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Aims Risk assessment tools are needed for timely identification of patients with heart failure (HF) with reduced ejection fraction (HFrEF) 
who are at high risk of adverse events. In this study, we aim to derive a small set out of 4210 repeatedly measured proteins, which, 
along with clinical characteristics and established biomarkers, carry optimal prognostic capacity for adverse events, in patients with 
HFrEF.

Methods 
and results

In 382 patients, we performed repeated blood sampling (median follow-up: 2.1 years) and applied an aptamer-based multiplex 
proteomic approach. We used machine learning to select the optimal set of predictors for the primary endpoint (PEP: com
posite of cardiovascular death, heart transplantation, left ventricular assist device implantation, and HF hospitalization). The 
association between repeated measures of selected proteins and PEP was investigated by multivariable joint models. Internal 
validation (cross-validated c-index) and external validation (Henry Ford HF PharmacoGenomic Registry cohort) were per
formed. Nine proteins were selected in addition to the MAGGIC risk score, N-terminal pro-hormone B-type natriuretic pep
tide, and troponin T: suppression of tumourigenicity 2, tryptophanyl-tRNA synthetase cytoplasmic, histone H2A Type 3, 
angiotensinogen, deltex-1, thrombospondin-4, ADAMTS-like protein 2, anthrax toxin receptor 1, and cathepsin D. N-terminal 
pro-hormone B-type natriuretic peptide and angiotensinogen showed the strongest associations [hazard ratio (95% confidence 
interval): 1.96 (1.17–3.40) and 0.66 (0.49–0.88), respectively]. The multivariable model yielded a c-index of 0.85 upon internal 
validation and c-indices up to 0.80 upon external validation. The c-index was higher than that of a model containing established 
risk factors (P = 0.021).

Conclusion Nine serially measured proteins captured the most essential prognostic information for the occurrence of adverse events in 
patients with HFrEF, and provided incremental value for HF prognostication beyond established risk factors. These proteins  
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could be used for dynamic, individual risk assessment in a prospective setting. These findings also illustrate the potential value 
of relatively ‘novel’ biomarkers for prognostication.

Clinical Trial 
Registration

https://clinicaltrials.gov/ct2/show/NCT01851538?term=nCT01851538&draw=2&rank=1 24
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Introduction
Despite recent advances in the management of patients with heart fail
ure (HF) with reduced ejection fraction (HFrEF), mortality and re- 
hospitalization rates remain high.1,2 Blood biomarkers may contribute 
to risk assessment, and consequently, improve the timing of treatment.3

Accordingly, current guidelines recommend the use of several biomar
kers for prognostication and risk stratification.1,2

Nevertheless, the poor prognosis of HFrEF illustrates that there is 
still room for improvement in personalized risk assessment. Given the 
complex pathophysiology of HFrEF, deep multiple-marker testing pa
nels carry potential for such improved risk assessment. Recently, 

robust affinity-based methods have been developed to systematically 
assay elaborate sets (>1000) of circulating proteins that represent 
various biological processes.4 Deriving a reduced number of proteins 
that capture essential prognostic information from such a large set 
could provide an efficient yet comprehensive approach to prognosti
cation. In the context of HF, so far there are only a few studies that 
have investigated the value of comprehensive proteomic assays for 
prognostication. Cuvelliez et al.5 examined 1310 circulating proteins 
and identified 6 that were associated with cardiovascular death in 
patients with systolic HF. A recent study showed that a baseline 
multiprotein score, consisting of 8 circulating proteins selected out 
of nearly 5000, improved risk stratification for all-cause mortality in 
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patients with HFrEF.6 A baseline 27-protein model improved 4-year 
risk prediction of major cardiovascular outcomes, including HF hospi
talization, and all-cause mortality in high-risk populations.7 Further 
studies are warranted.

Identifying patient-specific temporal biomarker evolutions may pro
vide another opportunity to improve individualized risk assessment. 
Previous studies on the prognostic value of circulating proteins in HF 
have generally performed measurements at study baseline and related 
them to adverse events occurring over many years thereafter or have 
left several years in between (usually two) repeated measurements.8

However, given the dynamic nature of HF, distinguishing patients at dif
ferent levels of risk of adverse events based on a single biomarker meas
urement, or based on a simplified representation of temporal 
biomarker evolution, is challenging.

Therefore, we have performed serial measurements of an elaborate 
set of 4210 circulating proteins in 382 patients with stable HFrEF in or
der to develop a comprehensive, dynamic prediction model that adds 
to conventional risk estimation. We aimed to derive a smaller set of 
up to 10 out of the 4210 proteins, with optimal prognostic capacity 
for adverse clinical events, which along with clinical characteristics 
and established biomarkers [i.e. N-terminal pro-hormone B-type natri
uretic peptide (NT-proBNP), and high-sensitivity troponin T 
(hs-TnT)],9 could be used for dynamic, individual risk assessment in clin
ical practice. The final set containing the most informative proteins was 
externally validated in a cohort of 1079 patients.

