
The contribution of grayscale cameras to the accuracy of surgical augmented
reality goggles

Lesley Franschman
Supervisor(s): Pierre Ambrosini , Ricardo Guerra Marroquim

EEMCS, Delft University of Technology, The Netherlands

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering



Abstract
The way that surgeons currently use surgical nav-
igation technology impacts their hand-eye coordi-
nation and their ability to view images and data
critically. To tackle this issue Augmented Reality
goggles, built from the HoloLens 2, have been de-
veloped specifically for the purpose of aiding sur-
geons during surgery and it is called: The HoloNav.
Optical reflective spheres are commonly used to
track surgical instruments. This research aims to
find out if grayscale cameras could contribute to
locating these spheres more accurately with the
HoloNav. This is done by finding the spheres on
the infrared images, reducing the search space on
the grayscale images and finding the spheres on the
reduced search spaces of the grayscale images. By
triangulating those retrieved coordinates and com-
paring them with the optically tracked coordinates
a conclusion can be drawn about the accuracy. The
accuracy measured in this research is between 0.66
mm and 10.64 mm (mostly between 1.8 mm and
6.4 mm) depending on the frame. This is quite ac-
curate and similar to the results from related work.
With better image quality or different input condi-
tions the accuracy could be improved even more.

1 Introduction
Finding the right surgical site is imperative for surgeons when
performing surgery. This exact location of where to use the
surgical tools can be found with surgical navigation technol-
ogy [1]. Surgical navigation usually makes use of optical or
electromagnetic sensors which outputs data and images to a
screen that the surgeon can use as a map for guidance during
the surgery. Surgical navigation allows the surgeon to see in-
strument positions relative to the preoperative imaging made
by, for example, a CT scan.

The downside of this technology is that the surgeon has
to switch focus between the screen and the surgical site con-
tinuously throughout the surgery. This affects the hand-eye
coordination of the surgeon. It also makes it more difficult
for the surgeon to view the sensor output imagery critically.
Overcoming these challenges can be done with the use of aug-
mented reality [2]. Basic functionalities and components for
such an augmented reality surgical navigation system can be
build using the HoloLens 2 [3] and it is called: The HoloNav.

The Accuracy in terms of image-to-patient registration and
optical tracking needs to be optimal in order for the HoloNav
to be used reliably during surgeries. That is why the main
question this research aims to answer is: Should the HoloNav
make use of stereo grayscale cameras combined with the
HoloLens 2 infrared sensor to make the 3D optical tracking
more accurate? By trying to answer this question it will be
clear to see how much the stereo grayscale cameras contribute
to improving the accuracy compared to the optical tracking
methods used in related researches while possibly bringing
the HoloNav closer to its optimal accuracy.

In order to answer this main research question in a step by

step manner, this question is divided into the following three
sub-questions:

1. How can the 2D location of the optical reflective spheres
be found on the grayscale images with the use of an in-
frared image?

2. How can those locations on the grayscale images be used
to find the desired 3D location of the optical spheres?

3. How can the accuracy be measured and compared?

This paper will firstly present related work and an introduc-
tion to the HoloNav sensors and their different coordinate sys-
tems. Subsequently, an extensive explanation is given of how
to find the 3D coordinates of the optical reflective spheres
with the use of grayscale and infrared images. This will be
presented first by introducing the concepts of Blob Detection
and line projection and by explaining how this has been used
in the first stage of the 3D coordinate extraction. Afterwards,
the second stage is explained. In this stage, the search space
on the grayscale images is reduced to a line. Once those lines
are found, spheres need to be located on the grayscale images
using image processing techniques, this is the third stage. Tri-
angulation is the fourth and final stage of the 3D coordinate
extraction. After the section on triangulation, an evaluation
is performed based on accuracy comparisons with tracking
methods from related work and the results can be found after
this evaluation. Lastly, a theoretical discussion on the results
is held right before concluding this paper, discussing possible
future work and analysing the reproducibility.

