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Abstract
Kirigami can be used to create objects with

a nonzero Gaussian curvature. A mathematical
method is presented that can be applied to join a sin-
gle continuous and smooth cut of a kirigami sheet.
This is realized by constraining additional discretized
strips with origami. The mathematical model eval-
uates how the strips from both sides of the cut can
be constrained. The mathematical model is vali-
dated with an experiment, which confirmed the di-
rection of the constraints. However, due to physical
elements which are not part of the presented math-
ematical model, the relative proportion between the
constraints did not fully represent reality. Finally, this
treatise shows the optimization of a crease pattern,
by using this model, resulting in a joined kirigami ob-
ject.
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Preface
Thursday, the fourth of April of 2019 brought my first acquaintance with origami. That day I followed the
compliant mechanism course (ME46115) by Dr. N. Tolou. He had something special in mind: there was a
guest lecture on origami given by Ph.D. A. Yellowhorse. It sparked my interest. Although origami is still in its
infancy, it did seem to have huge potential. Difficult but interesting shapes could be made on demaned from
a plane, reducing manufacturing costs and easing transportation. Possible applications were emerging in
various fields, from biomedical sciences, to aerospace and robotics. Origami was clearly state of the art.

Many conversations followed with Alden Yellowhorse. We had brainstorm sessions on possible topics
for the master thesis. Ultimately, we found an agreement that was inspired by our common interest for
origami. We were going to join kirigami sheets in order to realize the assembly of an antenna for outer space.
Ambiguous plans for folding towards possible zipper designs were discussed. Ph.D. A. Yellowhorse was my
mentor for the literature review on origami but also my responsible supervisor for the research assignment I
did with the faculty of Aerospace Engineering, won the topic: "Removing vibrations from the Delfly Nimble
for camera applications".

I would like to congratulate Ph.D. A. Yellowhorse on his promotion to Assistant Professor at Navajo
Technical University. Unfortunately, it turned out to be the end of our collaboration on the topic of origami.
Luckily though, I found myself two new inspiring supervisors: Prof. dr. ir. J.L. Herder and Ph.D. F. Broeren, by
the end of the early stages of the project.

With their help I went through the more difficult stages of the master thesis, the optimization of the
mathematical model. The process was hampered by an accumulation of software problems, with the corona
virus just around the corner. The unfailing constructive input, out of the box ideas and fast thinking of Prof.
dr. ir. J.L. Herder and Ph.D. F. Broeren definitely helped me to present to you my report.
The report consists of three parts: the "General Introduction", the "Article" and the "Recommendations &
applications". Each part can be read independently.

My thesis could not have been realized without the support and effort of friends and family. I would like
to thank some of them: Paulien, Youp, Suzanne, Daan, Nol, Paul, Michelle, Tim and Luke. I would also like
to offer my sincere gratitude to the thesis committee: Prof. dr. ir. J.L. Herder, Ph.D. F. Broeren and dr. ir. T.
Horeman

To those who read this thesis, I wish reading pleasure and the chance to be fascinated by origami, as I have
been from that first acquaintance in 2019.

S.P.P. Allard
Delft, April 2021
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1
General introduction

The general introduction of the master thesis pre-
cedes the article which represents the master the-
sis. The article can be read independently with re-
spect to the general introduction and the accompa-
nied appendices. The article includes an introduc-
tion, method, result, discussion and conclusion of
the entire master thesis. However, the general in-
troduction will provide a more elaborated insight in
why kirigami sheets are joined. The potential join-
ing method comes from the literature review which is
summarized within this chapter.

1.1. Situation
The entire project is based on the desire to create an
object which has in unfolded state a large area, but in
folded state a compact volume. This may be wanted
for several reasons such as easy transportation or
low costs manufacturing processes [1]. Most often
this goal is reached with the use of origami, see for
example biomedical applications: a stent graft [19],
aerospace applications: a foldable solar array [20] or
robotics: self-folding robot [21]. All these examples
have in common that in unfolded state they have a
large area but in folded state compact/desired shape
or vice versa. The folding operation occurs without
stretching, cutting or deforming the sheet. Therefore
origami is perfectly suitable to create Euclidean
shaped designs [22].

Nonetheless, origami is not suitable for non-
Euclidean shapes, for instance a sphere and a
paraboloid. These objects can not be made from a
flat sheet without violating the principles of origami.
This issue is shown by Fig. 1.1 from S.J. Callens and
A.A. Zadpoor [1]. First, a sphere is approximated
with origami, crease lines are alligned with respect to
the longitudinal direction and are clear from the eye.
Next there is an attempt to create an accurate sphere.
Deformations can be seen halfway the sphere which
are unpredictable and therefore undesired. To solve
this problem, cuts can be made within the sheet
preventing deformations leading to a predictable
design. The combination of a cut and origami is
called kirigami [1].

The master thesis involves only uncomplicated
kirigami objects. For instance a sphere (Fig. 1.2), a
sphere is not necessarily a kirigami object but can
be created with kirigami. The most obvious way to
design a sphere is to use not one single sheet but
several sheets. These sheets represents individual
gores (Fig. 1.3) of the sphere as is often done for
globes. All flattened out gores of Fig. 1.3 will form
together a sphere of Fig. 1.2 if assembled.

In stead of making several incisions, it is often also
possible to make one single cut, see Fig. 1.4. The
flattened sphere has the shape which is known as
an Euler spiral or the Cornu spiral [23] consisting of
one single sheet. One flat sheet is easier to store in a
compact volume and should be easier to reassemble
to the desired object compared to a sphere with
several gores.

During this thesis only large kirigami structures
will be considered, large in the order of room-sized
kirigami structures. These structures will also consist
of one single cut. This has big implication for the
dimensions. The intersection of these objects are
very large (in order of meters) compared with the
thickness of the sheets (in order of 0.01 mm to 1 mm
like paper sheets).
This type of kirigami objects could be useful for
deployable antenna’s up in space, inflatable habitats
or free-form architecture.
A closed 3D kirigami object can be based on a
D-form. An example D-form is shown in Fig. 1.5
[3] which consist of two sheets and therefore of one
single cut. Other examples can be found in [24] and
[25]. However, the question remains how to assemble
room-sized kirigami objects with one single cut.

For the joining method it doesn’t matter if the sur-
faces, which are going to be connected, are complex,
e.g. having a single or multiple curvatures or holes.
The aligned surfaces must have an equal shape on the
adjacent edge in such a way that they can be joined
together. Figure 1.8 and 1.9 shows schematically how

xv
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Figure 1.1: The first sphere is approximated with origami with folds in the longitudinal direction. The second sphere is an attempt to
create a perfect sphere with origami, induced deformations are shown on right. Source: [1].

Figure 1.2: A sketch of a sphere is shown. Source: Noun-project.

Figure 1.3: A sketch of a flattened sphere with several cuts, also
called gores. Source: Noun-project

surfaces are aligned for an arbitrary kirigami struc-
ture.

Figure 1.4: A sphere with one single cut, created with the use of
parametric equations. Source:[2]

1.2. The intended solution
The original question; How to assemble relative large
continuous surfaces with an equal shape for kirigami
purposes? The intended solution to this problem will
be discussed in detail inside the article. The solution
is a direct result from the literature study. Hereinafter
the alternatives will be discussed. Lifting off with
the zipper design, followed with an overview of the
already available joining techniques, finishing with
the proposed solution.

1.2.1. Zipper design
Products as "the Zippermast" from the company Geo
Systems, Fig. 1.7, and "the Spirallift" from the com-
pany Gala Systems, Fig. 1.6, are existing examples of
automatic assembly of relatively thick sheets into one
particular shape. These systems are intriguing due to
their static zipper. Sheets move through a static zip-
per creating a 3D object from a 2D-sheets. The Spi-
rallift will obtain a cylinder and the Zipermast will re-
sult in a prism. Both the Spirallift and the Zipermast
make use of a snap fit assemble technique. According
to the database CES Edupack snap fits are used from
a sheet thickness of 1 mm upwards [6]. Reasonably,
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Figure 1.5: "The top row shows computer generated D-forms. The
second row shows unfolded versions of the same D-forms". The
D-form consist of two pieces. Source:[3].

the systems do not use paper but other materials.
The Spirallift and the Zipermast are used for the ap-
plications as movable theater seats or a robot-arm,
see Fig. 1.7.
[26]

Figure 1.6: Close up of a zipper of the Spirallift of the company Gala
Systems. Source: [4].

The zipper strategy of "the Zippermast" and "the
Spirallift" could perhaps be applied to kirigami

Figure 1.7: The zippermast of the company Geo Systems in action.
It is composed of three sheets. On the top of the arm a robot cam-
era is mounted. Source: [5].

structures in general instead of one single predefined
shape. The zipper would move along the edge of
the cut and connect the two sheets with a certain
joining technique, as can be seen in figure 1.8. A
zipper design creates new opportunity’s for applica-
tions due the realization of arbitrary kirigami designs.

Figure 1.8: The zipper moves along the flaps of two arbitrary sur-
faces and connects them with a certain joining technique

.
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1.2.2. Available joining techniques
Arbitrary surfaces (Fig. 1.8) can be joined with the
two flaps. Nowadays, several joining techniques
exists and are shown in Fig. 1.10 and 1.11. These
two figures only shows assembly methods of the CES
Edupack database[6] which can be used for 1 mm or
less. As mentioned in section 1.1, the thickness of
the kirigami sheets are in order of 0.01 mm to 1 mm.
Well known assembly methods such as threaded
fasteners, snap fit or some types of welding are not
included, because they can only be used from a
thickness of 1 mm and upwards [6].
Also tolerances and the time before handling are
important factors for consideration to select an
assembly technique in combination with a zipper
design.

From Fig. 1.10 it is clear that in general fasten-
ers have a high tolerance, so they are less accurate in
comparison with other joining techniques.
Adhesives are precise and suitable for sheets with
very thin section thickness, while for mechanical and
thermal welding the tolerance depends on the type
of weld. Although the precision of the adhesives is an
asset, a disadvantage can be seen in Fig. 1.11. Figure
1.11 shows the time the "joint" needs to rest after a
treatment. For example the adhesives must harden
before they can be used, this can take 100 s up to
100000 s. Depending on the situation this can be an
advantage or a disadvantage. In contrary, fasteners
like staples are not as accurate as adhesives, but they
require substantially lower time before handling.
In case of the staple the "time before handling" is
literally the time needed to place a staple.

An ideal assembly method should be able to
handle sheets with a thin thickness in combination
with a low tolerance and little time before handling.
These objectives are indicated with an arrow in Fig.
1.10 and 1.11.

Figure 1.9: Discretized flaps which are created with virtual mono-
hedral tiles with isosceles triangles which are dashed.

1.2.3. The proposed solution
The desire to have an accurate assembly method
combined with little time before handling, motivates
to come up with a new solution. The sheets to be
joined are used for origami and kirigami purposes.
Therefore origami and kirigami can also be consid-
ered as a joining technique. For the assembly of large
kirigami structures the literature is thin, perhaps due
the lack of applications for large structures. Alterna-
tively, the field of modular origami could be used.
Modular origami connects objects with pockets and
flaps, see for example M. Kawamura [27] or R.J. Lang
and B. Hayes [28]. The use of flaps and pockets are
useful when an object consists of many small sheets.
However, the intended kirigami object of this paper
consists of two sheets having a large and single cut.
Therefore, the proposed solution takes advantage of
the more extensive area of origami, making it useful
for a zipper design.

Figure 1.8 shows a zipper which moves along
the flaps of two arbitrary surfaces. In order to use
origami, the flaps are discretized, see figure 1.9. The
discretized flaps are created with virtual monohedral
tiles with isosceles triangles. Also different types of
tiles are optional as spiral tiles [29] which can be used
to make curved paths. The discretized flaps will be
folded into each other making origami suitable for a
joint.

1.3. Towards the article
The first section of the general article described the
possible applications and environment for a certain
joining technique. The second section introduces
the origami itself as a joining technique.

Kirigami is an art of folding (creases) including
cuts. But when considered as a joining technique
the question can be raised were to place those folds?
How does a possible crease pattern look like? Is there
an optimal crease pattern for every situation?

These are valuable questions, designs for engi-
neering purposes are often made under the influence
of different combinations of stresses. For example
a large thin walled cylinder laying on its side needs
to carry its own weight, resulting in tensile stresses
in the top of the cylinder while having compressive
stresses in the bottom part of the cylinder. The
combination of several creases (folds) are needed
to make the joint suitable for a particular situation.
Therefore a crease pattern needs to be optimized in
order to find an optimal combination of creases.
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Figure 1.10: The Range of section thickness in mm is plotted against the tolerance of the joining technique. This plot is created with
"level 3" of the CES Edupack database. Level 3 includes an overview of more than 200 material processes. This graph shows only the
joining techniques that are suitable for plates with a section thickness of 1 mm or less. The green bars represent adhesives, the blue bars
represent fasteners, and the purple bars represent mechanical and thermal welding. Source:[6]

Figure 1.11: 4: The Range of section thickness in mm is plotted against the time before handling. Time before handling means the time
an object needs to rest after the treatment before it can be handled. This plot is created with "level 3" of the CES Edupack database.
Level 3 includes an overview of more than 200 material processes. This graph shows only the joining techniques that are suitable for
plates with a section thickness of 1 mm or less. The green bars represent adhesives, the blue bars represent fasteners, and the purple
bars represent mechanical and thermal welding. Source:[6]
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The article discusses how to join kirigami sheets
consisting a single continuous and smooth cut by
constraining discretized strips with origami. The
crease patterns are applied on top of the strips and
will be optimized.
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Kirigami can be used to create objects with a nonzero Gaus-
sian curvature. A mathematical method is presented that can
be applied to join a single continuous and smooth cut of a
kirigami sheet. This is realized by constraining additional
discretized strips with origami. The mathematical model
evaluates how the strips from both sides of the cut can be
constrained. The mathematical model is validated with an
experiment, which confirmed the direction of the constraints.
However, due to physical elements which are not part of the
presented mathematical model, the relative proportion be-
tween the constraints did not fully represent reality. Finally,
this treatise shows the optimization of a crease pattern, by
using this model, resulting in a joined kirigami object.

1 Introduction
Origami is used in a broad range of mechanical

engineering from biomedical applications [1], aerospace
applications [2] to robotics [3]. The origami sculptures com-
monly share that they are flat having a large area in unfolded
state and compact/desired shape in a folded state. This
happens without stretching, cutting or deforming the sheet,
while preserving the distances and angles, also known as
isometric deformation [4]. This makes origami only suitable
for the creation of objects with a zero Gaussian curvature
[5]. Origami objects are desired for several reasons, such as
easy transportation or low costs for manufacturing processes
[4].
Origami is not suitable for objects with a non-zero Gaussian
curvature, for example spheres and paraboloids. Non-zero
Gaussian objects created with origami will have undesired
distortions in folded state [4]. To avoid deformations,
cuts can be made within the sheet [5]. The combination

of origami and cuts is called kirigami [4]. For certain
applications a single cut needs to be joined.
Often thin sheets are joined with adhesives, fasteners or
mechanical and thermal welding [6]. An origami approach
of joining can be seen in the field of modular origami.
Snapology is an origami technique invented by Heinz
Stroble [7], the foundation for example for the origami
Menger Sponge [8] [9], the creation of meta materials
[10] or a simple ”witch ladder” or ”Jacobs ladder” [11].
Closely related is a connection with flaps and pockets, for
instance the Celes family by M. Kawamura [12] or the
paper Pentasia of R.J. Lang and B. Hayes [13]. However,
modular origami is mostly used for small objects [14], with
the ZEBRA method for constructing architectural 3D from
paper [14] merely an exception. This paper extends the field
of modular origami towards the assembly of large kirigami
objects. Only kirigami objects with large and single cuts are
considered for the presented joining technique of this paper.

This treatise presents a mathematical methodology to
join a continuous and smooth edge of two flat kirigami
sheets with the use of origami. Accomplished with addi-
tional discretized flaps located on the edge (Fig. 1) that are
folded into each other.

The paper has the following layout. Firstly, a possi-
ble cut is derived to define the position of the additional
strips relative to the sheets. Secondly, a mathematical
methodology will be defined on how the strips can constrain
each other. Thirdly, the mathematical methodology will
be validated. Fourthly, a crease pattern will be optimized.
Finally, a kirigami object is joined with the established
crease pattern.

1



Fig. 1. Discretized flaps which are created with virtual
monohedral tiles with isosceles triangles which are dashed.

2 Problem definition
A potential cut can be described as a line (C) on a certain

surface. A space curve C can be defined by a continuous
vector function r(t) =

[
f (t) g(t) h(t)

]T [15] with f (t), g(t)
and h(t) real valued. The cut of the kirigami object needs to
be smooth, that is the case if r′(t) 6= 0 on interval I.
The strips (flaps) are aligned with r(t) and have their own
coordinate system, x̂ and ŷ. The y-axis is aligned with the
binomial vector and the x-axis is aligned with the tangent
vector of r(t).

The discretized strips will be folded into each other in
such a way that the strips constrain each other. Resulting
in a joined kirigami object along the cut. The question
remains where to place the folds. And how does a crease
ensure that there is no relative movement between the sheets?

3 Method: Mathematical description of constraining.
The basic principle is that two strips (flaps), each from

a different sheet, are paired together and are ”sticky” with
each other. Sticky in the sense that no misalignment gadget
is allowed (lemma 3.2). Hence, every crease placed on one
of the strips is also placed on the other with an identical ori-
entation and mountain-valley assignment. In such a way that
the sheets are able to constrain each other.
Hereinafter a mathematical description can be found of why
which crease should be placed where. starting with the intro-
duction of subsets, sheet orientation and on how to constrain
free movement.

3.1 Map folding applied to strip folding
The methodology of map folding is closely related to

the intended model for strips. Both models include intersect-
ing creases. For map folding the creases are either parallel
or perpendicular, while for folding with strips the creases do
not have to be so. Following Demaine and Rourke [16] map

folding needs to have at least one continuous crease which is
labeled valley or mountain throughout the sheet. In map fold-
ing creases are either assigned to subset Hi (horizontal) or
subset Vi (vertical) with an accompanied indexation number
for the ordering (i). A subset can be assigned with multiple
creases which are independent of each other. In case of map
folding for each subset can be said that ”all creases must be
parallel; otherwise the vertex of intersections between cross-
ing crease lines violate Maekawa’s Theorem” [16]. Note that
creases from the same subset can be folded independently
from each other.

The strip model will exclude the condition of perpen-
dicular and parallel creases while including the requirement
of independent creases within a subset, with ’independently’
defined only within a strip. Reformulated, by definition the
creases may not intersect inside the strip. The completely
independent creases will be placed in subset H . Afterwards
the creases of subset V1 will be folded and so on till Vn.
The first set of creases are labeled differently with H because
it has a distinctive number of variables per crease compared
to subset V . At first sight subset V1, V2 etc. do not differ
in constraints nor the number of variables. They are there-
fore characterized with the same label V accompanied with
a unique index number.

The letters H and V are inherited from map folding
but for the presented model the creases are not necessarily
aligned with the horizontal or vertical. For conventional rea-
sons we will stick to the labels H and V .

3.2 Dimensions of origami
Flat origami models are in reality in R3 and satisfy the

five origami axioms [17]. For mathematical reasons the sheet
thickness is assumed to be zero. Therefore the origami model
will be mapped to the folding space R2 × Z [17]. Note
that the origami objects throughout this paper are part of
flat origami. The folded and unfolded state are related by
the ”semifolding map µ : C → R2 that determines only the
final position of the sheet in a plane and superposition or-
dering σ : C→ Z determines only the overlap order of the
layers”[17] of folded sheets.

3.3 Free movement of the strips
The R2-space is spanned by x-axis and y-axis from the

point of view of the strip and not the kirigami object. The
strips can only be constrained inside this plane (3 degree of
freedom), resulting into possible constraint space of x, y, Rz
and a freedom space of z, Rx, Ry.
However, keeping in mind how the origami object will act
in the physical world the freedom space can be reduced even
further. By stacking faces on top of each other, translation in
the z-direction can be constrained [18]. Therefore the con-
straint of z-direction relates to the size of the Z-space.
Assuming that the origami object is constrained and there-
fore static, the rotations (Rx, Ry and Rz) are within this paper
left out of consideration. Concluding, the strips can be con-
strained into the x, y, z-direction.
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3.4 Stacking of the faces
To preserve/enforce the ”stickiness” of the two strips

(sheets), the translation into the z-direction needs to be re-
duced. As mentioned earlier the constraint of the z-direction
is related to the stacked number of faces (F). The number-
ing of stacked faces, L, gives an indication of the total con-
straints. Only faces which are enclosed by a crease (opposite
folding) attribute to the constrain.

Definition 3.1. A set of faces, Fi, composes a crease pat-
tern C. After a mapping, µ, into folded state the number of
layers, L, can be determined by counting, n, the number of
intersections of the faces. The faces needs to be enclosed by
a crease (opposite folding, see ) in order to attribute to the
constrain. Mathematically:

n⋂

i=0

Fi for Fi∩Fi+1 6= 0 → L = max(n) (1)

3.5 Sheet orientation
Demain et al. (2007) describes the ”function λ which

specifies the above/below relations of every two regions of
paper that are collocated according to f ” [16]. The most im-
portant notes are summarized below which have implications
on constraining with origami.
”A folded state of a 2D piece of paper is a pair ( f ,λ) con-
sisting of an isometric function f : P→ R3 (the geometry)
and a partial function λ from P×P to {−1,+1} defined on
pairs (p,q) of distinct noncrease points p,q ∈ P for which
f (p) = f (q) (the order). ... A value +1 or -1 is assigned
to λ(p,q), with the intent that λ disambiguates whether p is
stacked ”above” q (λ(p,q) = +1) or p is stacked ”below” q
(λ(p,q) =−1)” [16]. For the constraining of two sheets two
conditions are important to mention; antisymmetry condition
and the transitivity condition.
Antisymmetry condition, ”for any two points p,q ∈ P at
which λ(p,q) is defined, that λ(q, p)n f (p) =−λ(p,q)n f (q),
that is, p and q must be on opposite sides of each other” [16].
With n f (p) as the normal vector on point p, see Fig. 2.
Transitivity condition, ”for any three points p,q,r ∈ P at
which λ is defined pairwise, if λ(p,q) = −λ(r,q), then
λ(r, p) = λ(q, p); that is, if p and r are on opposite sides
of q, then r and q are on the same side of p” [16]. See also
Fig. 6.

3.6 Primary constraint: imposed by one single crease
Two sheets (SI & SII) are placed on top of each other,

both sheets have the same orientation in unfolded state
(nF −1

I = nF −1

II ). A crease pattern G is embedded on top of
these two sheets. G consist of vertices (V ), edges (E), and
faces (F) [17]. During a folding operation the two sheets
will remain sticky, no misalignment gadget will be allowed
(lemma 3.2). As a consequence, the creases that are placed
into sheet I will also be placed into sheet II. The two sheets,
represented by a blue and a pink line from Fig. 2, are sticky
and remain therefore parallel to each other regardless of any
folding operations.

Fig. 2. Two flat sheets which are ”sticky” shown in pink and
blue. The corresponding normal vectors of the blue sheet are
shown. The sheets remain sticky also in the folding opera-
tions.

