as long as a minute to recognize the particular deviation before it was able to correct its
predicted trajectory. This would require frequent monitoring of the aircraft states to obtain reliable
predictions. On the other hand, TPs with AIDL-specified aircraft intent would only change the pre-
dicted trajectory once there is a change in aircraft intent [11].

Bronsvoort et al. [13] studied the effect of missing longitudinal aircraft intent on the predictions of
descent trajectories. Generally, the flight plans that are used to derive the aircraft intent only contain
basic information. This might be sufficient for the cruise phase of the flight, which is relatively straight-
forward compared to the climb and descent phase. The lack of detailed aircraft intent in terms of the
climb and descent profiles requires the TP to introduce assumptions and simplifications that impact
the predictive accuracy. The study compared the longitudinal accuracy of the predicted trajectories
from a ground-based TP to the predicted trajectories obtained from the onboard FMS. This research ar-
gued that the lack of the intended speed schedule during the descent is a significant factor that causes
large errors in the predictions of the ground-based TP. These regular TPs used a nominal static descend
speed to compute the vertical profile of the descent. A significant improvement would be made pos-
sible once trajectory data extracted from the FMS was used to further specify a more detailed aircraft
intent. The implementation of this data has the potential to reduce the vertical errors from thousands
of feet to a few 100ft, while the temporal errors might be reduced from the order of minutes to only a
few tens of seconds.

Zhang et al. [14] also identified the aircraft intent as a key factor in the prediction of 4D trajectories.
The aircraft intent was inferred from aircraft states like speed, altitude, and thrust. Once the difference
between the predicted trajectory and the actual trajectory exceeded a pre-defined threshold, the aircraft
intent was updated. The study showed that updating the aircraft intent could contribute to the increase
in predictive accuracy.

2.1.2. Aircraft performancemodel
The conventional TP is model-based, which utilises a mathematical model of the aircraft flight dynam-
ics to compute the motion of the aircraft under given flight and weather conditions. The computed
aircraft motion forms the foundation of the predicted trajectory. Typically, the aircraft model is a sim-
plified representation using a Point Mass Model (PMM), where all forces like thrust, drag, lift, and
weight act through the centre of mass of the aircraft. Usually, there are two common approaches to
model the motion of the aircraft [15]:

1. The kinetic approach models the forces that are applied to the aircraft, which allows the compu-
tations of the motion by making use of Newton’s Law.

2. The kinematic approach directly models the motion of the aircraft, without modelling the under-
lying physics.

One of the most common aircraft performance models (APM) is adopted by the Base of Aircraft Data
(BADA) developed by Eurocontrol. This APM follows a kinetic, mass-varying approach to model the



36 2. Trajectory prediction methodologies

aircraft performance, and several studies have adopted this model to predict aircraft-specific parame-
ters and aircraft trajectories [15, 16]. The intended use of BADA is to simulate and predict trajectories
for the purpose of strategic planning in the field of ATM and the BADA model has been used in a
variety of studies that required information related to the performance of the aircraft [17]. The BADA
APM is built up into four different models: actions, motion, operations, and limitations. The action
model defines the computations of the forces that are acting on the centre of mass, which results in the
aircraft’s motion. These actions entail aerodynamic forces (drag D and lift L), propulsive forces (thrust
T), and gravitational forces (weight W). The Total Energy Model (TEM) is central in this model and
is used to predict the motion of the aircraft by applying Newton’s laws to the predefined forces. The
TEM is expressed by Equation 2.1 below.

(𝑇 − 𝐷)𝑣 = 𝑊𝑑ℎ𝑑𝑡 + 𝑚𝑣
𝑑𝑣
𝑑𝑡 (2.1)

where v represents the True Airspeed (TAS), the time derivative of the altitude (h) is the vertical speed,
and m is the mass of the aircraft. The variation of mass is accounted for by specifying a fuel consump-
tion model. The complete mathematical BADAmodel defines a set of Ordinary Differential Equations
(ODE) that define the evolution of the states of the aircraft. Subsequent integration of the system of
ODEs, while incorporating initial states of the aircraft, is used to obtain the predicted state of the air-
craft through a specified time interval. As discussed, the way the aircraft is being operated (aircraft
intent) affects the trajectory. The trajectory of an aircraft flying at a constant Mach number will not be
identical to a constant Calibrated Airspeed (CAS) operation. The operations model takes into account
how the aircraft is being operated. The limitations model ensures that the model is constrained by its
performance and operational limitations [18].

2.1.3. Environmental model
The environmental model in a TP accounts for the atmospheric properties (temperature, wind, and
pressure) at each point throughout the flight. These atmospheric conditions might vary over time and
the position of the aircraft and these variances might have a significant impact on the evolution of the
aircraft trajectory [16]. Among the different meteorological parameters, the wind conditions arguably
have the largest effect on the performance of the aircraft. Both the wind speed and the direction of the
wind should be taken into account in the prediction model [19]. Several studies have already proven
the importance of meteorological data as an input to the TP. Alligier [15] included temperature and
wind fields as atmospheric properties affecting the climb performance of an aircraft. De Leege et al.
[20] used surface winds and altitude winds as the meteorological inputs to predict the trajectory of
an aircraft flying a Continuous Descent Operation (CDO). The surface winds were extracted from the
meteorological aerodrome report (METAR), while the altitude winds were obtained from the Global
Forecast System (GFS). The study examined the effect of the implementation of meteorological data on
the predictive accuracy of the TP and showed that the predictive accuracy increased significantly when
the wind components were included in the TP.

2.2. Data-driven Trajectory Prediction
The previous section discussed the classical model-based approach to aircraft trajectory predictions.
However, with the increasing availability of data, several studies aimed to effectively utilise the avail-
able data and apply machine learning techniques to apply a data-driven approach to predict trajec-
tories. A data-driven approach is completely different from the model-based TPs since a data-driven
approach does not take into account any representation of the dynamics of the aircraft. Instead, it
exploits trajectory information extracted from either ground-based surveillance systems or onboard
systems. The expected advantage of the data-driven approach is that these techniques allow more ac-
curate predictions by taking into account and learning from all relevant, historic trajectory data, while
also considering any other contextual features that affect the evolution of the trajectory [10]. Further-
more, unlike the model-based approach, the data-driven methods do not rely on the parameters of the
performance models that might now always be precisely known. The sections below will elaborate on
the common sources of data used in these approaches, the preparation of this data, which involves the
clustering of trajectories. Eventually, several examples of studies that used a data-driven approach to
predict aircraft trajectories are discussed.
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2.2.1. Sources of data
The data-driven approach to the prediction of aircraft trajectories requires a sufficient amount of accu-
rate data that is extracted from various sources. Subsequently, these various sources of data should be
interlinked to obtain a coherent and meaningful set of data that could be used in the process of trajec-
tory prediction. The collection of reliable, meaningful data often is a complicated process in the field
of ATM where certain information is not openly shared among different stakeholders. For example,
operational information like the cost index or the aircraft take-off weight is considered as competitive
information and hence is not openly shared [10]. Positional data from flown trajectories are used to
reconstruct flights to train the machine-learning algorithm. Just like the model-based approach, me-
teorological conditions and aircraft intent information is incorporated in the predictive algorithms.
Hence, the trajectory data is commonly enriched with meteorological datasets and flight intent infor-
mation obtained from flight plans.

Trajectory data
While certain studies have used radar track data to reconstruct aircraft trajectories [21–23], the preferred
source of trajectory data is the Automatic Dependent Surveillance-Broadcast (ADS-B) data. ADS-B is a
satellite-based surveillance technology that allows aircraft to broadcast identification (ICAO address),
velocity, and position information to surrounding aircraft and ground stations [24]. An increasing
number of aircraft are being equipped with ADS-B which provides more accurate positioning data
compared to the use of ground-based radars. This fact in combination with the open accessibility has
made it a popular source of trajectory data for studies in the ATM field. For this study, the ADS-B
data could be used to reconstruct the trajectories flown by particular aircraft by extracting the position
updates (longitude, latitude, and altitude) obtained from the ADS-B transmitter equipped onboard the
aircraft. Eventually, the flown trajectory is obtained by sequencing the position updates from ADS-B
broadcasts.

Meteorological data
Previous studies have proven the significance of the effect of including meteorological conditions (like
wind speed, wind direction, and temperature) in the predictions of aircraft trajectories. In order to
enrich the trajectory dataset with corresponding meteorological conditions, a meteorological dataset
should be used that includes measurements of the relevant parameters over the range of altitudes and
geographical positions that the aircraft operates in. The meteorological databases commonly provide
the data through the use of GRIB files, which represents the region of interest as a grid with geographi-
cal points. Themeteorological parameters are defined for each point [25]. The spatial resolution of these
grids is important to consider when selecting a source of meteorological data. The National Oceanic
and Atmospheric Administration (NOAA) Rapid Refresh (RAP) was used by multiple studies because
of its high spatial resolution of thirteen kilometres [26, 27]. RAP, which only covers the continent of
North America, not only includes historical measurements but also provides weather forecasts that
are updated every hour with forecasts lengths of 18 hours. An alternative model that provides global
coverage is the NOAA Global Forecast System (GFS) with a spatial resolution of 28 kilometres. This
dataset provides measurements up to an altitude of 55 kilometres [28]. The vertical range is divided
into 64 layers. This model has been used by De Leege et al. to obtain altitude winds [20]. This study
also used METAR reports for the weather conditions close to the airport. Zhang et al. [14] extracted
the wind field (wind speed and direction) from the European Centre for Medium-RangeWeather Fore-
casts (ECMWF), which has a grid resolution of approximately 80 kilometres. The ERA5, also part of
ECMWF, uses an even finer gridwith a spatial resolution of around 30 kilometres, which is comparable
to the GFS model. This dataset includes meteorological parameters up to an altitude of 80 kilometres,
divided into 37 pressure levels.

Aircraft intent data
Aircraft intent is commonly included in the predictions bymakinguse of ICAO flight plans that are filed
before the flight. These flight plans are filed by the crew and submitted to the relevant air traffic service
units. The flight plans provide specified information concerning the intended flight. Flight plans typ-
ically include the type of aircraft, departure airport, time of departure, cruising speed, cruising level,
and the route to be followed [29]. The data included in flight plans is only limited and is not sufficient
to unambiguously define the intended trajectory to be flown by the airspace user. As mentioned in
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subsection 2.1.1, several studies have tried to compensate for the lack of a detailed description of the
aircraft intent. These studies relied on the use of data link communications with onboard equipment
like the FMS to infer the aircraft intent from these sources of real-time data [13].

2.2.2. Clustering aircraft trajectories
The data-driven approach to trajectory prediction requires certain pre-processing steps that have to be
applied to the initial set of raw trajectory data. The preparation of the data involves, among others,
aggregating different sources of data, handling missing values, standardising variables, and dividing
the final dataset into subsets used for training and testing the applied model. Besides, a key building
block in the prediction of aircraft trajectories is the accurate clustering of aircraft trajectories with sim-
ilar spatial and temporal characteristics [30]. The principle behind the clustering of trajectories is that
each cluster will be used to train a predictive data-driven model. Hence, the predictions of a certain
trajectory will be based upon the trained model derived from the specific cluster that the trajectory to
be predicted belongs to.

Clustering is an unsupervisedmachine learning technique to group similar entities into clusters accord-
ing to a defined similarity measure. Many different point-based clustering algorithms are presented
in the literature, like K-means, BIRCH, OPTICS, DBSCAN, and HDBSCAN [31]. Applying these al-
gorithms to cluster trajectories requires the specification of a proper distance function to compute the
similarity between trajectories. A common distance measure is the Euclidean distance, which requires
the trajectories to be of equal length. Other warping-based distance measures, like Dynamic Time
Warping (DTW) distance, are specifically used to measure the similarity between different time series.
Othermeasures that specifically focus on the shape of the trajectories are the Hausdorff and the Fréchet
distances [31]. The sections below discuss several applications of trajectory clustering algorithms.

Density‑Based clustering techniques
One of the most commonly applied techniques in clustering trajectories is the Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) [32]. A density-based clustering technique groups
data into regions of high and low density. For this purpose, DBSCAN requires two input parameters
to be specified: Eps andMinPts.

• eps specifies the maximum distance between two data points for one to be considered as in the
neighbourhood of the other.

• MinPts specifies the minimum number of points that form a cluster.

The parameters above are then used to make a distinction between three types of data points. A point
is classified as a core point, border point, or outlier. A core point is a point with at leastMinPts number
of neighbouring points within a distance of eps. A border point is a point that is reachable from a core
point and has less thanMinPts number of points within a distance of eps. Points that neither are clas-
sified as core- or border points are referred to as the outliers. Each cluster is formed by neighbouring
core points and their corresponding border points.

This density-based approach has proven to be able to efficiently cluster aircraft trajectories into an un-
known number of arbitrary shaped clusters, while effectively discarding outliers [33, 34]. Churchill
and Bloem [35] also applied DBSCAN to cluster taxi trajectories on the airport surface. The temporal
variation between similarly shaped taxi trajectories might be large as aircraft can stop throughout the
execution of the taxi trajectory. Therefore, a two-level hierarchical approach was applied where the
trajectories were clustered in space and time using DBSCAN. Song et al. [36] applied DBSCAN to in-
troduce the principle of a typical trajectory. This typical trajectory was implemented in a predictive
model as the intended flight path.

Having the ability to handle an unknown number of clusters is advantageous as the number of dif-
ferent types of trajectories is commonly not known in advance. Other algorithms, like K-means, do
require the specification of the number of clusters as an input to the algorithm. Besides, the property
of effectively dealing with outliers offers a significant benefit in processing ADS-B data, where trajec-
tories of low data quality will be considered as outliers and could be removed from the analysis [34].
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DBSCAN might not perform well when the data includes clusters with highly varying densities. Ba-
sora et al. [37] applied a variation of the algorithm called Hierarchical DBSCAN (HDBSCAN). This
algorithm only requires the specification ofMinPts and performs better on data with varying densities.

