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Abstract

Purpose: Image-guided surgery can decrease perioperative complication inci-
dences. Augmented Reality (AR) with head-mounted displays (HMDs) provides
an accessible method of visualizing 3D preoperative models intraoperatively. This
could provide the surgeon with an easy to use intraoperative image-guided surgery
system.[1] Image-to-patient registration, the other key step of image-guided
surgery, can still be intricate and time-consuming with traditional systems.[2, 3]
This research explores the feasibility of using the depth sensors of the HoloLens
2, a state-of-the-art AR HMD, for depth-based image-to-patient registration.
This research contributes to the advancement of less complex and more efficient
image-guided surgical techniques.
Methods: To achieve these objectives, three experiments were conducted using
a pilot system based on the HoloLens 2’s depth sensors. The first experiment
evaluated the accuracy of the depth sensors quantitatively. The second exper-
iment compared four registration initialization methods, including manual and
automated approaches. The accuracy and success rate of alignment were assessed
using a multi-modal ground truth. Finally, a qualitative assessment of the pilot
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system was performed on various objects and materials. This experiment aimed
to evaluate the system’s performance and usability in real-world scenarios.
Results: The depth accuracy experiment showed that both the AHAT and
LT sensors had mean overestimation errors of 5.7 and 9.0 mm, respectively. In
the registration experiment, the two manual initialization methods consistently
achieved successful registration (100%), while the two automatic methods had
varying success rates (23.3% and 50%). Three out of four depth registration meth-
ods completed the registration within 5 seconds. The mean translation errors
ranged from 12.6 to 14.7 mm, and rotation errors ranged from 1.5 to 1.8 degrees.
The minimum observed translation and rotation errors were 6.9 mm and 0.5
degrees, respectively, while the maximum errors were 18.8 mm and 3.2 degrees,
respectively.
Conclusion: The study’s results suggest the potential for achieving sub-10 mm
registration accuracy within 5 seconds with depth-based image-to-patient regis-
tration. This offers a fast and convenient alternative to other tracking systems
that require invasive fiducial markers and time-consuming calibration steps. How-
ever, the current accuracy level of the system poses some limitations. Nonetheless,
the developed system holds promise for a wide range of surgical procedures that
currently do not utilize image guidance due to its complexity. By enabling faster
and more accessible image guidance, depth-based registration has the potential
to enhance surgical outcomes, such as improving tumor resection margins and
avoidance of vulnerable tissues, making it highly beneficial for various procedures.

Keywords: Image-guided surgery, Augmented Reality, Head-mounted displays,
HoloLens 2, Depth-based registration, Image-to-patient registration.

1 Introduction

Surgeons require extensive comprehension of patient’s three-dimensional (3D)
anatomy when performing operations. Navigating between anatomical structures and
performing surgery with the minimal amount of collateral damage takes years of train-
ing. To decrease the amount of perioperative complications and be able to perform high
complex surgeries, more medical-technological development is aimed at supporting
surgeons performing these procedures.

One approach to assist surgeons is by minimizing the cognitive effort required for
mentally reconstructing the 3D geometry of patients’ anatomy. Medical tomographic
imaging has enabled detailed 3D preoperative insight and planning, but often the 3D
anatomy still needs to be cognitively mapped from the 2D slices. Fortunately, it is
currently possible to segment the anatomy of interest and reconstruct a 3D model
of the patient.[4] Rendering these 3D models on a PC-monitor removes the task to
cognitively visualise the third dimension for surgeons and enables 3D preoperative
planning.

To extend this 3D visualization beyond the preoperative phase and enable intraop-
erative image-guided navigation, the preoperative 3D models need to be registered and
visualised intraoperatively. Intraoperative 3D imaging modalities such as ultrasound
(US) or cone beam CT (CBCT) could be used as well. However, 3D intraoperative
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imaging modalities tend to perform less compared to preoperative modalities in terms
of contrast and resolution. This is due to intraoperative limitations such as time con-
straint and radiation exposure. Intraoperative imaging does not reach the detailed
level that is necessary for complex surgical procedures. Also, intraoperative imaging
does not provide access to preoperative planning information. Therefore, methods to
register and visualise the high-quality 3D preoperative models in the operative field
are of significant relevance for intraoperative navigation. To use preoperative imaging
for intraoperative support, the accuracy of registration and visualisation is key to a
reliable system.

The use of Augmented Reality (AR) in surgical applications is an emerging
research topic with the number of publications increasing significantly over the past
decade.[3, 5, 6] AR head mountable displays (HMD) show the user an augmented ver-
sion of their reality by projecting 3D holograms or overlays into the operative field.
This is different from virtual reality (VR) HMD that let the user experience a complete
virtual environment. AR therefore has several potential advantages for intraopera-
tive applications: i) it can visualise preoperative models in 3D and ii) the physician
experiences no ”attention switch” by presenting information in the operative field.

Registration is the process of aligning two or more images or 3D models of the
same object or patient to create a single, unified representation. The goal of registra-
tion is to achieve the most optimal alignment between the two images or models. In
the case of intraoperative navigation this is called an image-to-patient registration,
where the source 3D model comes from preoperative medical imaging and the intra-
operative patient’s anatomy is the target 3D model. Registration of 3D models can be
achieved by transforming one moving or source model to a fixed or target model. A
registration algorithm searches for the optimal alignment between two models, based
on a set of predefined parameters such as the similarity of image intensities or specific
corresponding 3D points or surfaces.

Accurate registration methods are already available, especially for operating on
rigid anatomical structures such as in neurosurgery or orthopedic surgery. For example,
neurosurgical navigation systems with registration errors of sub millimeter accuracy
are the current golden standard.[7] These navigation systems use optical or electro-
magnetic (EM) tracked markers to acquire tool positions and perform a landmark
based or surface based registration mainly for rigid surgical regions of interest (ROI).
However, these systems in general have some drawbacks and limitations that need
to be considered: 1) Complexity: existing image-guided navigation systems can be
complex and require specialized equipment, including optical or electromagnetic track-
ing devices, sensors, and dedicated software. This complexity adds to the setup time
and may require trained personnel to operate and maintain the system effectively. 2)
Cost: implementing and maintaining image-guided navigation systems can be costly,
requiring investments in equipment, software licenses, and staff training. 3) Limited
application: due to the complexity and cost associated with existing navigation sys-
tems, they are typically implemented for specific surgeries or in specialized surgical
centers. 4) Line-of-Sight limitations: optical tracking systems, which rely on line-of-
sight between the tracking cameras and the tracked markers, can be susceptible to
occlusion and line-of-sight limitations. This can impact the accuracy and reliability
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of the navigation system, particularly in complex surgical environments. Therefore,
while existing image-guided navigation systems have made significant advancements in
surgical guidance, these drawbacks highlight the need for further research and devel-
opment to address the limitations and improve the accessibility and usability of such
systems in a wider range of surgical procedures.

With the development of AR HMDs the accessibility of visualising 3D preopera-
tive models intraoperatively is increasing.[1, 6] However, to navigate with AR HMDs
the 3D models need to be registered to intraoperative patient space[2, 3], and using
an EM or optical image-guided navigation system for these registration problems adds
the previously mentioned drawbacks to the system. AR HMDs image-guided surgery
has potential for both replacing complex systems and for surgical applications that
currently do not use any traditional image-guided navigation system due to the added
complexity.[1] An example application are procedures with a localization challenge,
such as sentinel lymph node excisions, which currently rely on directional-guided nav-
igation systems using invasive markers.[8] With accessible image-guidance navigation,
these procedures could be performed more efficiently by providing more than only
directional information. This and other application fields would accordingly benefit
from less complex methods for image registration, especially now 3D preoperative
model visualization has become more accessible.

The Microsoft HoloLens 2, released in 2019 as the successor to HoloLens 1 (2016),
is one of the most recently developed AR HMDs. The potential of the HoloLens for
image-guided surgery has had considerable research interest since its first release.[2,
3, 5, 6] Gsaxner et al. (2023)[1] conducted a comprehensive systematic review that
examined the broader applications of the HoloLens in medicine but also provided
many specific examples to image-guided interventions. In this surgical context different
tracking methods and image registration methods using the HoloLens without external
system have also been subject of investigation.[2, 3, 9] Often, the cameras of the
HoloLens are utilized to detect and track fiducial or optical markers.[10–13] However,
the use of markers attached to a patient is often invasive, having markers in the
surgical field is cumbersome, and the necessary manual calibration steps can add time
and complexity to the procedures.

