
(Dynamic) hedging of a
mortgage portfolio
Investigating margin and value stability

Lisa de Vries

Fa
cu
lty

EE
M
C
S
-T

U
D
el
ft





(Dynamic) hedging of
a mortgage portfolio

Investigating margin and value stability

by

Lisa de Vries

in partial fulfilment of the requirements for the degree of

Master of Science
in Applied Mathematics

with a specialisation in Financial Engineering

at the Delft University of Technology,
to be defended publicly on Friday July 7, 2023 at 11:00 AM.

Student number: 4864476
Project duration: January 1, 2023 – July 7, 2023
Thesis committee: Prof. dr. A. Papapantoleon, TU Delft, responsible supervisor

Dr. F. Barsotti, TU Delft, daily supervisor
Dr. N. Parolya, TU Delft
N. van Pelt MSc, ING

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/




Abstract
Banks issue mortgages with an embedded option for borrowers to prepay a part of the loan.
However, this behaviour poses a risk to banks as it disrupts the level and timing of mortgage cash
flows. From an earning perspective, when interest rates decrease, customers are financially
incentivised to prepay their mortgages, resulting in a decrease in the bank’s income when the
cash proceeds are reinvested at a lower rate. Conversely, from a value perspective, with an
increase in interest rates, reducing the financial incentive to prepay, cash flows aremoved further
ahead in time, thereby increasing the duration of the mortgage. These two scenarios highlight
the instability in the bank’s margin and value caused by prepayments. To address this risk,
banks employ hedging strategies to mitigate the prepayment risk and achieve margin and value
stability. This research aims to identify an effective hedging strategy that can accomplish both.

The research utilised the one-factor Hull-Whitemodel to simulate various interest rate scenar-
ios, while an interest rate-dependent logistic prepayment model provided monthly prepayment
rates based on the mortgagors’ refinancing incentives. Ten different hedging techniques were
explored, including the internal funding, a static and dynamic notional hedge, and a static and
dynamic value hedge. Additionally, a calibrated receiver swaption was included in each of these
five hedging approaches. Subsequently, each of these hedging approaches was assessed for
its margin stability, measured by the variance of the net interest margin, and its value stability,
evaluated through the variance of the net present value, the average basis point value, and the
NPV-at-Risk in ±200 basis point shocked interest rate scenarios.

The analysis indicated that relying solely on internal funding performs poorly in terms of
both margin and value stability. Dynamic hedges were found to generally outperform their static
counterparts, due to their ability to respond to market changes. Furthermore, the notional hedge
demonstrates superior margin stability, while the value hedge exhibits the best value stability.
Additionally, the analysis revealed that the incorporation of a receiver swaption significantly im-
proves the NPV-at-Risk but has limited impact on the other risk metrics.

Based on the conducted research, it is concluded that for a bank aiming for both value and
margin stability, the most effective hedge strategy is the dynamic value hedge without the utili-
sation of a swaption. However, it should be noted that the ultimate choice for a hedging strategy
depends heavily on the risk appetite of each bank. If a bank prioritises attaining margin stabil-
ity, the recommended choice would be the dynamic notional hedge without the incorporation of
the receiver swaption. On the other hand, for a bank that prefers value stability over margin
stability, the dynamic value hedge without the inclusion of a swaption should be considered.
Moreover, the final decision may also be influenced by mandatory requirements imposed by
financial regulators, such as the European Central Bank.
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iii





Preface
This thesis has been submitted in partial fulfilment of the requirements for the degree of the Master of
Science in Applied Mathematics at Delft University of Technology. From January 2023 to July 2023,
I have been working on the construction of various hedging portfolios to offset the prepayment risk
arising from mortgages, focusing on maintaining margin and value stability. I conducted this project
in collaboration with ING, a large Dutch commercial bank, as part of the Model Validation team that
focuses on interest rate risks in the banking book models.

My supervisor within this team has been N. van Pelt. I would like to thank him for our (bi-)weekly
meetings in which we discussed the progress of my research as well as my personal well-being. His
relevant insights and guidance were useful throughout the entire process, and his enthusiasm made it
seem like this research project would never reach its conclusion. However, he also taught me a crucial
lesson that I will cherish: never be afraid to ask questions.

My academic supervisor of this project has been Dr. F. Barsotti, of the Applied Probability group at
the Delft Institute of Applied Mathematics. Throughout this project, she provided valuable guidance,
offering advice on enhancing my report. Additionally, she consistently ensured that I maintained a clear
overview of the research. Despite facing personal challenges, she remained dedicated and checked
in on my progress. I am truly thankful for her support and would like to express my appreciation to her.

Furthermore, I would like to thank Prof. Dr. A. Papapantoleon for being my responsible supervisor
and Dr. N. Parolya for completing the committee. I also want to thank ING for the provided input, but
mostly my colleagues who made me feel like I was part of the team from day one, and who graciously
shared their expertise and provided assistance when needed. I could not have wished for a better
environment to carry out my thesis project. Finally, I would like to thank my friends and family, who
supported me unconditionally during these six months.

Lisa de Vries
Amsterdam/Delft, July 2023

v





Contents

1 Introduction 5
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Research objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Thesis outline and methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Literature review 9
2.1 Interest rate models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Prepayment models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Hedging approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Interest rate model 17
3.1 Hull-White model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Calibration method of the Hull-White model. . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Calibration data and results of the Hull-White model . . . . . . . . . . . . . . . . . . . . . 19

4 Cash flow model 21
4.1 Prepayment model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.1 Logistic function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1.2 Calibration method of the prepayment model . . . . . . . . . . . . . . . . . . . . . 22
4.1.3 Calibration data and results of the prepayment model . . . . . . . . . . . . . . . . 23

4.2 Mortgage cash flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.1 Mortgage cash flows with prepayments . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Hedging approaches 31
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Margin stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2.1 Risk metrics margin stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2.2 Hedging approaches margin stability . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.3 Value stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3.1 Risk metrics value stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3.2 Hedging approaches value stability . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.4 NPV-at-Risk analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.4.1 Calibration of the swaptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.5 Assessment hedge approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6 Conclusion and discussion 55
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

A Preliminary financial mathematics 59
A.1 Financial definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

A.1.1 Money-market account . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
A.1.2 Euribor rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

A.2 Financial theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
A.2.1 Change of measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
A.2.2 Itô’s lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

B Additional insights about the Hull-White model 63
B.1 Characteristics of the Hull-White model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

B.1.1 Normality assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
B.1.2 Affine term structure model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

vii



viii Contents

B.2 Pricing financial instruments under the Hull-White model . . . . . . . . . . . . . . . . . . 64
B.2.1 Zero-coupon bond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
B.2.2 Interest rate swap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
B.2.3 Swaption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

C Derivation NPV-at-Risk after incorporating swaptions 73



List of Figures

1.1 Cash flows of different types of mortgages . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Model interdependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Rational and observed prepayment behaviour . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Example cash flow and value hedge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Current yield curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Historical and simulated 6M-Euribor rates . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 Logistic function for different parameter sets . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Historical unweighted prepayment data . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Historical prepayment data with unweighted fit . . . . . . . . . . . . . . . . . . . . . . . 25
4.4 Historical weighted prepayment data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.5 Historical prepayment data with weighted fit . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.6 Example cash flows mortgage without prepayments . . . . . . . . . . . . . . . . . . . . 28
4.7 Cash flows of a mortgage portfolio without prepayments . . . . . . . . . . . . . . . . . . 28
4.8 Example cash flows mortgage with prepayments . . . . . . . . . . . . . . . . . . . . . . 29
4.9 Cash flows of a mortgage with prepayments . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.10 Cash flows of a mortgage portfolio with prepayments . . . . . . . . . . . . . . . . . . . . 30

5.1 Risk transfer process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Cash flows of the internal funding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3 Cash flows of a mortgage without prepayments and the internal funding . . . . . . . . . 33
5.4 Cash flows of two mortgages without prepayments and the internal funding . . . . . . . 33
5.5 Cash flows of a static notional hedge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.6 Simulated net interest margin for the static notional hedge . . . . . . . . . . . . . . . . . 35
5.7 Simulated 6M-Euribor rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.8 Cash flows of a dynamic notional hedge . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.9 Simulated net interest margin for the dynamic notional hedge . . . . . . . . . . . . . . . 38
5.10 Cash flows and discount factors of a mortgage and the internal funding . . . . . . . . . 41
5.11 Cash flows of a static value hedge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.12 Simulated spot rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.13 Simulated BPV and NPV for the static value hedge . . . . . . . . . . . . . . . . . . . . . 44
5.14 Cash flows of a dynamic value hedge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.15 Simulated NPV for the dynamic value hedge . . . . . . . . . . . . . . . . . . . . . . . . 46
5.16 Cash flows of a receiver swap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.17 Cash flows of a receiver swaption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

1





List of Tables

3.1 Current swaption volatilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Calibration results Hull-White . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 Historical prepayment data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Calibration results unweighted prepayment model . . . . . . . . . . . . . . . . . . . . . 25
4.3 Calibration results weighted prepayment model . . . . . . . . . . . . . . . . . . . . . . . 26
4.4 Representative mortgage portfolio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1 Variance NIM of the internal funding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2 Variance NIM of the internal funding and static notional hedge . . . . . . . . . . . . . . . 36
5.3 Variance NIM of the internal funding, static and dynamic notional hedge . . . . . . . . . 39
5.4 Variance NPV and average BPV of the internal funding and static value hedge . . . . . 42
5.5 Variance NPV and average BPV of the internal funding, static and dynamic value hedge 45
5.6 NPV-at-Risks for all hedging approaches without receiver swaption . . . . . . . . . . . . 47
5.7 Fixed characteristics receiver swaption . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.8 Calibrated characteristics receiver swaption . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.9 Expected 6M-Euribor swap rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.10 Fixed cash flows calibrated receiver swaption . . . . . . . . . . . . . . . . . . . . . . . . 51
5.11 Risk metrics for all hedging approaches without receiver swaption . . . . . . . . . . . . 52
5.12 Risk metrics for all hedging approaches with receiver swaption . . . . . . . . . . . . . . 53
5.13 Final ranking for each risk metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

A.1 Itô’s multiplication table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

C.1 NPV-at-Risk for all hedging approaches with receiver swaption . . . . . . . . . . . . . . 73

3





1
Introduction

This chapter serves as an introduction to the research topic, covering several key aspects. It begins
by providing background information, offering an understanding of the context in which the research is
situated. Subsequently, it elaborates on the research objective, presenting the main research question.
It then outlines the methodology employed to achieve the research objective, along with an overview
of the paper’s structure.

1.1. Background
Fluctuations in interest rates can have a significant impact on a bank’s financial position and earnings.
Interest rate risk in the banking book (hereafter IRRBB) specifically refers to the potential impact on its
banking book activities, which include assets and liabilities held for longer-term investment purposes,
such as loans, deposits, and investments. The risk arises because changes in interest rates can affect
the bank’s net interest margin, net income, and economic value. Effective management of IRRBB is
crucial for banks to maintain a stable and profitable financial position while minimising potential losses.
Moreover, regulators such as the European Banking Authority (EBA) set guidelines for banks on the
management of interest rate risk in the banking book.

In the Netherlands, one area where this is particularly relevant is in the management of mortgages.
Mortgages are long-term loans that are typically used to finance the purchase of a home, land, or other
type of real estate. They are a key component of a bank’s banking book, not only as they form a
large part of the balance sheet for most big Dutch banks but also as they typically have a longer-term
duration than other loans and are often held to maturity. As such, changes in interest rates can have a
significant impact on a bank’s mortgage portfolio.

Whenever a mortgage is settled, the borrower, or themortgagor, receives a payment schedule he is
obliged to follow. These repayments ensure that the initial amount, or notional, together with interest,
is fully paid back to the bank. Mortgages come in different types, distinguished by the repayment
amounts and the compounding methods used. The three main types are the bullet mortgage, the
annuity mortgage, and the linear mortgage. The bullet mortgage is the simplest, with only interest
payments required, and the notional fully redeemed at maturity in one single payment (bullet). This
type is therefore also known as an interest-only mortgage. The annuity mortgage requires a fixed
payment amount (the annuity) each period, including both interest and notional repayment. Note that
as the outstanding notional decreases over time, the portion of the annuity allocated to interest payment
decreases. Finally, customers with a linear mortgage repay the same amount of notional each period,
resulting in a decrease in their periodically costs. Figure 1.1 summarises the cash flow schemes for
each of these mortgage types.

While these mortgages differ in their repayment schedules, they have one key feature in common:
the embedded prepayment option. Clients with an outstanding mortgage loan have the right to prepay
(part of) the mortgage notional in addition to the contractually agreed-upon repayments. In the Nether-
lands, this option can be exercised penalty-free up to a certain percentage of the notional, typically
10% on a yearly basis. If borrowers act rationally, there is a growing incentive to repay when interest
rates are declining. That is because they can take out a loan at a lower rate and use it to pay off
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(a) (b) (c)

Figure 1.1: An overview of the cash flows of a (a) bullet mortgage (b) annuity mortgage (c) linear mortgage, divided into repay-
ments and interest payments.

their existing mortgage. On the contrary, in a rising interest rate environment, prepayments generally
decrease because the holders wait longer before they reinvest at the higher level.

This behaviour poses a risk for Dutch banks as they disrupt the level and timing of mortgage cash
flows. From an earning perspective, when interest rates decrease (and therewith the mortgage rates),
customers will become financially incentivised to prepay their mortgages. Cash proceeds arising from
such prepayments are reinvested at a lower rate, resulting in an income decrease for the bank. From
a value perspective, an increase in interest rates and thus a decreasing financial incentive to prepay,
leads to reduced prepayments. Consequently, cash flows are moved further ahead in time, thereby
increasing the duration of the mortgage, indicating a greater interest rate sensitivity. Therefore, rising
rates result in more exposure to interest rates variations.

It is thus for Dutch banks of great interest to manage the risk arising from the embedded option and,
therefore, they need models to gain insight into prepayment behaviour. The main driver of prepayment
is the refinancing incentive, which refers to the potential cost savings that a borrower may achieve by
refinancing their existing mortgage loan, typically by obtaining a lower interest rate. However, research
shows that prepayment rates in the Netherlands may also be influenced by, among others, the time
of the year and the age of the mortgagor (e.g. Charlier and van Bussel, 2003; Jacobs et al., 2005).
Indeed, borrowers are more likely to prepay in December than in August due to tax benefits, and
younger clients generally prepay more as they tend to move more often than elderly people. Models
that take into account such different risk drivers can be used to understand the evolution of prepayment
rates. This is highly relevant for Dutch banks as accurate predictions of prepayment rates are essential
for estimating future cash flows and managing the associated risk. Given the current trend of increasing
interest rates after a long period of historically low interest rates, it is important to adjust existing models
to reflect this upward-moving environment.

A prepayment model allows the bank to understand client behaviour and how to fund and hedge a
portfolio of mortgages. In essence, banks aim to manage and, if possible, offset the arising prepayment
risk, from both their own risk management perspective as that of the regulators. One way is by means
of a hedge portfolio, which is widely used by financial institutions. The concept is simple: one needs
to find a portfolio of financial instruments (e.g. bonds, swaps, swaptions, etc.) that matches some
characteristics of the underlying mortgage portfolio. However, due to the convexity arising from the
embedded prepayment option, a linear hedge may not suffice, and consequently non-linear derivatives
such as swaptions must be considered. However, even with a well-designed hedge portfolio, there
may still be residual risk that cannot be perfectly offset. To address this, dynamic hedging can be
used, which involves rebalancing the hedge position to account for changing market conditions and
prepayment behaviour. This approach can improve the hedge and reduce the residual risk.

In practice, there are two common approaches to hedge the embedded option risk: notional hedg-
ing and value hedging. The first aims to match the outstanding notional of the expected mortgage
amortisation profile with the notional of the replicating portfolio, ensuring margin stability. In contrast,
the second method tries to maintain value stability by achieving a net basis point value of zero. Note
that a basis point value (BPV) is a risk metric that estimates the interest rate risk for the bank, as it
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represents the gain or loss in the value for a parallel movement of 0.01% in the yield curve. A net BPV
of zero implies that the net value of the total portfolio, including mortgages and the selected financial
instruments, remains approximately constant. Both methods correspond to a different objective of the
bank, margin and value stability, respectively. Ideally, both should be maintained, but in reality, a pure
focus on one of the two would destabilise the other (Seidel, 2018). Banks should be aware of this
trade-off and hedge accordingly.

1.2. Research objective
The objective of this thesis is to construct a (dynamic) portfolio of financial instruments that captures
not only the linear behaviour of a hypothetical Dutch fixed-rate bullet mortgage portfolio, but also the
convexity arising from the embedded prepayment option. Specifically, the resulting hedge portfolio
should be as stable as possible in terms of both net interest margin (NIM) and net present value (NPV),
thereby aligning with the two main objectives of a bank.

In order to perform the analysis, three models are required: an interest rate model, an interest
rate-dependent prepayment model, and a hedging model. Given the research focus on constructing a
hedge portfolio, the first two models will be presented rather than developed from scratch. Specifically,
the interest rate simulations will be based on the Hull-White model, and a logistic prepayment model
will be utilised. These models have been chosen in collaboration with the Dutch bank involved in this
research.

Combining all above, the following main research question is established:

”Which portfolio of financial instruments provides the most effective hedge for a given
mortgage portfolio, ensuring stability in terms of net interest margin and net present

value under various interest rate simulations?”

1.3. Thesis outline and methodology
The research question will be answered step-by-step throughout this report. First, a literature review
will be conducted in Chapter 2 to provide an overview of existing models regarding interest rates,
prepayments, and hedging approaches. While the functional form of the first two models has already
been determined by the bank, exploring alternative models from the literature remains crucial. This not
only enhances our understanding of existing knowledge but also identifies avenues for future research
extensions. Following this, the Hull-White interest rate model will be presented in Chapter 3. This
chapter will delve into some useful properties of the Hull-White model, examining its strengths and
limitations in capturing interest rate dynamics. Additionally, a calibration process will be executed to fit
the model parameters to current data, ensuring its accurate representation of the observed interest rate
behaviour. The simulated rates will then be utilised as input for an interest rate-dependent prepayment
model, which will be discussed in the first part of Chapter 4. This part includes both a theoretical
examination of the properties of the logistic function and an empirical analysis that involves investigating
the provided historical data and calibrating the model’s parameters accordingly. In the second part of
Chapter 4, the calibrated prepayment model is augmented with the contractual agreed-upon repayment
cash flows of a given mortgage portfolio. This integration results in a model capable of generating the
total mortgage cash flows given an interest rate scenario. This is followed by Chapter 5, in which
various hedge portfolios will be constructed, encompassing static and dynamic hedges, as well as
incorporating swaptions as hedging instruments. The performance of these different hedges will be
evaluated, considering the stability of the net interest margin, as well as the net present value. Finally,
Chapter 6 will conclude the research and provide a discussion addressing its limitations, along with
recommendations and suggestions for future research.