Hierarchical clustering techniques
Bombelli et al. [38] applied agglomerative hierarchical clustering techniques to spatially and tempo-
rally cluster the trajectories, where the spatial clustering was based on the Fréchet distance. The ag-
glomerative hierarchical clustering is a bottom-up approachwhere initially all trajectories are classified
as individual clusters. Then, at each step, the two most similar clusters are combined until all trajecto-
ries are included in one single big cluster. Eventually, the number of clusters is based on the specifica-
tion of the pruning distance that defines the desired clustering resolution, which should be based on
domain knowledge and depends on the field of application. Bombelli et al. [38] spatially grouped tra-
jectories with common origin and destination. However, solely clustering trajectories on their spatial
similarities would be insufficient. Grouping trajectories should also account for the similarity in the
temporal domain since two spatially similar trajectories might be flown with different speeds. For this
reason, the average cruise speed of the trajectories was computed to further divide the spatial trajectory
clusters.

Partitioning the trajectory into segments
Lee et al. [39] observed that clustering a trajectory as a whole might be inefficient since certain portions
of trajectories might show similar behaviour, while the trajectory as a whole might not. Therefore, a
partition-and-group framework was applied, where each trajectory was partitioned into a set of line
segments, after which these line segments were clustered using a density-based approach. This princi-
ple could be helpful in the clustering of aircraft trajectories, where a flight could be broken down into a
climb, cruise, and descent segment. This requires a technique that exploits historical data to identify the
phases of the flight. Sun et al. [34] proposed a method that was based on fuzzy logic which uses three
inputs (altitude, rate of climb, and ground speed) in combination with logic operators to determine the
phase of the flight.

2.2.3. Application of data-driven predictionmodels
With the increasing and improved collection of data in the ATM field, data-driven approaches have be-
come one of the common methods in the predictions of aircraft trajectories [40]. This approach has the
main advantage that it ignores the required parameters to a performance model as it only relies upon
real historical data collected from the aircraft or other additional data sources. Up till now, several stud-
ies have applied different techniques to exploit the historical trajectory data to compute predictions of
aircraft trajectories. This section describes a selection of applications in which aircraft trajectory pre-
dictions are data-driven.

Hamed et al. [41] proposed statistical regressionmodels to predict the trajectory during the climb phase
with a look-ahead time of 10minutes. Regressionmethods assume the aircraft position to be a function
of a set of dependent variables. This study selected the past aircraft positions, the current speed, the
temperature deviation from the standard atmosphere, and the predicted wind at different altitudes as
the regression input variables. The results of the data-driven approachwere compared to the outcomes
of the model-based approach where the BADA APM was used. Meteorological data and radar track
data were used to obtain the set of explanatory variables that were fed to the regression model. In or-
der to reduce the dimensionality of the model, a Principal Component Analysis (PCA) was performed
to identify the reduced set of significant components. The study concluded that the regression model
performed significantly better than the TP using the point-mass model. This was expected as the re-
gression model learns from historical, actual data, while the point-mass model uses fixed values for
certain parameters. De Leege et al. [20] applied the step-wise regression method named Generalised
Linear Models (GLM) to predict arrival times of descending aircraft. Step-wise regression methods are
used to systematically include or exclude explanatory variables from the GLM based on their statistical
significance in explaining the outputs. Sufficient explanatory power of the model was obtained when
using the aircraft type, initial altitude, and the initial ground speed as the input variables. Further
improvements could be obtained when surface- and altitude winds are included in the model. These
regression-based models were compared to the use of Artificial Neural Networks (ANN), and the re-
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sults showed that the regression models marginally outperformed the ANN.

Neural Networks have shown to be popular methods in data-driven trajectory predictions and have
been successfully applied by many studies [42, 43]. Wang et al. [44] applied the so-called Multi Cells
Neural Network (MCNN) to address the short-term prediction of trajectories in the Terminal Manoeu-
vring Area (TMA). The term ’multi cells’ refers to multiple sets of trajectories that were identified from
the results of clustering techniques. The neural network was applied to each of these trajectories, and
the results proved that these methods provided robust and accurate short-term predictions.

2.3. Measurement of predictive accuracy
The studies described in previous sections all aim to contribute to a more accurate prediction of aircraft
trajectories. When following a deterministic approach, a single, most likely trajectory is computed as
a result of the predictive model. Subsequently, this predicted trajectory is compared to the actual tra-
jectory that is reconstructed from the observed data. The comparison aims to express the predictive
accuracy by defining the error between the predicted and actual trajectory and different metrics could
be used to define this prediction error. Usually, the prediction errors are either spatial or time errors.
The visualisation in Figure 2.2 provides an overview of the definitions of the horizontal spatial pre-
diction errors. As could be observed, the horizontal error simply measures the distance between the
predicted position and the actual position at a specified point in time. This horizontal error is decom-
posed into a cross-track error and an along-track error.

Figure 2.2: Visualisation of horizontal track errors [2]

Another spatial accuracy metric is defined by the vertical error, which simply computes the difference
in altitude between the predicted and actual position at a specified point in time.

Besides the spatial errors specified above, a temporal metric defined as the time error could be used to
predict the accuracy of the TP. The time error is the computed difference in time of the occurrence of a
particular event (e.g. reaching a particular waypoint). The time error could be a helpful metric for TPs
that are used to merge and sequence aircraft along the descent track towards the runway [2].

A statistical analysis of the measured errors could be performed in order to obtain a comprehensive
view of the capability of the TP to generate accurate results. De Leege et al. [20] converted the results
of the time error into probability density functions and showed how the variance of the distribution
increased with increasing look-ahead times. Statistical properties of the errors could also be used to
compare the predictive accuracy of different TP. Alligier et al. [45] compared two different methods
that predicted the climb trajectory of an aircraft by evaluating the Root Mean Squared Errors (RMSE)
and the standard deviation of the errors of both approaches.

2.4. Review of the state-of-the-art in trajectory predictions
The review of the state-of-the-art concerning the predictions of aircraft trajectories identified that com-
monly there are two approaches: model-based or data-driven. Traditionally, model-based approaches
are applied in which the aircraft is represented by a point-mass model and its motion is characterised
by a set of differential equations that describe the evolution of the states of the aircraft. In addition to
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theAPM, ameteorologicalmodel togetherwith an (inferred) aircraft intent are included to compute the
predictions. The prediction of the trajectory is based on the subsequent integration of the states over
time. With the increasing availability of data, however, more studies have approached the prediction
problem using a data-driven approach. The advantage of such an approach is that it potentially allows
for more accurate predictions as the predictive model learns from all historical observations while tak-
ing into account a variety of factors that influence the evolution of the aircraft trajectory. Furthermore,
data-driven approaches do not rely on aircraft performance parameters, such as aircraft mass which is
commonly not precisely known.

The data-driven approach applies machine learning techniques like regression, classification, and neu-
ral networks to a dataset that includes parameters that affect the evolution of the trajectory. Commonly
the trajectory is reconstructed from ADS-B data. To enhance the value of the data, the trajectory data
is commonly enriched with meteorological conditions and forecasts. The aircraft intent is usually de-
rived from the filed flight plans.

Even though some effort has been put into the prediction of trajectories in a multi-aircraft environment
[23], the majority of studies focus on the prediction of a single trajectory flown by a particular aircraft.
Furthermore, it was observed that the studies commonly select one particular phase of the flight, since
the prediction error is likely to vary throughout different phases of the flight. Modelling the aircraft
performance during climb and descent is more difficult compared to the cruise phase, hence the pre-
dictions of these phases are likely to be less accurate [46]. Rodríguez et al. [47] identified the descent
phase as the most challenging part of the flight for predictive purposes. The complexity of the descent
phase is related to the fact that multiple aircraft are merging and sequencing into a bounded airspace,
while aircraft speed and wind may vary substantially during the descent.

All studies discussed previously aimed to identify the accuracy of the established predictive model by
measuring the error between the predicted and actual trajectories. The measure of accuracy could be
used to select the most appropriate method for the prediction of trajectories. Hamed et al. [41] com-
pared the accuracy of a data-driven to a model-based approach and concluded that the data-driven
model significantly outperformed the approach that implemented the Point Mass Model. However,
the predictive accuracy is highly impacted by the stochastic nature of the evolution of the trajectories
which introduces uncertainties inmany parameters. Examples of these uncertainties include unknown
aircraft parameters like take-off mass and thrust, wind forecast errors, and other data measurement er-
rors obtained from ADS-B. Furthermore, the aircraft intent derived from flight plans is not likely to
remain constant as the actual operated flight could deviate from its flight plan due to ATC interven-
tions and other unforeseen circumstances. As discussed previously, traditionally the prediction out-
puts are usually the result of solving a deterministic mathematical model that represents the motion of
the aircraft. Assumptions and simplification in these models also introduce errors, which is a source
of uncertainty. A deterministic approach does not consider these uncertainties, and only computes a
single predicted trajectory that does not contain any information regarding the confidence of the pre-
dicted trajectory. For these reasons, a probabilistic or stochastic approach is desired to predict aircraft
trajectories while taking into account different sources of uncertainty. These approaches allow for a
more extensive evaluation of the uncertainty in the predictions, rather than solely assessing the mod-
els on their predictive accuracy.

The next sections will elaborate on the importance of modelling uncertainties in the predictions of
aircraft trajectories. The main sources of uncertainties will be identified, and appropriate probabilistic
techniques will be explored.
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Modelling uncertainty

Modelling uncertainty in predictive analytics involves the process of Uncertainty Quantification (UQ),
which concerns the estimation of the impact of uncertainties in the input variables on the uncertainty of
the prediction of the target variable. The main goal is to account for all relevant sources of uncertainty
and quantify their contributions to the uncertainty in the predictions. When UQ is applied to predic-
tive analytics, the output is a probabilistic framework of possible outcomes. This is dissimilar to the
deterministic approach to predictive modelling, which computes a point estimate that represents the
most likely outcome. The probabilistic approach in trajectory predictions allows the user to robustly
and efficiently predict the most likely trajectory together with associated confidence and uncertainty
of the predicted output [48]. The UQ process commonly involves four steps. First of all, the relevant
sources of uncertainty that affect the target variable should be identified (Section 3.1). Subsequently,
the input uncertainties should be characterised, which is commonly done by expressing the uncertainty
using probability density functions (PDF) to represent the particular input variable (Section 3.2). Then,
these uncertainties in input variables are propagated through the model to systematically compute the
joint effect of the input uncertainty on the predicted outcomes (Section 3.3). Ultimately, uncertainty
management is a general term used to refer to activities that focus on managing or reducing the un-
certainty in the final prediction. Hence, this phase focuses on analysing the results and identifying the
main contributors to the output uncertainty (Section 3.4).

3.1. Uncertainty identification
McKay [49] describes that modelling uncertainty relates to the variability in the model predictions due
to plausible alternative input values (input uncertainty) or to plausible alternative model structures
(structural uncertainty). Hence, commonly two types of sources of uncertainties are distinguished in
the modelling and prediction process.

3.1.1. Input uncertainty
The inputs to the model characterise the relevant features that influence the performance of the model.
Input uncertainty refers to the effect of not precisely knowing the exact value of certain inputs that are
fed to the predictive model. These uncertainties usually come from a lack of knowledge on the deter-
ministic and stochastic properties of the input data [50]. The inherent imprecision of measurements
also contributes to the uncertainty related to the input data.

3.1.2. Structural uncertainty
Structural uncertainty refers to the model that is used to compute the predictions, which contains the
set of input parameters as well as the relationships among them. The structural uncertainty, also com-
monly referred to as epistemic uncertainty, arises from the accuracy of the mathematical model that
is used to describe a physical process. Any simplification or assumption made in the mathematical
description will impact the predictive accuracy and hence introduce structural uncertainty in the pre-
dictions. For example, neglecting air friction in a free-fall model is a simplification that would likely
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result in a discrepancy between the model and the true physics.

3.1.3. Sources of uncertainty in aircraft trajectory predictions
Considerable research has already been performed to identify potential sources of uncertainties that
arise when the trajectory of an aircraft is being predicted. This section will elaborate on the most com-
mon sources of uncertainties.

Initial conditions
In a model-based approach, the initial conditions are required to perform the integration of the dif-
ferential equations representing the motion of the aircraft. These initial conditions relate to the initial
position, speed, and weight of the aircraft. While the initial speed and position of the aircraft could be
obtained from surveillance data like ADS-B, the initial aircraft weight usually is not publicly accessible.
Obtaining position and velocity inputs from surveillance data also introduces uncertainty due to the
inherent inaccuracy of the position and velocity measurements. The uncertain aircraft weight requires
estimations and assumptions which introduces considerable discrepancies and especially affects the
accuracy of the expected fuel consumption throughout the flight [51].

Aircraft intent uncertainties
The evolution of the aircraft trajectory is highly influenced by the aircraft intent that describes how
the pilot or the FMS commands the aircraft to operate the flight. The lack of knowledge concerning
the operational strategy of the airline is considered to be a major source of uncertainty. Even though
some information could be derived from the filed flight plans before the flight, this plan usually lacks a
detailed description of the entire trajectory. Besides, the actual flight may diverge from the filed flight
plans because of flight crew preferences or ATC interventions. The aircraft might also be rerouted to
avoid severe weather conditions, which causes the actual flight to deviate from its prescribed flight
plan [52]. Overall, the aircraft intent uncertainty is shaped by the difference between the pilot/FMS
model applied to the TP and the actual strategy of guidance applied by the pilot/FMS throughout the
flight [53].

Atmospheric uncertainties
Atmospheric properties like temperature, humidity, and wind conditions (speed and direction) are
commonly implemented in aircraft trajectory predictions as they could have a significant impact on
the performance of the aircraft and thus the evolution of the flight. However, as with any other mea-
surement, the measurement of the atmospheric properties is subjected to inherent inaccuracy which
should be taken into account when modelling the uncertainty. This also accounts for weather forecasts
that, despite the increasing accuracy of these forecasts, inevitably consists of an element of uncertainty.

Modelling uncertainties
The use of an aircraft performance model to compute the predicted trajectories introduces uncertain-
ties that are caused by the simplifications and assumptions made to represent the motion of the aircraft
by a mathematical model. The selection of an accurate aircraft performance model would contribute
to the improvement of the accuracy of the predictions, especially during the climb and descent phases
which are considered to be the most complex from amodelling perspective. Currently, the Eurocontrol
BADA models are the most accurate APMs that are publicly available, which is why they have been
widely adopted bymany studies. Overall, this category of uncertainty covers all modelling implemen-
tation errors and the required assumptions to formulate the mathematical expression of the motion of
the aircraft [51].