Methods
Study population
The Serial Biomarker Measurements and New Echocardiographic 
Techniques in Chronic Heart Failure Patients Result in Tailored 
Prediction of Prognosis (Bio-SHiFT) study is a prospective cohort study 
of stable patients with chronic heart failure (CHF), conducted at Erasmus 
MC, Rotterdam, and Northwest Clinics, Alkmaar, The Netherlands. The 
study design has been described in more detail previously.10 In brief, pa
tients were recruited during their regular outpatient visits and were in
cluded if they were aged ≥18 years, capable of understanding and signing 
informed consent, diagnosed with CHF ≥3 months before inclusion accord
ing to the European Society of Cardiology (ESC) guidelines,11,12 and if they 
had not been hospitalized for HF in the past 3 months. Study follow-up visits 
were predefined and scheduled every 3 months (±1 month). At baseline 
and at each follow-up visit, a short medical evaluation was performed by 
a research physician or research nurse, blood samples were collected, 
and the occurrence of adverse cardiovascular events since the last visit 
was recorded. According to the ESC guidelines, the routine outpatient 
follow-up and treatment by the treating physician continued in parallel 
with the study visits. The medical ethics committee of the Erasmus 
Medical Center in Rotterdam approved the study protocol, and all patients 
provided written informed consent. The study was conducted in accord
ance with the Declaration of Helsinki and registered in ClinicalTrial.gov 
(NCT01851538). Between August 2011 and January 2018, a total of 398 
patients with CHF were enrolled. In the current investigation, 382 patients 
with HFrEF were evaluated.

Baseline assessment
All patients were evaluated by research physicians, who collected informa
tion on HF-related symptoms and New York Heart Association (NYHA) 
class and performed a physical examination. Information on HF aetiology, 
left ventricular ejection fraction (LVEF), cardiovascular risk factors, medical 
history, and treatment was retrieved primarily from hospital records and 
was checked in case of ambiguities.

Sample collection and processing
Blood samples were collected at baseline and at each study follow-up visit. 
Within 2 h after collection, blood samples were processed, and ethylene
diaminetetraacetic acid (EDTA) plasma was stored at −80°C. 

Accordingly, at the time of the outpatient visits, results of the proteomic 
analysis were not available to treating physicians. Laboratory personnel 
were blinded to clinical data and patient outcomes. For the current inves
tigation, all baseline blood samples were selected. Additionally, the last 
two samples drawn before the occurrence of the primary endpoint 
(PEP), or the last two samples that were available before censoring for pa
tients who remained endpoint free, were selected (visualized in 
Supplementary material online, S1). In total, 1070 samples were available 
for the current study and 86% of the patients with HFrEF had three samples 
available for analysis. As per study design, ‘missing’ samples (i.e. availability of 
less than three samples per patient) could occur only when the PEP or cen
soring occurred before the selected second or third, prescheduled study 
visit. In total, 327 (86%) patients had 3 available samples, 30 (8%) patients 
had 2 available samples, and 25 (7%) patients had 1 available sample. 
Previous investigations using all available samples in our patient cohort 
have demonstrated that the concentration of several plasma and urine bio
marker candidates changes in the months preceding the occurrence of an 
adverse event.10,13 By selecting the last two samples prior to the incident 
study endpoint, we aimed to capture these changes while improving 
efficiency.

Proteomic analysis
Plasma protein concentrations were measured in a single batch using the 
aptamer-based proteomic SOMAscan platform (Somalogic, Boulder, CO, 
USA), as previously described.14 SOMAscan utilizes single-stranded 
DNA-based protein affinity reagents called Slow Off-rate Modified 
Aptamers (SOMAmers). The SOMAmers bind proteins with high specificity 
and affinity, and slow dissociation rates, minimizing non-specific binding in
teractions. The readout of the SOMAscan assay is in normalized relative 
fluorescent units (RFUs). These intensities are directly proportional to 
the amount of target protein in the initial sample. Previous studies reported 
high assay reproducibility and low technical variability of SOMAscan.15,16

Somalogic’s previously described standard processes for normalization, 
calibration, and quality control were followed (see Supplementary 
material online, S2). The SOMAmers with non-human and/or not validated 
targets were excluded. In addition, when multiple SOMAmer versions were 
present, those with the highest binding affinity were used. Thus, out of the 
total 5284 modified aptamers, aptamers against 4210 proteins were in
cluded in the current analyses. Individual sample quality was judged by com
paring normalized median signal relative to the external reference standard. 
Data from 1066 samples passed quality-control criteria.

Clinical study endpoints
A clinical event committee, blinded by the proteomic results, reviewed hos
pital records and discharge letters and adjudicated the study endpoints. The 
PEP comprised the composite of cardiovascular death, heart transplant
ation (HTx), left ventricular assist device (LVAD) implantation, and hospital
ization to manage acute or worsened HF. In patients who reached multiple 
endpoints, only the first was used for analysis. Hospitalization for acute or 
worsened HF was defined as hospitalization for an exacerbation of HF 
symptoms, in combination with two of the following: brain natriuretic pep
tide or NT-proBNP > 3× normal upper limit, signs of worsening HF, such as 
pulmonary rales, raised jugular venous pressure or peripheral oedema, in
creased dose or intravenous administration of diuretics, or administration 
of positive inotropic agents.11

External validation cohort
For external validation, data from the Henry Ford HF PharmacoGenomic 
Registry (HFPGR) were used. The HFPGR is a prospective observational 
registry of patients in the Henry Ford Health System in Detroit, MI, USA. 
The study was approved by the Henry Ford Hospital Institutional Review 
Board, and all participants provided written informed consent. The study 
design has previously been described in detail.17 Briefly, patients were in
cluded if they were aged ≥18 years, insured, and met the definition of HF 
as defined by the Framingham Heart Study. For the current investigation, 
only patients with HFrEF and SOMAscan measurements were included 
(n = 1079). A composite of cardiovascular death and hospitalization with 
a primary discharge diagnosis of HF was examined.
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Statistical analysis
A full description of the statistical analyses is given in Supplementary 
material online, S3. First, differences in estimated baseline concentration 
and evolution during follow-up between patients who reached the PEP 
and those who remained endpoint free were evaluated using linear 
mixed-effect (LMEs) modelling adjusted for the MAGGIC risk score.18 By 
using LME modelling, we effectively account for the inherent correlation 
among repeated measurements within each patient.