2
Literature review

This chapter describes previous work and scientific publication relevant to the construction of a hedge
portfolio for mortgages. It is subdivided into three parts. The first section examines the evolution of
interest rate models throughout the years, starting from the one-factor Merton model introduced in
1973 and progressing to the two-factor model proposed by Brigo and Mercurio (2001). The second
section focuses on the vast body of literature on prepayment models. We explore the various factors
that drive the prepayment behaviour observed in the market and different approaches for modelling
prepayment rates. Lastly, the third section covers diverse hedging approaches. We discuss different
financial instruments and techniques employed in hedging.

These three models form the basis of this research and are related as shown in Figure 2.1. At
the core of the framework is the interest rate model that generates simulations of future interest rates.
These simulated rates serve as inputs for the subsequent models and analyses. Building upon the
interest rate model, a prepayment model is employed to simulate prepayment rates. With these rates
determined, a cash flow model generates cash flows associated with a mortgage portfolio. These cash
flows consist of fixed contractual interest rate payments and repayments, as well as prepayments that
depend on the interest rate. Similarly, the cash flows of interest rate-dependent financial instruments,
such as swaptions, are generated in different interest rate scenarios. Finally, by examining the cash
flows of both the mortgage portfolio and the portfolio of market-tradable instruments, a hedging model is
developed. This model takes into account the interplay between interest rate movements, prepayment
rates, and cash flows to identify suitable hedging strategies.

Figure 2.1: An overview of the interdependencies between the four models used in this research.
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2.1. Interest rate models
Interest rate models are widely used in the financial world for pricing and risk management purposes.
They provide insight in the evolution of interest rates of all different maturities over time. The simplest
type is the one-factor model that assumes that the short-term rates, or short rates, are the only drivers
in place. This implies that a single short rate model suffices to characterise the complete term structure
of interest rates.

Merton (1973) pioneered the use of a short rate model in finance by proposing a simple Brownian
motion with a constant drift term. The process implies a positive probability of negative interest rates,
which was seen as an undesirable feature at the time of its inception. After the crisis of 2008, however,
this stance was being reconsidered. A few years later, Vasicek (1977) introduced an improved model,
not in the sense of the unwanted negativity, but by being able to capture mean reversion. This essential
characteristic describes the converging behaviour of interest rates to a long-run equilibrium over time,
a widely observed phenomenon in the market. In 1985, J. C. Cox et al. succeeded with their CIR
model to fix the pre-crisis drawback of rates below zero by including a square root component while
preserving the mean-reverting property. Until recently, the CIR model was preferred over the Merton
and Vasicek models. Today, however, with many central banks experimenting with negative interest
rates (Haksar & Kopp, 2020), this preference may not hold anymore. A disadvantage of the CIR model
is that it may be inadequate to reproduce the initial interest rate curve since the model only uses time-
independent parameters. As response, Hull and White (1990) introduced an extension of the Vasicek
and CIR models that allows the choice of parameters to match the term structure of interest rates. This
mean-reverting model allows negative rates and is currently the most widely used model in interest rate
modelling due to its simple yet accurate approach.

The aforementioned models are all examples of one-factor models. However, it is commonly criti-
cised that it is unrealistic that the behaviour of interest rates is solely induced by short rates. As a result,
multi-factor models were introduced, in which two or more rates are assumed to drive the term structure.
In fact, principal component analyses by Jamshidian and Zhu (1996) and Rebonato (1998) conclude
that two- or three-factor models are adequate to simulate a realistic zero-coupon curve, as two and
three components can explain approximately 90% and 95% of the total variance, respectively. Some
examples of multi-factor models are those of Hull and White (1994), Longstaff and Schwartz (1992),
and an extension of the latter by Brigo and Mercurio (2001) (two-factor), and the model proposed by
Chen (1996) (three-factor).

Even though interest rates with multiple drivers seem to capture the behaviour more accurately,
one-factor models are preferred in practice. The first reason is related to the difficulty of applying even
a two-factor model, as the extra factor may add unnecessary complexity without significantly improving
its accuracy. Secondly, the single-factor approach assumes that all rate changes are solely driven by
short rates, making it possible to capture parallel movements in the term structure. This means that a
shock to the yield curve is transmitted equally through all maturities, since all interest rates are perfectly
correlated. While this assumption clearly does not hold in reality, as non-parallel shifts in the yield curve
can be observed, such movements occur significantly less often than parallel movements. Therefore,
there is no need to disregard the use of one-factor models altogether. In fact, for this thesis, the one-
factor Hull-White model is selected for the simulation of interest rates as it is able to capture the parallel
movements in the yield curve and provide accurate results. Moreover, as the main objective of this
research is to construct a hedging portfolio, this simple yet accurate interest rate model will suffice.

2.2. Prepayment models
Prepayment models are used to forecast the number of prepayments that borrowers will make on their
loans, particularly mortgages. These models are of great importance for banks as prepayments can
have a significant impact on the level and timing of mortgage cash flows, resulting in uncertainty. Over
the last 40 years, numerous research have been conducted to gain insight into the option embedded in
mortgages and its driving factors. This section aims to provide an overview of the developed models.
To establish a clear context for the discussion, let us first consider an illustrative example.

Imagine a homeowner named Bob, who recently obtained a fixed-rate bullet mortgage amounting
to €100, 000 at an annual rate of 6%. Under this arrangement, Bob is obligated to make monthly
payments of €500, with an additional €100, 000 due at the end of the contract term. Now, suppose
that after one year, a significant decline in interest rates occurs, causing mortgage rates to drop to
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4%. In this situation, Bob finds himself presented with an opportunity to refinance his existing loan.
Through refinancing, Bob can secure a new loan at the reduced rate, leading to significantly lower
interest payments compared to the original 6%. As a result, Bob can save up to €166, 67 on interest
payments each month over the remaining term of the mortgage. However, it is important to note that
if the market moves in the opposite direction, with mortgage rates increasing, Bob will have little or no
incentive to pursue refinancing.

The example illustrates one of the main drivers of prepayment behaviour: the refinancing incentive.
The majority of conducted studies support this notion, arriving at a shared conclusion: prepayment
rates are dependent on the fluctuations in interest rates. Mathematically, the refinancing incentive is
defined as a measure of the difference between the current contractually agreed-upon coupon rate
and a reference rate, which usually corresponds to an alternative way to invest cash or refund the
loan. An example of a reference rate is the current coupon rate or the swap rate that matches the
remaining maturity of the mortgage, such as the 10Y-Euribor swap rate for a mortgage that matures
in 10 years. The refinancing incentive can be interpreted as the absolute difference between the two
rates, as Casamassima (2018) and Green and Shoven (1986) did, or as their ratio (Kang and Zenios,
1992; Richard and Roll, 1989). Another alternative proposed in the literature is the net present value
gained by refinancing the mortgage, i.e., the difference in the net present value of the mortgage left
uncalled and refinanced, as suggested by Charlier and van Bussel (2003) and Jacobs et al. (2005).

If people were to fully act in a rational way, they would repay each time the refinancing incentive
exceeds a certain level 𝜖, for example, when the absolute difference or net gain is positive, or the ratio is
strictly larger than 1. As a consequence, the functional form of the prepayment rates, depending on the
refinancing incentive, would resemble a step function with a jump at 𝜖, as represented by the blue line
in Figure 2.2. The type of models based on this rationality assumption are called optimal prepayment
models. Examples of this approach are given by Kuijpers and Schotman (2007) and Stanton (1995).

Figure 2.2: Rational (blue) and observed (orange) prepayment behaviour of mortgagors against the refinancing incentive.

In reality, however, this behaviour is not always observed, as people are simply not fully rational.
Clients holding back from prepaying in the lowest interest rate environments or exercising their pre-
payment option even though the current rates are higher are both observed in practice. Models that
acknowledge this non-optimal behaviour are called exogenous models and can be further divided in
two categories. On the one hand there are the endogenous models, which are closely related to the
optimal prepayment models. The only difference is that variables insensitive to interest rates are added
to capture the irrationality. For example, Dunn and McConnell (1981) modelled the suboptimal prepay-
ments by including a Poisson-driven process. On the other hand, strictly empirical models try to explain
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the prepayments through a set of variables. The literature on this category is extensive, as there are
numerous different approaches. Firstly, one could decide to stick to the interest rate and thus the refi-
nancing incentive as single driver. Casamassima (2018) substantiates this decision by arguing that this
choice for the functional form of the prepayment rates allows for both the irrationality of the mortgagors
and their reaction time, thus capturing all prepayment behaviour. Specifically, he proposed a logistic
function as plotted in orange in Figure 2.2. Also, other sigmoid (s-shaped) functions can be applied
to model the influence of the refinancing incentive. Kolbe (2008), for example, used an arc-tangent
function.

An alternative but common approach to modelling prepayments is the proportional hazard technique
(D. Cox and Reid, 1984), which is widely used not only in economics but also in demography and
medical research. It assumes that the probability of prepayment can be split into two multiplicative
factors: a baseline hazard that represents the proportion of people that would prepay in the base
situation and a factor that describes how the hazard varies in response to some exogenous factors.
Green and Shoven (1986) applied this technique to estimate the percentage reduction in prepayment
probability associated with interest rate changes. This method can also incorporate additional drivers,
such as mortgagor and loan characteristics or macroeconomic factors. Charlier and van Bussel (2003)
developed a model in this way for Dutch bullet mortgages and specified four main determining factors.
The first factor is the refinancing incentive, which is related to the term structure of interest rates. The
second is called burnout, which encompasses various behaviours of mortgagors. Some clients may
react instantly to a positive incentive to prepay, while others may miss the opportunity and act the next
time the same scenario occurs. Following this trend, one could argue that the older the portfolio of
mortgages, the lower the prepayment rate for a certain refinancing incentive. Another effect related to
the age of the contract is called seasoning. Customers are not very likely to prepay just after the loan
contract has been signed. This likelihood gradually increases with time until it reaches a maximum
level. Finally, the month of the year plays a role in the prepayment behaviour. Charlier and van Bussel
observed that the Dutch prepayment rates peak in the month of December. This can be explained
by the tax effect, as clients aim to reduce their taxable savings sum by the end of the year, or by the
additional salary payments. Similar conclusions were made by Richard and Roll (1989), while using
a different type of prepayment model, known as the Goldman Sachs mortgage prepayment model.
Instead of the proportional hazard approach, they used functions for the aforementioned effects and
multiplying all four. Although this method has a high explanatory power in estimating prepayments,
the final functional form is complex and nonlinear due to the multiplication. Kang and Zenios (1992)
addressed this drawback by combining basis functions to achieve an arbitrary level of accuracy while
maintaining the explanatory power.

The main drivers of prepayment rates are typically the four factors discussed earlier. However,
there is a broad spectrum of research dedicated to alternative drivers. For instance, Yang et al. (1998)
introduced a model that incorporates stochastic processes for house prices and household income, as
well as mortgage underwriting constraints. This approach narrowed the differences between theoretical
and observed results, but at the expense of departing from rigorous theories in the standard mortgage
option pricing literature. Research by Perry et al. (2001) showed that both house price inflation and
prepayment charges have significant impact on prepayment behaviour in the UK. In the same research
it was concluded that the influence of the age of the borrower and the employment levels were relatively
low. In contrast, Jacobs et al. (2005) found evidence for a relation between prepayment rates and the
age of the mortgagor in the Netherlands. They discovered that older clients usually repay less than
the younger ones. This finding is supported by the fact that younger people tend to move more often,
whereas the presence of children usually forces adults to settle down. Additionally, they found that the
size of the loan and the prepayment rates have a negative relationship, where larger loans tend to have
lower prepayment rates.

Besides the characteristics of the contract and the mortgagor, external (macroeconomic) factors
can also be included in a prepayment model, as demonstrated by Kolbe (2008). He incorporated
a factor based on quarterly GDP growth rate, as he found strong empirical evidence for its impact
on prepayment behaviour, particularly the turnover (non-refinancing) component. Recent research
has also examined the relationship between race and client behaviour. Gerardi et al. (2023) noticed
that black and Hispanic homeowners refinance at rates 0.75% and 1.19% lower than white and Asian
borrowers on average, respectively. While observable differences, such as lower credit scores and
higher leverage, explain about 80% of this refinancing gap, a significant portion remains unexplained.
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It is clear that there is no perfect prepayment model that can fully explain the behaviour of mort-
gagors. Different types of factors can be included, related to either the contract itself, the mortgagor,
or external macroeconomic factors. However, as the primary objective of this project is to construct
a hedge portfolio, a simplified prepayment model will meet the requirements. Therefore, a logistic
function, with the refinancing incentive as the only driver, is selected to model the prepayment rates.

2.3. Hedging approaches
Hedging models are vital from a risk management perspective as they allow financial institutions to
(partly) offset potential losses. To illustrate the significance of hedging models, let us continue with the
example of Bob, but now consider the perspective of a bank. As a bank, offering mortgages exposes
the institution to risks arising from interest rate fluctuations and prepayment behaviour of borrowers like
Bob. As the mortgage rates drop to 4%, Bob may choose to refinance his existing mortgage, securing
a new loan at the lower rate. Consequently, the interest payments he makes would be substantially
lower compared to the original 6% rate. This, in turn, results in a decreased interest income for the
bank, amounting to approximately €166, 67 each month over the remaining term of Bob’s contract.
Conversely, if the mortgage rates increase rather than decrease, Bob is less inclined to refinance his
existing mortgage. As a result, the cash flows from the mortgage are postponed, extending the duration
of the loan. This implies that the bank remains exposed to interest rate changes for a longer period.

These situations highlight the importance of managing interest rate fluctuations and prepayment
behaviour for the bank. By utilising hedging models and strategies, the bank can actively mitigate the
effects of both decreasing and increasing mortgage rates. Hedging involves taking an opposite position
in a portfolio that has the same value and risk profile as the one requiring hedging. In the context of this
project, which focuses on the embedded prepayment option in mortgages, the objective is to construct
a portfolio of financial instruments that aligns with the risk characteristics associated with this optionality.
Within this approach, two key questions arise:

1. Which instruments should be included in the portfolio?

2. How do we assess the quality of the hedge?

Addressing the first question involves selecting appropriate financial instruments to include in the
hedging portfolio. These instruments should mirror the risk factors associated with the mortgage op-
tionality and provide a suitable hedge against interest rate fluctuations and prepayment behaviour. The
second question involves evaluating how well the portfolio’s performance aligns with the dynamics of
the mortgage option and the associated risks. Various metrics and evaluation methods are employed to
determine the quality of the hedge. In this section, we will delve into these questions and explore differ-
ent hedging approaches and models, providing insights into how banks and other financial institutions
manage interest rate and prepayment risks.

Literature to address the first question is relatively scarce due to limited access to the required data.
This is mainly becausemost banks maintain strict confidentiality regarding their customers’ prepayment
behaviour and other related information, making it challenging for researchers to build models based
on real-world data. Thus, the few publicly available researches on this subject have been carried out
in cooperation with financial institutions. One such example is given by Casamassima (2018), who
had access to monthly observations over a period from February 2011 to July 2017 of an average of
more than 400,000 mortgages. The data consisted of more than 20 explanatory variables that covered
various contract and client characteristics. Based on this data, an Index Amortising Swap (IAS) was
constructed to represent the mortgage portfolio. Typically, an IAS is an interest rate swap of which the
notional is gradually reduced over the life of the agreement, and, for the purpose of his research, it was
adjusted to follow the notional of the mortgage portfolio exactly. In particular, the amortisation schedule
of the swap was predetermined as function of the prepayment rates, which were assumed to be fully
dependent on a chosen interest rate. Theoretically, this instrument would provide the perfect hedge
should it actually be traded, but unfortunately, it can only be used as a representation and a starting
point for a practical hedge. Indeed, Casamassima replicated the IAS through a portfolio composed of
market-tradable swaps and swaptions. His choice for these types of instruments was substantiated
by the fact that the IAS, and thus the mortgage portfolio, can be seen as a swap, and the embedded
prepayment optionality as a swaption. Specifically, from a bank perspective, this is translated as a long
position in a receiver swap and a short position in a receiver swaption, respectively. He tested different
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compositions and concluded that a portfolio with swaps and nine swaptions seems to be the best
compromise in terms of good hedging quality and a limited number of instruments. On the other hand,
Jochems and van Haastrecht (2019) proposed a portfolio of zero-coupon bonds and receiver swaptions
with a wide variety of tenors to replicate the prepayment option. This was based on a hypothetical
portfolio of 1000 mortgages, constructed to capture the same characteristics, in particular, the same
interest rate sensitivity as a typical mortgage portfolio of a bank. They ended up with a good fit and
noted that the obtained delta was close to that of the mortgage portfolio.

To get a broader picture of hedging approaches, let us consider a different type of financial company
that is exposed to prepayment risk: mortgage investors. These institutions purchase mortgages from
banks, which they may either hold in their portfolio or repackage and sell as mortgage-backed securities
(MBS). In case of the latter, the embedded risk is transferred to the buyers, and the institution is no
longer exposed to it. However, if they retain the mortgages, they may need to implement a hedging
strategy. Jaffee (2003) evaluated the exposure of the retained mortgages of two of such mortgage
investors, Fannie Mae and Freddie Mac. He shows that they used interest rate swaps and option-
based derivatives (in particular, swaptions) for their hedging strategy. The swaps were intended to
improve the maturity match of long-term mortgages to short-term debt, while the swaptions were used
to offset the risks associated with the prepayment option. This approach aligns with the practices of
most banks. Since mortgage-backed securities are publicly traded, data on their characteristics and
prices are readily available, allowing researchers to construct real data-based models. So, the few
articles available on mortgage portfolios, the many studies discuss hedging techniques for MBSs.