A crease can be defined by Ei j = ViVj within the
R2-space of a sheet including the raw edges [17]. The
creases Ei j,I and Ei j,II are the duplicate of crease Ei j but
projected on sheet SI or SII .
Depending on the point of view either SI or SII is fixed
at the bottom raw edge of the strip. Sheet SI and SII can
constrain each other with a crease Ei j. In reality the creases
Ei j,I and Ei j,II will be near each other in folded state (F )
at an almost negligible distance. Therefore sheet I will be
folded into sheet II or vice versa. If det(Ei j,II ,Ei j,I) < 0, so
Ei j,II is on the left of Ei j,I , then the sheets are constrained by
~Ei j,II � ~Ei j,I . Or if det(Ei j,II ,Ei j,I) > 0, so Ei j,II is on the
right of Ei j,I then the sheets are constrained by ~Ei j,II � ~Ei j,I .
Satisfying the origami axiom that paper can not self intersect
[17] or intersect a different paper, sheet SI and SII have a
previously mentioned constrain imposed by Ei j. This leads
to lemma 3.1

Lemma 3.1. If the crease Ei j,I of sheet I and Ei j,II of sheet
II lay both inside R2 and are folded into each other. And
if det(Ei j,II ,Ei j,I) < 0 then the sheets are constrained by
~Ei j,II � ~Ei j,I . Or if det(Ei j,II ,Ei j,I) > 0 then the sheets are
constrained by ~Ei j,II � ~Ei j,I . Independent of which sheet is
fixed or which orientation the creases have:
If Ei j,II 6= Ei j,I then sheet I or II is somewhere in the freedom-
space
If EI = Ei j,II and Ei j,I ‖ Ei j,II then the creases are on the con-
straint
If EI = Ei j,II and Ei j,I ∦ Ei j,II then the creases have a colli-
sion

Proof. Lets say EII lies left of EI for EI ‖ EII . Then EI can
be rewritten as EI = ~d + ÊII |EI | with ~d ≥ 0 as the distance
between EI and EII . In that case det(EII , ~d + ÊII |EI |) ≤ 0.
If det(. . .) < 0 then EI is located to the right of EII and if
det(. . .) = 0 then EI and EII lay into each other. So EII ≤
~d + ÊII |EI | results in EII− ÊII |EI | ≤ ~d. Indeed, if d = 0 then
EI and EII are equal to each other and are therefore laying
on the same location and if d > 0 then EI lies indeed on the
right hand side of EII .

This article excludes the use of a misalignment gadget, which
is defined in lemma 3.2
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Lemma 3.2. Misalignment gadget; If the crease EI of sheet
I and EII of sheet II lay both inside R2 and are not folded into
each other. Independent of the location and orientation of
the creases, the sheets are not constrained. Mathematically:
Freedom space of both creases <−∞,−∞>�EI �<∞,∞>
and <−∞,−∞ >� EII �< ∞,∞ >.

3.7 Freedom and Constraint space
One single crease has one directional constraint (lemma

3.1) also called a unilateral constraint. Sheet II can impose
a constraint on sheet I with the use of a crease. If the direc-
tional constraint, for example, is aligned with the x-axis the
constraint can either be into the positive or negative direction.
A unilateral constraint can be seen as an half degree of free-
dom (DOF). Hence, it will be sufficient to split the R2-space
into four subspaces, namely: x+, x−, y+, y− in such a way
we can track constraints for individual directions. Resulting
in a freedom space of F : {x+,x−,y+,y−} and a constraint
space of
C :
{

x+,x−,y+,y−
}

.

3.8 Constraining with a single crease
Figure 3 shows a projected view of a cross-section.

Within the figure the orientation of the sheet (~n, orange
vectors) and the resulting constraints (~C, black vectors) are
shown. The folding direction (~N) does not match the direc-
tion of the constraint. Rather, the constraints (~C) are coupled
to the orientation of the sheet (~n). This is described in lemma
3.3. This implies that with one single fold the sheet is able to
move into three directions, tangent to the crease and into the
the orientation of the sheet.

Lemma 3.3. Each individual crease has a freedom space:
F =

{
−~T ,~T ,~n

}
and a constraint space: C =

{
−||~N||n̂

}
in

R2 with ~T as the tangent vector of the crease. The R2-space
is the union of the subsets

{
x−,x+,y−,y+

}
=F∪C for which

F 6∩ C.

3.9 Constraint imposed by multiple creases
To avoid ambiguity, we assume that there are only two

types of folding, see Fig. 4; 1) folding around the entire
(flat) origami object, folding with opposite creases. Or 2)
not folding around the entire origami object, resulting in a
Jacobs ladder. The choice between these two options has
consequences for the resulting constraint.
Note that throughout this paper the creases are placed from
the bottom raw edge to the top raw edge. As a result, all
creases within a subset are placed in chronological order.

The origami objects of Fig. 4 appear to pop up in R3

but mathematically they do not, due to the fact of sharp fold
angles and infinitely thin sheets. Opposite folding and the
Jacobs ladder will be discussed separately thenceforth.

3.9.1 Folding around the object, Opposite folding
The origami object in the middle of Fig. 4 is part of op-

posite folding. It includes two folds from lemma 3.1. Sheet

Fig. 3. A combination of the Jacobs ladder and opposite
folding from a cross-section projected on a 2D plane. The
normal vector and constrain vectors cross-section are shown.
Note that the figure represents a folded crease pattern in the
1D-space. So, mathematically, the sheets remain in the same
plane, although the figure suggests otherwise.

I is enclosed by sheet II with the creases EA and EB. The
resulting constraints of the creases are stated as ~EA,II � ~EA,I

and ~EB,II � ~EB,I . Note that the constraints are in the oppo-
site direction, if EA||EB. Therefore sheet I is locked for one
direction (y-axis) by sheet II, removing an entire degree of
freedom (DOF) from the freedom space (F) which is added
to the constraint space (C).

3.9.2 Not folding around the object, Jacobs ladder
The origami object on the right of Fig. 4 is part of a

Jacobs ladder. It includes twice a fold from lemma 3.1.
The constraints of the creases are stated as ~EA,II � ~EA,I

and ~EB,II � ~EB,I . Therefore, the constraints have the same
direction. As a result, this is a one-directional constraint,
removing a half DOF from the freedom space (F) which is
added to the constraint space (C).

A crease En is part of opposite folding if the partial func-
tion λn is equal to λn−1 from the previous laid crease En−1,
when it is not then it is part of a Jacobs ladder. This can be
formulated in the following way:

Lemma 3.4. There are two creases next to each other,
namely: En−1 and En. With λ(p,q) = λ(q, p) for two points
with one intermediate crease E j will be reformulated as λ j.
The crease En−1 has a corresponding λn−1 and En has a cor-
responding λn. Note; that λn is located on the crease En
and is therefore aligned with the folding direction, positive
or negative.

if λn−1 = λn then En is part of opposite folding
if λn−1 6= λn then En is part of a Jacobs ladder

A combination of multiple creases with a unilateral con-
straint can result in a bilateral constraint, although this is not
necessarily the case with a Jacobs ladder.
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Fig. 4. The creases A and B are located in the same location. The figure in the middle shows an origami object with opposite
folding while the object on the right is part of a Jacobs ladder.

3.10 Relation of the constraint and the folding direction
A crease pattern in unfolded state is a roadmap to the

folded state. It consist of vertices (V ), edges (E), and faces
(F) [17], but it lacks a representation of the orientation of the
sheet (~n) in folded (F ) and unfolded state (F −1). It becomes
even more complex with the introduction of multiple creases.
In order to keep track of the orientation of the sheet, the set
of variables (Λ) is introduced. The variable Λ will help to
relate the type of folding with the orientation of the sheet.
The variable Λ will indicate if a crease is part of opposite
folding or part of a Jacobs ladder. If a crease is part of a
Jacobs ladder then it will be represented with a 1, if not then
the crease will be represented with a 2. The folding direction
~N and the orientation of the sheet (~n) can be related to each
other on crease m as is shown in Eqn. (2).

~nm = ~Nm(−1)∑m
i=1 Λ (2)

The resulting constraint can be formulated as Cm =
−||~Nm||n̂m =−~Nm(−1)∑m

i=1 Λ for crease m.

3.11 Secondary constraint
The strips can be constrained by a creases. However, if

there are multiple creases, the creases can interact with each
other, resulting in a secondary constraint. See for example
Fig. 5, where crease E1, E2 and E3 each have their own con-
straint, defined as Ci =−||~Ni||n̂i. But the interaction between
the creases E1 and E3 will also result in a constraint, which
will be mentioned as a secondary constraint. The pink sheet
of E1 is constrained twice by the blue sheet of E1 and E3.
While the blue sheet of E3 is also constrained twice by the
pink sheet of E1 and E3.

The transitivity condition [16] of λ is used to determine
the direction of the secondary constraint. Figure 6 represents
the transitivity condition. The transitivity condition relates λ
from p to r. So if p is pointing towards r then λ(r, p) = +1
else λ(r, p) =−1. Note that the sheets q and r are sticky, they
are paired with each other.
The orientation of the the secondary orientation is deter-
mined to be ~ns = λ(r, p)~nr with nr as the orientation of
the outer crease which enclose a crease. If crease i is en-
closed by crease j the secondary constraint can be formu-
lated as C j = −~ns = −λ(r, p)~nr. The size of ~nr is equal

Fig. 5. A combination of the Jacobs ladder and opposite fold-
ing from a cross-section projected on a 2D plane. The normal
vectors and constrain vectors are shown. Note that the figure
represents a folded crease pattern in the 1D-space. So, math-
ematically, the sheets remain in the same plane, although the
figure suggests otherwise.

to the smallest overlap between Ei and E j, mathematically
min(projEi

Ê j,projE j
Êi). The direction of ~nr is equal to the

orientation of the sheet in crease j.

3.12 Add a constraint to the constraint space
There are two types of constraints: primary and sec-

ondary constraints. These constraints (Ci) need to be
added to the constraint space (C) in order to have a com-
plete overview of the resulting constraint of a crease pat-
tern. Recall that the constraint space is defined as C :{

x+,x−,y+,y−
}

. The constraint space can be filled with the
projection as is shown in Eqn. (3, 4).

projCi
x̂ =

x̂ ·Ci

||x̂||2

{
if: projCi

x̂ < 0⇒ x− =
{
|projCi

x̂|
}

if: projCi
x̂ > 0⇒ x+ =

{
|projCi

x̂|
}

(3)

projCi
ŷ =

ŷ ·Ci

||ŷ||2

{
if: projCi

ŷ < 0⇒ y− =
{
|projCi

ŷ|
}

if: projCi
ŷ > 0⇒ y+ =

{
|projCi

ŷ|
}

(4)
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Fig. 6. The transitivity condition of of λ. Adapting from [16], the final two columns are added.

3.13 Constraining with several subsets (H , V )
The creases of subset H are completely independent,

but the creases of subset V are not, resulting in a mountain-
valley assignment when intersecting creases from a lower
subset. The mountain-valley assignment alters the direction
of the sheet orientation ~n. A schematic overview is shown
in Fig. 7. The folding operation from the figure has one
crease from subset V which intersects two creases of subset
H . The first partial crease from subset V has a sheet ori-
entation pointing inwards, the second partial crease is point-
ing outwards and the third partial crease is pointing inwards
again. Just as before the sheet orientations are accompanied
by a constraint. The directions of the constraints are alternat-
ing with the mountain valley assignment.
The first partial crease (Em,1) of crease (m) determines the di-
rection of all other partial creases due to the mountain valley
sequence. The direction (nm,i) of the partial crease (Em,i) is
mathematically shown in Eqn. (5). Note that i corresponds
with the indexation number.

~nm,i = (−1)1+i||Em,i||~nm,1 (5)

Although it is not validated yet, it is expected that also the
secondary creases play a role in constraining subsets of V .
Further research should determine a correct formulation.

4 Validation of the mathematics with an experiment
The previously mentioned projection method to de-

termine the constraint of the creases is verified with an
experiment. The verification is divided into two separate
research questions. Firstly, is the crease pattern constraint
as expected? Secondly, is the crease pattern constraint in
proportion?
This section will briefly discuss the result of the experiment.
Extensive reporting on the experiment can be found in the

appendix.
Both objectives are achieved within the same experiment. A
top view of the experimental set up is shown in Fig. 8. The
experiment has the following layout; two sheets are folded
into each other. One sheet is fixed to the ground. The second
sheet is moved.

This relates to the research questions (objectives) in the
following way. The first objective: if the second sheet can
not move into a certain direction, then it is constrained in
that particular direction.
The second objective: the relative proportion between the
constraints is related by the needed force to deform a crease
pattern into a certain direction.
The objectives are validated with an elementary sets of
creases. Seven creases of subset H are sufficient for the
validation. The crease patterns differ in number of creases
and whether they are part of opposite folding or not. All
crease patterns are shown in Fig. 9.

The measurements are taken with a ”PI Stage” which
is able to measure the displacement. An additional force
sensor FSH00104 is used, which has a full scale accuracy
of −0.1 to 0.1±% [19]. The measurements are taken in
Newtons (N) and the displacements in µm.

For some measurements deformation did not occur on
the crease but on a different location, often at the base of the
strip. If deformation did occur in the wrong location, the
strip could even tear instead of unfold. In order to prevent
this issue a second template has been used if necessary.

The hypothesis of objective one is shown in Tab. 1.
The creases are labeled from A to G and are shown in Fig.
9. If the resulting constraint of a crease pattern constrains a
particular direction the table will display ”yes”. If the sheets
can move relative to each other, the table displays ”no”.
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Fig. 7. Folding operation of subset V . Note that the figure represents a folded crease pattern in the 1D-space. So, mathemat-
ically, the sheets remain in the same plane, although the figure suggests otherwise. The vertical dots represent are the inner
layers and are omitted for clarification.

Fig. 8. The experimental setup; two sheets are folded into
each other. One sheet is fixed to the solid ground and one
sheet is attached to a template which is constrained by two
linear bearings. The movement is performed with a PI Stage
in combination with a FSH00104 Futek sensor for the mea-
surements.

The hypothesis of objective two is shown in Tab. 2. Objec-
tive two involves the proportion of the constraints within a
crease pattern compared to each other. A constraint into a
direction is represented with a value, if the sheets are not
constraint then a value zero is shown in the table.

From all measurements the highest peak (P) is de-
termined, which represents the maximum resistance to
unfolding. This has also been done with the baseline
measurement (Q) which is subtracted from the actual mea-

Fig. 9. The crease patterns for the experiment. Ordered al-
phabetically from left to right. A red line represents opposite
folding and a green line represent a Jacobs ladder.

Tab. 1. The expected constraints in the direction x+, x−, y+,
y− for each crease pattern are given. If the crease pattern
is constrained then a ”yes” is shown, else ”no”. This table
refers to objective one.

Creases

Direction A B C D E F G

x+ no yes no yes yes yes no

x− yes yes yes yes yes yes yes

y+ yes yes yes yes yes yes yes

y− no no no yes yes yes no

surements (P). Mathematically: f (P,Q) = abs(P)− abs(Q)
and Var(F(P,Q)) =Var(P)+Var(Q).

The first hypothesis to be tested determines if the sheets are
constrained or not, this is validated with a null hypothesis.
If the sheets are not constrained then the expected value is
H0 : µ = 0, if the sheets were constrained then H1 : µ > 0.

The hypothesis can only be rejected into one-direction,
this is therefore a case of one-sided confidence inter-
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Tab. 2. The expected constraints in the direction x+, x−, y+,
y− for each crease pattern are given. If the crease pattern is
constrained then a ”yes is shown, else ”no”. This table refers
to objective one.

Creases

Direction A B C D E F G

x+ 0 2 0 4 4 4 0

x− 2 2 4 4 2 4 6

y+ 2 2 2 4 2 2 4

y− 0 0 0 2 2 4 0

Tab. 3. The rejection of null hypothesis is shown in the ta-
ble for crease A and B. The determination of the rejection is
accompanied by the test statistic (T) and the number of mea-
surements. If the hypothesis is wrongly rejected, then the
result will be indicated with a (!).

Creases

A B

T n Re jected T n Re jected

x+ 2.3735 5 No 4.0149 5 yes

x− 29.2020 5 Yes 34.5762 5 yes

y+ 20.5297 5 yes 32.0194 5 yes

y− 1.7372 5 No -3.9655 4 No

val. The allowable exceedance probability is set to be
p = 0.025. ”The null hypothesis will be rejected in favor
H1, if T ≥ tn−1,α [20]. If H0 is rejected then the creases
are constraint. The Tab. 3, 4 and 5 indicate whether the
constraints are rejected or not.

4.1 Results of the experiment
The first hypothesis is confirmed with the experiment.

However, three measurements differ from the expected
results, namely; crease C into the x+-direction, crease D into
the y+-direction and crease G into the x+-direction.
Crease pattern C into the x+-direction is rejected in contra-
diction with the hypothesis. But the data show no sign of
unfolding. This measurement was influenced by a relatively
high friction within the set-up. This may be because the
experiment had to be rebuilt on a different day. Probably,
an apparently negligible rotation of the setup results in a
slightly higher non-negligible friction within the system.
Crease D into the y+-direction is not rejected as expected.
This measurement did require a second template which
caused the origami object to be pulled too far out of its R2

plane into the R3 space. Because of that, the folds were

Tab. 4. The rejection of null hypothesis is shown in the ta-
ble for crease C and D. The determination of the rejection is
accompanied by the test statistic (T) and the number of mea-
surements. If the hypothesis is wrongly rejected, then the
result will be indicated with a (!).

Creases

C D

T n Re jected T n Re jected

x+ 3.0368 5 yes (!) 3.5645 4 yes

x− 20.8352 5 yes 60.7267 4 yes

y+ 16.1896 4 yes 1.8247 6 No (!)

y− 0.3277 6 No 10.5634 5 Yes

Tab. 5. The rejection of null hypothesis is shown in the ta-
ble for crease F and G. The determination of the rejection is
accompanied by the test statistic (T) and the number of mea-
surements. If the hypothesis is wrongly rejected, then the
result will be indicated with a (!).

Creases

F G

T n Re jected T n Re jected

x+ 3.2437 5 yes 3.9739 5 yes (!)

x− 16.7574 4 yes 15.7683 5 yes

y+ 28.1274 6 yes 4.9214 5 yes

y− 45.4043 5 yes -5.7570 5 no

not sharp enough. This induced a relatively high variance
preventing the rejection of H0.
Crease pattern E needed two templates to prevent deforma-
tion at the bottom of the strip. In combination with the fact
that the final crease is part of a Jacobs ladder, it was not
possible to take viable measurements. The final part of the
strip remained in the R3 space. The crease pattern of E will
be entirely neglected.
Crease pattern G in the x+-direction is rejected in contra-
diction with the hypothesis. The H0 has been rejected just
above the threshold. The data do not indicate any unfolding
behavior. This crease pattern has more Jacobs ladders
then any other crease pattern. Although there should have
been free movement, the physical interaction between the
sheets, friction, has a negative influence on the measurement.

Although objective one is sound, no conclusion can be
drawn about objective two. For example in case of crease
B, the constraint of x+, x− and y+ should be proportion-
ally equal. Although the measurements of the y+ and
x−-direction are near each other they differ too much. The
same is true for the measurement in the x+-direction for
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which can be said it is significantly larger than the y+

and x−-direction. Therefore objective two could not be
confirmed. Additional research should be done to include or
exclude any conclusions about the ratio.
Concluding, the first objective of the hypothesis is con-
firmed. The direction of the constraints behaves as expected.
The second objective could not be validated, additional
research must be conducted. Further research could start
with the introduction of physical elements into the model.

5 Optimization of a Crease pattern
In this section, the aforementioned mathematical frame-

work will be used to optimize a crease pattern for a given
situation. With an engineering application in mind, there is
no need to have a unique solution, a range of best solutions
will also satisfy.
As will be pointed out later on, the constraints are non-linear.
Therefore the optimization problem is a multi-objective
binary mixed-integer nonlinear problem (MOMINP). The
constraints are not easy to differentiate. Accordingly the
problem seems to be non-convex. A genetic algorithm can
be used to solve these types of problems.
The number of creases which fits inside a strip depends
on the orientation and location of the already laid creases.
Accordingly, the number of variables is variable within this
optimization problem. To avoid computational complica-
tions the number of creases for each subset is fixed before
the implementation of the optimization. The accompanied
algorithm handles only subset H and V 1 although the set of
rules should also apply to V n.

Depending on the subset the number of variables per
crease differs. A crease of subset H can be defined with
three variables, 1) the location on the y-axis (xH

1 ), 2) the
angle between the incoming and outgoing strip (xH

2 ), and
3) the direction of the folding (xH

3 ). A crease of subset V
is defined with four variables, 1) the location on the y-axis
(xV

1 ), 2) the location on the x-axis, either left or right (xV
2 ),

3) the angle of the crease (xV
3 ), and 4) the direction of the

folding (xV
4 ).

The folding can either be λ = −1 or +1 for both subsets.
The location on the x-axis can be xpos =−D

2 or D
2 for subset

V . All other variables are continuously within there domain.
The feasible solutions space is defined as GH :{

0 ≤ x1 ≤ L, 0 ≤ x2 ≤ pi
2 , x3 = ±1

}
and

GV :
{

0 ≤ x1 ≤ L, x2 = ±1, 0 ≤ x3 ≤ pi
2 , x4 = ±1

}
,

with L as the total length of the strip. Note that the feasible
solution space of higher subsets will be the same as for GV .
The optimization problem can be formulated as shown
in Eqn. (6) with the total objective function (dp) and the
constraints represented by g(X) inside the feasible space G .

min
X
−dp(X) (6)

s.t. g(X)≤ 0
X ∈ G

5.1 Optimization: Objective
The individual objectives are represented with Fi(x) ={

x+,x−,y+,y−,L
}

, the desired result with zi. The designer
could also place a certain emphasis on individual objectives
with the use of weights, wi. To give preference to the dif-
ferent objectives, the Weighted Metric Method [21] and the
Global Criterion Method [22] are combined as is often done
in Compromise Programming [22]. The total objective func-
tion (dp) is shown in Eqn. (7), with p as ”individual relative
deviations can be raised to any power (p = 1,2, . . .∞)” [22].

dp(x) =

(
5

∑
i=1

wi

∣∣∣∣
Fi(x)− zi

zi

∣∣∣∣
p
)1/p

[22], [21] (7)

with: 0 < wi < 1,
5

∑
i=1

wi = 1, p = 1,2, . . .∞ (8)

For the Pareto optimization the following objective is used:

dp(x) = wi

∣∣∣∣
Fi(x)− zi

zi

∣∣∣∣ [22], [21] (9)

with: 0≤ wi ≤ 1,
5

∑
i=1

wi = 1, p = 1,2, . . .∞ (10)

5.2 Optimization: Constraint
The optimized system is bounded by the axioms of flat

origami which can be found in [17]. With the use of these
axioms the folded (F ) and unfolded state (F −1) of a crease
pattern can be determined [17]. The main goal of constrain-
ing strips is to join two kirigami sheets that are located on the
x,z-plane. The strips are therefore not allowed to penetrate
the x,z-plane. This is realised by constraining all the vertices
to the first and second quadrant in folded state (F ), see Eqn.
(11). Also the individual creases (E) within a subset are not
allowed to intersect, see Eqn. (12).

g1(x) : V ≥
[
−∞
0

]
with V ∈ F (11)

g2(x) : Ei 6∩ E j with E ∈ F −1,F (12)

A constraint is imposed on opposite folding, Eqn. (13). A
crease (Ek) which is part of opposite folding must be placed
outside the already laid (≺) faces (Fi).

g3(x) :

(
n⋃

i=0

Fi

)
6∩ Ek for





Fi ≺ Ek

Ek ∈ F
λk−1 = λk

(13)

The following constraints apply on the algorithm. Additional
constraints for the algorithm are shown in Eqn. (14). Equa-
tion (14) defines that the order of folding operations happens
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from the bottom of the strip into the upwards direction. In
addition, Eqn. (15) prevents numerical error within the algo-
rithm by setting a minimal distance between the vertices of
an arbitrary distance.

g4(x) : Vi,A,y <Vj,A,y for i < j and V ∈ F −1

(14)

g5(x) : if Vi 6=Vj ⇒ ||Vi−Vj||> 7 ·10−1

(15)

The total nonlinear constraints of the optimiza-
tion problem can be formulated as followed:
g(x) = {g1(x),g2(x),g3(x),g4(x),g5(x)} for the subsets
X = H ,V 1,V 2, . . .