One promising avenue for addressing the registration challenge lies in leveraging
the depth sensors of the HoloLens 2. These depth sensors have the potential to provide
the necessary 3D data for registering preoperative models to the intraoperative patient
space, eliminating the need for tracked instruments and user input. By utilizing depth-
based methods, it could become feasible to achieve image-to-patient registration with
greater simplicity and automation. Depth-based registration approaches have been
proposed before by several studies.[14–25] Nonetheless, the current published research
is still limited in numbers, often application specific and rarely translated to routine
patient care.

The aim of this study is to evaluate the feasibility of using the depth sensors
of the HoloLens 2 AR HMD for general depth-based image-to-patient registration.
Specifically, the experiments focus on assessing the accuracy, robustness, speed and
automation of different depth-based registration methods using the pilot system
described in the methods section. By investigating these factors, this study contributes
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to the broader goal of achieving precise and automated image-to-patient registration,
thereby enhancing the efficiency and accessibility of image-guided surgery.

2 Methods

In AR-based surgical navigation the preoperative imaging and planning data needs to
be aligned with the patient. Several steps are involved in performing the alignment
based on the intraoperative patient anatomy. This section provides a detailed descrip-
tion of these steps (see Figure 1), beginning with the preparation of the imaging data
and acquisition of the preoperative models. It then covers the process of intraopera-
tive imaging and the direct overlay of the imaging data onto the patient. Additionally,
the proposed HoloLens 2 depth-based registration system is introduced, along with
the hardware and software utilized in the system.

Fig. 1: Flowchart of AR HMD image guided surgery with depth-based registration

2.1 Preoperative imaging & planning

Preoperative imaging, such as CT or MRI scanning, is commonly performed to assist
surgeons in planning surgical procedures. However, for the imaging data to be directly
superimposed on the patient during surgery, a simpler representation of the preoper-
ative image is needed. This can be done by modeling the target structure(s) from the
3D imaging data. The left side of the flowchart in Figure 1 shows these steps. The
process involves segmenting (see Figure 2b) the desired anatomical structures of inter-
est from the scans and generating a 3D representation in the form of a surface mesh
model. A surface mesh consists of vertices, edges, and faces. The vertices represent the
points in 3D space, while the edges and faces connect the vertices to form the surface
of the model.

Different representations, such as the surface mesh model and point cloud, serve
different purposes throughout the surgical navigation process. Figure 2 shows several
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representations of a phantom skull. The surface mesh model, seen in 2c, is particularly
useful for visualization purposes. Its faces provide a smooth and continuous surface
that closely resembles the anatomical structure. This allows surgeons to gain a clear
understanding of the geometry and spatial relationships of the structures they will
be working with. On the other hand, by retaining only the vertices of the mesh a
point cloud is obtained (see Figure 2e). This information can be utilized in various
registration algorithms and spatial mapping processes to align the preoperative models
with the patient anatomy.

(a) CT volume ray casting rendering
with shading (b) CT slices with the segmented skull

(c) 3D mesh model
(d) Wireframe of edges
visualized on surface model (e) Point cloud of vertices

Fig. 2: Several digital representations of a phantom skull

2.2 Intraoperative Imaging

To align the preoperative image with the patient anatomy during surgery, an intraop-
erative representation is required. This can be achieved by capturing the surface of the
patient’s anatomy, as the surface is also represented in the preoperative scan. Depth
sensors, such as those integrated into the Microsoft HoloLens 2, can therefore be uti-
lized for intraoperative data acquisition. These sensors capture depth information of
the scene, enabling the reconstruction of the 3D environment. The Microsoft HoloLens
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2 utilizes two types of depth cameras: the Articulated Hand Tracking (AHAT) camera,
which operates at a high frequency of 45 frames per second (FPS), and the Long-
throw (LT) camera, which operates at a lower frequency of 1-5 FPS. Both cameras
utilize Time-of-Flight (ToF) infrared technology to measure the distance to objects in
the environment.[26]

The HoloLens 2 is furthermore equipped with other cameras and sensors to enable
Simultaneous Localization and Mapping (SLAM). With SLAM the HoloLens tracks
its own location in the world space, allowing the projection of holograms at fixed
locations. The SLAM functionality is achieved through four grayscale cameras and an
inertial measurement unit (IMU). The grayscale cameras detect points of interest in
the environment, while the IMU provides information about force, angular rate, and
headset orientation. The device also features a Photo Video (PV) camera capable of
capturing 8 MP 1080P30 video and allows spatial input such as eye gaze tracking and
voice recognition.

During intraoperative image acquisition (see the right side of Figure 1), the depth
frame captured by the HoloLens 2 containing estimated depth values for each pixel
is converted into a point cloud representation using a calibration mapping function.
The points in this point cloud are still in the depth sensor space. Device specific
calibration transforms for every HoloLens are available to transform from any sensor
space to a common rigNode space.[26] Therefore, with the SLAM-based localization of
the HoloLens and the thereby provided depth camera poses in world space, the points
in the point cloud can be transformed from depth sensor space to the HoloLens world
space coordinate system.

Subsequently, postprocessing techniques can be applied to refine the initial point
cloud data. One well-established method for depth scene reconstruction is the Trun-
cated Signed Distance Function (TSDF) volume integration.[26–29] TSDF volume
integration involves voxel-based representation of the 3D space and updating the occu-
pancy and distance values based on a stream of incoming depth data. This allows for
the creation of a more detailed and accurate 3D representation of the intraoperative
scene, which can then be used for alignment during the surgical procedure.

2.3 Image to patient alignment

Once the preoperative data and models are processed, and the intraoperative target
data is acquired, the alignment between the two needs to be established (see top
right Figure 1). In the case of rigid anatomical structures, a rigid transformation is
sufficient for alignment. A rigid transformation includes translation and rotation of the
source model, while preserving its original geometry. To achieve this alignment, point
cloud representations and point cloud registration algorithms are commonly used. One
frequently employed algorithm is the Iterative Closest Point (ICP) algorithm. The
ICP algorithm iteratively aligns the preoperative point cloud with the intraoperative
point cloud by minimizing the distance between corresponding points. This iterative
process allows for the estimation of the rigid translation and rotation necessary to
accurately align the two point clouds.

There are other registration algorithms available, each with different character-
istics in terms of speed, accuracy, robustness to noise, and other factors. Some
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examples of registration algorithms are Coherent Point Drift (CPD)[30], Globally
Optimal ICP (Go-ICP)[31], 2-Point-Normal Sets[32] and Support Vector Registration
(SVR)[33]. These algorithms offer alternative approaches for point cloud registration.
Python libraries such as Open3D[28] provide implementations of various point cloud
registration algorithms, including different variants of the ICP algorithm and other reg-
istration methods like RANSAC global registration[34] and fast global registration[35].
Open3D also includes feature extraction methods like Fast Point Feature Histograms
(FPFH)[36] to assist in global registration. Global registration algorithms use fea-
ture extraction methods to extract distinctive features from point clouds, which are
then used to find initial alignments between the preoperative and intraoperative point
clouds. This helps to avoid falling into local minima and therefore reduces the failure
rate of alignment attempts.

In current practices, a global registration algorithm is often used to establish an
approximate alignment and is followed by a refinement algorithm such as ICP for fine-
tuning and achieving higher accuracy. Once the transformation is determined, the AR
hologram can be updated and visualized in the correct pose, augmenting the target
anatomy during the surgical procedure.

2.4 AR Visualization

Traditional navigation systems can display augmentations such as planning anno-
tations, tracked instruments, and anatomical segmentations superimposed on the
preoperative data. However, Augmented Reality (AR) takes this a step further by
overlaying these augmentations onto the user’s reality. We focus on the Microsoft
HoloLens 2 because the device can function as a stand-alone navigation system.