Although an MBS differs from a typical bank mortgage portfolio, their hedging results may still be
valuable, because both are exposed to prepayment risk. Treasury note futures, particularly those with
a lifespan of 10 years, are often used to hedge MBSs. Boudoukh et al. (1994) argues that these
instruments are very liquid, and their prices are related to the underlying yield curve, directly creating
a link to the value of MBSs. As well as G. Koutmos and Pericli (1999), he proposes a model that
captures the relation between the returns of MBSs and the T-note futures. Both papers focus heavily
on the choice of an optimal hedge ratio, which is the number of short future contracts needed for one unit
of MBS. This is logical because this value immediately gives the related hedge portfolio. Batlin (1987)
used a similar approach but with the 30-year treasury bond futures. Moreover, all three articles conclude
independently that this strategy only works when implemented dynamically because the derived hedge
ratio may become suboptimal when interest rates change during the lifespan of the MBS. In contrast
to a static hedge, where purchases at a single moment should cover a wide range of interest rate
scenarios, this variant allows rebalancing. That is, when the interest rate market changes sufficiently
and extreme events may become more likely, you are allowed to adjust your position in the market
accordingly.

At first sight, it may seem that dynamically hedging is highly favourable to its static equivalent in gen-
eral because of its ability to capture the interest rate sensitivity more accurately. Moreover, the relatively
high costs for instruments with long maturities are avoided, as the hedge portfolio is only purchased
when the relevant markets have becomemore efficient. However, rebalancing incurs transaction costs,
which can amount to a large sum of money. In fact, the more frequently you wish to rebalance, the
more money is lost to these charges. Nevertheless, research by G. G. Koutmos (2005) conclude that
the economic gains by choosing the dynamic technique are substantial. Empirical evidence from the
mortgage-backed security market suggests that dynamic hedging is superior in terms of total variance
reduction and expected utility maximisation. This conclusion holds even when realistic transaction
costs are incorporated into the analysis. However, implementing dynamic hedging may impact the
long-term yield curve, as excessively rebalancing can alter the evolution of interest rates, according to
Fernald et al. (1994) and Perli and Sack (2003). Therefore, the dynamic strategy should be considered
with caution. However, this aspect is outside the scope of this research.

To answer the second question stated at the start of this section, it is important to understand the
different types of risk appetite of a bank. Clearly, banks are exposed to interest rate risk, and if we
zoom in on the prepayment option, this can be expressed in twofold. On the one hand, when interest
rates are low, clients are incentivised to prepay, thus forcing banks to reinvest at a lower rate resulting
in a decrease in income. For some banks, this may be undesirable, and instead, they may prefer stable
earnings. For those institutions, the notional hedge is the best approach. This technique focuses on
optimising the hedge portfolio such that its notional matches that of the mortgage portfolio, ensuring
the most stable margin. Examples are given by Casamassima (2018) and Jaffee (2003). On the
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other hand, when interest rates increase, the prepayment rates tend to be lower. In this scenario,
customers most likely will strictly stick to their amortisation schedule, and the cash flows (which include
prepayments) may turn out to be lower than expected. This moves the payments up in time, increasing
the duration, and thus the bank is exposed to interest rate changes for a longer period. Again, this may
be a scenario the bank wishes to prevent. In this case, the objective of the hedge should be to stabilise
the value, which can be achieved by either net present value (NPV) matching or basis point value (BPV)
matching. As the names suggest, these approaches aim to find a hedge portfolio with the same NPV
and BPV as the mortgage portfolio, respectively. For example, Jochems and van Haastrecht (2019)
used this approach.

Optimally, a bank would prefer to employ a hedging strategy that can guarantee both a stable mar-
gin and value. However, achieving this goal is not feasible due to the disparity in used discount factors.
Typically, cash flows from the mortgage portfolio are discounted using the coupon rate, while the exter-
nal contracts are discounted using the appropriate swap rate plus an internal funding rate known as the
FTP. In general, the former rate exceeds the latter, so that smaller notionals in the hedge portfolio are
needed to match the value of the mortgage portfolio. As a result, a value hedge is generally cheaper,
but comes at the cost of less stable income. To illustrate this, let us consider two banks, Bank X and
Bank Y, both offering a simple mortgage of €100 with an annual rate of 10% and annual payments
maturing in three years. Bank X aims for a stable margin and constructs a hedge portfolio with cash
outflows of 10, 10 and 110, over the contract term, as depicted in Figure 2.3(a). This strategy ensures a
net interest income of €0 after each year, thus achieving the desired stable margin. However, the total
basis point value (BPV) is nonzero, indicating a mismatch between the BPV of the hedging portfolio
and the mortgage portfolio. While Bank X may tolerate this discrepancy, Bank Y, which seeks value
stability, may not be satisfied. Therefore, Bank Y may need to adjust the portfolio to match the BPV.
One potential outcome is presented in Figure 2.3(b). Note that with this value hedge portfolio, the cash
flows of the two portfolios no longer align. This example illustrates that the choice between margin
and value stability poses a trade-off for banks. The decision on which approach to adopt depends on
several factors, including the bank’s specific objectives and risk appetite. However, it is important to
note that banks are also obligated to follow the guidelines and regulations set by financial regulators.

(a) (b)

Figure 2.3: An example of (a) a cash flow hedge and (b) a value hedge with discount factors of 3% and 4% for the hedging
portfolio and mortgage portfolio, respectively.

Seidel (2018) explored the differences and the trade-off between hedging from earnings and (eco-
nomic) value perspective. He noticed that the former merely focuses on the movements of the net
interest income when interest rates change, and thus captures short-term effects. In contrast, the latter
is more concerned with the long-term effects of interest rate movements, that is, its impact on the value
of the bank’s assets and liabilities. In the paper, a hedging approach for both perspectives was pro-
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posed and tested based on a self-constructed portfolio consisting of bullet loans and mortgages across
six interest rate scenarios. Seidel achieved a successful hedge twice, whereby the final hedging port-
folio became largely insensitive to either short-term or long-term interest rate movements, depending
on the approach. It is important to note that the analyses did not consider prepayment. The author
extended the research to incorporate a constant prepayment rate of 1% and concluded that the original
hedge portfolio became ineffective under this scenario. Thus, it is crucial to include prepayments in
the cash flow analysis before implementing the hedging strategy. Moreover, no clear evidence was
provided on which approach was better, arguing that it all comes down to a trade-off between earnings
and economic value volatility. The optimal hedging strategy is, therefore, completely based on the
bank’s preference.

Tang (2020) analysed the effectiveness of the notional hedge and two different approaches within
the BPV hedge, namely the pure interest and risk adjusted hedge, in achieving a most stable NII-at-
Risk. The distinction between the latter two lies in the composition of mortgage contract rates, which
can be split into the prevailing base rate, or the pure interest component, and the margin. The pure
interest hedge aims to capture the underlying base rate only, while the risk adjusted hedge includes
the margin. After applying the three different strategies to a portfolio of nearly 380,000 mortgages,
the author concluded that the risk-adjusted hedge poses the highest repricing risk under interest rate
dependent prepayment behaviour. Additionally, there is a lengthening risk (increase of duration) in case
of an interest rate up shock because of a reduction in prepayments. However, this risk is insignificant for
the considered mortgage portfolio due to a low degree of sensitivity in the prepayments. Therefore, the
research concludes that the notional and pure interest hedge are superior to the risk-adjusted hedge
from an NII-at-Risk stability perspective.

Until now, all the hedging portfolios mentioned have been based on either value or margin stability.
However, other factors could also be considered. For example, Jochems and van Haastrecht (2019)
added a constant transaction cost for each instrument to penalise for a large portfolio. Moreover, they
included an error term related to the Greek delta in the optimisation problem. Delta measures the
change of the value to interest rate changes. Along with the transaction penalty, this approach led to
a hedge portfolio of reasonable size that matches the mortgage portfolio both in value and delta as
closely as possible. In a different example, Casamassima (2018) investigated the consequences of
hedging the gamma sensitivity. This Greek measures the change of delta with respect to changes in
the yield curve and is thus considered the second-order sensitivity. It is evident that other Greeks,
such as vega and theta (sensitivities with respect to the volatility and time, respectively) can also be
incorporated.

It is clear that there are numerous approaches to hedge the prepayment risk embedded in mort-
gages, both in terms of instruments and quality assessment. In this project, our aim is to maintain both
margin and value stability. To achieve this, different combinations of instruments, such as bonds and
swaptions, will be evaluated for their ability to ensure a stable margin and value.



3
Interest rate model

This chapter discusses the Hull-White model, which is used to simulate interest rates. Firstly, the dy-
namics of this model together with some of its key features are presented. Next, the calibration process
is explained and finally, the data required for calibrating are described and the resulting outcomes are
given.

3.1. Hull-White model
The Hull-White model is an interest rate model designed to eliminate arbitrage opportunities by ensur-
ing its drift term 𝜃(𝑡) is a deterministic function of time, selected to precisely match the current yield
curve. To achieve this, the model fits theoretical bond prices to the observed yield curve in the market.
The model assumes a normal distribution of the short-term interest rate, which results in a positive
probability of negative interest rates, which is desirable given the current environment of low or nega-
tive interest rates. The one-factor version of the Hull-White model (HW1F) assumes that the short-term
interest rate, 𝑟(𝑡), follows a mean-reversion process and, under the risk-neutral measure ℚ, has the
dynamics given by

d𝑟(𝑡) = (𝜃(𝑡) − 𝛼𝑟(𝑡))d𝑡 + 𝜎 d𝑊ℚ(𝑡), (3.1)

where

• 𝜃(𝑡) is the time-dependent drift term,

• 𝛼 is the mean-reversion coefficient,

• 𝜎 > 0 is the short rate volatility, and

• 𝑊ℚ(𝑡) represents a Brownian motion under the measure ℚ.

This stochastic differential equation results in a normally distributed short rate. In Appendix B.1.1 we
obtained the following expressions for its mean and variance:

𝑟(𝑡) ∼ 𝒩(𝜇𝑟,ℚ(𝑡), 𝜎2𝑟,ℚ(𝑡))

with

𝜇𝑟,ℚ(𝑡) = 𝑒−𝛼(𝑡−𝑡0)𝑟(𝑡0) + ∫
𝑡

𝑡0
𝑒−𝛼(𝑡−𝑠)𝜃(𝑠)d𝑠,

𝜎2𝑟,ℚ(𝑡) =
𝜎2
2𝛼 (1 − 𝑒

−2𝛼(𝑡−𝑡0)) .

Furthermore, the Hull-White model belongs to the class of so-called affine term structure models (see
Appendix B.1.2). This means that its drift �̄�, volatility �̄�2 and interest rate component 𝑟 can be expressed
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in an affine form:

�̄�(𝑟(𝑡)) = 𝜃(𝑡) − 𝛼𝑟(𝑡),
�̄�(𝑟(𝑡))2 = 𝜎2 + 0 ⋅ 𝑟(𝑡),
�̄�(𝑟(𝑡)) = 0 + 1 ⋅ 𝑟(𝑡).

This characteristic is extremely convenient as it enables us to find closed-form solutions for the value
of various financial instruments. In Appendix B.2, this will be discussed in more detail. Particularly, the
price of a zero-coupon bond, denoted by 𝑃(𝑡, 𝑇), holds significant value as it allows us to simulate a
wide range of interest rates. An illustrative example is the Euribor rate, which represents the average
rate at which banks within the Eurozone borrow from each other. The most widely used rate is the
6M-Euribor rate, which resets every 6 months. At time 𝑡, this rate is defined as

𝐸(𝑡; 𝑡, 𝑡 + 6/12) = 1 − 𝑃(𝑡, 𝑡 + 6/12)
6
12𝑃(𝑡, 𝑡 + 6/12)

. (3.2)

For further insights into the details and derivation of this forward rate, please refer to Appendix A.1.2.

It evident that the prices of financial instruments and the values of the simulated interest rates are
dependent on the parameters of the Hull-White model, namely 𝛼 and 𝜎. The 𝛼 parameter determines
the speed at which the interest rate reverts to its mean level. So, a larger 𝛼 corresponds to a faster
mean reversion and leads to a flatter yield curve, as it reduces the differences in interest rates for
bonds with different maturities. This can impact the pricing of financial instruments. On the other hand,
the 𝜎 parameter represents the volatility of interest rates. A higher 𝜎 value results in more significant
fluctuations in interest rates over time. This volatility affects the values of bonds and derivatives, leading
to larger changes in their prices.

To ensure accurate simulations and pricing that align with current market conditions, it is necessary
to calibrate the model’s parameters based on observed market data. The calibration process involves
selecting 𝛼 and 𝜎 that best fit the market dynamics and prevailing conditions. In the upcoming section,
the calibration method will be discussed in detail.

3.2. Calibration method of the Hull-White model
Calibration involves adjusting the values of the Hull-White model’s parameters to match the observed
behaviour of interest rates in the market. This is important for two reasons: firstly, a properly calibrated
Hull-White model can generate realistic interest rate scenarios. Secondly, it can be used to accu-
rately value financial products such as bonds, options, and swaps, which is essential for this research.
Typically, the calibration is based on swaption volatility data, ensuring that the modelled volatility is
consistent with market observations. While this paper does not cover the full calibration process, only
a pseudocode will be provided, as presented in Algorithm 1.
Algorithm 1: Pseudocode calibration Hull-White
Input: Set of at-the-money swaption volatilities with different option expiries and swaption

maturities, current yield curve for the underlying currency
Output: Calibrated Hull-White model parameters 𝛼 and 𝜎

1. Build the initial term structure by an interpolation method such as linear or cubic.

2. Calculate the swaption price for each volatility using the created yield curve.

3. Calculate the price of each swaption using the Hull-White model based on the created yield
curve.

4. Define a pricing fit error function that calculates the difference between the market quotes and
the model prices.

5. Use an optimisation algorithm such as Levenberg-Marquardt to find the calibrated Hull-White
model parameters that minimise the error.

return Calibrated 𝛼 and 𝜎.
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Executing this pseudocode allows for the calibration of 𝛼 and 𝜎 in the Hull-White model. However, a
drawback of this approach is the need for regular updates of these values due to ever-changing market
conditions. As market dynamics evolve, the previously calibrated values may become less accurate,
requiring recalibration. Another drawback is the limited market data coverage. The calibration process
as described in Algorithm 1 relies on current yield curve data and available swaption data, which may
not capture the full range of market instruments. The calibration accuracy may be affected by this
limited market coverage, potentially leading to pricing errors. Lastly, it is worth noting that the Hull-
White model is a relatively simple model that assumes a single driver of the yield curve, enabling it to
capture parallel movements in interest rate. However, it cannot simulate non-parallel movements such
as flattening or steepening of the yield curve. Despite this limitation, since parallel movements are
frequently observed in the market, the Hull-White model is widely employed to simulate interest rates.

Having examined the calibrationmethod and its potential shortcomings, the focus now shifts towards
the data used in the calibration process and the corresponding results. In the following section, we will
discuss the data sources and variables employed for calibration, as well as analyse and interpret the
calibrated results.

3.3. Calibration data and results of the Hull-White model
The required data for calibrating the Hull-White model is obtained on February 17, 2023, using the
generic market data feed of the bank. This data feed is a reliable source and contains up-to-date
market data.

The first dataset we acquired is the yield curve data. It includes spot rates for maturities from 1
day to 6 months and par rates for maturities from 1 year to 50 years. These rates are based on the
6M-deposit rates. To provide a visual representation, the yield curve based on this data is plotted, as
illustrated in Figure 3.1. This curve serves as a crucial component for setting up the initial term structure
in the calibration process.

Figure 3.1: The yield curve based on the 6M-deposit rates as of February 17, 2023. Note. The yield curve data is obtained from
a generic market data feed of the bank.

The second dataset we obtained consists of swaption volatilities. Specifically, our focus was on
at-the-money swaptions with the 6M-Euribor as the underlying asset. We considered combinations of
underlying swap maturities (5, 7, 10, and 20 years) and swaption maturity dates (1, 5, and 10 years)
to derive an overview of the normal swaption volatilities. The corresponding values are presented in
Table 3.1.
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Swaption tenor vs swap tenor 5 years 7 years 10 years 20 years

1 year 103.453 103.169 100.967 92.552
5 years 91.005 89.229 86.878 77.948
10 years 79.391 77.232 74.347 64.633

Table 3.1: The normal swaption volatilities in basis points (1 basis point = 0.01%) for different combinations of swap and swaption
maturities as of February 17, 2023. Note. The swaption volatility data is obtained from a generic market data feed of the bank.

The two datasets, the yield curve and the swaption volatilities, are utilised as input in Algorithm 1 to
calibrate the parameters 𝛼 and 𝜎 of the Hull-White model. The calibration process aims to align the
model’s simulated swaption prices with the observed market quotes, taking into account the information
provided by these datasets. The resulting calibrated values of 𝛼 and 𝜎, which can be found in Table
3.2, reflect the market conditions as of February 17, 2023.

Parameter Outcome calibration

𝛼 0.0458
𝜎 0.0116

Table 3.2: The calibrated parameters of the Hull-White model as of February 17, 2023, using Algorithm 1.

From these results we can conclude that the model exhibits a moderate speed of mean reversion
and captures relatively small interest rate fluctuations. In other words, interest rates tend to revert
towards their long-term average at a moderate pace, while the volatility of interest rates in the model is
relatively low. As we proceed with the thesis, these calibrated parameters will be considered as fixed.

The fixed parameter values allow for the simulation of interest rates using the Hull-White model. As
an example, Figure 3.2 illustrates the simulation of 1000 future 6M-Euribor rates for the next 10 years,
accompanied by historical values. The simulation values are generated using Equation (3.2), which
incorporates the dynamics of the Hull-White model.

Figure 3.2: The historical 6M-Euribor rates together with 100 simulations using the calibrated Hull-White parameters 𝛼 = 0.0458
and 𝜎 = 0.0116.

The simulations in Figure 3.2 provide valuable insights into the potential behaviour of the 6M-Euribor
rates under the assumptions of the Hull-White model. However, when it comes to managing a mort-
gage portfolio, it is essential to consider not only interest rate movements but rather their impact on
prepayments. Understanding and modelling prepayment behaviour is crucial for effectively hedging a
mortgage portfolio and mitigating the associated risks. Therefore, in the upcoming chapter, we will fo-
cus on prepayment modelling. Specifically, we will present a prepayment model and analyse its effect
on cash flows of a given mortgage portfolio.
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Cash flow model

This chapter presents a cash flow model that includes both the monthly contractual interest payments
and the prepayments of the mortgagors. It starts with describing an approach to model prepayment
rates and continues by discussing how this model can be used to understand the behaviour of mort-
gagors in different interest rate scenarios. Subsequently, these prepayments are combined with the
contractual repayments, resulting in a total cash flow model, which is applied to the relevant mortgage
portfolio.

4.1. Prepayment model
Prepayment behaviour refers to the act of borrowers paying off their mortgages earlier than the sched-
uled term. It is influenced by a multitude of factors, each with its own impact on the decision-making
process. Mortgagor characteristics, such as age, creditworthiness, and income stability, can influence
the likelihood of prepayment. Economic conditions, such as interest rates and unemployment rates,
also play a role in shaping borrower behaviour.

