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Abstract
Pen and paper puzzles are a fun pastime to test your logical reasoning skills, with Sudoku being the
most popular of these puzzles. While the problem of solving these puzzles is usually in NP-Complete,
generating them is more difficult, depending on the type of puzzle. When generating puzzles for hu-
mans, we have to keep in mind how they solve them, as we cannot expect them to brute-force the
solution. Generation methods exist for simple number-based puzzles like the Sudoku, but these meth-
ods do not translate to the domain of language-based puzzles. We take the concept of strategy-solving
to mimic human solving methods and apply them to the Raatsel, a language-based puzzle, and the Su-
doku, to generalize a common methodology for generating, solving and rating these problem instances.
A new method will be introduced to generate Raatsels using a reduction from Subgraph Isomorphism.
This concept of instance generation with specific properties has many applications outside of puzzles,
such as validating correctness and generating training data for machine learning.
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1
Introduction

Pen and paper puzzles are a popular pastime. While there are various types of puzzles, they contain
some similarities. In Figure 1.1a we can see a Sudoku, where the goal is to place the numbers 1 to 9
in a grid. Figure 1.1b shows a Slitherlink, where the player has to draw a single continuous loop along
the edges of cells. Figure 1.1c contains a Nonogram, where the player has to color cells to create a
picture.

(a) Sudoku (b) Slitherlink (c) Nonogram

Figure 1.1: Various popular pen and paper puzzles.

Even though these puzzles have different rules, there is a similarity in the way they are solved. A
player uses the rules of the puzzle to conclude the placement or elimination of symbols. This process
is repeated until the puzzle is solved, or the player gets stuck and gives up.

While the decision problem related to solving these puzzles commonly belongs in NP-Complete[6],
they are trivially solvable by a modern computer. The instances are often quite small, with the most
popular Sudoku format being 9x9. When generating a puzzle like Sudoku, we are usually not interested
in the solving difficulty for a computer, but for humans. While a computer can simply brute-force all
possibilities, a human does not have this luxury. To reason about puzzles in the context of humans,
(e.g. to determine the difficulty and enjoyment of a puzzle), a human-like method to approach the
problem of solving puzzles is needed.

1.1. Strategy-solvability
Instead of brute-forcing moves like a computer, humans solve puzzles using strategies; a set of “tricks”
that are logical conclusions from the rules of the puzzle. Successfully applying a strategy either directly
places a symbol or rules out candidates for a cell. A strategy is understood as an if-then rule, e.g. If
a cell can only contain one symbol because all other options are eliminated, the cell must contain that
symbol.

If repeatedly applying a set of strategies leads to a solved puzzle instance, we call that instance
strategy-solvable with respect to those strategies[3]. We do not consider strategies that involve brute-
forcing or guessing and backtracking. This goes against the goal of simulating human solving methods.

1



1.2. Raatsel 2

1.2. Raatsel
The concept of strategy-solvability has already been applied to the Sudoku[14]. To the best of our
knowledge, there are no applications to a language-based puzzle at the time of writing.

One example of a language-based puzzle is the Raatsel. It consists of 30 words and 7 categories
which have to be placed in a hexagonal grid such that each word belongs to their neighbouring cate-
gories and vice versa. Chapter 4 describes the Raatsel in more depth and contains an example Raatsel
in Figure 4.2.

While the Raatsel is primarily a language puzzle, it contains a logic component for eliminating the
possible positions in which words and categories can be placed. This makes it an interesting target of
study; it has enough overlap with logic puzzles to analyze, while being different enough that existing
methods can not be directly applied.

Creating a Raatsel by hand is time-consuming. The example Raatsel in Figure 4.2 took approxi-
mately 4 hours to create manually. While this time will decrease with experience, it is slow in compar-
ison with automatically generated Sudokus, which can be created in milliseconds[9]. Automating the
generation of Raatsels will improve their commercial viability.

1.3. Puzzle Generation
There are various existing methods for generating puzzle instances. For Sudoku the input is a set
of desired clue positions, and the output a valid Sudoku instance with a single solution. Clues within
these positions are changed until a desired instance is found. In a partially solved Sudoku, changing the
value of a clue is a cheap operation, it is unlikely to propagate further to neighbouring cells. Because of
the language aspect of Raatsel, changing a single word has more consequences for the neighbouring
words and categories. It will be shown that existing methods are not applicable to the Raatsel, and a
new generation method will be introduced.

1.4. Contributions
In this thesis we will explore the generation, solving, and difficulty rating of logic puzzles, with the
end goal of generating fun and human-solvable puzzles. We aim to answer the question: Can the
concept of strategy-solvability be used to solve, generate and rate human-solvable generic pen
and paper puzzles? with help of the following sub-questions:

• Is strategy-solving a valid way to simulate the human solving process?
• Can a language-based puzzle be solved using strategies?
• Can strategy-solvability be applied to generate a language-based puzzle?
• Can rating methods utilizing strategy-solvability provide new information compared to existing
rating methods?

TheRaatsel puzzle has not been studied before, and it has to be formally introduced before a generation
method can be designed for it.

The main contributions of this thesis are to introduce Raatsel generation as an NP-Complete deci-
sion problem, to develop a method to generate and solve Raatsels using strategies, and to provide a
general framework to determine the difficulty of any logic puzzle. We will discuss how these findings
can be applied to other fields of study, for example Machine Learning and Software validation, where
instance generation is an important aspect.

1.5. Outline
The thesis is organized as follows. Chapter 2 will discuss the previous work done on logic puzzles.
Chapter 3 introduces notation and terminology related to logic puzzles. Chapter 4 explains Raatsel
and introduces it as a decision problem. Chapter 5 proposes a puzzle-agnostic solving framework and
applies this to Raatsel. Chapter 6 evaluates existing generation methods and proposes a new method
to generate Raatsel instances. Chapter 7 provides a method to calculate the difficulty for any type
of logic puzzle based on the solving framework from Chapter 5. Chapter 8 describes the experiments
performed to answer our research questions and evaluates their outcome. Finally, Chapter 9 discusses
the consequences of this research while providing possible continuations and how they affect other
areas of research.



2
Previous work

This chapter will discuss the state-of-the-art in the world of logic puzzles, from generation to the solving
experience.