Flight technical uncertainties
The flight technical errors are inevitably introducing uncertainty in the predictions. These discrep-
ancies represent the lack of adherence to the planned track of the aircraft. It defines the difference
between the intended and actual flight due to the performance of the autopilot/FMS. These impacts
cannot be accounted for in the TP as it is not related to any modelling simplification or assumption. It
can be assumed that the influence of this source of uncertainty is negligible compared to other sources
of uncertainty discussed above [53].
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The sources of uncertainties discussed above all impact the predictive capability of a TP. When using
a deterministic approach, these uncertainties are not addressed and a nominal value is selected to rep-
resent the parameters described above. This would result in a single predicted trajectory that does not
contain any information that could be used to state the level of confidence that is associated with the
predicted outcome. In order to account for the uncertainties defined above, a stochastic or probabilistic
approach is required. Aprobabilistic approach takes into account the uncertainty that is associatedwith
the input data, and eventually computes a predictive distribution that provides information regarding
the level of confidence that is associated with the predictions.

3.2. Uncertainty characterisation
Once the stochastic factors are identified, the uncertainty of these factors should be characterised. Com-
monly, the uncertainty of a variable could be characterised by representing the variable by a probability
density function (PDF), and many studies have adopted the Gaussian distribution to represent the pa-
rameters. The symmetricGaussian distribution could be used to represent variables ofwhich a nominal
value is known. This nominal value would represent the mean of the distribution, and the probability
decreases for values further away from this nominal value. However, the Gaussian distribution might
not always be suitable for application since the support of this distribution is infinite. The selection
of appropriate PDFs could be based on a prior belief in the parameter of interest. Certain parameters
might have a known lower and upper bound, which implies that using a Gaussian distribution would
not provide a reasonable representation of the parameter. A distribution with finite support might be
more appropriate to model that particular input variable. In case when the parameter of interest is
bounded by a lower and upper bound and the probability does not vary across the specified interval
of possible values, the uniform distribution could be used to effectively characterise the parameter.
Casado et al. [51] suggest the use of the uniform distribution for the forecasts of local temperature
and pressure, in case these forecasts only provide minimum and maximum values. More complex be-
haviour of variables could be characterised by the Beta distribution which is a flexible distribution that
is defined by two shape parameters that could be adjusted to represent different behaviours.

In another study, Casado et al. [53] specified various stochastic factors that affected the evolution of
the trajectory of an aircraft. Eventually, three different distributions were selected to represent the vari-
ables. A uniform distribution was used to represent the initial mass of the aircraft. Certain parameters
that described the aircraft intent (cruise flight level, descend speed) were modelled as normal vari-
ables. Drag coefficients and fuel consumption coefficients, as defined by the APM, were represented
by triangular distributions that clearly define the most likely value of the variable. The selection of the
particular distributions was based onmade assumptions and simplifications and not supported by any
observational data.

Álvaro Rodriguez-Sanz et al. [54] used a slightly different approach. Instead of defining a distribution
that represents the values of the parameter of interest, this study modelled the inputs as the variable
plus a precision error. The nominal value of the input parameter was obtained from a deterministic
model, while the precision error for each parameter was drawn from a selected statistical distribu-
tion. For example, the temperature parameter was modelled by a nominal value obtained from the
ISA model, while the precision errors were represented by a Gaussian distribution with mean 𝜇 = 0˚
and a standard deviation 𝜎 = 1˚.

While the studies above determined the selection of statistical distribution based on theory or prior be-
lief, Rudnyk et al. [55] characterised the stochastic factors by PDFs thatwere obtained from surveillance
data, weather forecasts, and air traffic controller’s inputs. The parameters of a specific distributionwere
estimated by using the Maximum Likelihood Estimate (MLE). The MLE estimates the parameters of
a distribution that makes the observed data most probable. After a distribution was selected and its
parameters were estimated, a goodness of fit test was applied to evaluate howwell the sample data fits
the selected distribution. For this purpose, the Kolmogorov-Smirnov (K-S) test was applied. The K-S
test computes the distance between a hypothetical cumulative distribution and the empirical cumula-
tive distribution obtained from the data. The lower this distance, the better the data fits the selected
distribution.
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3.3. Uncertainty propagation
The uncertainties of the input parameters are propagated through the predictive model which allows
for a more extensive analysis to identify principal contributors to the output’s uncertainty. The propa-
gation of uncertainty involves the use of computational tools to identify the joint effect of the stochastic
factors on the prediction of the quantity of interest. The uncertainty of the predictions of the target
variables then is represented by a posterior predictive distribution [56]. Probably one of the most well-
knownmethods that incorporates the propagation of uncertainty is theMonteCarlo (MC)method. This
method was also applied by the studies described in the previous section. The Monte Carlo approach
utilises the probabilistic representations of the stochastic factors to draw the inputs of the prediction
model. The inputs are sampled randomly from their corresponding distribution in order to incorporate
the uncertainty in the model. For each combination of selected input values, a deterministic problem
is solved. In aircraft trajectory predictions, this deterministic problem is represented by the mathemat-
ical formulation of the motion of the aircraft. The obtained results, from a number of simulations with
different inputs, are aggregated to obtain a distribution of outcomes [54]. Other methodologies that are
commonly used to model uncertainty in predictive models are Particle Filtering, Gaussian Process Re-
gression, and Polynomial Chaos Expansion. These techniques and their applications will be discussed
extensively in Chapter 4.

3.4. Uncertainty management
Uncertainty management generally refers to activities that aid in the evaluation and quantification of
the uncertainty in the final predictions [56]. McKay [49] specified that prediction uncertainty relates
to the variability in the output associated with input uncertainty and that it is characterised by a pre-
diction probability distribution. In this definition, the model structure is assumed to be known and
fixed. Hence, the prediction uncertainty focuses on the impact of input uncertainty rather than struc-
tural model uncertainty. As a result of the uncertainty analysis, the prediction distribution attempts to
describe the range of possible outcomes together with their corresponding probability [57]. The output
uncertainty is commonly expressed by the standard deviation of the prediction distribution. Overall,
the output distribution could be used to:

• describe the range of potential outputs at some level of confidence

• measure the probability that the output exceeds a particular threshold value

Commonly, a sensitivity analysis (SA) is performed in combination with the uncertainty analysis.
While an uncertainty analysis aims to compute an output distribution that quantifies the output un-
certainty due to input uncertainty, a sensitivity analysis aims to describe the effect of changes in model
input on the output values of the model. Therefore, the sensitivity analysis could contribute to the
identification of the most influential parameters used in a TP. A distinction is made between local and
global sensitivity analysis [58].

3.4.1. Local sensitivity analysis
A local SA only varies one input parameter each time, while keeping the other inputs at their refer-
ence values. This procedure then is repeated for each parameter in order to identify to which extent
each parameter affects the uncertainty in the outputs. The sensitivity index 𝑆𝑖 in a derivative-based
local SA is computed by taking the partial derivative of the output Y with respect to the 𝑖𝑡ℎ input 𝑋𝑖
(Equation 3.1).

𝑆𝑖 =
𝜕𝑌
𝜕𝑋𝑖

(3.1)

The sensitivity index characterises the effect on the output variable Y of a perturbation on an input
variable 𝑋𝑖 from its reference value [59]. Commonly, the perturbation could be defined as a percentage
from the nominal value. It should be noted that the obtained measure of sensitivity is only valid near
the chosen nominal value of the parameter. For non-linear systems, the sensitivity index should be
computed for different points in the samples space of the parameter in order to obtain a more compre-
hensive view of the input-output relationship. The main limitation of the local SA is that it does not
allow simultaneous changes of input parameters. The local SA analyses each parameter individually
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and thus neglects the interaction between parameters. To overcome these limitations, a global SA could
be applied.

3.4.2. Global sensitivity analysis
In a global SA, all input parameters are varied at the same time, which allows the evaluation of the
contributions of each individual parameter as well as interactions between these parameters on the
output variable. A common technique in the application of a global SA is based on the computation of
the Sobol indices [59]. The Sobol method is a variance-based SA in which the variance of the output
is decomposed into fractions that correspond to particular contributions of inputs or subsets of the
inputs. The first-order Sobol index is a measure of the contribution of one individual input parameter
to the output variance. The first-order index is computed with Equation 3.2.

𝑆𝑖 =
𝑉𝑖
𝑉 =

Var (𝔼 (𝑌 ∣ 𝑋𝑖))
Var(𝑌) (3.2)

where 𝔼 (𝑌 ∣ 𝑋𝑖) defines the mathematical expectation of the output distribution conditioned on the
𝑖𝑡ℎ input parameter. The higher-order indices, like 𝑆𝑖𝑗 could be computed similarly where the output
distribution should be conditioned onmultiple input parameters (𝑌 ∣ 𝑋𝑖 , 𝑋𝑗). The higher the sensitivity
indices, the greater the influence of that particular set of input parameters on the output variable [60].

While the first-order indices only describe the effect of the individual parameter, the total sensitivity
indices also incorporate the effect of the interactions between input parameters. The total sensitivity
index 𝑆𝑇𝑖 for the 𝑖𝑡ℎ parameter is computed by adding all respective lower-order effects. For example, if
only three input parameters are included in amodel (𝑋1, 𝑋2, 𝑋3), then 𝑆𝑇1 is computedwith Equation 3.3.

𝑆𝑇1 = 𝑆1 + 𝑆12 + 𝑆13 + 𝑆123 (3.3)

It is important to calculate both the first-order indices as well as the total-order indices. A low first-
order sensitivity index does not necessarily mean that the parameter is unimportant. The interaction
of this parameter with other variables might significantly contribute to the variance in the output. Be-
sides, the difference between the first-order effect and the total-order effect represents the contribution
of the interactions between parameters on the variability in the output. The study of Sankararaman
and Daigle [56] applied the variance-based global SA to the uncertainty analysis in the prediction of
the altitude of an aircraft throughout its trajectory. The results showed that the uncertainty of speed
commands during the take-off phase contributed to approximately 90% of the total variance in the al-
titude predictions.





4
Probabilistic approach to trajectory

predictions

This chapter discusses a variety of techniques that employ a probabilistic framework in a predictive
analysis. The techniques described in this chapter are based on the principle of Bayesian statistics,
which will be discussed in Section 4.1. The most common probabilistic method used for predictive an-
alytics is the Monte Carlo method, which is briefly described in Section 4.2. Alternative model-based
methods like Polynomial Chaos Expansion and Sequential Monte Carlo methods are described in Sec-
tion 4.3 and 4.4 respectively. A purely data-driven approach called Gaussian Process Regression is
explained in Section 4.5. Ultimately, Section 4.6 reviews the discussed methods on their applicability
to the predictions of aircraft trajectories using a probabilistic approach.

4.1. Bayesian statistics
Before the probabilistic predictive methods are discussed, it is important to point out a key statisti-
cal theory that all these methods are based upon. The theory behind the probabilistic approach of
uncertainty modelling refers to Bayesian statistics, which is the polar opposite of the more classical
Frequentist statistics. Both approaches provide a different interpretation of probability. The frequen-
tist approach defines probability as the limiting relative frequency in many trials. For example, if a
coin is tossed N times (where N is a large number), and N/2 of these tosses land on heads, then the
probability of head is approximately 50% according to the Frequentist approach [61]. On the contrary,
the Bayesian interpretation of probability is not based on repetitive trials. In Bayesian statistics, the
probability of an event is based on a state of known information, knowledge or the quantification of a
prior belief. Referring back to the coin toss example, the outcome of a single trial of the coin toss could
be modelled as a random variable following a Bernoulli distribution with parameter p. The Bernoulli
distribution is a discrete PDF that takes the value 1 (heads) with probability p and 0 (tails) with prob-
ability 1 - p. From a frequentist perspective, the inferred value of the parameter p is said to be fixed or
deterministic. On the contrary, from a Bayesian perspective, this parameter p is also considered to be a
random variable that follows a specified distribution that could be defined based on prior knowledge
or belief. In a statisticalmodel, the prior belief is commonly referred to as the a priori information, which
represents known information before the data have been observed. The Bayesian approach provides
a probabilistic framework to combine the a priori information with the information obtained from the
data to eventually compute a refined distribution: the so-called a posteriori distribution. Effectively,
the prior distribution is being updated to a posterior distribution with the aid of data. The principle of
Bayesian statistics could be expressed mathematically by using Bayes’ Theorem (Equation 4.1).

𝑃(𝐴 ∣ 𝐵) = 𝑃(𝐵 ∣ 𝐴)𝑃(𝐴)
𝑃(𝐵) (4.1)

Bayes’ Theorem expresses that the conditional probability of event A given event B is equal to the
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probability of event B given event A multiplied by the marginal probability of event A divided by
the marginal probability of event B [62]. As mentioned previously, Bayesian statistics commonly in-
volves probability distributions rather than fixed point probabilities. The main goal of the application
of Bayesian statistics is to represent prior uncertainty regarding model parameters by a probability
distribution and to update that distribution, with the help of data, to a posterior distribution that con-
tains less uncertainty. Bayes’ Theorem could be expressed using probability distributions as defined
by Equation 4.2.

𝑓(𝜃 ∣ data ) = 𝑓(data ∣ 𝜃)𝑓(𝜃)
𝑓( data ) (4.2)

where 𝑓(𝜃 ∣ data) represents the updated posterior distribution for the parameter 𝜃. 𝑓(𝜃) represents the
prior distribution of the parameter and 𝑓(data) is the marginal probability of the data, also commonly
referred to as the evidence [62]. Furthermore, 𝑓(data ∣ 𝜃) is the sampling density function that is
proportional to the likelihood function that quantifies the extent to which the data supports the prior
belief on the parameter. The denominator, which is computed by Equation 4.3, acts as a scaling constant
such that the posterior distribution defines a proper distribution that integrates to 1 over its domain.

