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Abstract
Indoor localization is a field in a development pro-
cess. Different solutions have been introduced in
recent years. Some of the solutions use beacons,
WI-FI access points, different smartphone sensors,
or acoustic sensing to make localizations. This pa-
per is presenting an application that uses acoustic
sensing data to perform localization with different
deep models. The research aims to explore differ-
ent models and evaluate their performance metrics
in the classification of three different acoustic data
sets and their overhead on the system. Two differ-
ent architecture designs are implemented - a client-
server one as the models are stored on the server
and one only front-end oriented as in this case com-
pressed models are used. The results show that
the client-server approach outperforms the front-
end only design as the former’s models reach clas-
sification results of 98%, 90% and 90% tested on
three different data sets, despite taking longer to
fetch a prediction result from the server compared
to the compressed models stored on a smartphone
device.

1 Introduction
Indoor localization using the acoustic system of smartphones
is a recently introduced topic that is in a development process.
For an outdoor environment, the global positioning system
(GPS) is suitable for sub-meter localization but for indoor lo-
cations, it is not reliable, because GPS service is often not
available in such places or the localization is not accurate [1].
It is worth solving such a problem because it will revolution-
ize the localization for closed places which can be helpful for
indoor navigation applications for big buildings where you
can get lost easily. Additionally, for the development of such
technology is important to evaluate different architectural ap-
plication designs and performance metrics on different data
sets to achieve the maximum.

The contributions of this paper include (i) in-depth research
and experiments on what deep models with different architec-
tures can be used for indoor localization sensing, Floating-
point operations (FLOPS)[2], time to train a model, and time
to fetch the prediction result using Convolutional neural net-
work (CNN), Recurrent neural network (RNN) and Dense
neural network (DFNN). (ii) the design of the system for suc-
cessful deployment and evaluation and (iii) inference run and
models’ robustness in real-world environments such as a pub-
lic building with collected different data sets.

For the successful completion of the research, a mobile de-
vice is used to emit a fixed number of 2ms 20kHZ inaudible
chirps every 100ms by the loudspeaker and the same device
microphone to capture the reflected frequencies. Then this
data is converted to spectrograms and provided to the deep
models to evaluate their performance. During the training of
the models is computed the FLOPS taken for each model,
training parameters and the required time to train it.

The results from the research show that the architecture de-
sign with a client and a server performs better than an appli-

cation with a front-end part only because on the front-end
should be used compressed models that deteriorate the per-
formance on the data sets, despite taking more time to fetch
the predicted result from the server, 60-100ms compared to
1ms for the latter. On the server, the models can achieve clas-
sification results of 98%, 90%, and 90% tested on three differ-
ent data sets. Additionally, the models with more parameters
take longer time to train and have more FLOPS except for
the RNN models whose values for the last metric do not pass
1500 FLOPS.

The rest of this paper is organized as follows. In Section
2 is presented the related work and background of the deep
models mentioned in this section, then in section 3 the mea-
surements study to understand rooms’ responses to inaudible
chirps. In the next section, 4, is presented the methodology.
In 5 and 6 are implementation setup and results from the re-
search are discussed, in the next one, 7, is discussed the re-
sponsible research. Section 8 is the discussion and the last
section, 9, is the paper’s conclusion and future work on the
problem.

2 Related work and Background
This section presents papers with research connected with
the work in this one and introduces background information
about the deep neural networks involved in the experiments.

2.1 Related work
Different Machine learning models have been used for solv-
ing problems about localization and positioning in closed en-
vironments. Batphone [3] uses the nearest-neighbour model
to calculate the acoustic background distance to previously
recorded rooms and this way to make localization. This ap-
proach was able to reach 69% accuracy in classifying 33
rooms in a quiet environment.

With the development of deep models and neural networks,
they started to be used more often for acoustic sensing. The
deep models in combination with spectrogram features out-
perform SVM models as stated in [4], they use the k-SpecNet
model for localization and classification of overlapping sound
events based on spectrogram-keypoint using acoustic-sensor-
network data.