2.1. Classification of Logic Puzzles
Before we can compare solving, generation, and rating methods across puzzles, it would be beneficial
to have a classification of logic puzzles. Such a classification makes it easier to reason about why
certain concepts do or do not translate between different puzzles.

Japanese publisher Nikoli Puzzles is the world’s leading producer of pen and paper puzzles[13].
They classify puzzles into three main categories: (numbers), (language), and (picture).

This classification places Slitherlink and Sudoku in the same numbers category, even though they
have little overlap. Sudoku is about placing numbers in cells, while Slitherlink is about drawing a con-
tinuous loop along the edges of cells. For a reminder on Sudoku and Slitherlink, see Figure 1.1.

Hufkens and Browne[5] present a more rigorous classification which can be seen in Figure 2.1.
They describe a taxonomy which is able to classify 100 different puzzles. Instead of the content of the
puzzle, it takes into account the goal of the puzzle, and what the player is writing or drawing to solve it.
With this taxonomy, we can note that Slitherlink belongs to the Logic/Static/Abstract/Path/Loop class,
and Sudoku to the Logic/Static/Abstract/Position/Symbols/Ordered class.

2.2. Solving Puzzles
The process of solving puzzles has been studied thoroughly, with Sudokus getting the most scientific
attention. There are three main methods to solve logic puzzles: Brute-forcing, Constraint Programming,
and Strategy-solving.

Brute-forcing is the naive concept of repeatedly trying solutions until one is valid. In the context of
puzzles it repeatedly guesses a symbol for a cell, and backtracks if any rules are violated. Eventually
a brute-forcer will always find a solution if it exists, or run out of options if no solution exists.

Constraint Programming is a powerful paradigm for solving combinatorial search problems[16]. The
idea is to model the rules of the puzzle as constraints over decision variables. It utilises practices
such as backtracking and constraint propagation to perform an exhaustive search on the search space.
Since logic puzzles are combinatorial decision problems in essence, it would seem fitting to apply this
method when solving logic puzzles. An advantage of this method is that it can easily be determined if
a puzzle instance has a proper solution. If a solution can not be found, or more than one exists, the
instance was not proper.

Strategy-solving is an approach to simulate human solving behaviour. A strategy is a logical conse-
quence of the rules of a puzzle; an if-then rule that allows the player to deduce or eliminate a symbol.
If a combination of strategies can be applied to bring a puzzle instance from a partially solved to a
solved state, we call that instance strategy-solvable with respect to those strategies[3]. Strategies do
not involve brute-forcing or guessing and backtracking. This violates the purpose of simulating human
solving methods.

3
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Figure 2.1: The taxonomy of logic puzzles by Hufkens and Browne[5].

While Strategy-solving is an approach used intuitively[8, 11], the method is first formally described
for Sudoku by Nishikawa et al[14]. T. Davis describes over 15 different strategies for Sudoku in Math-
ematics of Sudoku[3]. It is important to note that strategies are not intrinsic to a puzzle. They can be
arbitrarily defined and be as complicated or trivial as needed, as long as they do not utilise brute-forcing
or backtracking.

When strategy-solving, something interesting happens when a puzzle instance has zero or multiple
solutions. In either case, the solver will halt when no more strategies can be applied and the instance
is not solved yet. It is however unable to tell if this is because it does not have the right strategies to
solve the instance, or whether the instance itself is improper and has no solution. Either way, it can
conclude that there is no logical way to solve this puzzle instance with the provided set of strategies,
and declare it not strategy-solvable.

2.3. Rating Puzzles
Puzzles can be rated based on human performance[15]. Online solving portals keep metrics on how
long their users take to solve puzzle instances. This provides large amounts of data, but can be un-
reliable as there is no control over the participants. This process cannot be automated, and puzzles
would need to be released before they can be rated.

The difficulty of a puzzle instance can also be described as a function of the strategies it uses.
A difficulty weight can be given to each strategy, and a solver will repeatedly try to apply them in
ascending difficulty[17]. The difficulty is the sum of weights of the strategies used to solve the instance.
The weights do not need to be static, their value can diminish based on how often the strategy has
been applied already. This intuitively makes sense, applying a strategy for the first time is more difficult
than applying it over and over.

Fun is an important concept in creating puzzles. While difficult to formally quantify, a player can
easily tell if they are having fun or not. A Theory of Fun states that the act of finding solutions to a
problem is fun, while repeatedly applying these solutions becomes boring quickly[7]. Applying this to
the context of logic puzzles, we find that discovering a strategy is fun, applying different strategies in
different context is fun, while applying the same strategy over and over becomes tedious.
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To generate fun puzzle instances, we need a way to introduce variety in the solving process by
requiring varying sets of strategies to solve.

2.4. Generating Puzzles
A desired property while generating puzzle instances is that they have a unique solution. This is a
necessary condition for the instance being solvable by logic alone. We differentiate between absolute
and relative uniqueness. Absolute uniqueness means there is only one single valid solution to the
puzzle instance. Relative uniqueness uses the unique solution guarantee during solving, so the solver
can eliminate positions that lead to multiple solutions. Relative uniqueness can still lead to non-unique
valid solutions, based on the order that the puzzle is solved in[2]. Therefore, we will only consider
absolute uniqueness when referring to uniqueness.

There are several generation methods for logic puzzles: local search, forward search[19], backward
search[20, 1], and logical modeling[14]. While most applications deal with Sudoku, they can be applied
to any type of puzzle.

Local search consists of generating a random partial solution, and modifying it until it can be solved
uniquely. This is trivial to enforce when using a strategy-solver, as it will be unable to solve a puzzle
instance with multiple solutions. Without a strategy-solver, the best option is to ban the first solution,
and confirm there is no other solution when running the solver again. For a Sudoku, modification can
mean swapping, adding, or removing numbers until a desired grid is found. This method provides little
control over the difficulty of the resulting puzzle, but it can be used to find partial solutions with a specific
clue pattern.