6 Result of the optimization
The used algorithm to optimize a crease pattern does not

involve the secondary constraints. The secondary constraints
are an empirical result from the mathematical validation. The
optimization algorithm was written before the validation and
therefore lacking the secondary constraints.
The second important notion is the direction of the first op-
posite fold. The first opposite fold is folded upwards in such
a way that the orientations of the sheets are pointing to each
other. Mathematically λ(p,q) = λ(q, p) = +1.
The third important notion is that the algorithm does not al-
low any intersection of subset H with the top raw edge, but
does allow one crease of subset V to intersect the top raw
edge.
A genetic algorithm is used for which is true that the ”con-
vergence to the global optimum cannot be guaranteed, but
will yield ”good” solutions on average” [23]. Therefore the
solutions found need to be examined more closely.

6.1 Optimized crease pattern
For illustration a crease pattern is optimized. The

crease pattern will consist of six creases evenly di-
vided over subset H and V with an objective of
C :

{
x+,x−,y+,y−

}
=
{

4,4,4,4,4
}

. All directions are
set to be evenly important but the stacked layers are slightly
more important, leading to the following weight factors
w =

{ 4
25 ,

4
25 ,

4
25 ,

4
25 ,

9
25

}
. The strip has the following dimen-

sion: a length of 3 and a width of 1.
The constraint tolerance is zero in order to have a feasible
solution and the function tolerance is equal to 10−5 for
subset H and 10−3 for subset V . A solution is gained with
a population size of 900 (H ) and 1000 (V ) with a maximum
number of 300 (H ) and 100 (V ) generations. The resulting
crease pattern from the optimization algorithm is shown in
fig. 10.

The resulting crease pattern of sub-
set H has the following variables: xH =[
0.6147 0.2890 0.6896 0.8271 0.9896 1.2109 1.0000 0 0

]
.

Fig. 10. An x-ray view of a possible solution from
the optimization algorithm which has as objective C :{

4,4,4,4,4
}

. The true primary constraint is found to
be CV =

[
−2.9741 −2.7615 −2.9535 −2.8230 −6.0000

]
.

Both subsets have three creases. The mountain valley assign-
ment can be distinguished with a dashed and straight line.

The variables of subset V are set to be xV =[
1.5504 1.9610 2.6963 0 1.0000 0 1.3488 0.9908 0.9579 1.0000

0 1.0000

]
.

The optimization algorithm lacks a calculation for the
secondary constraints but does include the primary
constraints. The primary constraints of subset H ;
CH =

[
−2.2104 −2.1990 −2.4338 −1.7963 −2.0000

]

and of subset V are CV =[
−2.9741 −2.7615 −2.9535 −2.8230 −6.0000

]
. If

the secondary constraints had been known they would have
been added to the constraint space. Therefore the actual
constraint space will be higher.

6.2 Example of joining two Kirigami sheets
The found crease pattern can be used to join kirigami

sheets. These sheets should have embedded strips of equal
size in such a way that they can be folded into each other.
Figure 11 and 12 represent a resulting joint result. The
sheets have a different color so that the folding operations
are clearly visible.

7 Discussion
A mathematical method is presented to constrain the

discretized strips from a kirigami object in order to join a
single continuous cut. From the mathematical validation
it is evident that the mathematical model alone is not
sufficient to describe the proportion of the constraints. But
the mathematical model does correctly predict the direction
of the constraints.
The deviations are presumably caused on a physical level.
Although excluded on a mathematical level, the sheets
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Fig. 11. Front and side views of the the joined Kirigami
sheets. Two sheets are joined with nine strips from figure 10.
Top figure; front view, second figure; side view one, third
figure; side view two.

Fig. 12. Isometric view of the the joined Kirigami sheets.
Two sheets are joined with nine strips from figure 10.

do interact with each other, for example through friction.
While the mathematical model assumes that the constraints
are additive and linear, a potential physical model does
not necessarily have to be. Perhaps a comparison can be
made for opposite folding with the capstan equation for
friction [24] leading to an exponential set of constraints
within the physical model. In order to determine an accu-
rate physical model additional research should be conducted.

Closely related solutions to join kirigami sheets are
designs as ”the Zippermast” from the company Geo Systems
[25], ”the Spirallift” from the company Gala Systems [26]
and the spiral robot arm [27]. In these systems the sheets are
moving through a static zipper, which connects them to each

other with a shape lock. The above mentioned systems have
only one resulting form, either a cylinder or prism. But in
combination with a zipper and the presented joining method
a landscape of more divers shapes seems to be possible.
Although this paper only joins two flat sheets, which
represent a kirigami object, more complex objects should
be possible. The next step would include objects with an
non-zero curvature, for instance a sphere or a paraboloid. A
more interesting exercise can be found with the creation of
large D-forms, as shown in [28], [29] and [30]. Large, in
the order of room-sized kirigami structures with one single
cut. This type of kirigami could be useful for example
deployable antenna’s up in space, inflatable habitats or
free-form architecture.

8 Conclusion
Two kirigami sheets are joined. A mathematical model

is presented on how two strips are able to constrain each
other in order to constrain the entire kirigami object. Con-
straining due to folding can be divided into primary con-
straints and secondary constraints.
The primary constraints involve the contribution of individ-
ual creases and the secondary constraints involve the interac-
tion between the creases. Excluding rotation, an individual
crease acts as a unilateral constraint for the displacement. A
combination of creases can be part of opposite folding or be
part of a Jacobs ladder, and are therefore able to constrain the
strips in multiple directions.
The conducted experiment did confirm that the strips of the
Kirigami sheets are constrained in the expected directions.
However the proportion of the constraints do not represent
the full reality. Probably due to physical elements which are
not part of the presented mathematical model.
An example crease pattern is found with an optimization al-
gorithm and has been applied to two sheets which represent
a kirigami object. The resulting joined kirigami object has
resistance in all directions. However, the optimization al-
gorithm excludes secondary constraints and only one crease
from the second set of foldings (V ) can intersect with the top
raw edge and none of the first set of foldings (H ).
Concluding, the mathematical description in combination
with the optimization algorithm did find a viable crease pat-
tern to join the Kirigami sheets. Additional research needs
to be done in order to introduce physical elements into the
model.
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3
Recommendations & Applications

The article presents a mathematical model to
join a single continuous and smooth cut through a
kirigami sheet by constraining additional discretized
strips with origami. The article rounds off with an
optimized crease pattern used to create a kirigami
object.

The kirigami object of the article is rather sim-
ple. Two A4 paper sheets are joined together. It
is a simplification for possible applications which
can be found in a parabolic antenna for satellites,
cylindrical habitats or arbitrary surfaces, for instance
free form architecture.
The epilogue will first treat several applications,
followed by a small discussion on future steps for the
project.

3.1. Applications
As mentioned, there are several possible applica-
tions: parabolic antenna for satellites, cylindrical
habitats or arbitrary surfaces, for instance free form
architecture. These will be discussed separately.

3.1.1. Parabolic shape (antenna)
The whole project is aimed at producing an an-
tenna for outer space. There are various options for
antennas of small satellites as CubeSats, namely:
wire, reflector, reflectarray, membrane, horn and
patch antennas [30]. The reflector antenna has "the
possibility of high gain and fine resolution"[30].
Compared to the other types of antennas. The
reflector antenna can be divided into smaller seg-
ments: the standard parabolic reflector, the offset
parabolic-reflector [7], the Cassegrain dual reflector
[31] and the Gregorian dual reflector antenna [31].
These types of antennas are distinguished by an
off-set of the sensor or the use of an additional
conclave or convex reflection surface. Although a
reflector antenna is preferred, it does not have an
Euclidean shape, "i.e. cannot be realized in a flat
configuration" [32]. Refreshed, a reflector antenna
can not be created from a single sheet. Therefore
A.D. Yellowhorse did research at the University of

Figure 3.1: Standard parabolic reflector antenna. Modified from:
[7]

Delft to create a kirigami-based reflector antenna.
With the ambition to reduce manufacturing costs
and simplify implementation. Figure 3.1 shows an
example of a standard parabolic reflector antenna.

In line with the situation of the article, a parabolic
object can be described with a space curve. The
space curve could represent the cut of the parabolic
object, see Fig A.2. Although, an offset-parabolic re-
flector is described by a paraboloid with a domain
created by the projection of a cone [7], the space
curve of Fig. 3.1 gives a good indication of possible
future shapes.

3.1.2. Cylindrical shape
The National Aeronautics and Space Administration
(NASA) does a lot of research for space applications.
NASA has as a goal to return to the moon in 2024 and
wants to use the moon for deep-space explorations
[33]. Different habitats have been designed to stay
in space or on the moon for an extended period of
time. Many of them are inflatable in order to safe
space and have various geometries, such as spheres
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Space curve paraboloid

Plot 3.1: The space curve of a paraboloid as defined in formula A.9.
This curve could be used with or without modification as a cutting
line for a paraboloidal surface.

Figure 3.2: A design of a cylindrical lunar inflatable habitat by
NASA. Modified from: [8]

or cylindrical shapes [8]. Figure 3.2 shows a lunar
inflatable habitat designed by NASA [8]. Figure 3.3
shows a cylindrical habitat which is patented [9].

Although we don’t aim to create an airtight connec-
tion for kirigami surfaces, these examples illustrate
a discussion in literature on large cylindrical shapes.
This makes a large and thin-walled cylinder suitable
for further investigation.

3.1.3. Arbitrary shape
Large kirigami structures can be found for example
in the architecture. Take for example the Bilbao’s
Guggenheim Museum, figure 3.4, or the Louvre’s
New Islamic Art Wing seen in figure 3.5 and 3.6 [34].
Both exist of a continual arbitrary surface. The build-
ing of the Bilbao’s Guggenheim Museum by Frank
Gehry actually exist of several finite surfaces with
an arbitrary shape, while the Department of Islamic
Arts at Musée du Louvre by Mario Bellini and Rudy
Ricciotti just have one single arbitrary surface. The
aimed kirigami joining method is for one surface. So
a surface of the Department of Islamic Arts at Musée
du Louvre could be created with such a method at
once, while the surfaces of the Bilbao’s Guggenheim
Museum should be handled separately.

Figure 3.3: Patent US6216984B1, cylindrical habitat for space.
Modified from: [9]

Figure 3.4: Example of free form architecture, the Bilbao’s Guggen-
heim Museum by Frank Gehry. Source from: [10]

H. pottmann et al. describe in their article the
relevance for architectural applications. They state
that "For most of the materials used (glass panels,
wooden panels, metal sheets, ... ), it is very expensive
to produce general double-curved shapes" [12]. In
there article they describe a method for semi-discrete
surface representations using D-strip models. In
this model the surface is approximated by D-strips,
which results in each strip having a single curvature.
See for example figure 3.7 for which the surface is
approximated with D-strips.

Although the method for making these types of
strips does not fall within the scope of this report, it is
clear that large structures that occur in architecture,
for example, which can be made with D strips or sim-
ilar methods, could benefit from a new kirigami join-
ing technique.
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Figure 3.5: Example of free form architecture: Side view of Depart-
ment of Islamic Arts at Musée du Louvre. Source from: [11]

3.2. Further recommendations and
actions

There are several possibilities of future steps within
this project. The first reasonable steps will be the cre-
ation of a physical model and a zipper design. Fol-
lowed by the creation of 3D kirigami objects, dis-
cussed in the section "Applications". The physical
model and the zipper design will be discussed next.

3.2.1. Physical model
The article states that the mathematical method, to
constrain discretized strips from a kirigami object
to join a single cut, is not sufficient to describe the
proportion of the constraints. But the mathematical
model does correctly predict the direction of the
constraints. The deviations are presumably caused
on a physical level. Therefore, the creation of an
additional physical model is vital. Possible questions
to answer: How do the sheets interact with each
other outside the fold lines? Can a comparison be
made for opposite folding with the capstan equation
for friction [35]? The capstan equation could lead to
an exponential set of constraints within the physical
model. In order to determine an accurate physical
model additional research should be conducted.

3.2.2. Zipper design
Apart from the validation of a physical model the
found crease patterns should also be implemented.
The main idea is to automate the folding operations
with a zipper design. The zipper design is assumed to
be accurate, precise and fast in order to be a compet-
itive alternative for adhesives, fasteners or welding.
However, the zipper design is still hypothetical and

Figure 3.6: Example of free form architecture: Top view of Depart-
ment of Islamic Arts at Musée du Louvre. Source from: [11]

Figure 3.7: Example of free form architecture. "The shape of a piece
of felt has been approximated by a D-strip model"[12]. Source
from: [12]
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Table 3.1: "A map of the origami task domain". Source from: [16]

needs to be accomplished first in order to validate
these claims.
The article joins two A4 papers. The discretized strips
which are folded into each other have an identical
crease-pattern. But for an actual kirigami design this
will not be true in general. Take for example a large
thin walled cylinder laying on its side that will need
to carry its own weight, resulting in tensile stresses
in the top of the cylinder while having compressive
stresses in the bottom part of the cylinder. The
different stresses that can occur within an object
would result in a different optimal crease-pattern.
Therefore each strip could have a distinctive creases-
pattern. This leads to high demands for a zipper
design.

Although there exist not yet a zipper design for
arbitrary kirigami surfaces, there are closely related
examples; "the Zippermast" by the company Geo
Systems [5], "the Spirallift" by the company Gala
Systems [26] and the spiral robot arm [36]. These
systems do not involve origami or kirigami but
snap-fits. These systems have therefore only one
predetermined shape as output. The question
remains how difficult it would be to create a zipper
design for an arbitrary kirigami surface?

Table 3.1 is cited from the article "Robotic origami
folding" published in 2008. The table gives a good
indication of the development of automating fold-
ing operations from simple folds towards modular
origami.
The proposed method to assemble kirigami sheets is
in fact part of modular origami. The method con-
nects two sheets together, which can be seen as the
joining of two origami objects.
From table 3.1 could be concluded that automating
folding operations for modular origami is still in its
infancy. However, the presented article states clearly

that misalignment gadgets are excluded. Resulting
from this is that flaps and pockets, which are com-
plicated to automate, are excluded from the crease-
pattern of the strip. The intended crease patterns
have similarities with the "Reflection folds" which are
near full automation. By avoiding the difficulties of
modular origami in general while making use of the
developments from the "Reflection folds", a zipper
design to join kirigami objects should be achievable
within a reasonable amount of time and effort.
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A
Single continuous and smooth kirigami cut

This chapter explains how to define a cut on a 3D
surface. The cut will be described with a space curve.
The mathematical description of the parabolic an-
tenna is also discussed in more detail.

A.1. Basic calculus
For the selection of materials, manufacture methods
and joining techniques the cut of a surface must be
defined with its properties. Although space vectors
and curvatures are standard mathematics, a quick re-
cap is necessary to get all readers on the same page.

A.1.1. Space curves
A potential cut can be described as a line on a certain
surface. Therefor a space curve r(t ) and not a surface
r(u, v) is used thoughout this chapter. Parametric
equations are defined as (x, y, z) = (

f (t ), g (t ),h(t )
)
.

From thereon a space curve C can be defined by a
continuous vector function r(t ) [18] which is defined
as followed:

r(t ) = [
f (t ) g (t ) h(t )

]T
[18] (A.1)

with f (t ),g (t ) and h(t ) as real valued functions and t
the parameter of the parametric equations. The unit
tangential line to C at point P is defined in formula
A.2.

T(t ) = r′(t )∣∣r′(t )
∣∣ [18] (A.2)

Note that T′(t ) is othogornal with T(t ), this results in
normal vector N(t ) as defined in formula A.3.

N(t ) = T′(t )∣∣T′(t )
∣∣ [18] (A.3)

The binomial vector which is permedicular to N(t )
and T(t ) is defined as follwed:

B(t ) = T(t )×N(t ) [18] (A.4)

A.1.2. Curvature
For general joining techniques or fabrication of
sheets it is important to determine the curvature of
the space curve. The curvature is defined below. The
curvature of "r(t ) is called smooth on an interval I if
r′(t ) is continuous and r′(t ) 6= 0 on I "[18]. The curva-
ture of a curve is given by formula A.5 and A.6, with s
defined as the arc length of the curve.

κ=
∣∣∣∣dT(t )

ds

∣∣∣∣= ∣∣∣∣dT(t )/d t

d s/d t

∣∣∣∣= |T′(t )|
|r′(t )| [18] (A.5)

or

κ= |r′(t )× r′′(t )|
|r′(t )|3 [18] (A.6)

Several cases are defined which are simplified as a
paraboloid, cone and cylinder. Although they will be
discussed later on, figure A.1 shows the curvature of
all the cases. The curvatures are defined in formula
A.10 for the paraboloid, in formula A.13 for the cone
and in formula A.16 for the cylinder.

A.2. Parabolic object
An eliptic paraboloid is defined with the following
formula:

z

c
= x2

a2 + y2

b2 [18] (A.7)

For simplicity we assume that we have a perfect
parabolic object, so c, a, b is equal to one. which re-
sults in:

z = x2 + y2 = r 2

This is true for:

x = r cosφ y = r sinφ z = r 2 = t 2 (A.8)

The simplificationφ= t will result in a vector func-
tion with one variable, as shown in formula A.9. The
resulting space curve is shown in figure A.2.

r = [
t cos t t sin t t 2]T

(A.9)

1
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t

κ
The curvature of the cases

Paraboloid Cone Cylinder

Plot A.1: The curvature (κ) of a parabolic (formula A.10), conical
(formula A.13) and cylindrical (formula A.16) space curve for the
parametric parameter t .

x

y

z

Space curve paraboloid

Plot A.2: The space curve of a paraboloid as defined in formula A.9.
This curve could be used with or without modification as a cutting
line for a paraboloidal surface.

With the use of formula A.6 the found curvature is
stated in formula A.13.

κ(t ) =
p

5t 4 +16t 2 +8

5t 2 +13/2
(A.10)

A.3. Conical object
A cone is defined with the following formula:

z2

c2 = x2

a2 + y2

b2 [18] (A.11)

For a perfectly round cone a needs to be equal to b
and for simplicity a,b,c will be equal to one.

z =
√

x2 + y2 = r

That is true for

x = r cosφ y = r sinφ z = r = t

The simplification φ = t will result in a vector func-
tion with one variable, as shown in in formula A.12
and figure A.3.

r = [
t cos t t sin t t

]T
(A.12)

With the use of formula A.6 the found curvature is
stated in formula A.13.

κ(t ) =
p

4+8t 2 +2t 4

(2t 2 +1)3/2
(A.13)

x

y

z

Space curve cone

Plot A.3: The space curve of a cone as defined in formula A.12. This
curve could be used with or without modification as a cutting line
for a conical surface.

A.4. Cylindrical object
A cylinder is defined with the following formula:

x2 + y2 = cos t 2 + sin t 2 = 1 ∀ z ∈R [18] (A.14)

For more general situations it follows:

r(t ) = [
a cos t a sin t bt

]
(A.15)

The space curved as defined in formula A.15 is shown
in figure A.4. With the use of formula A.6 the found
curvature is stated in formula A.16 and is constant.

κ= |a|∣∣pa2 +b2
∣∣3 (A.16)
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x

y

z

Space curve cylinder

Plot A.4: The space curve of a cylinder as defined in formula A.15.
This curve could be used with or without modification as a cutting
line for a Cylindrical surface.

A.5. Case off-set antenna
Paraboloid

The department of PME is doing research on a
kirigami antenna. Parabolic antenna for satellites,
describes several parabolic antennas namely: stan-
dard parabolic antenna, offset parabolic reflector,
Cassegrain dual reflector and Gregorian dual reflec-
tor. From the project point of view the offset antenna
will be the most interesting, it has a single surface
and the focal point is not in the way of the signal.
There for a mathematical description is of the offset
antenna is shown below. Note that all mathematical
rules as described in section A.1 also apply for the off-
set antenna.

A.5.1. Cartesian coordinates

An paraboloid (R3) or parabola (R2) will reflect all in-
coming signals, which are perpendicular to the direc-
trix (for figure A.5, parallel to z), to the focal point.
This makes paraboloids ideal for the design of anten-
nas [7]. "A parabola is the set of points in a plane
that are equidistant from a fixed point F (called focus)
and the fixed line (called directrix)"[18] as is shown
in figure A.5. The directrix can be described with
z =−p when the focus point is on point (0,0, p). The
parabola can be defined as followed:

z = x2

4p
, F: (0,0, p), directrix: z =−p [18] (A.17)

Figure A.5 shows a parabola for the xz plane. To
create a paraboloid for a R3 space, a parabola on the

yz plane needs also be defined, z = y2

4p . An elliptic
paraboloid has a standard form as shown in formula

A.18.

z

c
= x2

a2 + y2

b2 [18] (A.18)

or

f (x, y) = z = c
x2

a2 + c
y2

b2 (A.19)

x

z

Directrix

Parabola

Vertex

F

Parabola in 2D space

Plot A.5: Definition of a parabola, with parabola z = x2

4p , directrix

z =−p, focus point (0,0, p) and the vertex (0,0,0), source [18]

In formula A.17 the parabola is defined with the
use of the focal point. Combining formula A.17 and
A.18, A.19 results in a = p

p, b = p
p and c = 1

4 , for
symmetric purposes a = b. The paraboloid with the
directrix plane is shown in A.6.

x

y

z

Eliptic paraboloid in 3D space

Directrix plane Paraboloid

Plot A.6: A paraboloid with a =p
p, b =p

p and c = 1
4 and a direc-

trix plane on z =−1. The focal point lays on F(0,0,p)
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A.5.2. Cylindrical Coordinates
The cylindrical coordinates are defined in A.20 with
0 ≤ φ ≤ 2π [18] and can be converted with the use of
formula A.20.

x = ρ cosφ

y = ρ sinφ

z = z

←→


ρ2 = x2 + y2

tanφ= y
x

z = z

(A.20)

Formula A.19 can be rewritten with the use of the
definition A.20. This results in expression A.21, with
c = 1

4 and p the location of the focal point.

f (x, y) → f (r,φ) = z = c

p
ρ2 (A.21)

A.6. Domain
A conventional sub-reflector has a sensor in the
F (0,0, p) focal point. The construction required for
the sensor results in an aperture blocking for the
received signal[7]. This "leads to scattered radiation
which results in a loss of system gain on the one
hand and a general degradation in the suppression
of sidelobes and cross-polarized radiation on the
other"[7]. A solution to this problem is the use of
offset-parabolic reflector [7]. In figure ?? an offset-
parabolic antenna is shown. The offset-parabolic
reflector has some disadvantages, for example
"the offset reflector will generate a cross-polarized
component in the antenna radiation field"[7], more
advantages and disadvantages can be found in [7].

F ψ

θ
x

z

Paraboloid Cone

Plot A.7: Paraboloid with a focal point in F (0,0, p) and a cone with
the tip in the focal point. The location of the cone is set by θ and
the sharpness of the cone is set by ψ. The paraboloid that is not
part of the projection of the cone on the paraboloid is dashed. The
bisector of the cone is also dashed.

The offset-parabolic reflector can be described by
a paraboloid with a domain created by the projection
of a cone [7]. It is clear that the tip of the cone needs

to lay on the focal point (F ) of the paraboloid. Figure
A.7 shows a section of R3 onto the xy plane. The part
of the paraboloid which is not part of the domain
created by the the projection of the cone is dashed.
The variables used in figure A.7 are explained lateron.
Notice that "the projection of this contour onto the
plane will produce a true circle"[7].