In [5] and [1] is presented a work with a client-server appli-
cation similar to the one described in this paper. This applica-
tion also emits 20kHZ chirps every 2ms on every 100ms and
captures the reflected frequencies by the microphone, then the
collected data is converted to spectrograms and used for train-
ing the models. For models, they use DNN and CNN models
for making classifications as they achieve on average 97%
accuracy with their CNN on different data sets from different
places.

2.2 Background
A lot of different machine learning and deep learning mod-
els can be used for the classification of spectrograms but as
always some have better performance in some metrics com-
pared to others and vice-versa. Traditionally models like
SVM, SGD, KNN and DTC can be used for the classifica-
tion of spectrograms as used in [6], but with the development



Figure 1: Dense Neural Network [8]

Figure 2: Arhitecture of LSTM unit [9]

of the deep models and when being fed up with a sufficient
amount of data they can achieve higher accuracy compared to
the traditional models. They can learn better on complicated
data representations for classification. The evidence for this
is stated in [7]. Although the deep models have better accu-
racy performance they are more time-consuming for training
in comparison to the machine learning models because the
latter are more simple models with fewer parameters.

In the deployed server, the full potential of the models is
used while for smartphone deployment the deep models are
compressed, meaning that they do not operate at their full
potential. For both architecture design types are used DNN,
RNN and CNN models.

The DNN models consist of fully connected layers with
nodes in them. The nodes in a layer are not connected, they
are connected with all nodes from the previous step and next
step layers as in figure 1. The training algorithm determines
the weights and the biases for each edge between two nodes
in the network to best fit it to the input data. The input for the
first layer is flattened 1D spectrogram data, then the input data
for each hidden layer is the result of the activation function
in the previous one. The data goes through multiple hidden
layers until it reaches the output one which consists of the
same number of nodes as the different classes in the training
data. This layer returns probabilities of how probable is the
input data to be a certain class.

Unlike the DNN model, the RNN and the CNN models can
take as input multidimensional data. The RNN also consists
of input, hidden and output layers. The difference is in the
hidden layers. The hidden layers consist of Long-Short Term
Memory (LSTM) units. This network design has been first
invented by Hochreiter and Schmidhuber in 1997 [10]. These
units are trying to solve the problem of the vanishing gradi-
ent passing through the layers. The core of the units is the so
called ”memory cells” that can learn tasks from events that
happened 1000 or million-time steps earlier in the network

Figure 3: Simple architecture of a CNN model [12]

[11]. The LSTM consists of 4 gates - input, output, input
modelation and forget gates, as the last one controls what in-
formation to drop and what to keep [9]. The architecture of
the unit can be seen in figure 2.

The CNN model consists of convolutional, pooling, and
fully connected (or dense) layers that search for patterns in
the data. The convolutional layers aim to apply an ’element-
wise’ activation function to the outputs of each neuron, while
the purpose of the pooling layers is to downsample on the
data, reducing the parameters [12]. The parameters of this
network are set up during the training process, except for the
pooling layers which do not learn. Figure 3 presents a simple
CNN architecture of 5 layers.

3 Measurements study
In this section is presented the measurement study and
showed why our architecture design and approach are suit-
able to solve the mentioned problems in section 1. Acoustic
data has been collected from 5 different location points in a
public building. The sketch of the building floor is shown in
figure 4.

Figure 4: Floor plan of the 19th floor of EWI - faculty building in
the TU Delft campus. The letters show the spots from where data is
collected

3.1 Measurement Setup
The front-end part of the application has been deployed on a
Samsung Galaxy A51 because the smartphone is able to emit
and capture high frequencies of 20kHZ. This is shown in fig-
ure 5. There is presented the 2ms chirp at 20kHZ emitted and
captured after that by the same device. The developed front-
end app emits 2ms inaudible chirps every 100ms using the
phone’s loudspeaker. Alongside this process, the app is con-
tinuously using the microphone of the same device to cap-
ture the frequency reflected responses at a rate of 44.1ksps.
The collected data is sent to the server where it is stored on
a database for future use. Before being stored, the first 3ms
of each 100ms recording is removed. The first 2ms data is
directly propagated from the phone’s loudspeaker to its mi-
crophone and the remaining 1ms is removed just because of
a safeguard because the first data reflected is from the person
who is holding the device so it is not data reflected from the



Figure 5: Spectrogram showing 2ms chirp at 20KHZ in the span of
100ms

surrounding walls. For each data point, 1004 chirps are emit-
ted as the first four and the last two are removed because of
data corruption. This amount of data is sufficient to under-
stand the places’ acoustic responses.