Forward search is the process of generating an initial partial solution randomly, and checking if a
solution can be found using a solver. Some of these approaches take strategy-solvability into account,
but this is not strictly necessary. The generator of Zama and Sasano[19]1 uses forward search to
generate Sudokus. It takes a desired set of clue positions and fills them with random clues. If the
selected set of strategies can be applied until the puzzle is solved, it outputs the clues as a valid Sudoku
instance. Since the generator is searching randomly, there is no guarantee it will ever terminate for a
given set of clue positions, or recognize it will never terminate.

Backward search starts with a completed solution, and repeatedly eliminates clues while keeping the
uniqueness constraint. Sudoku Programming with C[20] tests for uniqueness without a strategy-solver
and has to brute-force the uniqueness guarantee by banning the original solution. Another variation
within backward search is to define the inverse of a strategy. Boothby et al. use these inverse strategies
for the Sudoku to generate instances of a desired difficulty[1]. The difficulty of the resulting instance
can be varied by applying easier or harder inverse strategies. Note that when removing a clue with a
difficult strategy, there is no guarantee it can only be placed back with that same strategy. It could be
the case it can be placed with an easy strategy, and the difficulty of the instance is overestimated.

Logical modeling involves modeling the generation problem into equivalent constraints with a CSP,
and applying a generic solver to solve them. Nishikawa and Toda[14] use this method successfully to
generate Sudokus solvable with the three most basic strategies: Naked Singles, Hidden Singles, and
Locked Candidates. Their approach takes in a set of clue positions, and outputs not only a proper
Sudoko instance, but a sequence of instances representing the entire solving process. It guarantees
that the next instance can only be reached by applying the three strategies encoded into the CSP. To
the best of our knowledge, this is the first puzzle generation method that can recognize whether the
given set of clue position can generate a proper Sudoku instances. The CSP will eventually terminate
if no valid assignment can be found.

1https://www.cs.ise.shibaura-it.ac.jp/2016-GI-35/



3
Preliminaries

While most readers are intuitively familiar with pen and paper puzzles, this chapter will define the terms
used in the rest of the thesis.

3.1. Terminology
Puzzle
A puzzle is a type of decision problem that is described by the triplet (C,G,R):

Given a set of clues C, is it possible to assign a symbol to each cell in grid G, such that each rule
r ∈ R is satisfied?

Note that a grid does not have to be a two-dimensional space, it can be any structure.
Puzzles differ from games as puzzles do not have an adversarial component, and are solvable by

a single player. Examples of puzzles are Sudoku, Slitherlink, Raatsel.

Cell
A cell represents a decision variable. It is up to the player or solver to assign a symbol to the Cell.

Symbol
A symbol is a value that can be assigned to a cell. This can be a number in a Sudoku, a word in a
Crossword, or an edge in a Slitherlink.

Clue
A clue is anything that helps the player or solver solve a puzzle instance. This can be a placed Symbol
as in Sudoku, or a number in a cell in Slitherlink.

Strategies
A strategy is an if-then rule that allows deducing the symbol which needs to be placed in a cell, or the
elimination of a symbol in a cell. In a Sudoku, the simplest strategy is the Naked Single: ”If a cell can
only contain one symbol because all other options are eliminated, the cell must contain that Symbol”.

Puzzle Instance
A puzzle instance is a (partially solved) instance of a puzzle that can be solved and rated. Solving
a puzzle instance is finding the solution to the instance based on the provided clues and rules of the
puzzle. A puzzle instance that has exactly one valid solution is considered to be proper.

Humans Versus Computers
A player is a human who is attempting to solve a puzzle instance, while a solver is an automated
process. A Setter is a human who is manually generating a puzzle.

6
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Rating
Rating is the process of applying a numerical score to a puzzle instance to indicate its difficulty. This
numerical score can be binned to get a sensible rating such as 1–5 stars or easy/medium/hard.

3.2. Example
With our terminology defined, we can now claim that Figure 1.1a contains a puzzle instance of the
Sudoku puzzle. It consists of a 9 by 9 grid with 81 cells. The player is given 30 clues, so there are 51
symbols left to place in the remaining cells. The symbol 5 can be placed in the bottom-left group using
the hidden single strategy.



4
Raatsel

This chapter will explain the rules of the Raatsel and introduce it as a decision problem.

4.1. Puzzle
The standard size Raatsel consists of a symmetric hexagon with 37 cells. 7 are colored, and 30 are
white. The cells have to be filled with categories and words respectively. It is up to the player to fill each
cell with a category or word. The categories and words are given, but they have to be placed correctly
in the hexagon. Every central, colored cell should contain a category, such that the word in each of
the six neighboring cell belongs to that category. Each white cell should contain a word, such that it
belongs to all neighboring categories. The words along each edge also need to belong to the category
for that edge.

A smaller Raatsel and its solution is shown in Figure 4.1. A regular sized Raatsel is shown in
Figure 4.2. It is highly recommended to try to solve it before continuing reading. The solution can be
found in Appendix A.

Figure 4.1: A small Raatsel and its solution.
Categories Fruit

Words Apple Banana Lemon Lime Redberry Strawberry

The Raatsel was first developed by Steenhuis Puzzels1 in The Netherlands. It featured in NRC Han-
delsblad, a national daily newspaper. From correspondence with Steenhuis Puzzels, it was learned
there have been a total of around 20 Raatsels published. At the time of writing, Raatsels are no longer
created because it became too time-consuming to generate them manually.

4.2. Formalization
As input, the Raatsel takes a set of wordsW = {w0, w1, . . . , w29}, a set of fixed edgesE = {e0, e1, . . . , e5},
and a set of categories C = {c0, c1, . . . , c6}. Since edges and categories have a similar role, the set

1https://steenhuispuzzels.nl/

8
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Figure 4.2: An example Raatsel. The solution can be found in Appendix A.
Categories

3 Characters Animal Plant Pole Snow Space Structure

Words
A* Bay Bulbasaur Cold Complexity Crescent
Dance DFS Duck Fish Flea Flower
Galanthus Nivalis Ice Iglo Leopard Lynx May
North Observatory Pentagon Pyramid Red RGB
Rose Sun Totem Utility Violet Westminster Abbey

groups is introduced to combine them: G = C ∪E. The order of the words and groups can be seen in
Figure 4.3.