Next, protein concentrations estimated by unadjusted LME models were 
standardized and used in the regularized time-varying Cox regression mod
el. We used a regularized time-varying Cox regression model with an elastic 
net penalty to select a lean subset of circulating proteins with strong prog
nostic value on top of clinical predictors and established biomarkers. In par
ticular, the Cox model included the MAGGIC risk score, repeated 
measures of clinical NT-proBNP, and hs-TnT (all unpenalized) as well as 
standardized values of all 4210 repeatedly measured SOMAscan proteins 
(except for NT-proBNP and TnT; penalized). For the selection of the op
timal shrinkage penalty (λ), 10-fold cross-validation of the model was 
performed.

The discriminative ability of the final prediction model (i.e. the model 
containing the MAGGIC risk score, NT-proBNP, hs-TnT, and circulating 
proteins selected in the previous step) was determined using internal and 
external validation. For internal validation, a 10-fold cross-validated con
cordance index (c-index) was used. We compared the discriminative ability 
to that of a model containing clinical characteristics (i.e. the MAGGIC risk 
score), a clinical practice–based biomarker model (i.e. the MAGGIC risk 
score, NT-proBNP, and hs-TnT) and a literature-based biomarker model 
[i.e. the MAGGIC risk score, NT-proBNP, hs-TnT, C-reactive protein 
(CRP), growth/differentiation factor 15 (GDF-15), interleukin 1 receptor- 
like 1 (ST2), and galectin-3 (Gal-3)]. For external validation, we calculated 
the c-index in HFPGR to determine the discriminative ability of the final pre
diction model as derived from Bio-SHiFT and the models described above.

Because the regularized Cox model optimizes predictive ability at the ex
pense of biasedly estimated regression coefficients, to estimate the un
biased associations between the repeatedly measured variables selected 
in the previous step, and the PEP, we applied joint modelling (JM). Both uni
variable and multivariable JMs were used. Results are given as hazard ratios 
(HRs) and 95% confidence intervals (CIs) per 1 standard deviation (SD) dif
ference of the absolute log2-tranformed protein intensities at any point in 
time during follow-up.

All analyses were performed in R version 4.0.3. A two-sided P-value 
<0.05 or false discovery rate (FDR) < 0.05 was considered statistically sig
nificant, depending on the context.

Results
Baseline characteristics
In total, 382 patients with stable HFrEF were included in the current 
study. The mean (±SD) age was 63.3 (±13.1) years and 72.8% were 
males (Table 1). Patients who experienced the PEP during follow-up 
had significantly lower systolic blood pressure, higher NYHA class, low
er LVEF, longer duration of HF at baseline, and were more frequently 
on diuretics and anticoagulants compared with patients who remained 
endpoint free. Moreover, the prevalence of comorbidities was also 
higher in those patients, as were the baseline levels of ‘established’ 
biomarkers.

Follow-up and study endpoints
During a median (25th–75th percentile) follow-up of 25 (13–31) 
months, a total of 114 (29.8%) patients reached the PEP. Specifically, 
90 patients were re-hospitalized for acute or worsened HF, 13 patients 
underwent LVAD placement, 17 patients underwent HTx, and 33 pa
tients died of cardiovascular causes. Only the first event was used for 
analysis in patients who reached multiple endpoints during follow-up 
(39 out of 114). Hence, the PEP consisted of 90 patients with re- 

hospitalization for HF, 6 patients with LVAD placement, 10 patients 
with HTx, and 8 who died of cardiovascular causes.

Longitudinal evolution of protein 
concentrations
A statistically significant difference in estimated protein concentration 
at baseline between patients who reached the PEP and patients who 
remained endpoint free was shown for 1214 out of the 4210 proteins 
after adjustment for the MAGGIC risk score and correction for mul
tiple testing. The top 100 proteins with the largest difference at baseline 
are presented in Supplementary material online, S4. Moreover, 356 
proteins showed a significantly different evolution during follow-up be
tween patients with and without the PEP after correction for multiple 
testing. Proteins that showed at least a 10% relative difference in trajec
tory per year are depicted in Figure 1 and Supplementary material 
online, S5. The majority of these proteins showing a significantly differ
ent evolution during follow-up were involved in biological mechanisms 
that have been implicated in HF, for example, cardiac stress (e.g. 
NT-proBNP), cardiac remodelling (e.g. ST2 and GDF-15), inflammation 
(e.g. CRP and serum amyloid A), iron homeostasis (e.g. transferrin re
ceptor), oxidative stress (e.g. peroxidasin and erythropoietin), and chol
esterol metabolism (e.g. apolipoprotein F).