2 Related Work
Some research on the HoloLens 2 and its accuracy has already
been conducted. The Erasmus Medical Centre, for example,
has done research on the use of augmented reality (AR) dur-
ing neurosurgery which proved that the use of AR in the op-
erating room is clinically feasible [4]. However, they also
concluded that the accuracy of this surgical navigation tool
needs to be improved.

The work by Gaxner et al.[5] shows what accuracy can
be achieved with just the grayscale cameras of the HoloLens
2. Their method of finding the 3D sphere locations is based
on stereo vision techniques and a single-constraint-at-a-time
extended Kalman filter (SCAAT-EFK). Both are executed in
separate but complementary pipelines. An accuracy of 1.7
± 0.81 mm was reported when both pipelines were utilised.
When only the stereo vision techniques were used, accuracy
of 8.07 ± 0.91 mm was reported.

Besides research on the HoloLens grayscale cameras, the
HoloLens long and short-throw infrared illuminators and the
depth camera have also been experimented with. This has
been done by Kunz et al.[6]. They reported accuracy as low
as 0.76 mm by using these sensors in combination with an
extra infrared light source mounted on the HoloLens 2. This
result is achieved by binarizing the short-throw reflectivity
frame before applying Blob Detection to find the spheres.
Once those are found, the depth frames are used to extract the
corresponding 3D locations of the spheres. The movement
of the spheres was extremely controlled. A robotic Stewart
platform, called the Hexapod, was used for this.

1



3 The Cameras and Coordinate Systems
As can be seen in Figure 1, the HoloLens 2 is equipped with
the following cameras: multiple grayscale cameras, long and
short-throw infrared illuminators to make infrared images, an
infrared depth camera and a colour video camera.

Figure 1: The HoloNav and its cameras.

The HoloLens 2 API can translate The HoloLens 2 camera
and corresponding image coordinates into the coordinates of
another camera or pixels of their images. Figure 2 contains
the complete coordinate system mapping.

Figure 2: The coordinate mapping between images, their corre-
sponding camera space and HoloNav-world space and the more
elaborate mapping from markers to optical and HoloNav-world
space through the use of the QR-codes in the images.

One of the sub-systems from this coordinate mapping used
the most in this research are the mappings between pixel,
camera and HoloNav-world space to translate infrared coor-
dinates to grayscale coordinates via infrared camera space.
Another important sub-mapping is the mappings between
markers, optical and HoloNav-world space to compare the
extracted 3D sphere coordinates with the optically tracked co-
ordinates in HoloNav-world space.

4 Finding the 3D coordinates of the spheres
This section will provide a detailed overview of how the 3D
coordinates of optical reflective objects can be found in the
HoloNav-world space with stereo grayscale and infrared im-
ages and the OpenCV library. The four stages of this process
are visualised in Figure 3. OpenCV is the open-source library

that contains numerous computer vision and image process-
ing algorithms that proved quite useful during this research
[7].

Figure 3: Stage 1: Blob Detection, Stage 2: Reducing search space,
Stage 3: Find the spheres on the grayscale images, Stage 4: Trian-
gulation.

4.1 Blob Detection
The very first step in retrieving the 3D sphere coordinates is
finding the spheres on an infrared image. Figure 4 contains
an example of the kind of infrared images used during this
research. It can be seen clearly here that the spheres are the
brightest objects. This is the main reason why optical reflec-
tive spheres are commonly utilised for surgical navigation.

Figure 4: Infrared image of optical reflective spheres.

Extracting the image coordinates of the spheres can be
done with Blob Detection. Blob Detection is a computer vi-
sion method that can detect regions in an image that differs
in properties, such as colour or brightness, compared to sur-
rounding regions.

OpenCV simpleBlobDetector() does the thresholding,
grouping, merging of nearby blobs, the centre calculations
and radius calculations. The resulting blobs can be filtered by
colour, size and shape. This can be done by setting the pa-
rameters and passing them as input to simpleBlobDetector().

This method has been tested on multiple infrared images
and it was not always able to find all spheres. According
to fellow research team member Omar Hussein, this is be-
cause of the lighting conditions as OpenCV’s Blob Detec-
tion is light sensitive. After adding an offset using Numpy,
this light sensitivity gets countered and simpleBlobDetector()
works much better.