However, among these various drivers, the refinancing incentive has consistently proven to be the
most influential factor behind prepayment behaviour. The refinancing incentive refers to the potential
savings that borrowers can achieve by refinancing their existing mortgages at a lower interest rate.
When interest rates decline, borrowers have a stronger incentive to refinance their mortgages, as it
allows them to reduce their monthly payments or shorten their loan term. Consequently, refinancing
activities tend to increase during periods of declining interest rates, leading to higher prepayment rates.
To quantify the refinancing incentive, we can define it mathematically as the difference between the
mortgage rate and a relevant swap rate plus a fixed margin. Specifically, for a mortgage with a coupon
rate of 𝑐 and a maturity of 𝑇, the incentive at a given time 𝑡, denoted by 𝐼𝑛𝑐(𝑡), can be expressed as
follows:

𝐼𝑛𝑐(𝑡) = 𝑐 − 𝑆(𝑡, 𝑡, 𝑇) − 1.5%, (4.1)

where 𝑆(𝑡, 𝑡, 𝑇) represents the 6M-Euribor swap rate at time 𝑡 with tenor 𝑇. The 6M-Euribor swap rate
refers to the interest rate associated with a 6M-Euribor swap and serves as a benchmark for short-term
euro interest rates. So, by incorporating this rate in the refinancing incentive formula, we account for the
prevailingmarket interest rates and their impact on the attractiveness of refinancing. The fixedmargin of
1.5% included in the formula accounts for additional costs involved in refinancing. It acknowledges that
there may be expenses or considerations beyond the pure interest rate differential that borrowers need
to consider when contemplating refinancing their mortgages. Therefore, the complete formula provides
a reliable measure of the financial advantage borrowers may gain by refinancing their mortgages.

With the definition of the refinancing incentive, we can now explore its relationship with prepayment
rates. From a rational perspective, one might expect prepayment behaviour to follow a step function,
where borrowers only choose to prepay when the incentive is positive. However, observations in the
market reveal a more nuanced reality. People prepay even when the refinancing incentive is negative,
and in some cases, they may not prepay significantly even when the incentive is high. This discrepancy
suggests the need for a more flexible modelling approach. To capture these non-linear dynamics, we
turn to the logistic function. By employing a logistic function, we can effectively describe the relationship

21
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between the refinancing incentive and prepayment rates, accounting for the observed behaviour in
the market. In the upcoming subsection, we will delve into the details of the logistic function and its
application in prepayment behaviour.

4.1.1. Logistic function
The logistic or double-asymptotic function is a mathematical function that is commonly used to model
S-shaped curves. In the context of prepayment rates, denoted as 𝑃𝑃(𝑡) in month 𝑡, we can express it
as follows:

𝑃𝑃(𝐼𝑛𝑐) ∶= 𝑓(𝐼𝑛𝑐) = 𝑎 + 𝑏
1 + 𝑒−𝑐(𝐼𝑛𝑐−𝑑) .

This formulation involves four parameters that determine the shape of the function and carry specific
interpretations. Parameter 𝑎 represents the minimum prepayment rate, which is typically slightly above
zero as mortgagors tend to prepay to some extent consistently. Parameter 𝑏 defines the range of pre-
payment rates, with 𝑎 +𝑏 representing the maximum prepayment rate. The sensitivity of prepayments
to the refinancing incentive is determined by parameter 𝑐. A positive value of 𝑐 indicates that as the
incentive increases, the prepayment rates grow. Conversely, when 𝑐 has a negative value, an increase
in incentive is followed by a decline in prepayments. Given that mortgagors generally tend to prepay
when the market rates are low, indicating a high refinancing incentive, the value of 𝑐 is typically posi-
tive. Lastly, parameter 𝑑 represents the incentive value at which borrowers are the most sensitive to
changes in the refinancing incentive. To visualise the impact of these parameters, consider Figure 4.1
which presents two examples of the logistic function with distinct parameter settings.

Figure 4.1: The logistic function 𝑓(𝑥) = 𝑎 + 𝑏
1+𝑒−𝑐(𝑥−𝑑) with 1) 𝑎 = −1, 𝑏 = 5, 𝑐 = 1 and 𝑑 = 5 (blue) and 2) 𝑎 = −0.5, 𝑏 = 4,

𝑐 = −4 and 𝑑 = 4 (orange).

By analysing the example curves in Figure 4.1, we can observe how different parameter combina-
tions alter the shape and characteristics of the logistic function. Consequently, the four parameters
allow for flexibility in tailoring the function to a specific data set. This flexibility is crucial when aiming
to develop a prepayment model that accurately captures observed prepayment behaviour. To achieve
this, a calibration process is required. In the upcoming subsection, we will discuss the calibration of
these parameters using monthly prepayment data and analyse the resulting outcomes.

4.1.2. Calibration method of the prepayment model
To model the relationship between prepayment rates 𝑃𝑃 and refinancing incentives 𝐼𝑛𝑐 using a logistic
function, the parameters must be calibrated based on historical prepayment data. This calibration
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involves determining the values of 𝑎, 𝑏, 𝑐, and 𝑑 that best fit the data within the logistic function

𝑃𝑃(𝐼𝑛𝑐) = 𝑓(𝐼𝑛𝑐) ∶= 𝑎 + 𝑏
1 + 𝑒−𝑐(𝐼𝑛𝑐−𝑑) .

To achieve an optimal fit, the mean-squared error (MSE) between the observed monthly prepayment
rates and the corresponding modelled rates is minimised. The MSE is a widely used metric that quan-
tifies the level of deviation in the model’s prediction. By squaring the differences, the MSE places more
weight on large errors, thereby encouraging accurate predictions. For the minimisation of the mean-
squared error, the SLSQP algorithm is employed. This algorithm is specifically designed to minimise
a scalar function of one or more variables using Sequential Least Squares Programming. It requires
only an initial guess for the parameter values. The SLSQP algorithm is chosen for its ability to han-
dle optimisation problems with constraints efficiently. The complete calibration process is outlined in
Algorithm 2.

Algorithm 2: Mean-squared error minimisation using the SLSQP algorithm.
Input: Real data y ∈ ℝ𝑁 function 𝑓(⋅) that computes ŷ ∈ ℝ𝑁 for a given parameter vector

𝜃 = (𝑎, 𝑏, 𝑐, 𝑑).
Output: Calibrated parameters (�̃�, �̃�, �̃�, �̃�)

1. Initialise parameters 𝜃0 ∶= (𝑎0, 𝑏0, 𝑐0, 𝑑0).

2. Define objective function 𝑀𝑆𝐸(𝑎, 𝑏, 𝑐, 𝑑) = 1
𝑁 ∑

𝑁
𝑖=1(�̂�𝑖 − 𝑦𝑖)2.

3. Call the SLSQP optimisation algorithm with the objective function 𝑀𝑆𝐸(⋅), and initial guess 𝜃0.

return (�̃�, �̃�, �̃�, �̃�)

To successfully calibrate the logistic function, it is essential to utilise historical prepayment. By
analysing the historical data, we gain insights in how the mortgagors’ behaviour has been influenced
by changing market conditions. In the following subsection, we will discuss the calibration data, assess
its characteristics, and analyse the resulting calibration outcomes.

4.1.3. Calibration data and results of the prepayment model
The data used for the calibration of the prepayment model is from an internal project of the bank, specif-
ically focusing on prepayment behaviour in Italy. The dataset comprises monthly observations of the
historical refinancing incentives and corresponding prepayment rates. The data covers a time period
from January 1, 2010, to February 1, 2022, allowing us to capture a significant span of prepayment be-
haviour over several years. To facilitate the calibration process, the data is grouped by incentive level,
providing aggregated information on the notional amount and the associated monthly prepayment rate.
Table 4.1 presents an extract from the historical Italian prepayment data used for calibrating the logistic
function.

Date Incentive Notional Monthly prepayment rate

⋮ ⋮ ⋮ ⋮
01/01/2010 1.25% 420220000 1.62%
01/01/2010 1.50% 40640000 1.34%
01/01/2010 1.75% 410000 0.00%
01/02/2010 -2.25% 520000 0.00%
01/02/2010 -2.00% 700000 0.00%
⋮ ⋮ ⋮ ⋮

Table 4.1: An extract of the historical Italian monthly prepayment data used for the calibration of the logistic function. Note. The
historical data is obtained from an internal project of the bank.

It is important to note that the use of Italian data rather than Dutch data does not pose any issues for
this project. Since we are only considering the refinancing incentive as the driver of prepayments and
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not incorporating any country-specific factors, the calibration can effectively capture the relationship
between prepayment rates and refinancing incentives.

To provide an overview of the complete historical dataset, Figure 4.2 shows the distribution of
monthly prepayment rates against the refinancing incentive.

Figure 4.2: A scatter plot of historical Italian monthly prepayment rates against the refinancing incentive. Note. The historical
data is obtained from an internal project of the bank.

From this figure several observations can be made regarding the relationship between prepayment
rates and the refinancing incentive. First of all, it is evident that as the incentive rate increases, the
monthly prepayment rates generally exhibit an upward trend. This implies that mortgagors are more
inclined to prepay their mortgage when the incentive is higher, indicating lower interest rates. Sec-
ondly, historical incentive rates span from -4.50% to 6.5%, while prepayment rates vary from 0% to
100%. However, a significant proportion of the data, approximately 99%, falls within the range of 0%
and 10%. It is worth noting that the remaining 1% of the data, and in specific the full prepayments
(100%), should not be considered as outliers. In fact, it is not uncommon for clients to (almost) fully
prepay their mortgage, especially when they are moving to a new house. Thirdly, the figure reveals a
substantial proportion of the observations corresponding to zero prepayments, particularly when there
is a negative incentive. Further analysis indicates that these zero prepayment instances represent ap-
proximately 40% of the data. This high portion suggests that a significant number of borrowers do not
take advantage of refinancing opportunities. Consequently, we expect that the calibration process will
pull the fitted logistic function towards the x-axis to account for this prevalent behaviour.

These observations provide valuable insights into the characteristics of historical prepayment data
and allows us to set up the calibration process. For this, only an initial guess for the parameters is
required. Based on Figure 4.2, the following parameter values are selected:

(𝑎0, 𝑏0, 𝑐0, 𝑑0) = (0, 0.1, 200, 0.01).

This parameter vector, along with the historical prepayment data, serves as input in Algorithm 2 to
calibrate the prepayment model. The resulting calibrated parameters are presented in Table 4.2.

These calibrated parameters can be interpreted as follows: The fitted monthly prepayment rates
range from 0.62% to 2.12% and demonstrate a positive relationship with the refinancing incentive. This
implies that, since 𝑐 has a positive value, there is more prepayment behaviour when the incentive
increases. Additionally, the clients are the most sensitive when the refinancing incentive is around
1.22%. A small deviation from this value leads to a relatively large change in prepayment rates. The
goodness of fit can be read from the mean-squared error. An MSE of 0.0017means that on average the
squared difference between the predicted values and the actual values is 0.0017. Since a significant
portion of the data falls within the 0% to 10% range, this value can be considered a reasonably good
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Parameter Outcome calibration Mean squared error

�̃� 0.0062
�̃� 0.0150
�̃� 200.00
�̃� 0.0122 1.7160 ⋅ 10−3

Table 4.2: The calibrated parameters of the logistic prepayment model (�̃�, �̃�, ̃𝑐, �̃�).

fit. To further assess the quality of the fit, it can be insightful to visualise the results through a figure.
Figure 4.3 illustrates the calibration data together with the fitted logistic function, presenting both the
entire dataset and a zoom-in view.

(a) The entire dataset. (b) Zoom-in view of the dataset.

Figure 4.3: Two scatter plots of historical monthly prepayment against the refinancing incentive together with the fitted logistic
function, using the parameters from Table 4.2.

At first sight, the fitted logistic function seems to effectively capture the prepayment behaviour. How-
ever, a closer examination of the figure reveals that some significant deviations from the fitted curve
occur in cases of the highest prepayment rates. In particular, there are instances of (almost) full prepay-
ments, whereas the fitted maximum prepayment rate is limited to 2.12%. As a results, these deviations
will contribute substantially to the overall MSE as the squared error are amplified. Our previous data
analysis revealed that approximately 1% of the data exceeds the 10% prepayment threshold. While
this percentage may not seem significant, the deviation of these data points greatly influences the size
of the MSE. However, when considering the notionals associated with these mortgages, it becomes
apparent that they account for only 0.04% of the total notional. This suggests that these mortgages
may not be as important as the remaining 99% in terms of their impact on the total prepayment be-
haviour. To address this issue, one approach is to introduce weighting to the data points based on their
respective notionals. By assigning greater importance to mortgages with larger notional values, the
impact of these mortgages on the analysis can be appropriately reflected. This weighted approach is
particularly relevant for banks as it acknowledges the higher exposure to prepayment risk that banks
face with such mortgages in absolute terms.

Figure 4.4 presents the scatter plot in which the data is weighted by their respective notionals,
demonstrating a more compact set of data points with the fading of the more extreme values. This is
due to the fact that these extremes correspond to mortgages with small notionals.

To incorporate the notionals in the calibration process, Algorithm 2 must be adjusted accordingly.
This can be accomplished by introducing a weight factor based on the relative notional value into the
objective function. By doing so, more emphasis is placed on minimising the error term for the larger
mortgages. The modified pseudocode is presented in Algorithm 3 and the results of the new calibration
process are given in Table 4.3.
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Figure 4.4: Scatter plots of historical monthly prepayment against the refinancing incentive, weighted by their respective notional.

Algorithm 3:Weighted mean squared error minimisation using the SLSQP algorithm
Input: Real data y ∈ ℝ3528 with corresponding notional N ∈ ℝ3528, the total notional 𝑁𝑡𝑜𝑡, and

the function 𝑓(⋅) that computes ŷ ∈ ℝ3528 for a given parameter vector
𝜃𝑤 = (𝑎𝑤 , 𝑏𝑤 , 𝑐𝑤 , 𝑑𝑤)

Output: Calibrated parameters (�̃�𝑤 , �̃�𝑤 , �̃�𝑤 , �̃�𝑤)

1. Initialise parameters 𝜃𝑤,0 ∶= (𝑎𝑤,0, 𝑏𝑤,0, 𝑐𝑤,0, 𝑑𝑤,0) = (0, 0.02, 200, 0.01).

2. Define objective function 𝑀𝑆𝐸(𝑎𝑤 , 𝑏𝑤 , 𝑐𝑤 , 𝑑𝑤) =
1

3528 ∑
3528
𝑖=1

𝑁𝑖
𝑁𝑡𝑜𝑡

⋅ (�̂�𝑖 − 𝑦𝑖)2.

3. Call the SLSQP optimisation algorithm with the objective function 𝑀𝑆𝐸(⋅), and initial guess 𝜃𝑤,0.

return (�̃�𝑤 , �̃�𝑤 , �̃�𝑤 , �̃�𝑤)

Parameter Outcome calibration Mean squared error

�̃�𝑤 0.0046
�̃�𝑤 0.0272
�̃�𝑤 200.00
�̃�𝑤 0.0162 4.9673 ⋅ 10−8

Table 4.3: The calibrated parameters of the logistic prepayment model for the weighted case (�̃�𝑤 , �̃�𝑤 , ̃𝑐𝑤 , �̃�𝑤).

Although the newly calibrated parameters show little variation in comparison to the unweighted case
in Table 4.2, the mean-squared error is notably less in the weighted scenario. This can be explained
by the fact that the extreme prepayment rates correspond to mortgages with a relatively small notional.
Their significant deviation from the fitted curve heavily influences the total error in the unweighted case,
but this effect is scaled down when we include the relative weight of their notionals. This effect is also
visible in Figure 4.5, which shows the calibration data together with the new fitted logistic function,
presenting both the entire dataset and a zoom-in view.

We conclude that the results obtained in the weighted scenario are more reasonable as it places
more emphasis on mortgages with a larger notional. Hence, for the remainder of the thesis, the final
prepayment function will be

𝑃𝑃(𝐼𝑛𝑐) = 𝑎 + 𝑏
1 + 𝑒−𝑐(𝐼𝑛𝑐−𝑑) , (4.2)
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(a) The entire dataset. (b) Zoom-in view of the dataset.

Figure 4.5: Two scatter plots of historical monthly prepayment against the refinancing incentive together with the fitted logistic
function, using the parameters from Table 4.3.

with
𝑎 = 0.0046, 𝑏 = 0.0272, 𝑐 = 200, 𝑑 = 0.0162.

This function provides us with a valuable tool for understanding the potential impact of changing
interest rates on mortgage prepayments. In the next section, we will consider a specific mortgage
portfolio and analyse its cash flows, considering both scenarios with and without prepayments. Through
this analysis, we aim to uncover valuable insights into the effects of interest rate fluctuations on the
timing and magnitude of mortgage prepayments.

4.2. Mortgage cash flows
In this thesis, we consider a hypothetical portfolio (hereafter, the mortgage portfolio) comprising six
bullet mortgages, with varying notionals, maturities and coupon rates. The portfolio, displayed in Table
4.4, has been carefully constructed to mirror the exposure and sensitivity to interest rate movements
found within a mortgages portfolio of a Dutch bank. Working with this mortgage portfolio allows us to
conduct insightful analyses while ensuring the confidentiality of the bank’s disclosed data.

Mortgage 1 2 3 4 5 6

Notional 217,594 217,791 776,889 233,714 210,013 144,000
Remaining FIRP (years) 2 3 5 7 10 8
Coupon rate (annual) 6.84% 6.00% 5.13% 4.34% 3.59% 2.83%

Table 4.4: A representative mortgage portfolio of six bullet mortgages with various notionals, remaining fixed interest rate periods
(FIRPs) and coupon rates.

Upon examination of this table, several observations can be made. Firstly, it is evident that five out
of the six mortgages have a notional value of approximately €200, 000, signifying a consistent amount
across the majority of the portfolio. However, the third mortgage stands out with a substantially larger
notional value of around €800, 000. The second row of the table indicates the remaining fixed interest
rate period (FIRP) for each of the mortgages. It is assumed that the entire notional will be fully repaid
at the end of this period. On average, the remaining fixed interest rate period amounts to 5.8 years,
which aligns with a realistic value of 5 years. Finally, we observe that the coupon rates are generally
higher for older mortgages. This pattern can be explained by the fact that these older mortgages are
usually deeper in the money, leading to higher coupon rates being applied.

