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Abstract—Feedback error learning (FEL) is a classical compu-
tational model that describes human motor learning. It consists
of forward and inverse models representing internal dynamics
and environmental disturbances. Such models can be used as
controllers that represent the function of the motor cortex. On top
of FEL, a model has been built with jointly trained feedforward
and feedback controllers using a neural network. The controllers
that actuated six muscles driving a two-degrees-of-freedom arm
model were trained offline. This model successfully simulated
human learning of point-to-point reaching movements in a
horizontal plane when it was tasked to adapt itself in a null field
(NF) and a velocity-dependent force field (VF). In this study, we
further tested this model in the divergent force fields (DF) and
a channelled force field (CF) to observe its performance. The
comparison between the simulation results and the experimental
evidence suggests that this model can predict some of the key
features of the learning process, such as the kinematics, the
muscle dynamics, and the impedance profiles. The learning decay
was hindered when the lateral error was artificially eliminated
by the CF, as reported in the literature. Overall, the model could
converge towards realistic human reaching movements in all of
the given environments.

Index Terms—Neuralmuscular control, Arm impedance, Motor
learning, Arm movement, Neural network.

I. INTRODUCTION

HUMANS control their limbs effectively in most of their
daily activities, facing a variety of situations. Holding an

item in hand, entering water, or fatiguing changes the physical
dynamics externally or internally. The capability of humans
to adapt their motor control strategy to novel force fields has
been extensively studied. Shadmehr and Mussa-Ivaldi (1994)
created a widely adopted paradigm for the experiment and
simulations, asking the subjects to perform a series of point-
to-point reaching motions and observing their trial-to-trial
learning behaviour under novel dynamics. The deployed novel
dynamics can be stable (Shadmehr and Mussa-Ivaldi, 1994;
Lackner and Dizio, 1994) or unstable (Burdet et al., 2001;
Franklin et al., 2003, 2007).

A major way of understanding the motor control perfor-
mances and their adaptation behaviour is by building models
and comparing the simulation to the experimental results.
Since the learning process is explained as the gradual for-
mation of the representation of the novel dynamics, namely
the internal models, in the central nervous system (CNS)
(Kawato, 1999), the models’ convergence toward an optimum
can be seen as a simulation of the progressing learning.

Delft University of Technology, Delft, 2628CD, The Netherlands;
e-mail: z.gu-2@student.tudelf.nl

Experiments have proven that the internal models consist of
a forward and an inverse component. Models like optimal
feedback control (OFC) (Todorov and Jordan, 2002; Izawa
et al., 2008; Rigoux and Guigon, 2012; Aprasoff and Donchin,
2012; Ueyama, 2014; Razavian et al., 2015; Crevecoeur et al.,
2019) focus on the role of the forward model in learning. OFC
requires no desired trajectory and is robust to noise, yet its
resultant trajectories are theoretically sub-optimal. However,
OFC models only predict the post-learning behaviour instead
of the learning process. Some other models consist only of the
feedforward controller (Thoroughman and Shadmehr, 2000;
Burdet et al., 2006; Franklin et al., 2007). Notwithstanding,
it is common to include both the feedforward and feedback
components in the model (Kawato et al., 1987; Stroeve, 1997;
Haruno et al., 2001; Donchin et al., 2003; Kambara et al.,
2009).

A straightforward goal for the simulations of learning is to
minimize the trajectorial error. The mainstream methods of
determining the desired trajectories typically seek the paths
that minimize a parameter (Nishii and Taniai, 2009; Ohta
et al., 2004), such as the movement jerk (Flash and Hogan,
1985), torque (Uno et al., 1989), variance (Harris and Wolpert,
1998), and so on. Physiologically, the cost also frequently
involves energy-related terms such as the muscle activation
level (Happee and Van der Helm, 1995) or muscle fatigue
(Razavian et al., 2015). The error-effort trade-off is common
among the cost functions, as it alleviates the co-contraction
level as the training progresses. Some later research also
revealed the retention phenomenon in learning on longer time
scales (Kooij et al., 2016). The formation of this long term
retention is known to be predicted by factors from the short
term memory formation (Joiner and Smith, 2008). Models like
FEL essentially change the motor command based on the error
size (Franklin and Wolpert, 2011). The use of motor primitives
in simulation explained some experimental discrepancies and
was used to test the generalization of the model in state space,
as adaptation is seen as linear functions of the primitives
(Thoroughman and Shadmehr, 2000).

Being one of the first to investigate the learning process
aside from the learning outcome, Stroeve (1999a) built a
model on a simplified 6-muscle-2-link arm model (Winters
and Stark, 1985) controlled by a shallow yet sufficient neural
network (NN). This model followed the feedback error learn-
ing (FEL) scheme (Kawato et al., 1988). In general, although
computationally demanding, FEL based on NNs can be ex-
panded into more sophisticated and realistic control systems.
Early versions of the FEL mainly focused on integrating the
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tasks that CNS must tackle in motor control into layers of
a NN. The forward and inverse internal model pairs were
saved into one layer and worked as a combined feedback
and feedforward controller. It was noted that the FEL was
oversimplified (Kawato et al., 1987; Stroeve, 1997) with the
loop delay removed, muscle dynamics linearized, and the
forward model omitted. Stroeve implemented these missing
parts and specified the task design. In this new model, the NN
was simplified to be a single task-specific internal model pair.
Thus, the training essentially will not involve the cognitive
selection of pre-trained internal models (Wolpert and Kawato,
1998; Haruno et al., 2001). Kambara et al. (2009) proposed
a different approach, called the model-control-learning model
(MCL), to complete the FEL construction by adopting the
actor-critic method to train the feedback controller. This means
that the training of the two internal models is separated from
the training of the controller. As the model was trained in
a reinforcement learning fashion, this method requests no
desired trajectories, and the prior knowledge of the dynamics
or the explicit expression of the cost function is not needed
for its training. Although muscle dynamics and force feedback
were not included in MCL, the model was sufficiently tested in
various endpoint dynamics, including the velocity-dependent
force field (or viscosity field, VF), the divergent force field
(DF), and the channelled force field (CF) (Kambara et al.,
2021).

In this paper, we revisited the model in Stroeve (1999b) and
rebuilt it with up-to-date algorithmic toolboxes. The immediate
goal of this project is to test if this newly built version of the
model can perform as the previous version did, by comparing
the dynamics of the simulation in the NF and the VF to
the experiment and the simulation by Stroeve (1999a,b). The
model has been validated with the classical experiment in
Shadmehr and Mussa-Ivaldi (1994), and the simulated static
and dynamic impedance matches the experiments (Gomi and
Kawato, 1997). Then the model has been further evaluated
with later experimental evidence, including the muscle activa-
tion profiles (Thoroughman and Shadmehr, 1999; Heald et al.,
2018), new impedance data (Burdet et al., 2001; Tee et al.,
2004; Burdet et al., 2013), adaptation index (Smith et al., 2006;
Vaswani and Shadmehr, 2013) and so on.

In the following part of this paper, section II will provide
the detailed methods to construct and test the model, section
III will show the simulation result, and IV will discuss the
results in comparison to the experiments, some phenomena
observed, and the potential improvements for the model.

II. METHODOLOGY

To simulate the motor learning of an arm (see Figure 1),
the model by Stroeve (1999a) was constructed and will be
explained in this section. All matrices and vectors are denoted
with bold symbols to differ from scalars. In the simulation, the
arm is required to make a point-to-point reaching movement
within a horizontal plane. The time that the movements would
take ranges in the interval [0.25,0.5]s. Upon finishing reaching,
the hand should stay at the goal for an equal amount of time.
This is called a ”trial”. The starting position of all trials is set

Fig. 1. The musculoskeletal system, adopted from Stroeve (1999a). The
muscles are lumped in this simplified model. These six muscles include
a pair of biarticular muscles and a monoarticular muscle pair attached to
each joint (Burdet et al., 2013). The six muscles are: pectoralis major (m.1);
posterior deltoid (m.2); brachioradialis (m.3); triceps lateralis (m.4); biceps
(m.5); triceps longus (m.6). The shoulder is marked as joint 1 (θ1); the elbow
is marked as joint 2 (θ2).

Fig. 2. The workspace is the coloured area in this plot, of which the light
grey represents the goal space. The shoulder (joint 1) is placed at the origin
(0,0) with the x-axis parallel to the frontal plane. The goal space does not
necessarily has to be an ellipse but should cover at least a circle of 0.15m
centering the fixed starting point (in Stroeve (1998b) it is rectangular). This
workspace is essentially square in the polar system boxed by the maximum
and minimum values of the joint angles. The eight desired trajectories are
plotted in dash lines with their indices marked on their sides.

to [0, 0.39]m, which is the center of an ellipse-shaped goal
space (Figure 2, with the shoulder being set to the origin). The
ellipse has a short axis of 0.2m and an eccentricity of 2.