Another OpenCV blob extraction algorithm that seemed to
yield good results without offsetting was connectedCompo-

2



nentsWithStats() [8]. This method solves the problem of find-
ing parts of the image that are connected physically, irrespec-
tive of colour. This omits the need to set parameters yourself.
By sorting the output of this function, the blobs belonging to
the spheres can be retrieved as they are the largest blobs be-
yond a certain threshold in the images like the one in Figure
4. Besides returning the blob centroids, this method is also
able to return the bounding boxes and the pixel areas of the
blobs.

For this research simpleBlobDetector() was used for com-
patibility reasons as this is what fellow research team member
Omar Hussein is using after extensive research [9].

4.2 Reducing the search space
Now that the pixel coordinates of the reflective spheres on
the infrared image can be found, a line can be projected on
the grayscale images which serve as a reduced search space
to look for the spheres. To perform this projection there are
several things needed:

1. The 2D pixel coordinates of the spheres in the infrared
image need to be found.

2. The depth-line through the centre of that sphere needs to
be found.

3. For each point on the depth-line, find the corresponding
pixel on the left and right grayscale images.

In the previous section it is explained how the sphere coor-
dinates can be found on the infrared image . When the sphere
coordinates on the infrared images are found, they have a z-
value of 1 (in an (x, y, z) coordinate). This coordinate can
be brought to different depths by simply multiplying the co-
ordinate by some value (t) and adding that result to the origin
(0, 0, 0) as it follows the formula: 3D-point = Origin + t *
(infrared coordinate - Origin). This formula is visualised in
Figure 5.

Figure 5: The depth-line through a sphere calculated by finding mul-
tiple points on this line using the formula: p2 = O + t * OP for mul-
tiple values of ’t’.

All points for different values of ’t’ lie in a line in 3D cam-
era space. During this research, the values 0-2000 were used
as ’t’. When this 3D line is projected on the grayscale im-
ages, the result is a line in 2 dimensional space that passes
through the centre of the corresponding sphere. Finding this
line would drastically decrease the search space for the sphere
as it is now known that a specific sphere is located somewhere
on this line. However, it is still unknown where exactly this
sphere is located on this line. The next section will provide

an explanation on how the exact sphere location is retrieved.
The 3D line and the 2D projected lines are depicted in Figure
6 as blue lines.

Figure 6: An infrared image and stereo grayscale images oriented in
camera space and HoloNav-world space. The blue lines correspond
to the 3D depth-line and the reduced search spaces. The red lines
correspond to the triangulation.

In order to project the 3D line onto the grayscale im-
ages, there are two kinds of matrices needed: the intrinsic
and extrinsic matrices of the infrared and grayscale cameras.
The intrinsic matrices are used for bringing pixel coordinates
to camera space coordinates and back. The extrinsic ma-
trices are used for translating camera space coordinates to
HoloNav-world space and back. Projecting the infrared co-
ordinates can now be done by taking 2D infrared pixel coor-
dinates to 3D HoloNav-world space via 3D infrared camera
space and then bringing those resulting HoloNav-world space
coordinate to 2D grayscale image space (left and right) via 3D
grayscale camera space.

The API of the HoloLens provides the properties and po-
sition of the HoloLens 2 cameras. Based on this API, the
matrices can be retrieved. A look-up table is used instead of
an intrinsic matrix as this was already provided by the super-
visors at the start of this research project. This look-up table
maps a coordinate in an image to a 3D point in camera space.
It is in the same data set as where the images are stored. A
representation of the matrix mapping can be seen in Figure 7.
This figure is a subsystem of the coordinate mapping depicted
in Figure 2 in Section 3.

Figure 7: Matrix mapping between image, camera and HoloNav-
world space.

3



4.3 Finding the grayscale coordinates
After the search space on the grayscale images has been re-
duced to a line per sphere, image processing techniques are
needed to find the spheres. Several of those techniques have
been utilised and compared during this research to find the
best image processing method in terms of accuracy and pro-
cessing time.