Without considering prepayments, the cash flows of the mortgage portfolio primarily consist of
monthly interest payments and the final repayments at maturity of each individual mortgages. For
illustration, we consider a simplified mortgage with a notional value of €1000, a monthly coupon rate
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of 1%, and a maturity of one year. The monthly cash flows for this mortgage are presented in Figure
4.6.

Time 1 2 … 11 12

Interest payment 10 10 … 10 10
Repayment - - … - 1000

Figure 4.6: The monthly cash flows of a mortgage with a monthly coupon rate of 1%, a notional value of €1000 and a maturity
of one year, excluding prepayments.

This example shows the stable interest income each month, with the full redemption of the notional
amount upon maturity. In case of the mortgage portfolio from Table 4.4, the cash flows without prepay-
ments can be obtained in a similar manner. Figure 4.7 provides an overview of the aggregated cash
flows over the entire 10-year period. Note that the spikes in the figure represent the full repayments
occurring at the end of the fixed interest rate periods, matching the level and timing indicated in the first
and second rows of Table 4.4, respectively.

Figure 4.7: The cash flows of the total mortgage portfolio without prepayments.

The cash flows depicted in Figure 4.7 are purely theoretical, as they do not account for the potential
impact of prepayments by customers. How incorporating the prepayments affect the actual cash flows
of the mortgage portfolio will be analysed in the next subsection.

4.2.1. Mortgage cash flows with prepayments
Mortgagors have the option to prepay (part of) one’s notional. For this thesis, we consider the refinanc-
ing incentive as sole driver for this behaviour, which is defined as the difference between the coupon
rate and a reference rate that represents an alternative way to invest or to refinance the loan. Using
Equation (4.1), the refinancing incentive for the first mortgage is thus given by

𝐼𝑛𝑐1(𝑡) = 6.84% − 𝑆(𝑡, 𝑡, 2) − 1.5%,
with 𝑆(𝑡, 𝑡, 2) the 6M-Euribor swap rate with a two-year maturity, as defined in Equation (B.6). Similarly,
we can define the refinancing incentive for each mortgage of the portfolio. The relation between these
incentives and the prepayment rates was derived in the previous section, and is repeated here for the
sake of completeness:

𝑃𝑃(𝐼𝑛𝑐) = 𝑎 + 𝑏
1 + 𝑒−𝑐(𝐼𝑛𝑐−𝑑) , (4.3)

with
𝑎 = 0.0046, 𝑏 = 0.0272, 𝑐 = 200, 𝑑 = 0.0162.
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With the use of this formula, the prepayment rates for each of the mortgages under different interest
scenarios can be simulated. These prepayments may impact not only the timing but also the magnitude
of the cash flows within the mortgage portfolio. To illustrate this phenomenon, we will consider an
example.

Let us revisit the mortgage with a notional amount of €1000, a monthly coupon rate of 1%, and a
maturity of one year. However, this time we will allow for prepayments. Suppose the customer decides
to prepay 2% of its notional in the first month, which equates to €20. As a result, the outstanding
notional in the second month reduces to €980, and the interest payment in this month decreases
correspondingly to €9.80. These changes can be observed in Figure 4.8.

Time 1 2 … 11 12

Prepayment 20 - … - -
Interest payment 10 9.8 … 9.8 9.8
Repayment - - … - 980

Figure 4.8: The monthly cash flows of a mortgage with a monthly coupon rate of 1%, a notional value of €1000 and a maturity
of one year, including a prepayment of 2% in the first month.

The table highlights the impact of prepayments on both the timing and the level of the subsequent
cash flows of the mortgage. While this example only considers a single prepayment, it is important to
note that prepayments can occur monthly. In general, if we represent the prepayment made in month 𝑡
by Λ𝑡, the cash flows of a bullet mortgage with notional 𝑁, annual coupon rate 𝑐, and maturity 𝑇 can
be expressed as illustrated in Figure 4.9. This representation shows the dynamic nature of cash flows
that arise when prepayments are incorporated into the analysis.

Time 1 2 … 𝑇 − 1 𝑇
Prepayment Λ1 Λ2 … Λ𝑇−1 -
Interest payment 𝑐

12 ⋅ 𝑁
𝑐
12 ⋅ (𝑁 − Λ1) … 𝑐

12 ⋅ (𝑁 − ∑
𝑇−2
𝑖=1 Λ𝑖)

𝑐
12 ⋅ (𝑁 − ∑

𝑇−1
𝑖=1 Λ𝑖)

Repayment - - … - 𝑁 − ∑𝑇−1𝑖=1 Λ𝑖
Figure 4.9: The monthly cash flows of a mortgage with annual coupon rate 𝑐, notional value 𝑁 and a maturity of 𝑇 months,
including monthly prepayments Λ1 , …Λ𝑇−1.

Using this scheme, it is possible to simulate the cash flows for the mortgage portfolios under various
interest rate scenarios. The initial step involves generating Euribor swap rates using the Hull-White
model. These swap rates are subsequently employed to calculate the refinancing incentive for each
mortgage, applying Equation (4.1). The obtained incentives serve as inputs to the prepayment function,
represented in Equation (4.3), to determine the corresponding monthly prepayment rates denoted as
𝜆𝑚,𝑡 for mortgage 𝑚 and time 𝑡. With the prepayment rates identified, the prepayment amounts can be
computed using the following formula:

Λ𝑚,𝑡 = 𝜆𝑚,𝑡
𝑡−1

∏
𝑖=1
(1 − 𝜆𝑚,𝑡).

Note that the scenario where 𝜆𝑚,𝑡 = 0 ∀𝑡 corresponds to the absence of prepayments.
The effect of allowing prepayments to the mortgage cash flows can be seen in Figure 4.10, which

considers the first mortgage from Table 4.4. Without prepayments, the cash flows consist of the steady
monthly contractual interest payments and a repayment of the full notional after two years. In contrast,
if prepayments are allowed, the cash flows become more variable and are substantially higher over the
course of the mortgage, except for the final payment. This is because each prepayment reduces the
outstanding notional, resulting in a final payment that is less than what it would be without prepayments.

It is clear that allowing mortgagors to prepay part of their mortgage can significantly affect the level
and timing of the mortgage cash flows. For banks, particularly those with large mortgage portfolios,
these effects can result in major mismatches and potential challenges. Therefore, understanding and
effectively managing prepayment risk is of high importance to banks. To address this concern, one
approach is the implementation of a hedging portfolio. By adopting a hedging strategy, banks seek to
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Figure 4.10: One simulation of the cash flows of the first mortgage of the portfolio with prepayments (blue) and without prepay-
ments (orange).

mitigate the effects of prepayment risk on their earnings and value. The forthcoming chapter will delve
into an investigation of such hedging methods. The primary objective will be to achieve stability from
an earnings and value perspective.



5
Hedging approaches

This chapter contains the core research of the thesis. It starts with an introduction which explains
the general mortgage issuance process within a bank, introduces the corresponding baseline hedge,
and outlines the bank’s objectives for a hedge portfolio. Subsequently, hedge approaches aiming for
margin stability are examined and analysed using introduced risk metrics, followed by a similar analysis
for hedging portfolios focusing on value stability. Finally, all proposed hedging portfolios are assembled
and evaluated based on all risk metrics, with the aim of determining the most efficient hedge portfolio.

5.1. Introduction
Banks typically fund their mortgages by internal contracts. In our analysis, these internal contracts are
assumed to be simple bullet loans or deposits, traded at par at inception (swap + FTP) and held till
maturity. By strategically constructing a portfolio of such contracts, the bank can effectively transfer the
interest rate risk associated with its mortgage portfolio to the Group Treasury. This department then
aggregates all received risks and enters the financial markets to hedge the total balance sheet (assets
and liabilities) of the bank. An overview of this risk transfer process is given in Figure 5.1.

Figure 5.1: A schematic overview of risk transfer process within a bank.

In this figure, the ’Business’ represents the retail part of the bank, which interacts with the clients,
issuing mortgages and receiving interest payments. The business division then finances these trans-
actions with ’Treasury’ using internal contracts and paying the prevailing internal funding rate. This rate
consists of a relevant swap rate with an additional Funds Transfer Pricing (FTP) spread. Typically, this
swapFTP rate is smaller than the client rate, so that the business receives a positive margin. Finally,
Treasury uses the financial market as well as the internal deposits to fund the internal loans.

Without any additional hedging strategies, the baseline hedge for one mortgage consists of a single
internal contract in which the business receives the notional of the mortgage and pays interest, based
on the swapFTP rate with a tenor equal to the maturity of the mortgage. The cash flows of this internal
funding are illustrated in Figure 5.2.

31
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Time 0 1 2 3 … T

Internal funding 𝑁 −𝑆𝐹𝑇𝑃(0)12 ⋅ 𝑁 − 𝑆𝐹𝑇𝑃(0)12 ⋅ 𝑁 − 𝑆𝐹𝑇𝑃(0)12 ⋅ 𝑁 … −(𝑆𝐹𝑇𝑃(0)12 + 1) ⋅ 𝑁

Figure 5.2: The monthly cash flows of the internal funding of a mortgage with notional value 𝑁 and a maturity of 𝑇 months, with
interest based on the relevant swapFTP rate at time 0.

It is clear that this baseline hedging model does not account for the prepayment behaviour and
the associated interest rate risk. Therefore, this portfolio should be adjusted to effectively transfer the
risks to Group Treasury. In particular, the aim of this research is to construct the most effective hedge
portfolio for the given hypothetical mortgage portfolio in terms of value and margin stability. These
factors are crucial for managing interest rate risk within a bank. Margin stability ensures consistent
profitability by minimising the impact of interest rate fluctuations on the net interest margin, while value
stability helps mitigate potential value losses in response to interest rate changes. In addition to these
bank’s own motivations, financial regulators also play a crucial role. Regulators, such as the European
Banking Authority (EBA), impose restrictions on banks to ensure prudent risk management practices,
making margin and value stability essential for maintaining overall stability of the banking system (EBA,
2022b).

In the subsequent subsections, we will refine the baseline hedge portfolio, consisting of only an internal
funding, by prioritising margin stability and value stability. This will involve examining relevant risk
metrics and exploring various hedging approaches.

5.2. Margin stability
The net interest margin (NIM) is a financial metric that quantifies the profitability of a bank or financial
institution. It is defined as the ratio of net interest income to the average interest-earning assets. Net
interest income represents the difference between interest rate revenues and interest rate expenses.

In our analysis, we consider monthly cash flows arising from the mortgage portfolio and the hedging
portfolio. This implies that the denominator simplifies to the outstanding notional of the mortgage port-
folio since it represents the average interest-earning assets over a given month. Consequently, if we
denote the mortgage and hedging cash flows in month 𝑗 and simulation 𝑖 by 𝑀𝑖,𝑗 and 𝐻𝑖,𝑗, respectively,
then the corresponding monthly NIM can be expressed as follows:

𝑁𝐼𝑀𝑖,𝑗 =
𝑀𝑖,𝑗 + 𝐻𝑖,𝑗

Outstanding notional𝑖,𝑗
.

5.2.1. Risk metrics margin stability
Based on the evolution of interest rates, the NIM may change over time. Clients may decide to prepay,
disrupting the cash flows arising from the mortgage portfolio and resulting in an unstable margin. Our
aim is to achieve a stable net interest margin, ensuring its consistency over time and across various
interest rate scenarios. A common way to attain stability is by minimising the variance of the NIM across
all simulations and time periods. Since the true distribution and variance of the NIM are unknown, wewill
employ the unbiased sample variance as an alternative estimation method. With 𝑌1, … , 𝑌𝑁 the relevant
samples, the unbiased sample variance, denoted by 𝑆2, is defined as follows:

𝑆2 = 1
𝑁 − 1

𝑁

∑
𝑘=1
(𝑌𝑘 − �̄�)2,

where �̄� represents the sample mean, given by

�̄� = 1
𝑁

𝑁

∑
𝑘=1

𝑌𝑘 .

Consequently, considering the hypothetical mortgage portfolio used in this research, with 100 simu-
lations conducted over a period of 10 years, the risk metric for margin stability will be the following
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quantity:

𝑉𝐴𝑅𝑁𝐼𝑀 ∶=
1

100 ⋅ 120 − 1

100

∑
𝑖=1

120

∑
𝑗=1
(𝑁𝐼𝑀𝑖,𝑗 − 𝑁𝐼𝑀)2,

where 𝑁𝐼𝑀 is the sample mean of the NIM values, defined as:

𝑁𝐼𝑀 = 1
100 ⋅ 120

100

∑
𝑖=1

120

∑
𝑗=1
𝑁𝐼𝑀𝑖,𝑗 .

It is worth noting that for any two hedging portfolios, the one with the lowest variance will be considered
as the better portfolio in terms of margin stability, as a low variance suggests low variability in the net
interest margin.

5.2.2. Hedging approaches margin stability
We start our hedge with the baseline hedge as described at the start of this chapter. For a single
mortgage without prepayments, this method leads to perfect NIM stability. This can be seen in Figure
5.3, which shows the cash flows of one mortgage and its internal funding.

Time 0 1 2 … T

Mortgage −𝑁 𝑐
12 ⋅ 𝑁

𝑐
12 ⋅ 𝑁 … ( 𝑐12 + 1) ⋅ 𝑁

Internal funding 𝑁 − 𝑆𝐹𝑇𝑃(0)12 ⋅ 𝑁 − 𝑆𝐹𝑇𝑃(0)12 ⋅ 𝑁 … −(𝑆𝐹𝑇𝑃(0)12 + 1) ⋅ 𝑁

NIM 0 𝑐−𝑆𝐹𝑇𝑃(0)
12

𝑐−𝑆𝐹𝑇𝑃(0)
12 … 𝑐−𝑆𝐹𝑇𝑃(0)

12

Figure 5.3: The monthly cash flows of a mortgage with annual coupon rate 𝑐, notional value 𝑁, and a maturity of 𝑇 months,
together with its internal funding with interest based on the relevant swapFTP rate at time 0, denoted by 𝑆𝐹𝑇𝑃(0).

However, considering a portfolio of two mortgage, the internal funding already becomes inefficient
in terms of margin stability. This becomes apparent in Figure 5.4.

Time 0 1 2 … T

Mortgage 1 −𝑁1
𝑐1
12 ⋅ 𝑁1

𝑐1
12 ⋅ 𝑁1 … ( 𝑐112 + 1) ⋅ 𝑁1

Mortgage 2 −𝑁2
𝑐2
12 ⋅ 𝑁2

𝑐2
12 ⋅ 𝑁2 … ( 𝑐212 + 1) ⋅ 𝑁2

Internal funding 1 𝑁1 −𝑆𝐹𝑇𝑃1(0)12 ⋅ 𝑁1 −𝑆𝐹𝑇𝑃1(0)12 ⋅ 𝑁1 … −(𝑆𝐹𝑇𝑃1(0)12 + 1) ⋅ 𝑁1

Internal funding 2 𝑁2 −𝑆𝐹𝑇𝑃2(0)12 ⋅ 𝑁2 −𝑆𝐹𝑇𝑃2(0)12 ⋅ 𝑁2 … −(𝑆𝐹𝑇𝑃2(0)12 + 1) ⋅ 𝑁2

NIM 0
𝑐1−𝑆𝐹𝑇𝑃1(0)

12 ⋅𝑁1+
𝑐2−𝑆𝐹𝑇𝑃2(0)

12 ⋅𝑁2
𝑁1+𝑁2

𝑐1−𝑆𝐹𝑇𝑃1(0)
12 ⋅𝑁1+

𝑐2−𝑆𝐹𝑇𝑃2(0)
12 ⋅𝑁2

𝑁1+𝑁2
…

𝑐1−𝑆𝐹𝑇𝑃1(0)
12 ⋅𝑁1+

𝑐2−𝑆𝐹𝑇𝑃2(0)
12 ⋅𝑁2

𝑁1+𝑁2

Figure 5.4: The monthly cash flows of two mortgages with annual coupon rates 𝑐1, 𝑐2, notional values 𝑁1, 𝑁2, and a maturity of
𝑇 months, together with their internal funding with interest based on the relevant swapFTP rates at time 0, denoted by 𝑆𝐹𝑇𝑃1(0)
and 𝑆𝐹𝑇𝑃1(0).

From this figure, we conclude that only if the spread between the coupon rate and the relevant
internal funding rate is fixed, complete margin stability is attained. In other words, if

𝑐1 − 𝑆𝐹𝑇𝑃1(0) = 𝑐2 − 𝑆𝐹𝑇𝑃2(0),

the net interest margin will have a value of 𝑐1−𝑆𝐹𝑇𝑃1(0)12 throughout the complete lifespan of the mortgage
portfolio. A similar conclusion can be drawn if we consider more than two mortgages.

For the mortgage portfolio considered in this research, the differences between the coupon rate and
the relevant swapFTP rate are not fixed. However, due to only small variations across the six different
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mortgages, we still achieve a low variance of the NIM, as depicted in Table 5.1. This indicates that
internal funding provides good margin stability when prepayments are excluded.

Variance NIM

Without prepayments 2.205 × 10−7
With prepayments 1.097 × 10−1

Table 5.1: The variance of the net interest margin for the baseline model, with and without allowing prepayments.

However, if we allow the customers to prepay, Table 5.1 shows that the variance of the NIM substan-
tially increases and as a result, the baseline model no longer suffices to maintain margin stability. The
main reason for this large difference in variance, is the fact that prepayments change the outstanding
notional amount of the mortgage. If a mortgage starts with a notional amount of 𝑁, and the customer
makes a prepayment of Λ1 in the first month, the outstanding notional in the second month becomes
𝑁 − Λ1. The interest paid on the mortgage now decreases, where the interest on the internal loan
remains the same, resulting in a change in net interest margin.

A common method to address this, and attain margin stability, is by applying a notional hedge. This
approach tries to match the expected outstanding notional of a mortgage with that of the hedge. For
this, the baseline hedge should be adjusted so that its notional decreases by the exact prepayment
amount. In the next two subsections, a static and a dynamic application of this hedge are discussed.

Static notional hedge
A static notional hedge is a type of notional hedge that is constructed at time 𝑡 = 0 and fixed throughout
the timeline of the mortgage portfolio. As the real prepayment amounts are unknown at this time, and
therefore the outstanding is not known, their expected values are utilised, which can be derived from
the expected swap rates. For instance, let us consider the first mortgage of our portfolio, which has
a coupon rate of 6.84% and a remaining fixed interest rate period of 2 years. For this mortgage, the
expected prepayment rate at time 𝑡 can be expressed as

𝜆1,𝑡 = 𝑃𝑃1(𝑡) = 𝑎 +
𝑏

1 + 𝑒−𝑐∗( ̃𝐼𝑛𝑐1(𝑡)−𝑑)
,

with the parameter 𝑎, 𝑏, 𝑐 and 𝑑 as given in Table 4.3 and

𝐼𝑛𝑐1(𝑡) = 6.84% − 𝑆(0, 𝑡, 2) − 1.5%.