To abstract the language aspect of the puzzle, truth matrix M is introduced to determines which
words belong to which categories. For any word w ∈ W and group g ∈ G, M [w, g] = 1 if and only if w
is said to belong to g. (e.g. the word Apple belongs to the category Fruit)

The function N(w) returns the neighbouring groups of word w. N(w24) = {c0, c6} for example, and
N(w0) = {c0, e0, e5}.

The function O(g) returns the neighbouring words of group g. O(e0) = {w0, w6, w2, w3} for example,
and O(c0) = {w0, w1, w17, w18, w23, w24}.

The decision problem for solving Raatsel then becomes:

Given a set of words W , a fixed set of edges E, a set of categories C, and a truth matrix M , does
there exist an assignment of words and categories such that

∀n∈N(w)M [w, n] = 1 ∀w ∈W

∀n∈O(g)M [n, g] = 1 ∀g ∈ G

4.2.1. Taxonomy
While the Raatsel might look like a linguistic puzzle at first glance, The functional taxonomy of logic puz-
zles described by Hufkens and Browne [5] would place it in the Logic/Static/Abstract/Symbols/Ordered
class. While there is language involved, it is only needed to construct the matrix M . If M is provided
to the solver, the puzzle is not solved yet. All the words and categories still need to be placed correctly.
Note that this is the same class as the Sudoku.
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Figure 4.3: An indexed Raatsel showing the order of words, edges and categories.

4.2.2. Size
While all published Raatsels have been of size 2x2 like Figure 4.2, larger versions can still be con-
sidered. Because the hexagonal shape is maintained, the number of edges will stay fixed at 6 as
the size grows. The number of the cells grows |C| = 3N(3N − 1). The number of categories grows
|G| = 3N(N − 1) + 1. This growth can be seen in Figure 4.4.

(a) 1x1 (b) 2x2 (c) 3x3

Figure 4.4: Various Raatsels and their sizes.



5
Solving

In this chapter we propose a puzzle-agnostic framework that allows solving any type of logic puzzle,
and implement a Raatsel solver within this framework.

Section 2.2 described the advantages and disadvantages of the three main solving methods: brute-
forcing, constraint programming, and strategy-solving. The strategy-solver provides the most (human-
relevant) information about a puzzle instance, and is the only solving method further considered. Evi-
dence for this conclusion can be found in Section 8.1.

5.1. Generic Puzzle Solving
A strategy-solver is a program that takes a puzzle state P , and brings it to a next state by repeatedly
applying strategies. Either until it reaches a solved state or until applying strategies no longer has an
effect. It is then able to conclude whether the puzzle was solvable with respect to the given strategies.
The order in which strategies are applied does not matter for the conclusion. In practice, applying
strategies from the lowest difficulty to the highest is more efficient, as easier strategies usually require
fewer computations. A high-level overview of such a solver can be found in Algorithm 1.

To aid our research, the solver should have the following features.

• Given a puzzle instance and a set of strategies, calculate whether it is strategy-solvable.
• Calculate all reachable states from a given state and a strategy.
• Represent a state as a string, and reconstruct the state from that string.
• Other puzzles (and their strategies) can be added by implementing a common interface.

A Python implementation of this solver is available online1.

Algorithm 1: Solve a puzzle instance given a set of strategies.
input :The puzzle instance P , strategies S
output :Whether P is strategy-solvable with respect to S
while P is not solved do

foreach s ∈ S do
Pnew ← apply_strategy(P, s);

end
if P == Pnew then

return false;
end

end
return true;

1https://github.com/Ishadijcks/puzzle-agnostic-strategy-solver
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5.2. Solving Raatsel
A set of strategies is introduced that is capable of solving Raatsels. More strategies might exist, but this
set is sufficient to solve all known Raatsel instances. As there is such a small set of available Raatsels
to experiment with, it was unfeasible to give the strategies an absolute difficulty rating.

Candidate Elimination
This strategy does not deduce the assignment of a word or categories, but it removes word or category
candidates if they have already been placed elsewhere in the grid. This information can then later be
used by other strategies to deduce assignments.

Word Naked Single
When considering a word cell c and its neighbouring groups N(c), if there is only a single word w that
belongs to all those groups, the assignment of w to c can be concluded.

Applied to the example Raatsel in Figure 4.2, it can be concluded that the top-left cell must contain
the word RGB, as it is the only word belonging to both Color and Computer Science.

Category Naked Single
When considering a category cell c and its neighbouring words O(c), if there is only a single category
g that all words belong to, the assignment of g to c can be concluded.

Neighbour Elimination
Similar to Candidate Elimination, this strategy removes candidates for cells if they cannot be assigned
due to a neighbour not having a relation with them.

Applied to the example Raatsel in Figure 4.2, it can be concluded that the top-left category cannot
be Plant, as the already assigned word RGB does not belong to it.

Word Hidden Single
When considering a word w, if there is only one word cell that has it as a candidate left, the assignment
of w to that cell can be concluded.

Category Hidden Single
When considering a category g, if there is only one category cell that has it as a candidate left, the
assignment of g to that cell can be concluded.

Category Exhaustion
When considering a category for a category cell along the edge, if this category has not enough words
belonging to it which also belong to the edges, this category can be eliminated as a candidate for this
cell.

Applied to the example Raatsel in Figure 4.2, it can be concluded that the top-left category can not
be Snow, as that category does not have two words which can belong to Color andComputer Science.



6
Generation

In this chapter we will discuss why the previously mentioned generation methods do not work for the
Raatsel. Instead, we propose a new generation method specifically developed for the Raatsel.

6.1. Existing methods
In Section 2.4, we have seen the advantages and disadvantages of the four main generation methods:
local search, forward search, backward search, and logical modeling. The first three of these methods
are based on the same assumption, that it is cheap to change a single clue.

Local search is entirely based on this, it requires continuous modification of clues until we find
a satisfying arrangement. With Raatsel, modification of a clue nearly always requires modification to
another clue. If a word is replacedwith another, it can be assumed tomatch its two or three neighbouring
categories. It is unlikely that this randomly chosen word fits with the strict relations to its neighbours,
and it is likely a category would need to be changed to fit. If a category is changed, it is unlikely all
neighbouring words still fit to that category. Because the changing of each clue propagates to a change
in the neighbouring clues indefinitely, local search is not an effective generation method.