A cone in the negative direction and the tip in
the origin can be defined with polar coordinates as
described in formula A.22 [18].

z2 = ρ2 = x2 + y2 with ρ ≤ 0 (A.22)

For engineering purposes, it must be possible to ad-
just the sharpness (ψ) of the cone. The sharpness also
defines the size of the final domain (read also area)
of the off-set reflector. Formula A.22 will change into
formula A.23.

z = ρ

sin
(ψ

2

) with ρ ≤ 0, ψ=C (A.23)

There are two possible ways to define the area of
the parabola which is suitable for the offset antenna.
First rotate the cone around the focus point and the
projection will be domain of the offset antenna. Sec-
ondly, the cone stays aligned with the z-axis end the
parabola will rotate around the focal point. Once
again the projection of the cone is the domain of
the offset antenna. Notice that the incoming signal
should be parallel to the normal vector of the direc-
trix plane.

A.6.1. Rotation of the cone
The idea of the an off-set antenna is that the sensor
does not converge with the path of the signals to pre-
vent aperture blocking. Therefore the cone should
be able to rotate around the focal point. The rota-
tion equations are defined as determined in formula
A.24. Due symmetric property’s of a paraboloid, it is
sufficient to rotate with an single angle θ to map P
to N (maps the reference frame of the cone to main
frame).


x ′ = cos(θ)x + sin(θ)z

y ′ = y

z ′ =−sin(θ)x +cos(θ)z

with θ =C (A.24)

From equation A.23 is known that z = ρ

si n(ψ2 )
for ρ ≤ 0

and ψ = C . With this knowledge in combination of
formula A.24, formula A.23 can be updated to for-
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mula A.25.

z ′ = ρ

si n(ψ2 )
for ρ ≤ 0

z ′ =−sin(θ)x +cos(θ)z

}
⇒

−sin(θ)x +cos(θ)z = ρ

sin
(ψ

2

) (A.25)

with ρ ≤ 0 θ, ψ=C

Which results in:

−sin(θ)x +cos(θ)z = ρ

si n(ψ2 )
for ρ ≤ 0

x = ρ cosφ

}
⇒

z = ρ
(

sin(θ)sin
(
φ

)−1
)

sin
(ψ

2

)
cos(θ)

(A.26)

with ρ ≤ 0, 0 ≤φ≤ 2π θ, ψ=C

The cone needs to be translated with a distance p
along the z-axis to such that the tip of the cone will
intersect in the focal point. The formula of A.26 will
change to A.27.

z = p + ρ
(

sin(θ)sin
(
φ

)−1
)

sin
(ψ

2

)
cos(θ)

(A.27)

with ρ ≤ 0, 0 ≤φ≤ 2π, θ, p =C

The offset-parabolic reflector can be described with

f (ρ,φ) = z = ρ2

4p
on domain D (A.28)

with:

D =
{

(ρ,φ, z) | 0 ≤φ≤ 2π, ρ ≤ 0, (A.29)

0 ≤ z ≤ p + ρ
(

sin(θ)sin
(
φ

)−1
)

sin
(ψ

2

)
cos(θ)

}

A.6.2. Rotation of the paraboloid
Formula A.19 describes the standard form of the
paraboloid with a = b = p

p and c = 1
4 . The fo-

cal point is noted as F (0,0, p). For the rotation of a
paraboloid it needs to be translated first, such that
the focal point collide with the origin. Secondly the
paraboloid needs to be rotated with an angle θ. The
domain of the offset antenna will be defined by the
projection of a cone along the z-axis. Formula A.30
shows the first step. The paraboloid is translated with
−p along the z-axis.

f (x, y) = z = c
x2

p
+ c

y2

p
−p (A.30)

The rotation equations are defined as determined
in formula A.31. Due symmetric property’s of a

paraboloid, it is sufficient to rotate with an single an-
gle θ to map P to N (maps the reference frame of the
paraboloid to the main frame)


x ′ = cos(θ)x + sin(θ)z

y ′ = y

z ′ =−sin(θ)x +cos(θ)z

with θ =C (A.31)

With the use of formula A.30 and A.31 a rotated
paraboloid can be determined, see formula A.32

y2 = cos(θ)z − si n(θ)x − c

p

(
cos(θ)x + si n(θ)z

)2

on domain E (A.32)

or

f (x, z) = y = (A.33)

±
√

cos(θ)z − si n(θ)x − c

p

(
cos(θ)x + si n(θ)z

)2

on domain E

Domain E is defined by a cone along the z-axis. The
cone is defined in formula A.22. Domain E can be de-
scribed as formula A.34.

E =
{

(x, y, z)|x2 + y2 = ρ2 = z2, z ≤ 0
}

(A.34)

Example
For the example the software MATLAB [37] is used.
For easy processing a rotation for the paraboloid will
be used. The cone will be represented by a mesh in
the shape of a cone. It seems to be difficult to rotate
an entire circular mesh, that’s why the paraboloid is
rotated for this example and not the cone.

Firstly the entire paraboloid will be calculated
on a certain domain e.g. [−10 : 10,−10 : 10], using
listing A.1 with P as f (x, y) = z. ,

1 [X , Y ] = meshgrid ( −10:0.05:10 ,
2 −10:0.05:10) ;
3 P = @( x , y ) ( ( c/ f ) * ( x .^2+y . ^ 2 )−f ) ;
4 Z =P1 (X , Y) ;

Listing A.1: Code: The definition of a paraboloid

The paraboloid needs to be rotated with angle "φ"
with the use of formula A.31, this results in in the code
A.2.

,

1 Xnew = cos ( phi ) *X+sin ( phi ) *Z ;
2 Ynew = Y ;
3 Znew = −sin ( phi ) *X+cos ( phi ) *Z ;

Listing A.2: Code: Rotation of a paraboloid.
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With the inbuilt function sur f the rotated
paraboloid is plotted with an angle of φ= π

3 as can be
seen in figure A.8
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Plot A.8: Figure of the paraboloid created with MATLAB, Rotated
with an angle of φ= π

3

The domain which is defined by a cone, is equal to
a circle the cone creates on the paraboloid. The cone
is defined as x2 + y2 = z2 = ρ2 as stated in formula
A.22. If the sharpness of the cone is known then also
the radius on the projection is known. This can be
realised with a for loop throughout all the datapoints
as shown in listing A.3.

1 for i = 1 : 1 : p
2 for j = 1 : 1 :q
3

4 i f Xnew( i , j ) ^2+Ynew( i , j ) ^2 >r
5 Ynew( i , j ) = NaN;
6 Xnew( i , j ) = NaN;
7 Znew( i , j ) = NaN;
8 end
9

10 % Antenna beneath the z =0;
11 i f Znew( i , j ) >0
12 Ynew( i , j ) = NaN;
13 Xnew( i , j ) = NaN;
14 Znew( i , j ) = NaN;
15 end
16

17 i f j > length (Xnew)
18 break ;
19 end

20 end
21

22 i f i > length (Xnew’ )
23 break ;
24 end
25 end

Listing A.3: Code: Domain of the paraboloid defined by an
intersection of a cone but executed by a circle r with the same size
as the projection.

The result of listing A.3 is shown in figure A.9, a ra-
dius of r = 1 is used.

−1.2 −1 −0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1−0.5

0
0.5

−1.5

−1

−0.5

x
y

z

Plot A.9: The offset antenna created with MATLAB. A cone is pro-
jected on a paraboloid. The paraboloid has an angle of φ= π

3 .



B
Introduction to origami mathematics

The first stage of the project will involve the defi-
nitions and properties of a crease. This is obtained
by conducting a literature search first. The litera-
ture search results into a mathematical model which
is a skeleton for constraining sheets with the use of
creases. This chapter also describes how to distin-
guish creases from different subsets with the use of
map folding.

B.1. Elements of folding
The first stage of the thesis is based based on the
article "Flat-Foldability of Origami Crease Patterns"
by J. Schneider [14]. The first thing he defines is the
sheet S, "as a compact connected region of the plane
bound by simple closed curves" with a finite area. On
sheet S an crease pattern G is defined, which consists
of "the vertices (V ), edges (E), and faces (F )". "A
c-net, C , is a sheet of paper S with a crease pattern
G embedded on it. The elements of C and S are the
same, they are the points of the sheet S" [14].
He also defines two types of edges; "An edge lying in
the interior of S is called a crease, whereas an edge
on the boundary of S is called a raw edge" [14].

A vertex (V ) is a point were several edges (often
creases) (E) intersect. By definition an edge (E) is
defined by a starting point (Vi ) and an end point
(V j ) . The angle between the edges are defined as α.
While the faces (F ) are bounded by the edges (E).
Note that often the raw edge is not mentioned in the
set of edges.

B.1.1. Folding axioms for flat origami
Flat origami models are in reality in R3 and satisfy the
five origami axioms [14]. For mathematical reasons
the sheet thickness is assumed to be near zero. There-
fore the origami model will be mapped to the folding
space R2.
In the field of flat origami there exist five axioms for
polyhedral folding [14]. These axioms form the basic
rules of origami and are listed below[14]:

Axiom B.1.1. "The crease pattern faces retain their
shapes when the paper is folded". Mathematically:
"The image φ acts as an isometry on each face" [14]
meaning the distance is preserved.

Axiom B.1.2. "The paper is folded at every crease".
Mathematically: "If F1 is adjacent to F2, then iF1 6= iF2 "
with "face isometry i f :R3 →R3" [14]

Axiom B.1.3. "In the folded model, the paper can-
not self-intersect". Mathematically: "φ is one-to-one".
"Even if the origami is “flat”, there is still a small space
between overlapping layers". So "Technically, axiom 3
prohibits any fold from being truly flat. The dihedral
angle of any fold cannot go to zero without violating
the one-to-one principle." [14]

Axiom B.1.4. "The paper never tears". Mathemati-
cally: "φ is continuous". in other words "any discon-
tinuity in folding corresponds with a cut or tear made
in the paper" [14].

Axiom B.1.5. "During the folding process, the paper
cannot self-intersect".

B.1.2. Implication of the mathematical
model

Figure B.1 shows two sheets (S1 and S2). Both have
several vertices on different positions on the raw
edge, V = {V1,V2,V3,V4} each Vi has an (xi , yi ) com-
ponent. A crease between the two vertices V1(x1, y1)
and V2(x2, y2) can be defined as shown in formula
B.1.

E12 =V1V2 =
{

(x, y) | y = y2 − y1

x2 −x1
x + y1 ∈

[
V1,V2

]}
(B.1)

A crease Ei j defines the faces border between the
Fi and F j . For example S1, E12 lies between F1 and
F2, see figure B.1.

B.2. Map folding
The methodology of map folding is closely related to
the intended model for strips. Both models includes

7
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Figure B.1: Two sheets are fixed to the ground each having a single
latitudinal crease E throughout the sheet which is accompanied
with two vertices V . As defined by [13] and [14].

intersecting creases. For map folding the creases
are either parallel or perpendicular, while folding
with strips the creases do not have to. Following
Demaine and Rourke [15] map folding needs to
have at least one continuous crease which is labeled
valley or mountain throughout the sheet. In case
of map folding for each subset can be said that "all
creases must be parallel; otherwise the vertex of
intersections between crossing crease lines violate
Maekawa’s Theorem" [15]. A continuous mountain
or valley is part of subset H or V . Creases from the
same subset can be folded independently from each
other. The letter H is inherited from map folding
for which creases are aligned with the horizontal,
likewise V for the vertical. For the presented model
the creases are not necessarily aligned with the
horizontal of vertical, but for conventional reasons
we will stick to the labels H and V .

Figure B.2 from [15], shows an example of map
folding. The main vertical crease of figure B.2 is
folded first, therefore part of subset V1. Secondly the
horizontal crease is folded, which is part of subset
H1. Notice the mountain valley transition in order
to satisfy Maekawa’s Theorem. The final fold is part
of of subset V2. For this example the independent
creases are part of subset V1. The creases from subset
H1 are and only are depending of subset V1. In the
same way the creases of subset V2 depends on V1 and
H1.

B.3. Strip folding
As mentioned earlier, our strip model will exclude
the condition of perpendicular and parallel creases

while including the requirement of independent
creases within a subset, with ’independently’ de-
fined only within a strip. Reformulated, by defini-
tion the creases may not intersect inside the strip.
For conventional reasons the completely indepen-
dent creases will be placed in subset H . Afterwards
the creases of subset V1 will be folded. Because the
creases are not parallel nor perpendicular, the up-
coming subset are also called V and are accompa-
nied with an index number. The first set of creases
are labeled differently with H because it has dis-
tinctive number of variables per crease compared to
V . At first sight subset V1, V2 etc. do not differ in
constraints, and are therefore characterized with the
same label V accompanied with a unique index num-
ber. The following lemma is adopted from [15]

Lemma B.3.1. "All crease lines in set H must be
folded before any other creases"[15]

B.3.1. Creating creases of subset V
A crossing crease is part of subset V and is literally
crossing a crease of a different subset. Figure B.3
shows the process to create creases from different
subsets. The folding sequence F 1 leads from an un-
folded state to a folded state were only creases of sub-
set H are folded. The second set of folding F 2 intro-
duces the subset V1 into the folded state, as is shown
with the green line in figure B.3.

A side affect of the the stated above, a subset
should not introduce creases which can be placed in
lower subsets. As described in lemma B.3.2, which
should be extended to all subsets.

Lemma B.3.2. Subset H contains the optimal set of
creases which are continuously a mountain or valley
fold from one raw edge to another raw edge. Therefore
the subset V can not induce a continuous mountain
or valley fold from one raw edge to another raw edge.

Proof. If the subset V would have a continuous
mountain or valley fold from one raw edge to another
raw edge then the subset H is not optimal, lacking
this specific fold.

B.4. More in depth: Creases of sub-
set H

In unfolded state all creases of subset H will go from
one raw edge to a raw edge parallel to it, excluding the
fixed ground as shown in figure B.1. This is not true
for origami in general but only for our strips (flaps).
The creases will be straight lines, in order to satisfy
the axioms B.1.1, B.1.2, B.1.4 [14].

Definition B.4.1. The crease pattern consist of
straight creases going from and to parallel raw edges
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Figure B.2: Example of mapfolding. The first fold is part of V1, the second fold is part of H1 and the third fold is part of subset V2. The
mountain assignment is shown in red while the valley assignment is shown in blue. Source: [15]

Figure B.3: A process to create crossing creases. The folding sequence F leads from unfolded to folded states of the strip.

excluding the fixed base. Strip (flaps) emerges perpen-
dicular from the fixed ground.

Proof. If definition B.4.1 were not true then a crease
line would intersect with the fixed ground which
should also be folded. The ground can not be folded
because it is fixed.

If creases were not straight lines the origami ax-
ioms B.1.1, B.1.2, B.1.4 would be violated [14]

The strip itself can be defined with a constant
width (D) of the strip and a constant length (L). The
centerline of the crease is at a distance of D

2 from
the raw edges and is often aligned with the origin
of the axis, as shown in figure B.4. Although the
foldable models are in reality in R3 and meet the 5
origami axioms. It is mathematically advantageous
to use a mapping of ω which will map the folding
to the space R2 ×Z. The map ω can be divided in
two semifolding maps µ and σ. The folded and
unfolded state are related by the "semifolding map
µ : C → R2 that determines only the final position
of the sheet in a plane and superposition order-
ing σ : C → Z determines only the overlap order
of the layers"[14] of folded sheets. In figure B.4
the outgoing sheet of crease E1 is mapped to the
other side of the crease line as shown in the left figure.

Figure B.4: Left folded strip and right unfolded strip with creases
numbered. The centerline of the strip is shown in pink. The axes
are located on the left hand side of the strip, but can also be located
in the middle.

Before mapping the crease, it needs to be defined
first. A crease of subset H can be defined with three
variables, 1) the location on the y-axis (xH

1 ), 2) the
angle between the incoming and outgoing strip (xH

2 ),
3) and the direction of the folding (xH

3 ).

B.4.1. Direction of the folding
This section deals with the direction of a crease. What
direction does the incoming and outgoing strip come
from and to?
Figure B.5 includes a folded sheet into theR3 space. If
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the crease is defined inside the x y-plane, if folded the
angle around the x-axis would ≈ 0, in such a way the
faces touches. The angle around the x-axis =π when
unfolded. For flat foldability the angle around the x-
axis is either 0 or π otherwise it would pop up into
the R3 space. Including the fact that mathematically
speaking the sheet is infinitely small, the crease can
be represented as a line in a plane with a normal vec-
tor ~N indicating the direction of the fold and tangent
vector ~T indicating the direction of the crease itself as
shown in figure B.5. This is a direct result from sim-
ple vector calculus [18]. For completeness the ~N and
~T are defined in the center of the crease.

Definition B.4.2. The normal vector (~N ) and the tan-
gent vector (~T ) are located in the center of the crease
E. Crease E has its endpoints in two vertices (Vi ,V j ).

The vector ~N determines the direction of the folding,
therefore laying on the same side as the incoming and
outgoing strip. Next ~T ⊥ ~N . And ~T denotes the tangent
direction of the crease E with |~T | = 1

2 |E |
It is worth to mention that normal vector (~n) is

used to determine the orientation of the sheet, see
chapter 11 of [15], these normal vectors are defined
from the facets and not from the crease. Both defini-
tions will be used with in this thesis.

Figure B.5: Left a folded sheet with a creaseline. Right the crease
itself on the x y-plane with the normal vector ~n and the tangent ~T .

B.4.2. Behavior of a crease
A crease acts like a mirror, the incoming strip is re-
flected by crease what results into an outgoing strip.
This is clearly shown in figure B.6, the centerline
touches the origin of the normal vector before it is re-
flected. Mathematically shown in definition 8 of [14],
which is cited in definition B.4.3.

Definition B.4.3. "Let C be a c-net with straight-line
creases. Let p be a path in C . The isometry induced
by p, denoted ip : R2 → R2, is defined as follows. Sup-
pose p crosses the creases E1,E2, ...,En , not necessar-
ily all distinct, in that order. Let RE j denote the re-
flection of the plane across the line containing the
crease E j . Then ip is defined to be the composition
RE1 •RE2 • ...•REn "[14]

The reflection R of B.4.3 depends on the variableα.

Figure B.6: The incoming strip is mirrored on the crease resulting
in an outgoing strip.

which is defined by the angle between the incoming
centerline and the normal vector of the crease.

Corollary B.4.1. The angle α between ~N and the cen-
terline ~l (in figure B.6 noted as m) is constrained by
−π

2 ≤α< π
2 .

Proof. If α > π
2 then the incoming strip would be at

the back of the crease. As a result also the reflection
would also be at the back of the crease. Therefore
definition B.4.2 is violated, which states that the ~N
needs to be on the same side as the incoming and
outgoing strip.

If α = π
2 then the strip is parallel to the crease.

Which is in violation with definition B.4.1.

B.4.3. Strip Model of subset H
The strip is folded from the bottom to the top raw
edge. The therefore the folding operations within a
strip have an ordering.
The basic idea of the strip model; if the distance be-
tween the center of the creases |~ln | and the angle
αn between the normal vector and the centerline are
known in combination with the constant width of the
strip (D) then all the vertices and center points of of
all the creases can be calculated. In other words this
model has as input the lengths of the centerlines and
the angles of the crease and the model gives as out-
put the coordinates of all important points, see also
figure B.4 and figure B.7.

From corollary B.4.1 is known that α is the angle
between ~Nn and~ln . So the angle between two cen-
terlines are equal to 2α, see also figure B.7. In a more
generalised form, ∠~ln ,~ln+1 = 2αn . A crease is able
to reflect π, therefore can be said that βn = π− 2αn

which will be the the variable of the reflection matrix
from definition B.4.3. The reflection matrix is stated
below:

R(βn) =
[

cosβn −sinβn

sinβn cosβn

]
(B.2)
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Figure B.7: The centerline is mirrored at the center of the crease
line with an angle α to the normal vector ~n.

The endpoint of ~lm2 of figure B.7 can be deter-
mined if α,~lm1 and the |~lm2| are known, then:

~lm2 = |~lm2|︸ ︷︷ ︸
New length

R(β)l̂m1︸ ︷︷ ︸
direction

+ ~lm1︸︷︷︸
begin position

In a more generalised form:

~ln+1 = |~ln+1|R(β)l̂n +~ln with
(B.3)

R(β) = Rn+1(βn+1)Rn(βn)Rn−1(βn−1) . . .R0(β0)

Formula B.3 is a bit of cumbersome. For a clear
and more intuitive definition, formula B.3 is rewrit-
ten into a matrix notation as shown in formula B.4.


~l1
~l2
~l3
...

=


l̂1 0 0 · · · 0
l̂1 R(α1)l̂1 0 · · · 0
l̂1 R(α1)l̂1 R(α2)R(α1)l̂1 · · · 0
...

...
...

. . .
...



|l1|
|l2|
|l3|

...


(B.4)

Note: That the total length of the subset α is smaller
with one then subset |l |. This is a locigal result be-
cause α only exist between two centerlines.
Note: That from definition B.4.1 the strip originate
perpendicular from the fixed base. If the fixed base

would be aligned with the x-axis, then l̂1 =
[
0 1

]T
.

Note: This model does not satisfy origami axiom B.1.3
and B.1.5, which prevents intersection of the sheet.
Keep these axioms in mind.

B.4.4. Implications of the strip model
With the information of the strip model and the
known constant width of the strip the location of the
vertices can be calculated. This is realised by the fact

that the centerline is parallel with the vertex line with
D
2 , see also figure B.6. Note that~ln is located on the

center of a crease.

V =
[

x
y

]
=~ln ± D

2
l̂ T

n (B.5)

with:

l̂ T
n = R⊥ l̂n =

[
cos π

2 −sin π
2

sin π
2 cos π

2

]
l̂n (B.6)

From definition B.4.2 ~T =V and ~N ⊥ ~T . The vector
~N can also be described as the bisector between the
incoming strip and the outgoing strip. Therefore N̂
can be formulated as followed:

~Nn = ||l̂n+1||l̂n−1 +||l̂n−1||l̂n+1 = l̂n−1 + l̂n+1 (B.7)

With the above information and formulations
lemma B.4.1 can be defined.

Lemma B.4.1. If the the strip model is used in
R2, the normal vector N̂ and the tangent T̂ can be
described as a function of li with i = 1. . .n as followed:

N̂ = l̂n−1 + l̂n+1

|l̂n−1 + l̂n+1|
and T̂ = R⊥N̂ (B.8)

B.5. More in depth: Creases of sub-
set V

Figure B.8 shows a close view of a part of a crease
pattern with creases of subset H and V . The creases
of subset V intersect with subset H , resulting that
the a crease of subset V consist of several partial
creases. In order to determine if a partial crease is
mountain or valley, Kawasaki theorem can be used.

Back to figure B.8. The outer vertical line is the raw
edge of the strip itself. While the vertical black line is
midline of the strip. The crease of H is shown in or-
ange and is defined before subset V , therefore the an-
gle and position of this crease is known. The angle α3

is defined by angle between the normal vector of the
existing crease and the incoming crossing crease. The
crossing crease can be introduced to the strip model
when the the starting position and the angle α3 are
known.

The starting position position of the crossing
crease is a vertex V V

1 on a raw edge which can be de-
fined with a vertex V H of subset H with a certain
length lV

1 . See also formula B.9.