Here, 𝑆(0, 𝑡, 2) denotes the 6M-Euribor swap rate at time 𝑡 with a maturity of two years, as expected at
time 𝑡 = 0. It is calculated by applying Equation (B.6) using the current prices of zero-coupon bonds,
which can be obtained from a generic market data feed of the bank. With the use of the expected
prepayment rates, the monthly expected prepayment amounts can be calculated, which we will denote
by Λ̃𝑡 for month 𝑡.

Now in order to apply a notional hedge, zero-coupon bonds will be used, one for each month,
as illustrated in Figure 5.5. The notional of each bond is specifically chosen, so that if the expected
notionals match the observed notionals, a stable net interest margin is attained. This can easily be
checked by setting Λ̃𝑡 = Λ𝑡 ∀𝑡.
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Time 0 1 2 … T

Mortgage −𝑁 𝑐
12 ⋅ 𝑁

𝑐
12 ⋅ (𝑁 − Λ1) … ( 𝑐12 + 1) ⋅ (𝑁 − ∑

𝑇−1
𝑡=1 Λ𝑡)

Prepayment - Λ1 Λ2 … -

Internal funding 𝑁 −𝑆𝐹𝑇𝑃(0)12 ⋅ 𝑁 −𝑆𝐹𝑇𝑃(0)12 ⋅ 𝑁 … −(𝑆𝐹𝑇𝑃(0)12 + 1) ⋅ 𝑁
Zero-coupon bonds 𝑃1(0) −Λ̃1 - … -

𝑃2(0) - −Λ̃2 +
𝑆𝐹𝑇𝑃(0)
12 Λ̃1 … -

⋮ ⋮ ⋮ ⋮ ⋮
𝑃𝑇(0) - - … (𝑆𝐹𝑇𝑃(0)12 + 1)∑𝑇−1𝑡=1 Λ̃𝑡

NIM ∑𝑇𝑖=1
𝑃𝑖(0)
𝑁

𝑐−𝑆𝐹𝑇𝑃(0)
12

+Λ1−Λ̃1𝑁

𝑐
12 (𝑁−Λ1)−

𝑆𝐹𝑇𝑃(0)
12 (𝑁−Λ̃1)

𝑁−Λ1

+Λ2−Λ̃2𝑁−Λ1

… ( 𝑐12+1)(𝑁−∑
𝑇−1
𝑡=1 Λ𝑡)

𝑁−∑𝑇−1𝑡=1 Λ𝑡

− (
𝑆𝐹𝑇𝑃(0)
12 +1)(𝑁−∑𝑇−1𝑡=1 Λ̃𝑡)

𝑁−∑𝑇−1𝑡=1 Λ𝑡

Figure 5.5: The monthly cash flows of a static notional hedge with zero-coupon bonds with notionals based on the expected
cash flows from a mortgage with annual coupon rate 𝑐, notional value 𝑁, and a maturity of 𝑇 months.

It is clear that the realised prepayment rates may deviate from the expected rates, resulting in a discrep-
ancy in the notional matching and changes in the margin. This is demonstrated through the simulations
of interest rate scenarios and the corresponding NIM depicted in Figure 5.6, where ten simulations are
shown.

Figure 5.6: Ten simulations of the net interest margin for the static notional hedge with zero-coupon bonds.

From this figure it is evident that the current portfolio is inadequate to ensure margin stability. In
particular, at the maturities of the mortgages portfolio large deviations in the net interest margin are
visible, demonstrating the interest rate sensitivity of the hedging portfolio. To gain more insight into
these significant variations in the NIM across different interest rate scenarios, a closer examination of
the relation between the NIM and the market behaviour is required.

Considering the bottom row of Figure 5.5, which indicates the NIM, we see that any disparity in
prepayment amount leads to a fluctuation in the margin. In particular, if we write Λ̃𝑡 = Λ𝑡 + 𝜖𝑡, then the
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NIM can be rewritten to

𝑁𝐼𝑀𝑡 =
⎧
⎪
⎨
⎪
⎩

𝑐−𝑆𝐹𝑇𝑃(0)
12 +

𝑆𝐹𝑇𝑃(0)
12 ∑𝑡−1𝑖=1 𝜖𝑖−𝜖𝑡
𝑁−∑𝑡−1𝑖=1 Λ𝑖

𝑡 < 𝑇;

𝑐−𝑆𝐹𝑇𝑃(0)
12 + (𝑆𝐹𝑇𝑃(0)12 + 1) ∑𝑇−1𝑡=𝑖 𝜖𝑖

𝑁−∑𝑇−1𝑖=1 Λ𝑖
𝑡 = 𝑇.

(5.1)

This notation indicates that whenever 𝜖𝑡 becomes significantly less than zero at a particular time 𝑡,
the NIM at maturity can become substantially negative. Therefore, the primary reason behind the
prominent negative spikes observed in Figure 5.6 may be an interest rate environment that is lower
than anticipated. Figure 5.7, which displays the evolution of a 6M-Euribor swap rate in the same ten
simulations, supports this notion by showing that the extreme negative scenarios align with the lowest
interest rates. In contrast, relatively minor positive spikes are visible in Figure 5.6. These spikes
arise from interest rates surpassing their expected values, thereby resulting in fewer prepayments than
expected. However, as the denominator of the error term in Equation (5.1) is the real outstanding
notional, which remained substantial, the resulting NIM remains modest. Consequently, the impact of
this disparity is less apparent in the figure.

Figure 5.7: Ten simulations of the 6M-Euribor swap rates over time for a swap that matures in ten years.

Hedging approach Variance NIM

Internal funding 1.097 × 10−1
Static notional hedge 2.466 × 10−2

Table 5.2: The variance of the net interest margin for the baseline model and the static notional hedge with zero-coupon bonds.

From this analysis, it can be concluded that whenever the market behaves differently than an-
ticipated, the static hedge using zero-coupon bonds does not effectively hedge the margin stability.
However, there is an improvement in comparison to the baseline model. The variance of the net in-
terest margin for this static hedge, as displayed in Table 5.2, exhibits a significant reduction of 75%
compared to the variance associated with the internal funding. Although this reduction is noteworthy,
it is important to note that the effectiveness of this approach heavily relies on the assumption that the
current yield curve accurately reflects the market’s expectation of future interest rates. Any discrep-
ancies between the yield curve and the actual future interest rates could result in differences between
the implied prepayment rates and the actual prepayment rates. Consequently, the notional match of
the hedge is highly sensitive to interest rate changes, as the zero-coupon bond cash flows are pre-
determined. To address this issue, the subsequent step would be to consider a dynamic model that
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incorporates realised prepayment amounts. The following section will be dedicated to exploring this
dynamic approach.

Dynamic notional hedge
A dynamic notional hedge is similar to a static notional hedge but distinguishes itself by allowing re-
balancing the hedge portfolio periodically. This implies that each month, the hedge can be adjusted
according to the observed market conditions, incorporating realised prepayment behaviour rather than
relying solely on expected prepayments.

Consider a mortgage with an initial notional amount 𝑁. If a prepayment of Λ1 is made in the first
month, the outstanding notional reduces to 𝑁 − Λ1 in the second month. To account for this change,
the hedge portfolio can be adjusted by issuing an internal deposit with an amount equal to Λ1. then
in the subsequent months, we earn interest on this deposit with respect to the prevailing swapFTP
curve. The total notional of the hedge portfolio thus decreases to 𝑁 − Λ1, matching the notional of the
mortgage portfolio as required. This process can be repeated on a monthly basis to ensure that the
notionals of the two portfolios are aligned through the entire lifespan of the mortgage portfolio. For a
detailed understanding of this dynamic approach, refer to Figure 5.8, which provides a comprehensive
overview of the relevant cash flows and the corresponding net interest margin per month.

Time 0 1 2 … T

Mortgage −𝑁 𝑐
12 ⋅ 𝑁

𝑐
12 ⋅ (𝑁 − Λ1) … ( 𝑐12 + 1) ⋅ (𝑁 − ∑

𝑇−1
𝑡=1 Λ𝑡)

Prepayment - Λ1 Λ2 … 0
Internal contracts 𝑁 − 𝑆𝐹𝑇𝑃(0)12 ⋅ 𝑁 −𝑆𝐹𝑇𝑃(0)12 ⋅ 𝑁 … −(𝑆𝐹𝑇𝑃(0)12 + 1) ⋅ 𝑁

- −Λ1
𝑆𝐹𝑇𝑃(1)
12 ⋅ Λ1 … (𝑆𝐹𝑇𝑃(1)12 + 1) ⋅ Λ1

- - −Λ2 … (𝑆𝐹𝑇𝑃(2)12 + 1) ⋅ Λ2

⋮ ⋮ ⋮ ⋱ ⋮

- - - … (𝑆𝐹𝑇𝑃(𝑇−1)12 + 1) ⋅ Λ𝑇−1

NIM 0 𝑐−𝑆𝐹𝑇𝑃(0)
12

𝑐−𝑆𝐹𝑇𝑃(0)
12 ⋅𝑁− 𝑐−𝑆𝐹𝑇𝑃(1)12 Λ1

𝑁−Λ1
…

𝑐−𝑆𝐹𝑇𝑃(0)
12 ⋅𝑁−∑𝑇−1𝑡=1

𝑐−𝑆𝐹𝑇𝑃(𝑡)
12 Λ𝑡

𝑁−∑𝑇−1𝑡=1 Λ𝑡

Figure 5.8: The monthly cash flows of a dynamic notional hedge with internal contracts with notionals based on the observed
cash flows from a mortgage with annual coupon rate 𝑐, notional value 𝑁, and a maturity of 𝑇 months.

Focusing on the final row of Figure 5.8, it becomes apparent that the monthly NIM would be stabilised
if the swapFTP curve remains flat. Indeed, if we express the swapFTP curve as

𝑆𝐹𝑇𝑃(𝑡) = 𝑆𝐹𝑇𝑃(0) + 𝛿𝑡 ,

then the NIM can be expressed as

𝑁𝐼𝑀𝑡 =
𝑐 − 𝑆𝐹𝑇𝑃(0)

12 + 1
12

∑𝑡−1𝑖=1 𝛿𝑖Λ𝑖
𝑁 − ∑𝑡−1𝑖=1 Λ𝑖

. (5.2)

This equation demonstrates that a perfectly stable net interest margin can be attained if 𝛿𝑡 = 0 for
all 𝑡. It is however important to note that this ideal scenario may not hold in reality. In practice, the
swapFTP curve is subject to market dynamics, making it unlikely to remain completely flat over time.
Nevertheless, these fluctuations in the swapFTP curve are generally expected to be less significant
than the discrepancies between expected and realised prepayments. As a result, the dynamic notional
hedge will likely yield better margin stability compared to the static approach.

To assess this hypothesis, we examine the stability of the net interest margin for both the dynamic
and static notional hedge using the same interest rate scenarios. Figure 5.9 displays the evolution of
the net interest margin over a ten-year period for the dynamic notional hedge. Comparing this figure
to Figure 5.6 reveals notable differences in both the size of the NIM and the shape of the curve. The
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dynamic approach yields values ranging approximately between −0.03 and 0.002, whereas the static
approach exhibits a wider variation between −6 and 0.03. This significant difference can be attributed
to the different error terms in Equation (5.1) and Equation (5.2). The first equation, corresponding to the
static notional hedge, shows that the error term primarily depends on the discrepancies between the
expected and realised prepayments, while the error term in Equation (5.2), for the dynamic approach,
relies on the fluctuations in the swapFTP curve. As the fluctuations in the swapFTP curve are in general
less significant than the discrepancies between expected and realised prepayments, this leads to a
smaller error in the dynamic approach and thus a smaller range of NIM values.

Figure 5.9: Ten simulations of the net interest margin for the dynamic notional hedge with internal contracts.

Additionally, despite sharing the same underlying interest rate scenarios, the two NIM curves ex-
hibit distinct shapes. Figure 5.9 displays a mostly monotonic decreasing curve, whereas Figure 5.6
shows fluctuations with spikes aligning with the mortgage maturities in the considered mortgage port-
folio. The latter behaviour was explained in the previous section through Equation (5.1), where the
error term could be both positive and negative depending on the differences in expected and observed
prepayments, with relatively larger negative errors. In the case of the dynamic notional hedge, we
observe a similar pattern in Equation (5.2). Positive values of 𝛿𝑡 correspond to an increased swapFTP
curve in comparison to the start date, suggesting fewer prepayments and a smaller decrease in the
outstanding notional. As a result, the error term is a small positive number. Conversely, negative val-
ues of 𝛿 correspond to a decreased swapFTP rate, indicating more prepayments and a larger decrease
in the outstanding notional. Combined, this results in a relatively large negative error. Consequently,
this suggest that the two blue lines in Figure 5.9, which correspond to the largest deviations in the net
interest margin, should correspond to the lowest interest rate environment. This is in line with Figure
5.7, which shows the corresponding simulated 6M-Euribor swap rates over time.

Beside the significant positive change in the behaviour of the net interest margin for the dynamic
approach, as there are visibly less fluctuations, we also see this back in Table 5.3 which displays the
variance of the NIM for the three hedging approaches discussed so far. From this table, it becomes
clear that the dynamic notional hedge ensures substantially more margin stability than the baseline
model and the static notional hedge.

In the next section we will move from earnings perspective to value perspective and explore various
hedging approaches to attain value stability. Moreover, we will discuss different metrics to measure
this stability.
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Hedging approach Variance NIM

Internal funding 1.097 × 10−1
Static notional hedge 2.466 × 10−2
Dynamic notional hedge 1.080 × 10−5

Table 5.3: The variance of the net interest margin for the baseline model, the static notional hedge with zero-coupon bonds, and
the dynamic notional hedge with internal contracts.

5.3. Value stability
The net present value (NPV) is a financial measure used to assess the value of a portfolio by calcu-
lating the present value of expected future cash flows, taking into account the time value of money.
It compares the present value of incoming cash flows to the present value of outflows, using a speci-
fied discount rate. Let us consider a portfolio with net cash flows 𝐶𝐹1, … , 𝐶𝐹𝑁 and their corresponding
discount factors 𝐷𝐹1, … , 𝐷𝐹𝑁. Then the NPV can be calculated using the following formula:

𝑁𝑃𝑉 =
𝑁

∑
𝑘=1

𝐷𝐹𝑘𝐶𝐹𝑘 .

In the context of the mortgage portfolio, the cash flows include monthly interest payments, prepay-
ments, and the final payment of the outstanding notional. It is worth noting that there are no principal
repayments included since we are considering bullet mortgages. As for the hedging portfolio, the rel-
evant cash flows are those arising from the selected financial instruments. Since these payments are
all made in the future, they are worth less than the same payments made today due to the opportu-
nity to earn interest through investments or deposits. Therefore, discounting the cash flows using an
appropriate rate is required.

The foundation of the discounting curve is the reference curve, which serves as the risk-free com-
ponent. In the context of this study, spot rates are considered the relevant rates as they reflect the
current rates for immediate contract settlements. These spot rates are derived using forward rates,
which are rates used for contracts starting in the future. The relationship between spot rates (𝑆𝑅𝑡) and
forward rates (𝐹𝑅𝑠−1, 𝑠) is defined by Equation (5.3).

(1 + 𝑆𝑅𝑡)𝑡 = (1 + 𝐹𝑅0, 1) ⋅ (1 + 𝐹𝑅1, 2) ⋅ … ⋅ (1 + 𝐹𝑅𝑡−1, 𝑡). (5.3)

Since the mortgage portfolio under consideration involves monthly cash flows, monthly forward rates
are required. In this case, the 1M-Euribor rate is chosen and can be simulated using the formula
provided in Appendix A.1.2.

It is important to note that prior to the 2008 financial crisis, it was common practice to use a single
curve, such as the 1M-Euribor, for the calculation of the NPV. This was because the Euribor rate was
considered close to the risk-free rate and using it for both forecasting and discounting simplified valu-
ation. However, during the crisis, the spread between Euribor rates and the ’real risk-free’ overnight
index swap (OIS) rates widened significantly, making the single-curve framework no longer sufficient
(Ametrano and Bianchetti, 2013; Bianchetti and Carlicchi, 2011). Therefore, in the present market, a
multi-curve approach is typically employed to account for this spread. Nevertheless, for the purpose
of this research, we will utilise the single-curve framework, as the multi-curve approach introduces
unnecessary complexity that is not required for this specific analysis.

In order to calculate the NPV accurately, spot rates alone are insufficient, as they only account for
the risk-free component. To incorporate a market value perspective, a risky component needs to be
added. A common approach to address this is by including instrument-specific spreads to the reference
curve. For the mortgage portfolio, this entails adding a commercial margin to compensate for the risk
such as defaulting clients. A margin of 1.5% is chosen, which aligns with the margin included in the
mortgage rate. On the other hand, the hedging portfolio requires an internal Funds Transfer Pricing
(FTP) spread, that approximates the liquidity spreads and is set at 50% of the margin, equivalent to
0.75%. It is worth noting that the commercial margin is typically larger than the FTP spread.

Taking all of this in account, we define the discount factor 𝐷𝐹𝑡 for time 𝑡 as

𝐷𝐹𝑡 =
1

(1 + 𝑆𝑅𝑡 + 𝛽)𝑡
.
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In this formula, 𝑆𝑅𝑡 represents the spot rate for time 𝑡, and 𝛽 is the additional spread. The value of 𝛽
depends on the type of portfolio:

𝛽 = {0.015 for the mortgage portfolio;
0.0075 for the hedging portfolio.

By incorporating the spread into the discount factor formula, the cash flows from the mortgage
and hedging portfolio can be appropriately discounted. Note that the cash flows from the mortgage
portfolio are discounted with a smaller value. As a results, it will have a smaller NPV compared to a
hedge portfolio with identical cash flows.

5.3.1. Risk metrics value stability
Our objective is to achieve a stable net present value by ensuring its consistency across different
interest rate scenarios. One approach to ensure this is by minimising the variance of the NPV, similar
to the approach used for margin stability. However, in this case, only one value is obtained for each
interest rate scenario, as opposed to obtaining values for each month and simulation. Hence, we aim
to minimise the following objective over 100 conducted simulations:

𝑉𝐴𝑅𝑁𝑃𝑉 ∶=
1

100 − 1

100

∑
𝑖=1
(𝑁𝑃𝑉𝑖 − 𝑁𝑃𝑉)2,

with 𝑁𝑃𝑉 the average NPV, defined by

𝑁𝑃𝑉 = 1
100

100

∑
𝑖=1
𝑁𝑃𝑉𝑖 .