Prognostic value of serially measured 
protein expression
Penalized multivariable time-dependent Cox regression using repeated 
measurements of 4210 circulating proteins resulted in a selection of 9 
proteins on top of the MAGGIC risk score, NT-proBNP and hs-TnT: 
ST2, tryptophanyl-tRNA synthetase cytoplasmic (TrpRS), histone H2A 
Type 3 (HIST3H2A), angiotensinogen, deltex-1, thrombospondin-4 
(TSP-4), ADAMTS-like protein 2 (ADAMTSL-2), anthrax toxin receptor 
1 (ANTXR1), and cathepsin D. These results imply that for optimal prog
nostic performance, a model containing the MAGGIC risk score, serially 
measured NT-proBNP and hs-TnT, and these nine repeatedly measured 
circulating proteins suffices. Figure 2 shows the average temporal pat
terns of NT-proBNP and hs-TnT as well as these nine proteins in pa
tients with and without the PEP during follow-up. Twenty-four 
months before the occurrence of the PEP, levels of NT-proBNP, 
TrpRS, hs-TnT, and ADAMTSL-2 were already higher in patients who 
ultimately reached the PEP compared with patients who remained event 
free. Furthermore, NT-proBNP significantly increased as the endpoint 
approached but remained stable in endpoint-free patients. HIST3H2A, 
ST2, and cathepsin D showed similar patterns, although sometimes 
less pronounced. In contrast, deltex-1 and TSP-4 decreased as the end
point approached but did remain stable in endpoint-free patients. During 
follow-up, levels of angiotensinogen and ANTXR1 remained lower in pa
tients who ultimately reached the PEP compared with patients who re
mained event free.

The multivariable regression model, including the MAGGIC risk 
score and serial measurements of NT-proBNP, hs-TnT, and the nine 
circulating proteins, showed high discriminative ability, with a cross- 
validated c-index of 0.85 (Table 2, Model 7). The c-index was significant
ly higher than that of a model containing baseline clinical predictors and 
repeated measurements of established biomarkers NT-proBNP and 
hs-TnT (c-index: 0.80, P = 0.021; Table 2, Model 5). In contrast, the dis
criminative ability of a model containing clinical predictors and biomar
kers previously shown to be involved in HF (NT-proBNP, hs-TnT, CRP, 
GDF-15, ST2, and Gal-3; Table 2, Model 6; c-index: 0.83) did not signifi
cantly improve performance compared with this clinical practice–based 
model (P = 0.087). Moreover, the c-indices of all multivariable models 
including repeated measurements exceeded the c-indices of models 
consisting of only baseline measurements of the same respective sets 
of biomarkers (Table 2, Models 2–4).
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Table 1 Baseline characteristics of the study population

Total population  
(n = 382)

No endpoint  
(n = 268)

Endpoint  
(n = 114)

P-value

Demographics

Age [mean (SD)] 63.3 (13.1) 63.0 (12.7) 64.0 (14.0) 0.486

Sex (% male) 278 (72.8) 187 (69.8) 91 (79.8) 0.058

Caucasian ethnicity (%) 351 (92.6) 246 (92.8) 105 (92.1) 0.973
Clinical characteristics

Body mass index, kg/m2 [mean (SD)] 27.2 (4.5) 27.4 (4.6) 26.7 (4.4) 0.211

Systolic blood pressure, mmHg [mean (SD)] 115.3 (21.3) 118.2 (21.6) 108.5 (19.1) <0.001
Diastolic blood pressure, mmHg [mean (SD)] 70.0 (10.5) 71.0 (10.9) 67.5 (9.2) 0.003
Established biomarker levels

NT-proBNP (pmol/L)a 145.0 (54.7–289.0) 95.3 (34.0–211.1) 297.4 (179.9–524.6) <0.001
Hs-TnT (ng/L)a 18.0 (10.3–34.0) 14.5 (8.9–25.0) 32.0 (20.0–49.5) <0.001
CRP (mg/L)a 2.0 (0.9–4.7) 1.6 (0.8–3.8) 2.8 (1.4–5.4) 0.004
Features of heart failure

Duration of HF, yearsa 4.2 (1.6–9.5) 3.7 (1.2–7.8) 5.7 (2.6–13.0) <0.001
NYHA class (%) <0.001

NYHA Classes I and II 276 (72.6) 214 (80.1) 62 (54.9)
NYHA Classes III and IV 104 (27.4) 53 (19.9) 51 (45.1)

LVEF [mean (SD)]b 29.8 (10.3) 31.2 (9.9) 25.6 (10.1) <0.001
Heart failure aetiology

Ischaemic heart disease (% yes) 166 (43.5) 113 (42.2) 53 (46.5) 0.504

Hypertension (% yes) 33 (8.6) 25 (9.3) 8 (7.0) 0.592

Secondary to valvular heart disease (% yes) 12 (3.1) 6 (2.2) 6 (5.3) 0.219
Cardiomyopathy (% yes) 122 (31.9) 82 (30.6) 40 (35.1) 0.458

Unknown aetiology (% yes) 27 (7.1) 24 (9.0) 3 (2.6) 0.047
Other aetiology (% yes) 26 (6.8) 21 (7.8) 5 (4.4) 0.316
Medical history

Myocardial infarction (% yes) 145 (38.5) 96 (36.5) 49 (43.0) 0.283

PCI (% yes) 126 (33.0) 88 (32.8) 38 (33.3) 1.000
CABG (% yes) 54 (14.1) 35 (13.1) 19 (16.7) 0.444

Atrial fibrillation (% yes) 137 (36.3) 80 (30.3) 57 (50.4) <0.001
CRT (% yes) 113 (29.7) 74 (27.6) 39 (34.5) 0.221
Pacemaker (% yes) 85 (23.0) 54 (20.7) 31 (28.7) 0.127

Chronic renal failure (% yes) 181 (47.6) 112 (41.9) 69 (61.1) 0.001
Diabetes mellitus (% yes) 98 (25.7) 61 (22.8) 37 (32.5) 0.063
Known hypercholesterolaemia (% yes) 160 (42.9) 107 (41.2) 53 (46.9) 0.359