𝑓( data ) = ∫𝑓(data ∣ 𝜃)𝑓(𝜃)𝑑𝜃 (4.3)

The integral stated above is usually computationally expensive and time-consuming. Since the out-
come of the integral only acts as a scaling constant, the posterior distribution is usually expressed
using the proportionality to the likelihood and the prior distribution as expressed by Equation 4.4.

Posterior ∝ Likelihood × Prior (4.4)

where the ” ∝ ” symbol describes ”proportional to”.

Figure 4.1 illustrates the Bayesian principle. This graph contains the prior distribution, the likelihood
distribution, and the posterior distribution. The prior information (dashed line) clearly shows that
the parameter almost certainly lies within -4 and 4, and is most likely to be between -2 and 2. The
data, represented by the likelihood distribution (dotted line), is shifted to the right and favours values
between 0 and 3. According to the data, values outside this interval are less likely and contradicts the
prior information. The posterior distribution (solid line) combines both distributions to generate the
final distribution.

Figure 4.1: Illustration of Bayesian statistics showing the prior distribution (dashed), the
likelihood function (dotted), and the posterior distribution (solid) [3]

As could be observed, the prior information is centred around 0 while the likelihood is centred around
1.5. The posterior distribution lies in between these two distributions and is slightly more shifted to-
wards the likelihood distribution. The reason for this is that Bayes’ Theorem recognises the strength of
the source of information, which is represented by the narrowness of the distribution. The likelihood
function clearly shows less variance, which is why the posterior distribution prioritises this source of
information [3]. In this example, the frequentist estimate of the parameter would be 1.5 which repre-
sents the MLE. The Bayesian estimate, that incorporates prior knowledge and information, would be
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approximately 1.

The formulation of prior information is a key aspect of Bayesian statistics. However, obtaining an
informative prior might not always be possible. For example, in complex applications where the for-
mulation of the dependencies between parameters might be out of reach due to limited knowledge of
the problem. If no sufficient prior information is known, it is desired to obtain a prior distribution that
has minimal influence on the inference. These priors are called non-informative priors. For example,
a uniform prior distribution is a well-known non-informative prior which assigns equal probabilities
to a range of values within a specified interval. Consonni et al. [63] provide further information on
various non-informative priors.

The main difference between Frequentist and Bayesian statistics is how both approaches measure un-
certainty in parameter estimation. As discussed, the Frequentist approach obtains point estimates of
unknown parameters which are commonly based on the MLE. From here on, the derived parame-
ter is said to be fixed and no probabilities are assigned to other potential values for the parameter in
question. Frequentists rely on the construction of confidence intervals around the estimate to measure
uncertainty. These confidence intervals simply reflect the probability of obtaining an interval estimate
that includes the particular parameter under repeated trials. Hence, a confidence interval of 95% only
implies that 95% of the constructed confidence intervals will contain the true parameter. It would be
incorrect to state that a confidence interval covers the true parameter with a probability of 95%. In the
Bayesian approach, however, a full posterior distribution of the parameter of interest is derived. This
allows for more extensive statistical analysis to measure and quantify the uncertainty of the estimation
[62]. Since this thesis project focuses on modelling and quantifying uncertainty in predictions, using
the Bayesian approach would be a logical choice.

4.2. Monte Carlo methods
As mentioned in section 3.3, one of the most common probabilistic methods used to incorporate un-
certainty in a model is the simulation-based Monte Carlo (MC) method. The MC processes are used to
estimate the probability of different outcomes of a model that is subjected to various uncertain inputs.
The MC method is based on Bayesian statistics and contains a set of methods used for randomly sam-
pling variables from their corresponding probability distributions. After the inputs are drawn from
their distributions, the deterministic model is simulated many times in order to arrive at an ensemble
of outputs. These outputs are aggregated to estimate the posterior distribution [64]. The MC method
is fairly easy to implement which has made it the method of choice for several studies. This method
has also been used as a common benchmark model to compare the results to the outcomes of different
methodologies [53]. However, the main drawback of this approach is the fact that it is computation-
ally expensive and time-consuming [53]. This is caused by the required number of simulation runs
to obtain accurate estimations. The MC method eventually computes an approximation of the poste-
rior distribution and hence is subjected to approximation errors. These relative approximation errors
(𝑒𝑎𝑝𝑝𝑟) decrease when the number of runs (N) is increased according to Equation 4.5.

𝑒𝑎𝑝𝑝𝑟 =
1
√𝑁

(4.5)

Hence, in order to reduce the error by half, the number of runs is required to increase by four. Rudnyk
et al. [55] assumed a relative error of 0.01, which required 10,000 simulations of the trajectory of an
aircraft. The computational cost related to the required number of simulations is a major disadvantage
of the classical Monte Carlo approach.

4.3. Polynomial Chaos Expansion
Polynomial Chaos Expansion (PCE) is a relatively new stochastic technique applied inUQ that captures
the uncertainty related to the input parameters through a basis of polynomials. These input uncertain-
ties are propagated to the model outputs with only a limited number of simulation runs [65]. The PCE
is based on the principle of representing an arbitrary random variable of interest (output) as a function
of other random variables (inputs), where the function is represented by a polynomial expansion. Just
as the classical Monte Carlo approach, it is required to specify the probability density functions of the
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input random variables [66]. A comprehensive description of the principles behind the PCE technique
could be found in the tutorial by O’Hagan [66].

The principle of PCE has not been used extensively in the field of aircraft trajectory prediction. Even
though this model presents considerable computational advantages over the classical Monte Carlo
approach, it is known to be more difficult to implement. Casado et al. [53] applied the PCE method
to quantify the uncertainties associated with the prediction of aircraft trajectories. Several sources of
uncertainty were identified and eventually expressed by univariate polynomial descriptions. These
expressions were used to build a multivariate polynomial expression that represented the variability
of aircraft state variables (e.g. aircraft mass, speed, heading) along a predicted trajectory. The mean
and standard deviation of the aircraft state variables were computed and compared to a benchmark
model that applied the Monte Carlo approach. The results showed negligible differences between the
outcomes of both methods. The study highlighted the computational efficiency of PCE, where PCE
obtained similar results while being around 200 times faster than the Monte Carlo method.

4.4. Sequential Monte Carlo methods
Data analysis in real-world applications often involves the estimation of unknown variables given a
sequence of observations on quantities that are related to the variable of interest. Often, these observa-
tions arrive sequentially in time and examples include the tracking of the aircraft position given radar
measurements, or the identification of a communication signal given noisy measurements that arrive
sequentially in time. The Bayesian framework combines prior information regarding the observable
and the likelihood functions that relate the observations to the unknown parameters. The resulting
posterior distribution could be approximated using Bayes’ Theorem. In processes where more obser-
vations become available over time, it would be more convenient to update the posterior distribution
than to recalculate from scratch that requires all data to be stored. A common method that uses this
principle of approximating a posterior distribution sequentially in time is the Sequential Monte Carlo
method (SMC). The SMCmethods comprise a set of simulation-basedmethods that provide convenient
approaches to estimating a posterior distribution frompartial observations [67]. One of thewell-known
applications of SMC methods is the use of particle filters. The particle filtering approach sequentially
processes the received observations. Such filters commonlywork in two stages: prediction and update.
The prediction stage utilises the systemmodel to predict the posterior distribution function of the state
of the system. The state of the system is commonly subjected to disturbances (process noise). Hence,
the prediction usually deforms and spreads the posterior distribution function. The update stage aims
to make use of the latest observations to modify and refine the posterior distribution [68].

4.4.1. Recursive Bayesian estimation
SMCmethods are based on the principle of Recursive Bayesian estimation where a probabilistic frame-
work is applied to estimate a posterior distribution recursively over time by using incoming measure-
ments. As SMC methods are simulation-based, the definition of a state-space model is required that
could be used to simulate the evolution of the states of the aircraft model. Hence, the starting point
in SMC is defining a discrete-time model of the nonlinear dynamics of the aircraft and the observed
measurements. The state-space model that is used to simulate the state evolution of the aircraft has the
following form:

𝑥𝑡 = 𝑓 (𝑥𝑡−1) + 𝜔𝑡−1
𝑦𝑡 = ℎ (𝑥𝑡) + 𝑣𝑡 (4.6)

where 𝑥𝑡 and 𝑦𝑡 contains the set of system states and measurements at time t respectively. The state
vector comprises all relevant information that is necessary to describe the motion of the aircraft, while
the observations might comprise weather forecasts or aircraft positions obtained from radar measure-
ments. The state transition function and observation function are represented by 𝑓(⋅) and ℎ(⋅) respec-
tively. The state-space model is completed with the addition of process noise 𝜔𝑡−1 and observation
noise 𝑣𝑡. This system of equations could be transformed into a probabilistic framework as expressed
below.
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𝑥𝑡 ∼ 𝑝 (𝑥𝑡 ∣ 𝑥𝑡−1)
𝑦𝑡 ∼ 𝑝 (𝑦𝑡 ∣ 𝑥𝑡)

(4.7)

Here, 𝑝 (𝑥𝑡 ∣ 𝑥𝑡−1) represents a PDF that models the stochastic evolution of the states of the aircraft over
time. This transition probability function is a key feature of a Markov process, which describes that the
current state at time t is only dependent on the state at the previous time step t - 1. 𝑝 (𝑦𝑡 ∣ 𝑥𝑡) is a PDF
that models the distribution of the observations given the current state at time t [19]. The principle of
recursive Bayesian estimation is to derive the posterior distribution function, given the set of measure-
ments, denoted by 𝑝 (𝑥𝑡 ∣ 𝑦1∶𝑡). This requires the assumption that the initial distribution of the state
vector 𝑝(𝑥0), also known as the prior, is known. The posterior distribution function is approximated
in two stages: prediction and update. The prediction stage involves the state transition probability
function defined by Equation 4.7. In Markov processes, the Chapman-Kolmogorov equation could be
used to express the state prediction equation (Equation 4.8) [69].

𝑝 (𝑥𝑡 ∣ 𝑦1∶𝑡−1) = ∫𝑝 (𝑥𝑡 ∣ 𝑥𝑡−1) 𝑝 (𝑥𝑡−1 ∣ 𝑦1∶𝑡−1) 𝑑𝑥𝑡−1 (4.8)

As soon as a following measurement 𝑦𝑡 becomes available at time t, the prior distribution could be
updated by using Bayes’ Theorem for probability density functions according to Equation 4.9.

𝑝 (𝑥𝑡 ∣ 𝑦1∶𝑡) =
𝑝 (𝑦𝑡 ∣ 𝑥𝑡) 𝑝 (𝑥𝑡 ∣ 𝑦1∶𝑡−1)

𝑝 (𝑦𝑡 ∣ 𝑦1∶𝑡−1)
(4.9)

When combining Equation 4.9 andEquation 4.8, the recursive formof the posterior distribution (update
equation) could be expressed by Equation 4.10.

𝑝 (𝑥𝑡 ∣ 𝑦1∶𝑡) = ∫
𝑝 (𝑦𝑡 ∣ 𝑥𝑡) 𝑝 (𝑥𝑡 ∣ 𝑥𝑡−1)

𝑝 (𝑦𝑡 ∣ 𝑦1∶𝑡−1)
𝑝 (𝑥𝑡−1 ∣ 𝑦1∶𝑡−1) 𝑑𝑥𝑡−1 (4.10)

The integral expressed above cannot typically be computed analytically and makes direct sampling
from this distribution impossible. This is where particle filtering comes into play where the SMC sam-
pling method is applied to approximate the optimal Bayesian solution [69].

4.4.2. Particle filteringmethods
The particle filter uses recursive Bayesian estimation based on importance sampling in order to approx-
imate the posterior distribution. The idea behind particle filtering is to represent the desired posterior
distribution function by a specified set of samples with corresponding weights. These samples are
represented by a set of particles, where the weight of that particle is based upon the likelihood of that
particle being drawn from the posterior distribution. When a large number of particles are drawn, the
particle filter approximates the target distribution by sampling the particles from a proposal distribu-
tion that updates these particles recursively when new measurements arrive. The set of N particles
could be represented by 𝜒 as follows:

𝜒 = {𝑥(𝑖)𝑡 , 𝑤(𝑖)𝑡 }
𝑁

𝑖=1
(4.11)

where 𝑥(𝑖)𝑡 defines the 𝑖𝑡ℎ possible state at time t, while 𝑤(𝑖)𝑡 represents the corresponding normalised
weight that is assigned to that particular state [70]. This set of particles then is used to approximate the
posterior density function empirically (Equation 4.12).

𝑝 (𝑥𝑡 ∣ 𝑦1∶𝑡) ≈
𝑁

∑
𝑖=1

w(𝑖)𝑡 𝛿 (𝑥
(𝑖)
𝑡 ) (4.12)

where 𝛿(⋅) is the Dirac Delta function centred around 𝑥(𝑖)𝑡 , which is used to construct the empirical
distribution according to the normalised weights associated with these possible states. When direct
sampling from a target distribution p(x) is intractable, the particle filter samples from a proposal dis-
tribution 𝜋(𝑥), also described as the importance function. The non-normalised weights, computed by
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Equation 4.13, represent how close the support of the proposal distribution fits the target distribution
to be estimated.

𝑤∗(𝑖) = 𝑝(𝑥)
𝜋(𝑥) (4.13)

Subsequently, the weights are normalised by dividing each weight by the total sum of weights, such
that the sum of normalised weights equals one. In sequential importance sampling, the particles are
drawn from the proposal distribution 𝜋(𝑥). In the literature, the most common choice for the proposal
distribution is called the prior importance function 𝑝 (𝑥(𝑖)𝑡 ∣ 𝑥(𝑖)𝑡−1). Djurić et al. [70] present the following
two important steps that are required to update the weights of the particles (Equation 4.14).

𝑥(𝑖)𝑡 ∼ 𝑝 (𝑥(𝑖)𝑡 ∣ 𝑥(𝑖)𝑡−1)

𝑤(𝑖)𝑡 ∝ 𝑤(𝑖)𝑡−1𝑝 (𝑦𝑡 ∣ 𝑥(𝑖)𝑡 )
(4.14)

The particle update equations expressed above startwith drawing the particles from the proposal distri-
bution. Hereafter, the corresponding weights are computed and updated by using the lower equation.
Each update step of the particles requires the normalisation of the weights, such that the sum of the
weights is equal to one. As could be observed, the updated weight is dependent on 𝑝 (𝑦𝑡 ∣ 𝑥(𝑖)𝑡 ) that
involves the likelihood of the measurements to be related to the particular possible state.