OpenCV Circular Hough Transform is often used when
trying to extract circular objects from images. It searches an
entire image and uses the gradient information of edges to
find circles. The problem with using this method is that the
sphere radiuses need to be estimated before execution. This is
difficult to do as the scales of the spheres differ per image set.
No useful results were able to be obtained using this method.
According to Raymond K.K. Yip, Peter K.S. Tam and Dennis
N.K. Leung, the circular Hough Transform is limited by slow
speed and excessive memory [10]. This was another reason
to look for better options.

Another image processing technique that was tested is
Edge Detection. The idea was to find the edges of the spheres
present in the images and then look for where the reduced
search space line intersects with the spheres. Two kinds of
edge detection algorithms were tested: Sobel and Canny. The
Prewitt algorithm was omitted because, according to research
conducted by Mamta Joshi and Ashutosh Vyas [11], Prewitt
finds fewer edges and makes edges less visible compared to
the Sobel filter.

The Sobel filter works by calculating the gradient of image
intensity at each pixel. Based on how abruptly or smoothly
the image pixels change from light to dark, pixels that repre-
sent edges can be found. By doing this the filter is also able
to estimate the orientation of the edge. This method is espe-
cially useful when speed is of the essence but not when it has
to deal with noisy images [12].

The Canny algorithm is a multi-stage algorithm that pro-
duces smoother edges but is less time-efficient. This algo-
rithm consists of five stages [13].

1. Apply Gaussian filter to reduce noise.
2. Mark pixels where gradients of the image have large

magnitudes.
3. Preserve the sharpest gradients and discards the rest.
4. Thresholding.
5. Suppress edges that are not connected with strong edges.

Figure 8: Image before Edge Detection.

The results from applying the Sobel and Canny Edge De-
tection on the image in Figure 8, can be found in Figure 9. It

can be seen that even though Canny Edge Detection yields
clearer visuals, the contours of the spheres are not sharp
enough with either method.

Figure 9: Left: Sobel Edge Detection, Right: Canny Edge Detection.

The next image processing method that has been tested was
OpenCV Template Matching. Template Matching is a digital
image processing technique that aims to find parts of an im-
age that matches a certain template image. Since most of
the spheres in the images look similar, this method seemed
like a good candidate as only a few templates would suffice.
However, this method has some drawbacks that are difficult to
overcome. It is not rotation or scale-invariant, it is light sen-
sitive and background changes can cause inaccurate results.

All of these issues need to be overcome for the available
images. The corners of the template show some background
pixels because the used templates are images of circular ob-
jects. These background differences cause inaccuracies if
these templates remain unaltered as the background for each
sphere differs. An example of an unprocessed template can
be seen in the most left image of Figure 10.

Figure 10: An unprocessed sphere template on the left and three
examples of processed templates.

This background hurdle can be overcome by dropping the
template images in paint, deleting the pixels in the corners
using the selection tool and saving the new template with an
alpha channel as a PNG. The alpha channel is needed to pass
a mask to the pattern matching function. It can be extracted
from the template by splitting up the image into different
channels. In case no alpha channel is available, an opaque
substitute is created using the Numpy ”ones” function. Ex-
amples of processed templates can also be found in Figure
10.

The second obstacle that needed to be handled was the
scale differences between the images. This can be tackled
by making more templates. The more templates there are, the
more accurate the Template Matching results will be. But as
the algorithm has to check the Template Matching result for
every template in search for the best match everytime the al-
gorithm is run, the processing time will increase drastically
when more templates are added. That is why it is preferred to
only add the necessary templates. One way to limit the num-
ber of templates was to find a solution for the light sensitivity.

There is some shininess present on the spheres as also can

4



be seen in Figure 10. This shininess causes the need for sep-
arate templates for the left and the right images. By rotating
both frames and making sure that the highlight on the spheres
on the left and right grayscale frames point in the same direc-
tion, the total amount of templates needed is halved.