Additionally, we will evaluate the stability of the value by considering the net basis point value (BPV)
of the mortgage and hedging portfolio. The BPV is a metric that reflects the sensitivity of the value to
interest rate changes. Specifically, it gives an approximation of the change in value when the rates shift
up by 1 basis point (0.01%), and it is defined as

𝐵𝑃𝑉 =
𝑁𝑃𝑉𝑢𝑝 − 𝑁𝑃𝑉𝑑𝑜𝑤𝑛

20𝑏𝑝𝑠 ,

where 𝑁𝑃𝑉𝑢𝑝 represents the NPV value of a portfolio when the yield curve is shifted up by 10 basis
points, while 𝑁𝑃𝑉𝑑𝑜𝑤𝑛 does for the yield curve shifted down by 10 basis points. A net BPV of zero
thus implies, on average, no change in value for parallel movements in the yield curve. Therefore,
minimising the net BPV should result in increased value stability.

5.3.2. Hedging approaches value stability
Similar to margin stability, we initiate our hedge with the baseline hedge described earlier in this chapter.
Figure 5.10 presents the cash flows and corresponding discount factors for a single mortgage including
prepayments and its internal funding.

Based on this figure, several observations can be made. First of all, it is clear that the discount factor
for the mortgage is consistently smaller than that of the internal funding. This is a general pattern that
remains unchanged regardless of the hedge portfolio. Therefore, in order to achieve a value match,
the cash flows of the hedge should be smaller than the mortgage cash flows. Secondly, we note that
the total NPV for the baseline hedge can be expressed as

𝑁𝑃𝑉 =
𝑇

∑
𝑡=0

𝐶𝐹𝑚𝑜𝑟𝑡,𝑡
(1 + 𝑆𝑅𝑡/12 + 0.015)

𝑡
12
+

𝑇

∑
𝑡=0

𝐶𝐹𝑖𝑛𝑡 𝑓𝑢𝑛𝑑,𝑡
(1 + 𝑆𝑅𝑡/12 + 0.0075)

𝑡
12
,

with 𝐶𝐹𝑚𝑜𝑟𝑡,𝑡 and 𝐶𝐹𝑖𝑛𝑡 𝑓𝑢𝑛𝑑,𝑡 representing the cash flows of the mortgage and the internal funding,
respectively, as shown in the first and third row of Table 5.10. This expression shows that changes
in the NPV arise from changes in spot rates, prepayment amounts, or both, as the other parameters
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Time 0 1 2 … T

Mortgage −𝑁 𝑐
12 ⋅ 𝑁 + Λ1

𝑐
12 ⋅ (𝑁 − Λ1) … ( 𝑐12 + 1) ⋅ (𝑁 − ∑

𝑇−1
𝑡=1 Λ𝑡)

Discount factor 1 1

(1+𝑆𝑅1/12+0.015)
1
12

1

(1+𝑆𝑅2/12+0.015)
2
12

… 1

(1+𝑆𝑅𝑇/12+0.015)
𝑇
12

Internal funding 𝑁 − 𝑆𝐹𝑇𝑃(0)12 ⋅ 𝑁 −𝑆𝐹𝑇𝑃(0)12 ⋅ 𝑁 … −(𝑆𝐹𝑇𝑃(0)12 + 1) ⋅ 𝑁

Discount factor 1 1

(1+𝑆𝑅1/12+0.0075)
1
12

1

(1+𝑆𝑅2/12+0.0075)
2
12

… 1

(1+𝑆𝑅𝑇/12+0.0075)
𝑇
12

Figure 5.10: The monthly cash flows and discount factors of a mortgage with annual coupon rate 𝑐, notional value 𝑁, a maturity
of 𝑇 months, and prepayment amounts Λ1 , …Λ𝑇−1, together with its internal funding with interest based on the relevant swapFTP
rate at time 0.

remain constant. Therefore, we expect different values of this risk metric across various interest rate
scenarios. As a consequence, a hedge that solely relies on internal funding, which does not take into
account fluctuations in spot rates and prepayment rates, will not provide effective value stability.

A common approach to address this, is by neutralising the net basis point value (BPV). This metric
approximates the change in value in response to a one basis point parallel shift of the relevant yield
curve. This implies that a net BPV of zero ensures that the impact of interest rate changes on the
portfolio’s value is minimal. To maintain a net BPV of zero, a BPV (or value) hedge can be applied,
which tries to find a hedge portfolio of which the BPV matches the BPV of the mortgage portfolio. In
the upcoming two subsection, we will delve into two applications of this value hedge, subsequently a
static and a dynamic approach.

Static value hedge
The static value hedge is a type of value hedge that is established at time 𝑡 = 0 and remains unchanged
until the mortgage portfolio reaches maturity. Like the static notional hedge, it relies on zero-coupon
bonds constructed using projected prepayment behaviour, as this is the only information accessible at
initiation.

The objective of the value hedge is to achieve value stability by neutralising the net basis point
value. One approach to accomplish this, is by focusing on the net BPV over the entire duration of the
mortgage portfolio. This approach provides a comprehensive view of interest rate sensitivity over the
complete time horizon. However, it may overlook short-term market fluctuations and their impact on the
portfolio, thereby failing on capturing potential risks that arise within shorter time periods. Given that
the mortgage portfolio in this research involves monthly cash flows, this method may not be sufficient.
An effective alternative is to assess the net BPV on a month-to-month basis. By achieving a monthly
net BPV of zero, this approach will ultimately result in a total net BPV of zero, as the total net BPV
can be obtained by summing the individual monthly net BPVs. This method is preferred as it maintains
long-term risk management while allowing for a more granular analysis of interest rate sensitivity.

Executing the month-to-month value hedge requires several steps. First, the monthly BPV of the
expected cash flows of the mortgage is calculated, discounting with the expected spot rates plus the
additional fixed margin of 1.5%. Next, the monthly BPV of the internal funding, discounted with the sum
of the expected spot rates and the FTP spread of 0.75%, is calculated. Finally, for each month, the net
BPV, the sum of the BPV of the mortgage and the internal funding, is determined, and a zero-coupon
bond is constructed to offset its value, leading to an expected net BPV of zero.

Mathematically, if we let 𝐵𝑃𝑉ℎ𝑒𝑑𝑔𝑒,𝑡 and 𝐵𝑃𝑉𝑚𝑜𝑟𝑡,𝑡 be the BPV of the hedge portfolio and the mort-
gage portfolio at time 𝑡, respectively, then BPV matching translates to attaining the following equation:

𝑛𝑒𝑡 𝐵𝑃𝑉𝑡 ∶= 𝐵𝑃𝑉ℎ𝑒𝑑𝑔𝑒,𝑡 + 𝐵𝑃𝑉𝑚𝑜𝑟𝑡,𝑡 = 0 ∀𝑡.

Note that at first, we have 𝐵𝑃𝑉ℎ𝑒𝑑𝑔𝑒,𝑡 = 𝐵𝑃𝑉𝑖𝑛𝑡 𝑓𝑢𝑛𝑑,𝑡 and we assume that the corresponding net BPV
is nonzero, since otherwise the BPV matching is already obtained. Now let 𝐵𝑃𝑉𝑧𝑐𝑏,𝑡 be the BPV of a
zero-coupon bond that pays out 𝐶𝐹𝑧𝑐𝑏,𝑡 at time 𝑡. Then this zero-coupon bond should be constructed
such that

𝐵𝑃𝑉𝑧𝑐𝑏,𝑡 = −𝐵𝑃𝑉𝑖𝑛𝑡 𝑓𝑢𝑛𝑑,𝑡 − 𝐵𝑃𝑉𝑚𝑜𝑟𝑡,𝑡 ,
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so that

𝑛𝑒𝑡 𝐵𝑃𝑉𝑡 = 𝐵𝑃𝑉ℎ𝑒𝑑𝑔𝑒 𝑛𝑒𝑤,𝑡 + 𝐵𝑃𝑉𝑚𝑜𝑟𝑡,𝑡
= (𝐵𝑃𝑉𝑖𝑛𝑡 𝑓𝑢𝑛𝑑,𝑡 + 𝐵𝑃𝑉𝑧𝑐𝑏,𝑡) + 𝐵𝑃𝑉𝑚𝑜𝑟𝑡,𝑡
= (𝐵𝑃𝑉𝑖𝑛𝑡 𝑓𝑢𝑛𝑑,𝑡 − 𝐵𝑃𝑉𝑖𝑛𝑡 𝑓𝑢𝑛𝑑,𝑡 − 𝐵𝑃𝑉𝑚𝑜𝑟𝑡,𝑡) + 𝐵𝑃𝑉𝑚𝑜𝑟𝑡,𝑡
= 0.

This implies that the value of 𝐶𝐹𝑧𝑐𝑏,𝑡 should satisfy

−𝐵𝑃𝑉𝑖𝑛𝑡 𝑓𝑢𝑛𝑑,𝑡 − 𝐵𝑃𝑉𝑚𝑜𝑟𝑡,𝑡 = 𝐵𝑃𝑉𝑧𝑐𝑏,𝑡

=
𝑁𝑃𝑉𝑧𝑐𝑏,𝑢𝑝,𝑡 − 𝑁𝑃𝑉𝑧𝑐𝑏,𝑑𝑜𝑤𝑛,𝑡

20

=
𝐶𝐹𝑧𝑐𝑏,𝑡 ⋅ 𝐷𝐹+ℎ𝑒𝑑𝑔𝑒,𝑡 − 𝐶𝐹𝑧𝑐𝑏,𝑡 ⋅ 𝐷𝐹−ℎ𝑒𝑑𝑔𝑒,𝑡

20

= 𝐶𝐹𝑧𝑐𝑏,𝑡
𝐷𝐹+ℎ𝑒𝑑𝑔𝑒,𝑡 − 𝐷𝐹−ℎ𝑒𝑑𝑔𝑒,𝑡

20 ,

with the discount factors for a 10 basis points shock up (+) and down (−) scenario defined as:

𝐷𝐹+ℎ𝑒𝑑𝑔𝑒,𝑡 =
1

(1 + 𝑆𝑅𝑡/12 + 0.0075 + 0.001)
𝑡
12

and 𝐷𝐹−ℎ𝑒𝑑𝑔𝑒,𝑡 =
1

(1 + 𝑆𝑅𝑡/12 + 0.0075 − 0.001)
𝑡
12

(5.4)
This expression can be rewritten, resulting in the following expression for the required cash flow in
month 𝑡:

𝐶𝐹𝑧𝑐𝑏,𝑡 = −
20 ⋅ (𝐵𝑃𝑉ℎ𝑒𝑑𝑔𝑒,𝑡 + 𝐵𝑃𝑉𝑚𝑜𝑟𝑡,𝑡)

𝐷𝐹+ℎ𝑒𝑑𝑔𝑒,𝑡 − 𝐷𝐹−ℎ𝑒𝑑𝑔𝑒,𝑡
(5.5)

However, as we consider a static approach of the value hedge, the future monthly cash flows of the
mortgage and therefore, its corresponding basis point values are unknown. Therefore, Equation (5.5)
becomes impractical to use. To address this, we can rely on the expected prepayment rates and the
expected spot rates, which allow us to predict the future BPV values. Based on this, we issue zero-
coupon bonds that pay out an amount equal to the expected required cash flows, denoted by 𝐶𝐹𝑧𝑐𝑏,𝑡.
Using Equation (5.5), we define this value as

𝐶𝐹𝑧𝑐𝑏,𝑡 = −
20 ⋅ (𝐵𝑃𝑉𝑖𝑛𝑡 𝑓𝑢𝑛𝑑,𝑡 + 𝐵𝑃𝑉𝑚𝑜𝑟𝑡,𝑡)

𝐷𝐹+ℎ𝑒𝑑𝑔𝑒,𝑡 − 𝐷𝐹
−
ℎ𝑒𝑑𝑔𝑒,𝑡

with 𝐵𝑃𝑉𝑖𝑛𝑡 𝑓𝑢𝑛𝑑,𝑡 and 𝐵𝑃𝑉𝑚𝑜𝑟𝑡,𝑡 representing the expected BPV of the internal funding and the mort-
gage portfolio, respectively, and 𝐷𝐹+ℎ𝑒𝑑𝑔𝑒,𝑡 and 𝐷𝐹

−
ℎ𝑒𝑑𝑔𝑒,𝑡 representing the expected discount factors of

the hedge in a 10 basis points shock up- and down interest rate scenario, respectively. Figure 5.11 pro-
vides an overview of the cash flows that arise within this hedging approach together with the mortgage
cash flows.

From this figure, it is not immediately clear how efficient this hedge will be in terms of value stability.
In particular, it does not provide a clear formula for the NPV, similar to Equation (5.1) and (5.2) for the
NIM, to analyse the potential error term. Therefore, in order to assess the efficiency of the static value
hedge, we simulate 100 interest rate scenarios and calculate the variance of the NPV and the average
net BPV of the mortgage and hedge portfolio combined. The results are displayed in Table 5.4, which
also includes the values of the risk metrics in case of the internal funding.

Hedging approach Variance NPV Average net BPV

Internal funding 2.767 × 109 2.474 × 102
Static value hedge 3.668 × 108 4.830 × 101

Table 5.4: The variance of the net present value and the average net basis point value for the baseline model and the static
value hedge with zero-coupon bonds.
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Time 0 1 2 … T

Mortgage −𝑁 𝑐
12 ⋅ 𝑁

𝑐
12 ⋅ (𝑁 − Λ1) … ( 𝑐12 + 1) ⋅ (𝑁 − ∑

𝑇−1
𝑡=1 Λ𝑡)

Prepayment - Λ1 Λ2 … 0
Internal contracts 𝑁 −𝑆𝐹𝑇𝑃(0)12 ⋅ 𝑁 − 𝑆𝐹𝑇𝑃(0)12 ⋅ 𝑁 … −(𝑆𝐹𝑇𝑃(0)12 + 1) ⋅ 𝑁

−𝑃1(0) 𝐶𝐹𝑧𝑐𝑏,1 - … -

−𝑃2(0) - 𝐶𝐹𝑧𝑐𝑏,2 … -

⋮ ⋮ ⋮ ⋱ ⋮
−𝑃𝑇(0) - - … 𝐶𝐹𝑧𝑐𝑏,𝑇

Figure 5.11: The monthly cash flows of a static value hedge with zero-coupon bonds with notionals based on the expected cash
flows from a mortgage with annual coupon rate 𝑐, notional value 𝑁, and a maturity of 𝑇 months.

This table shows a decrease in both risk metrics, indicating an improvement in value stability. Nev-
ertheless, it is important to note that a perfectly stable value entails a zero variance of the NPV and
a net BPV of zero across all simulation. Thus, these results still fall short of being satisfactory, par-
ticularly considering the observed variance. One of the key factors contributing to this discrepancy is
the fact that the static value hedge completely depends on expectations of the market. Therefore, any
deviation may lead to a mismatch in BPV and potentially to an unstable NPV. In the remaining of this
section, we will take a closer look at the simulated scenarios to understand this impact.

Firstly, let us consider the discount factors. In the static value hedge, the expected discount factors
are utilised to calculate the present value of the future cash flows. These expected discount factors are
derived from the expected 1M-Euribor rates, which are defined as

𝐸(0; 𝑡, 𝑡 + 1/12) = 1 − 𝑃(0, 𝑡 + 1/12)
1
12𝑃(0, 𝑡 + 1/12)

,

where 𝑃(0, 𝑥) represents the price of a zero-coupon bond with maturity 𝑥 at time 𝑡 = 0. However, in
reality, interest rates may deviate from their expected values, leading to disparities in spot rates and,
consequently, in the discount factors. Figure 5.12 illustrates this behaviour of the spot rates for ten
simulations, highlighting these variations.

Figure 5.12: Ten simulations of the evolution of spot rates together with their expected evolution.

In this figure, the black solid line represents the expected curve of the spot rates, and the dotted
lines are the simulated spot rates. We observe that the dark green and the light green curves are
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(a) The basis point value (BPV) (b) The net present value (NPV)

Figure 5.13: Ten simulations of the (a) basis point value and (b) net present value in the static value hedge with zero-coupon
bonds.

the closest to the expected curve, whereas the two blue lines as well as the orange line correspond
to the largest deviations. Consequently, as the hedge was constructed to ensure a net BPV of zero,
we expect that the static value hedge performs best, in terms of having a zero net BPV, in the green
scenarios and worst in the blue and orange scenarios.

Figure 5.13(a), which displays the total net BPV for the same ten interest rate scenarios, however,
does not fully support this. We do observe large BPV values for the light and dark blue scenario, but
the orange scenario does not lead to the expected large deviation of BPV compared to zero. One
explanation for this may be the fact that the in case of a high interest rate environment, the discount
factors are small, resulting in small NPVs. Consequently, the basis point value may be small as well.
This becomes clearer if we consider a simplified definition of the BPV. For this, let 𝑥 be the spot rate
including the additional spread and 𝛿 be the value of the relevant shock. Then for a cash flow with a
notional amount of 𝑁, the BPV can be simplified to

𝐵𝑃𝑉𝑠𝑖𝑚𝑝 =
1
2𝛿 (

𝑁
1 + 𝑥 + 𝛿 −

𝑁
1 + 𝑥 − 𝛿) =

𝑁
2𝛿
1 + 𝑥 − 𝛿 − (1 + 𝑥 + 𝛿)

(1 + 𝑥)2 − 𝛿2

= 𝑁
2𝛿

−2𝛿
(1 + 𝑥)2 − 𝛿2 .

This expression shows that for a large 𝑥 the BPV will be smaller than for a small 𝑥, assuming all other
parameters being equal. This explains why the orange curve corresponds to a relatively small BPV,
despite deviating heavily from the expected spot rates. So, we conclude that a shock in a high interest
rate environment has less effect on the NPV, than the same shock in a low interest rate environment.

The NPV shows a similar response to the interest rate scenarios, as displayed in Figure 5.13(b).
The two blue scenarios correspond to the most negative values, but most of all, the most divergent net
present values. This is in line with Figure 5.13(a), as a large positive BPV implies that a 1 basis point
shock up leads to a large increase in value. Conversely, a downward shock of 1 basis point results in
a significant value decrease.