It is important to note that a different more detailed model may be used for
the registration process compared to the one used for visualization. In the case of
AR visualization with the Microsoft HoloLens 2, the models used for visualization
are specifically tailored to the device’s computational power, additive display char-
acteristics, transparency, and other relevant factors. For example, to optimize the
computational performance, models with a large number of vertices and faces may
be remeshed to sparser and simpler models, reducing the rendering complexity. Addi-
tionally, user interface (UI) options can be integrated into the AR application. These
options can include sliders to adjust the transparency of the models and buttons to
activate or deactivate the rendering of specific models based on user preferences (see
Figure 3).

An example workflow in AR visualization involves initially visualizing the surface
model to assist the user in assessing the registration result. Once the user is satis-
fied with the alignment, the surface model can be deactivated to focus on the models
projected inside the patient as seen in Figure 3b. These internal models can repre-
sent various relevant tissues such as lymph nodes, organs, tumors, bones, nerves, or
vessels, providing guidance to the user during the surgical procedure. Furthermore,
preoperatively planned incisions, drill trajectories, or cutting planes can be visualized
on demand, enhancing the precision and accuracy of the surgical intervention.
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(a) User interaction with
transparency slider

(b) Wireframe surface model deactivated after
alignment

Fig. 3: HoloLens app for abdominal phantom with transparency slider and on/off
buttons

2.5 Pilot HoloLens 2 system

The pilot system consists of a HoloLens 2 device and a PC connected to the same
network. In summary, the HoloLens captures depth sensor frames and transmits them
to the PC. The PC processes the data to determine the intraoperative position of the
preoperative model and sends this information back to the HoloLens. The HoloLens
then visualizes an aligned hologram based on the received location. Figure 4 provides
an overview of the pilot system components, illustrating their interconnections and
data flow.

More specifically, the system employs a Unity engine application, developed for the
HoloLens 2 using Mixed Reality Toolkit (MRTK), which offers a user interface and
enables interaction with preloaded models.[37] The Unity application incorporates a
server that allows the PC client to establish a connection with the HoloLens device
over the network. To enable this client-server communication with data streaming
functionality, the pilot system utilizes a Unity plugin called HoloLens 2 Sensor Stream-
ing (HL2SS), developed and published by Diben et al. in 2022 [38]. This plugin, which
is open-source, leverages the capabilities of the Microsoft HoloLens 2 Research Mode
[26] to access raw sensor data. By integrating the HL2SS plugin into a Unity appli-
cation, it becomes possible to establish TCP-based streams of sensor data from the
HoloLens 2 to the PC client. The HL2SS server not only facilitates the streaming of
sensor data but also allows clients to send a message back to the server. Noteworthy
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Fig. 4: Data flow and processing options of depth-based HoloLens 2 registration sys-
tem
1HoloLens 2 Sensor Streaming Unity plugin (dll) GitHub Repository

is that we made modifications to the HL2SS source code to enhance its functionality
for our specific requirements. The original plugin did not support remote interaction
with existing Unity GameObjects. Therefore, we adapted to code to enable the Unity
application to receive a world space transformation matrix for a predefined GameOb-
ject, specifically the preoperative model. Another modification was made to enable
the PC client to request the world space transformation matrix of a preloaded pre-
operative model GameObject. This capability proved useful as it could be used as an
initialization position and rotation for the registration algorithms. Consequently, the
pilot system can stream frames from the depth sensors of the HoloLens to a Python
application running on the PC, which, in turn, can send a registration matrix back to
the Unity application on the HoloLens.

On the client side (a python script running on the PC) we use the Open3D Python
library for processing due to its active development and the extensive range of imple-
mented features. The Open3D based processing handles all incoming HoloLens data
and performs various operations on them. These operations can include point cloud
registration, feature extraction, surface reconstruction, or any other processing steps
for aligning the preoperative models with the intraoperative data. For our experiments
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in this study, we compared several methods that could be implemented in the pro-
cessing module, with a specific focus on the steps denoted by the dotted borders in
Figure 4, such as initialization and cropping of the region of interest in the target point
cloud. We limited our investigations to the state-of-the-art implementations available
in the Open3D library. In particular, for the reconstruction of the target point cloud,
we chose to utilize TSDF (Truncated Signed Distance Function) volume integration.
TSDF volume integration is considered the state of the art in dense scene reconstruc-
tion. While there are numerous options for optimization in dense scene reconstruction,
we focused on the feasibility of the system rather than extensive optimization for our
experiments.

3 Experiments & Results

We performed three experiments aimed at assessing the feasibility of utilizing the depth
sensors of the HoloLens 2 AR HMD for general depth-based image-to-patient regis-
tration. The first experiment focused on evaluating the accuracy of the depth sensors,
as these results would provide insights into the expected performance of the image-
to-patient registrations. In the second experiment, a quantitative assessment using
the pilot system described in the method section 2.5 was conducted. This experiment
aimed to compare various registration approaches of the pilot system. Lastly, a quali-
tative experiment was conducted using different target objects to assess the system’s
performance with varying material types and geometries. These selected experiments
were conducted to gain valuable insights and determine the potential of the system in
real-world scenarios.

3.1 HoloLens depth sensors accuracy

This first experiment aims to evaluate the accuracy of the depth frames captured by the
Articulated HAnd Tracking (AHAT) and Long-throw (LT) cameras of the HoloLens
2 under various distances and lighting conditions. Accurate depth measurements are
crucial for ensuring the reliability of the image-to-patient registration process, as the
depth data serves as the intraoperative target for registration. Our main focus was to
assess the accuracy behavior of these sensors in a surgical environment.

3.1.1 Experimental setup

Similar to the work of Gu et al. (2021)[22], this experiment aims to compare distances
estimated by the HoloLens sensors with ground-truth known distances. The exper-
iment involves observing objects placed on a table under specific conditions while
recording the depth data from the HoloLens sensors. To establish a ground-truth,
the dimensions of the objects are known and the distance from the HoloLens to the
table is measured using a different method. The different measurement method of the
distance is further explained in section 3.1.2.

For the experiment setup, as seen in Figure 5a, three objects with a flat surface
and of known dimensions were placed on a flat table, with the table itself functioning
as a fourth surface. The objects used in the experiment consisted of a 3D printed

12



rectangular house-shaped model, a Lego cube, and a box, all covered with regular
matte white printer paper to ensure similar surface material characteristics. Table 1
reports the heights of these objects.

Table 1: Height of
observed objects

Object Height [mm]

Table 0
House Model 60
LEGO Cube 95
Box 247

Table 2: Acquisition Variables

Hololens Device OR Lighting Distance to table [cm]

A / B On / Off 50 / 70

The experiment involved two HoloLens devices and specific independent environ-
mental variables to ensure a relevant evaluation of the sensors (Table 2). To achieve
this, the depth values were analyzed within a range that is relevant to surgical proce-
dures. The angle and distance between the HoloLens and the table were perpendicular
and fixed at 50 cm or 70 cm (see Figure 5). Additionally, we investigated the impact
of operating room (OR) lights on the depth measurements, providing an assessment of
the sensors’ performance under realistic conditions encountered during surgical pro-
cedures. In our setup, four surfaces and two setup distances resulted in eight different
surface distances to be observed. Subsequently due to using two lighting conditions
and the two depth sensors, 8 acquisitions needed to be done per HoloLens device.
Resulting in 16 acquisitions that ran for 30 seconds.

3.1.2 Distance evaluation metrics

To establish a ground truth, a reference plane was created using four ArUco[39, 40]
QR codes with a width of 10 cm. The purpose of establishing the reference plane is to
provide an external reference for the estimated depths. By creating a reference plane
for each acquisition, the point cloud points can be projected onto this plane, enabling
the measurement of the distance between the point cloud points and the reference
plane. For each observed surface, the expected distance to the reference plane is known
and should be either 0 mm, 60 mm, 95 mm, or 247 mm, corresponding to the specific
objects used in the experiment. The length between the estimated distance (Dest)
and the reference distance (Dref) subtracted from the known object height (Dreal)
gives the error in depth estimation (Derror). This error indicates whether the depth is
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(a) OR light setup (b) Virtual side view of setup

Fig. 5: Experiment setup of depth camera accuracy evaluation

(a) Normal lighting conditions (b) OR lighting conditions

Fig. 6: RGB frames of HoloLens PV camera with detected QR-codes

overestimated or underestimated:

Derror = Dreal − |
−−−−−→
DestDref|

Figure 5 shows the experimental setup as well as the side view of the setup in the
virtual world coordinate space.