After preparing the templates, the images themselves
needed to be processed. This is needed because Template
Matching searches an entire image while the aim is to search
only the lines on which a sphere is known to be located. A
mask is used to remove any result which falls outside lines.
The mask is created by initialising a zero image and then
drawing the lines on it. The thickness of the mask lines al-
lows for some margin of error in the matching.

After the mask has been prepared, the Template Matching
function is called. This function returns a grayscale image
where each pixel denotes how much the neighbourhood of
that pixel matches with the applied templates. The region
with the most correlation is the matched region. The spe-
cific pixel that was matched is the centre of that region. A
matching score value is calculated for each available tem-
plate. The template that results in the highest value decides
the final matched region.

Figure 11: The reduced search spaces are represented by red lines
and the Template Matching results are visualised by green circles.
The left image is an example where all the spheres are correctly
matched. On the right image two of the four spheres are mis-
matched.

For visualisation and verification purposes, there are cir-
cles drawn around the matched pixels. The aim is to have
these circles perfectly aligned around the spheres. An exam-
ple can be seen in the left image of Figure 11. In case it is
noticed that for some images the matching is less accurate, a
decision can be made to add more templates to increase accu-
racy. In the right image of Figure 11, there are, for example,
two spheres that are not matched correctly. This happens be-
cause there are no suitable templates for them made and the
existing templates are not compatible. This causes another
point on the search line to be a better match.

4.4 Triangulation
Once the coordinates of the centre of the spheres have been
found on the left and the right grayscale images, the 3D co-
ordinates of those spheres can be calculated with the use of
triangulation.

Before the triangulation can be applied, the centre coordi-
nates of the spheres need to be translated to HoloNav-world
coordinates. As explained in Section 4.2 this can be done by
finding the intrinsic and extrinsic matrices of the cameras and
then by multiplying with the intrinsic one before multiplying

by the extrinsic one. This needs to be done for both the left
and the right spheres.

The principle of triangulation is that a line can be drawn
through the corrsponding spheres of the left and right
grayscale images in 3D space, just like has been visualized
in Figure 6 by red lines. The point where those lines intersect
is the 3D coordinate of the corresponding sphere in HoloNav-
world space.

One point by itself does not give enough information to
draw a line. For every sphere, a second point on the line
needs to be known besides the 3D world coordinate. Luckily,
the world space origin points for both left and right grayscale
images can easily be calculated by multiplying the origin co-
ordinate [0,0,0,1] with the extrinsic matrix of the correspond-
ing camera. With this information, the lines can be drawn in
3D camera space and the intersection can be found.

5 Experimental setup and results
The method that has been used to retrieve the 3D coordinates
of the spheres during this research has been explained thor-
oughly in the previous section. To find out how accurate this
method is it needs to be compared to the ground truth. The
ground truth contains coordinates that are located by an opti-
cal tracker. The distances between the method’s triangulated
coordinates and the ground truth are then compared to results
from related work like, for example, the work of Kunz[6] and
Gsaxner[5].

The method used in this research needs to be applied to
a large number of image sets. One image set consists of a
left and a right grayscale image and an infrared image with
corresponding timestamps. The correspondence between the
different images within an image set and the optical tracker
information can be kept track of with timestamps. A times-
tamp contains the date and time an image was created and it
gets attached to the image. If, for example, the timestamp of
the left grayscale image is taken as reference, the correspond-
ing right grayscale image, infrared image and optical tracking
information can be found by searching for the ones that have
a timestamp closest to the timestamp of the left grayscale im-
age.

After the correct optical tracking data has been found, the
optical markers can be translated to optical tracking space.
By making use of the QR code position these optical tracking
coordinates can in turn be translated to the world space where
the retrieved 3D coordinates and the found optical coordi-
nates can be compared. The difference between those coordi-
nates can be expressed in root mean squared errors (RMSE).
The RMSE is calculated by taking the sum of the sphere dis-
tances of all well-matched spheres in an image set and divid-
ing it by the amount of well-matched spheres in the set. For
each image set, only the spheres with a measured distance
smaller than the sphere radius (11.5 mm) are considered to be
well matched by the Template Matching.