Forward search could be applied in theory. Starting with an initial subset of clues, looking for new
clues that fit within the hexagonal grid. Since natural language is involved, the chances of finding these
new clues however, become incredibly slim. There needs to be a high overlap between words and
categories. Forward search can however be applied to an abstraction of Raatsel, further discussed in
Section 6.2.1

Backward search is based on the assumption that a solved grid is cheap to generate, clues are
removed until a satisfactory amount is left. With Raatsel however, all clues are given, the player only
needs to place them in the hexagonal grid. This means that a solved grid is transformable to a puzzle
instance by removing all clues from the grid. Backward search is not possible, precisely because
generating a solved grid is the true generation problem.

Logical modeling is not the right approach for the same reason that local search is not. It generates
the entire solving path from an initial clue configuration. In a Raatsel, the clue configuration is always
the same, therefore adjusting within this configuration amounts to local search.

A major guarantee of logical modeling is that it will either find a puzzle instance, or (eventually)
recognize unsatisfiability for a given clue configuration. We will see that our proposed method also
provides this guarantee.

6.2. Raatsel generation
Since existing generation methods can not be applied to Raatsel, we should look for properties unique
to Raatsel to exploit. One observation is that, with the introduction of the truth matrix M , the linguis-
tic aspect can be completely abstracted from the logic. As M contains the relations between words
and categories, it fully determines whether this instance can be logically solved. The actual language
associated with these words and categories becomes irrelevant. Note that the linguistic aspect is still
important for generating the puzzle; some configurations of M might be impossible to represent by the

13
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words and categories in the natural language, which needs to be taken into account. To represent the
natural language, a language graph is created. This graph represents relations between words and
categories with directed edges from words to categories.

With these fundamentals, the generation process can be divided into three steps.

• Find a suitable M , the structure of the Raatsel.
• Generate words and categories to create a language graph.
• Map the relations described in M to the language graph.

6.2.1. Generating M
The truth matrix M will be randomly generated from the initial, minimal truth matrix which satisfies all
neighbouring groups for each word. Random edges will be repeatedly selected to be added to M . If
the randomly selected edge does not lead to an unsolvable puzzle, we add it to M . Every edge added
this way introduces a false friend; a relation which is not utilized in the final answer. This process will
be repeated until the desired number of false friends is found. The pseudocode for generating such a
truth matrix can be found in Algorithm 2.

Algorithm 2: Randomly generate the shape of a strategy-solvable truth matrix.
input :The desired number of false friends fd
output :Truth matrix M
I ← minimal edges required to be solvable;
M is a (30, 13) matrix with all zeroes;
E ← all edges in M \ I;
foreach (w, g) ∈ I do

M [w, g] = 1;
end

fp ← 0 // The current number of false friends introduced;
while fp < fd and |E| > 0 do

select e = (w, g) randomly from E;
E ← E \ e;
M [w, g] = 1;
if strategy_solvable(M) then

fd ← fd + 1;
else

M [w, g] = 0;
end

end
if fp < fd then

Could not generate a matrix with the desired fd;
else

return M ;
end

6.2.2. Generating Words and Categories
We have our truth matrix M , defining which words should belong to each category. In its essence, M
is a graph between words and categories. A similar graph can be constructed for natural language.

Natural language is a difficult subject for computers. One effort to capture the relation between
the meaning of words is Princeton’s WordNet[18]. It is a tree of super-subordinate (Is A) relations.
It contains synonyms, but more importantly homonyms, which can be used for interesting word as-
sociations. For example, it states that an Apple is an Edible Fruit, and Editble Fruit is Fruit. These
super-subordinate relationships are transitive, so an Apple is also Fruit. Any words at the leafs of this
language tree are called instances, and are what we will use for the Raatsel. The root note of WordNet
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is the category entity. The entire path from leaf to root will be considered a category for the Raatsel
generation.

Assume we have a directed language graph G(V, E), consisting of all known relations between
words and categories in the language of choice. A directed edge is drawn from a word to a category,
if and only if that word belongs to that category. An example of such a language graph can be seen in
Figure 6.1.

Figure 6.1: An example language graph consisting of 3 words and 4 categories.

To create a language graph, a random search is performed from a pivot word by visiting related
parents, children and homonyms. Homonyms, and children of the pivot word are placed in a queue,
while all parents are added as categories of this pivot. This can be repeated for every word in the queue
until a desired number of words is found or the queue is empty. Because the entirety of WordNet is a
single tree, most of the high level relations are undescriptive. Categories such as entity and physical
entity can be banned, and will not be considered. An initial starting word is needed and the search
process will take place around it, giving a theme to the generated puzzle. The pseudocode can be
found in Algorithm 3. Afterwards the lowest common category between each pair of words is calculated,
to make the language graph denser.

After the language graph is created, meta categories are calculated. These categories include for
example Starts with a T, Contains a Y, or 3 characters. These categories are added to the language
graph to build the final space to search for M .

6.2.3. Mapping M to the Language Graph
To find a valid Raatsel that satisfies M , we need to find its representation within the language graph.
The problem of finding a pattern graph in a larger target graph is called Subgraph Isomorphism[4].
This process can not introduce new edges between words and categories that are not specified in M ,
otherwise it might introduce multiple solutions. Therefore, non-adjacent vertices must be mapped to
non-adjacent vertices, which is the problem of induced subgraph isomorphism. An example of sub-
graph isomorphism is shown in Figure 6.2. Any solution found by a subgraph isomorphism solver is
therefore a valid, proper Raatsel instance.
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Algorithm 3: Generate a language graph based around a starting word.
input :The starting word s, banned categories B, the amount of words needed n
output :Directed language graph
Q← {s};
G← (V ← {s}, E ← ∅);
A← ∅ // The already visited words and categories;

while |V | < n and |Q| > 0 do
select and remove w from Q;

Q← Q ∪ (homonyms(w) \A);

C ← parents(w) \B;
foreach c ∈ C do

I ← instances(c) \A;
Q← Q ∪ I;
foreach i ∈ I do

E ← E ∪ i;
V ← V ∪ (i, c);

end
A← A ∪ I;

end
A← A ∪ C;

end
return G;

Figure 6.2: An example of subgraph isomorphism.
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Rating

In this chapter we will discuss a generic puzzle-agnostic framework for calculating the difficulty of a
given puzzle instance. When designing a rating method, the following principles need to be taken into
account.