A few different studies on active acoustic sensing use
sweep chirp [13], multi-tone chirp [14] and ets. These chirps
cover a wide acoustic spectrum but they can be annoying for
the others. So for this application is used 20kHZ following
the approach in [1] where an experiment with frequencies be-
tween 20kHZ and 21.6kHZ has been conducted. The results
there show that despite 20kHZ being the lowest inaudible fre-
quency, it is at the same time the one with the highest signal
power, so for the remainder of this paper 20kHZ is the cho-
sen lowest inaudible frequency played by the developed ap-
plication. Because of the mechanical dynamics of either the
loudspeaker or the microphone a frequency above the halve
of the sample rate (44.1ksps) can not be used.

Figure 6: Spectrogram for spot A from DS1

Figure 7: Spectrogram for spot A from DS2

Figure 8: Spectrogram for spot C from DS1

For the classification of the data, RNN, DNN and CNN
models have been chosen with API provided by TensorFlow
1. All of the models are capable of classifying 2D and 1D
data and these models are often used for image classification
and pattern recognition. For the design with the back end,
the full potential of the models is used while for the front-end
only application, these models have been compressed again
using Tensorflow APIs to make them work on an Android
application.

For the evaluation of the models has been used their accu-
racy in classifying the data sets, confusion matrices showing

1https://www.tensorflow.org

which places are classified correctly and incorrectly, number
of FLOPS and time taken during training. The training of
the models is performed on laptop Lenovo Legion Y520 with
16GB Ram and 4-cores.

3.2 Time-Frequency Analysis
The input data for the models are spectrograms, a time-
frequency representation of the collected data. To generate
the spectrograms, 256-point Hann windows with 128 points
of overlap between two neighbour windows are applied to
generate 32 data blocks from 4278 out of the 4410 data
points in the collected data intervals. The used spectrogram
is a grey-scale image with frequencies between 19.5kHZ and
20.5kHZ. The size of the spectrogram is 32(time) x 5(fre-
quency).

The spectrograms in figures 6 and 7 can be noticed that
they have the same outlook. The reason for this is that they
are from the same spot 19A but from different data sets. This
shows that the data collected from different sets at the same
location spot has the same spectrogram out-look. In figure
8 is presented a spectrogram for spot 19C. This spectrogram
is different from the ones for spot 19A because the reason is
that it is another spot location. This shows that the different
spots have different spectrograms out-look.

4 Methodology
This section starts with presenting the Problem statement, fol-
lowed by System architecture design, Neural network models
and Models real-time classification evaluation.

4.1 Problem statement
The key question is what models can be used for classification
and where is more suitable to deploy the models - on a sep-
arate server or on a smartphone and what are the advantages
and the disadvantages of the two approaches.

All of the chosen models are frequently used in image clas-
sification, pattern recognition and speech recognition as to
some extent all of these fields take part in our research as
the input data is a collection of spectrograms that represents
grey-scale images of acoustic data with different patterns for
the different locations.

Both architecture designs are possible for implementation.
However, this paper presents what are the strong and weak
sides of both of them based on results from experiments.

4.2 System Architecture design
Two different architectural designs have been implemented.
One with front-end and back-end parts and one only with
front-end. In both cases the front-end part is responsible for
data collection as on the implementation with the back end
the data is sent to it, where it is pre-processed and stored on
a database while for the front-end only part the data is pre-
processed on it and stored there. For the model creation, the
architecture with two parts trains the models on the back end
using the data from the database, while for the implemen-
tation with only one part, the models are trained in a sepa-
rate Python environment and after that included on the front
end. Extended information about the implementation details
is provided in section 5.



Figure 9: Frontend design

4.3 Neural network models
All models are trained using TensorFlow API. At the current
moment, it is only possible to train the model in a Python en-
vironment, so the models created at the server are also used on
the front-end only application with the difference that these
models on the front end are compressed and used only for
predictions.