This has been applied to 600 image sets in this research.
Data sets with a timestamp difference bigger than 25 millisec-
onds are skipped. Another parameter used in this experiment
was an OpenCV line-thickness of 10. As mentioned in Sec-
tion 4.3, this line-thickness serves as a margin of error when

5



applying the Template Matching mask. The results of the ex-
periment can be found in Figure 12. In this figure, it can be
seen that the distances between the optically tracked coordi-
nates and the triangulated coordinates are between 0.66 mm
and 10.64 mm.

Figure 12: Distances between the triangulated coordinates and the
optically tracked coordinates expressed RMSE per image set.

In Figure 12 can also be seen that the data of only 400-420
image sets are reported while 600 image sets were used. This
is because those image sets were skipped as the timestamps
of the frames within the image sets differed too much from
the reference timestamp. The timestamp of the left grayscale
image was taken as a reference.

In Figure 13 can be seen that the resulting RMSE values are
between 0.66 mm and 10.64 mm and that it is mostly between
1.8 mm and 6.4 mm with a total mean value of 4.07 mm.

Figure 13: A box plot of the RMSE for every image set. Only
spheres with a resulting distance smaller than the sphere radius were
taken into consideration. Other spheres would be considered not
well-matched by the Template Matching.

The outlier results are caused by not well-matched Tem-
plate Matching results. Figure 14 contains the left and right
grayscale images of the image set with the highest RMSE
value (10.64mm). The spheres in the left image are all well-
matched while two of the spheres in the right grayscale im-

age are not well-matched. Even though the left sphere of the
right frame is not well-matched it is very close to the sphere.
When triangulating this sphere and comparing it to the op-
tically tracked coordinate, it results in a distance just a bit
smaller than the sphere radius (11.5 mm) so it influences the
RMSE of that image set.

Figure 14: The left and right grayscale images are used as an exam-
ple of an outlier point created by not well-matched Template Match-
ing results. These frames belong to the image set with the highest
RMSE found.

The amount of well-matched spheres differ per image set.
Figure 15 shows that for most of the image sets, all spheres
are found. For the other image sets where not all four spheres
are found, at least one sphere is still located. However, for a
few image sets, there are no spheres found. Better or more
templates for the Template Matching function to use could
increase the number of spheres found.

Figure 15: This figure shows how often a certain amount of spheres
are found. As there is a maximum of four spheres to be found per
image set, every image set can locate 0-4 spheres.

6 Discussion
Based on the results from Section 5 it can be seen that the
method used during this research can give very accurate re-
sults. It is capable of getting similar and sometimes even
more accurate results than the methods reported in the work
of Kunz et al. and Gsaxner et al. This can be concluded
from the fact that the most accurate result from the method
used in this research is a distance of 0.66 mm, while the work
from Kunz et al. and Gsaxner et al. report accuracy’s of 0.76

6



mm and 1.7 ± 0.81 mm respectively. The method shows espe-
cially a lot of promise since it was able to achieve these results
without the special conditions used in related work like ex-
tra lighting, a second pipeline (SCAAT-EFK) and controlled
movement. These conditions are mentioned more elaborately
in Section 2. Making use of these extra conditions could in-
crease accuracy even more.

There are a couple of aspects of the applied method that
might have room for improvement. In some of the image
sets, one of the grayscale images does not have all spheres
visible. This could cause the Blob Detection algorithm to
choose another point in that image that is not a sphere as the
fourth blob which in turn causes inaccuracy.

Another possible improvement point can be the amount
and the quality of the templates used for the Template Match-
ing. As already mentioned in Section 4.3, twenty templates
have been made to make the Template Matching algorithm
more accurate. However, as the data set is quite large, there
are certain image sets for which templates have not specif-
ically been made and have not been manually verified to
work with one of the already existing templates. A larger
set of templates would also probably remove some of the out-
lier points mentioned in the previous section. Even though
Adding more templates could cause more spheres to be found
accurately, it would also make the processing time slower.