COPD (% yes) 50 (13.4) 29 (11.1) 21 (18.8) 0.063

Intoxications

Smoking (%) 0.330

Never 109 (28.7) 81 (30.3) 28 (24.8)

Current 37 (9.7) 28 (10.5) 9 (8.0)
Former (>30 days) 234 (61.6) 158 (59.2) 76 (67.3)

Medication use

Beta-blockers (% yes) 350 (91.9) 249 (93.3) 101 (88.6) 0.187
ACE-I (% yes) 258 (67.7) 187 (70.0) 71 (62.3) 0.173

ARB (% yes) 107 (28.0) 75 (28.0) 32 (28.1) 1.000

Aldosterone antagonist (% yes) 293 (76.7) 199 (74.3) 94 (82.5) 0.109
Loop diuretics (% yes) 353 (92.4) 241 (89.9) 112 (98.2) 0.009
Thiazide diuretics (% yes) 12 (3.1) 4 (1.5) 8 (7.0) 0.012
Aspirin (% yes) 77 (20.2) 59 (22.0) 18 (15.9) 0.226

Continued 
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Although from a statistical point of view, the P-value is not the decid
ing criterion in elastic net regression, all nine circulating proteins were 
significantly associated with the occurrence of the PEP in the univariable 
joint models (Table 3). In the multivariable joint model, NT-proBNP 
[HR (95% CI): 1.96 (1.17–3.40), P = 0.006] and angiotensinogen [0.66 
(0.49–0.88), P = 0.002] were statistically significantly associated with 
the PEP. N-terminal pro-hormone B-type natriuretic peptide showed 
the association that was numerically the strongest, and implied that if 
a patient has a 1 SD higher NT-proBNP level compared with another 
patient at any point in time, the HR for that patient for the PEP is 1.96, 
independent of all other proteins.

External validation
Patients in the HFPGR were on average 67.5 years old, and 65.1% were 
males (see Supplementary material online, S6). During an average 
follow-up duration of 3.8 years, 320 (29.7%) patients died.

The discriminative ability of our nine-biomarker prediction model 
was high in the HFPGR, with a c-index of 0.79 in the total cohort and 
0.80 in Caucasian patients only for the composite of cardiovascular 
death and HF hospitalization (Table 2 and Supplementary material 
online, S7). Moreover, the c-index of our nine-biomarker model was 
significantly higher than that of a model containing clinical predictors 
and measurements of established biomarkers NT-proBNP and TnT 
in the total cohort as well as in Caucasian patients only (P < 0.001 
and P = 0.012, respectively). The discriminative ability of a model con
taining clinical predictors and biomarkers previously shown to be in
volved in HF did not significantly improve compared with the clinical 
practice–based model in the total cohort as well as in Caucasian pa
tients only (P = 0.299 and P = 0.155, respectively).

Discussion
We performed a prospective study with repeated measurements 
of 4210 proteins in almost 400 patients with HFrEF. Nine repeatedly 
measured proteins derived by machine-learning methods showed to 
carry the most essential prognostic information for adverse cardiovas
cular events on top of conventional risk factors, including clinical 
characteristics and established biomarkers NT-proBNP and hs-TnT. 
Discriminative ability of this set was high, with a cross-validated c-index 
of 0.85 upon internal validation and c-indices up to 0.80 upon external 
validation. The set consisted of established as well as ‘novel’ markers in 
the context of HF, namely ST2, TrpRS, HIST3H2A, angiotensinogen, 
deltex-1, TSP-4, ADAMTSL-2, ANTXR1, and cathepsin D.

Large-scale proteomic approaches, such as aptamer-based multiplex 
platforms, are becoming increasingly important in the discovery of bio
markers relevant for disease, and individual proteomic signatures may 
contribute to improved personalized risk assessment. To the best of 

our knowledge, this is the first study that uses repeatedly applied 
affinity-based methods, which target nearly 5000 proteins, to construct 
a prognostic model in patients with HFrEF. By performing repeated 
blood sampling at fixed 3-month intervals over the full course of the 
follow-up, our study extends current knowledge while addressing pre
vious limitations. So far, studies on circulating proteins in HF have gen
erally examined limited numbers of proteins at a time, have traditionally 
performed measurements at study baseline only, or have left several 
years between (usually at most two) repeated measurements. In con
trast, our study design enabled us to account for the dynamic nature 
of HF and to select blood samples taken on average several weeks be
fore the occurrence of an adverse event, hence describing the temporal 
protein evolution in a detailed and appropriate way. Importantly, the 
model we applied also enables subsequent use of the derived risk esti
mates for dynamic, individual risk assessment in a prospective setting. 
Specifically, based on individual temporal protein trajectories, persona
lized screening intervals (i.e. the optimal timing of the patient’s next out
patient visit) can be calculated using the joint model as we have 
described earlier.19 Such a dynamic risk prediction tool provides an in
dividualized approach to the timing of treatment adaptations for pa
tients with HFrEF, in order to improve outcomes and provide 
additional public health benefits.