The QR codes were positioned around the target objects on the table. The detec-
tion and pose estimation of the QR codes in the HoloLens PV camera space were
performed using OpenCV and ArUco libraries.[39–41] The PV camera was configured
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at a resolution of 1080p and 30 fps. The size of the marker and the highest resolution
of the HoloLens 2 PV camera have been chosen based on the publication of Thabit
et al. (2022)[9], where they evaluated the accuracy of ArUco marker tracking using
the HoloLens 2 PV camera and reported a mean translational error of 1.8 ± 0.6 mm
for 10 cm marker size at 50 cm distance, using the same resolution of 1080p. For this
experiment we assume this to be accurate enough as a ground truth.

The HoloLens provides device specific transforms that allow for the transformation
from any camera space to a common device rigNode space.[26] This capability was
utilized to transform the pose estimations of the QR codes in the PV space and the
point cloud points in the AHAT or LT space to a shared world space coordinate
system. For every acquisition all RGB frames and their respective focal and principal
points were used for QR code pose estimation. For a single frame example see Figure
6. The mean coordinates of the four QR codes were used to fit a plane using the
PyVista python library implementation of the singular value decomposition (SVD)
algorithm.[42]

Before the start of every acquisition the angle between the reference plane (based
on a single RGB frame) and the forward vector of the PV camera was set to 180 ±
5 degrees to additionally ensure that the HoloLens was perpendicular to the surfaces.
Likewise the distance between the HoloLens and the reference plane was set at 50
cm or 70 cm, with a tolerance of 1 cm. For each individual acquisition, the depth
frames were converted into point clouds in world space, and all points were combined
to form a single point cloud representing the entire 30-second acquisition. From this
comprehensive point cloud, the flat surfaces of the objects and the table were manually
selected. Using bounding boxes with dimensions of 3 × 3 × 8 cm, the surfaces were
cropped to ensure a consistent surface area for calculating the depth estimation error.

3.1.3 Results

For the 50 cm distance and the OR light on, the QR codes had to be re-positioned
to the center of the frame to ensure detection. (Figure 6) For all 16 acquisitions, the
standard deviation of the ArUco pose estimation for the QR codes in world coordinate
space was determined. These are based on the PV camera that reports a pose per RGB
frame based on the HoloLens SLAM. Since the HoloLens is fixed in position during
acquisition, the SLAM drift can be removed from the pose estimation by only using
the PV SLAM based pose of the first acquired frame. Table 3 shows the standard
deviations of translation for these three factors.

Table 3: Standard deviations of SLAM and estimated QR-code positions

Translation standard deviation
(in world coordinate space)

x [mm]
mean/min/max

y [mm]
mean/min/max

z [mm]
mean/min/max

QR code positions with SLAM poses 0.18/0.05/0.57 0.36/0.11/0.75 0.19/0.06/0.73
SLAM PV camera poses 0.17/0.04/0.59 0.17/0.05/0.67 0.21/0.03/0.53
QR code positions with single PV pose 0.09/0.05/0.14 0.27/0.09/0.53 0.08/0.04/0.14
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For all 16 acquisitions the maximum reported standard deviation of all SLAM
based PV camera poses was sub-millimeter translation. Using these poses for QR code
position estimation the maximum standard deviation of 15 acquisitions was still found
to be sub-millimeter, but slightly higher. This implies a stable reference plane, ensuring
precise error calculations. However, one acquisition conducted under OR lighting con-
ditions exhibited significant axial QR code pose estimation standard deviations of 10
to 20 millimeters. This large variance in QR code position detection potentially leads
to an unreliable reference plane. Therefore, this particular acquisition was excluded
from further analysis. Estimating the QR code positions in world coordinate space
based on a single PV pose to remove the SLAM drift, in these cases translation stan-
dard deviation decreased. Appendix Table A1 provides an overview of the acquired
frames and QR code poses for each acquisition.

(a) 50 cm distance setup (b) 70 cm distance setup

Fig. 7: Depth estimation errors at different distances to the HoloLens for the AHAT
and LT sensor

Figure 7 presents the distance errors (with respect to the depth measured via
the ArUco markers) per sensor and per observed surface. A positive distance error
indicates depth overestimation. The following observations can be made:

• Both sensors (AHAT and LT) exhibit a mean overestimation error for all surfaces.
• The LT sensor generally shows a higher mean overestimation, although this
difference decreases for surfaces located further than 50 cm.

• The standard deviation of the LT sensor is lower for surfaces positioned beyond 50
cm.

• The standard deviation of the AHAT sensor increases with the distance to the
surface.
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• The AHAT sensor exhibits a higher number of outliers compared to the LT sensor.

Furthermore, Figure 8 displays the distance errors for all acquisitions categorized by
lighting conditions and HoloLens device. The difference observed between the two
HoloLens devices is small: difference of mean error for AHAT and LT sensor of 0.74
mm and 1.34 mm. A larger difference in the mean error appears to be present for
acquisitions conducted under other OR lighting conditions: a decrease of mean error
for AHAT and LT sensor of 1.95 mm and 2.40 mm with the OR lights on.

(a) OR lighting conditions (b) Two different HoloLens 2 devices

Fig. 8: Depth estimation errors for the AHAT and LT sensor

Upon visual inspection, the point clouds generated by the AHAT and LT sensors
exhibited various artifacts. Both sensors displayed a distinctive pattern of spherical
layers when examining the cross-section of a surface, originating from the direction
of the HoloLens (see Figure 9). The LT sensor, in particular, failed to provide depth
values for areas in close proximity to the HoloLens. This issue was most prominent
when capturing the surface of the tallest object, the box, during the acquisition setup
at a distance of 50 cm from the reference plane. On the other hand, the AHAT sensor
demonstrated more artifacts in the air close to the sensor and at the edges of the
depth frame. In contrast, the point clouds generated by the LT sensor did not exhibit
these artifacts. Additionally, both sensors showed irregularities in the pattern of the
black area of the QR codes on the table. Examples of these artifacts can be found in
Appendix A. Considering these observations, the LT sensor is preferred for use in the
registration methods of the next experiment due to its relatively fewer artifacts and
lower standard deviations for the depth error in the feasible operating range.

3.2 Depth registration methods

This experiment aims to evaluate the accuracy, robustness, and speed of depth registra-
tion with the HoloLens. Four different depth-based registration methods were assessed
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Fig. 9: Surface crops of complete 30 seconds AHAT acquisition point cloud with
annotated point of view of the HoloLens

and compared using the pilot system described in Section 2.5. The objective was to
compare a limited set of methods to assess the core features of the system and deter-
mine the potential of using the HoloLens 2 LT sensor for depth-based image-to-patient
registration in a surgical user environment. This experiment serves as a starting point
to assess the feasibility and potential of the system, and the results will guide future
improvements and optimizations to enhance its accuracy and performance.

3.2.1 Experimental setup

The pilot system allows for the implementation of various point cloud registration
methods, depicted as methodological modules in Figure 4. As mentioned in the meth-
ods section ICP is an established point cloud registration method, but it does require
a good initialization to converge. To determine what initialization is required to solve
the image-to-patient registration problem with the ICP algorithm as a succeeding step
for fine registration, this experiment focuses on four specific registration initialization
methods.

The rationale to compare these four different methods is to know their speed, suc-
cess rate, and their influence on the resulting registration accuracy. The first method
is a manual corresponding point picker initialization method, which is also provided as
an example function in Open3D. However, since the user has to manually select these
points on the client PC, the process is cumbersome and may not suitable for a clinical
workflow. Therefore, a second method was developed to transfer the manual initial
alignment task to the HoloLens app, making it easier to use in a clinical setting. The
other two methods are automatic, aiming to further enhance user convenience. These
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(a) 3 point picking on target point cloud (b) Manual coarse alignment

(c) Eye gaze raycast on target point cloud

Fig. 10: Different registration initialisation methods

automatic methods utilize the eye gaze tracking capability of the HoloLens 2 for deter-
mining the region of interest (surgical field) to initialize the registration automatically.
The four methods are described in more detail below.