For each neural network type, 6 models with different ar-
chitecture designs are used. For each type, there are 2 models
with 300K parameters, 2 models with 700K parameters and 2
models with 1500K parameters. During the training of each
model is computed the time and the FLOPS it takes to train
it. The results from the training for each model are presented
in section 6.

4.4 Models real-time classification evaluation
Once the models are ready and compressed and work prop-
erly, then their accuracy is tested on three data sets created at
three different times as the models have been trained on the
first collected data set. Additionally is computed the time it
takes for making a prediction using the back-end stored and
compressed models on the front end.

5 Implementation
This section presents the Data collection, the Similarities and
the Different parts of the two design approaches, the Models
training process and finishes with Hyperparameter settings

5.1 Data collection
For each location, 1004 chirps are emitted every 100ms and
collected the reflected data from them by a smartphone. The
collected data will be divided into 1004 intervals of 4410 data
points and 4278 of them will be converted into spectrograms
with 32x5 dimensions. Three data sets have been collected
using the same device.

5.2 Common parts between the two design choices
The common part of both designs is the Collecting Data APIs
and Test API. Figure 9 presents the common design part of
the front end as only adding the training API for the approach
with the back end.

The front-end application is responsible for emitting and
collecting data. This part emits a fixed number of 20kHZ
chirps every 100ms as every chirp is 2ms. In our case, the
chirps are 1004. The chirp audio data for 100ms are initially
set up and then reproduced 1004 times. This way the played
audio track plays the chirps on the same interval. Otherwise,
if every time the audio data for the chirps is generated then the
interval will not be exactly 100ms between every two chirps
because of system delays. An array of shorts is used to rep-
resent the generated audio data. One 100ms interval consists
of 4410 data points as only the first 88 data points represent
the chirp signal values while the rest data points are zero. The
reason is that we need exactly 2ms chirp and the rest of the
100ms interval has to be quiet. Alongside this thread of oper-
ations, there is a second one.

In the second thread, the collection of the raw data is hap-
pening. The collection thread should start just before the
thread that emits the chirps. The collected data is stored in
an array with size 4410 * 1004 of shorts. After that, the col-
lected data is sent to the back end or stored as wave files in
the device memory. For the emission and data collecting are
used the Android APIs AudioTrack2 and AudioRecord3.

5.3 Different parts between the two design choices
The difference between the two implementations is that one
has a separate server application, while the other one has not
and the data stays in the same application and is not sent.

Front-end and Back-end design
Once the data is collected, it is sent through an HTTP request
to the back end with a specified label and a building name.
There the data is prepossessed. The start of the first chirp
is determined because the data collecting and chirp emission
can not be started exactly at the same time with no delay and
the start of the chirp should be found. The data points present
an array with shorts showing the amplitude at each data point.
So to find the start of the chirp the implementation iterates
over the array and looks for a data point with a value above
10000. Once found, it shows the chirp beginning. Then is
returned the index of the found value above 10000. This is
the offset we apply for each chirp in the array to find its be-
ginning. Additionally, 50 index positions are returned to get
more exactly the start of the chirp. Figures 10 and 11 present
a wave plot with no offset applied and a wave plot with the
applied offset for this chirp.

When the chirp offset is found, a spectrogram is created
from each 4410 data points interval. The first 132 points are
removed as a safeguard. The generated spectrogram shows all
frequencies between 0 and 22050 kHz in the span of 100ms.
Only the part between 19.5kHZ and 20.5kHZ is taken. Then
this part of the data is stored on a non-relational database.
This process is applied to all 998 out of 1004 intervals of data
except for the first four and last two which are removed as a
safeguard. To find the start of the chirp and apply the offset
value, only the first chirp is used after the first 4 have been
removed.

2https://developer.android.com/reference/android/media/AudioTrack
3https://developer.android.com/reference/android/media/AudioRecord



Figure 10: Wave plot with no offset

Figure 11: Wave plot with offset

For the training part again an HTTP request is sent from
the front end with the name of the model, model type, the hy-
perparameters setup and the building name. Then a model is
initialized with this setup and the data for the specific build-
ing. When the training of the algorithm is ready, its weights
are stored on the backend for further use.