Our data were both elaborate (4210 proteins) and correlated (re
peated measurements). By using sophisticated statistical techniques, 
we were able to derive the most informative proteins from the com
prehensive, repeatedly measured panel, and to subsequently use the 
obtained model for dynamic, individualized prognostication. We deter
mined the nine-biomarker model based on the elastic net penalization 
method with cross-validation, ensuring that its prognostic capacity was 
maximized, and internally validated the model by cross-validation. The 
discriminative ability of our nine-biomarker model was significantly 
higher than that of a model containing baseline clinical predictors and 
repeated measurements of established biomarkers NT-proBNP and 
hs-TnT (i.e. a clinical practice–based model), whereas the discriminative 
ability of a model containing clinical predictors and biomarkers previ
ously shown to be involved in HF (NT-proBNP, hs-TnT, CRP, 
GDF-15, ST2, and Gal-3) did not significantly improve compared with 
this clinical practice–based model. Despite our nine-biomarker model 
significantly improving c-indices compared with a clinical practice–based 
model, improvements in absolute terms were modest. It has previously 
been demonstrated that, although frequently used in clinical practice, 
c-indices are very conservative and thus rather insensitive to improve
ments in predictive ability.20 The discriminative ability of our model 
being higher than that of a set of biomarkers previously shown to be 
involved in HF, illustrates the potential value of relatively ‘novel’ biomar
kers for prognostication. It should be noted that during internal valid
ation, the discriminative ability of our model was determined using 
the same data set that the proteins were derived from. Nonetheless, 
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Table 1 Continued  

Total population  
(n = 382)

No endpoint  
(n = 268)

Endpoint  
(n = 114)

P-value

Anticoagulants (% yes) 279 (73.0) 185 (69.0) 94 (82.5) 0.010
MAGGIC risk score 20.3 (7.2) 18.6 (6.8) 24.4 (6.4) <0.001

A P-value <0.05 is considered statistically significant and presented in bold typeface. 
ACE, angiotensin-converting enzyme; ARB, angiotensin receptor blocker; CABG, coronary artery bypass graft; COPD, chronic obstructive pulmonary disease; CRP, C-reactive protein; 
CRT, cardiac resynchronization therapy; hs-TnT, high-sensitivity troponin T; LVEF, left ventricular ejection fraction; NT-proBNP, N-terminal pro-hormone B-type natriuretic peptide; 
NYHA, New York Heart Association; PCI, percutaneous coronary intervention; SD, standard deviation. 
aAll biomarker levels and duration of heart failure are presented as median (25th–75th percentile). 
bMissing for 81 patients.
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the discriminative ability of our nine-biomarker model was also high in 
the external validation cohort, with c-indices up to 0.80.

Our results carry important clinical implications. Our statistical ap
proach is able to capture markers that together represent essential in
formation from the proteome, may improve individualized risk 
assessment, and could ultimately aid in designing more effective 
biomarker-guided therapies. For instance, patients who are at higher 
risk of adverse clinical outcomes, such as those with an unfavourable, 
high-risk biomarker profile, may benefit from more intensive monitor
ing and aggressive treatment strategies. Our joint models enable the 
calculation of personalized screening intervals,19 and in these high-risk 
cases, the model will indicate that for optimal timing of the patient’s 
next outpatient visit, the visit should be preponed. Likewise, it is im
portant to identify patients with a favourable, low-risk biomarker pro
file. Here, the model will indicate that the outpatient visit may be 
postponed safely. These patients can be reassured and potentially fol
lowed up less intensively, considering their lower risk of adverse clinical 
outcome. For such individualized monitoring, ideally, cardiovascular 
biomarkers should be used as continuous, longitudinal measures in a dy
namic cardiovascular risk prediction tool that also incorporates clinical 
features, and which may be updated as further information, including 
additional biomarker measurements or alterations in patients’ co
morbidities, become available. Such a dynamic measure of risk could 
guide clinicians to intensify monitoring and escalate therapy where 
risk remains elevated, and encourage patients to follow recommended 
treatment. By incorporating both favourable and unfavourable bio
marker profiles into clinical practice, we can allocate resources more 
effectively and provide targeted care to individuals who may require dif
ferent levels of monitoring and optimization of management.

Among the repeatedly measured proteins included in our final mod
el, ST2 is the most elaborately investigated protein so far in the context 
of HF and its prognostic value has been substantiated extensively.21,22

Our results confirm the importance of this protein for prognostication 
and underline the validity of our study. Other proteins that have previ
ously been reported to carry prognostic value in patients with HF (e.g. 
GDF-15) showed a statistically significant different evolution during 
follow-up between patients with and without the PEP. However, in a 
multivariable prediction model, not all of these proteins did provide in
cremental information for risk assessment, possibly in part due to cor
relations between proteins. Nonetheless, here we show that the 
prognostic value of serially measured NT-proBNP, hs-TnT, and ST2 
as reported previously10,23 may be further increased when these ‘estab
lished’ markers are measured together with eight other proteins 
(TrpRS, HIST3H2A, angiotensinogen, deltex-1, TSP-4, ADAMTSL-2, 
ANTXR1, and cathepsin D) related to processes that have been impli
cated in HF or are dysregulated in cardiovascular disease (e.g. cardiac 
remodelling, atherosclerosis, the renin-angiotensin-aldosterone sys
tem). Interestingly, serial measurements of NT-proBNP and angioten
sinogen showed the strongest associations with adverse outcomes in 
the current study. These proteins have been previously related to car
diac remodelling and the renin-angiotensin-aldosterone system, re
spectively, which are both central features in the pathophysiology of 
heart failure and which may thus explain the prominent role of these 
proteins. For some of these circulating proteins (cathepsin D and angio
tensinogen), the prognostic value of a single measurement or gene poly
morphism in HF has been reported in previous studies. For example, 
cathepsin D, recognized as a marker for oxidative stress, is associated 
with HF severity and predicts 2-year death or HF hospitalization in pa
tients with CHF.24 A polymorphism associated with higher plasma le
vels of angiotensinogen has been associated with increased risk of HF 
in a Caucasian population.25,26 Nonetheless, reduced levels of angioten
sinogen have been reported in patients with severe or end-stage HF 
and were associated with occurrence of the PEP in the current 
study.27–29 The most likely explanation for this phenomenon is the 
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Figure 1 Proteins with a significantly different average evolution 
between patients with and without the primary endpoint. The esti
mated average evolution (per year) of circulating proteins with a sig
nificantly different trajectory (FDR < 0.05 and |relative difference in 
slope| > 10%) is depicted separately in patients with the primary end
point and those who remained endpoint free. Average evolutions are 
estimated using linear mixed-effect regression models and are ad
justed for the MAGGIC risk score. The red box depicts the average 
evolution of proteins in patients who reached the study endpoint, 
and the blue box depicts the average evolutions in patients who re
mained endpoint free.
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Figure 2 Average evolutions of the 10 proteins selected based on penalized regression. The average evolution of circulating proteins is depicted 
during the 2 years preceding a primary endpoint in patients with chronic heart failure who reached the study endpoint and last sample moment in 
patients who remained endpoint free. ‘Time zero’ is defined as the occurrence of the endpoint or censoring and is depicted on the right side of 
the x-axis; inherently to this representation, baseline sampling preceded this ‘time zero’. The solid red line depicts the average evolution of proteins 
in patients who reached the study endpoint, and the solid blue line depicts the average evolution in patients who remained endpoint free. The dashed 
lines represent the 95% confidence intervals.
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Table 2 Discriminative ability of the models