It can be seen in Figure 15 that most of the image sets can
triangulate at least one sphere accurately. The relative posi-
tions between the spheres themselves could be used to find
all the sphere positions based on the position of only one or
two spheres. Doing this would increase the overall number of
spheres found as this would mean that the method does not
have to rely as heavily on the Template Matching as it does at
the moment anymore.

There are still a lot of paths to be researched to find further
improvements.

7 Conclusion
In conclusion, the HoloNav should probably make use of
stereo grayscale cameras combined with the HoloLens 2 in-
frared sensor to make the 3D optical tracking more accurate
because this method shows accurate results. The results are
roughly similar compared to the results from related work,
even though that related work made use of more favourable
extra conditions. The resulting accuracy depends on the im-
age sets and their corresponding Template Matching results.
The better the Template Matching result, the higher the accu-
racy.

The spheres on the infrared images were retrieved accu-
rately and those sphere locations were successfully used to
reduce the search space on the infrared images. Extracting the
spheres from the grayscale images using Template Matching
was however less accurate than preferred. As already men-
tioned in Section 4.3, there were some obstacles to overcome
at this stage of the research due to background differences,
light sensitivity and scale differences. As discussed in Sec-
tion 6, more and/or different templates as input for the Tem-
plate Matching algorithm could cause the algorithm to locate
more spheres in total across all the image sets. It could also

cause higher accuracy among the spheres that the algorithm
was already able to find with the current templates.

Triangulation returned expected results and the results
from comparing the triangulated points with the optical
tracker coordinates were quite accurate. From this can be
concluded that the image processing aspect of this research
has the most room for improvement.

8 Future Work
There has been concluded that there is room for improve-
ments in the method used in this research. This means there
is reason to conduct follow-up research. Three aspects that
seem to be worth focusing on are improving the current
sphere locating method by adding and/or changing templates,
making use of the geometrical relation between sphere loca-
tions and the conditions used in related work like, for exam-
ple, extra lighting and better motion control.

Especially the second aspect should be looked into. Find-
ing at least one sphere has a higher success rate than finding
all four spheres. The geometric relation between the sphere
locations could be exploited to find all spheres based on only
one or two spheres extracted from a grayscale image. As find-
ing only one sphere per grayscale image can be done much
more accurately, there is a bigger chance that this would result
in more accurate triangulated 3D sphere coordinates when
taking the position relative to the other spheres into account.
It would also mean that the method does not have to rely on
Template Matching as much as it currently does.

9 Reproducibility
Results in this paper have been generated using Python,
OpenCV, standard libraries like Pandas, Numpy and Mat-
plotlib, a large set of grayscale and infrared images and a
look-up table to translate pixels to 3D camera space coordi-
nates.

All of the libraries including OpenCV are easily accessible
as they just need to be installed and imported. The code
used to find optical reflective spheres with grayscale and
infrared images will be made publicly available on GitHub
(https://github.com/lfranschman/HoloNav-Grayscale-
triangulation). The data set that contains all HoloNav images
and the pixel-camera space look-up table can be found in a
public google drive folder (https://drive.google.com/file/d/1-
TzLZJoLLTDhpGw8KWVPPedtmXc-
pf7T/view?usp=sharing). The only thing that needs to
be done after downloading the data is manually linking the
data set using the data set location on the user’s local host.
This path needs to be set in the config.py file.

The code also contains other functionalities like methods
to translate pixels to HoloNav-world space and back, meth-
ods to manipulate images, the coordinates of the markers that
are needed to move from and to optical-tracker space and a
method to translate optical tracker coordinates to HoloNav-
world space.

By using the available code in combination with the avail-
able data set, the results presented in this paper can be repro-
duced.

7



Acknowledgements
Thanks to Omar Hussein for his experimental results and insights which were an integral part of the Blob Detection aspect of
this paper. Thanks to Cécille Franschman for her feedback on this paper. And finally thanks to Pierre Ambrosini and Ricardo
Guerra Marroquim for their feedback and for supervising this research project.