A common problem in particle filtering is that after several iterations of the predicting and updating
stages, the majority of the weights will be concentrated on a few particles and most particles will be
assigned to negligible weights. This is called sample degeneracy which degrades the performance of
the particle filter [71]. This degeneracy could be avoided by combining a proper choice for the impor-
tance function with re-sampling. The principle of re-sampling is to neglect particles with negligible
weights and instead replace those with particles in the proximity of highly weighted particles. After
the re-sampling step, all particles are weighted equally with 1/N.

4.4.3. Applications of particle filtering
The method of particle filtering can be applied to a large variety of models to estimate unknown pa-
rameters and infer predictions. The study of Sun et al. [72] applied the particle filtering method to
estimate the aircraft mass and thrust settings right after take-off during the initial phase of the climb.
A point-mass aircraft performance model was defined to model the non-linear evolution of the states
of the aircraft. This study focused on a short segment (within 30 seconds) right after take-off which
allowed the assumption that the mass and thrust settings were constant during that short period of
time. The prior belief related to the mass and thrust setting of the aircraft was incorporated by speci-
fying an initial state distribution 𝑝(𝑥0). Both states were assumed to originate from uniform distribu-
tions, where the mass was limited by the Operating EmptyWeight (OEW) and the Maximum Take-Off
Weight (MTOW) of the specific aircraft in question. The observations related to other states of the air-
craft were primarily derived from ADS-B broadcasts, where observation noise was implemented in
the state-space model by considering the ADS-B accuracy standards. In order to test and validate the
results from the estimations of the mass and thrust settings, simulated, real, and measurement flights
were used. The proposed recursive Bayesian estimation framework showed its potential to accurately
estimate the mass of the aircraft with a mean absolute error of 4.3% of the actual true aircraft mass.
The accurate estimation of the mass could contribute to a more accurate prediction of other states of
the aircraft throughout its trajectory.

Lymperopoulos and Lygeros [19] formulated the aircraft trajectory prediction as a Bayesian estimation
problem, where they applied the particle filtering approach. A stochastic non-linear aircraft model was
specifiedwhere partial observations arrived every 30 seconds from radarmeasurements. The stochastic
dynamics arose from the uncertainty related to wind conditions that potentially affect the flight and
the uncertainty caused by the unknown mass of the aircraft. The results from the particle filter were
compared to a simulated trajectory that was considered as the real trajectory. The study focused on
the climb phase as this was found to be the most challenging part of the flight due to rapid changes in
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wind conditions between different flight levels. Besides, the mass of the aircraft plays a crucial role in
the climb performance of the aircraft. The results were assessed on the spatial and temporal errors as
defined in section 2.3. The results discovered that the SMC method has no problems in capturing the
non-linear flying dynamics of the aircraft. As new measurements arrive, the particle filter algorithm
converges to the real trajectory and provide increased accuracy in the predictions of the future position
of the aircraft. Conde et al. [73] also point out the interest of the re-sampling process, which contributed
to the reduction in uncertainty as particles with negligible weights are not propagated through the
entire computation.

4.5. Gaussian Process Regression
The methods discussed in the previous sections rely on the simulation of a model that represents a
mathematical formulation of the flight dynamics of the aircraft. However, as mentioned in section 2.2,
data-driven approaches could be used to compute predictions based on historical observations by ex-
ploiting the available data on flown trajectories. Gaussian Process Regression (GPR) is such amachine-
learning approach that exploits the available data to compute the predictions using a Bayesian ap-
proach to regression techniques.

4.5.1. Gaussian Process background
Regression is a common statistical analysis that aims to describe the relationship between a continuous
dependent variable y, and a set of independent variables defined by the input vector x. The relationship
between the dependent and independent variables could be exploited to generate predictions on the
variable of interest. A common regressionmodel takes the following form, as defined by Equation 4.15.

𝑦 = 𝑓(x) + 𝜖 (4.15)

where f(x) defines the underlying regression function that should be estimated, and 𝜖 represents the
noise term with which the dependent variable is distributed around the regression function [74]. Un-
der GPR, it is assumed that the regression function follows a Gaussian Process (GP) prior. This prior
expresses the modelling assumptions and essential features of the function, such as periodicity and the
smoothness of the function [75]. Mathematically, a GP could be expressed as a collection of random
variables indexed by a continuousmultivariate variable x such that any finite selection of random vari-
ables has a multivariate Gaussian distribution. This implies that a GP could be fully expressed by the
mean function 𝑚(x) and the covariance function k(x,x’). While a common regression model aims to
estimate a variable, GPR exploits the regression model to estimate a function. Hence, the mean and
covariance of the GP prior are functions defined by Equation 4.16 and Equation 4.17.

𝑚(x) = 𝔼[𝑓(x)] (4.16)

𝑘 (x,x′) = Cov [𝑓(x), 𝑓 (x′)] (4.17)

The combination of the mean function and the covariance function (or kernel) allows for the represen-
tation of the GP, as defined by Equation 4.18.

𝑓(x) ∼ 𝒢𝒫 (𝑚(x), 𝑘 (x,x′)) (4.18)

Studies that applied GPR often assume the mean function to be zero and the noise term to be drawn
independently from a Gaussian distribution with mean zero and noise variance 𝜎2𝑛 . The combination
of these two assumptions could be used to derive the distribution of the dependent variable y (Equa-
tion 4.19) [76].

𝑦 ∼ 𝒢𝒫 (0, 𝑘 (xi,xj) + 𝜎2𝑛𝛿𝑖𝑗) (4.19)

where 𝑘 (xi,xj) denotes the covariance between two input vectors xi and xj. 𝛿𝑖𝑗 represents the Kro-
necker Delta function that is equal to one when i = j and zero otherwise. The covariance matrix in a GP
with N observations could be expressed as follows:
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𝐾(𝑋, 𝑋) =
⎡
⎢
⎢
⎣

𝑘 (x1,x1) 𝑘 (x1,x2) … 𝑘 (x1,xN)
𝑘 (x2,x1) 𝑘 (x2,x2) 𝑘 (x2,xN)

⋮ ⋱ ⋮ ⋮
𝑘 (xN,x1) 𝑘 (xN,x2) ⋯ 𝑘 (xN,xN)

⎤
⎥
⎥
⎦
+ 𝜎2n 𝐼𝑁 (4.20)

where 𝐼𝑁 represents an identity matrix of size N.

4.5.2. Model selection
The prior information incorporated in this Bayesian technique is entirely captured by the selection of
the covariance/kernel function. These kernels fully determine the shape of the prior and posterior of
the GP. These kernels incorporate assumptions on the function to be estimated by defining the simi-
larity between data points. The similarity between these data points is expected to be a key driver for
the estimation of the target variable as it is assumed that two dependent variables will be similar when
they are observed at similar data points. A distinction is made between stationary and non-stationary
kernels. Stationary kernels only depend on the distance between two data points and do not take into
account the absolute value of these points, while non-stationary kernels do consider the specific values
of the data points [77].

Squared exponential kernel
One of the most commonly adopted kernel function is the stationary squared exponential function as
expressed by Equation 4.21 [78].

𝑘 (xi,xj) = 𝜎𝑓 exp(−
‖xi − xj‖

2𝓁 ) (4.21)

The kernel above is also commonly described as the Radial Basis Function (RBF). This specific kernel
function contains two parameters: 𝜎𝑓 and 𝓁. These parameters are called the hyperparameters of the
GPR model. 𝜎𝑓 defines the amplitude that describes the maximum assigned covariance between two
input vectors, while 𝓁 is the length scale parameter that defines the rate of decay of the covariance as
the distance between the input vectors gets larger. The Euclidean distance | ⋅ | is used as a measure of
similarity between the input vectors. This kernel is infinitely differentiable, which makes the function
rather smooth. Hence, this would be a promising kernel in the application of trajectory predictions,
which could be considered as a smooth function without abrupt changes of the dependent variable,
being either the latitude, longitude or altitude of the aircraft.

Rational quadratic kernel
The rational quadratic kernel could be considered as a mixture of RBF kernels that defines different
characteristic length scales. GP priors that use this kernel are expected to encounter functions that vary
smoothly across different length scales. The rational quadratic kernel is expressed by Equation 4.22
[77].

𝑘 (xi,xj) = 𝜎𝑓 (1 +
‖xi − xj‖
2𝛼𝑙2 )

−𝛼

(4.22)

The rational quadratic kernel includes an additional hyperparameter 𝛼 which is known as the scale
mixture parameter. When 𝛼 approaches large values, the rational quadratic kernel converges to the
squared exponential kernel.

Other kernels
Rasmussen andWilliams [77] describe a multitude of kernel functions that could be used to represent a
large variety of functions. A more rough function could be obtained with the Matérn kernel that incor-
porates an additional hyperparameter that allows for the adjustment of the smoothness of the function.
Other functions might need to represent periodic behaviour which requires the inclusion of a cosine
or sine component in the covariance function. For this purpose, the exponential sine squared kernel
would be more appropriate. To model sudden changes in the behaviour of the function, a combination
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of kernels could be combined to allow for sudden changes. Overall, the squared exponential kernel
and the rational quadratic kernel seem to be the most promising kernels that could be used to recon-
struct a function of the flown trajectory of an aircraft. Both kernels are stationary and provide smooth
functions, and neighbouring input vectors are considered to cause motion in similar directions which
applies to the expression of the aircraft trajectory.

The learning process of GPR comprises the tuning of the hyperparameters, such that the selected pa-
rameters maximise the posterior probability. This is commonly done by maximising the marginal
log-likelihood with respect to the hyperparameters [79]. A gradient-based optimiser could be used
to efficiently find the maximum of the marginal log-likelihood.

4.5.3. Predictions based on Gaussian Process Regression
The objective of the use of GPR is to estimate the value of a function f evaluated at any set of new
inputs x∗. The joint distribution of the observed values y, and the predicted values 𝑦∗ can be expressed
by Equation 4.23 [78].

[ 𝑦𝑦∗ ] ∼ 𝒩 (0, [ 𝐾(𝑋, 𝑋) 𝐾 (𝑋, 𝑋∗)
𝐾 (𝑋∗, 𝑋) 𝐾 (𝑋∗, 𝑋∗) ]) (4.23)

Hence, the posterior predictive distribution of the dependent variable is also a multivariate Gaussian
distribution, given by:

y∗ ∣ 𝑋∗, 𝑋, 𝑓 ∼ 𝒩(𝜇, Σ)
𝜇 = K (X∗,X)K (X,X)−1 f
Σ = K (X∗,X∗) − K (X∗,X)K (X,X)−1 K (X,X∗)

(4.24)

Since GPR follows a Bayesian probabilistic approach, the predictions on particular variables are rep-
resented by a predictive distribution. Usually, the best estimate of the variable is considered as the
mean of this distribution, while the uncertainty of the prediction is associated with the variance of this
particular distribution. The computational complexity of Equation 4.24 arises from the inversion of the
covariance matrix. This grows as 𝒪 (𝑁3) in the number of observations N. Rong et al. [78] applied a
technique called the Cholesky decomposition which reduced the overall computational complexity to
𝒪 (𝑁2). This technique relies on the decomposition of a matrix and is commonly used in linear algebra
to speed up matrix operations.

4.5.4. Applications of Gaussian Process Regression
GPR models have been widely applied to a variety of studies and proved to be a well-suited model
for applications with noisy measurements, such as positional sensor data obtained from moving vehi-
cles. Tran and Firl [80] applied GPR tomodel road traffic situations near intersections by specifying the
vehicle speed in x- and y-direction as two independent Gaussian Processes. The same approach was
followed by Goli et al. [79], who address the problem of long-term position prediction of vehicles in a
road transportation system. A pair of GPR models was constructed to map the two-dimensional posi-
tion vector into the speeds in both directions. These velocities were represented by Gaussian Processes
that were a function of the positional information. The complete model aims to learn motion patterns
from historical trajectories, to eventually predict the future positions of vehicles in a specified environ-
ment. Their study also identified the importance of trajectory clustering to improve the performance
of the trajectory pattern learning performance of the model. Training a GPR model on a subgroup of
trajectories showed better performance in the sense of processing time and prediction results. The tra-
jectories were clustered using the K-means clustering algorithm. Rong et al. [78] used a GP to define a
distribution of the lateral position of a ship along its trajectory. As observational data arrived, the GP
allowed predicting the lateral position conditionally on newly observed data and prior observations.
Both studies described above used the squared exponential covariance function to specify the charac-
teristics of the function to be estimated. Even though GPR has been a popular framework tomodel and
predict vehicle motion [78–80], no literature was found on the prediction of aircraft trajectories using
this technique. However, a few studies have applied the method to predict certain aircraft parameters.
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Naturally, the mass of the aircraft plays a crucial role in aircraft performance and affects a variety of
characteristics, ranging from the flown trajectory to the fuel burn during the flight. The take-off mass of
the aircraft is usually not available, which motivated Chati and Balakrishnan [76] to propose a model
to statistically predict the take-off mass of the aircraft using a GPR model. In another study, Chati
and Balakrishnan [74] examined the performance of the engine of the aircraft by statistically analysing
and modelling the engine fuel flow rate using GPR. The fuel flow rate is an important performance
parameter of the engine, but is commonly proprietary to the airline and thus is not easily accessible
for researchers. Therefore, the proposed model could be helpful to studies that only have limited in-
formation available. The study exploited flight track data to predict the fuel flow rate, and the results
were compared to the deterministic BADAmodel. The GPRmodel showed a significant improvement
in predictive performance with a 50% reduction in the mean error between the true- and predicted
fuel flow rate. Both studies have shown the relevance of the use of GPR to predict parameters, like
the aircraft mass and fuel flow rate, which are usually not publicly available. The estimation of such
parameters, that would otherwise be unknown, could contribute to the more accurate prediction of
aircraft performance and flown trajectories.