V V
1 =V H +|lV

1 |V̂ H (B.9)
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Figure B.8: A part of a crease pattern in unfolded state. The angle
of the crossing crease of the raw edge. The variable α2 is known
from the previous subsets. The raw edge is shown with a blue line
as well as the crossing crease. The middle line of the strip is shown
in black. The variable α3 can be freely chosen.

which is accompanied with a direction β:

β=α3 −α2 with:
−D

2
≤V V

1 V V
1 ≤ D

2
(B.10)

The limitations of β are needed in order for vertices
to lay inside the strip. With this information the
entire line of the crease can be drawn. In order
to determine if the crease is mountain or valley,
Kawasaki theorem can be used.

Note that the normal vector~n of a crease from sub-
set H is defined. By the fact the crease line is re-
fracted, formula B.11 is true from the fact that θ1 = θ2.
With i is the incoming crossing crease and t is the
outgoing crease. (

~n ∧ t
)= (

~n ∧ i
)

(B.11)

A crease of subset V can be defined with four vari-
ables, 1) the location on the y-axis (xV

1 ), 2) the side of
the strip (xV

2 ), 3) the angle of the crease (xV
3 ), 4) and

the direction of the folding (xV
4 )



C
Degrees of freedom in folded state

The basic principle of flat origami is that the
resulting object could "be pressed between the
pages of a book" [14]. Physically the layers have a
certain thickness and would therefore popup into
the R3-space. However, mathematically the sheet
thickness is neglected, hence it spans a R2-space in
unfolded state [14]. If the origami object is also flat
foldable then also in folded state the crease pattern
can be mapped to the same space of R2.
The physical ordering can be tracked with the space
Z. Concluding that mathematically flat origami can
be described in a space R2 ×Z [14].
Although the mathematical model neglect the fact
that a sheet has a thickness, the true thickness of a
strip will be in the order of 0.01 mm to 1 mm. As is
stated in section 1, compared with the total size of
the object which is several meters, from a designer
point of view it would also be appropriate to neglect
the thickness of the sheets. Therefore all creases will
lay in the same R2 plane as is shown in figure C.1.
Following Hopkins [38] a plane can be described by

Figure C.1: With the mathematical origami principles all creases of
a flat-folded object lie on the same plane.

constraints on a plane called the constraint-space.
Figure C.2 shows this constraint-space and its cor-
responding freedom-space, following the topology
of Hopkins. If the plane were aligned with the x and
y-axis, then the resulting freedom-space would con-
sist of translation into the z-direction and rotation
around the x-axis and y-axis.
If one side of the sheet is fixed and the other side has

a crease. The freedom of rotation would be parallel
and perpendicular to the fold as is shown in figure
C.3. While the largest displacement due translation

Figure C.2: Left the constraint space and right the freedom space
of one single sheet , as defined by Hopkins [? ]

into the z-direction would occur at the tail of the
facet on the crease itself.

In figure C.4 the ground is replaced with the final

Figure C.3: One fold with the resulting DoF, which is attached to
the ground.

object, which is shown in yellow. From the point
of view of the object, the degree of freedom will be
defined on same location as in figure C.3.

Summarizing, from the mathematical definition of
flat origami, all creases lay inside one single plane
R2. If the plane is spanned by x-axis and y-axis,
the plane has a constraint-space of x, y , Rz and a
freedom-space of z, Rx , Ry .

By taking in account that in the physical world
the sheets can not intersect with itself and the fact
that the sheets have a finite thickness, the freedom-
space can be reduced. Once again the topology
of Hopkins is considered [? ], by stacking the flat
constraint-spaces unto each other, as shown in figure
C.5, the freedom-space can be reduced to only a
translation into the z-direction.

13
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Figure C.4: One fold with the resulting DoF, which is attached to
the object which is shown in yellow.

By assuming that the object resembles a fixed

Figure C.5: Left the constraint space and right the freedom space
of stacked sheets, as defined by Hopkins [? ]

ground, a stacked strip of paper will have a DoF
translation into the z-direction as shown in figure
C.6. Note that translation into z-direction counts
for the resulting folded state but not for individual
facets which will "stick" to each other as explained in
section D.

Figure C.6: The influence of the resulting DoF for stacked sheets.



D
Primary constraints

D.1. The bricks of constraining
sheets

Remember from a mathematical point of view, the
sheets are infinitely thin in such a way that all the
creases lay inside one plane. This should also be
true if a crease involves more then one sheet. This
chapter restricts itself to two sheets which folded
into each other, namely sheet I and sheet II.

In figure D.1, sheet I is folded inside the fold of

Figure D.1: Coordinate system with sheet one folded into sheet
two. The creases of both sheets lay on the same plane.

sheet II in such a way that the crease E = E I I ≈ E I is
parallel to the x-axis inside the x y-plane. Let’s say
that one of the two sheets is fixed. Then there are two
options, A) sheet I constrains sheet II, or B) sheet II
constrains sheet I. For both situations it is true that:

Lemma D.1.1. If the crease Ei j ,I of sheet I and Ei j ,I I

of sheet II lay both inside R2 and are folded into each
other. And if det (Ei j ,I I ,Ei j ,I ) < 0, Ei j ,I I is on the left

of Ei j ,I , then the sheets are constraint by ~Ei j ,I I ¹ ~Ei j ,I .
Or if det (Ei j ,I I ,Ei j ,I ) > 0, Ei j ,I I is on the right of Ei j ,I ,

then the sheets are constraint by ~Ei j ,I I º ~Ei j ,I . Inde-
pendent of which sheet is fixed or which orientation
the creases have:
If Ei j ,I I 6= Ei j ,I then sheet I or II is somewhere in the
freedom-space
If E I = Ei j ,I I and Ei j ,I ∥ Ei j ,I I then the creases are on
the constraint
If EI = Ei j ,I I and Ei j ,I ∦ Ei j ,I I then the creases have a
collision

Proof. Lets say E I I lies left of E I for E I ∥ E I I . Then

E I can be rewritten as E I = ~d + Ê I I |E I | with ~d ≥ 0
as the distance between E I and E I I . In that case
det (E I I , ~d + Ê I I |E I |) ≤ 0. If det (. . . ) < 0 then E I is lo-
cated on the right of E I I and if det (. . . ) = 0 then E I

and E I I lay into each other. So E I I ≤ ~d + Ê I I |E I | re-
sults in E I I − Ê I I |E I | ≤ ~d . Indeed if d = 0 then E I and
E I I are equal to each other and are therefore laying
on the same location and if d > 0 then E I lies indeed
right of E I I .

Note that lemma D.1.1 states that sheets needs to
be folded into each other. This can be checked with
algorithms of chapter 11 of the book [15]. Section
F will discuss ordering in in depth. As shown in the
proof the creases E I and E I I can be expressed in each
other namely: if E I ∥ E I I then E I = ~d + Ê I I |E I | and if
E I ∦ E I I then E I = ~d + ê I |E I |. This also complies with
the strip model of section B.4.3 for which ~d =~ln .

Figure D.2: Coordinate system with two sheets. The correspond-
ing creases have an opposite direction. Also called a misalignment
gadget.

Figure D.2 shows a folding with opposite creases.
Note that in flat folding this fold is literally not al-
lowed due the fact it pops up in R3 space. Figure
D.2 is shown for illustration for a fold which is folded
back. While folding back both sheets are not folded
into each other. This fold could be used as a misalign-
ment gadget, by creating different directions for each
sheet.

Lemma D.1.2. If the crease E I of sheet I and E I I of
sheet II lay both inside R2 and are not folded into each
other. Independent of the location and orientation of

15
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the creases, the sheets are not constrained. Mathemat-
ically: −∞≤ E I ≤∞ and −∞≤ E I I ≤∞.

Note, that this report will not include misalign-
ment gadget and will assume that the sheets will
remain sticky. That is a logical assumption if you
were able to use multiple folds to lock the sheets into
each other with the use of flat folding.

Figure D.3 shows a which ladder which includes
twice a fold from lemma D.1.1. Although figure
D.3 seems to pop up in R3 it is not, due the fact of
sharp fold angles and infinite thin sheets. In this
example sheet I lays on the left of sheet II both having
crease A and B. The constraints of creases stated as
~E I I ,A ≤ ~E I ,A and ~E I I ,B ≤ ~E I ,B . The total constraint is
into the same direction. In other words there is a one
directional constraint in figure D.3. With this idea in
mind lemma D.1.3 is defined.

Lemma D.1.3. If E I I ,i ≤ E I ,i with i ∈ A . . .n and EI I ,i ∥
E I ,i then all constraints contribute to the same con-
straint. The same is true for E I I ,i ≥ E I ,i .

Figure D.3: Coordinate system with two sheets folded in a zigzag
shape. The corresponding creases lie in the same plane.

Lemma D.1.4 involves a fold combination of op-
posite folds and how those folds can constrain the
sheets. An example a fold combination can be seen
in figure D.4.

Lemma D.1.4. If there are two sheets (I, II) with both
two crease (A,B) which have an opposite folding direc-
tion, e.g. N̂A = −N̂B and ~d is distance between E I I ,A

and E I I ,B . Then:
if d(E I ,A ,E I ,B ) = ~d then the sheets are constraint in
both directions, also called locked
if d(E I ,A ,E I ,B ) < ~d then the sheets can move freely be-
tween the creases of the fixed sheet.

Proof. Figure D.4 two sheets with two opposite folds
which agree with lemma D.1.1. For the independent
constraints is true that ~E I I ,A ≤ ~E I ,A and ~E I I ,B ≥ ~E I ,B .
Lets assume that the distance between the creases A
and B is equal to ~d . In such a way that~E I I ,A = ~E I I ,B+~d

and ~E I ,A = ~E I ,B + ~d . Which results into the following
~E I I ,A ≤ ~E I ,A

~E I I ,B ≥ ~E I ,B

~E I I ,A = ~E I I ,B + ~d
→

{
~E I I ,B + ~d ≤ ~E I ,A

~E I I ,B ≥ ~E I ,B

→
{
~E I ,A − ~d ≥ ~E I ,B

Reformulated to ~E I ,A −~E I ,B ≤ ~d .
If ~E I ,A − ~E I ,B = ~d then sheet I is fixed between the
creases of Sheet II. Note, the creases of sheet I may
be parallel or have an collision.
If ~E I ,A −~E I ,B < ~d then sheet I is able to move freely on
the domain between the creases of sheet II which are
defined by ~d .

Figure D.4: Coordinate system with two sheets folded with two op-
posite creases. The corresponding creases lie in the same plane.

D.2. Projection of the constraints
Lemma D.1.4 shows how opposite creases are able
to constrain/lock sheets. However, figure D.1 shows
multiple creases which are not aligned with each
other and have also different lengths. Physically the
bending strain of a fold does depend on its length
[39], therefore it is important to take the lengths of in-
dividual creases into account. To have an indication
of the added value of those creases, they can be pro-
jected to a body fixed orthogonal base x y-axis. From
section B.4 is known that the ~N represents the folding
direction, or the direction of freedom and the vector
~T represents the direction of the crease. So sheets are
able to move freely along this line.
So the constraint-space can be defined by −||~N ||n̂.
From lemma D.1.1 it is clear that on the crease there is
an one directional constrain. If the sheets are locked,
as defined in lemma D.1.4, it will be sufficient to split
theR2-space into four subsapces, namely: x+, x−, y+,
y− in such a way we can track individual directions.

Lemma D.2.1. Each individual crease has a freedom
space: F = {−~T ,~T , ~N

}
and a constraint space: C = {−

||~N ||n̂}
in R2. The R2-space is the union of the subsets{

x−, x+, y−, y+}= F ∪C for which F 6∩C .
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Plot D.1: Two sheets with each 3 creases which have different
lengths and different directions.

D.3. Distinguishing the whichlad-
der and opposite folding

This section will determine when a crease is part of a
whichladder or opposite folding.

D.3.1. Distinguishing by ordering following
Demaine and Rourke

Demaine and Rourke [15] describe a way to define
the order of stacking of faces for one single sheet.
They are able to tell whether point p or q , both on
the same sheet, is on the top. This is realized by
defining p and q on a faces with corresponding
normal vectors of a sheet. See for example figure
D.5, a sheet is represented with the blue line and
the orange arrows represent the normal vectors. By
folding, the sheets are mapped in such a way that
"for every pair of distinct noncrease points p, q ∈ P
that f (p) = f (q), we assign a value of +1 or −1 to
λ(p, q), with the intent that λ disambiguates whether
p is stacked "above" q(λ(p, q)) = +1) or p is stacked
"below" q(λ(p, q)) = −1)" [15]. The normal vectors
are defined as followed [15].

n f =
(

f ′(r )

|| f ′(r )||
)⊥

where f ′(r ) = d f (x)

d x

∣∣∣∣
x=r

(D.1)

and < x, y >⊥=<−y, x > [15]

So, "λ(p, q) = +1 says that p touches q on q ’s top
side, and λ(p, q) = −1 says that p touchesq on q ’s
bottom side" [15], see figure D.6 Note that Demaine
and Rourke defined this method in such a way that
there may exist other sheets between point p and
q . In our situation we are not using one sheet but
two sheets which remain sticky, e.g. the pink line of
figure D.5. With the normal vector of both sheets
pointing into the same direction. Figure D.6 shows
the normal vectors near a fold. If the normal vectors
are pointing to each other (λ(p, q) =+1, λ(q, p) =+1)

Figure D.5: Two flat sheets which are "sticky" shown in pink and
blue. The corresponding normal vectors of the blue sheet are
shown.

then the normal vector of the fold (NE ) is pointing
inwards. And if (λ(p, q) = −1, λ(q, p) = −1) then the
normal vector of the fold (nE ) is pointing outwards.
The corresponding constraint space is still defined as
C = {− ||~N ||n̂}

. A physical fold can be seen in figure
D.7. The folds of figure D.6 are schematically shown
in figure D.8.

Figure D.6: The orientation of a sheet after folding with the corre-
sponding resulting value of the λ-function. This figure is only true
if no more then one crease is located between p and q . Partially
adapted from [15]

Figure D.7: A fold in the physical world. The sheet and the crease
have a normal normal vector.

A ladder is shown in figure D.9 which is a schemat-
ically representation of figure D.3 with one additional
crease. The creases of figure D.9 introduces con-
straints (C ) which are pointing into the same
direction.
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Figure D.8: A systematic way of drawing the orientation of the
sheet after folding. Left: inward folding with λ = +1. Right: out-
ward folding with λ = −1. The constraint is shown with a black
arrow.

Figure D.9: Two which ladders with a different direction are shown
including the normal vectors of the blue sheet. The constraint is
shown with black arrows.

In contrary to the ladder you can fold around
the base with opposite folding as is shown in figure
D.4 and D.10. The resulting crease pattern have
constraints in opposite directions.

Figure D.11 shows a combination of a ladder

Figure D.10: Opposite folding. Includes three creases which fold
around the base. The normal vector and constraint vectors are
shown.

and opposite folding. The recurring question is
which fold is a which ladder and which is part of
opposite folding? From the eye its clear the the first
crease is part of opposite folding, second crease
is a which ladder, third crease is opposite folding
as well as the fourth crease. The basic idea is that
with the knowledge of the previous crease you can
determine if the current crease is whichladder or
part of opposite folding. The first crease of figure
D.11 has normal vector (n f ) pointing to each other
resulting in a λ(p, q) = +1. Due the fact we are only
determining the orientation just after and just before
a crease, we know that λ(q, p) will also be equal to
+1. The orientation of the previous crease (λn−1)
compared to the current crease (λn) will tell if you

have a which ladder or opposite folding.

Lemma D.3.1. One single crease En will map two
points p and q, laying on sheet S, in such a way that
np =−nq independently whether λ(p, q),λ(q, p) =+1
or λ(p, q),λ(q, p) =−1 [15].

Proof. If λ(p, q) 6= λ(q, p) e.g. λ(p, q) = +1 or
λ(q, p) = −1 then np = nq which is true if there are
multiple creases between p and q . However, lemma
D.3.1 states that there is one crease and logically
λ(p, q),λ(q, p) = +1 or λ(p, q),λ(q, p) = −1 resulting
to np =−nq . More specific information can be found
in [15].

Lemma D.3.2. There are two creases next to each
other, namely: En−1 and En . From lemma D.3.1 is
known that λ(p, q) = λ(q, p) for two points with one
intermediate crease E j will be reformulated as λ j . The
creases En−1 has an corresponding λn−1 and En has
a corresponding λn . Note; that λn is located on the
crease En and is therefore aligned with the folding di-
rection, positive or negative.

• if λn−1 =λn then En is part of opposite folding

• if λn−1 6=λn then En is part of a whichladder

Figure D.11: A combination of the which ladder and opposite fold-
ing. The normal vector and constraint vectors are shown.

D.3.2. Relation of the constraint and the
folding direction

A crease pattern in unfolded state is a roadmap to
the folded state, it consist of vertices (V ), edges (E),
and faces (F ) [14]. But it lacks a representation of
the orientation of the sheet (~n) in folded (F ) and un-
folded state (F−1). It becomes even more complex
with the introduction of multiple creases. In order to
keep track of the orientation of the sheet, the set of
variables (Λ) is introduced. The variable Λ will help
to relate the type of folding with the orientation of the
sheet.
The variable Λ will recall if a crease is part of oppo-
site folding or part of a Jacobs ladder. If a crease is
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part of a Jacobs ladder then it will be represented with
a 1, if not then the crease will be represented with a
2. The folding direction ~N and the orientation of the
sheet (~n) can be related to each other on crease m as
is shown in Eqn. (D.2).

~nm = ~Nm(−1)
∑m

i=1Λ (D.2)

The resulting constraint can be formulated as Cm =
−~nm =−~Nm(−1)

∑m
i=1Λ for crease m.





E
Crossing of creases

Till so far we only discussed crease patterns of a
strip including creases going from one raw edge to
the other, which is parallel. Till this moment they
were not allowed to intersect. This chapter will in-
volve the crossing of several creases and how it influ-
ences the constraint space.

E.1. Properties of crossing creases
The crossing creases of subset V have the following
properties:

• The creases are subsequently folded with the or-
der H , V1, V2, etc.

• A crossing crease can be defined with 4 variables
in unfolded state. 1) The start position defined
from the horizontal axis. 2) The start position
defined from the vertical axis. 3) The direction
of the crease. 4) The folding direction (folding
around the base or whichlader).

• In unfolded state the creases of a subset will be
refracted by by lower subsets.

• In folded state the partial creases of a crossing
crease will be co-linear.

• In folded state the crossing crease will be the
most outer crease of the crease it does not inter-
sect within a certain band spanned by itself.

• Creases of subset V do not necessarily go to an-
other parallel raw edge.

• Crease may not intersect a crease from the same
subset.

E.1.1. Projection method for subset V .
A crease of subset V exist by definition of several
sub creases, which are bounded by the rawedge or
creases of earlier subsets. Due Maekawa’s theorem
the partial creases will be alternating between moun-
tain and valley. Although the creases of subset V are
refracted by lower subsets in folded state. The par-
tial creases of a crossing of subset V are co-linear in

folded state, as can clearly be seen in figure E.1.

While the partial creases of subset V are co-linear,
the resulting constraints, which are induced by fold-
ing, are not but are opposite depending on the moun-
tain valley assignment. Also the value linked to the
constraints differs in size depending on the length of
a partial crease. For clarification see also figure E.2. In
this figure it is clear that the partial crease E I I results
into a weaker constraint and is opposite to the con-
straint resulting from E I which is quite large. From
this example lemma E.1.1 is created.

Lemma E.1.1. A crease from subset V creates a con-
straint in the normal direction, positive and negative,
of the creases in folded state. The size of the constraint
into the positive or negative direction may differ.

Proof. First, remember that a mountain or valley as-
signment results into opposite constraints.
Secondly, the subset V will always intersect a crease
from a lower subset or a raw edge. A lower subset
or raw edge will have a continuous assignment of
mountain or valley. In order to satisfy Maekawa’s the-
orem the outgoing crease of subset V needs to have
a different mountain valley assignment then the in-
coming crease.

With the knowledge that a mountain or valley
assignment results into opposite constraints, the
projection method of subset H can be updated
for subset V . The mountain-valley assignment
of the projection method for subset V will rep-
resented by an alternation, (−1)i ndex+1 with
i ndex = {I , I I , I I I , . . .} ∈ N1 as index number of
the partial crease of a crease from subset V . For
example see figure E.2 which has subset V including
{EV

1 } with EV
1 : {E I ,E I I }.

The first partial crease (Em,1) of crease (m) de-
termines the direction of all other partial creases
due the mountain valley sequence. The direction
(nm,i ) of the partial crease (Em,i ) is mathematically
shown in Eqn. (E.1). Note that i corresponds with
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Figure E.1: Part of an unfolded strip accompanied with a schematic view of the folded state. Subset H is shown in orange and V is shown
in green. Note: the orange arrows indicate the orientation of the sheet.

Figure E.2: Part of an unfolded strip accompanied with a schematic view of the folded state. Subset H is shown in orange and V is shown
in green. The subsets are H : {E1} and V : {EV

1 } with EV
1 : {EI ,EI I }. Note: the orange arrows indicate the orientation of the sheet.

the indexation number, previously called i ndex.

~nm,i = (−1)1+i ||Em,i ||~nm,1 (E.1)

Although it is not validated yet, it is expected that also
the secondary creases play a role in constraining sub-
sets of V . Further research should determine a cor-
rect formulation.



F
Stacking of sheets

Sheets can be constrained into the x,y-direction
with folding. In order to constrain into the z-
direction the sheets must be stacked, see section
C. Note that from section C is known that when
folded the degree of freedom of the z-direction is
maintained. Due folding itself the sheets will remain
sticky. The idea of stacking: keep track of the total
number of layers, the more layers the stronger the
stickiness will be.

F.1. Ordering by the literature
There are several ways to keep track of stacking fol-
lowing the literature. Stacking can relate to the order
of faces (Following Schneider) or the "top" "bottom"
determination between partial sheets which are on
top of each other (Following Demaine and Rourke).
Both methods will be discussed.

F.2. Following Schneider
The article "Flat-foldability of Origami Crease pat-
tern" by J. Schneider [14] discusses the mathematics
of flat polyhedral origami. The assumptions of
the mathematical model differ from the physical
physical model. The folded state with infinite thin
sheets remains inside the R2 space. Due the infinite
thin sheets, the stacking will not result into a map-
ping into the R3 space but into the integer space Z.
Summarizing, the folded space of flat polyhedral
origami spans the R2 ×Z-space[14].

To create a folded state there is "a semifolding
map µ : C → R2 that determines only the final posi-
tion of the paper in the plane, and a superposition
ordering σ : C → Z that determines only the overlap
order of the layers"[14]. Schneider formulates a
definition for superposition ordering in definition
F.2.1. S-faces can be defined as identical faces. In
folded state the S-faces will lay exactly on top of
eachother.

Definition F.2.1. "Let C be a semifoldable c-net. A su-

perposition ordering σ : C →Z is any map that acts as
a constant on each S-face and has the following prop-
erty: For every F-face F , the n s-faces in the set µ−1(F )
are mapped to distinct integers between 0 and n − 1,
inclusive". [14]

Figure F.1: Crane in unfolded state on the right and in folded state
on the left. The identical faces are labeled analogous with σ and
are part of the Zspace. Source: [14]

Definition F.2.1 is applied to figure F.1[14]. In figure
F.1 eleven identical faces are shown and enumerated.
The enumeration of the faces corresponds with the
order of stacking of this specific S-face. For strip
folding the f-faces are seldom identical. It is therefore
difficult to adopt the definition of F.2.1. However, the
main principle of using faces can be introduced in
order to find the maximum number of layers within
a folded crease pattern. The maximum number of
layers on top each other is sufficient enough to say
something about constraint of the rotation into the
Rx and Ry direction.