Principle 1 The more steps required for solving, the higher the difficulty should be.

Principle 2 Having a higher number of paths to reach the solution should result in a lower overall
difficulty.

7.1. Existing Methods
The current method to rate puzzle instances, is to greedily apply strategies in ascending difficulties,
summing their difficulty rating to get a difficulty score[17]. While this method is simple and effective, it
can give an inaccurate score on certain puzzle instances. Sometimes applying a (relatively) difficult
strategy trivializes the final steps, resulting in a lower overall score than when strategies of medium
difficulty were repeatedly applied. This inaccuracy can be observed by slightly randomizing the order
of applying strategies resulting in a lower difficulty score.

Because the total difficulty is increased with each strategy, this method satisfies the first principle.
It does however not satisfy the second principle, since it only considers a single greedy path to solve
the instance.

7.2. Time-Expanded Rating
Instead of greedily applying the easiest strategy, we introduce a new rating method that considers all
possible solving paths from start to finish. As input, we take an unsolved puzzle instance P , which is
known to be strategy-solvable with respect to a set of strategies S.

Assumption 1 Each strategy si ∈ S has a positive integer difficulty rating sd that reflects its relative
(human) difficulty with respect to the other strategies.

The origin of the rating is not of importance, it should however accurately reflect the relative difficulty
of the strategies.

Assumption 2 Each strategy si ∈ S must conclude the assignment of exactly one symbol.

This is not always the case. Some strategies might eliminate possible symbols in a position, which
would allow a different strategy to conclude the assignment of a symbol the next iteration. Such strate-
gies will not be considered for this rating method.

Since P is unsolved, there are T symbols left to assign. Knowing that the puzzle can be solved by
the strategies in S, and each strategy places exactly one symbol, the solving process must take exactly
T steps. As P is valid and has a unique solution, the value of the deduced symbols are irrelevant, all
that matters is the order in which they are deduced. The unique solution will be reached from all paths.

17



7.2. Time-Expanded Rating 18

At any solving state at time step t, we can try to apply each strategy si ∈ S. Each strategy has the
possibility to lead to another state at t + 1. The cost associated with this transition to the next state
is a harmonic mean of the sd of the strategies bringing us to that state. A time-expanded graph of
all possible states per step is constructed, with the amount of possible states per time-step t being
upper-bounded by

(
T
t

)
.

Calculating the path with the lowest cost from P to the final solution, the easiest way to solve P is
obtained. This is a more thorough estimate of the difficulty of P .

Pseudocode for this method can be found in Algorithm 4, and Figure 7.1 shows the process for a
Sudoku of rank 2.

Algorithm 4: Calculate the difficulty of a puzzle instance.
input :The puzzle instance P , strategies S
output :The numerical difficulty score r
T ←the number of unsolved cells;
states← [[]] // 2d array that collects the reachable states per time-step;
states[0] = [P ];
G← (V ← {P}, E ← ∅);

foreach t ∈ 0..T do
previous_states← states[t];
foreach Pprev ∈ previous_states do

new_states← [] // 2d array of states contains a list of all costs with which the states can
be reached;

foreach s ∈ S do
reachable_states← apply_strategy(Pprev, s);
foreach Pnext ∈ reachable_states do

new_states[Pnext].append(sd);
end

end
foreach Pnext ∈ new_states do

d← harmonic_average(new_states[Pnext]);
V ← V ∪ state;
E ← E ∪ (Pprev, Pnext, d);

end
end

end
PT ← states[T ][0];
return shortest_path(G,P, PT );

This method satisfies the first principle as each step increases the total difficulty. The harmonic
mean is crucial to the second principle, it ensures that more options to place a number results in a
lower overall difficulty.
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Figure 7.1: A rank 2 Sudoku, T = 3.



8
Experiments and Results

In this chapter we describe the setup and implementation details of the experiments performed to
solve, generate and rate Raatsels. Afterwards we will discuss the outcomes of these experiments, and
whether they confirm the proposed hypotheses.

All experiments are run with the puzzle-agnostic solving framework described in Section 5.1 All
results presented are obtained by running our algorithms on an HP ZBook Studio G5 laptop with an
Intel i7 processor.

8.1. Comparing Solving Techniques
In Chapter 5 the differences between brute-forcing, constraint programming and strategy-solving were
discussed. To prove that strategy-solving resembles human solving behaviour, a correlation between
human solving time and strategy-solving time is to be expected. To test this hypothesis, we will apply
the three methods to a selection of Sudoku instances. Sudoku of the day1 is a website that offers free
Sudoku instances of varying difficulties. 4 instances of the difficulties Beginner, Medium, Fiendish and
Diabolical were selected.

• The brute-forcing method tries to guess a valid number from topleft to bottom right inscreasing
from 1. If a guess turned out to be incorrect, it will backtrack and try the next number.

• The constraint programming solver uses a Minizinc[12] (Gecode 6.3.0) implementation which can
be found in Appendix B.

• The strategy-solver is the Python implementation described in Section 5.1, with access to the
strategies Hidden Single, Naked Single, and Locked Candidates.

Results
Figure 8.1 shows the relation between runtime and sudoku instance difficulty for three different solving
methods.

It can clearly be seen that the difficulty of an instance has very little influence on the runtime of the
CSP; it is nearly constant.

The brute-forcer does appear to take longer with the more difficult instances, but it only performs
noticably better on the beginner instances. It also has significant variation between runs on the same
instances. Rotating the instance can cause the brute-forcer to take 50x as long on some instances,
even though it is still logically the same instance. It is especially sensitive to the values of the solution.
Since it tries to place numbers from low to high, it takes significantly longer if the first guessed cells
contain higher numbers.

The strategy-solver does consistently take longer the more difficult the instances get. A Beginner in-
stance never takes longer than a Medium instance, and a Medium never takes longer than a Fiendish.
It was unable to solve the Diabolical instances with its limited set of strategies. This is not a limita-
tion, it actually allows us to conclude that these instances are not strategy-solvable with respect to
{HiddenSingle,NakedSingle, LockedCandidates}.