The target phantom used for registration was a Sawbones spine phantom, as shown
in Figure 11. In this experiment, the HoloLens app was build with the preoperative
model of this target phantom, acquired from a CT scan as mentioned in section 2.1.
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The app included five visualizations of the model differing in colour, each correspond-
ing to a specific registration method and one assigned for the ground truth reference.
These visualizations update based on the received registration results from the PC. On
the PC, the four methods received the same source point cloud based on a preoperative
model. Depth data from the HoloLens LT sensor was used for the target point cloud,
since the previous experiment showed the LT sensor can provide higher quality point
clouds compared to the AHAT sensor. For every registration task the four different
methods were also provided with the same target point cloud. The target point cloud
was generated using the truncated signed distance function (TSDF) volume integra-
tion implementation of Open3D.[27, 28] TSDF volume integration parameters were
set to a voxel size of 1.3 mm and the truncation value for the SDF was set to 0.002.
These parameters provided a decent balance between computational time, detailed
feature reconstruction and noise filtering.

A registration task proceeded as follows: 1) The model coupled with the ”Manual”
method was grabbed and placed roughly aligned on the target phantom by the user.
2) The target phantom was observed by the user from several sides while making sure
to also look at the target phantom. 3) The user gave the ”align” voice-command. 4)
The world position of the ground truth model was saved. 5) The last 50 frames and
poses of the LT sensor and the left front grey-scale sensor stream are used as input for
the TSDF volume integration. (Since the LT sensor is 5 FPS, this was approximately
the last 10 seconds of data.) 6) The user went to the client PC to pick 3 points on
the reconstructed target point cloud and then 3 point on the source point cloud. 7)
All registration results were sent to their corresponding models in the HoloLens app
to visualize the registration results. The reason the target phantom was observed
by the user from several sides was to provide the TSDF volume integration more
heterogeneous camera poses and depth frames and therefore potentially capture more
features of the target phantom.

1. Method 1 - ”3P” (3 Point Picking): This method involved user interaction
with the client PC monitor, where both the target point cloud and the source
point cloud were displayed consecutively. The user had to manually select three
corresponding points between the point clouds to initialize a ICP. To facilitate
the selection of corresponding points, the user was initially presented with the
reconstructed target point cloud. This approach was adopted due to the uncertainty
regarding which features would be reconstructed most prominently, thus enabling
easier identification and selection of corresponding points. Figure 10a shows a target
point cloud with 3 picked points visualized as coloured spheres.

2. Method 2 - ”Manual”: The world position of the hologram model coupled with
this method was retrieved from the HoloLens app. This was used to crop the target
point cloud and as the initialization pose for ICP. The user was therefore required
to place the hologram of the preoperative model coarsely aligned with the phantom
before initiating the registration process. The hologram placement was performed
from a single viewing angle and was limited to approximately 5 seconds. Figure
10b shows the user aligning the model with blue evaluation markers with the target
phantom. The user had the capability to set the white mesh of the hologram to
(semi-)transparent.
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3. Method 3 - ”Eye”: The eye gaze spatial input of the HoloLens was utilized in this
method. Therefore the user had to look at the target phantom while observing sev-
eral sides up until they gave the ”align” voice-command. After the voice-command
the last 100 spatial input data points, captured at a frequency of 30 Hz, were pro-
cessed for this method. The eye gaze ray was cast onto the target point cloud, and
the median of these raycasted points was calculated. This median was used to crop
the target point cloud based on a bounding box of 1.2x the size of the phantom.
The translation of the source point cloud to this median point was used as ICP
initialisation. Figure 10c shows the target point cloud, coordinate frames that rep-
resent poses of the head tracking, green lines that represent the eye rays originating
from these tracked head poses, and the red bounding box used to crop the target
point cloud based on the median raycasted eye point displayed in purple.

4. Method 4 - ”Eye RANSAC”: Similar to Method 3, this method utilized the
eye gaze spatial input. During development of method 3 the success rate appeared
to be low. The hypothesis for that was that the translational initialization method
3 provides is not sufficient enough. Therefore we developed method 4. Method 4
includes additional steps to potentially overcome the lack of rotational initializa-
tion: First, a fast global registration was applied with the coarse cropped target
point cloud surrounding the median eye gaze point. The output of the fast global
registration was then used to initiate a RANSAC global registration. The resulting
pose from the RANSAC registration was used to crop the target point cloud a sec-
ond time. This more finely cropped target point cloud, along with the RANSAC
registration pose, eventually served as input for ICP. Figure 10c additionally shows
a blue bounding box, which is the bounding box used to crop the target point cloud
once more after the RANSAC global registration.

3.2.2 Registration evaluation metrics

To assess the performance of the registration methods, a ground truth was established
using the multi-modal method described in Benmahdjoub et al. (2022).[43] For detailed
technical specifications and implementation details, please refer to the full text of
Benmahdjoub et al. (2022).[43] The key aspects of this method for clarity and context
are: 1) landmark-based registration of the preoperative model to the spine phantom
using the NDI Aurora system and an attached EM tracker 2) a Vuforia Augmented
Reality SDK image target attached and calibrated to an EM tracker 3) a Unity server
streaming the NDI Aurora positions relative to the Vuforia image target to the Unity
app in the HoloLens. By building the Unity app on the HoloLens with the Vuforia
engine as plugin, the HoloLens can track the Vuforia image target. This results in the
HoloLens being able to display all holograms superimposed on the objects tracked by
the NDI system, as can be seen in Figure 11.

This established ground truth, known to have achieved a target registration error
(TRE) of 2 mm in previous studies [44, 45], provided a benchmark for evaluating
the performance of our point cloud based registrations. The registration error matrix
Rerror was used to calculate the rotation error. Of the rotation matrix from Rerror

the magnitude was calculated to represent the error of rotation as a single angle. The
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(a) Ground truth registration
(b) Ground truth registration, with only red
evaluation markers visualized

(c) Preoperative model of spine with embedded evaluation mark-
ers

Fig. 11: Ground truth multi-modal registration with superimposed holograms on the
Sawbones spine phantom.

translation error was calculated by the distance d between two points.

Rerror = Rndi ·R−1
depth

d = |RndiCTcenter −RdepthCTcenter|
The two points were defined by transforming the geometric center of the preoperative
model from CT space to world space (CTTWCS) twice. Once using the ground truth
registration matrix Rndi and once using the depth-based registration matrix Rdepth. If
the rotation error (RE) exceeded 20 degrees, the registration was marked and reported
as failed. Additionally, the registration time of each method was measured between
the ”align” voice-command and visualization of the result.
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3.2.3 Results

We executed 30 registrations with the phantom model in different positions. The
quantitative results for each registration method are summarized in Table 4. The
mean translation errors of the four initialization methods ranged between 12.6 and
14.7 mm, rotation errors between 1.5 and 1.8 degrees. The minimum translation and
rotation error observed was 6.9 mm and 0.5 degrees, respectively, while the maximum
translation and rotation error was 18.8 mm and 3.2 degrees, respectively. Methods
”3P” and ”Manual” consistently provided successful registration (100%). The ”Eye”
and ”Eye RANSAC” initialization methods did not always succeed, with ”Eye” 23.3%
and ”Eye RANSAC” 50% of times. Method ”3P” was the slowest method with a
mean time of 34.5 seconds. The other three methods all achieved registration within
5 seconds. Box plots depicting the translation error (TE) and rotation error (RE) for
each method can be seen in Figure 12. Additionally, Figure 13a presents box plots
illustrating the registration time for each method.

Figure 13b illustrates the relationship between the magnitude of ground truth
rotation and the success or failure of registrations for each method. It can be observed
that the ”Eye” method had a restricted number of successful registrations, which
were achieved only when the orientation initialization fell within a specific range (130-
180◦). Similarly, the ”Eye RANSAC” method also had a limited number of successful
registrations. However, Figure 13b demonstrates that ”Eye RANSAC” achieved 8
additional successful registrations across a wider range of orientation initializations.