c-index  
(95% CI)

P-value Cross-validated 
c-index (95% CI)

P-value Externally validated 
c-index (95% CI)

P-value

Clinical characteristics

Model 1: MAGGIC risk score 0.70 (0.65–0.74) — 0.70 (0.66–0.73) — 0.71 (0.68–0.74) —

Baseline measurements

Model 2: MAGGIC risk score +  
NT-proBNP + hs-TnT (biomarker 

selection based on clinical practice)

0.77 (0.73–0.82) Reference 0.77 (0.74–0.80) Reference 0.77 (0.74–0.79) Reference

Model 3: MAGGIC risk score +  
NT-proBNP + hs-TnT + biomarker 

selection based on literature

0.80 (0.76–0.84) 0.005 0.78 (0.75–0.81) 0.138 0.77 (0.75–0.80) 0.299

Model 4: MAGGIC risk score +  
NT-proBNP + hs-TnT + biomarker 

selection based on penalized regression

0.84 (0.80–0.88) <0.001 0.82 (0.79–0.86) 0.018 0.79 (0.76–0.81) <0.001

Repeated measurements

Model 5: MAGGIC risk score +  

NT-proBNP + hs-TnT (biomarker 

selection based on clinical practice)

0.80 (0.76–0.85) Reference 0.80 (0.78–0.83) Reference

Model 6: MAGGIC risk score +  

NT-proBNP + hs-TnT + biomarker 

selection based on literature

0.85 (0.81–0.88) <0.001 0.83 (0.80–0.86) 0.087

Model 7: MAGGIC risk score +  

NT-proBNP + hs-TnT + biomarker 

selection based on penalized regression

0.86 (0.83–0.90) <0.001 0.85 (0.83–0.88) 0.021

Model 1: MAGGIC risk score. Model 2: MAGGIC risk score and baseline measurements of biomarkers selected based on clinical practice (NT-proBNP and high-sensitivity TnT). Model 3: 
MAGGIC risk score, baseline measurements of NT-proBNP and high-sensitivity TnT, and baseline measurements of biomarkers selected from proteomic panel based on literature (CRP, 
GDF-15, ST2, and Gal-3). Model 4: MAGGIC risk score, baseline measurements of NT-proBNP and high-sensitivity TnT, and baseline measurements of biomarkers selected from 
proteomic panel based on penalized regression (elastic net; TrpRS, HIST3H2A, angiotensinogen, deltex 1, TSP-4, ADAMTSL-2, ANTXR1, and cathepsin D). Model 5: MAGGIC risk 
score and serially measured biomarkers selected based on clinical practice (NT-proBNP and high-sensitivity TnT). Model 6: MAGGIC risk score, serially measured NT-proBNP and 
high-sensitivity TnT, and serially measured biomarkers selected from proteomic panel based on literature (CRP, GDF-15, ST2, and Gal-3). Model 7: MAGGIC risk score, serially 
measured NT-proBNP and high-sensitivity TnT, and serially measured biomarkers selected from proteomic panel based on penalized regression (elastic net; TrpRS, HIST3H2A, 
angiotensinogen, deltex 1, TSP-4, ADAMTSL-2, ANTXR1, and cathepsin D). 
A P-value <0.05 is considered statistically significant and presented in bold typeface. ADAMTSL2, a disintegrin and metalloproteinase with thrombospondin repeats like protein 2; 
ANTXR1, anthrax toxin receptor 1; CI, confidence interval; c-index, concordance index; CRP, C-reactive protein; Gal-3, galectin-3; GDF-15, growth/differentiation factor 15; 
HIST3H2A, histone H2A type 3; NT-proBNP, N-terminal pro-hormone B-type natriuretic peptide; TnT, troponin T; TSP-4, thrombospondin-4; ST2, interleukin 1 receptor-like 1; 
TrpRS, tryptophanyl-tRNA synthetase 1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3 Joint models predicting adverse clinical outcome in the study population