1https://www.sudokuoftheday.com/

20
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Figure 8.1: Solving time of sudoku instances for different solving methods.

The strategy-solver is the only solving method that shows a clear correlation between solving time
for computers and solving difficulty for humans, which confirms our hypothesis.

8.2. Raatsel Generation
To generate Raatsels we need a shape, represented by the truth matrix M , and a collection of words
to satisfy this relation.

The algorithm described in Algorithm 2 will be used to generate M . As input we vary the number of
desired false friends from 0 to 40. When the amount of false friends increases, it is expected that the
success rate of generatingM decreased, as the likelihood of the shape becoming unsolvable increases
with more relations.

Algorithm 3 will be used to construct the language graph. As base input, the word ”Apple” will
be used. Additionally, another experiment will be run with a hand-crafted language graph based on
existing Raatsels. Expected is that it will reconstruct one of the existing raatsels.

The Glasgow Subgraph Solver will be used to find the pattern graph. It is a fast implementation
with support for induced subgraph isomorphism, and can prove unsatisfiability if no solution can be
found[10]. Multiple instances can be retrieved from a single pattern and target graph, but it is highly
likely they have significant overlap.

Results
Raatsel generation consists of three parts: Generating the shape M , generating a language graph,
and finding M within the language graph.

Firstly, the generation of M goes smoothly when the desired number of false friends is small. In
Figure 8.2 it can be seen that the success rate goes down when the amount of false friends grows. A
reasonable amount of false friends for a Raatsel is around 10, which has a success rate of 71%. Fewer
and the puzzle becomes too easy, while more makes it much harder to find words to fit the shape. This
success rate makes generating the shape of Raatsels practical.

Secondly the building of the language graph was less successful. WordNet contains mainly factual
hierarchical relations between words. This not only leads to uninteresting puzzles, it is insufficient for
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Figure 8.2: The success rate after 1000 trials of generating M for the given number of false friends.

the Raatsel which needs a higher density of overlap between words and categories. It is too sparse as
most words only belong to a few direct categories. Conversely, because of the inherent tree structure,
words that share a category also share the parents of that category. This introduces many false friends
in a way that leads to Raatsels with multiple answers. Figure 8.3 shows an improper Raatsel which
can be generated if the requirement of strategy-solvability is dropped. The tree structure of WordNet
is clearly reflected in the selected words and categories. From this language graph, uniquely solvable
Raatsels could not be generated.

Finally, findingM in the language graph works well, as it is exactly the problem of induced subgraph
isomorphism. Even though it could not find uniquely solvable Raatsels in the WordNet language graph,
running it on the hand-crafted language graph provided an interesting result. The expectation was
that it would recreate one of the Raatsels that was used as input. However, since there was overlap
between the Raatsels it generated a new Raatsel which is a combination of the input. This newly
created Raatsel can be seen in Figure 8.4, it contains 23 words from the first Raatsel, and 7 from the
second Raatsel.

This shows our method for generating Raatsels works, provided the language graph contains suffi-
cient dense relations.

8.3. Rating Sudoku
The rating method described in Section 7.2 has been implemented using the solving framework de-
scribed in Section 5.1. It will be applied to the same 16 Sudoku instances used in Experiment 8.1. The
expectation is that the rating outcomes are lower than their original rating, since our method lowers
the difficulty score if there are multiple ways to assign a symbol. The relative order between difficulties
should stay consistent however, a beginner puzzle should not have a higher rating than a medium.

Since a Sudoku usually consists of around 60 steps, at t = 30 there is a possibility to have a
maximum

(
60
30

)
≈ 1.18×1017 different states. There is a possibility this method will not terminate (within

reasonable time) for puzzles where the search-space grows large too quickly. Therefore, experiments
will be terminated if they exceed 6 hours.
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Figure 8.3: An improper computer generated Raatsel with the initial word Apple.

Results
The time-expanded rating method was unable to terminate within a reasonable time on the 16 Sudoku
instances. The amount of possible states indeed grew exponentially quick. A clear difference can
be seen between the amount of states for a beginner versus a medium Sudoku in Figure 8.5. In the
beginner instance the amount of states grows much more quickly. The more numbers that can be
placed at a given time, the more states that can be reached the next time-step.

Another interesting observation is that the medium Sudoku at time-step 4 only has 1 state. No
matter in what order you try to solve this puzzle, this state will always be reached. This is valuable
information for puzzle generators, and can be used by expert puzzle setters to improve their puzzle
quality.

While this method is unable to calculate a difficulty rating for the Sudoku instances, it does provide
new information about the solving process, and can be used alongside existing rating methods.

8.4. Rating Raatsel
The rating method will also be applied to the example Raatsel in Figure 4.2. Because there is a limited
number of Raatsels available, there has been no research done on the actual difficulty based on human
solving times. The Raatsel is included in this experiment mainly to see whether this method truly works
on generic puzzles. A Raatsel always consists of 37 steps, making the largest amount of states at a
time-step

(
37
18

)
≈ 1.77× 1010. This is more feasible, and it is expected the method will terminate for the

example Raatsel.
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Figure 8.4: A new (Dutch) Raatsel generated from two hand-crafted Raatsels which had significant overlap.

Results
Because Raatsel was implemented in the solving framework explained in Section 5.1, the ratingmethod
worked seamlessly. Fortunately, the time-expanded rating does terminate for the example Raatsel.

Figure 8.6 shows the amount of states the example raatsel can be in at each time-step. It can be
seen that the amount of states is increasing up to t = 25. After that point, there is no more information
to be deduced in any of the states, and the amount of states shrinks until the single solved state is finally
reached. Even thought we can not assign a numerical score to this instance, it can be concluded this
instance is not trivial to solve, as the maximum amount of states does not come close to the theoretical
amount.

The Raatsel always having 37 steps makes it computationally feasible, while the Sudoku search
space grows too quickly. The time-expanded rating is therefore better suited for Raatsel than for Su-
doku.
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Figure 8.5: The amount of states per time-step for two different Sudoku instances.

Figure 8.6: The amount of states per time-step for the Example Raatsel.