Table 4: Results for 30 registrations

Method Fail TE [mm] RE [deg] Time [sec]
Manual 0 14.06 ± 2.54 1.64 ± 0.6 2.60 ± 0.3
3P 0 12.59 ± 2.52 1.80 ± 0.7 34.55 ± 6.0
Eye 23 14.02 ± 3.13 1.58 ± 0.6 4.12 ± 0.5
Eye RANSAC 15 14.69 ± 3.01 1.45 ± 0.6 4.08 ± 0.5
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(a) Translation error (b) Rotation error

Fig. 12: Registration errors of depth-based methods vs multi-modal ground truth

(a) Time per initialization method (b) Success vs ground truth rotation

Fig. 13: Registration time and success per initialization method

Qualitatively the registrations were assessed in renderings using Open3D and in
mixed-reality (MR) using the MR capture of the HoloLens. As can be seen in Figure
11c the preoperative model was extended with several markers to help assist qualitative
evaluation in MR. Three cylinders were added that pierced some of the dorsal sacral
foramina, and multiple spheres were added to the tips of spinous processes. By not
having to visualize the entire preoperative model, which causes overlapping and occlu-
sion problems, these evaluation markers aided visualization of small translational and
rotational differences between the ground truth and depth-based registration meth-
ods. In order to be distinctive, the four methods and the ground truth were assigned a
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different colour for visualization. Table 5 shows the colour code for each method and
the ground truth.

Table 5: Colour code
for models and evalu-
ation markers

Method Colour

Ground truth Red
Manual Blue
3P Green
Eye Yellow
Eye RANSAC Orange

The next figures provide insights into the qualitative registration results obtained
using different depth-based methods. Figure 14 and Figure 15 show examples of reg-
istration results in MR, while Figure 16 and Figure 17 display registration results in
the rendering.

Fig. 14: Mixed reality photo of registration result. The tracked NDI EM pointer (grey
cylinder) is linked to the ground truth.

In Figure 14, registration results from depth-based methods are shown with the
ground truth. The zoomed-in areas display the hardly visible blue markers (method
”manual”), green markers (method ”3P”), and red markers (ground truth). It can
be observed that the blue and green markers are partially overlapping, though there
is an observable shift comparing them to the red ground truth. However, it is not
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immediately clear if the observed ground truth in Figure 14 represents a qualitatively
better registration compared to the depth-based methods. It is important to note that
the EM-tracked NDI pointer is associated with the ground truth visualization of the
multi-modal method. The shift between the superimposed grey cylinder of the NDI
pointer and the real NDI pointer indicates that the ground truth itself may not always
be perfect, as evidenced by the misalignment between the two.

(a) Side view of a result visualized with evaluation markers

(b) Angle view of a result visualized with evaluation markers

Fig. 15: Mixed reality photos of registration results with evaluation markers.

Figures 15a and 15b provide further comparisons between the registration results
obtained from depth-based methods and the ground truth. In addition to the green
and blue markers representing the ”3P” and ”Manual” methods, Figure 15a and 15b
also include the orange markers representing the ”Eye RANSAC” method. Observing
these figures, it can be noted that the orange markers of the ”Eye RANSAC” method
are slightly more shifted compared to the partially overlapping green and blue markers.
However, all successful depth-based registrations remain closer to each other than to
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the ground truth. Specifically, when examining the piercing cylinders in Figure 15b
and the spheres on the spinous process in Figure 15a, the ground truth appears to be
shifted upward but qualitatively slightly better than the depth-based registrations.

(a) Example of a reconstructed target point cloud

(b) Rendering of ground truth (red) and manual method (blue) result

Fig. 16: Overview of the virtual scene and registration

Figure 16a displays the reconstructed target point cloud after TSDF volume inte-
gration, with the grey-scale values of the left front camera mapped onto it. The target
phantom is clearly visible, along with its geometric features such as the spinous pro-
cesses and the sacrum. Figure 16b provides an overview of two preoperative models
placed on the target point cloud, based on the saved world poses of the ground truth
(red) and the ”Manual” method (blue). In Figure 17, the same scene is shown with
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annotated details. Examining Figure 17a, it can be observed that the blue model (rep-
resenting the ”Manual” method) is accurately aligned with the target point cloud. In
contrast, the ground truth model appears to be slightly rotated and mostly translated
upwards. Figure 17b presents a different perspective and highlights the annotated
translation and rotation errors. While these figures represent a single example, analyz-
ing all registration results revealed that the observed translation errors, characterized
by a shift downwards compared to the ground truth, were systematic in nature.

(a) Side view showing rotation and translation error

(b) Zoomed-in result showing translation and rotation error

Fig. 17: Specific visual errors in the rendered results

3.3 Qualitative assessment

Based on the results of the registration method experiment, the ”Manual” method
and the ”Eye RANSAC” method were chosen for further qualitative analysis in this
experiment. The ”Manual” method was selected due to its robustness in providing
successful registrations and its user-friendly workflow. Likewise, the ”Eye RANSAC”
method was chosen because it was the most successful automatic method.
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The objective of this experiment was to evaluate the performance of the ”Manual”
and ”Eye RANSAC” methods on different objects with diverse geometric features
and material properties. Preoperative models of a set of objects and phantoms were
obtained and loaded into the HoloLens app. The same implementation details as in the
registration methods experiment were used to test the ”Manual” and ”Eye RANSAC”
methods on these objects.

Since there was no quantitative ground truth available for comparison, the analysis
in this experiment relied on qualitative assessments of the mixed-reality photos and
renderings. The focus was on evaluating the visual outcomes and assessing the effec-
tiveness of the registration methods in overlaying the preoperative models onto the
real-world objects and phantoms, providing insights into the usability and effectiveness
of the methods in various clinical scenarios.

3.3.1 Objects & Models

The objects selected for the qualitative phantom assessment experiment were cho-
sen based on their diverse geometric features and material properties. These objects
included:

• Lower leg cadaver: A lower leg specimen obtained from a cadaver.
• Triple Modality 3D Abdominal Phantom: CIRS model 057A
• Skull phantom: A 3B Scientific skull phantom
• Lego cube: A simple geometric object, a cube made of Lego bricks.
• Mannequin: A mannequin of the upper body made of black reflective plastic.

CT scans were used for the lower leg cadaver, abdominal phantom, skull phantom, and
Lego cube. The CT scan data allowed for the creation of detailed preoperative models,
including internal structures in the case of the cadaver foot and abdominal phantom.
In the case of the skull phantom, an evaluation marker and a tumor-shaped model
were added to the preoperative model for illustrative purposes. For the mannequin, a
detailed surface mesh was obtained using a 3D scanner (3dMD).

Fig. 18: Objects used for the qualitative assessment (left to right: lower leg cadaver,
abdominal phantom, skull phantom, Lego cube, Mannequin)
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3.3.2 Alignment Results

In Figure 19, two lower leg cadaver cadavers with superimposed holograms can be
observed after a successful registration using the ”Eye RANSAC” method. The regis-
tration process required multiple attempts before achieving a satisfactory alignment,
but the desired result was obtained within approximately thirty seconds. Upon closer
inspection of Figures 19a and 19b, a noticeable shift in alignment can be observed, this
shift was particularly present in the direction in which the feet were observed during
acquisition.

(a) Superimposed hologram with wireframe
skin, red calcaneus and white talus model

(b) Superimposed hologram with wireframe
skin and green bone models

Fig. 19: Cadaver feet with aligned preoperative models.

In Figure 20, the abdominal phantom is depicted along with its aligned preoper-
ative model. Both the ”Manual” and ”Eye RANSAC” methods were tested on this
phantom, and both methods achieved successful alignment results in under 10 seconds.
In Figure 20a a small shift can be observed on the left side of the phantom. Figure
20b shows the perspective of the user once the wireframe mesh model is deactivated
and only the internal structures of the phantom are visualized.

Figure 21 shows a visually satisfactory alignment of the preoperative skull model
with the skull phantom. This alignment was achieved using the ”Manual” method, as
the ”Eye RANSAC” method did not yield consistent successful results. However, even
with the ”Manual” method, it was necessary to execute the alignment process mul-
tiple times before achieving an accurate alignment. Additionally, particular attention
needed to be paid to the anterior features of the skull during data acquisition. The
limitations of the ”Eye RANSAC” method in achieving consistent results highlight
the complexities involved in aligning objects with intricate geometric features, such as
the skull phantom.
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(a) Superimposed hologram with wireframe
skin model active

(b) Superimposed holograms of liver and bone
model

Fig. 20: Triple modality abdominal phantom with aligned preoperative models.