The studies outlined above have shown several advantages of the use of GPR models to predict the
motion of a vehicle. GPR has proven to be a powerful, robust technique for regression problems. One
of the major advantages is the non-parametric nature of this technique, in which no underlying as-
sumptions of the functions or independent variables have to be specified. The function to be estimated
could conveniently be specified by onlymaking use of a mean function and covariance function. Other
advantages arise from its applicability to trajectory predictions that are subjected to uncertainties. The
GPRmodel provides good analytical properties by constructing a prediction distribution which allows
for the analysis of the uncertainties of the predictions.

4.6. Review of probabilistic prediction techniques
Using probabilistic prediction techniques rather than deterministicmethods allows for the propagation
of input uncertainty through the model to represent the outputs as a prediction distribution. In aircraft
trajectory predictions, representing the predicted trajectory as a distribution of likely trajectories al-
lows for a more extensive evaluation of prediction uncertainty. This is in contrast to the deterministic
approach that simply computes the most likely trajectory.

Simulation-based techniques, like the Monte Carlo approach, require the input parameters to be speci-
fied as probability density functions. The input parameters are then sampled from their corresponding
distribution, and a deterministic model is solved numerous times to obtain a distribution that rep-
resents the outcome of the deterministic model. Hence, the Monte Carlo approach is only partially
stochastic as it solves a deterministic model for different inputs, where the deterministic model is rep-
resented by the point-mass model of the aircraft. For the purpose of this project, it is required to have
a fully stochastic model that not only includes probabilistic inputs but also the stochastic evolution of
the states of the aircraft throughout the flight. Therefore, Sequential Monte Carlo methods would be
more appropriate.

Sequential Monte Carlo methods, also known as particle filtering, have been widely applied for the
purpose of tracking and predicting the positions of moving objects in a non-linear system. Particle
filters use a selection of particles to represent a distribution of a given stochastic process, where each
particle is assigned to a computedweight representing the likelihood of being drawn from the distribu-
tion. The prediction of states is sequentially updated by propagating these particles. The predictions
are sequentially updated using the last received observation, without the need to reprocess older ob-
servations. The ability of these methods to predict a multitude of states of a non-linear system with
arriving observations sequentially in time show the promising applicability to aircraft trajectory pre-
dictions.

As previously mentioned, the increasing availability of data has provided the opportunity to employ
data-driven techniques that exploit the available data to learn patterns from historical observations.
These patterns are used to compute predictions by using machine learning approaches. In the context
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of uncertainty modelling, the non-parametric Gaussian Process Regression (GPR) has been applied in
a variety of applications. This technique provides several advantages, in contrast to other variants of
regressionmethods. First of all, GPR is non-parametric whichmeans that the underlying function to be
estimated does not have to be defined. Besides, unlike theMonte Carlo simulation-based methods, the
use of GPR does not require the quantification of the distribution of the input variables, which might
be difficult in certain situations. This method is highly flexible and prior knowledge could be included
by specifying the covariance function that describes certain properties of the function to be estimated.

For this project, it has been decided to applyGPR to predict the aircraft trajectories by exploiting histori-
cal data. To improve the performance of themodel, thismethodwill be applied to subsets of trajectories
that are identified from clustering techniques. Furthermore, because of the proven applicability of par-
ticle filtering in trajectory predictions, the particle filtering technique will be applied as a benchmark
model to be used for comparison and validation of the results. Both particle filtering and GPR prop-
agate the uncertainties in the input parameters through the model to eventually compute a predictive
distribution of the predicted trajectories. These distributions are used to evaluate the uncertainty and
accuracy of the models.





5
Research approach

This chapter discusses the main research question of this project and the associated sub-questions. The
project is broken down into three phases and each phase covers certain sub-questions that collectively
contribute to structurally provide an answer to the main research question (Section 5.1). In order to
ensure the feasibility of the project, the research scope is defined by setting a number of limitations and
assumptions (Section 5.2).

5.1. Research questions and project breakdown
Asdescribed inChapter 1, themain objective of this research project is to utilise a probabilistic approach
to predict the four-dimensional trajectory of an aircraft while taking into account the uncertainty that
is associated with the evolution of the flight. While the majority of studies evaluated in the literature
review aim to obtain the most accurate predictions, the use of a probabilistic approach allows for a
more extensive evaluation of the uncertainty of the predictions. This research objective is translated to
the main research question stated below.

”How could stochastic methods be applied to quantify and model the uncertainties associated
with the aircraft 4D‑trajectory prediction, and to what extent do these uncertainties affect the

predictive capability?”

The project is broken down into three different phases to structurally arrive at an answer to the main
research question defined above.

Phase 1: Collection and preparation of data
This first phase concerns the collection of the available data, which originates from different data
sources. Different sources of data should be merged to generate a final dataset that eventually is used
as input to the probabilistic predictive models. This final dataset includes numerous flight trajectories
and other features that describe the state of the aircraft throughout the evolution of the flight. To ef-
fectively train the predictive models on the dataset, the trajectories are clustered in groups that contain
trajectories with similar space and time characteristics. This is an essential step in the preparation of the
final dataset in order to more efficiently train the predictive models. Furthermore, the trajectories are
segmented into different flight phases: climb, cruise, and descent. Other pre-processing tasks might
include: handling missing values, transforming categorical features to numerical values and filtering
outliers. After all data preparation steps, a final dataset is constructed that is used to train the predictive
models. The following sub-questions are relevant during this phase of the project:

1. Which parameters are relevant to the evolution of a 4D-trajectory of an aircraft and thus should
be included as inputs to the predictive model?

(a) Which sources of data could be used to aggregate the trajectory data and how should this
data be pre-processed?
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(b) How could the trajectories be clustered into different groups with similar space- and time
characteristics?

Phase 2: Application of the predictive models
Once the final dataset with the relevant features of the trajectories is constructed, the predictive models
are applied. These models will be applied to the clusters of trajectories identified from the clustering
technique applied during the previous phase. From the literature review, two predictive models have
been selected. The model-based Sequential Monte Carlo method that utilises an aircraft performance
model, and the data-driven Gaussian Process Regression that fully exploits the generated dataset. The
generated dataset will be used to both train and test the predictive models, hence the following sub-
question will be answered throughout this phase:

2. How could the established predictive models be trained, tested, and validated?

Phase 3: Analysis of the results
The probabilistic approaches to the prediction of aircraft trajectories generate a predictive distribution
of possible future trajectories assigned to different probabilities. This probability distribution is used
to evaluate and analyse the uncertainty associated with the predictions. The main goal of this phase
is to evaluate the effects of the input parameters on the predictive capability of the applied models.
These models will be assessed on the accuracy and uncertainty of the predictions. The following sub-
questions play a crucial role in the analysis of the results:

3. How could the predictive capability be quantified?

4. Which parametric uncertainties have the greatest effect on the predictive capability of the 4D-
trajectory of the aircraft?

5. How does the predictive capability evolve for increasing look-ahead times?

A visual representation of the breakdown of the project into the three described phases is shown in
Figure 5.1.

Phase 3: Analysis of resultsPhase 2: Model developmentPhase 1: Collection and preparation of data
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Figure 5.1: Breakdown of the project into three phases

5.2. Research scope
Now that the research objective and framework has been established, further demarcation of the project
is done by defining the research scope. In order to ensure the feasibility of the project, several assump-
tions and limitations of the project are introduced. The scope of this research project ensures that the
project is feasible to be carried out in the given time span. Furthermore, the available processing ca-
pacity is taken into account when considering the amounts of data to be included.
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The time span of this project is approximately seven months, and the work is broken down into three
phases as discussed above. First of all, ADS-B data, aircraft intent data (obtained from filed flight
plans), and meteorological data are merged together to generate an initial dataset that is used to train
the predictive models. The data from flight plans were only available for a selection of months, and
the most recent month of data (June 2018) was used for this project. Hence, the initial dataset covers
flights operated in this particular month. An extensive description of the utilised sets of data and the
generation of the initial dataset is found in Chapter 6.

The predictions focus on single trajectories and will neglect the interaction between different aircraft in
the airspace. Hence, the detection and resolution of potential conflicts is not considered in this research
project. Besides, the prediction of trajectories is segmented into different flight phases: climb, cruise,
and descent.

As mentioned previously, two different probabilistic prediction methods will be applied: the model-
based SMC and the data-driven GPR. Different variants to the GPR could be applied in which the
co-variance/kernel functions could be selected.





6
Data collection and preparation

This chapter elaborates on the first phase of the project that involves the collection and preparation
of the data. This results in a final dataset that is used in subsequent phases of the project to develop
the predictive models. Initially, the collection of data, originating from different sources, is described
(Section 6.1). Then, the steps performed to couple the available datasets are described (Section 6.2).
Subsequently, the preparation of the final dataset is discussed, which involves activities like data clean-
ing, interpolating variables, appending features (Section 6.3). An overview of the final dataset and the
exploration of the dataset is provided in Section 6.4. Ultimately, the application of the clustering algo-
rithm to identify subsets of clusters with similar spatial characteristics is discussed (Section 6.5).

6.1. Available datasets
The literature review highlighted that the prediction of an aircraft trajectory is usually performed with
threemain building blocks. Themodel-based approach uses an aircraft performancemodel to simulate
the evolution of the flight. Besides, the aircraft intent and the meteorological conditions are significant
factors that should be considered to accurately predict the aircraft trajectories. This section explores
the different sources of data that were used to construct a final dataset to be used for the development
of the predictive models.

6.1.1. Trajectory data from ADS-B
The trajectory data is obtained from ADS-B datasets. ADS-B data is automatically transmitted by the
aircraft to surrounded ground stations and provides information concerning the state of the aircraft in
terms of position and speed. The flown trajectory of the aircraft could be reconstructed by sequencing
the position updates over time. Table 6.1 provides an overview of the features included in the ADS-B
flight data.

Table 6.1: Features of the ADS-B dataset

Variable Unit

Unix timestamp s
ICAO -
Latitude deg
Longitude deg
Altitude ft
Ground speed kts
Track deg
Rate of Climb ft/min
Callsign -
Flight ID -
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The Flight ID specified in Table 6.1 is a unique code linked to each flight. A previous research project
has applied the DBSCAN clustering technique to extract continuous flights from the ADS-B dataset
and assign the unique codes to the identified trajectories [34]. The ADS-B dataset of June 2018 includes
a total of 253431 (partial) trajectories, which corresponds to an average of around 8448 daily flights.

Figure 6.1 visualises hundred partial flight tracks from the ADS-B dataset. These tracks were recon-
structed from the ADS-B data by ordering the positions of the flight sequentially over time. As could
be observed, the data covers the flight paths in and around the Flight Information Region (FIR) of the
Dutch airspace.

Figure 6.1: Data coverage of a sample of hundred trajectories flown on 01-06-2018

6.1.2. Aircraft intent data from filed flight plans
The flight plan data, released by Eurocontrol, are used to express the aircraft intent which is imple-
mented in the predictions of the aircraft trajectories. Eurocontrol releases different sets of flight data
for Research and Development purposes. These data originate from filed flight plans (FP) that are sub-
mitted by the aircraft operator that executes flights in and over Europe. All flights operating under
Instrument Flight Rules (IFR) are required to submit an FP to the Network Manager (NM) of EURO-
CONTROL. The available data is distributed over different datasets. An overview of the datasets used
throughout this project is found in Figure 6.2.

Figure 6.2: Overview of datasets from Eurocontrol

The flights file includes flight details from the FPs. These details comprise, among others, departure-
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and arrival airport information, actual- and filed arrival times, requested flight level, market segments
(e.g. cargo, low-cost operations), and aircraft-specific information like the registration and type of the
aircraft. The most important dataset used is the filed flight points dataset, which comprises a sequence
of waypoints filed by the aircraft operator that defines the planned flight path of the aircraft for its
flight. Table 6.2 below describes the variables found in this dataset.

Table 6.2: Features of the flight points dataset

Variable Unit Description

ECTRL ID - Unique numeric identifier for each flight
Sequence number - Number of the waypoint crossed by the flight (in chronological order)
Time Over - Time at which waypoint is crossed
Flight Level 100 ft Altitude in flight levels of waypoint
Latitude deg Latitude of waypoint
Longitude deg Longitude of waypoint

As shown in Figure 6.2, the flight plan data provided by Eurocontrol contain both the filed waypoints
as well as the actual waypoints, where the actual version of the data contains updates of the flown
flight path from radar observations.

6.1.3. Meteorological data from ERA5
Themeteorological data were downloaded from the ERA5 database from ECMWF. This dataset is pub-
licly available and provides hourly estimations of a large variety ofmeteorological variables. The ERA5
dataset stores these variables with a spatial resolution of 30 km over 37 different pressure levels rang-
ing from the Earth’s surface to an altitude of 80 km. The pressure (P) at different levels was converted
to altitude in feet with Equation 6.1 presented below1.

ℎ𝑎𝑙𝑡 = (1 − (
𝑃

1013.25)
0.190284

) × 145366.45 (6.1)

Generally, cruise altitudes of commercial airlines will not exceed 45000 ft. Hence, a total of 26 pressure
levels higher than 125 hPa were selected. Even though the data is available on an hourly basis, it
was decided to only select observations every two hours to limit the dataset dimensions and reduce
the required processing capacity. Since the available ADS-B data covers a sub-region of Europe, the
extraction of meteorological data is also limited to this region with longitudes ranging from -10 to 30
degrees and latitudes ranging from 30 to 70 degrees. These boundaries ensure that all flights from the
ADS-B data are covered and could be aggregated with the selected meteorological parameters. The
selected longitudes and latitudes results, with the given spatial resolution, in a horizontal grid of 161
by 161 locations where the parameters of interest are measured. Table 6.3 provides an overview and
explanation of the selected meteorological parameters extracted from the ERA5 dataset.