9
Conclusions

In this final chapter we will reflect on the outcomes of the experiments and answer the research ques-
tions.

9.1. Raatsel Introduction and Solving
The Raatsel puzzle was introduced as the RAATSEL-SOLVE decision problem. Once the strategies
for RAATSEL-SOLVE were defined, it was integrated into the solving framework.

With the abstraction of the truth matrix M , the strategy-solver could solve Raatsels in the same
way a human would. We conclude that a language-based puzzle can be solved with a strategy-solver,
given that the linguistic aspect is provided to the solver.

9.2. Raatsel Generation
The proposed Subgraph Isomorphism method works correctly and generates proper Raatsel instances
within a reasonable timeframe that matches state-of-the-art Sudoku generators. The generated Raat-
sels were not strategically solvable as the quality of the clues was lacking. WordNet is insufficient to
create fun and engaging Raatsels. It contains very factual relations (e.g. An Apple is a Fruit), but to
create interesting Raatsels more creativity is needed in the labeling. (e.g. An Apple is Red, Sweet or
A Company)

This is not a problem with the method, but a problem with the data on which the method operates.
As seen, when given hand-crafted clues as input, a new Raatsel could be created. Large puzzle
companies have manually made databases of relations, but keep them private for commercial use.
Applying these high-quality databases would result in more creative, and most importantly more fun
Raatsels.

9.3. Time-Expanded Rating
We have seen that the number of states grows exponentially based on the amount of steps the puzzle
has left. The difficulty of the instance also plays a role, with the more difficult instances having fewer
states.

It is more suitable for Raatsels, which have fewer time-steps than Sudoku. Since the Raatsel is on
the lower end of the amount of symbols that need to be placed, this method is not expected to work on
most puzzles.

While the time-expanded rating method was unable to finish on all Sudoku instances, it is capable
of revealing a curious property of a puzzle instance. If at any time-step there is only a single state for
the solver to be in, every player who attempts to solve the puzzle will be guaranteed to encounter that
state. This is valuable information for experienced puzzle setters which they can use to create more
engaging puzzles.

The time-expanded rating method is not a substitution for existing rating methods, but can be used
alongside to reveal interesting properties about generic puzzle instances.

26
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9.4. Final Remarks
We have shown that strategy-solving is indeed a feasible method to implement a generic puzzle solver,
as it can handle language and logic based puzzles. It most closely resembles human solving, showing
a clear relation between difficulty for computers and difficulty for humans. Strategy-solving was not able
to completely remove the language aspect from the Raatsel, but it could be applied after introducing
an abstraction of the language.

The Subgraph Isomorphism reduction has shown to be a viablemethod to generate strategy-solvable
Raatsels. With our solving and rating methods working on both the Sudoku and Raatsel, and our gener-
ation method creating strategy-solvable Raatsels, we conclude that the concept of strategy-solvability
can be used to solve, generate and rate human-solvable generic pen and paper puzzles.

9.5. Future work
We propose the following improvements to Raatsel generation, possible continuations towards generic
puzzle generation, and applications to other fields of research.

Improved Raatsel Generation
An issue with the proposed method for Raatsel generation is that the separation of generating the
truth matrix and finding the words makes it unable to find nearly valid Raatsels. Instead, the subgraph
isomorphism solver could be expanded to not include patterns leading to unsolvable Raatsels. This
would allow it to report instances that are nearly valid, but missing some words. A human could then
select the final words from their own memory, instead of the (often incomplete) language graph. This
human-machine hybrid method could allow for a much higher success rate for Raatsel generation.

Expand to More Puzzles
The integration of Raatsel and Sudoku into the framework went seamlessly, but there is a plethora of
other puzzles that currently do not have any strategies defined. While there is no reason to suspect
these puzzles being unable to be integrated in the framework, more research has to be done. Especially
on puzzles that follow a different structure such as the Hashiwokakero (Bridges).

Converting Strategies Into Constraints
The main issue with constraint solvers is that their workings are virtually unexplainable in terms of
human solving. Currently, the rules are implemented as constraints, which are by definition enough
information to solve a puzzle instance. Human solving however could be simulated by instead imple-
menting the strategies as constraints. Instead of enforcing that a row of Sudoku cells must contain all
different symbols, we can say that when eight different numbers are already placed, the ninth must be
the remaining one (Naked Single). While a subtle difference, this approach could continue the Logi-
cal Modeling generation proposed by Nishikawa and Toda[14] and allow generic instance generation
based on pre-defined strategies.

Other Applications
Not only puzzles can be formulated as strategy-solvable problems, other decision problems can as well.
A possible application of strategy-solvability is in the field of Software Validation. It could be possible
to model a well-known problem such as Shortest Path and invent strategies for solving it. Instances
could then be generated that are solvable with respect to a certain set of strategies. Varying this set
of strategies would allow us to generate instances that require a specific strategy to solve. This is very
useful when validating a piece of software that is supposed to solve the Shortest Path problem. For
example creating an instance that could only be solved with the Check if start is destination strategy.
Fields which require some form of instance generation could benefit greatly from this strategy-solving
approach.
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A
Solution to Example Raatsel

Figure A.1: The solution to the Raatsel presented in Figure 4.2.
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B
Minizinc Sudoku Solver

1 include "alldifferent.mzn";
2

3 int: S = 3;
4 int: N = 9;
5

6 set of int: numbers = 1..9;
7

8 array[1..N, 1..N] of 0..N: clues;
9 array[1..N, 1..N] of var numbers: solution;

10

11 % Add clues to solution
12 constraint forall(i,j in numbers)(
13 if clues[i,j] > 0 then solution[i,j] = clues[i,j] else true endif );
14

15 % Alldifferent for rows
16 constraint forall(i,j in numbers)(
17 alldifferent([solution[i,j] | j in numbers]));
18

19 % Alldifferent for columns
20 constraint forall(i,j in numbers)(
21 alldifferent([solution[i,j] | i in numbers]));
22

23 % Alldifferent for subgrids
24 constraint forall(x, y in 1..S)(
25 alldifferent([solution[(x-1) *S + x1, (y-1)*S + y1] | x1, y1 in 1..S]));
26

27 solve satisfy;
28

29 output [
30 show(solution)
31 ];
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