References
[1] U. Mezger, C. Jendrewski, M. Bartels, Navigation in surgery, Langenbecks Arch Surg (2013).
[2] M. Benmahdjoub, T. van Walsum, P. van Twisk, E. Wolvius, Augmented reality in craniomaxillofacial surgery: added

value and proposed recommendations through a systematic review of the literature, Int J Oral Maxillofac Surg (2020).
[3] S. Park, S. Bokijonov, Y. Choi, Review of Microsoft Hololens Applications over the Past Five Years, Appl. Sci (2021).
[4] F. Incekara, M. Smits, C. Dirven, A. V. Mathis-Ullrich, Clinical Feasibility of a Wearable Mixed-Reality Device in

Neurosurgery, World Neurosurgery (2018).
[5] C. Gsaxner, J. Li, A. Pepe, D. Schmalstieg, J. Egger, Inside-out instrument tracking for surgical navigation in aug-

mented reality, VRST ’21, Association for Computing Machinery, New York, NY, USA, 2021. doi:10.1145/3489849.
3489863.
URL https://doi.org/10.1145/3489849.3489863

[6] C. Kunz, P. Maurer, F. Kees, P. Henrich, C. Marzi, M. Hlaváč, M. Schneider, F. Mathis-Ullrich, Infrared marker tracking
with the HoloLens for neurosurgical interventions, Current Directions in Biomedical Engineering (2020).

[7] About OpenCV.
URL https://opencv.org/about/

[8] A. Rosebrock, OpenCv Connected Component Labeling and Analysis (2021).
URL https://pyimagesearch.com/2021/02/22/opencv-connected-component-labeling-and-analysis/

[9] O. Hussein, Accuracy of the Hololens 2’s infrared cameras in the context of surgical navigation (2022).
[10] R. K. Yip, P. K. Tam, D. N. Leung, Modification of hough transform for circles and ellipses detection using a 2-

dimensional array, Pattern Recognition 25 (9) (1992) 1007–1022. doi:https://doi.org/10.1016/0031-3203(92)
90064-P.
URL https://www.sciencedirect.com/science/article/pii/003132039290064P

[11] M. Joshi, A. Vyas, Comparison of Canny edge detector with Sobel and Prewitt edge detector using different image
formats, International Journal of Engineering Research Technology (IJERT).

[12] R. Tian, G. Sun, X. Liu, B. Zheng, Sobel Edge Detection Based on Weighted Nuclear Norm Minimization Image Denois-
ing (2021).

[13] L. Ding, A. Goshtasby, On the canny edge detector, Pattern Recognition 34 (3) (2001) 721–725. doi:https://doi.
org/10.1016/S0031-3203(00)00023-6.
URL https://www.sciencedirect.com/science/article/pii/S0031320300000236

8

https://doi.org/10.1145/3489849.3489863
https://doi.org/10.1145/3489849.3489863
https://doi.org/10.1145/3489849.3489863
https://doi.org/10.1145/3489849.3489863
https://doi.org/10.1145/3489849.3489863
https://opencv.org/about/
https://opencv.org/about/
https://pyimagesearch.com/2021/02/22/opencv-connected-component-labeling-and-analysis/
https://pyimagesearch.com/2021/02/22/opencv-connected-component-labeling-and-analysis/
https://www.sciencedirect.com/science/article/pii/003132039290064P
https://www.sciencedirect.com/science/article/pii/003132039290064P
https://doi.org/https://doi.org/10.1016/0031-3203(92)90064-P
https://doi.org/https://doi.org/10.1016/0031-3203(92)90064-P
https://www.sciencedirect.com/science/article/pii/003132039290064P
https://www.sciencedirect.com/science/article/pii/S0031320300000236
https://doi.org/https://doi.org/10.1016/S0031-3203(00)00023-6
https://doi.org/https://doi.org/10.1016/S0031-3203(00)00023-6
https://www.sciencedirect.com/science/article/pii/S0031320300000236

	Introduction
	Related Work
	The Cameras and Coordinate Systems
	Finding the 3D coordinates of the spheres
	Blob Detection
	Reducing the search space
	Finding the grayscale coordinates
	Triangulation

	Experimental setup and results
	Discussion
	Conclusion
	Future Work
	Reproducibility