Table 6.3: Features of the ERA5 dataset

Variable Unit Description

U-component of wind m/s Eastward horizontal component of the wind (positive when mov-
ing towards the east)

V-component of wind m/s Northward horizontal component of thewind (positivewhenmov-
ing towards the north)

Vertical velocity Pa/s Speed of air motion in upward or downward direction (positive
values indicate downward motion)

Temperature K Temperature in the atmosphere

Reanalysis data were extracted from the ERA5 database. The reanalysis combines previous weather
forecasts with newly available observations to produce an optimal estimate of the atmosphere’s state.
1https://www.weather.gov/media/epz/wxcalc/pressureAltitude.pdf

https://www.weather.gov/media/epz/wxcalc/pressureAltitude.pdf
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ERA5 also provides uncertainty estimations at a lower spatial- and temporal resolution. This uncer-
tainty estimate is sampled by a 10-member ensemble. The 10-member ensemble will not be included in
the predictive analysis as this would significantly increase the required processing capacity. However,
the data could be included for the analysis of individual flights in order to explore the effect on the
predictive analysis.

The data extracted from the ERA5 database is formatted in grids of latitudes and longitudes for each
selected pressure level and timestamp. Hence, four dimensions should be taken into account to gener-
ate interpolation models to link the meteorological data to the ADS-B data. This process is discussed
in the subsequent section.

6.2. Coupling data sources
As discussed in the previous sections, various sources of data are used to eventually construct a final
dataset that will be used for predictivemodelling purposes. In order tomerge different sources of data,
several steps have to be performed. Most importantly, common features between datasets should be
explored to identify possibilities to link the datasets together.

6.2.1. Merging the flight plan data with the ADS-B data
In order to merge the flight plan data to the ADS-B data, common features in both datasets should be
explored to link both datasets. For this purpose, the ICAO code that uniquely identifies a particular
aircraft was used in combination with a rounded timestamp of the data point from the ADS-B dataset
and the actual flight points from Eurocontrol. In both datasets, the timestamp of the particular obser-
vation was rounded to the nearest 10-minute mark. When these features are used, the unique code
that Eurocontrol assigns to each flight (ECTRL ID) could be added to the ADS-B data. The inclusion of
this feature allows for the addition of valuable flight-specific information from the flight plans to the
ADS-B dataset.

In order to implement the aircraft intent in the final dataset, the next three waypoints from the filed
flight plans will be assigned to each observation from the ADS-B dataset. These next three waypoints
indicate the expected trajectory of the aircraft, as it provides positional information with respect to the
planned trajectory.

Selecting the next three waypoints
The selection of the following threewaypoints for a given observation in theADS-Bdatawas performed
by initially identifying a feature of the dataset that expresses the progress of the flight. For this purpose,
the great circle distance between the position of the aircraft and the position of the departure airport
was used. The larger this distance, the further the flight has progressed in its trajectory. This distance
was computed for both the ADS-B data as well as the flight plan data, such that each observation
and each waypoint includes the corresponding distance from the departure airport. This distance was
computed using the Haversine equation, which calculates the great-circle distance between two points
on a sphere. By comparing the distance from the departure airport of the ADS-B observation, the
corresponding followingwaypoints could be selected from the flight plan. An example is shownbelow,
where Table 6.4 provides a sample observation from the ADS-B dataset in which the position of the
aircraft is displayed together with the distance from the departure airport at a given timestamp.

Table 6.4: Sample observation from ADS-B dataset

Timestamp Latitude Longitude Altitude Distance

2018-06-29 00:58:38 53.6445 10.6517 35000 4863.67

The observation from the ADS-B dataset in Table 6.4 could be supplemented with the data from the
filed flight plans by considering the distance from the departure airport and select the appropriate
waypoints from the flight plan. A sample flight plan that concerns the particular flight from the ADS-
B data described above is shown in Table 6.5.
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Table 6.5: Sample of a filed flight plan

Sequence number Time Over Latitude Longitude Flight Level Distance

127 2018-06-29 00:39:16 54.3056 11.0053 350 4798.22
128 2018-06-29 00:45:39 53.6095 10.0664 320 4851.57
129 2018-06-29 00:52:08 52.8817 9.1275 320 4906.75
130 2018-06-29 00:58:53 52.1214 8.18861 320 4963.84
131 2018-06-29 01:05:49 51.3261 7.24945 320 5022.99

When comparing the distance from theADS-B data to the distance column from the plannedwaypoints
in the filed flight plan, it could be observed that the next planned waypoint should be assigned to the
waypoint with sequence number 129. Hence, the observation from Table 6.4 would be supplemented
with the information related to the next three waypoints, being waypoints 129, 130, and 131. This
means that, according to the planned waypoints, the aircraft is expected to decrease to a lower flight
level while travelling in a southwesterly direction (indicated by the decreasing longitude and latitude).

The distance from departure airport was selected as it would most optimally assign the next three ex-
pectedwaypoints in case the actual flight would be diverted or delayed. Using the cumulative distance
flown, rather than the distance from departure airport, would potentially allocate incorrect future way-
points in case of divergences as more/less distance might be covered by the flight than anticipated by
the flight plan. Besides, if the timestamp would be used to select the next waypoint in the example
above, the next waypoint would have been waypoint 130. This means that certain waypoints, that
have not been traversed yet, would be skipped.

Each observation from the ADS-B dataset is supplemented with information related to the following
three waypoints. Each waypoint includes the three spatial components (altitude, longitude, latitude)
and a time component. The time component (𝑡𝑤𝑝) was set to the difference between the time since
planned take-off and the time since actual take-off as shown by Equation 6.2.

𝑡𝑤𝑝 = 𝑇𝑝𝑙𝑎𝑛𝑛𝑒𝑑 − 𝑇𝑎𝑐𝑡𝑢𝑎𝑙 (6.2)

where 𝑇𝑝𝑙𝑎𝑛𝑛𝑒𝑑 represents the total flight time since take-off obtained from the filed flight plan, whereas
𝑇𝑎𝑐𝑡𝑢𝑎𝑙 defines the actual flight time since take-off extracted by subtracting the actual take-off time
from the timestamp component of the ADS-B dataset. This parameter would indicate how the actual
trajectory, reconstructed from the ADS-B data, temporally aligns with the waypoints from the flight
plan. A negative time component (𝑡𝑤𝑝) indicates that the actual flight took more time to reach the
particular waypoint than anticipated by the FP.

6.2.2. Merging themeteorological data with the ADS-B data
The parameters from the ERA5 dataset are obtained in horizontal grids, where the region of interest
is divided into 161 latitudes and 161 longitudes. It is assumed that the parameters of interest behave
linearly in both the spatial and temporal domain. Therefore, four-dimensional linear interpolation
models were generated to be able to fit the ERA5 data to the observations from the ADS-B dataset.

6.3. Preparation of the dataset
Once all data sources are merged into one dataset, further preparation steps are required in order to
finalise this set of data. These steps include the filtering of data, treatment of outliers, treating missing
values, adding other relevant features to the dataset, and converting categorical data to numeric data
that could be processed by the predictive models.

6.3.1. Filtering the dataset
The constructed dataset was filtered in order to obtain a reliable, concise dataset. First of all, flight
trajectories with less than 30 data points were disregarded from the dataset. Flights should have a
sufficient number of data points to effectively train the predictive models and apply the clustering
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algorithms to detect spatial and temporal similarities between different trajectories. Furthermore, in-
complete observations where various features were missing were removed from the dataset as they
could not provide any additional value to the analysis.

6.3.2. Flight phase computation
The predictive analysis will focus on individual segments of the flights. Therefore, the flight data
should be segmented into different flight phases, being level, climb, cruise, or descent. To distinguish
these different flight phases from the partial trajectories of the ADS-B data, a Python library developed
by Sun et al.[34] was applied. This library includes several functions, where one of them applies fuzzy
logic methods to segment (partial) trajectories into different flight phases by using three input param-
eters: rate of climb, altitude, and ground speed. Fuzzy logic is applied to compute the probability
of each phase, and the most probable phase is assigned to the time-series data. Before applying this
function, the relevant parameters had to be interpolated in order to compute the missing values in the
original ADS-B dataset. For this purpose, linear interpolation over time was used.

6.3.3. Adding features to the dataset
Asmentioned in the previous section, certain features had to be added to the datasets in order to be able
to couple the various datasets to each other. The time since take-off was added to couple the FP data to
the ADS-B data. Besides, in order to compute the distance from the departure airport, the geographical
position of the departure airport was added. Next to the addition of these variables, the categorical
variables from the dataset were converted to numerical features which is required for the application
of the predictive models. One-hot encoding was applied to convert the aircraft type and the aircraft
operator to numeric, binary variables. This machine learning process requires the definition of certain
features that contribute to the classification of the categorical variable. Subsequently, one-hot encoding
assigns either a 1 or 0 to the selected feature to indicate whether it applies to the categorical variable of
interest. The aircraft types were categorised based on their ICAO Wake Turbulence Category (WTC),
which is dependent on the maximum certified take-off mass as described by Table 6.6 below. The mass
of the aircraft plays a significant role in the evolution of an aircraft trajectory, as it directly impacts the
performance parameters of the aircraft like the climb- and cruise speed.

Table 6.6: Categorising aircraft types by their Wake Turbulence Category (WTC)

Maximum certified take‑off mass WTC

≥ 136.000 kg Heavy (H)
>7.000 kg, <136.000 kg Medium (M)
≤ 7.000 kg Light (L)

The aircraft operator, being the airline that operates the flight, is classified based on their type of oper-
ation which is represented by the market segment that the airline operates in. A total of five different
market segments are defined by the flights file from the Eurocontrol flight plan data:

• All-cargo

• Business aviation

• Unscheduled (e.g. charter)

• Low-cost

• Traditional scheduled

An individual trajectory from one airport to the othermight be flownwith different speed- and altitude
profiles preferred among different airlines. These variations in speed- and altitude profilesmight result
from varying cost indices set by the operator of the aircraft. This cost index represent the ratio of fuel
costs to all other costs associated to the operation of the flight. A lower cost index results in lower
speeds, and generally increased cruise altitudes. These cost indices, however, are not publicly available
and might still vary between flights operated by the same airline. In order to differentiate among
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different airlines, the segmentation of the market was selected to classify the type of operations of the
airlines.

6.4. Overview of final dataset
Figure 6.4 below provides a schematic overview of the process concerning the construction of the final
dataset from four different sources of data. ADS-B data was used to reconstruct the trajectories and
includes the evolution of relevant state variables of the aircraft over the progression of the flight. Sec-
ondly, the aircraft intent is expressed in the dataset by including the next three waypoints from the
filed flight plans prior to the flight. Each waypoint is represented by a three-dimensional position in a
Cartesian reference frame together with a temporal component representing the difference in time be-
tween the actual flight and the flight plan when crossing a particular waypoint. Further flight-specific
information is extracted from the flights database obtained from Eurocontrol. Ultimately, the meteo-
rological parameters, obtained from the ERA5 database, were added to the dataset by using a linear
interpolation model.
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Trajectory 
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Figure 6.3: Process flow of the construction of the final dataset

The final dataset includes different features that are used to train the predictive models. Part of the
data is used to enrich the trajectory data, such that each point of the trajectory contains enhanced in-
formation. The dataset also includes more general information that is applicable to the trajectory in its
entirety, such as the type of aircraft, airline, market segment, and departure- and arrival airport. An
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overview of the features included in the final dataset is shown in Table 6.7.

Table 6.7: Features of the final dataset

Feature Unit

ECTRL ID Eurocontrol
Timestamp ADS-B
Time since take-off Eurocontrol
Latitude ADS-B
Longitude ADS-B
Altitude ADS-B
Ground speed ADS-B
Track ADS-B
Rate of Climb ADS-B
Wind velocity (u) ERA5
Wind velocity (v) ERA5
Vertical wind velocity ERA5
Temperature ERA5
Waypoint Latitude Eurocontrol
Waypoint Longitude Eurocontrol
Waypoint Altitude Eurocontrol
Waypoint Time Eurocontrol
Flight phase Generated
Aircraft type Aircraft database
Airline Eurocontrol
Market segment Eurocontrol
Wake Turbulence Category ICAO
Departure airport Eurocontrol
Arrival airport Eurocontrol
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The final dataset comprises a total of 154827 (partial) trajectories, which are evenly distributed over
the weeks of the month of June 2018. A total of 7667 different flight legs was observed. The figures
below depict the most frequent occurrences of departure and arrival airports. As the ADS-B dataset
includes flights centred around the Dutch airspace, the most frequently occurring airport is Schiphol
Amsterdam, which takes the most significant part of the dataset. However, the flight legs between
Frankfurt and London Heathrow were observed most frequently.
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Figure 6.4: Ten most frequent occurrences of departure- (left) and arrival (right) airports

The ADS-B dataset was aggregated with the aircraft type and airline obtained from a separate dataset.
Figure 6.5 visualises the ten most common airlines and aircraft types found in the final dataset. Many
of the flights are operated by the low-cost airlines Ryanair and Easyjet, while full-service carriers like
British Airways and KLM also have a significant share in the dataset. As could be observed, the vast
majority of flights is operated by narrow-body aircraft types like the B737-800, A320, and the A319.
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As mentioned, the trajectories have been segmented based on the flight phase. As could be observed
from Figure 6.6, the majority of the observations in the final dataset concerns either the climbing or
cruising phase of the flight.
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Figure 6.6: Flight phase segmentation of trajectories
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6.5. Clustering trajectories
The final dataset includes a variety of features that describe the trajectory of the aircraft. The final step
before exploiting the dataset to develop the predictive models is to cluster the trajectories. The clus-
tering of trajectories contributes to the identification of subsets of trajectories that have similar spatial
patterns. The predictive models could be developed more efficiently based on these subsets of data,
since the historical patterns found in the trajectories might vary among different types of trajectories.
Hence, the predictive models will be trained based on each cluster of trajectories that show similar
patterns. The clustering of trajectories will be performed by using the DBSCAN algorithm, which is
able to identify clusters with varying densities and different shapes. Furthermore, DBSCAN is able to
identify outliers, which do not belong to a particular cluster. In this section, the DBSCAN algorithm
will be trained using one week of data. This subset of data is expected to be sufficient as it includes a
sufficient number of trajectories. Furthermore, the spatial characteristics of trajectories is not expected
to vary over different weeks of the month of available data. The results of the DBSCAN application
will be evaluated by visually inspecting the clustered trajectories.