An example of numbering faces for stripfolding
is shown in figure F.2. In total there are fourteen
faces, the majority of those face are unique. The
faces (F ) are defined with the edges (E) which can
be either creases or raw-edges. In folded state the
highest number of stacked layers can be found in a
area composed of the intersection of the faces F1, F2,
F3, F4, F5, F7, F8. Accordingly, the number of stacked
faces is equal to seven.
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24 F. Stacking of sheets

Figure F.2: A possible crease pattern for a strip. On the left a X-ray
view of the strip in folded state and on the right in unfolded state.
Each face numbered independently.

Definition F.2.2. A set of faces, Fi , composes a crease
pattern C . After a mapping, µ, into folded state the
number of layers, L, can be determined by counting,
n, the number of intersections of the faces. Mathemat-
ically:

n⋂
i=0

Fi for Fi ∩Fi+1 6= 0 → L = max(n) (F.1)

Note: This statement is only used in combination with
opposite folding.

F.3. Following Demaine and
Rourke.

Demain and Rourke [15] keep track of ordering with
the orientation and points which lay on the same lo-
cation. Their method is different from Schneider [14].
Schneider places the superposition ordering into the
integer Z-space. So, Schneider takes the total set
of ordering of a identical S-faces while Demain and
Rourke "consider the relative stacking order of collo-
cated layers of paper"[15]. In section D.3 the method
of Demain and Rourke is used in order to distinguish
a whichlader from opposite folding. Therefore the
method of Demaine and Rouke is futher elaborated
in section D.3.

F.4. Algorithm
The final algorithm will use the approach of Schnei-
der. The folded state is calculated with the use of
creases instead of faces. Therefore the algorithm is
accompanied with the piece of code to recompose
the faces from the vertices in folded state.



G
Validation of the mathematical method

G.1. Introduction

This experiment has as goal to verify the projection
method. The projection method should be a useful
tool for determining where to place folds. The
verification of the projection method can be divided
into two separated objectives. First, is the crease
pattern constraint as expected? Secondly, are the
crease pattern constraints in portion?

Both objectives are achieved within the same
experiment. The experiment has the following lay-
out; two sheets are folded into each other. One sheet
is fixed to the ground. The second sheet is moved.
This relates to the objectives into the following way.
If the second sheet can not move into a certain
direction then it is constraint in that direction. For
the second objective, the proportion between the
constraints will be found by the determining the
deformation of the crease pattern into a certain
direction.

To have a reliable result, the projection method
will only be validated for subset H . Subset H has
for each crease one single constraint into one single
direction, which makes it more convenient to verify.

G.2. Hypothesis

There are seven creases in total. The crease pattern
differ in number of creases and whether they are part
of opposite folding or not. All creases are shown in
figure G.1.

For each crease pattern from figure G.1 the con-
straints are calculated. For the calculation the
function "total_constraint_of_creases" from the op-
timization algorithm is used. The width of the strip
is set to be 2 and its length to be 6. The crease pat-
terns of figure G.1 can be defined with the following
variables; Note that the algorithm excepts only crease
patterns with at least two creases. Crease pattern A is

Figure G.1: The used strips for the experiment. Ordered alphabeti-
cally from left to right. A red line represents opposite folding and a
green line represents a which ladder.

calculated by hand.

Crease A: xH = [
3 −π/4 1

]
Crease B: xH = [

3 1 −π/4 0 1 1
]

Crease C: xH = [
3 1 −π/4 0 1 0

]
Crease D: xH = [

3 1 1 −π/4 0 π/4 1 1 1
]

Crease E: xH = [
3 1 1 −π/4 0 π/4 1 1 0

]
Crease F: xH = [

3 1 1 −π/4 0 π/4 1 0 0
]

Crease G: xH = [
3 1 1 −π/4 0 π/4 1 0 1

]
Table G.1 shows the hypothesis for objective one

into all directions. Objective one determines if the
sheets are constraint into a certain direction. A con-
straint into a direction is represented with a "yes", if
the sheets are not constraint then a "no" is shown in
the table. Table G.1 refers to objective one of the ex-
periment.

Table G.2 shows the hypothesis for objective two
for each direction. Objective two involves the pro-
portion of the constraints within a crease pattern. A
constraint into a direction is represented with a value,
if the sheets are not constraint then a value zero is
shown in the table. Table G.2 refers to objective two
of the experiment.
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Creases
Direction A B C D E F G

x+ no yes no yes yes yes no
x− yes yes yes yes yes yes yes
y+ yes yes yes yes yes yes yes
y− no no no yes yes yes no

Table G.1: The expected constraints in the directions x+, x−, y+,
y− for each crease pattern. If the crease pattern is constraint then
a "yes" is shown or else a "no". This table refers to objective one.
Note, this table includes the secondary constraints. The discussion
is written without the knowledge of the secondary constraints and
has therefore has different table.

Creases
Direction A B C D E F G

x+ 0 2 0 4 4 4 0
x− 2 2 4 4 2 4 6
y+ 2 2 2 4 2 2 4
y− 0 0 0 2 2 4 0

Table G.2: The expected constraints in the directions x+, x−, y+
and y− for each crease pattern. If the crease pattern is constraint
then a "yes" is shown or else a "no". This table refers to objective
one. Note, this table includes the secondary constraints. The discus-
sion is written without the knowledge of the secondary constraints
and has therefore has different table.

G.3. Method
The hypotheses are tested in practice. Both objective
one and two are checked in one experiment. In
this experiment one sheet is fixed to the ground
and one sheet is attached to the linear stage. Both
sheets are folded into each other with the crease
patterns shown in figure G.1. A constraint within the
crease pattern can be seen as a resistance against
deformation. It is sufficient for objective one to
determine if there is resistance against movement or
not. However for objective two the resistance should
be quantified.

Figure G.2: Schematic overview of the experimental setup.

To quantify the constraints the resistance against
deformation is measured. The measurement is taken
with a "PI Stage Tensile test" which is able to measure
the displacement and the needed force if a sensor is

attached. Figure G.2 gives a schematic overview of
the experimental setup. The sheet I is shown with
a obliquely striped square. Sheet I can only move
into one direction, x or y, and is constraint for every
other. The sheet is attached to the sensor, which is
connected to the linear stage.

The figures G.3, G.4, G.5, G.6 and G.7 show the ex-
perimental setup in real life. Sheet I is attached to
a moving template while sheet II is fixed with two
bolts. The linear bearings align the seet I with the
linear stage and prevents movement of all other di-
rections. The setup can be orientated in two different
directions, x and y as can be seen in figure G.4 and
G.5. This makes it possible to measure into the x and
y-direction. In total, all measurements are measured
five times.

Figure G.3: Front view of the experimental setup.

The figures G.8 and G.9 show the used sensor. The
FSH00104 Futek sensor for 10 lbs is used. It has a full
scale accuracy of −0.1 to0.1±% [40]. The measure-
ments are taken in Newtons (N ) and the displace-
ments in µm.

Figure G.9: Side view of the sensor
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Figure G.4: Top figure of the experimental setup for the y-direction.

For some measurements the deformation did not
happen on the crease but on on a different location,
often at the base of the strip, see figure G.10. If the
deformation happens on the wrong location the strip
can even tear instead of unfolding. In order to pre-
vent this problem a second template will be used if
needed, see figure G.11. The second template will
support the fixed sheet (II). If the second template is
used, then this will be indicated in the results.

Figure G.10: A deformation strip is deforming in the wrong loca-
tion. The crease pattern is also tearing apart instead of unfolding.

Figure G.5: Top figure of the experimental setup for the x-direction.

Figure G.11: Experimental setup with two templates. This setup
is only used if deformation occurs in the wrong place. The crease
pattern is not unfolding.

G.4. Implementation
The raw data will be plotted in order to check if all
data is correct. The measurements are taken in New-
tons (N ) and the displacements in µm, the data will
be plotted with these quantities. In order to find the
peaks with the inbuilt Matlab function "findpeaks",
the absolute value is taken and squared. With this ap-
proach the peaks within the data-set will be enlarged
which makes it easier to find them. The manipulated
date will also be plotted.
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Figure G.6: Side view of the experimental setup.

Figure G.7: The front view including the the fixation of the platform

The average and the deviation of the peaks from the
raw data will be determined. With this information a
conclusion will be drawn from the hypothesis.

G.5. Results
This section includes the data of the clean measure-
ments and the individual creases.

Figure G.8: Top view of the sensor.
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G.5.1. Clean measurement
The clean measurement is a measurement without
any sheets. The measurement reveals information
about the friction of the system. This information
will be used as a threshold if something is constraint
or not. The raw data of the clean measurement is
shown in figures G.1, G.2, G.3 and G.4. The manipu-
lated data are also shown below. There are 1200 data
points for a distance of 8000µ m. The found peaks
are shown in table G.3.

Direction Mean value Standard Deviation
x+ -0.62360 0.0705216278881876
x− -0.19660 0.313464990070662
y+ -0.52400 0.0589364064055487
y− 0.41080 0.0566718625068914

Table G.3: Clean measurement; The mean value peak values from
the measurements accompanied by the Standard Deviation.

Plot G.1: Clean measurement with no sheets: Raw data into the x+
direction. Vertical axis, force N. Horizontal axis, displacement µm.

Plot G.2: Clean measurement with no sheets: Raw data into the x−
direction. Vertical axis, force N. Horizontal axis, displacement µm

Plot G.3: Clean measurement with no sheets: Raw data into the y+
direction. Vertical axis, force N. Horizontal axis, displacement µm.

Plot G.4: Clean measurement with no sheets: Raw data into the y−
direction. Vertical axis, force N. Horizontal axis, displacement µm

Plot G.5: Clean measurement with no sheets: Manipulated data
into the x+ direction. Vertical axis, force N. Horizontal axis, dis-
placement µm.
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Plot G.6: Clean measurement with no sheets: Manipulated data
into the x− direction. Vertical axis, force N. Horizontal axis, dis-
placement µm

Plot G.7: Clean measurement with no sheets: Manipulated data
into the y+ direction. Vertical axis, force N. Horizontal axis, dis-
placement µm.

Plot G.8: Clean measurement with no sheets: Manipulated data
into the y− direction. Vertical axis, force N. Horizontal axis, dis-
placement µm

G.5.2. Crease A
Crease Pattern A consist of one single fold; opposite
folding.

Plot G.9: Crease pattern A: top and bottom sheet. Opposite fold-
ing is indicated with the red line. Which ladder is indicated with a
green line.

For both x-directions there are 1200 data points
for a distance of 8000µ m. The y−-direction has
1000 data points for a distance of 6000µ m. And the
y+-direction has 1000 data points for a distance of
12000µ m. The found peaks are shown in table G.4.
The graphs of the raw data and the manipulated data
are shown below.

Direction Mean value Standard Deviation
x+ -1.20180 0.121590295665403
x− 0.56520 0.238727250225021
y+ -0.90380 0.122609950656543
y− 0.43460 0.102524631186852

Table G.4: Crease A; The mean value peak values from the mea-
surements accompanied by the Standard Deviation.

Plot G.10: Crease pattern A: Raw data into the x+ direction. Vertical
axis, force N. Horizontal axis, displacement µm.
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Plot G.11: Crease pattern A: Raw data into the x− direction. Vertical
axis, force N. Horizontal axis, displacement µm

Plot G.12: Crease pattern A: Raw data into the y+ direction. Vertical
axis, force N. Horizontal axis, displacement µm.

Plot G.13: Crease pattern A: Raw data into the y− direction. Vertical
axis, force N. Horizontal axis, displacement µm.

Plot G.14: Crease pattern A: Manipulated data into the x+ direc-
tion. Vertical axis, force N. Horizontal axis, displacement µm.

Plot G.15: Crease pattern A: Manipulated data into the x− direc-
tion. Vertical axis, force N. Horizontal axis, displacement µm

Plot G.16: Crease pattern A: Manipulated data into the y+ direc-
tion. Vertical axis, force N. Horizontal axis, displacement µm.
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Plot G.17: Crease pattern A: Manipulated data into the y− direc-
tion. Vertical axis, force N. Horizontal axis, displacement µm.

G.5.3. Crease B
Crease Pattern B consist of two folds both of opposite
folding.

Figure G.12: Crease pattern B, top and bottom sheet. Opposite
folding is indicated with the red line. Which ladder is indicated
with a green line.

For both x-directions there are 1200 data points
for a distance of 8000µ m. The y−-direction has
1000 data points for a distance of 6000µ m. And
the y+-direction has 1000 data points for a distance
of 12000µ m. The found peaks are shown in table
G.5.The graphs of the raw data and the manipulated
data are shown below.

Direction Mean value Standard Deviation
x+ -2.27980 0.207308224631827
x− 0.62700 0.094704804524375
y+ -1.18360 0.130733698792622
y− 0.364750 0.091765552723594

Table G.5: Crease B; The mean value peak values from the mea-
surements accompanied by the Standard Deviation.

Plot G.18: Crease pattern B: Raw data into the x+ direction. Vertical
axis, force N. Horizontal axis, displacement µm.

Plot G.19: Crease pattern B: Raw data into the x− direction. Vertical
axis, force N. Horizontal axis, displacement µm.

Plot G.20: Crease pattern B: Raw data into the y+ direction. Vertical
axis, force N. Horizontal axis, displacement µm.
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Plot G.21: Crease pattern B: Raw data into the y− direction. Vertical
axis, force N. Horizontal axis, displacement µm.

Plot G.22: Crease pattern B: Manipulated data into the x+ direc-
tion. Vertical axis, force N. Horizontal axis, displacement µm.

Plot G.23: Crease pattern B: Manipulated data into the x− direc-
tion. Vertical axis, force N. Horizontal axis, displacement µm

Plot G.24: Crease pattern B: Manipulated data into the y+ direc-
tion. Vertical axis, force N. Horizontal axis, displacement µm.

Plot G.25: Crease pattern B: Manipulated data into the y− direc-
tion. Vertical axis, force N. Horizontal axis, displacement µm.
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G.5.4. Crease C
Crease Pattern C consist of two folds one of opposite
folding and one not.

Figure G.13: Crease pattern C, top and bottom sheet. Opposite
folding is indicated with the red line. Which ladder is indicated
with a green line.

The measurement of the raw data of figure G.26
seems to be with one more then expected, for every
direction there should be five measurements. This
figure include six measurements. Due the initial
absence of the x−-direction the light blue mea-
surement from figure G.26 is probably part of the
x−-direction. Therefore this measurement is ignored
in the manipulated data.
Figure G.29, the raw data into the y−-direction, has
once again six measurements where there should
be five. There is one clearly deviating measurement
which has a offset of 0.5 and is shown with a dark red
line. This measurement is deleted from the set for
the manipulated data.

For both x-directions there are 1200 data points
for a distance of 8000µ m. The y−-direction has
1000 data points for a distance of 6000µ m. And
the y+-direction has 1000 data points for a distance
of 12000µ m.The found peaks are shown in table
G.6.The graphs of the raw data and the manipulated
data are shown below.

Direction Mean value Standard Deviation
x+ -1.00280 0.114924757994089
x− 0.52700 0.102588985763580
y+ -1.207250 0.196664477388945
y− 0.4573 0.372431291202373

Table G.6: Crease C; The mean value peak values from the mea-
surements accompanied by the Standard Deviation.

Plot G.26: Crease pattern C: Raw data into the x+ direction. Vertical
axis, force N. Horizontal axis, displacement µm.

Plot G.27: Crease pattern C: Raw data into the x− direction. Vertical
axis, force N. Horizontal axis, displacement µm.

Plot G.28: Crease pattern C: Raw data into the y+ direction. Verti-
cal axis, force N. Horizontal axis, displacement µm.



G.5. Results 35

Plot G.29: Crease pattern C: Raw data into the y− direction. Verti-
cal axis, force N. Horizontal axis, displacement µm.

Plot G.30: Crease pattern C: Manipulated data into the x+ direc-
tion. Vertical axis, force N. Horizontal axis, displacement µm.

Plot G.31: Crease pattern C: Manipulated data into the x− direc-
tion. Vertical axis, force N. Horizontal axis, displacement µm

Plot G.32: Crease pattern C: Manipulated data into the y+ direc-
tion. Vertical axis, force N. Horizontal axis, displacement µm.

Plot G.33: Crease pattern C: Manipulated data into the y− direc-
tion. Vertical axis, force N. Horizontal axis, displacement µm.
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G.5.5. Crease D
Crease Pattern D consist of three folds all are part of
opposite folding.

Figure G.14: Crease pattern D, top and bottom sheet. Opposite
folding is indicated with the red line. Which ladder is indicated
with a green line.

Crease pattern D has deformation near the bottom
of the strip. In order to prevent deformation an addi-
tional template is used.

The measurements from the rawdata of figure
G.34 shown in yellow and dark blue are removed
from the complete data set. Due to the downwards
trend it is clear that this data is corrupted. Also due
the fact that there at most five measurements the
yellow and dark blue measurements are not part of
this measurement. Because these measurements are
labeled as crease D, they are shown in figure G.34.
The plot with the rawdata into the x−, figure G.35,
shows has a different offset per measurement. The
entire measurement of x− needs to be redone.

For both the x-directions there are 1500 data
points for a distance of 10000µ m. And for both the
y-directions there are 1200 data points for a distance
of 8000µ m.The found peaks are shown in table G.7.
The graphs of the raw data and the manipulated data
are shown below.

Direction Mean value Standard Deviation
x+ -2.51225 0.161755731480114
x− 1.71725 0.573052280919173
y+ -8.3768 2.073707927039550
y− 0.78580 0.179714217578911

Table G.7: Crease D; The mean value peak values from the mea-
surements accompanied by the Standard Deviation.

Plot G.34: Crease pattern D: Raw data into the x+ direction. Verti-
cal axis, force N. Horizontal axis, displacement µm.

Plot G.35: Crease pattern D: Raw data into the x− direction. Verti-
cal axis, force N. Horizontal axis, displacement µm.

Plot G.36: Crease pattern D: Raw data into the y+ direction. Verti-
cal axis, force N. Horizontal axis, displacement µm.



G.5. Results 37

Plot G.37: Crease pattern D: Raw data into the y− direction. Verti-
cal axis, force N. Horizontal axis, displacement µm.

Plot G.38: Crease pattern D: Manipulated data into the x+ direc-
tion. Vertical axis, force N. Horizontal axis, displacement µm.

Plot G.39: Crease pattern D: Manipulated data into the x− direc-
tion. Vertical axis, force N. Horizontal axis, displacement µm

Plot G.40: Crease pattern D: Manipulated data into the y+ direc-
tion. Vertical axis, force N. Horizontal axis, displacement µm.

Plot G.41: Crease pattern D: Manipulated data into the y− direc-
tion. Vertical axis, force N. Horizontal axis, displacement µm.
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G.5.6. Crease E
Crease Pattern E consist of three folds two of opposite
folding and the final not.

Figure G.15: Crease pattern E, top and bottom sheet. Opposite
folding is indicated with the red line. Which ladder is indicated
with a green line.

Crease pattern E consist of two creases of opposite
folding (red) and a final crease which is not (green).
For the measurement it is preferred to have all the
creases inside a single plane. Two templates where
needed to take the measurements, due to the defor-
mation near the bottom of the strip. The final crease,
the whichlader, is not folded around the base but
tends to pop out into the 3D world. While being into
the 3D world it did not seem possible to have a viable
measurement. Concluding, the crease pattern E will
be neglected in this experiment.

G.5.7. Crease F
Crease Pattern F consist of three folds, the first and
final is part of opposite folding, the middle not.

Figure G.16: Crease pattern F, top and bottom sheet. Opposite fold-
ing is indicated with the red line. Which ladder is indicated with a
green line.

For all measurements there are 1200 data points for
a distance of 8000µ m. The found peaks are shown in
table G.8. The graphs of the raw data and the manip-
ulated data are shown below.

Direction Mean value Standard Deviation
x+ -0.85150 0.092702031621031
x− 0.52940 0.065824007778317
y+ -1.12033 0.133036335888609
y− 0.62420 0.0389191469587914

Table G.8: Crease F; The mean value peak values from the mea-
surements accompanied by the Standard Deviation.

Plot G.42: Crease pattern F: Raw data into the x+ direction. Vertical
axis, force N. Horizontal axis, displacement µm.
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Plot G.43: Crease pattern F: Raw data into the x− direction. Vertical
axis, force N. Horizontal axis, displacement µm.

Plot G.44: Crease pattern F: Raw data into the x+ direction. Vertical
axis, force N. Horizontal axis, displacement µm.

Plot G.45: Crease pattern F: Raw data into the x− direction. Vertical
axis, force N. Horizontal axis, displacement µm.

Plot G.46: Crease pattern F: Manipulated data into the x+ direc-
tion. Vertical axis, force N. Horizontal axis, displacement µm.

Plot G.47: Crease pattern F: Manipulated data into the x− direc-
tion. Vertical axis, force N. Horizontal axis, displacement µm.

Plot G.48: Crease pattern F: Manipulated data into the y+ direc-
tion. Vertical axis, force N. Horizontal axis, displacement µm.
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Plot G.49: Crease pattern F: Manipulated data into the y− direc-
tion. Vertical axis, force N. Horizontal axis, displacement µm.

G.5.8. Crease G
Crease Pattern G consist of three folds, the first is part
of opposite folding the other two are not.

Figure G.17: Crease pattern G, top and bottom sheet. Opposite
folding is indicated with the red line. Which ladder is indicated
with a green line.

For all measurements there are 1200 data points for
a distance of 8000µ m. The found peaks are shown in
table ??. The graphs of the raw data and the manipu-
lated data are shown below.

Direction Mean value Standard Deviation
x+ -1.14080 0.166714426490331
x− 0.62220 0.094043606906584
y+ -0.79960 0.229091248195997
y− 0.34920 0.086745028676000

Table G.9: Crease G; The mean value peak values from the mea-
surements accompanied by the Standard Deviation.

Plot G.50: Crease pattern G: Raw data into the x+ direction. Verti-
cal axis, force N. Horizontal axis, displacement µm.
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Plot G.51: Crease pattern G: Raw data into the x− direction. Verti-
cal axis, force N. Horizontal axis, displacement µm.

Plot G.52: Crease pattern G: Raw data into the y+ direction. Verti-
cal axis, force N. Horizontal axis, displacement µm.

Plot G.53: Crease pattern G: Raw data into the y− direction. Verti-
cal axis, force N. Horizontal axis, displacement µm.

Plot G.54: Crease pattern G: Manipulated data into the x+ direc-
tion. Vertical axis, force N. Horizontal axis, displacement µm.

Plot G.55: Crease pattern G: Manipulated data into the x− direc-
tion. Vertical axis, force N. Horizontal axis, displacement µm.

Plot G.56: Crease pattern G: Manipulated data into the y+ direc-
tion. Vertical axis, force N. Horizontal axis, displacement µm.
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Plot G.57: Crease pattern G: Manipulated data into the y− direc-
tion. Vertical axis, force N. Horizontal axis, displacement µm.

G.6. Discussion - Data evaluation
Note: at the time of writing the discussion, the sec-
ondary creases were not yet known. The secondary
creases will be part of the conclusion in the experi-
ment.

After analysing the data, it seems that that all
measurements into the x-direction are mirrored.
Although it was not that obvious during the experi-
ment it can clearly be seen in the figures G.4 and G.5.
The crease patterns are folded with the use of the
template. The template of the x-axis was accidentally
mirrored. The hypothesis can be easily updated by
switching the x+ and x−-direction as is shown in
table G.10.