For the test part, an HTTP request is sent from the front-
end with the name of the model and an array with 13230 data
points for classification. The first 4410 data points are omit-
ted and to the rest are applied the pre-processing steps from
the first 2 paragraphs with the difference that the data is not
saved in the database, but it is classified by the specified al-
gorithm which returns the localized label which is returned as
a response on the front end. Figure 12 presents the back-end
design.

Front-end only design
With this design approach, the data is pre-processed and
saved on the in-memory database of the device. Unfor-
tunately, it is not possible to train TensorFlow models on
Android applications, so a separate Python environment is
used, the models are trained with the collected data and com-
pressed. After the compression, they can be used for predic-
tions on the front-end application. The architecture of this
design approach can be seen in figure 13.

5.4 Model training
The sample data is divided into 70% training samples and
30% validation samples for each model. The training pro-
cess of all algorithms is the same. It consists of 100 epochs,
in each epoch a mini-batch of randomly selected 32 training
samples is used. The only difference is the training strategy

Figure 12: Backend design

Figure 13: Front-end only part design

each model uses. Each of the neural networks’ output layer
is a dense layer with K units, the number of classes in the
training set, and a softmax activation function. Also, just be-
fore the output layer, there is a dropout regulation layer with a
0.4 rate. It aims to avoid overfitting and improve the models’
performance.

5.5 Hyperparameter Settings
Convolutional neural network layers

conv layer filters dense layers
C1 16 x 32 1024 x K units
C2 32 x 32 1024 x K units
C3 128 x 64 x 64 1024 x K units
C4 32 x 64 x 128 512 x K units
C5 256 x 128 1024 x K units
C6 512 x 128 512 x K units

Table 1: Number of filters in each convolutional layer and units in
dense layer

Each model has 2 max-pooling layers. Each convolutional
layer applies an ’elementwise’ operation with 4x4 filter, 0
paddings, a stride of 1 and a ’relu’ activation function, as
it preserves the dimensions of its input data. On the other
side, the max-pooling layer uses 2x2 filter and a stride of two.



This layer controls the over-fitting and improves the robust-
ness to small distortions in the input image. The output of the
first convolutional layer is 5x32, then the max-pooling layer
downsized the data dimensions to 2x16. The second convolu-
tional layer keeps the same dimensions, 2x16, while the last
max-pooling layer downsized the data to a 1x8 image. Then
the following applied convolutional layers preserve the same
dimensions of 1x8.

The input data for the first dense layer is the number of fil-
ters in the last convolutional layer multiplied by 1x8 flattened.
For the hidden dense layers ’relu’ activation function is used.

Dense neural network layers

dense layers
D1 512 x 256 x 256 x K units
D2 256 x 512 x 256 x K units
D3 1024 x 512 x K units
D4 256 x 512 x 1024 x K units
D5 2048 x 512 x 256 x K units
D6 512 x 128 x 2048 x 512 x K units

Table 2: Number of units in dense layer

For the dense layers ’relu’ activation function is used. The
input data for the first layer is a flattened 1D array.

Reurrent neural network layers

LSTM layers dense layers
R1 64 x 64 256 x K units
R2 128 128 x K units
R3 64 1024 x K units
R4 32 x 64 1024 x K units
R5 64 x 128 1024 x K units
R6 256 x 128 256 x K units

Table 3: Number of units in LSTM and dense layer

Each of the LSTM layers is Bidirectional, which means the
input data goes in both directions. The input of the first layer
is 5x32, then the output of each LSTM layer size is 5x twice
the number of units.

Each RNN model has a dense layer after the LSTM ones
with ’relu’ activation function. The input dimension of the
first dense layer is 5x twice the number of units of the last
LSTM layer flattened.

6 Results
In the following section are presented results from the exper-
iments and is made a comparison between the metrics spec-
ified in section 4 - accuracy, time to train, parameters, pre-
diction times, FLOPS and accuracy on three data sets for the
models on the back end and the compressed models on the
front end.

6.1 Evaluation of the training of the models
The results from tables 4, 5 and 6 show that the CNN and
DNN models are more suitable for the classification of such
data. All models have above 93% accuracy on their validation
data sets, except for the RNN models which have accuracy
between 72% and 90%.