In order to apply the DBSCAN algorithm, each trajectory should be expressed by a number of features.
The trajectories will be grouped based on their spatial similarities, thus the features included in the
clustering algorithm define the three-dimensional position of the aircraft (latitude, longitude, and al-
titude). The latitude and longitude are converted to a Cartesian reference frame in order to have all
variables on a linear scale. This conversion resulted in x and y coordinates expressed in metres relative
to a random origin. Furthermore, each trajectory should be of equal length, which requires all trajec-
tories to be resampled into the same number of data points. Each trajectory has been divided into 30
intervals, where the mean of the three-dimensional position was taken as the particular datapoint. The
resampled trajectories are formed from the Eurocontrol dataset that includes the actual flight points
of the flown trajectory. Unlike the created final dataset, that includes trajectories reconstructed from
ADS-B data, the actual flight points cover the entire trajectory from departure airport to arrival airport.
Eventually, each trajectory is represented by an array of 90 features, which represents the position of
the aircraft over 30 subsequent points in time. These data points are equally spaced over the time span
of the data coverage. An example of trajectory data input is shown below.

𝑇𝑖 = [𝑥(1)𝑖 ⋯𝑥(30)𝑖 , 𝑦(1)𝑖 ⋯𝑦(30)𝑖 , 𝑎𝑙𝑡(1)𝑖 ⋯𝑎𝑙𝑡(30)𝑖 ]

In order to transfer all variables to the same range, the features are normalised using the Min-Max
normalisation formula expressed by Equation 6.3 below. This normalisation converts the feature x to
a normalised variable x’ in the range 0-1.

𝑥′ = 𝑥 −min(𝑥)
max(𝑥) −min(𝑥) (6.3)

In order to distinguish trajectories from each other, a distance metric should be introduced such that
trajectories with similar spatial characteristics are clustered into the same subset. A broad variety of
distance metrics exist and for this purpose the Chebyshev distance will be used. The Chebyshev dis-
tance is equal to the maximum difference between elements of two arrays. Element-wise comparison
between two arrays is used to compute the absolute difference between the arrays, and the maximum
of these differences is then defined as the Chebyshev distance. Mathematically, the Chebyshev distance
(𝐷Chebyshev ) between two trajectories 𝑇1 and 𝑇2 is expressed by Equation 6.4.

𝐷Chebyshev (𝑇1, 𝑇2) =max
𝑖
(|𝑇(𝑖)1 − 𝑇(𝑖)2 |) (6.4)

6.5.1. Application of DBSCAN to an initial subset of the data
In order to evaluate the performance of the DBSCAN application, an initial subset of the data is used
to train and evaluate the algorithm. This initial subset comprises flights either departing or arriving
at Amsterdam (EHAM), London Heathrow (EGLL), or Paris (LFPG). This dataset only comprises 387
different flights and could be used as a sample set to effectively evaluate the application of the algo-
rithm. Apart from the selection of an appropriate distance metric, DBSCAN requires two additional
parameters to be selected discussed in Section 2.2.2: MinPts and eps (𝜖). MinPts specifies theminimum
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number of trajectories that could form a cluster. Setting this parameter too small will result in many
clusters, that could potentially include outliers that should not be assigned to a cluster. On the con-
trary, increasing this parameter would decrease the number of clusters formed by the algorithm. The
selection of the MinPts parameter is an iterative process that is adjusted based on visual inspection of
the clustering results as well as the evaluation of clustering performance metrics. Initially, MinPts is
set to 15 trajectories, indicating that each identified cluster includes at least 15 flights.

The optimum value of eps is found by computing the average distance to the nearest k points for each
point. The computed distances are sorted in ascending order and the results are plotted over all data
points [81]. In this procedure, k is set to the MinPts parameter as defined above (MinPts = 15). Figure
6.7 depicts the average computed distance to the 15 nearest trajectories for each trajectory. The optimal
value for epsilon is found in the region of greatest curvature, where the most profound difference is
found when increasing epsilon. As could be observed from Figure 6.7, this effect is observed around
an epsilon of 0.2. The DBSCAN algorithm will be applied for various values of epsilon in the range
between 0.1 and 0.4.
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Figure 6.7: Average distance of Nearest Neighbours to determine optimal value for epsilon

Epsilon values will be varied ranging from 0.1 to 0.4 in steps of 0.02. Besides, the MinPts variable will
be varied from 4 to 50 in steps of 2. The clustering performance will be evaluated by computing the
Silhouette score. This score is commonly used to evaluate the performance of a clustering algorithm
when the ground truth remains unknown. The Silhouette score is used as a measure to define how
similar a clustered object is to its assigned cluster compared to other clusters. The Silhouette score of
trajectory i 𝑆𝑖 is computed using Equation 6.5.

𝑆𝑖 =
𝑏𝑖 − 𝑎𝑖

Max (𝑎𝑖 , 𝑏𝑖)
(6.5)

where 𝑎𝑖 expresses the mean intra-cluster distance, and 𝑏𝑖 the mean nearest-cluster distance. Hence,
𝑎𝑖 is a measure of similarity of the clustered object to its assigned cluster, while 𝑏𝑖 is a measure of sim-
ilarity to the nearest other cluster that the object is not a part of. The Silhouette score ranges from -1 to
1, where a higher score indicates better clustering performance.

The Silhouette score was computed for a variety of different combinations of the two DBSCAN param-
eters. Besides, the percentage of trajectories assigned as noise was computed, and the total number of
clusters was computed. The results, for epsilon values of 0.16, 0.20, and 0.24 respectively, are shown in
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Figure 6.8. An epsilon of 0.16 shows the worst performance with a relatively low Silhouette score com-
pared to the other results. Besides, many of the trajectories are assigned as noise as could be observed
from the percentage of outliers that increases steadily to approximately 80% as MinPts increases.
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Figure 6.8: Evaluation of DBSCAN clustering performance for various parameter
configurations

Based on the results described above, and a visual inspection of the clustered trajectories, the epsilon
value was set to 0.24, while MinPts was set to 10. This indicates that each cluster includes at least 10
trajectories. Figure 6.9 shows the resulting clusters obtained from the DBSCAN application with the
specified parameters. A total of five clusters were identified. This includes a cluster of trajectories
that are assigned as noise, which are labelled to -1. It could be observed that the clusters clearly link
the three different airports from the dataset. Besides, the clustering algorithm is able to distinguish
trajectories that follow the same track in opposite directions.
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Figure 6.9: Visualisation of clustered trajectories obtained from DBSCAN application to flights
operating from and to Amsterdam, London Heathrow, and Paris
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6.5.2. Application of DBSCAN to final dataset
The previous section applied the DBSCAN clustering algorithm to a small subset of the data in order
to evaluate the performance of the algorithm applied to the available data. The same procedure of
parameter configuration is applied to the final dataset in order to cluster all trajectories. The model is
trained on trajectories operated during the first week of June 2018, which includes 34201 flights. Once
again, the optimum value for epsilon was found to be approximately 0.2. Figure 6.11 below shows
a snippet of the clustering performance for various parameter configurations, where epsilon is set to
0.15, 0.25, and 0.35 respectively. Since the dataset comprises more flights, the MinPts should be set to
a larger value in order to obtain relevant clusters with sufficient flights in it. When both epsilon and
MinPts are assigned to relatively low values, the number of identified clusters increases up to around
25 clusters. The number of identified clusters decreases as the MinPts parameter is increased.
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Figure 6.10: Evaluation of DBSCAN clustering performance for various parameter
configurations on one week of flight data
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Eventually, epsilon was set to 0.30 and MinPts was set to 40. The performance of the clustering al-
gorithm was also tested for larger values of MinPts, but this would not improve the performance of
the algorithm nor change the number of identified clusters. The selected configuration of parame-
ters resulted in five different clusters, including the cluster of noisy trajectories. A visualisation of
the clustered trajectories is shown in Figure 6.11 below. The clustering algorithm clearly distinguishes
trajectories operating in four different directions. Trajectories clustered as noise are labelled to -1.

Clusters
0
-1
1
2
3

Figure 6.11: Visualisation of clustered trajectories obtained from DBSCAN application





7
Model development and analysis

This chapter outlines the upcoming phases of the project. The second phase of the project concerns
the development of the predictive models by using the final dataset constructed in the previous phase
(Section 7.1). Different experiments will be conducted, where each experiment uses a different subset
of the constructed dataset (Section 7.2). The trained models will be applied and the predictive capabil-
ity will be evaluated in terms of the predictive accuracy and uncertainty. The analysis aims to identify
the effects of including different sets of data on the predictive capability of the models. The results of
both models will be compared (Section 7.3).

7.1. Development of predictivemodels
The final dataset is constructed and different subsets of trajectories are classified according to the ap-
plied clustering algorithm. The predictive models will be trained using these subsets of trajectories
in order to efficiently construct a model for each cluster of trajectories. If the initial clustering results
seem to be inefficient to train the models, subsequent clustering steps could be applied to further dis-
tinguish different trajectories. Subsequent clustering could be based upon the filtering of flights on
their departure- or arrival airport. As mentioned, two different probabilistic prediction techniques
will be applied: the model-based Sequential Monte Carlo (SMC)method and the data-driven Gaussian
Process Regression (GPR). The purpose of the application of these models is to derive a probabilistic
distribution of predicted trajectories. This probabilistic approach allows for the quantification of the
uncertainty of the predicted trajectories.

Bothmodels will be trained by using the constructed final dataset as described in Section 6.4. However,
while the GPR model will include all features of the dataset, the SMC model will only incorporate a
subset of ADS-B data that is used as input to the particle filter to update the weights of the particles.
To evaluate the predictive models, part of the data should be used as training data while the other
part should be used to test the trained model onto data that has not been used for the development
of the models. A common way of testing predictive models is by splitting the entire dataset into a
training set and a test set. The main disadvantage of this technique is that the trained model might
be over-fitted to the training data. When the training dataset does not accurately represent the entire
dataset, themodel might perform poorly on other data from the testing dataset. To overcome this prob-
lem, cross-validation techniques could be applied. This method subdivides the dataset into k different
folds. Then, the model is trained using k-1 subsets, and the remaining set is used to test the model.
This procedure is performed for each of the subsets. In this case, all data is used both for training and
testing the predictive models.

Since it is expected that the uncertainty in the predictions would vary among different phases, the
models will be trained on datasets that have been filtered on the corresponding flight phase. Overall,
the cruise phase is expected to be the most predictable phase of the flight, as the aircraft commonly
travels with a fairly constant speed without any variation in altitude. The descent and climb phases
are less straightforward and the lack of detailed aircraft intent in terms of the climb- or descent profiles
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are likely to increase the predictive errors during these phases. Initially, the models will be trained on
trajectories of aircraft in the cruise phase. Subsequently, the models will be trained on the other phases
as well.

7.2. Model experiments
As mentioned, the SMC model will use part of the ADS-B data as observations that are used as input
to the particle filter. This model will act as the baseline model and the outcomes of the GPRmodel will
be compared to the SMCmodel. A variety of experiments will be conducted in which different subsets
of data are used to train and fit a GPRmodel to a cluster of trajectories. Table 7.1 provides an overview
of four different experiments that use different subsets of data to train these models.

Table 7.1: Overview of experiments with varying sets of training data to develop GPR models

Experiment Training data

1 ADS-B only
2 ADS-B and Flight Plans
3 ADS-B and ERA5
4 ADS-B and Flight Plans and ERA5

Depending on the available time and the progress of the research project, the experiments could be
further specified on the parameter level. For example, the experimentwithADS-B data could be further
specified by only selecting certain parameters from the ADS-B database in order to identify the effects
of including particular parameters.

7.3. Analysis of results
In order to answer the main research question of this project, the predictive capability of both models
should be assessed. The predictive capability is defined by two different performance metrics: the
predictive accuracy and the predictive uncertainty. The accuracy is defined by measuring the spatial
and temporal errors of the predictions. In order to measure the accuracy, the mean of the predictive
distribution is considered as the most likely trajectory and this prediction is compared to the known
ground truth obtained from the reconstructed trajectories from the ADS-B dataset. The focus of this
project lies on the assessment of the predictive uncertainty. This uncertainty is specified by comput-
ing the standard deviation of the predictive distribution. Subsequently, this standard deviation could
be used to derive a 95%-confidence interval of the predictions. The larger the standard deviation, the
larger the spread of the predictions, which is an indication of increased predictive uncertainty.

Both the accuracy and the uncertainty are measured for varying look-ahead times in order to identify
the effects of increasing the prediction horizon on the predictive capability. Furthermore, a sensitiv-
ity analysis will be performed to identify the effects on the predictive capability of including different
subsets of data as input parameters to the models.
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Planning

The initial phase of the project, concerning the collection and preparation of data, has been finished.
The constructed final dataset is used in the subsequent phases to train the predictive models and to
evaluate the outcomes of the models by testing them on subsets of the data. Figure 8.1 provides the
Gantt chart of the project, which includes a variety of tasks to be performed throughout the different
phases of the project. The development of the predictivemodels has a planned duration of eight weeks,
and the final phase that involves the evaluation and testing of the models will endure until the end of
the project. Alongside the development and testing of the predictive models, the documentation of all
steps is performed that results in the final deliverable being the research paper. This research paper is
expected to be completed by the end of week 25 in June 2021.

Week number 46 47 48 49 50 51 52 53 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Collect ADS-B data
Collect Meteorological data
Collect Flight Plan data
Clean the ADS-B data and construct final ADS-B dataset
Merge Flight Plan data with ADS-B dataset
Process Meteorological data and merge with ADS-B
Principal Component Analysis 
Finalise dataset
Document data preparation steps 

Develop Sequential Monte Carlo model
Develop Gaussian Process Regression model
Validate models
Document model development 

Test the predictive models
Compute performance metrics
Model comparison
Validation and verification
Document analysis of results
Finalise research paper draft
Finalise final research paper

Meetings
Progress meetings (biweekly)
Kick-off meeting
Mid-term meeting
Green light meeting

Holidays
Christmas Break

Phase 1: Data preparation

December

Phase 2: Model development

Phase 3: Analysis of results

JuneJanuary February March April MayThesis Project Planning - R. Graas

Preliminary report Draft paper Final paper

Figure 8.1: Project planning
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