Creases
Direction A B C D E F G

M(x+) yes yes yes yes yes yes yes
M(x−) no yes no yes yes no no

y+ yes yes yes yes yes yes yes
y− no no no no yes no no

Table G.10: The expected constraints in the directions x+, x−, y+,
y− for each crease pattern. If the crease pattern is constraint then a
"yes" is shown or else a "no". This table refers to objective one and
is updated to the new situation for which a mirrored crease pattern
is used for the x+ and x−-directions. Note: this table is without the
consideration of the primary creases. The secondary creases will
be the solution in the article.

Examining hypothesis one is done with the follow-
ing approach; Determine significantly if the sheets
can move freely. If there is not enough evidence that
the sheet can move freely then we will reject the claim
that it can move freely resulting in the claim that the
sheet is constraint.
To do so, the measurement of the clean movement
will be subtracted, canceling the noise of the mea-
surement. If the resulting value is near zero then the
sheet can move freely. If the resulting value is rela-
tively large then it is constraint.

Formula G.1 shows the measurement subtracted of
the clean movement accompanied with the variance
under the assumption that P and Q are uncorrelated.
P is equal to the measurement of a crease pattern. Q
is equal to the the measurement of clean movement.

f (P,Q) = abs(P )−abs(Q) (G.1)

V ar (F (P,Q)) =V ar (P )+V ar (Q)

Formula G.1 resulted in table G.11 and G.12. The
rounded are rounded to four digits.

The first hypothesis to be tested determines if the
sheets are constraint or not. Formula G.1 subtracted
the clean measurement. So if the sheets are not con-
straint then H0 :µ= 0 if the sheets are constraint then
H1 : µ > 0. "The probability distribution of T under
the null hypothesis"[41] needs to be determined with
the test statistic defined in formula G.2 and µ0 as the
value of the null hypothesis.

T = f̄ −µ0

Sn/
p

n
= f̄ −µ0

V ar ( f̄ )
[41] (G.2)

The hypothesise can only be rejected into one-
direction, this is a case of one-sided confidence in-
terval. The allowable exceedance probability is set to
be p = 0.025. "The null hypothesis will be rejected
of favor H1, if T ≥ tn−1,α [41]. The tables G.13 and
G.14 show the probability distribution and if the hy-
pothesis H0 may be rejected. If H0 is rejected then the
creases are constraint.

G.7. Discussion - Data meaning
The hypothesis stated two objectives. Both objectives
will be discussed separately.

G.7.1. Objective one
Although for the x-direction a mirrored crease pat-
tern is used, most of the found data confirm the pro-
jection method as can be seen in table G.13 and G.14.
The results which differ from the expected result will
be discussed separately.

• Crease C: x−-direction The H0 is rejected in
contradiction with the hypothesis. The first
thing to notice is that the set of measurements
into the x−-direction has a relative high vari-
ance. The plot of the raw data does not indicate
any unfolding. For unfolding you would expect a
clear peak and/or a combination of several saw
teeth inside the raw data plot. There is no in-
dication of any of that. But there is a relative
large spread of noise inside the graph compared
with other creases. Random noise around an
equilibrium line does indicate free movement.
The above average height of the equilibrium line
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Creases
A B C D
f̄ V ar ( f̄ ) f̄ V ar ( f̄ ) f̄ V ar ( f̄ ) f̄ V ar ( f̄ )

x+ 0.5782 0.0198 1.6562 0.0479 0.3792 0.0182 1.8886 0.0311
x− 0.3686 0.1553 0.4304 0.1072 0.3304 0.1088 1.5206 0.4266
y+ 0.3798 0.0185 0.6596 0.0206 0.6832 0.0422 7.8528 4.3037
y− 0.0238 0.0137 -0.0460 0.0116 0.0465 0.1419 0.3750 0.0355

Table G.11: Table created with the function of formula G.1. The clean measurement is subtracted from the average of the creases. The
creases A, B, C, D are included.

Creases
F G
f̄ V ar ( f̄ ) f̄ V ar ( f̄ )

x+ 0.2279 0.0136 0.5172 0.0328
x− 0.3328 0.1026 0.4256 0.1071
y+ 0.5963 0.0212 0.2756 0.0560
y− 0.2134 0.0047 -0.0616 0.0107

Table G.12: Table created with the function of formula G.1. The clean measurement is subtracted from the average of the creases. The
creases F, G are included.

Creases
A B C
T n Re j ected T n Re j ected T n Re j ected

x+ 29.2020 5 Yes 34.5762 5 yes 20.8352 5 yes
x− 2.3735 5 No 4.0149 5 yes 3.0368 5 yes (!)
y+ 20.5297 5 yes 32.0194 5 yes 16.1896 4 yes
y− 1.7372 5 No -3.9655 4 No 0.3277 6 No

Table G.13: The rejection of null hypothesis is shown in the table for crease A,B,C. The boolean which represent the rejection is accompa-
nied by the test statistic (T) and the number of measurements. If contrary rejected or not with the hypothesis then the result is indicated
by a (!).

Creases
D F G
T n Re j ected T n Re j ected T n Re j ected

x+ 60.7267 4 yes 16.7574 4 yes 15.7683 5 yes
x− 3.5645 4 yes 3.2437 5 yes (!) 3.9739 5 yes (!)
y+ 1.8247 6 No (!) 28.1274 6 yes 4.9214 5 yes
y− 10.5634 5 Yes (!) 45.4043 5 yes (!) -5.7570 5 no

Table G.14: The rejection of null hypothesis is shown in the table for crease D,F,G. The boolean which represent rejection is accompanied
by the test statistic (T) and the number of measurements. If contrary rejected or not with the hypothesis then the result is indicated by a
(!).
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may be due to the fact that the setup was con-
nected too tightly to the sensor, but it is neces-
sary to avoid friction in the perpendicular direc-
tion of the measurement. Due the lack of back-
lash in this direction there could have been ad-
ditional friction inside the measurement result-
ing in a contradiction with the hypothesis. This
argument is reinforced by the fact that this mea-
surement was made on a different day and the
experiment had to be rebuilt.

• Crease D: y+-direction The H0 is not rejected
but it should has been. Although the null hy-
pothesis is near the threshold of the rejection.
This set of measurements is not rejected due the
large variance of 4.3 within the measurement.
The Variance is ten times higher then the next
set of measurements in line. Although the mean
of the y+-direction of crease D would tend to re-
ject the H0 = 0 with a mean value of 7.85. The
variance is large due the use of a second tem-
plate to prevent deformation of the paper any-
where other then the foldline. Due the relative
thickness of the template the origami object is
placed into the R3 instead of the R2. The creases
are not sharp but have a curve resulting in a high
variance.

• Crease D: y−-direction The H0 is rejected in
contradiction with the hypothesis. However the
H0 should have been rejected, so the hypoth-
esis is wrong. This problem will be tackled by
the introduction of virtual creases. As will be ex-
plained later on.

• Crease F: x−-direction The H0 is rejected in con-
tradiction with the hypothesis. This set of mea-
surements has the same argumentation as the
x−-direction of crease C. This measurement was
caught up later on a different day therefore the
experiment had to be rebuilt. Note that the
test statistic T value is near the decision turning
point. If an higher certainty (lower p-value) was
chosen then the hypothesis H0 would not have
been rejected.

• Crease F: y−-direction The H0 is rejected in con-
tradiction with the hypothesis. However the H0

should have been rejected, so the hypothesis is
wrong. This problem will be tackled by the intro-
duction of virtual creases. As will be explained
later on.

• Crease G: x−-direction The H0 is rejected in
contradiction with the hypothesis. Note that the
H0 just above the threshold has been rejected.
The raw plot shows a lot of noise and shows

no unfolding behavior. but shows in the mid-
dle around −2000µm and −5000µm noise on
a higher equilibrium line. The mathematical
model expect that the sheets should move freely.
The mathematical model do not take into ac-
count that the sheets interact with each other on
a physical level. For example friction between
the sheets. This phenomena probably explains
the absence of unfolding in the raw graph but
for a while an higher equilibrium line. Taking the
sheet interaction into account the hypothesis H0

would not have been rejected and therefore the
sheet would have a free movement.

G.7.2. Objective two
No conclusion can be made about objective two. For
example crease B, the constraint of x+, x− and y+
should be proportional equal. Although the measure-
ments of y+ and x−-direction are near each other
they still to different. The same is true for the mea-
surement into the x+-direction for which can be said
it is significantly larger then the y+ and x−-direction.
Therefore I tend to reject objective two. Additional re-
search should be done to include or exclude any con-
clusions about the ratio.

G.7.3. Discussion: introduction of "virtual"
creases

The the null hypothesis (H0 : µ = 0) of the y−-
direction from crease D and the y−-direction of
crease F are rejected in contradiction with the hy-
pothesis. After studying both crease patterns only
one conclusion can be made. These specific hy-
potheses were wrong. So what happened?
Figure G.18 is a projected representation of the D
crease pattern. It consist of three folds from opposite
folding. At the level of the creases the prediction from
the projection method is correct. Crease E1 and E2 re-
sult into a constrain into right direction and crease E2

has a resulting constraint into the left direction.
However, the interaction between crease E1 and E3

is not taken into account. The outer pink sheet of
crease E1 and the inner blue sheet of E3 are from dif-
ferent creases, but behave as they are from the same
crease. Although this crease does not exist is has
a constraint. Therefore "virtual" creases are intro-
duced.
If two creases are enclosed by each other, a third "vir-
tual" crease exist. The "virtual" crease has the op-
posite direction of the the outer crease, in this case
E3. The virtual crease can be defined by project-
ing either E1 on E3 or E3 on E1, the smallest value
seems to be the true value. For the moment the vir-
tual crease seems to be true only for opposite folding.
New thought experiments should be done to validate
this statement.
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Figure G.18: A combination of the which ladder and opposite fold-
ing. The normal vector and constraint vectors are shown. The red
box shows the location of the virtual crease.

Creases
Direction A B C D E F G

x+ no yes no yes yes no no
x− yes yes yes yes yes yes yes
y+ yes yes yes yes yes yes yes
y− no no no no yes no no

Table G.15: The expected constraints in the directions x+, x−, y+,
y− for each crease pattern. If the crease pattern is constraint then
a "yes" is shown or else a "no". This table refers to objective one.

G.8. Conclusion
The first objective is confirmed with the rectified
hypothesis with the use of virtual creases. The
second objective could not be validated, additional
research should be done.
Objective one determines if a sheet is constraint
including the direction. Objective two validates the
proportion of the constraints.
The remaining deviations from objective one can
be explained due friction inside the experimental
setup, friction between the sheets or due the use of a
second template. Beside the virtual creases no other
weird behavior occurred which can not be explained.
If the experiment is repeated, it would be advised to
perform more measurements on the crease patterns.
Also a next experiment should involve the physical
behavior and interaction of paper with paper. To
have a more clear result, certainly with an higher
amount of creases.

Note: The constraints induced by virtual creases are
in the article renamed to secondary creases.





H
Optimization

For certain situations resistance against different
stresses is required. A lot of fold combinations can
be made by varying the distance between a fold and
its angle. The question arises; "What is the optimal
crease pattern for a given situation?". This chapter
will dive into the optimization of the folded strips.

H.1. Optimization flowchart
For a given situation an optimal crease pattern needs
to be found. For engineering purposes there is no
need to have an unique solution, a range of best so-
lutions will also satisfy. For a crease pattern within a
bounded strip, the problem emerges that the number
of creases is variable inside the optimization prob-
lem, in other words the number of variables is vari-
able. The total number of variables is limited due the
length of the strip, therefore the number of variables
is finite. In order to handle different amount of vari-
ables the optimization is discretized into the number
of creases, as can be seen in Fig.H.1. For each amount
of creases an optimal crease pattern needs to be de-
termined. This process is repeated for each subset
of folding (stages). From the section B.3.1 is known
that the the subset H is folded first, followed by V 1.
Just like Fig.H.1 indicates, more subsets can be added
to the optimisation problem in order to have creases
which intersect crossing creases etc.. However, this
report is restricted to subset of H and V 1.

H.2. Optimization Algorithm
The input for the intended algorithm depends on
the subset and the number of creases. A crease of
subset H can be defined with three variables, 1) the
location on the y-axis (xH

1 ), 2) the angle between
the incoming and outgoing strip (xH

2 ), 3) and the
direction of the folding (xH

3 ), see section B.4, D.3.
A crease of subset V is defined with four variables,
1) the location on the y-axis (xV

1 ), 2)the location on
the x-axis, either left or right (xV

2 ), 3) the angle of
the crease (xV

3 ), 4) and the direction of the folding
(xV

4 ) As discussed in the previous section the number
of variables of the total optimisation is equal to a

multiplication of three or four.

The folding can either be λ = −1 or +1 for both
subsets. While originating from the right or left side
of the strip, xpos = −D

2 or D
2 . All other variables are

continue within there domain.
The constraints of the optimization are non-linear
(g (x)), see section H.4. Therefore the optimization
problem is a multi-objective binary mixed-integer
nonlinear problem (MOMINP). The constraints are
not easy to differentiate, accordingly the problem
seems to be non-convex. A genetic algorithm can be
used to solve these types of problems. For a genetic
algorithm the "convergence to the global optimum
cannot be guaranteed, but will yield "good" solu-
tions on average" [42]. The optimization problem
is defined in Eqn.H.1 within the the set of feasible
solutions G . Feasible solutions space is defined

as GH :
{
0 ≤ x1 ≤ L, 0 ≤ x2 ≤ pi

2 , x3 = ±1
}

and

G V :
{
0 ≤ x1 ≤ L, x2 = ±1, 0 ≤ x3 ≤ pi

2 , x4 = ±1
}
.

With L as the total length of the strip. Note that the
feasible solution space of higher subsets are the same
as for G V .
The optimization problem is formulated in Eqn.
(H.1) with the total objective function (dp ) and the
constraints represented by g (X ) inside the feasible
space G .

min
x

−dp (x) (H.1)

s.t. g (x) ≤ 0

x ∈G

H.3. Objective of the optimization

The constraint of the creases are projected to an or-
thogonal subset. In total there are five objectives
(F (x)), constraints of the x+, x−, y+, y− direction and
the number of stacked faces, see sections D.2, E.1.1,

47



48 H. Optimization

Stage I: Optimisation of subset H

Stage II: Optimisation of subset V 1

Objective

No. of creases: 1 No. of creases: 2 No. of creases: n

Optimization of H Optimization of H Optimization of H

No. of creases: 1 No. of creases: 2 No. of creases: n No. of creases: 1 No. of creases: 2 No. of creases: n No. of creases: 1 No. of creases: 2 No. of creases: n

Optimization of V 1 Optimization of V 1 Optimization of V 1 Optimization of V 1 Optimization of V 1 Optimization of V 1 Optimization of V 1 Optimization of V 1 Optimization of V 1

Figure H.1: Optimization flowchart. In order to find an optimal crease pattern an optimization is used. The optimization program has
a number of stages which is equal to the number of folding sets going from H to V n . Each stage involves a discretization after which it
will find an optimum crease pattern.

F.

F (x) =[
f1(x), f2(x), f3(x), f4(x), f5(x)

]
[43]

(H.2)

with: f1(x) = |x+|, f2(x) = |x−|,
f3(x) = |y+|, f4(x) = |y−|, f5(x) = L

Depending on the situation, a designer wants to
have an optimal set of creases. For instance a de-
sired resistance, due a set of creases, evenly spread
into all directions or a certain ratio between the ob-
jectives. The individual desired objective will be rep-
resented with zi . The designer could also place a cer-
tain emphasis on individual objectives with the use
of weights, wi . To give preference to the different
objectives, the Weighted Metric Method [44] and the
Global Criterion Method [43] are combined as is of-
ten done in Compromise Programming [43]. The to-
tal objective function (dp ) is shown in Eqn.H.3, with
p as "individual relative deviations can be raised to
any power (p = 1,2, . . .∞)" [43].

dp (x) =
( 5∑

i=1
wi

∣∣∣Fi (x)− zi

zi

∣∣∣p
)1/p

[43], [44] (H.3)

with: 0 < wi < 1,
5∑

i=1
wi = 1, p = 1,2, . . .∞ (H.4)

For the Pareto optimization the following objective
is used:

dp (x) = wi

∣∣∣Fi (x)− zi

zi

∣∣∣ [43], [44] (H.5)

with: 0 ≤ wi ≤ 1,
5∑

i=1
wi = 1, p = 1,2, . . .∞ (H.6)

H.4. Constrains of the optimization
The optimized system is bounded by the axioms of
origami. With the use of these axioms the folded (F )
and unfolded state (F−1) of a crease pattern can be
related [14]. The main goal of constraining strips is to
join two kirigami sheets that are located on the x,z-
plane. The strips are therefore not allowed to pene-
trate the x,y-plane. This is realised by constraining all
the vertices to the first and second quadrant in folded
state (F ), see Eqn.H.7. Also the individual creases (E)
within a subset are not allowed to intersect, see Eqn.
(H.8).

g1(x) : V ≥
[−∞

0

]
with V ∈F (H.7)

g2(x) : Ei 6∩ E j with E ∈F−1,F (H.8)

A constraint is imposed on opposite folding, Eqn.
(H.9). A crease (Ek ) which is part of opposite folding
must be placed outside the already laid (≺) faces (Fi ).

g3(x) :

( n⋃
i=0

Fi

)
6∩ Ek for


Fi ≺ Ek

Ek ∈F

λk−1 =λk

(H.9)

The following constraints apply on the algorithm.
Additional constraints for the algorithm are shown in
Eqn. (H.10). Equation (H.10) defines that the order of
folding operations happens from the bottom of the
strip into the upwards direction. In addition, Eqn.
(H.11) prevents numerical error within the algorithm
by setting a minimal distance between the vertices of
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an arbitrary distance.

g4(x) : Vi ,A,y <V j ,A,y for i < j and V ∈F−1

(H.10)

g5(x) : if Vi 6=V j ⇒ ||Vi −V j || > 7 ·10−1

(H.11)

The total nonlinear constraints of the optimiza-
tion problem can be formulated as followed g (x) =
{g1(x), g2(x), g3(x), g4(x), g5(x)} for the subsets X =
H ,V 1,V 2, . . .





I
Optimization algorithm

The chapter I is the implementation of chapter H.
Where chapter H is mainly mathematical, this chap-
ter is practical. It discusses the structure of the code
and how the constraints and objectives of the op-
timization are achieved. Also the advantages and
drawbacks will be discussed.

I.1. How to run the code
The code is written for Matlab R2020b and is not
suitable for earlier versions. Earlier versions of
Matlab lack the Matlab function "sgtitle()" used for
the layout of the graphs.

The code can be executed by running
the file "main_file_version_3". The file
"main_file_version_3" contains all the parameters
that a user wishes to modify. The required (called)
functions to run the algorithm are stored into the
folder "Functions_Optimization". Depending on the
subset each crease has either three (subset H ) or
four (subset V ) variables. In advance to the execution
of the code the user needs to determine the number
of creases per subset, the dimensions of the strip
(L,D), initial direction of the strip (init_direction). An
desired solution can be found by tweaking the weight
factors (ZH , ZV ) and the objective values (w).
The parameters of the file "main_file_version_3"
should be reasonable. For example, 30 creases on a
strip with a length of 2 is not reasonable, but three is.
In order to prevent issue’s due numerical problems,
the algorithm is constrained in such away that all
creases within a subset will have a minimal distance
of at least "0.07" to each other. Therefore only a finite
number of creases are allowed.

I.2. Optimization algorithm
The up-following sections involves the implementa-
tion of the optimization.

I.2.1. Genetic Algorithm
The system is optimized with a genetic algorithm
represented by the Matlab function "ga()". Due
the nature the genetic algorithm all constraints
of the mixed-integer system, including the linear
constraints, must be defined with non-linear func-
tions. The constraints can be found in the function
"nonlcon_func" and " nonlcon_func_subset_V ".
From the genetic algorithm the parameters "Popu-
lationSize" and the number of "Generations" can be
changed. This has influence on the processing time
and the acquired solution. For a genetic algorithm
the "convergence to the global optimum cannot
be guaranteed, but will yield "good" solutions on
average" [42]. Therefore a sufficient number of
generations and a decent size of the population is
advised. In order to have a feasible solution the
constraint tolerance is set to zero.

Fig.I.1 and I.3 show a live plot of the function "ga()"
on two different moments within the optimization.
Fig.I.1 has not yet found a feasible solution. This
can be recognized if the black line ("best solution")
touches the horizontal axis. Fig.I.3 has found a fea-
sible solution, the black line is detached from the x
axis. After a certain amount of time or generations an
optimal solution is found. If no feasible solution has
been found the parameters of the optimization algo-
rithm can be altered, the number of crease needs to
be reduced or the length of the strip needs to be ex-
tended.
A reduction in the average distance (Fig. I.1) indicates
that the differences of individuals within a generation
is reduced, in other words the algorithm tends to go
to an optimal solution.

I.2.2. Genetic Algorithm multi-objective -
Pareto front

The Pareto optimization is executed with a multi-
objective genetic algorithm represented by the
matlab function "gamultiobj()". Unfortunately the
Matlab function is not able to handle mixed-integer
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Figure I.1: A screenshot of the live plot from the genetic algorithm
of the Matlab function ga(). The first plot shows the penalty func-
tion and the second plot the average distance of the individuals
within a generation. The present screenshot has not yet found a
feasible solution.

Figure I.2: A screenshot of the live plot from the genetic algorithm
of the Matlab function ga(). The first plot shows the penalty func-
tion and the second plot the average distance of the individuals
within a generation. The present screenshot has found a feasible
solution but not yet an optimal.

optimization problems. The MathWorks Support
Team presented a solution by redefining the func-
tions "CreationFcn", "MutationFcn", "CrossoverFcn"
[45]. With these adapted functions the optimization
algorithm is able to handle integer variables. The
downside of the presented functions is that all
integer variables for each individual are same value.
But within a subset the creases need to have an
independent integer value for λ=±1 and in addition
for subset V xpos =±1. Therefore I updated the func-
tions "CreationFcn", "MutationFcn", "CrossoverFcn"
with an additional randomisation in such a way that
also the integers variables within an individual are in-
dependent. This makes the Matlab function suitable
for the problem with a crease pattern, the creases
are allowed to have its own random integers (λ, xpos ).

While creating a Pareto front, the optimization
shows a live plot of its status. The live plot shows the
gained Pareto front. The live plot also includes how
the individuals relate to each other, the total spread
within a generation, the distance of the individuals
to each other and the fitness of each individual. Also
the score of the objective functions of the individuals
can be found within the live plot.

I.3. Computation time
The computation time will increase rapidly with an
higher number of creases within a subset or by a
large populations size. Therefore, keep the number
of creases of each subset below five. The default set-
ting for the number of the population size is set to be
10 min(max(10 nvars,40),100) and will scale up with
the number of variables (nvar s). The computation
of the Pareto plots will have a population size of 20
min(max(10 nvars,40),100). The number of genera-
tions is by default set to be 200 or 400 and may be
changed in order to restrain the maximum number
of generations. If the maximum number of genera-
tions is relatively low a feasible solution can not be
guaranteed and an exit-flag of zero will be returned. It
is not advised to change the Functiontolerance, "The
algorithm stops if the average relative change in the
best fitness function value over MaxStallGenerations
is less than or equal to FunctionTolerance" [46]. The
default setting of the Functiontolerance by matlab is
set to 10−6 for the single objective genetic algorithm
and 10−4 for the multi-objective genetic algorithm.
After testing the optimisation algorithm it seems that
the genetic algorithm can remain for a longer period
near a found solution without having a significant
change in the solution space. Therefore the Function-
tolerance is changed to ·10−5 for the single genetic al-
gorithm of subset H and ·10−3 for subset V .

I.4. Exit-flags
The exit flags of the genetic algorithm are shown in
table I.1 [17]. In principle negative flags should be
avoided, rerun the code if a negative flag occurs. In
case of a exit-flag zero, the populationsize and/or
the number of generations should be increased. A
solution is found if a exit-flag of one is returned. If
errors keep occurring check if there is a reasonable
amount of creases within the length of the strip.