M Acc val Params Time FLOPS
C1 94% 280k 4.17 m 37M
C2 94% 290k 4.72 m 59M
C3 94% 730k 11.63 m 360M
C4 94% 700k 7.27 m 173M
C5 94% 1500k 36.28 m 1186M
C6 93% 1500k 57 m 2270M

Table 4: This table presents the training results for each CNN model
- M - model, Acc vall - accuracy on validation data, Params - Param-
eters, T - Training time in minutes, and Floating point operations.

From the tables presenting the results from the training is
observed a connection between the parameters, time to train
and FLOPS. With the increase of the parameters, the rest of
the values also increase. However, the accuracy of the valida-
tion data is not connected with the parameter increase.

M Acc val Params Time FLOPS
D1 94% 280k 2.23 m 19M
D2 94% 290k 2.32 m 19.5K
D3 95% 700k 5 m 44M
D4 94.3% 700k 5.3 m 45M
D5 94% 1500k 8.85 m 96M
D6 94.5% 1500k 9 m 93M

Table 5: This table presents the training results for each CNN model
- M - model, Acc vall - accuracy on validation data, Params - Param-
eters, T - Training time in minutes, and Floating point operations.

The flops metric shows that the CNN and DNN models
take more FLOPS depending on the number of parameters in
comparison to the RNN models which take around 0.8K and
1.5K for training.

M Acc val Params ime FLOPS
R1 74% 315k 4.75 m 0.8K
R2 90% 330k 3.87 m 1.5K
R3 90% 711k 4.82 m 0.8K
R4 84% 740k 5.7 m 0.8K
R5 82% 1600k 9.23 m 1.5K
R6 72% 1500k 20.57 m 1.5K

Table 6: This table presents the training results for each CNN model
- M - model, Acc vall - accuracy on validation data, Params - Param-
eters, T - Training time in minutes, and Floating point operations.



6.2 Accuracy on different data sets
The models have been evaluated on three different data sets
- DS1, DS2 and DS3. DS1 has been used for training the
models. The three best and worst performing models are pre-
sented in tables 7 and 8 with their inference run times. The
results for all models are in Appendix A.

For the models in the back end, the results in table 7 show
that models C5, D2 and R2 have the highest accuracy on the
three data sets. C5 and D2 have higher accuracy performance
on DS1 - 98% - than R2 which has an accuracy of 90%. For
data sets 2 and 3 the three best-performing models have sim-
ilar results of 86% - 89%. In table 8 for the worst performing
models is shown that the accuracy performance of the C1 and
D6 is not much lower than the best performing C5 and D2
models in table 7. However, this is not the case for the RNN
model R6 as the average accuracy on the three data sets for
the worst performing RNN model is 18% below the best per-
forming one R2.

From the confusion matrices in figures 14, 15, 16, 17, 18
and 19 can be observed how the accuracy is changing for the
best and worst performing models on data set 2. For the CNN
models, there is an increase in the false positive for 19D being
incorrectly classified as 19A and 19E classified as 19B. For
the DNN models, there is a slight increase in the misclassifi-
cations of 19A with 19D, 19B with 19C and 19C with 19B.
The biggest increase in misclassified locations is for the RNN
models. The confusion matrix shows an increase of false pos-
itive classifications of 19D being classified as 19A and false
positives of 19E being classified as 19B and 19E being clas-
sified as 19C. The reason for that can be noise in the data.
These plots show that the CNN and DNN models are more
robust to data noise. The results for the matrices on DS3 for
the same models are similar to the results for DS2. The results
for DS3 can be seen in Appendix B.

For the models on the front end, the best performing CNN
model - C5 is able to reach accuracies of 75%, 64% and 68%
on the three data sets which are on average 9% higher than
the results of the worst performing CNN model C1 on the
same data sets. For the RNN and the DNN models, the best
and worst performing models have the same accuracies on
the three data sets - 23% for the DNN models and 36% for
the RNN models, except for R6 on DS3 which can reach an
accuracy of 46%. The reason for this difference in the per-
formance between the models on the back end and the com-
pressed one is that the compressed ones’ values of the weights
are not as precise as those on the back end. The reason for that
is during compression these weights values are shortened to
make the model size smaller because it is assumed that smart-
phone devices have smaller memory storage compared to the
servers. The compressed models are around 3 fold smaller
than the uncompressed ones.