The positions of the movement goals are distributed within
this goal space. Depending on the task, the goal can be
uniformly distributed in the goal space or assigned to the end
of a standard trajectory. The desired trajectories are straight
lines connecting the start and end points assigned. As a set of
parameters, they include position, velocity, and acceleration
information in Cartesian coordinate. Such desired trajectories
feature minimum jerk movements (Flash and Hogan, 1985),
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and have bell-shaped velocity profiles.
Eight standard trajectories were introduced, mainly to eval-

uate the in-and-post training performances. Each of these
trajectories directs to a goal 0.15m from the starting position,
with 45◦ apart from one another in direction. The trajectory
orienting in the positive x direction is named ”traj1” with the
number increasing until 8, counting the following trajectories
counterclockwise. These trajectories are as well shown in
Figure 2.

Fig. 3. Control system where ϕ is the control input
[
ϕ1;ϕ2; ϕ̇1; ϕ̇2; ϕ̈1; ϕ̈2

]
,

u is the neural commands, F is the muscle forces, Fext is the external force,
s is the output

[
θ1; θ2; θ̇1; θ̇2

]
that θ is the joint angle, e is the trajectorial

error in the joint space, and τ is the feedback delay.

The model used for the simulation consists of a controller
and a musculoskeletal system, as shown in Figure 3. Such
system is based on the model presented in Stroeve (1998b,a,
1999a,b). In a trial, the movement intention from the higher
cortex of the brain is represented by reference trajectory in the
joint space ϕ =

[
ϕ1;ϕ2; ϕ̇1; ϕ̇2; ϕ̈1; ϕ̈2

]
, and fed to the system

as input. This is because the internal models are coded in the
joint space (Burdet et al., 2013). The controller that represents
the motor cortex receives ϕ, and the feedback values then
output the level of neural command u, ranging from 0 to 1.
Then the neural command, namely the excitation stimulates
the muscles to generate the muscle force F. The system states
s in the joint space are the result of the forces working on
the skeletal dynamics, which is also the system output. This
includes the joint state [θ1; θ2] and its time derivatives

[
θ̇1; θ̇2

]
.

Note that only the states are used as the feedback. τ is the
50ms feedback delay. The model is constructed in Simulink
with an Euler integrator. The simulation is integrated over the
generalized dynamics (Vallery and Schwab, 2020), and the
offline training is coded in MATLAB (ver. R2022b).

A. Musculoskeletal model

The musculoskeletal model is based on a Hill-type muscle
model (Flash and Hogan, 1985) and an inverted double pen-
dulum that represents the skeletal system. As shown in Figure
1, four monoarticular muscles and two biarticular muscles are
attached to the joint with constant moment arms. The muscles
have a first-order activation (40ms) and deactivation (70ms)
time delay. The details of the analytical representation of the
muscles and the limb are included in Appendix A.

With the shoulder resting at the origin, all possible configu-
rations of the arm in the joint space form a workspace, which
can be depicted in the Cartesian space, as in Figure 2.

B. Controller

A multilayer perceptron network (MLP) is used as both
the feedforward and feedback controller. The function of
the internal models can be simulated by this MLP, whose
input includes the desired trajectory, the trajectorial error per
instance, and the force feedback. The neural command as the
network output is sent to the musculoskeletal system. NNs
with more than one layer are in theory capable of mapping
nonlinear relationships. Stroeve (1999a) has concluded that
an MLP with one hidden layer of 30 nodes is sufficient for
the control of the aforementioned arm model. This three-layer
network can be notated as:

u = Γ2(W2Γ1(W1h+ b1) + b2), (1)

where u is the neural commands, h = [ϕ,F,θ] is the inputs,
W is the weight matrices, b is the biased terms, and Γ is the
sigmoidal activation function

Γ (x) =
1

e−x + 1
. (2)

The musculoskeletal system can be generalized into a time-
invariant system, since its update is off-line. The system has
a state vector x and output y:{

ẋ (t) = f (x (t) ,u (t))

y (t) = g (x (t) ,u (t))
. (3)

The definition of the variables above can be found in Appendix
B.

C. Learning

Both the feedforward and feedback parts of the controller
are optimized during the training toward the arm following
the desired trajectories. This optimization problem, like any
others, is determined by three components. Firstly, the decision
variables are the weight matrices Ws. Secondly, the to-be-
optimized weight matrices are not constrained. However, their
initial values are kept low (in absolute value, yet non-zero)
to avoid instant neuron saturation. Lastly, the performance
of a trial of arm reaching movement is measured by a cost
function that takes the trajectorial error and activation level
into account:

J =
1

T

∫ T

0


2∑

i=1

[ϕi (t)− θi (t)]
2
+ α

6∑
j=1

Vj

Vavg
aj

2 (t)

 dt,

(4)

where θ is the position of the arm, which, as it has been
concluded for motor control and learning, is in the joint space
(Shadmehr and Mussa-Ivaldi, 1994; Burdet et al., 2013). α is
the multiplier for the activation penalty to normalize it to the
magnitude level of the trajectorial errors. Empirically its value
is set to 0.01 as it determines the level of muscle co-activation,
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which shall be maintained at 5% (Stroeve, 1999b). Gradient
descent is used for the optimization, that is,

Wi,new = Wi,old − η∆Wi, (5)

with η being the learning rate, which is set to 0.2 for this
specific case. This is practically the highest learning rate
that the optimizer allows without any significant divergent
behaviour. ∆Wi (with i ∈ [1, nlayer−1]) represents the effect
of controller weights on J averaged over time. This equation,
from the perspective of training a neural network, stands for
a batch update of a supervised learning session.

The means of obtaining ∆Wi is by averaging the derivative
of the cost function over the neural command u over the
movement time t:

∂J

∂u
(t) (6)

This term represents the direct effect of the muscle commands
on the overall performance of the system. backpropagation
through time (BTT) was used to calculate this Jacobian
iteratively. Stroeve chose the ordered derivative to represent
how u at one instance can affect J over the whole trial. The
calculated ∂J

∂u can then be linearized and used to calculate the
Jacobians at the previous instance:

∂J

∂xj (N)
=

∂l (N)

∂xj (N)
+

p∑
i=1

∂l (N)

∂yi (N)

∂yi (N)

∂xj (N)
(7)

∂J

∂xj (k)
=

∂l (k)

∂xj (k)
+

p∑
i=1

∂l (k)

∂yi (k)

∂yi (k)

∂xj (k)
+

n∑
i=1

∂J (k)

∂xi (k + 1)

∂xi (k + 1)

∂xj (k)

(8)

∂J

∂uj (k)
=

∂l (k)

∂uj (k)
+

p∑
i=1

∂l (k)

∂yi (k)

∂yi (k)

∂uj (k)
+

n∑
i=1

∂J (k)

∂xi (k + 1)

∂xi (k + 1)

∂uj (k)

(9)

where

∂xi (k + 1)

∂xj (k)
=

{
1 + h ∂fi

∂xj
(x (k) ,u (k)) , i = j

h ∂fi
∂xj

(x (k) ,u (k)) , i ̸= j
(10)

∂xi (k + 1)

∂uj (k)
= h

∂fi
∂uj

(x (k) ,u (k)). (11)

The idea is that since for each term the Jacobian contains
all Jacobians of the later instances. Therefore starting from
the last trial, and passing the values to the previous trials
accumulatively avoids repetitive calculation. The details of this
backpropagation process are described in Stroeve (1999b) and
partly explained in Appendix B.