(a) Adequate alignment of the wireframe pre-
operative model

(b) Red evaluation marker on os nasale and
illustrative tumour hologram

Fig. 21: Skull phantom results

In the test involving the Lego cube, no successful alignments were achieved. Figure
22a illustrates a failed result obtained using the ”Manual” method. Further investiga-
tion of the reconstructed target point cloud, as shown in Figure 22b, revealed potential
limitations contributing to the unsuccessful alignments. The surfaces of the Lego cube,
which are composed of Acrylonitrile Butadiene Styrene (ABS) with a reflective finish,
exhibited a lower density of points in the target point cloud, particularly in the reflec-
tive areas. Furthermore, the sharp edges and intricate geometric features of the Lego
cube were not accurately represented in the reconstructed target point cloud.

In the case of the upper body mannequin, the ”Eye RANSAC” method was tested
to assess the influence of the larger surface area available for registration. The man-
nequin had similar material properties to the Lego cube. The ”Eye RANSAC” method

31



(a) Failed alignment
(b) Sparse reconstructed target point cloud
with rounded edges

Fig. 22: Lego cube results

often failed to provide an alignment. Only under specific lighting conditions that min-
imized reflections, a result similar to Figure 23a was obtained. Using the ”Manual”
method, all registration attempts failed. Upon visually inspecting the reconstructed
target point clouds and analyzing the raw depth frames, it was evident that very few
depth values could be estimated from the surface of the mannequin (Figure 23b). In
cases where alignment was achieved using the ”Eye RANSAC” method, the sparse
points that were estimated were also found to be inaccurate. This is evident from the
significant shift of the preoperative model inside the mannequin, as shown in Figure
23a.

(a) Poorly aligned mannequin hologram
(b) Sparse target point cloud with registered
source point cloud

Fig. 23: Registrations of mannequin chest model with dark reflective material
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4 Discussion

In our evaluation of the AHAT sensor of the HoloLens 2, which has similar specifica-
tions as the AHAT sensor of the HoloLens 1, we observed a trend of overestimated
depth points, consistent with the findings of Gu et al. (2021) [22]. Our distance
error values for the same material type and HoloLens-to-surface distance range cor-
responded with theirs, with a mean error of 7.18 ± 4.19 mm at 70 cm. These values
were slightly higher than the mean error reported by Gu et al. (5.68 ± 2.21 mm at
70 cm). There could be several potential reasons for this discrepancy. Firstly, we eval-
uated a significantly larger number of frames (around 1300 frames) compared to Gu
et al.’s evaluation of 50 frames. This larger sample size may have contributed to a
higher variation in our results. Additionally, we observed that the mean depth esti-
mation error improved by approximately 2 mm under bright operating room lighting
conditions, indicating that lighting conditions play a significant role in the accuracy
of depth estimation.

We also evaluated the LT sensor of the HoloLens 2 and found that it exhibited
higher mean errors of overestimation compared to the AHAT sensor. However, we
noticed that this difference in mean errors decreased when the HoloLens-to-surface
distance was in the range of 60 to 70 cm. Interestingly, the LT sensor also showed
significantly fewer outliers compared to the AHAT sensor. This suggests that the
systematic error of overestimation exhibited by the LT sensor might be easier to
calibrate compared to the AHAT sensor.

In our experiment, we used the ArUco marker as a reference plane, which may have
resulted in an underestimation of the distance between the HoloLens and the surfaces.
Thabit et al. (2022).[9] describes that the ArUco tracking error increases with distance,
lower resolution and smaller markers sizes. Kalaitzakis et al. (2021)[46] describes a
similar trend of decreasing accuracy with lower resolution and larger distances. They
found that as the tracking error increases, there is a tendency for the distance from the
camera to the ArUco marker to be underestimated. Therefore, to accurately quantify
the exact amount of overestimation by the AHAT and LT sensors, a more accurate
ground truth measurement would be required. Nonetheless, even considering the most
unfavorable scenario of underestimation of the ArUco marker and overestimation of
the point clouds, it can still be argued that both the AHAT and LT sensors tend to
overestimate depth.

As mentioned in section 3.1.3 the ArUco QR code detection sometimes failed during
the setup in OR lighting conditions. The large difference in brightness from the center
to the side in the RGB frames looked like the cause of this, as seen in Figure 6b. This
is likely to have been the cause of the large standard deviation of the QR code pose
estimation during one of the acquisitions.

Our experimentation also observed the significant influence of material type on
the accuracy and validity of depth estimation, which aligns with the findings reported
by Gu et al. (2021)[22]. Quantifying the overestimation and performing calibration
to mitigate the systematic errors associated with material types will be a challenging
task. Therefore, it is crucial to conduct quantitative assessments of depth estimation
accuracy and validity for different material types. Furthermore, exploring alternative
methods of point cloud processing or scene reconstruction may contribute to reducing
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the overestimation error. If the depth estimation error is predominantly in the direction
that the sensor is observing, a potential approach could be to observe the scene from
multiple angles and employ a scene reconstruction method that compensates for the
overestimation, thereby reducing the directional error component.

In the registration method experiment, we performed 30 registrations with a spine
phantom model in various positions. The mean translation errors of the four initial-
ization methods ranged from 12.6 to 14.7 mm, while rotation errors ranged from 1.5
to 1.8 degrees. In comparing our registration methods with previous studies, such as
Gsanxer et al. (2019) and Haxthauser et al. (2021), who also developed markerless
depth-based methods with the HoloLens for image-to-patient registration, we found
that our mean accuracy of 12.6 to 14.7 mm is in the same order of magnitude. These
results are promising, considering that our system still has room for optimization.
For example, if the depth overestimation could be calibrated for a systematic error
the performance could increase. This all suggests that our methods are on par with
existing approaches and have the potential for further improvement.

The successful registration results obtained for all 30 cases using the two manual
registration methods, ”3P” and ”Manual,” indicate their robustness. However, there
was a quantitative difference in translation accuracy between the two methods, with
”3P” performing approximately 1.5 mm better (p=0.028). This difference could be
attributed to the advantage of users being able to pick corresponding points on the
point cloud at the PC monitor, as it allows for higher precision in all three axes. And
thus contributing to the accurate initialization of the ICP algorithm. On the other
hand, the ”Manual” method relied on a rough alignment from a single viewing per-
spective, which may have limited the axial precision of the ICP initialization. This
limitation could explain the better performance of the ”3P” method in terms of trans-
lation accuracy. While the ”3P” method offers better quantitative results, it also has
drawbacks such as the additional time required for users to walk back to the PC and
the need for consistent selection of corresponding points. In contrast, the ”Manual”
method provides a more user-friendly workflow by allowing rough alignment from a
single perspective with the HoloLens user interface. This would also be more favorable
in a sterile environment.

The automatic registration methods, ”Eye” and ”Eye RANSAC,” faced challenges
in achieving accurate registrations. The ”Eye” method had a limited success rate of
only 23%, and successful alignments were achieved only when the orientation initializa-
tion fell within a specific range. Figure 13b illustrates that the successful alignments of
the ”Eye” method were concentrated in the orientation initialization range of 130-180◦.
To address these limitations, additional steps were introduced in the ”Eye RANSAC”
method to improve rotational initialization. This resulted in a significantly higher suc-
cess rate of 50% compared to the ”Eye” method. Figure 13b demonstrates that the
successful alignments of the ”Eye RANSAC” method were more distributed but still
concentrated in the ranges of 130-180◦ and 0-40◦. This indicates that accurately initial-
izing rotation remains a challenge for the automatic methods, even though translation
also plays a role in initialization accuracy. Further assessment could explore the range
of translation and rotation initialization that different subsequent ICP algorithms can
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handle, although the geometry of the target object would significantly influence the
outcomes and make general conclusions difficult.