6.3 Prediction times
From the conducted experiments, it takes on average 70ms for
classification on the back end and roughly 30ms more for the
request to reach the back end and then return the result, so the
whole round trip is on average 100ms as for the RNN models
take a bit more to make a prediction. On the other hand, the
predictions with the compressed models take no more than 1

Model DS1 DS2 DS3 Time
C5 98% 75% 89% 64% 88% 68% 60ms 1ms
D2 98% 23% 89% 22% 89% 22% 60ms 1ms
R2 90% 37% 88% 38% 86% 38% 80ms 1ms

Table 7: The best three performing CNN, DNN, RNN models - the
first number refers to the model on the backend and the second one
to the compressed model.

Model DS1 DS2 DS3 Time
C1 97% 64% 88% 58% 82% 59% 60ms 1ms
D6 98% 23 % 89% 21% 86% 22% 70ms 1ms
R6 73% 36% 67% 37% 64% 46% 97ms 1ms

Table 8: The worst three performing CNN, DNN, RNN models - the
first number refers to the model on the backend and the second one
to the compressed model.

Figure 14: Confusion matrix for C5 on DS2

Figure 15: Confusion matrix for C1 on DS2

ms on average for all models, however, the accuracy score is
low. The results of these experiments are presented on aver-
age in tables 7 and 8.

The results from these experiments show that the best-
performing compressed models are CNN. However, their per-
formance is nowhere near the performance of the models on
the back end which are able to reach an accuracy of 90%. The
models there are also showing minimal overfitting of 8% bet-
ter accuracy on the data set the models have been trained in
comparison to the data sets they are tested. Based on the re-
sults the implementation of an additional back end has higher
accuracy despite taking more time for interference run which
would be hardly noticed.



Figure 16: Confusion matrix for R2 on DS2

Figure 17: Confusion matrix for R6 on DS2

Figure 18: Confusion matrix for D2 on DS2

Figure 19: Confusion matrix for D6 on DS2

7 Responsible Research
Privacy concerns can appear with the collected audio data.
This data consists of the frequencies collected at some pe-
riod of time. Then this data can be easily converted back to
human audible sound. In order to tackle this problem, the
research application only works with frequencies in the in-
audible range and immediately after the data is collected, it
is pre-processed - converted to spectrograms that have a fre-
quency range between 19.5kHZ and 20.5kHZ - this is the in-
audible range for the people. Additionally, the Fast Fourier
Transform (FFT) algorithm can be applied to the audio data
to remove the human audible frequencies from it.

The used frequency for the experiments is inaudible for the
people but it can be annoying for the animals. During the
data collection, there were no animals in the building or on

the floors of it.

8 Discussion
The conducted experiments show that simple DNN and CNN
models are more suitable for classifying acoustic data than
RNN. The best-performing models are the DNN models, they
have the lowest time for training and FLOPS and at the same
time the highest accuracy and data robustness. Overall the
DNN and CNN models show better accuracy and robustness
to different data sets compared to the RNN. The reason for
that can be found in the applications for RNN models, they
are more suitable for natural language processing [15] while
the DNN and the CNN models are more suitable for image
classification and pattern recognition [16].

The implementation of the two architectural designs
presents that the implementation of a system with a front end
and a back end is better because the accuracies of the models
on the back end are way higher than the compressed one on
the front end despite the time taking for predictions on the for-
mer is a bit bigger than this on the latter but the 100ms delay is
hardly noticed by the users of the application for who will be
far more important the accuracy in comparison to the insignif-
icant delay. The results show better performance for the mod-
els on the back end compared to the compressed ones. The
reason for this can be the compression of the models them-
selves. During the compression, the model is lightweight, to
make it works on Android devices, which decreases its per-
formance.