D. Task design

The tasks that involve arm-reaching movements are based
on the paradigm by Shadmehr and Mussa-Ivaldi (1994). This
paradigm is referred to for both learning and validation. The
model was first randomly initialized and trained for 100,000
trials in the null field (NF), where no external force is applied.
Then the model was trained for an equal amount of trials in
a VF which imposes an external force on the endpoint of the
arm. For both the NF and the VF sessions, the goals were
randomly assigned in the goal space. The values used to define
the VF in Stroeve (1999a) are the same as in Shadmehr and
Mussa-Ivaldi (1994):

Fext,V F0 =

[
10.1 11.2
11.2 −10.1

] [
vx
vy

]
. (12)

However, in this project, it was proven to be too big as the
hand would be pushed to the edge of the workspace. Although
eventually the model converged to the same optimum, the
learning was slowed down, and affected by the activated spatial
constraints. Therefore, for this project, the external viscosity
was reduced by 1.5 times, getting the VF1:

Fext,V F1 =

[
6.73 7.47
7.47 −7.4

] [
vx
vy

]
. (13)

The force field was then removed after the training in the
VF1 and retrained for 100,000 trials in the NF to observe
the after-effect (AE). A second adaptation session in the VF1
was introduced after the AE. VF1 is the one that will mainly
be referred to in this paper, while a different version was
used, which is perpendicular to the hand velocity direction.
This second VF (VF2) can be used for introducing lateral
disturbance (Vaswani and Shadmehr, 2013; Kambara et al.,
2021):

Fext,V F2 =

[
0 13
13 0

] [
vx
vy

]
. (14)

With the NF training result being the baseline, the DF and
the CF were applied in separate computational experiments
to examine the model’s adaptation performance. Unlike the
VF, since the orientation of these force fields depends on
the direction of the desired trajectory, only the trajectory in
the positive y direction (“traj-3”) was used for these training
sessions. The value for the DF1 is taken from Kambara et al.
(2021) and Burdet et al. (2001):

Fext,DF1 =

[
200 0
0 0

] [
x
y

]
(15)

for easy comparison. To explore the system’s reaction to the
DF1, the external stiffness was also tripled in another training
session Burdet et al. (2001), resulting the DF2:

Fext,DF2 =

[
600 0
0 0

] [
x
y

]
. (16)

The CF is adopted from Kambara et al. (2021), which serves
as an error clamp that artificially removes trajectorial error
(Smith et al., 2006):

Fext,CF =

[
−600 0
0 0

] [
x
y

]
+

[
−60 0
0 0

] [
vx
vy

]
. (17)
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The task design for the CF trials follows the scheme of the
human experiment (Vaswani and Shadmehr, 2013). Based on
the learnt model in the NF, a further 250 trials were performed
in the NF but confined to traj-3. Then the model was trained
for 300 trials in the VF2 before being put under the CF or
NF for comparison. The complete scheme is summarized in
Figure 4.

Fig. 4. Test scheme, the arrow indicates how the resulting model of one
training session was used in the following sessions. The grey box indicates
the trial used a fixed desired trajectory.

To produce comparable models in the NF and the VF, the
simulation was run on traj-3 for 1000 trials each as well. This
is not shown in Figure 4 or Section III, but was used for
impedance evaluation shown in Appendix D.

E. Evaluation

For the trials executed in the NF and the VF, the simulation
was performed eight times over each of the standard desired
trajectories with the controller weights W1 and W2 from a
few selected trials throughout the training, so that important
metrics and profiles describing the system dynamics can be
recorded (Stroeve, 1999a), including the

• Cost
• Trajectorial error
• Activation level averaged over all muscles and all time

instances,
• Muscle activation profiles
• Hand velocity profile in Cartesian space
• Impedance profile (intrinsic, reflexive, and empirical stiff-

ness)
• Adaptation index (lateral force correlation coefficient for

the CF session).
In the NF and the VF sessions when the goal space was used,
the costs that represent the model performance, the trajectorial
errors, and the activation levels were calculated by averaging
over the eight trials that are based on the same weights. The
other parameters were stored separately for each trajectory.
For DF and CF sessions, since there was only one desired
trajectory, such averaging was skipped.

In these evaluation trials, the endpoint stiffness was as well
calculated accordingly to represent the system impedance. The
details of the derivation can be found in Appendix B. This
is mainly to evaluate the DF simulation results but NF and
VF sessions were as well briefly included (see Appendix D

for the results). The components that make up the impedance
include the intrinsic impedance, the reflexive impedance, and
the impedance induced by the feedforward behaviour of the
controller. In this project, the stiffness was chosen to reflect the
impedance profile in general, as the experiment suggested that
the damping in the musculoskeletal system can be empirically
calculated if the stiffness is known (Burdet et al., 2000).

Stroeve (1999b) calculated the intrinsic stiffness by deriving
the sensitivity term of the control system. For this project, this
was done by analytically calculating

Zk =
dFend

dpend
(18)

where Fend is the sum of the active and passive forces pro-
jected to the end-point (hand), and dpend is the infinitesimal
displacement at the end-point position.

For the static case, the model was reduced to an auto-
matic system with a sole feedback controller. The loop delay
could be tackled with a Pate filter. In Stroeve (1999b,c),
the system was linearized around a working point while
deterministic multi-sine force impulses were applied as the
external disturbance. The stiffness matrix was then acquired
by substituting the frequency in the Laplace domain with zero.
If the dynamic impedance characteristic were to be calculated,
it would request additional simulation sessions and effective
system identification to regress the model to a second-order
one. Therefore, only the static impedance was adopted in this
project, although the dynamic impedance profiles would have
been analytically more accurate and interpretable. To calculate
the reflexive stiffness with this feedback-only approach, simply
a representation of the system in state space is needed. The
stiffness would be the inverse of the system transfer function.

The impedance can also be approximated with an alternative
approach (Tee et al., 2004; Burdet et al., 2013). This em-
pirical method calculated the impedance as a linear function
of the joint torque. This assumes that the static impedance
can represent the dynamic impedance and acknowledges that
the intrinsic impedance is not separable from the activation-
dependent impedance.

The stiffness ellipses were then calculated with singular
value decomposition (Gomi and Osu, 1998). The long and
short axes of the ellipses are the maximum and minimum
reaction force vectors in the given state. Their ratio gives the
eccentricity and their perspective directions give the direction
of the reaction forces.

For the CF trials, Smith et al. (2006) and Vaswani and
Shadmehr (2013) used an index to represent the degree of
adaptation. How the index should be calculated was not
described in detail but it resembles the normalized correlation
coefficient between the lateral component of the endpoint force
profile and the ideal compensatory force in the VF2. Thus the
index approaching 1 indicates that the profile is identical to
the ideal case while -1 means the force compensates the VF2
in the opposite direction, with an identical but inverted force
profile.

III. RESULTS

In the following subsections, the convergence characteristics
and criteria selected for evaluations will be selectively dis-
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Fig. 5. Performance parameters during the NF training session with ran-
domized desired trajectories in the goal space. The red line shows the same
metrics from the trials that were simulated based on the controller weights
from the respective iteration. Per iteration, the simulation was run eight times
over all eight standard trajectories and the average values were taken from
the resulting metrics.

cussed for each force field according to its respective scheme
of training and testing. The coding process is explained in
Appendix C and some additional results are presented in
Appendix D.

A. Learning in the NF

The system was with a controller that has randomly defined
initial weights and was first trained in the NF as the baseline.
The training process in which the model had to follow the
randomized desired trajectories is illustrated in Figure 5. The
learning effectively approaches its optima in the first 1000
trials. This agrees with Stroeve’s comment on how fast the
system can converge. The optimization process after the initial
convergence sees the lower boundary of the cost further
lowered while the upper boundary stayed at the same level.
This, along with the oscillation of cost is related to the
randomized goals and time intervals.

The cost per trial is primarily affected by the position of
the goal of the desired trajectory. In general, the shorter the
trajectory is, the lower the cost is. The oscillatory behaviour is
mitigated when the desired trajectories are randomly selected
from the eight standard trajectories and disappear when the
desired trajectory is fixed (not shown in this paper). With a
fixed starting point and a randomly assigned goal, the cost
corresponding to a goal 20cm away from the starting point
can be as high as 40 times the cost of a goal 2cm away. This
relation is shown in Figure 6. The cost is especially high for
traj-8 (the red region in the direction of the fourth quadrant).
This might be because traj-8 is longer in the joint space

Fig. 6. Cost map in the workspace with no external forces applied to the
hand (NF). Each dot marks the goal of a trial with the colour-coded cost in
log scale with a base of 10.

Fig. 7. Baseline performance of the model trained in NF. Each circle in the
same color group is evenly distributed in reference to the movement time.

compared to the rest of the standard trajectories, as the edges
of the high-cost regions in this cost map coincide with the grid
lines in the joint space. The cost map in the VF is basically
the same as this one. Presumably, a position-dependent force
field such as the DF should drastically change the cost map
terrain, if the DF was used in the entire goal space.

Figure 7 shows the final training outcome in the NF, as the
model performed the task in all eight standard trajectories with
the latest weights optimized for the controller. The system can
converge toward a straight-line trajectory with a bell-shaped
velocity profile close to the desired performance, as Figure 8
demonstrates.