Despite these challenges, when the automatic methods were successful, both qual-
itatively and quantitatively, the results were comparable to those of the manual
methods. This suggests that with a suitable initialization, the automatic methods can
reach an accurate optimum for the registration task. However, it is evident that there
is room for improvement in the automatic initialization methods, especially when it
comes to addressing the challenge of providing appropriate orientation initialization
for symmetrical target geometries. These findings emphasize the importance of refining
the automatic initialization methods to enhance their reliability in achieving success-
ful registrations for a wider range of applications. Further research and development
efforts should focus on improving the rotational initialization process to overcome the
limitations observed in the current methods.

The depth-based methods investigated in the depth registration experiment have
shown advantages over point-based marker registration in terms of speed and poten-
tial accuracy. By eliminating the need for manual landmark selection, depth-based
methods can reduce user errors and minimize sensitivity to outliers. Among the four
depth-based methods tested, three of them were able to perform registration in less
than 5 seconds, with most of the time being spent on the TSDF volume integra-
tion step. It’s worth noting that the TSDF volume integration was implemented
using Open3D on the CPU. However, running the code on a GPU with CUDA could
significantly reduce computation time, further improving the overall speed of the
depth-based registration process. Moreover, depth-based methods have the potential
to achieve higher accuracy, provided that the target point cloud is reliable and occlu-
sion challenges are overcome. This emphasizes the importance of optimizing the target
point cloud reconstruction process to ensure better alignment between the preoperative
model and the physical object.

Although marker-less systems have some clear advantages, our system relies on the
HoloLens’ SLAM after registration. SLAM drift of the HoloLens 1 has been described
before and can be of the centimeter scale.[47] The HoloLens 2 is assumed to have
improved on the world origin drift and is presumably millimeter scale. Especially with
smaller ranges of motion from the headset and shorter usage time. However, even
at this scale, SLAM drift remains a significant challenge that needs to be addressed.
To mitigate the impact of drift in our system, one possible approach is to explore
the implementation of periodic re-registration, leveraging the speed of the registra-
tion process and the high-quality initialization provided by the previous registration.
Additionally, ongoing research is actively investigating alternative methods to correct
for SLAM drifting, and incorporating these advancements into future systems will be
essential for addressing this challenge effectively.[48]

Despite the potential shown in our results, there are several limitations and areas
for future work that need to be addressed. One limitation is the assumption of the
multi-modal system using NDI EM tracking and Vuforia SDK as the ground truth for
registration. It is possible that the distance underestimation for the 3D pose of 2D
fiducial markers could contribute more significantly to our translation and rotation
errors than initially anticipated. From all three experiments our findings suggest the
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target point clouds from the HoloLens have a systematic depth overestimation. Trans-
lation errors could be further amplified by the underestimation of the 2D Vuforia image
target resulting in higher translation errors. Therefore it could be that the depth-
based registration is performing better then the translation errors reported using this
multi-modal ground truth.

In the registration experiment, we maintained a fixed reconstruction of the tar-
get point cloud by sending the last 50 LT depth frames and using the same TSDF
parameters. However, it is important to note that this approach may not consistently
yield optimal results, necessitating further optimization. The qualitative assessment
revealed that the quality and density of the target point cloud significantly influence
the registration process. Objects with sharp edges and small topography features, such
as the Lego cube, suffered from a sparse and suboptimal target point cloud, leading
to decreased registration success. Insufficiently reconstructed target point clouds fail
to capture the intricate features of these objects, resulting in misalignments between
the preoperative model and the physical object. Similarly, the surface properties of
the mannequin, characterized by glossiness and low infrared reflectivity, posed chal-
lenges by producing sparse and inaccurate depth measurements, also hindering the
registration process and causing misalignments. Consequently, the success of the regis-
tration heavily relies on the accuracy and density of the depth measurements obtained
from the target object’s surface. To address these issues, future work should focus on
improving the quality and density of the target point cloud. This could involve explor-
ing alternative depth sensing techniques, optimizing the reconstruction algorithms, or
employing additional sensors to enhance the accuracy of the depth measurements.

A notable limitation that applies to the general use of AR HMDs in surgery is the
challenge of accurately assessing the quality of alignment. In our qualitative testing,
we employed conventional mixed reality visualization methods, such as transparency
or wireframe rendering, to assist with alignment assessment. A study conducted by
Gu et al. (2022)[49] reported a user preference for wireframe rendering in alignment
assessment. However, their findings also indicated that participants were not consis-
tently effective in identifying misalignments using these visualization methods. This
raises concerns that if an image-to-patient registration method were to yield a slightly
misaligned result with an AR HMD, users may not perceive the misalignment and con-
tinue with the procedure, potentially impacting the overall outcome. Therefore, further
research is warranted to develop more reliable and intuitive visualization techniques
that enable users to assess alignment with higher accuracy and confidence.

Future work should include assessing the accuracy of the system at the user end-
point, first validating in phantom and cadaver studies and then assessing outcomes
in surgical procedures. While our experiments focused on evaluating the accuracy of
the registration methods and depth measurements, it is important to consider the
impact of the system on the surgical outcomes. Surgeons may be able to achieve
higher accuracy and precision using this system compared to their conventional meth-
ods. Therefore, conducting clinical studies and evaluating the system’s performance
in actual surgical scenarios is essential to determine its true effectiveness and poten-
tial benefits in improving surgical outcomes. This would provide valuable insights into

36



the practical utility of the system and guide further refinements and optimizations for
specific procedures.

5 Conclusion

In conclusion, this study presented a comprehensive evaluation of a depth-based image-
to-patient registration system using the HoloLens 2. Through three experiments, we
obtained valuable insights into the accuracy, success rates, and limitations of var-
ious registration methods. The quantitative assessment of depth accuracy revealed
millimeter-scale mean overestimation errors for both the AHAT and LT sensors in
surgically relevant scenarios. Various factors had positive or negative impact on this,
including variations in operating room lighting conditions, distances between the
sensor and the target, and the material type. This highlights the need for further
investigation into refining the depth measurements of the HoloLens’ sensors. The com-
parison of registration initialization methods using the spine phantom demonstrated
the potential of manual approaches to consistently achieve successful alignments, while
the automatic methods showed promise but require enhancements, particularly in
accurate initialization for subsequent ICP steps. The qualitative assessment of the
system’s performance in real-world scenarios showcased its potential for improving
surgical procedures, albeit with limitations observed for small-sized and symmetrical
objects.

Future work should prioritize the refinement of both manual and automatic initial-
ization methods to enhance their reliability, particularly in complex surgical scenarios.
Additionally, improving the overall accuracy of the system is crucial, which can be
achieved through calibrating for systematic errors based on quantitative experiments.
It is imperative to validate the surgical accuracy on the user end by performing phan-
tom surgical tasks with and without the system. This can be coupled with exploring
techniques to provide users with more intuitive and reliable visualization methods for
assessing alignment quality.

The study’s results indicate the potential for achieving sub-10 mm registration
accuracy within 5 seconds using depth-based image-to-patient registration. This is par-
ticularly promising for surgical applications that do not require high-level registration
accuracy, and offers a fast and convenient alternative to other tracking systems that
require invasive fiducial markers and time-consuming calibration steps. Conclusively,
the goal of our research is to enable enhanced surgical outcomes, including improved
tumor resection margins and avoidance of vulnerable tissues. By providing faster and
more accessible image guidance, depth-based registration systems have the potential
to revolutionize a field of surgical procedures that currently don’t use image guidance
and contribute to better patient outcomes.

Supplementary information.

• Mixed-reality video capture from the HoloLens 2

Demo using the depth-based registration method with manual initialization for the
Sawbones spine phantom, and the automatic eye gaze method for the multi-modal
abdominal phantom CIRS 57A.
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Appendix A Depth accuracy supplement

Fig. A1: Side view of point cloud with cropped surfaces of AHAT acquisition: Spher-
ical layering artifact visible.

Fig. A2: Point cloud of LT 50 cm acquisition: No depth values for a large surface on
the box object, some ”waterfall” effects around the table and objects.
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Fig. A3: Point cloud of AHAT 50 cm acquisition: Large ”waterfall” effects around
the table and objects, additional noise in the air where no objects were present.

Fig. A4: Point cloud of AHAT acquisition: Right of the yellow picked point the table
the surface is less smooth and the interruption is the same shape of the QR code
placed there.
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Appendix B Registration errors without pass/fail
filtering

Fig. B5: Translation and rotation error of depth registration methods vs multi-modal
ground truth
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