9 Conclusions and Future Work
This paper gives answers to the questions stated at the be-
ginning of it - what deep models are suitable to use for in-
door location recognition, deployment and evaluations of the
system and inference run in real-time. The results show that
the DNN and the CNN models perform better than the RNN
models, as the DNN models have the shortest testing time and
FLOPS. Additionally, the DNN and the CNN models show
better robustness on different data sets, as the models on the
back end significantly outperform the compressed models and
in this order of statements shows it is better to implement a
system with a front end and a back end with models trained
and stored on the back end, despite the prediction time being
a bit higher but 100ms of delay are hardly noticeable.

In the future, experiments can be conducted on which
model is most robust on data collected by devices different
from the one used for training. Additionally, another unex-
plored topic is what is the models’ performance when there
are emitted more than one frequency of 20kHZ at the same
time and what is the influence on the model
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Appendix
A Results
The tables in this section present the models’ results on data sets DS1, 2 and 3 for the server and compressed models. Addition-
ally is added a column for the interference run times for making one prediction. The best performing models are C5, D2 and
R5 with an accuracy on average of 87.5% for data sets 2 and 3. On the other side are models C1, D6 and R6 with the lowest
accuracy. The difference in the performance for C5, D2 and C1, D6 is not so big as between R2 and R6 as the difference there is
on average 18%. The same models are also the best and worst performing compressed models on the DS2 and DS3 except for
R6 which has the highest accuracy on DS3 out of RNN models. The prediction time for the DNN and CNN models is similar
- 60 ms for the models on the server and 1 ms for the compressed models. The RNN models on the server take around 30ms
more for classification while their compressed forms no more than 1 ms.

Model DS1 DS2 DS3 Time
C1 97% 64% 88% 58% 82% 59% 60ms 1ms
C2 97% 68% 89% 65% 85% 61% 60ms 1ms
C3 98% 72% 89% 63% 86% 64% 60ms 1ms
C4 98% 76% 89% 66% 84% 64% 60ms 1ms
C5 98% 75% 89% 64% 88% 68% 60ms 1ms
C6 97% 70% 88% 61% 86% 66% 60ms 1ms

Table 9: This table presents the accuracy results on 3 different data sets for each CNN model - the first number refers to the model on the
backend and the second one to the compressed model.

Model DS1 DS2 DS3 Time
D1 98% 23% 90% 21% 85% 22.6% 60ms 1ms
D2 98% 23% 89% 22% 89% 22% 60ms 1ms
D3 98% 27% 91% 24% 86% 26% 60ms 1ms
D4 98% 26% 89% 24% 86% 26% 80ms 1ms
D5 98% 25% 90% 22% 86% 24% 60ms 1ms
D6 98% 23 % 89% 21% 86% 22% 70ms 1ms

Table 10: This table presents the accuracy results on 3 different data sets for each DNN model - the first number refers to the model on the
backend and the second one to the compressed model.

Model DS1 DS2 DS3 Time
R1 75% 38% 76% 39% 74% 42% 90ms 1ms
R2 90% 37% 88% 38% 86% 38% 80ms 1ms
R3 91% 35% 85% 36% 82% 40% 75ms 1ms
R4 84% 36% 83% 38% 77% 44% 92ms 1ms
R5 82% 37% 77% 39% 72% 41% 95ms 1ms
R6 73% 36% 67% 37% 64% 46% 97ms 1ms

Table 11: This table presents the accuracy results on 3 different data sets for each RNN model - the first number refers to the model on the
backend and the second one to the compressed model.



B Confission Matrices
In this section are presented confusion matrices of the best and the worst performing models on data sets DS2 and 3. The con-
fusion matrices for the same models have almost similar results on the different data sets for correct and incorrect classification.

Figure 20: Confusion matrix for
C5 on DS2

Figure 21: Confusion matrix for
C1 on DS2

Figure 22: Confusion matrix for
C5 on DS3

Figure 23: Confusion matrix for
C1 on DS3

Figure 24: Confusion matrix for
D2 on DS2

Figure 25: Confusion matrix for
D6 on DS2

Figure 26: Confusion matrix for
D2 on DS3

Figure 27: Confusion matrix for
D6 on DS3

Figure 28: Confusion matrix for
R2 on DS2

Figure 29: Confusion matrix for
R6 on DS2

Figure 30: Confusion matrix for
R2 on DS3

Figure 31: Confusion matrix for
R6 on DS3
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