As the baseline, the muscle activation profiles and in refer-
ence to the movement time was as well calculated (Figure
9. The impedance profile in the NF will be discussed to-
gether with the training in other force fields in the following
subsections. The more generalized way of demonstrating the
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Fig. 8. Velocity profile by the end of the NF training in eight directions with
the same colour code in Figure 7, and the desired velocity profile derived from
Flash and Hogan (1985) (black). The velocity here is the modular length of
the velocity vector thus no negative value is possible. This figure also shows
the endpoint oscillation around the goal once it reaches it. Instead of stopping
still, the arm hovers around as a result of the cost-performance trade-off.

convergence in the NF, namely averaging all parameters over
the trials performed on standard desired trajectories, is shown
in Figure 10 together with the VF and another NF to see the
AE. The cost was, in general, decreasing over the 100,000
trials, yet per component inside the cost did not decrease
uniformly, at least in the first 10,000 trials.

B. Learning in the VF

The model was trained with the NF-VF-NF-VF scheme.
These four training sessions are sequential. The training
resulted in movement performances converging toward the
optima in all four sessions, meaning the trajectories for the
standard trials would converge toward the baseline shown in
Figure 7. Figure 10 shows the change in the three evaluation
criteria during the optimization. Since the NF training started
with W, which is randomized close to zero, the cost at the
beginning stayed high. The rest three sessions also experienced
relatively higher costs at the beginning, yet the increment
from the previous optima is relatively low. The activation
level stayed low even during training in all force fields but
the NF. This implies that the change of force field did not
pull the cost too far away from the optima, thus the control
strategy the model learns in one force field (including the NF)
is transferable in another force field. The convergence of the
activaton profile in the VF1 is shown in Figure 11.

The trajectories upon the first exposures in the VF1 for
the first and second time, along with the after-effect after
training in the VF1 for the first time, are shown in Figure
12. It can be observed that the novel dynamics caused lateral
movements in reference to the desired trajectories. Since the
model hasn’t learnt to counter the yet unknown force field at its
first exposure, the remedy to this deviated trajectory resulted
in a hook-like trajectory (Shadmehr and Mussa-Ivaldi, 1994).

Fig. 9. Neural command profile by the end of training in the NF, traj-
3 was given as the desired trajectory. The muscle pairs are separated into
three subplots, with u5 and u6 being the muscle activation of the biarticular
muscles while the others being the monoarticular muscle activation level for
the shoulder (u1 and u2) and the elbow (u3 and u4) respectively.

Fig. 10. The convergence of the performance parameters during the NF-
VF-NF-VF training sessions averaged over eight standard desired trajectories.
The trial number refers to the trial from which the weights of the NN were
collected and used for the standard trials. The training results for the first
100,000 iterations in the NF were not identical in the two attempts since the
system at the first iteration was initialized with different and random controller
weights.

After the model had adapted to the VF1, the moment the force
field was removed, the after-effect appeared as a deviation in
the opposite direction, only this time the trajectories tended
not to overshoot the goal so the hooks seemed smaller. After
the model adapted to the NF for the second time, the model
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Fig. 11. Neural command profiles throughout the training in VF1, the line
colours darken with the trial number progresses logarithmically. Blue stands
for flexive activation and red stands for extensive activation. The activation
profiles of the muscles in a trained model are marked with bold lines. Dash
lines stand for the activation profile in the trained model for the NF before
VF1 was imposed.

was again exposed to VF. Notably, the deviations upon this
second exposure in the VF1 are not entirely the same as that
for the first time. The system took a longer detour and failed
to eventually stop at the goal for some of the standard desired
trajectories. This is possibly because the muscle activation was
lower after the training in the AE compared to the end of the
first adaptation in the NF. Thus the introduction of the VF1
made the system temporarily unstable.

Judging by the trajectory profile for the first exposures,
it is possible that the feedforward controller contributed to
most of the eliminated trajectorial errors, as the feedback
controller only actuated a slower motion that mainly forms
the ”hook” after the desired trajectory as the system input
went to constant.

Figure 10 also illustrates the convergence performance and
the disturbed trajectories with VF2 being applied. It appears
that the force field perpendicular to the endpoint velocity
direction caused less disturbance than VF1 in general. The
change of force field caused approximately equal amounts of
increment in the cost, regardless of which force field it is. This
trend is roughly the same as in the changes in the trajectorial
errors. Since the activation did not increase once the model
was trained once in the NF, it can be said that the rise in cost
is mainly caused by the trajectorial error, and the change of
control strategy did not involve the rise of control commands
to the muscles. This time the trajectory remained the same for
both exposures in the VF2, and the deviation in the aftereffect
seems larger than in the VF1.

C. Learning in the DF

The two sessions of training in the DFs shown in this part
are not consecutive. Instead, they both started after a trained
NF session. This assumes that all attempts to adapt in the NF
end in the same optimum since the models always converge for
different initial Ws, and the trained performance are similar
to each other. The convergence of the cost, trajectory error
and average activation is illustrated in Figure 13. Since the
goal is no longer random, the evaluation of this training did
not involve any simulation over the other standard trajectories.
The oscillation in this figure is partly because of the random
movement time for each trial and partly because the hand
position started to oscillate around the goal once the reaching
movement was finished and the model started to maintain
the posture. The cost decreased as it would with the force
fields previously covered, and so did the trajectorial error.
However, unlike in the VFs, the activation level increased at
the beginning of the training and peaked at around 1000 trials.
The activation only fell back gradually after that and converged
toward the minima. The neural command profiles for the DF1
are shown in Figure 14.

The trajectories pre- and post-exposure to DF1 and DF2
are shown in Figure 15. The red line is captured at 1400
trials into the optimization, where the activation level averaged
throughout a trial is close to its highest. The major part of this
optimization is to make the hand eventually stop at its goal.
Reaching straightly from the starting point toward the goal
was even possible in the first trial upon exposure. Most of
the trajectorial errors are the result of the model drawing the
hand back to the goal after passing it. Deviations during the
movement are also not as large as the ones when the arm was
trying to maintain the posture. This part of the trajectory is
not shown in the figure. Naturally, it is intuitive to find that
the lateral deviation of DF2 is larger than DF1, as the external
force is larger for the same amount of deviation.

The stiffness ellipses are presented in Figure 15. They show
the end-point stiffness eclipses of the model at the beginning of
the selected trial, when it was halfway to the goal, and when
it first arrived at the desired yt, ignoring the x component
of its position. The full profile of the stiffness is included in
the appendix D. The impedance changes when the training
progresses and differs per time step in a trial. The system
always started the movement with a similar stiffness as in
the trained NF model, where the stiffness stayed roughly
the same throughout the motion. In general, the stiffness
ellipses are significantly distorted when the hand moves away
from the desired trajectory. This happens when the model
could not follow the straight line trajectory and steadily hold
the final position before it was optimized. Note that the
empirical stiffness shown in Figure 15 excluded the extra term
representing the cocontraction’s effect (Tee et al., 2004).

D. Learning in the CF

For the CF, the training scheme is executed with all random-
ized factors in the simulations removed. The training process
is shown in Figure 16. Instead of the trajectorial error and
the activation level, the lateral force correlation coefficient
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(a) (b) (c)

(d) (e) (f)

Fig. 12. Trajectories of the model following the eight standard desired trajectories upon (a) the first exposure in the VF1; (b) the after-effect of the post-VF1-
adaptation system in the NF; (c) the first exposure in the VF1 for the second time. The endpoint of the limb actually went so far that it hit the workspace
boundary again; (d) the first exposure in the VF2; (e) the after-effect of the post-VF2-adaptation system in the NF; (f) the first exposure in the VF2 for the
second time.

against the lateral force profile from the end of VF2 training is
shown, together with the maximum lateral deviation from the
desired trajectory before the desired y position was reached.
The numbers of trials are adopted from Vaswani and Shadmehr
(2013). For one fixed trajectory, the model converges much
faster. It can be seen that for a model pre-trianed in the NF, the
training without the error clamp converges within 200 trials.
With the CF introduced, although the extent of learning is
observably mitigated, the 600-trial learning session still well
covered the adaptation process.

IV. DISCUSSION

A motor control model was constructed with an MLP as
the controller. With the BTT algorithm, the feedforward and
feedback controllers that the MLP represents have been jointly
trained. The training has been performed according to the
scheme presented in Figure 4. Trajectories and parameters
that are used to evaluate the performance of the model were
derived and specifically, the impedance was calculated for the
DF sessions and the force-based learning index for the CF
sessions. In this section, the simulation result will be discussed
and qualitatively compared to existing experimental results.
Appendix D includes some of the illustrated comparisons.

A. Adaptation

The NF-VF-NF-VF convergence characteristics, including
the aforementioned velocity profiles, are consistent with

Stroeve (1999a), and therefore agree with Shadmehr and
Mussa-Ivaldi (1994). Figure 12 shows both the trajectories
disturbed by the VF for the first time and the ones with the
first removal of the VF. It is clear in the figure that the lateral
deviation between the trajectories and their respective desired
trajectories are in opposite directions for VF first exposure and
for the AE. This suggests that adapting to the VF means that
the system compensates for the external force-induced errors
(Shadmehr and Mussa-Ivaldi, 1994).