I.4.1. Structure of the algorithm
Each subset is handled in sequence from H to V 1 as
is motioned in section H.1. Although Fig.H.1 suggest
an unlimited number of subsets, the algorithm only
allows folding in subset H and V 1. For both subsets,
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Figure I.3: A screenshot of the live plot from the multi-objective genetic algorithm of the Matlab function gamultiobj(). The first plot
shows the average spread of the individuals within a generation. The second plot shows the distance of all individuals. The third plot
shows the score range. The fourth plot the fitness of each individual. The final plot, the most important plot, the Pareto front of the
objectives.

Exit-Flag Meaning

1 "The subproblem is solved using a tolerance less than
FunctionTolerance, and the constraint violation is less
than ConstraintTolerance"

3 "Value of the fitness function did not change in
MaxStallGenerations generations and the constraint vi-
olation is less than ConstraintTolerance."

4 "Magnitude of step smaller than machine precision and
the constraint violation is less than ConstraintToler-
ance."

5 "Minimum fitness limit FitnessLimit reached and the
constraint violation is less than ConstraintTolerance."

0 "Maximum number of generations MaxGenerations
exceeded."

-1 "Optimization terminated by an output function or plot
function."

-2 "No feasible point found."
-4 "Stall time limit MaxStallTime exceeded."
-5 "Time limit MaxTime exceeded."

Table I.1: Possible exit flags of the genetic algorihm. Source: [17]
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the optimal crease pattern is calculated first after
which a Pareto front is calculated. The calculation of
the Pareto front is optional, and is used to compare
the found solution with solutions in general.

I.5. Recomposition of the faces
The algorithm calculates the folded state of each sub-
set by mapping the creases from unfolded state to
the folded state. A different option would be defin-
ing the faces (polygon) in unfolded state and map the
faces to folded state. With the the projection method
in mind, which depends solely on the creases, the
choice has been made to use the approach to calcu-
late the folded state by mapping the creases and not
the faces. Despite it did seem as be a good idea it was
undoable to determine the exact number of stacked
sheets, although an approximation can be made see
also section ??. Also the constraint which prevent the
intersection of the sheet due opposite folding was not
liable enough. Therefore the faces are recomposed
from the creases in folded state. The recomposition
is done for subset H and subset V .

I.5.1. Recomposition of faces subset H
The recomposition of subset H is straight forward.
By mapping from the unfolded state to the folded
state all indices of the variables are persevered. The
polygons which represent the faces can simply be
created with the given set of creases. Each face is
enclosed by the consecutive creases. Note that the
crease within a subset are not allowed to intersect.

I.5.2. Recomposition of faces subset V
The recomposition of subset V is less straight for-
ward. The fact that creases are not allowed to cross
each other is used to recompose subset V . The entire
strip is divided in segments defined by the raw edges
and the creases of subset H . Two example segments
are shown in Fig.I.4. A crease of subset V can only
cross a single crease of subset H once. Secondly
the crease can only originate from the rawedge, or
go from one crease of H tot another crease of H .
In combination with the fact that creases from the
same subset are not allowed to cross, a segment can
be divided in faces having either three, four, five or
six vertices.

Figure I.4 shows a crease pattern in unfolded
state, it facilitates the interpretation of the different
faces. A triangular face is enclosed by a raw edge a
crease from subset H and a crease from subset V

and can therefore only be located in the corners of

Figure I.4: Two randomly created segments from a crease pattern
in unfolded state. The orange creases represent H and the green
lines represent the creases of subset V . Triangular faces are F1, F3,
F5, F6, F10, F14. Rectangular faces are F8, F9, F11, F13. Pentagonal
faces are F7, F12. Hexagonal faces are F2, F4.

the segment. Fun fact there is a maximum of four
triangular faces within a segment. A rectangular
face is easily to distinguish, it is surrounded by two
creases from subset H and two creases from subset
V . A rectangular face only occurs in the middle of
the segment or is located next to a triangular face.
However the upcoming guideline separate these
two types rectangular faces. The pentagonal and
the hexagonal faces are less common, and can only
occur in the presence of a triangular face. Notice that
a pentagonal and the hexagonal faces only occur
on the left or right side of the segment. As the Fig.
I.4 indicates a pentagonal face only occurs if it is
next to either two rectangular faces or one triangular
face and one rectangular face. In other cases an
hexagonal face will occur.

The procedure to determine the faces is as fol-
lowed for each segment. First find all the triangular
faces. Secondly find all the rectangular faces adjacent
to the triangular faces. Thirdly, find all pentagonal
and hexagonal faces. Finally, the remaining faces will
be rectangular. Note that mapping the creases from
folded to unfolded state will alter their location, but
the shape of the face is preserved due the folding ax-
ioms (section B.1.1) also the indices of the vertices are
preserved. Therefore the presented recomposition of
the faces in unfolded state also works for the folded
state and is used in the algorihm.

I.5.3. Recategorization towards the subset
V

The previous sections discusses; how to find all the
faces from a crease pattern. It is realized from the
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point of view of subset H . However, in order to de-
fine the constraint for opposite folding of subset V or
to determine the number of stacked sheets, all faces
should be reorganized towards the point of view of
subset V . This new structure will include two fields
"bottom" and "top" for each crease of subset V . The
field "bottom" is comprised from all faces which are
laid before the present crease, so the faces from the
base upwards till the present crease. The field "top"
includes only the adjacent faces of the crease of sub-
set V which are not yet part of the field "bottom". In
this way all the faces are recategorized from subset
H to subset V and can be used for determining the
constraint of opposite folding and the objective of the
stacked sheets.

I.5.4. Drawback of counting stacked faces
Section F includes a definition of stacking (definition
??). Doing so by counting the number of stacked
faces. The algorithm makes a close approximation
of the exact number of sheets with the following
method; A matrix is created to hold on the faces
which are stacked on top of each other. From this
matrix the total number of staked faces can be deter-
mined.
Fig.I.1 indicates that there is a drawback of the used
approach. The correct maximum stacked number
faces is equal to eight if only one sheet is used. With
the approach mentioned above the found number of
stacked faces will be nine. The top faces of the third
crease from subset V does overlap with the first face
(see the red circle in Fig.I.1), but this overlapping has
no added value in the sense of constraining sheets.
However the algorithm will count these kind overlap-
ping leading to a small deviation of the correct value
in some cases.

Plot I.1: Folded and unfolded state from a random crease pattern.
Subset H has two creases and subset V has three creases. The red
circle indicates an area for which the faces are counted where they
should not be counted.





J
Implementation of the optimization

A folding pattern has been optimized as an exam-
ple. The algorithm is a live script the input (code) and
the output (data and graphs) are displayed within the
same file, main_file_version_3". This appendix in-
cludes the entire file.
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Main script - Draft Version 3.2
Sibren Allard  -  Student Number: 4330846 

TU Delft   -  01-04-2021

Supervisors:    Prof.dr.ir. J.L. Herder         &&         dr.ir F. Broeren

This algorithm does an optimization for a crease pattern consisting of subset H and subset V. The user can

enter objective values and weight factors. Likewise the number of creases per subset. The parameters of the

genetic algorithm can also be tweaked within this file.

clear all;
close all;

Inital values         
May be adjusted

Properties: Strip
The properties of the strip can be defined by its width (Scalar number) and its length (L, scalar number). Both

are dimensionless numbers it is to the user to enter suitable numbers which corresponds with the situation. The

variable S (scalar number) indicates the number of sheets to be joint, default value is two. The initial direction

([x;y]) is equal to the direction of the strip from the base. The default initial direction is aligned with the y-axis,

which is defined with an orthogonal base with the format ([[x1;y1], [x2;y2]]). 

L = 3;                                  %   Scalar number
D = 1;                                  %   Scalar number
S = 2;                                  %   Scalar number
init_direction = [0;1];                 %   Vector, [x;y]
Orthogonal_base = [[1;0],[0;1]];        %   Matrix, [[x1;y1],[x1;y1]]

Properties: Crease Pattern
The crease pattern consist of 2 subsets of creases, namely subset H and subset V. Subset H is the first

subset to be laid, and subset V will be laid on top of subset H. For each subset the number of creases can be

determined, via nr_creases_H and nr_creases_V both a scalar number . To increase the computation timedo

not make the number of creases of subset v higher then three of four.
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nr_creases_H = 3;                       % Scalar Number
nr_creases_V = 3;                       % Scalar Number, for fast computation
                                        % not higher then 4.

Do not edit the following two of lines code. The number of variables is depends on the number of creases.

nvars_H = 3*nr_creases_H;   % The number of variables of subset H
nvars_V = 4*nr_creases_V;   % The number of variables of subset V

Properties: Desired solution
The desired result can objective can be passed on to the algorithm with Z. Z has the format [x^+, x^-, y^+, y^- ,

L], with L as the number of stacked sheets. The algorithm will try to find an optimal solution near this desired

goal objective. Often an exact result can not be reached. Therefore it is important to give weight factors to

individual objective functions, w. The sum of w must be equal to one. Also the weighted sum parameter can be

changed, see for more information the report.

Note that the objective of subset H and V are seperated. With an objective to far out of reached the argorithm

can find a solution out of balance. Therefore there is an option to set the objective to the next level. 

Z_H = [4;4;4;4;4];                       % [x^+, x^-, y^+, y^- , L]
Z_V = [4;4;4;4;5];                       % [x^+, x^-, y^+, y^- , L]
w = [4/25,4/25,4/25,4/25,9/25];        % size(1,5),   sum(w) =1
p = 8;                                 % Scalar Number

Properties: Genetic algorithm
A genetic algorithm is used to optimize the crease pattern. The genetic algorithm is based on the evolution.

There is a population size of possible inputs, PopulationSize scalar number. The user can set  a maximum

number of generation, generations scalar number.  "The algorithm stops when the average relative change in

the fitness function value over MaxStallGenerations is less than Function tolerance" [ matlab.com]

Single Optimization

The single optimization uses the matlabfunction "ga()" to find a good solution for both subsets. The parameters

can be set below.

Subset H

PopulationSize_H = 10*min(max(10*nvars_H,40),100)  % Scalar Number

PopulationSize_H = 900

generations_H = 300;                                % Scalar Number
Functiontolerance_H = 1*1e-5;                       % Scalar Number
MaxStallGenerations_H = 20;                         % Scalar Number
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The number of attempts:

trial_H = 1;                                        % Scalar Number

Subset V

PopulationSize_V = 10*min(max(10*nvars_V,40),100)   % Scalar Number

PopulationSize_V = 1000

generations_V = 100;                                % Scalar Number
Functiontolerance_V = 1e-3;                         % Scalar Number
MaxStallGenerations_V = 20;                         % Scalar Number

The number of attempts:

trial_V = 1;                                        % Scalar Number

Pareto Optimization

The found solutions may be compared with the solution space in general. Therefore a pareto plot can be

made. The Matlab function “gamultiobj()” is used, with a custom made “CreationFCN”, “MutationFcn” and

“CrossoverFcn”. The parameters can be set below.

Subset H

PopulationSize_pareto_H = 10*min(max(10*nvars_H,40),100)   % Scalar Number

PopulationSize_pareto_H = 900

generations_pareto_H = 500;                                 % Scalar Number

Subset V

PopulationSize_pareto_V = 8*min(max(10*nvars_V,40),100)   % Scalar Number

PopulationSize_pareto_V = 800

generations_pareto_V = 500;                                 % Scalar Number

Code Execution
Do not change - Only comment if desired

The needed functions are stored in the map "Functions_Optimization". This map needs to be added to the path

so that the functions can be found.

addpath(append(pwd,'\Functions_Optimization'))
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The recomposition of the faces of subset V does create warnings if the constraints are violated. The warning

with the id "..." occurs if the algorithm tries to create a face with duplicate vertices. The constraint of opposite-

folding needs a set of faces. Before a negative feedback to  ga() is returned. This warning is turned off. 

Optimization Subset H
The following functions will determine an optimal crease pattern for subset H. The pareto optimization may be

turned off.

Single optimization:

[x_H,fval_single,exitflag_H,output_H,population_H, scores_H, options_H]...
    = single_optimization_subset_H(L, D, S, init_direction, Orthogonal_base, ...
        nr_creases_H, Z_H, w, p, PopulationSize_H, generations_H, ...
        Functiontolerance_H, MaxStallGenerations_H, trial_H);

Optimization terminated: average change in the penalty fitness value less than options.FunctionTolerance
and constraint violation is less than options.ConstraintTolerance.

The used options for the genetic algorithm

options_H

options_H = 
  ga options:

   Set properties:
             ConstraintTolerance: 0
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               FunctionTolerance: 1.0000e-05
          InitialPopulationRange: [2×9 double]
                  MaxGenerations: 300
             MaxStallGenerations: 20
                         PlotFcn: {'gaplotbestf'  'gaplotdistance'}
                  PopulationSize: 900
                     UseParallel: 1
                   UseVectorized: 0

   Default properties:
                     CreationFcn: @gacreationuniform
                    CrossoverFcn: @crossoverscattered
               CrossoverFraction: 0.8000
                         Display: 'final'
                      EliteCount: '0.05*PopulationSize'
                    FitnessLimit: -Inf
               FitnessScalingFcn: @fitscalingrank
                       HybridFcn: []
         InitialPopulationMatrix: []
             InitialScoresMatrix: []
                    MaxStallTime: Inf
                         MaxTime: Inf
                     MutationFcn: {@mutationgaussian  [1]  [1]}
    NonlinearConstraintAlgorithm: 'auglag'
                       OutputFcn: []
                  PopulationType: 'doubleVector'
                    SelectionFcn: @selectionstochunif

The found solution:

x_H

x_H = 1×9
    0.7069    0.3874    0.5463    0.8758    1.0715    1.2006         0    1.0000

The found crease pattern is plotted below:

plot_patterns(x_H,nr_creases_H,D,init_direction,L)
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The resulting constraint:

Constraint_H = optimization_objective_H(x_H,D,Orthogonal_base,init_direction,S,L)

Constraint_H = 5×1
   -2.5126
   -2.0003
   -2.6238
   -1.9074
   -2.0000

optimization_objective_H(x_H,D,Orthogonal_base,init_direction,S,L)

ans = 5×1
   -2.5126
   -2.0003
   -2.6238
   -1.9074
   -2.0000

Pareto optimization:

To reduce the computation time comment the following 3 lines. The Pareto plots hav difficulties with a higher

number of creases, therefore the maximum is set to four.

if nr_creases_H < 4
    [x_H_pareto,fval_H_pareto,exitflag_H_pareto,output_H_pareto,population_H_pareto,...
        scores_H_pareto, options_H_pareto] = pareto_optimization_subset_H(x_H, L, D,...
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        S, init_direction, Orthogonal_base, nr_creases_H, Z_H, w,...
        generations_pareto_H, PopulationSize_pareto_H);

The used options for the Pareto optimization

    options_H_pareto

The found Pareto plot is shown below:

    plot_pareto_subset_H(x_H, x_H_pareto,D,Orthogonal_base,init_direction,S,...
        L,nr_creases_H); 
end

Optimization terminated: average change in the spread of Pareto solutions less than options.FunctionTolerance.

options_H_pareto = struct with fields:
         PopulationType: []
           PopInitRange: [2×9 double]
         PopulationSize: 900
             EliteCount: []
      CrossoverFraction: []
         ParetoFraction: 0.3500
     MigrationDirection: []
      MigrationInterval: []
      MigrationFraction: []
            Generations: 500
              TimeLimit: []
           FitnessLimit: []
          StallGenLimit: []
              StallTest: []
         StallTimeLimit: []
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                 TolFun: []
                 TolCon: []
      InitialPopulation: []
          InitialScores: []
     NonlinConAlgorithm: []
         InitialPenalty: []
          PenaltyFactor: []
           PlotInterval: []
            CreationFcn: @int_pop
      FitnessScalingFcn: []
           SelectionFcn: []
           CrossoverFcn: @int_crossoverarithmetic
            MutationFcn: @int_mutation
     DistanceMeasureFcn: []
              HybridFcn: []
                Display: []
               PlotFcns: {'gaplotspread'  'gaplotscores'  'gaplotparetodistance'  'gaplotpareto'  'gaplotscorediversity'}
             OutputFcns: []
             Vectorized: []
            UseParallel: 1
    ConstraintTolerance: 0

Optimization Subset V
The following functions will determine an optimal crease pattern for subset V. The Pareto plots have difficulties

with a higher number of creases, therefore the maximum is set to four.

Single optimization:

if exitflag_H > 0
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    [x_V,fval_V,exitflag_V,output_V,population_V,scores_V, options_V] ...
     = single_optimization_subset_V(x_H, L, D, S, init_direction, Orthogonal_base, ...
         nr_creases_V, Z_V, w, p, PopulationSize_V, generations_V, Functiontolerance_V,...
         MaxStallGenerations_V, trial_V);

The used options for the genetic algorithm

options_V

The found solution:

x_V

The found crease pattern is plotted below:

plot_patterns_V(x_H,x_V,D,L,init_direction)
end

range = 1×2
    1.8000    2.4000
range = 1×2
    2.4000    3.0000

Optimization terminated: average change in the penalty fitness value less than options.FunctionTolerance
and constraint violation is less than options.ConstraintTolerance.
options_V = 
  ga options:

   Set properties:
             ConstraintTolerance: 0
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               FunctionTolerance: 1.0000e-03
          InitialPopulationRange: [2×12 double]
                  MaxGenerations: 100
             MaxStallGenerations: 20
                         PlotFcn: {'gaplotbestf'  'gaplotdistance'  'gaplotstopping'}
                  PopulationSize: 1000
                     UseParallel: 1
                   UseVectorized: 0

   Default properties:
                     CreationFcn: @gacreationuniform
                    CrossoverFcn: @crossoverscattered
               CrossoverFraction: 0.8000
                         Display: 'final'
                      EliteCount: '0.05*PopulationSize'
                    FitnessLimit: -Inf
               FitnessScalingFcn: @fitscalingrank
                       HybridFcn: []
         InitialPopulationMatrix: []
             InitialScoresMatrix: []
                    MaxStallTime: Inf
                         MaxTime: Inf
                     MutationFcn: {@mutationgaussian  [1]  [1]}
    NonlinearConstraintAlgorithm: 'auglag'
                       OutputFcn: []
                  PopulationType: 'doubleVector'
                    SelectionFcn: @selectionstochunif
x_V = 1×12
    1.5881    1.6820    2.5008         0         0         0    1.2220    1.1309

The resulting constraint:

Constraint_V = optimization_objective_V(x_V, x_H, D, L, init_direction, Orthogonal_base, S)

Constraint_V = 5×1
   -2.8898
   -2.9285
   -2.7760
   -2.8247
   -6.0000

Pareto optimization:

To reduce the computation time comment the following 3 lines.

if nr_creases_V< 4
    [x_V_pareto,fval_V_pareto,exitflag_V_pareto,output_V_pareto,population_V_pareto,...
        scores_V_pareto, options_V_pareto] = pareto_optimization_subset_V(x_H, x_V,...
        L, D, S, init_direction, Orthogonal_base, nr_creases_V, Z_V, w,...
        generations_pareto_V, PopulationSize_pareto_V);

The used options for the Pareto optimization

    options_V_pareto

The found Pareto plot is shown below:
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    plot_pareto_subset_V(x_H, x_V, x_V_pareto,D,Orthogonal_base,init_direction,S, ...
        L,nr_creases_V)
end

Optimization terminated: average change in the spread of Pareto solutions less than options.FunctionTolerance.
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options_V_pareto = struct with fields:
         PopulationType: []
           PopInitRange: [2×12 double]
         PopulationSize: 800
             EliteCount: []
      CrossoverFraction: []
         ParetoFraction: 0.3500
     MigrationDirection: []
      MigrationInterval: []
      MigrationFraction: []
            Generations: 500
              TimeLimit: []
           FitnessLimit: []
          StallGenLimit: []
              StallTest: []
         StallTimeLimit: []
                 TolFun: []
                 TolCon: []
      InitialPopulation: []
          InitialScores: []
     NonlinConAlgorithm: []
         InitialPenalty: []
          PenaltyFactor: []
           PlotInterval: []
            CreationFcn: @int_pop
      FitnessScalingFcn: []
           SelectionFcn: []
           CrossoverFcn: @int_crossoverarithmetic
            MutationFcn: @int_mutation
     DistanceMeasureFcn: []
              HybridFcn: []
                Display: []
               PlotFcns: {'gaplotspread'  'gaplotscores'  'gaplotparetodistance'  'gaplotpareto'  'gaplotscorediversity'}
             OutputFcns: []
             Vectorized: []
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            UseParallel: 1
    ConstraintTolerance: 0
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Joining two kirigami sheets

With an optimal crease pattern found, the Kirigami
sheets can be joined. Recap, the discretized flaps will
be folded into each other. Strips from both sheets are
paired with each other in order to make a joint. Every
crease placed on one of the strips is also placed on
the other. In such a way that the sheets are able to
constrain each other.

For illustration a crease pattern is optimized.
The crease pattern will consist of six creases evenly
divided over subset H and V with an objective of
C :

{
x+, x−, y+, y−} = {

4,4,4,4,4
}
. All directions are

set to be evenly important but the stacked layers
are slightly more important, leading to the following
weight factors w = { 4

25 , 4
25 , 4

25 , 4
25 , 9

25

}
. The strip has

the following dimension; a length of 3 and a width of
1.
The crease pattern of subset H is optimized first.
Figure K.1 represents the crease pattern of subset H

in folded and unfolded state. The orange crease lines
are part of opposite folding and the yellow crease
lines are part of the Jacobs ladder.
Figure K.2 represents the crease pattern of subset
V in folded and unfolded state. The crease lines
of subset H are shown in orange and yellow while
the crease lines of subset V are shown in green and
purple.

The crease patterns are embedded on the dis-
cretized flaps. The crease patterns of the pink and
blue sheet are mirrored to each other, in order to have
a fold on the same location, see Fig. K.1. Figure K.2 is
half way the folding operation. And Fig. K.3 is the re-
sulting folded state of the kirigami sheets. To have a
clear image the sheets are placed on top of each other.
Note that the the first opposite fold is folded upwards
in such a way the sheets are pointing to each other.
Figure K.4 and K.5 are the representation of the actual
object, both sheets lay in the same plane. Figure K.4
is an isometric view of the joined Kirigami object and
Fig. K.5 has several side views and a front view.

Figure K.1: Two kirigami sheets, not folded into each other. Both
sheets have discretized flaps with a crease pattern embedden in
them.

Figure K.2: Two kirigami sheets, partially folded into each other.
Strips from both sheets are paired with each other.

Figure K.3: Two kirigami sheets, folded into each other. The sheets
are on top of each other for illustration purposes.
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72 K. Joining two kirigami sheets

Plot K.1: Two kirigami sheets, not folded into each other. Crease pattern H . A x-ray view of a possible solution from the optimization
algorithm which has as objective C :

{
4,4,4,4,4

}
.

Plot K.2: Crease pattern H and V . A x-ray view of a possible solution from the optimization algorithm which has as objective C :{
4,4,4,4,4

}
. The true primary constraint is found to be CV = [−2.9741 −2.7615 −2.9535 −2.8230 −6.0000

]
. Both subsets have

three creases. The mountain valley assignment can be distinguished by a dashed and straight line.
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Figure K.4: Isometric view of the joined Kirigami sheets. Two sheets are joined with nine strips.

Figure K.5: Front and side views of the joined Kirigami sheets. These sheets are joined with nine strips. Top figure; front view, second
figure: side view one, third figure: side view two.
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