Biomarkers selected based on penalized regression Univariable joint models 
HR (95% CI)

P-value Multivariable joint model 
HR (95% CI)

P-value

NT-proBNP 3.83 (2.68–5.67) <0.001 1.96 (1.17–3.40) 0.006
TrpRS 2.95 (1.05–16.3) 0.028 1.89 (0.86–4.12) 0.111
Histone H2A Type 3 2.93 (1.74–4.87) <0.001 1.52 (0.76–3.20) 0.242

Angiotensinogen 0.54 (0.45–0.65) <0.001 0.66 (0.49–0.88) 0.002
High-sensitivity troponin T 2.07 (1.60–2.62) <0.001 1.50 (0.98–2.36) 0.060
Deltex 1 0.37 (0.28–0.49) <0.001 0.67 (0.40–1.09) 0.111

Thrombospondin-4 0.50 (0.38–0.67) <0.001 0.71 (0.47–1.05) 0.086

Interleukin-1 receptor-like 1 2.46 (1.91–3.20) <0.001 1.29 (0.86–1.96) 0.233
ADAMTS-like protein 2 2.04 (1.68–2.47) <0.001 0.81 (0.46–1.37) 0.426

Anthrax toxin receptor 1 0.60 (0.46–0.78) <0.001 0.85 (0.62–1.15) 0.323

Cathepsin D 1.70 (1.31–2.19) <0.001 1.13 (0.68–1.95) 0.641

A P-value <0.05 is considered statistically significant and presented in bold typeface. ADAMTS, a disintegrin and metalloproteinase with thrombospondin repeats; CI, confidence interval; 
HIST3H2A, histone H2A Type 3; HR, hazard ratio; NT-proBNP, N-terminal pro-hormone B-type natriuretic peptide; TrpRS, tryptophanyl-tRNA synthetase 1.
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increase in renin concentration and renin activity with HF progres
sion,30 resulting in a depletion of its substrate angiotensinogen in pa
tients with end-stage disease.

TrpRS, TSP-4, ADAMTSL-2, and ANTXR1 have been previously indi
cated to play a role in cardiac ischaemia and cardiac remodelling. An iso
form of TrpRS affects the myocardial infarction area in an animal model of 
myocardial infarction, inhibits angiogenesis, and prevents transcription of 
shear stress-responsive genes, suggesting the role of TrpRS in athero
sclerosis, vascular remodelling, and blood pressure regulation.31–33

Thrombospondin-4 is involved in regulating fibrosis and remodelling of 
the myocardium in response to pressure overload in rodents.34,35

Increased activity of TSP-4 is associated with recurrent coronary risk in 
post-infarction patients.36 Upregulation of ADAMTSL-2 was found in 
the hearts of mice and patients with fibrosis and heart failure.37

Fibroblasts isolated from mice deficient in ANTXR1 show an increased 
expression of collagen and fibronectin, consequently leading to fibrosis.38

For HIST3H2A and deltex-1 limited evidence of cardiovascular in
volvement is available. Modifications of histone proteins, such as 
HIST3H2A, have emerged as pivotal players in the development of 
heart failure.39 HIST3H2A has been previously associated with manifest 
heart failure and HTx dynamics.40 Nonetheless, the exact role of 
HIST3H2A and modifications thereof in the context of heart failure re
quires further research. The deltex-1 protein has ubiquitin E3 ligase ac
tivity. Cardiac E3 ubiquitin ligases regulate processes involved in heart 
failure and ischaemic heart disease, such as dysregulation of cardiac pro
tein turnover and myocardial apoptosis.41

Some aspects of this study warrant consideration. First, SOMAmer re
agents are selected against proteins in their native folded conformations. 
Hence, unfolded and denatured proteins are not detected. Moreover, the 
SOMAscan assay does not provide absolute concentrations, but RFUs. 
While these values can be used for comparing patients and changes 
over time within a patient, for clinical applications, absolute concentra
tions based on validated assays (e.g. enzyme-linked immunosorbent assay 
[ELISA]) are recommended. In the current study, immunoassay-based 
measurements for five biomarkers previously associated with heart failure 
(i.e. NT-proBNP, troponin T, CRP, cystatin C, and neutrophil gelatinase– 
associated lipocalin) showed high correlations with their SOMAscan mea
surements (Pearson correlation coefficient ranging from 0.74 to 0.94, 
Supplementary material online, S8). Protein features, specificity conform
ation, and precision of aptamer target binding of the nine proteins in
cluded in our final model are reported in the Supplementary material 
online, S9 and S10. Lastly, the Bio-SHiFT study comprises a mostly white 
population, and thus, generalizing our findings to other ethnic groups 
should be done with caution.

Conclusions
Nine proteins, related to cardiac remodelling and atherosclerosis, and 
derived from 4210 serially measured circulating proteins, provided 
the optimal multivariable, dynamic model for the occurrence of adverse 
clinical events in patients with HFrEF, along with the MAGGIC risk 
score, NT-proBNP, and hs-TnT: ST2, TrpRS, HIST3H2A, angiotensino
gen, deltex-1, TSP-4, ADAMTSL-2, ANTXR1, and cathepsin D. Two 
proteins showed the strongest associations (NT-proBNP and angioten
sinogen). Altogether, our study shows that proteomic profiling could 
provide information for risk assessment beyond established risk factors, 
and underlines that repeated measurements of multiple circulating pro
teins may convey incremental prognostic value over clinical character
istics and repeatedly measured established biomarkers.

Supplementary material
Supplementary material is available at European Heart Journal – Digital 
Health.
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