During the training, the trajectory error declined before
the activation. This suggests that the primary goal of the
optimization is to follow the trajectory and the value of α
should not be too high. A higher α punishes the activation
more strictly and thus will force the system to prioritize
lowering the neural command to the muscles. This might result
in converged trajectories that do not follow the desired ones
but minimizes the actuation effort. The error-effort trade-off
can be seen in the end-of-training trajectories in the VF2,
which slightly deviated from the desired trajectory while such
deviation did not happen in the NF sessions.

The results of the training in the NF and the VF resemble
realistic human movement. The bell-shaped endpoint velocity
profile Shadmehr and Mussa-Ivaldi (1994) was achieved. The
direction of the movement did not induce many observable dif-
ferences in the hand velocity profiles, thus an averaged profile
is representative. The velocity curve from the experiment was
much smoother in the NF. The simulated NF velocity is closer
to the experimental velocity in the VF, which is less stable
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Fig. 13. The change of the evaluation metrics during the DF training
sessions. The NF part is not included since it is identical to the VF cases.
Only traj-3 is used as the desired trajectory thus the results were not
averaged in any way.

Fig. 14. Neural command profiles for the throughout the training in DF1,
the line colours darken with the trial number progresses logarithmically.
Blue stands for flexive activation and red stands for extensive activation.
The activation profiles of the muscles in a trained model are marked with
bold lines. Dash lines stand for the activation profile in the trained model
for the NF (Figure 9).

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 15. Trajectories (a & b) and impedance ellipses (others) in the DF1 (first row) and the DF2 (second row), upon exposure (green), 1,400 trials into
adaptation (red), 30,000 trials into adaptation (cyan), and post adaptation (blue). The subfigures demonstrate the intrinsic (b & f), reflexive (c & g), and
empirical (d & h) stiffness. These figures do not show the parts of the trajectories overshooting the destined yt. After reaching the goal in the DF, oscillation
around it started. The black circle in the middle stands for: (b) 100N/m reference for DF1 intrinsic stiffness; (c) 10N/m reference for DF1 reflexive stiffness;
(d) 100N/m reference for DF1 empirical stiffness; (f) 100N/m reference for DF2 intrinsic stiffness; (g) 100N/m reference for DF2 reflexive stiffness; (h)
200N/m reference for DF2 empirical stiffness.
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Fig. 16. Changes of the cost, the correlation coefficient of the lateral force
(with the optimal lateral force in the VF2) and the maximum lateral deviation
throughout the optimization in the CF. The blue line shows the result with
the error clamp and the red line without. The training outcome for the red
before trial 550 is identical to that for the blue line, thus is not shown.

upon reaching the goal. The effect of the feedback component
can be observed from the simulated velocity profile as well. In
Figure 8, the speed of the hand experienced a minor sudden
change around 0.05s, which is the duration of the feedback
delay. This is a clear sign of the participation of the feedback
controller.

The activation profiles (Figure 11 and 14) are also similar to
the actual EMG profiles from the experiments (see Appendix
D). A discrepancy in the setup was that the reference trajectory
in this simulation is traj-3, while in Thoroughman and Shad-
mehr (1999) is traj-4, and Heald et al. (2018) averaged over
four directions. The trained activation profiles for the NF and
the VF1 also resemble the experimental data from Franklin
et al. (2003), except for the major activation recorded for
Posterior Deltoid. In both the simulation and the experiment, it
can be found that the activation level slightly increased in the
VF1 (post-adaptation) compared to that in the NF. However,
the activation level in the early phase of training seems rather
unstable in the simulation. Since the desired trajectories stayed
at the goal for another 0.375s for an evaluated standard
trial, it can be regarded that it was mainly the feedback
controller that contributed to the post-reaching correction. The
two figures clearly indicate that this correction appeared to be
an oscillatory motion around the target, seemingly resulting
from the reciprocal activation of the agonist and antagonist
muscle pairs. The activation of all muscles had never decreased
below 5% in this second half of motion, which is the target
co-activation level that Stroeve (1999a) intended to achieve by
tuning the cost weight α. With learning proceeding, the VF1
model could perform accurate reaching that no correction is

needed, while even in the optima, the DF models failed to stop
at the target.

However, not stopping at the target did not affect the
evaluation of the DF sessions much, as trials that induced
large lateral deviation had been excluded, and the motion upon
reaching a 1 cm circle around the goal was not analysed in the
experiment (Burdet et al., 2001). Most importantly, the training
did offer a straight-line trajectory. From the performance
perspective, further tuning the model and the task parameter
might result in more stable posture holding once the hand
reaches the goal. The DF trials were simulated after similar
NF sessions. Due to the fact that each attempt of NF training
started in different configurations, the resulting models are not
identical to each other. The resulting metrics, the trajectories,
and the dynamic profiles, nonetheless, suggested these models
should fall in the same optima. Increased activation levels were
found in the 0.375s post-adaptation motions. Although the
profiles only resemble the experimental data (Franklin et al.,
2003) to a limited degree, it showed that coactivation is one
of the major features of the reaching phase of the motion.
Since the activation profile converged toward a significantly
higher value after the adaptation, the decrease in averaged
muscle activation shown in Figure 13 is more likely due to
the mitigated oscillation in the second half of the motion once
the trajectorial tracking was improved. The endpoint error of
the DF1 had a similar magnitude as the VF1 during and after
training and was smaller than that of the DF2, which is also
consistent with the data by Franklin et al. (2003), although the
inversed exponential-shaped lower bound that appeared after
2000 trials in Figure 13 was not seen in the literature.

The model trained in the VF2, however, was not able
to converge toward a certain activation profile. It was clear
in its training convergence record (see Appendix D). With
speculation, the cause of this result might be that the control
strategy for a goal cannot be generalized toward other goals.
In each trial, the model was updated to the optima of that
very configuration of the desired trajectory. Such optima might
be far away from the optima for other desired trajectories.
Statistics based on the randomized NF and VF data sets show
that the distance between the goals is positively relevant to
the rise in the cost, but not as significant as the positions of
the goals as shown in Figure 6. Therefore more likely it was
because the feedback control behaviour played a more active
role in the VF2 adaptation.

B. Impedance characteristics

The impedance was mainly evaluated for the DF trials. It
appears that the strategy the model used was to eliminate the
trajectorial error so that the lateral force could be minimized
and the impedance would therefore be reduced to roughly
the pre-exposure level. When the endpoint deviated from the
desired trajectory, the stiffness matrix changed toward the
singularity. In this case, the stiffness ellipse can hardly be
reasoned. Judging by Figure 14, the simulation showed that
the model would eventually hover around the goal even before
the designated movement time of 0.375 s ended. This indicates
that the impedance captured in Figure 15 does not perfectly
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represent the impedance profiles during the reaching motions.
In this regard, the half-trained models provided less adequate
and comparable impedance profiles than the fully trained
ones, and the DF1 model should give better results than the
one in the DF2. The calculation of dynamic impedance in
the reflexive and empirical way linearized the force-position
relation with reference to the desired trajectory (Stroeve,
1999b; Burdet et al., 2000). This explained the large distortion
for the DF2 stiffness during the training.

It has been remarked that the intrinsic stiffness contributed
to less than 10% of the reaction force (Burdet et al., 2000).
Ignoring the magnitude of the impedance, the intrinsic stiffness
per trial changes along the trajectory in a way that typical
stiffness would (Stroeve, 1999b; Tee et al., 2004). The DF1
also induced enlarged reflexive and empirical stiffness in the
direction of the force field. This agrees with what Burdet
et al. (2001) observed. The trajectory in the 1400th trial in the
DF1 (red) significantly deviated from the desired one when its
empirical impedance was enlarged by a degree of magnitude.

Possibly because the intrinsic and reflexive stiffness profiles
did not take the feedforward behaviour into account, the
general magnitude of the impedance, and thus the sizes of the
stiffness ellipses are much smaller than that in the literature.
Although, from the opposite perspective, the reflexive stiffness
might provide a good indication of how active the feedback
controller was. The empirical approach by Tee et al. (2004)
did not show much about the increased lateral stiffness without
the additional term Ki (see Appendix B). It does produce
good impedance profile for longitudinal movement both before
and after the adaptation (see Appendix D). Since the figure
excluded the cocontraction-induced impedance as it would
be just artificially adding a major yet fixed-value horizontal
stiffness to the already existing stiffness profile, it shows that
the reciprocal contraction is only affected by the DFs to a
limited level compared to the effect of the VF1. Although
the change of empirical profile regarding the VF1 cannot
be validated by experiment as this simulation result clearly
approached singularity during the training and hardly returned
to normal post-adaptation.

C. Motor memory

The CF sessions are simulated with a deterministic task,
meaning that all randomised factor was eliminated when the
desired trajectory was computed, including the movement
time, which was set to 750 ms. A better simulation would
include not only the changing movement time but also slightly
altered starting points and goals randomly assigned within a
1 cm radius from the traj-3 standard positions (Vaswani and
Shadmehr, 2013). The error clamp’s direction would have
changed accordingly in order to stay perpendicular to the
desired trajectory. Yet such randomization would induce much
noise in the parameters such as the cost and the lateral fore
correlation, making the reasoning of the result less straight-
forward.

For the CF trials, the learning curve represented by the
lateral force correlation matches the experiment reported by
Vaswani and Shadmehr (2013)in general. The index increased

as the VF2 session progressed and dropped when the VF2 was
removed. The transient appears to be exponential-like except
for the first exposure in the VF2, likely to result from an utterly
unstable trial that touched the edge of the workspace. Upon
exposure to the CF after the brief training in the VF2, the
decay of the correlation coefficient also did not return to the
level that the experiment showed. The correlation coefficient
decreased even faster than when it was exposed in the NF. This
is likely to be because the learning based on the trajectorial
error was effectively halted due to the error clamp and the
learning only progressed for the activation sake, which is two
orders of magnitude slower than the error-based learning. The
delay of the decay was also not reflected by the simulation. It
means that the model does not simulate the two-factor learning
Smith et al. (2006).

D. Future direction

Tuning the controller, in this case, means finding the optimal
settings, including the initial weights and the learning rates so
that the model can be properly optimized. Networks with more
layers have been explored while the model was constructed
in this project. No significant improvement in performance
has been found. Nevertheless, the deep networks were only
roughly tuned manually. Therefore, a well-optimised controller
might still outperform the current MLP in use. Using adaptive
or multiple learning rates might be a minor improvement.
Although the standard decreasing η worked modestly on the
current model as its only effect was slowing down the training,
applying different rates of learning on the two controllers
or even on individual weights can be an alternative. The
time-sensitive learning could also be an issue. Under the
current batch update, each instance in a reaching movement
contributes equally toward the gradient. Yet it is apparent that
the reaching and holding position has different requirements
for the feedforward and feedback controllers respectively.
Investigation into this matter might result in increased learning
efficiency or unnecessary complexity. Additionally, if the run
time allows, the fourth-order Runge–Kutta method would have
been a more up-to-date choice than an Euler integrator.

The use of randomized desired trajectories, including their
movement time, directly affected the performance and can
be shown with parameters such as cost. Once the tasks
were defined with fixed variables, the convergence became
deterministic, and the learning curves became smooth. With
the goal being too close to the starting point, it is debatable
if the motion still counts as reaching or not. The strategy
for posture control can well be different from motion control
and can involve different controllers or synergy. Defining a
lower limit for the trajectory length can be an improvement to
the task design. The tasks can also be redesigned to reflect
the actual experiments more accurately. For instance, the
experiment tasking humans to train in one direction (Vaswani
and Shadmehr, 2013) introduced force fields that are not
perfectly perpendicular to the y direction, forcing the subject to
generalize over different movement directions. Although this
angular deviation is small, such modification to the simulation
can improve its fidelity.
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The model is inherently based on a series of assumptions
and simplifications. Most importantly, the largely linearized
Hill’s model. It simplifies the, particularly analytical, calcula-
tion complexity, making the gradient descent a viable way
of training. This is common among the models that adopt
supervised learning (Kawato et al., 1987; Haruno et al., 2001).
Gradient-based learning rules work better with linearized
models and provide limited capability to react to unstable
dynamics. If more biologically plausible components are to
be used in this model, the calculation of the Jacobian will
be increasingly challenging, and alternative learning policies
might be needed. Other models known to include Hill-type
muscles either applied reinforcement learning (Kambara et al.,
2009) or specific learning rules based on muscle dynamics
(Franklin et al., 2007). Gründemann (2023) successfully im-
plemented the Huxley model within a simple feedback control
loop and trained it with the genetic algorithm. This proof-of-
concept attempt can be potentially incorporated into a more
sophisticated control system, possibly with NNs deployed.

V. CONCLUSION

A model has been reconstructed, consisting of a combined
feedback and feedforward controller, a Hill-type muscular
model, and simplified skeletal dynamics. This model was
first trained in the NF to perform point-to-point reaching
tasks, achieving straight trajectories with bell-shaped velocity
profiles. On top of this, the model successfully adapted to the
VFs, managing to follow the desired trajectories and resulting
in after effect upon the removal of the VFs. The model was
able to adapt to the DFs, demonstrating increased contraction
level and struggle in stablizing around the targets. The CF
hindered the recovery of the behaviour after the removal of the
VF. However, the speed of such decay and the absence of the
delay suggests that additional mechanisms are required for this
model to simulate the two-rate learning behaviour. The learn-
ing process showed that trajectory tracking was prioritized
over decreasing muscle activation. The calculated stiffness
profiles only roughly resemble the experimental results but
successfully demonstrated the model’s reaction to the DFs. The
endpoint stiffness expanded during the training and gradually
returned to the pre-training level after the trajectorial error
had been eliminated. Overall, human motor learning can be
simulated with this model in an imposed novel dynamics.
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APPENDIX A
THE MUSCULOSKELETAL MODEL

Stroeve (1999a) referred to Winters and Stark (1985) for the
muscle model, which simplified the muscle activation to a first-
order relation in reference to the excitation. The limb dynamic
is calculated with the so-called TMT method summarized by
Vallery and Schwab (2020).

A. Muscular model

For the muscles, only the contractile element is included,
with the force-velocity relation being Hill-type and the force-
length relation being Gaussian. The muscle model takes u as
the input, a as the state variable, and F as the output. The
activation dynamics has:

ȧi =
ui − ai

τi
(19)

where i ∈ [1, 6] and

τi =

{
τac u > a

τda u < a
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τac = 40ms and τda = 70ms are the time constants for
activation and deactivation of the muscles, respectively.

The general expression for the muscle force for one muscle
is:

F = aFlceFvceFmax (20)

Fmax is the maximum force for the muscles, Flce is the force-
length relation, and Fvce is the force-velocity relation. The
muscle length can be derived from the joint angle:

lm = lr −
2∑

j=1

rj (θj − θrest,j) (21)

l̇m = −
2∑

j=1

rj θ̇j (22)

lce = lm − lt (23)

l̇ce = l̇m (24)

Where r is the moment of arm, θrest is the rest position of
the arm, which is not necessarily where the muscles are at the
rest lengths, lt is the tendon length. Substituting θ in equation
21 with θmax or θmin leads to lmax or lmin per muscle. With
these terms derived, for Flce we have:

Flce = e
−
(

lce−lce0
lcesh

)2

(25)

where

lce0 = lmin + Lopt (lmax − lmin)− lt (26)
lcesh = Lsh (lmax − lmin) (27)

(28)

For Fvce:

Fvce =


0 l̇ce ≤ −vmax

Vsh(vmax+l̇ce)
Vshvmax−l̇ce

−vmax < l̇ce ≤ 0
VshVshlvmax+Vml l̇ce
VshVshlvmax+l̇ce

˙lce > 0

(29)

where

vmax = Vvm

(
1− Ver

(
1− al̇ce

))
(30)

The values of all constants can be found in Stroeve (1999a).

B. Skeletal model

The TMT method is used to perform Newton’s second law
in a generalized coordinate, which is, in this case, the joint
space. Thus we have:

q̈ = M−1
redFred (31)

where q̈ =
[
θ̈1, θ̈2

]
for q = [θ1, θ2], Mred is the reduced mass

matrix and Fred is the reduced force vector, namely the resul-
tant forces imposed on the system projected to this local space.
With T = [xm1, ym1, x1, y1, xm2, ym2, x2, y2, θ1, (θ1 + θ2)],

Fred =
∂T

∂q
(Fext −Mgconv) +Tpas +Tmus (32)

and

Mred =
∂T

∂q
M

∂T

∂q
(33)

where x and y are the position of the end of the limbs, xm

and ym are the positions of their centres of mass. M is the
mass matrix that has the same number of dimensions as T.
Fext is the external force in Cartesian coordinate, gconv is the
convective term in TMT. Tpas is the passive torques which is
treated as a univariate function of time. Tmus is the resultant
muscle torques in the joint space. The expressions follows:

gconv =
∂ ∂T

∂q q̇

∂q
q̇ (34)

Tpas =−Bθ̇ − sgn (θ − θrest)
Tmax

ePEsh−1
(35)(

e
PEsh
PExm

|θ−θrest|−1
)

Tmus,j =

6∑
i=1

Firij (36)

where B is the joint damping constant, PEsh and PEsm

are the shape factors for the passive torques, and rij is the
rotational moment of arm of muscle i on joint j.

APPENDIX B
MODEL SENSITIVITY AND BACKPROPAGATION

A. Backpropagation through time

The batch update of the weight used in the controller is
described as

Wi,new = Wi,old − η∆Wi (5 revisited)

∆Wi =
1

N

N∑
k=0

∇Wi
J (k) (37)

for i = 1, 2 being the MLP network layer number, k is the
discrete instance number, and N is the time vector’s length.
Here the BTT can be taken into two parts: the neural network
part and the musculoskeletal part:

∇Wi
J (k) =

∂u

∂Wi
∇uJ (k) (38)

At any given time in a trial, the equations of the backpropaga-
tion for the neural netwrok part of the system stay the same.
This is the partial derivative of equation 1 and its sub-function.
Here we only include the 1-hidden-layer case:

∂u

∂W1
= ϕ

z1
1− z1

W2
u

1− u
(39)

∂u

∂W2
= a2

u

1− u
(40)

where z1 is the output signals of the hidden layer and a2 is the
input signals to the output layer, the latter has one more bias
term than the former. Calculating the other term in equation
38, requires iterative execution of equation 7, equation 8 and
equation 9:
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∂+J

∂xj (k)
=

∂l (k)

∂xj (k)
+

p∑
i=1

∂l (k)

∂yi (k)

∂yi (k)

∂xj (k)
+

C1

n∑
i=1

∂+J (k)

∂xi (k + 1)

(
C2 + h

∂fi
∂xj

(x (k) ,u (k))

)
(7 8, revisited)

∂+J

∂uj (k)
=

∂l (k)

∂uj (k)
+

p∑
i=1

∂l (k)

∂yi (k)

∂yi (k)

∂uj (k)
+

n∑
i=1

∂+J (k)

∂xi (k + 1)
h
∂fi
∂uj

(x (k) ,u (k))

(9, revisited)

where C1 = 0 when k = N , otherwise C1 = 1; C2 = 1 when
i = j, otherwise C2 = 0. Consistent with equation 3:{

ẋ (t) = f (x (t) ,u (t))

y (t) = g (x (t) ,u (t))
(3, revisited)

we define the system states as follows:

x =
[
a1, a2, a3, a4, a5, a6, θ1, θ2, θ̇1, θ̇2

]
y =

[
F1, F2, F3, F4, F5, F6, θ1, θ2, θ̇1, θ̇2

]
u = [u1, u2, u3, u4, u5, u6]

For J being discretized into l:

J =

N∑
k=0

l (x (t) ,y (t) ,u (t)) (41)

we have:
∂l

∂x
= [2Fmaxαalr, 2e1, 2e2, 2ė1, 2ė2] (42)

∂l

∂y
= [01×6, 2e1, 2e2, 2ė1, 2ė2] (43)

∂l

∂u
= 01×6 (44)

where e is the trajectorial error in the joint space and ė is its
time derivative.

B. Sensitivity model

Now the only terms that remain are ∂f
∂x , ∂f

∂u , ∂g
∂x , and ∂g

∂u .
These are the jacobians of the musculoskeletal system. For s =[
θ1, θ2, θ̇1, θ̇2

]
and therefore ṡ =

[
θ̇1, θ̇2, θ̈1, θ̈2

]
, the matrices

are:
∂f

∂x
=

[
∂ȧ
∂a 06×4
∂ṡ
∂a

∂ṡ
∂s

]
(45)

∂f

∂u
=

[
∂ȧ
∂u

04×6

]
(46)

∂g

∂x
=

[
∂F
∂a

∂F
∂s

04×6 I4×4

]
(47)

∂g

∂u
=

[
010×6

]
(48)

Note that although the external forces Fext are included in
the vector u in Stroeve (1999b), which means that the terms

∂f
∂Fext

and ∂g
∂Fext

are included in the sensitivity matrices ∂f
∂u

and ∂g
∂u , respectively, these terms are not part of ∂J

∂u as they
are not explicitly a function of u and thus are ignored in this
paper since the external forces are treated as black boxes.

Inside the jacobians, the muscle sensitivity models are: ∂ȧ
∂a ,

∂ȧ
∂u , ∂ȧ

∂s = 06×4, ∂Ḟ
∂a , ∂F

∂u = 06×4, and ∂Ḟ
∂s ,of which, the first

two are diagonal matrices that:

∂ȧi
∂ai

= − 1

τi
(49)

∂ȧi
∂ui

=
1

τi
(50)

with τi being either the activation constant or deactivation
constant of muscle i ∈ [1, 6] depending on its current acti-
vation level ai and the value of ui. ∂F

∂a is a 6-by-6 diagonal
matrix. ∂F

∂s is converted from the muscle space to the joint
space in Stroeve (1999b) when calculating the jacobian. For
the simplicity of calculation, in this paper, both the muscles
and the skeletal dynamics are represented in joint space since
the muscle lengths and the joint angles, along with their time
derivatives, are mutually interchangeable.

The rest six terms from the four derivatives make the limb
dynamics. These are ∂ṡ

∂a , ∂ṡ
∂s , ∂ṡ

∂u = 04×6, ∂s
∂a = 04×6, ∂s

∂s =
I4×4, and ∂s

∂u = 04×6. Here,

∂ṡ

∂a
=

∂ṡ

∂T

∂T

∂F

∂F

∂a
(51)

∂ṡ

∂s
=

∂ṡ

∂sdirect
+

∂ṡ

∂T

∂T

∂F

∂F

∂s
(52)

where T is the two joint torques, F is the six muscle
forces, and ∂ṡ

∂sdirect
is the direct derivative of the joint angular

acceleration over the states (since ∂θ
∂s = 01×4).

More analytical details for all the above-mentioned expres-
sions can be found in Stroeve (1999b). For this project, these
terms were symbolically derived using MATLAB. Although
the software can in theory provide the lumped function be-
tween the neural command and the joint acceleration (and
its derivative), it takes a long time used to execute such an
algorithm. As a result, deriving the mathematical expressions
at the above-provided level seems to balance the programming
effort and the computer run-time the best.

C. Impedance

1) Intrinsic stiffness: The equation for the intrinsic stiffness
is per definition

Zk =
dFend

dpend
(18, revisited)

As mentioned Fend, in the Cartesian space, is composed of
two parts, thus

Zk =
dFpas

dpend
+

dFmus

dpend
− ∂2Fend

∂T∂q
(53)
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Breaking down this expression we have
dFpas

dpend
=

∂Fpas

∂Tpas

∂Tpas

∂s

∂s

∂pend
(54)

dFmus

dpend
=

∂Fmus

∂Tmus

∂Tmus

∂F

∂F

∂s

∂s

∂pend
(55)

where
∂Fpas

∂Tpas
=

∂Fmus

∂Tmus
=

∂q

∂pend
(56)

that
∂s

∂pend
=

[ ∂q
∂pend

02×2

]
(57)

The term ∂q
∂pend

describes the jacobian of the inversed kine-
matics of the skeletal system, which should be the inverse
of the forward kinematics jacobian according to the inverse
function theorem. The other terms in equation 54 and 55 are
available upon BTT being calculated. One assumption made
here is that the muscle dynamics won’t change at a given
state from lengthening to shortening, and the effect of vmax

is neglected (Stroeve, 1999b).
2) Reflexive stiffness: The stiffness induced by the feedback

loop is essentially calculated by wiring the system in equation
3 into a feedback loop (Stroeve, 1999b):

u1 = Gy1 (t− τ) (58)

Where

G = kfb
∂u

∂h2

= kfbW1
z1

1− z1
W2

u

1− u

(59)

is the transfer function for the controller, which can be found
in the MLP backpropagation, kbf is the feedback gain, h2 =
[s,F] are the loop feedback and τ = 0 for simplicity. If the
delay is to be considered in this case, a Pate filter should be
used. The stiffness is expressed by the inverse of the transfer
function of this feedback loop.

3) Empirical stiffness: With the empirical model (Tee et al.,
2004; Burdet et al., 2013) basedon the experimental results
(Burdet et al., 2000, 2001; Franklin et al., 2003), the stiffness
can as well be calculated as a function as joint torques, given
the external force is known. The torques is calculated as

T = Text +Tmus

=
∂T

∂q
Fext +Tmus

(60)

then the joint stiffness

Kjoint =

[
10.8 + 3.18|τ1| 2.83 + 2.15|τ2|
2.51 + 2.34|τ2| 8.67 + 6.18|τ2|

]
(61)

One additional increase of stiffness was assumed to account for
the effort to counter the effect of the DF. This term Ki is equal
to the DF stiffness presented in equation 15 and 16. With Fext

and Ki substituted by 0, we have the static endpoint stiffness.
Adding Fext, the stiffness reflects the reciprocal activation.
Ki represents coactivation. Kjoint can be transformed to
Cartesian space in the same fashion of equation 54, then

Zempirical = Kjoint,cart. +Ki (62)

APPENDIX C
ALGORITHM DEVELOPMENT

The construction of the model started at the musculoskeletal
dynamics. Torque input was used to test the skeletal dynamics
by observing if the kinematic was reasonable regarding the
input given. Then the muscles were added and simple flexion
and extension could be performed. Once the physical part of
the system was convincingly good (later the result was cross
checked against the model by Gründemann (2023)), controller
was added, starting with a feedback controller and PID. The
result was far from adequate as the model was full of bugs
and suboptimal coding, which dragged the run speed down to
a few seconds per trial.

Without prior success in controlling the model, the MLP
wsa still written into the model with the feedback loop
ignored. MATLAB does offer a few reinforcement learning
packages and NN examples. However, these resources were
not volatile enough to be integrated into this project, which
is, as mentioned, the downside of using MATLAB instead
of Python. The latter offers a variety of machine learning
tools, while the former does not. The reason for choosing
MATLAB is the numerical integration and the management of
simulation, in general, was largely empowered by Simulink.
The MLP was as easy as two lines of code but learning math
about forward and back propagation took some time. The BTT
algorithm was implemented in two ways. One was by keying
all the derived equations directly into the code, the other by
presenting all forward dynamics in the symbolic form and
allowing the computer to automatically inverse the math by
calculating the Jacobians. The former method was much faster
during the simulation but it was rather hard to ensure all code
was correct and well maintained. The other option, however,
was extremely slow. Eventually, the final solution stood on
the middle ground. The BTT algorithm was broken down into
several small yet tedious computational tasks to be machine-
derived, then these tasks were manually assembled into the
Jacobian of the entire musculoskeletal system.

It had been so far fairly fast and straightforward to have all
the components added to the model, yet after all syntax errors
were eliminated, the removal of all logical errors from the code
has proven to be the most grinding and time-consuming part of
the project. First, the saturation problem in the neural signals
was solved by limiting the initial weight of the controllers.
Then the overly large workspace constraint was reduced with
the border slightly expanded to avoid the desired trajectory
reaching outside the domain. The identification of the position
of the errors was the main hurdle. Combined with yet-to-be-
optimized run speed, the progress was slow, although some
common issues had been tackled, such as avoiding for-loops.
In order to find the error, the model was again simplified
with the temporary removal of the controller and later the
removal of the muscle, as nothing was found but a few wrong
constants. The skeletal dynamics as first confirmed to be
correct since, with the absence of the muscles, the desired
torque could be calculated. The torque drove the hand into
the desired trajectories. Two major problems were eventually
found. The main bug was the wrong propagation direction
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Fig. 17. The comparison between the numerical differentiation and the
analytical derivatives. Each point in the numerical curve was calculated by
observing the change of J when a unit impulse of T was sent to the system at
the respective time. The solid and dash lines have similar values yet close-to-
symmetric profiles. This is a strong indication that the propagation direction
was wrong.

of BBT (Figure 17). This was the reason why the optima
did not result in straight-line trajectories. This was found by
comparing the numerical differentiation of the system ( ∂J

∂T1,2
)

and its analytical derivation result (namely the BTT). After the
BTT was corrected, the model was to be re-complicated. The
muscle was given it’s individual s-function so that the model
reflects Stroeve’s derivation more closely. This is where the
other bug appeared. The issue was that there was an algebraic
loop in the Simulink model. This was identified with the inbuilt
profiler, as the output sub-functions in the s-functions were
called an abnormally larger number of times.

Alongside numerous minor bug-fixing, further efforts to
complete the model mainly included the introduction of the
activation penalty, the force feedback, the external forces,
multiple (standard and randomized) desired trajectories and
so on. Simultaneously, tuning the controller has always been
a problem, especially when the controller was expanded into
deep learning NN. This was only made easier after the bug and
the run time issues were fixed so that fast and relatively reliable
simulations could be executed to find a good configuration
with trial and error. This mainly regarded the learning rate η,
the initial weights and the cost activation weight α.

The task design was relatively easy once the model was
decently working. With a good computer, the run speed was
risen up to roughly 0.1s per second, which is close to the
ideal speed expected. Most of the evaluation metrics were
straightforward. Only it seems rather challenging to calculate
the impedance properly.

(See next page for Appendix D)
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APPENDIX D
SUPPLEMENTARY FIGURES

(a) Simulation result, trained in the NF. (b) Experiment, trained in the NF.

(c) Simulation result, first exposure in the VF1. (d) Experiment, first exposure in the VF.

(e) Simulation result, after effect of model trained in the VF1 (f) Experiment, after effect of model trained in the
VF.

Fig. 18. Comparison between the simulated trajectories and the experiment by Shadmehr and Mussa-Ivaldi (1994), from which the figures are adopted.
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(a) Simulation result, trained in the NF. (b) Experiment in the NF (Thoroughman and Shadmehr, 1999). The grey line
is the EMG data in the NF based on traj-4, the thin black lines stand for pre-
adaptation VF EMG data, and the thick black lines stand for the post-adaptation
VF EMG data.

(c) Simulation result, in the VF1. (d) Experiment in the VF (Heald et al., 2018). The profile is averaged over four
directions.

Fig. 19. Comparison of the activation profiles in the NF and the VF between the simulation and the experiments, from which the figures are adopted.
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(a) Simulation result, trained in the DF1.

(b) Simulation result, trained in the VF2.

(c) Experiment in the VF1 (Franklin et al., 2003). The EMG levels in the NF
are represented by the grey lines.

Fig. 20. Comparison of the activation profiles in the VF2 and DF between the simulation and the experiments (NF cases also included in Franklin’s figure),
from which the figures are adopted.
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Fig. 21. Left: the tracking of the VF2 training process and its evaluation over the standard trajectories; Right: activation profiles of the VF2 training

Fig. 22. Left: The relation between the cost and predetermined movement time; Right: Ther relation between the cost and the length of the desired trajectory
(the distance between the start and the goal).
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(a) Intrinsic stiffness ellipses for the DF1

(b) Stiffness ellipses for the DF2

Fig. 23. Intrinsic stiffness profiles in the DFs, the reference is 100 N/m
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(a) Stiffness of the learnt motion in the NF (b) Stiffness of the learnt motion in the VF1

(c) Stiffness of the learnt motion in the DF1 (d) Stiffness of the learnt motion in the DF2

Fig. 24. Intrinsic stiffness profiles in four force fields. The left, middle, right reference circles in all plots stand for 100N/m, 10N/m, and 100N/m stiffness.
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(a) A: stiffness profiles in the NF by (Tee et al., 2004); B: stiffness profiles in the NF by (Gomi
and Kawato, 1997). Both figures were adopted from the former.

(b) Impedance in NF, VF, and DF by (Tee et al., 2004)

(c) Stiffness at the midway of the motion in NF (green), VF (red), DF1 (blue) and DF2 (cyan) from the simulation. The reference
circles (black) from left to right represent 10N/m, 10N/m, and 100N/m.

Fig. 25.
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(a) The lag in memory decay observed by (Vaswani and Shadmehr, 2013).

(b) Simulation result, trained in the NF-VF2-CF sequence.
(c) Experiment by (Vaswani and Shadmehr, 2013), group 1.2 has the same task
design as the simulation.

Fig. 26. Comparison of the change of the learning index based on lateral force correlation coefficient in reference to the trained model in VF2.


	Preface
	9bb24908-14a1-40c3-ab09-73a60fece4bf.pdf
	Introduction
	Methodology
	Musculoskeletal model
	Controller
	Learning
	Task design
	Evaluation

	Results
	Learning in the NF
	Learning in the VF
	Learning in the DF
	Learning in the CF

	Discussion
	Adaptation
	Impedance characteristics
	Motor memory
	Future direction

	Conclusion
	Appendix A: The musculoskeletal model
	Muscular model
	Skeletal model

	Appendix B: Model sensitivity and backpropagation
	Backpropagation through time
	Sensitivity model
	Impedance
	Intrinsic stiffness
	Reflexive stiffness
	Empirical stiffness


	Appendix C: Algorithm development
	Appendix D: Supplementary figures