The two figures, Figure 5.13(b) and 5.13(a), show that the static value hedge is not efficient to
ensure value stability. In particular, when interest rates are lower than expected, the net BPV becomes
relatively large, resulting in a substantial decrease in the net present value. These scenarios contribute
significantly to the observed NPV variance of 108, as indicated in Table 5.4. Therefore, it is evident
that by improving the hedging of these specific scenarios, there is a strong likelihood of improving the
overall value stability.

It is important to recognise that the static value hedge provides a framework for aligning the hedge
portfolio with the mortgage portfolio based on expected market conditions, but it cannot eliminate the
uncertainties and variability within. Therefore, in the subsequent subsection the dynamic value hedge
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will be explored, which should address this issue by considering realised rather than expected market
behaviour.

Dynamic value hedge
The dynamic value hedge is similar to the static value hedge but utilises internal contracts instead of
zero-coupon bonds to obtain a net BPV of zero. Moreover, the hedge portfolio can be adjusted on
a monthly basis, based on the observed market behaviour. In specific, for each month, the BPV of
the cash flows of the mortgage is calculated, discounting with the sum of the simulated spot rates and
the fixed margin of 1.5%. Additionally, the monthly BPV of the internal funding, discounted with the
simulated spot rates and an additional FTP spread of 0.75% is calculated. Finally, the net BPV is
determined, and an internal contract is issued to offset this value, leading to a monthly net BPV of zero.
Note that the notional of the internal contract depends on the BPV of the mortgage and hedge in the
same way as the cash flow of the zero-coupon bond in the static value hedge. The only difference is
that in the dynamic hedge, each simulation may lead to a different strategy.

Following the same procedure as in the previous section, we find that the notional of the internal
contract that is issued that time 𝑡, denoted by 𝑁𝐼𝐶,𝑡, should equal

𝑁𝐼𝐶,𝑡 = −
20 ⋅ (𝐵𝑃𝑉ℎ𝑒𝑑𝑔𝑒,𝑡 + 𝐵𝑃𝑉𝑚𝑜𝑟𝑡,𝑡)

𝐷𝐹+ℎ𝑒𝑑𝑔𝑒,𝑡 − 𝐷𝐹−ℎ𝑒𝑑𝑔𝑒,𝑡
,

with 𝐷𝐹+ and 𝐷𝐹− as defined in Equation (5.4). A comprehensive overview of the cash flows of the
corresponding dynamic value hedge can be found in Figure 5.14.

Time 0 1 2 … T

Mortgage −𝑁 𝑐
12 ⋅ 𝑁

𝑐
12 ⋅ (𝑁 − Λ1) … ( 𝑐12 + 1) ⋅ (𝑁 − ∑

𝑇−1
𝑡=1 Λ𝑡)

Prepayment - Λ1 Λ2 … 0
Internal contracts 𝑁 − 𝑆𝐹𝑇𝑃(0)

12 ⋅ 𝑁 − 𝑆𝐹𝑇𝑃(0)12 ⋅ 𝑁 … −(𝑆𝐹𝑇𝑃(0)12 + 1) ⋅ 𝑁

- 𝑁𝐼𝐶,1 −𝑆𝐹𝑇𝑃(1)12 ⋅ 𝑁𝐼𝐶,1 … −(𝑆𝐹𝑇𝑃(1)12 + 1) ⋅ 𝑁𝐼𝐶,1
- - 𝑁𝐼𝐶,2 … −(𝑆𝐹𝑇𝑃(2)12 + 1) ⋅ 𝑁𝐼𝐶,2

⋮ ⋮ ⋮ ⋱ ⋮

- - - … −(𝑆𝐹𝑇𝑃(𝑇−1)12 + 1) ⋅ 𝑁𝐼𝐶,𝑇−1
- - - … 𝑁𝐼𝐶,𝑇

Figure 5.14: The monthly cash flows of a dynamic value hedge with internal contracts with notionals based on the observed cash
flows from a mortgage with annual coupon rate 𝑐, notional value 𝑁, and a maturity of 𝑇 months.

This figure illustrates the additional complexity in comparison to the static hedge, as the issued
internal contracts at times 1,… , 𝑡−1 influence the BPV of the hedge at time 𝑡, and therefore the required
notional 𝑁𝐼𝐶,𝑡. However, this complexity brings an advantage as all available market information is used
in the calculation. As a consequence, the efficiency of the hedge, in terms of achieving a zero net BPV,
is independent of the market conditions, because it incorporates all information of the market. This
also becomes apparent if we simulate 100 interest rate scenarios and apply the dynamic value hedge
to each of these, as shown in Table 5.5, where a significantly lower average net BPV is observed.

Hedging approach Variance NPV Average net BPV

Internal funding 2.767 × 109 2.474 × 102
Static value hedge 3.668 × 108 4.830 × 101
Dynamic value hedge 4.308 × 105 6.480 × 10−12

Table 5.5: The variance of the net present value and the average net basis point value for the baseline model, the static value
hedge with zero-coupon bonds, and the dynamic value hedge with internal contracts.
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Additionally, the results show a substantial reduction in the variance of the NPV in comparison with
the static value hedge. This may be attributed to the fact that a small BPV implies a smaller dependency
on the interest rates, so that various interest rate scenarios result in more similar values. Despite this
significant improvement in variance of approximately 99.98% compared to the internal funding, the
variance still attains a large value, indicating significant fluctuations in the value. Figure 5.15 provides
a visual representation of the NPV values of ten simulations in the dynamic value hedge. By analysing
the underlying interest rate simulations displayed in Figure 5.12, we observe that the most diverse NPV
outcomes correspond to the most extreme interest rate scenarios. Hence, the variability in NPV can
largely be attributed to the relatively high and low interest rate scenarios. Therefore, these scenarios
require extra attention, particularly because of the additional presence of convexity risk.

As observed, the prepayment option embedded in the mortgage portfolio gives rise to non-linear be-
haviour in response to interest rates fluctuations, resulting in increased portfolio volatility during extreme
scenarios. Therefore, we are interested in understanding and managing potential losses resulting in
these scenarios. In this regard, considering the NPV-at-Risk can provide additional insights. This risk
metric offers a quantitative estimate of the potential loss that could occur due to unfavourable interest
rate scenarios.

Figure 5.15: Ten simulations of the net present value (NPV) for the dynamic value hedge with internal contracts.

In the next subsection, we will explore NPV-at-Risk in greater detail, examining how this risk metric can
be employed to offset some of the interest rate risk leading to value loss. By identifying the interest
rate scenarios contributing most to this risk, we can develop strategies to manage and minimise the
potential negative impact.

5.4. NPV-at-Risk analysis
The NPV-at-Risk (NPVaR) is a financial risk metric used to assess the potential changes in the net
present value in a particular scenario compared to a baseline scenario. The NPVaR for a given
scenario 𝑠, denoted as 𝑁𝑃𝑉𝑎𝑅𝑠, is determined by calculating the difference between the NPV of that
scenario and the NPV of the baseline scenario 𝑏, 𝑁𝑃𝑉𝑎𝑅𝑏. Mathematically, it can be expressed as

𝑁𝑃𝑉𝑎𝑅𝑠 = 𝑁𝑃𝑉𝑠 − 𝑁𝑃𝑉𝑏 . (5.6)

The baseline scenario is typical built upon expected market conditions. It serves as a benchmark
against which other scenarios are compared to evaluate their impact on the NPV. Comparing scenario
specific NPVs with that of the baseline scenario allows us to gain insight in the potential gains or losses
arising from different interest rate scenarios. To effectively capture the effect of the prepayment option
and the convexity within, it is crucial to choose interest rate shock scenarios of significant magnitude.
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Following the guidelines offered by the European Banking Authority (EBA), parallel shocks of ±200
basis points are selected (EBA, 2022a). These two shock scenarios, that set out the change in interest
rates, are specified to assess the impact on the value and provide a standardised framework for risk
evaluation.

For each of the hedging approaches discussed up to now, we have determined the value in the
baseline scenario, assuming the expected market behaviour, and the value under the two shocked
scenarios. Thereafter, the NPVaRs for the 200 basis points up- and down scenario are calculated,
applying Equation (5.6), which are displayed in the first and second column of Table 5.6, respectively.

We observe that the value of the NPV-at-Risk can either be positive or negative, indicating whether
the scenario leads to an increase or decrease in value, respectively. When the NPVaR is positive,
it signifies a favourable change in value in scenario 𝑠, whereas a negative NPVaR corresponds to a
decrease in value, which is a disadvantageous scenario for the bank. Therefore, the NPVaR with the
most negative value is the most interested quantity for a bank. This value is given in the third column
in Table 5.6.

Value stability

Hedging approach NPV-at-Risk +200bps NPV-at-Risk -200bps NPV-at-Risk

Static Internal funding 3.196 × 104 −9.240 × 104 −9.240 × 104

Notional hedge with
zero-coupon bonds

−3.154 × 102 −5.382 × 104 −5.382 × 104

Value hedge with
zero-coupon bonds

−2.083 × 103 −2.394 × 104 −2.394 × 104

Dynamic Notional hedge with
internal contracts

3.302 × 104 −9.260 × 104 −9.260 × 104

Value hedge with
internal contracts

−9.396 × 103 −3.230 × 104 −3.230 × 104

Table 5.6: An overview of the NPV-at-Risks for all proposed hedging approaches.

From this table it becomes apparent that for all hedging approaches, the most significant potential
value loss occurs when there is a change in interest rates of−200 basis points. This finding is consistent
with the analysis of the static value hedge, where we observed smaller NPV values when the realised
interest rates were lower than expected.

For a bank, a large negative NPVaR is considered unfavourable as it indicates potential losses and
may compromise financial stability. Therefore, banks aim to minimise and neutralise the NPVaR to
eliminate the associated risks. One common strategy to achieve this is by incorporating interest rate
derivatives into their existing hedging portfolios. By entering into an interest rate option contract, banks
have the right, but not the obligation, to take a position based on future interest rate movements, offer-
ing protection against unfavourable markets. In specific, we are interested in the impact of including a
swaption, which gives its owner the right to enter an interest rate swap at a predetermined rate in the
future. To thoroughly analyse the effect of incorporating a swaption, it is important to understand the
definition and characteristics of both an interest rate swap and a swaption. In the upcoming two sub-
sections, we will delve into these concepts, establishing a solid foundation for the subsequent analysis.

Swaps
An interest rate swap is an agreement involving one party agreeing to pay fixed cash flows equal to a
predetermined fixed rate 𝑟𝑓𝑖𝑥𝑒𝑑 on a notional amount, while the other party pays floating interest 𝑟𝑓𝑙𝑜𝑎𝑡𝑖𝑛𝑔
on the same notional amount, typically based on an Euribor rate 𝐸. The payments are made at pre-
determined future times 𝑇𝑚+1, … 𝑇𝑠, with fixed intervals corresponding to the tenor of the Euribor rate.
Note that the Euribor rate is a forward rate, so in the payment at 𝑇𝑘, the floating rate equals 𝐸(𝑇𝑘−1)
rather than 𝐸(𝑇𝑘). The analytical value of a swap, 𝑉𝑠𝑤𝑎𝑝 can be found in Appendix B.2.2.

One can distinguish between two types of interest rate swaps: the payer swap, in which the buyer
receives the floating leg and pays the fixed leg, and the receiver swap, in which the buyer receives the
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fixed cash flows and pays the floating cash flows. As we focus on increasing the value in the scenario
with a −200 basis points shock, we are interested in a swap that generates the largest cash flows in
a low interest rate environment. A receiver swap satisfies this requirement, as can be seen in Figure
5.16, which illustrates the cash flows of a receiver swap.

Time 0 … 𝑇𝑚+1 … 𝑇𝑠
Receiver swap −𝑉𝑠𝑤𝑎𝑝,𝑟𝑒𝑐(0) … 𝜏𝑚+1 ⋅ 𝑁 ⋅ [𝑟𝑓𝑖𝑥𝑒𝑑 − 𝐸(𝑇𝑚)] … 𝜏𝑠 ⋅ 𝑁 ⋅ [𝑟𝑓𝑖𝑥𝑒𝑑 − 𝐸(𝑇𝑠−1)]

Figure 5.16: The monthly cash flows of a receiver interest rate swap with notional 𝑁 and payments at 𝑇𝑚+1 , … , 𝑇𝑠, where 𝜏𝑘 =
𝑇𝑘 − 𝑇𝑘−1.

Typically, a swap is considered to be ”at-the-money” which means that the total value of the fixed
interest rate cash flows is exactly equal to the expected value of the floating interest rate cash flows.
This implies that the fixed rate is chosen to be at a level where the value of the swap at initial time
equals zero, thereby allowing one to enter the contract for free. The rate at which this hold is referred
to as the swap rate, and it is defined as

𝑆(𝑡, 𝑇𝑚 , 𝑇𝑠) ∶=
𝑃(𝑡, 𝑇𝑚) − 𝑃(𝑡, 𝑇𝑠)
∑𝑠𝑘=𝑚+1 𝜏𝑘𝑃(𝑡, 𝑇𝑘)

. (5.7)

For the derivation of the swap rate, refer to Appendix B.2.2. It should be noted that this expression
does not depend on either the notional amount or the type of swap.

Swaption
A swaption is a derivative that gives its holder the right, but not the obligation, to enter into a swap
contract in the future. The swaption can be a receiver or payer swaption, depending on the underlying
type of swap. Upon entering, the counterparties must agree on the notional 𝑁, the fixed rate 𝑟𝑓𝑖𝑥𝑒𝑑, the
underlying floating rate 𝑟𝑓𝑙𝑜𝑎𝑡𝑖𝑛𝑔 (typically an Euribor rate), the expiration date of the swaption 𝑇𝑚, and
the maturity of the swap 𝑇𝑠. At 𝑡 = 𝑇𝑚, the swaption holder needs to decide whether to enter the swap
or not based on the prevailing market conditions. If favourable, cash flows will be exchanged from
𝑇𝑚+1 to 𝑇𝑠. If not, the option expires, and no further cash flows are exchanged. These two scenarios
are summarised in Figure 5.17, in which we consider a receiver swaption with value 𝑉𝑠𝑤𝑎𝑝𝑡𝑖𝑜𝑛,𝑟𝑒𝑐 (see
Appendix B.2.3).

Time 0 … 𝑇𝑚+1 … 𝑇𝑠
Exercise −𝑉𝑠𝑤𝑎𝑝𝑡𝑖𝑜𝑛,𝑟𝑒𝑐(0) … 𝜏𝑚+1 ⋅ 𝑁 ⋅ [𝑟𝑓𝑖𝑥𝑒𝑑 − 𝐸(𝑇𝑚)] … 𝜏𝑠 ⋅ 𝑁 ⋅ [𝑟𝑓𝑖𝑥𝑒𝑑 − 𝐸(𝑇𝑠−1)]
No exercise −𝑉𝑠𝑤𝑎𝑝𝑡𝑖𝑜𝑛,𝑟𝑒𝑐(0) … 0 … 0

Figure 5.17: The monthly cash flows of a receiver interest rate swaption with notional 𝑁, expiry date 𝑇𝑚 and swap maturity 𝑇𝑠.

Given that the receiver swap generates the largest cash flows in the −200 basis points interest
scenario, a receiver swaption will be selected for inclusion in the hedge portfolios. In particular, we
have opted for a single receiver swaption rather than a diverse selection of different swaptions. This
decision is based on the fact that the price of a swaption is typically significant and incorporating multiple
swaptions would substantially increase the overall cost. By focusing on a single receiver swaption, we
may effectively manage the risk exposure while maintaining the expenses within acceptable bounds.

To facilitate this implementation, the characteristics of the swaption need to be determined. Among
these characteristics, the starting time, the swapmaturity and the underlying floating rate will be fixed for
all hedge approaches, whereas the option maturity, notional and strike rate will be left to a calibration.
The starting time and swap maturity are set to align with the initiation and maturity of the mortgage
portfolio being hedged. Additionally, the 6M-Euribor rate is selected as the underlying floating rate,
as the prepayment behaviour is directly related to the corresponding swap rate. These choices are
summarised in Table 5.7.

On the other hand, the remaining characteristics of the swaption, the option maturity, notional, and
strike rate, will be subject to a calibration for each hedge approach separately. By calibrating these pa-
rameters, banks can tailor their hedging portfolios to neutralise the associated NPVaR. The calibration
process will be elaborated upon in the next subsection, where the optimal values of option maturity,
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Swaption characteristics
Starting time 0
Type Receiver
Swap maturity 10 years
Underlying floating rate 6M-Euribor rate

Table 5.7: An overview of the fixed characteristics of the receiver swaption to hedge the −200 basis points interest rate scenario.

notional, and strike rate for each hedge portfolio will be determined to achieve the desired NPVaR
neutralisation.

5.4.1. Calibration of the swaptions
For the calibration of the notional 𝑁, option maturity 𝑇𝑚 and strike rate 𝐾 of the swaption, we select an
objective function that aims to offset the NPV-at-Risk in an interest rate scenario with −200 basis point.
That is, our goal is to minimise the following expression:

|𝑁𝑃𝑉𝑎𝑅−200𝑏𝑝𝑠(𝑇𝑚 , 𝑁, 𝐾)| ∶= |𝑁𝑃𝑉−200𝑏𝑝𝑠(𝑇𝑚 , 𝑁, 𝐾) − 𝑁𝑃𝑉𝑏(𝑇𝑚 , 𝑁, 𝐾)|. (5.8)

It is important to note the use of the absolute value in the objection function. This ensures that the
swaption is constructed solely to offset the NPVaR, without generating a profit. Excluding the absolute
value and formulating it as a maximisation problem could result in disproportionately large notional
amounts and strike rates. Increasing the strike rate, for example, would amplify the cash flows of the
swaption and therewith the value. The same applies to the notional amount. However, such inflated
values are unrealistic, and if they were feasible, banks would be reluctant to purchase them due to their
high costs.

To minimise the objective function described in (5.8), the Nelder-Mead algorithm will be employed.
This algorithm is suitable for optimising scalar functions of one or more variables and is particularly
robust for nonlinear optimisation problem with unknown derivatives. Given the non-linearity of our
objective function, the Nelder-Mead algorithm is deemed suitable.

When utilising the Nelder-Mead algorithm, we are required to provide an initial guess for the pa-
rameters and are able to specify boundary conditions. For the option maturity 𝑇𝑚, we set the minimum
value at 1 month and the maximum 114 months, which align with the first and last instances where the
underlying swap contributes to a value change. This choice is based on the understanding that a 6M-
Euribor swap initiates six months after 𝑇𝑚. Our initial guess is chosen as the midpoint of the lifespan
of the mortgage portfolio, which is 60 months or 5 years. As for the notional, it should be a positive
value since a negative notional has no meaning. We initialise it at a value of 10, 000, considering that
the NPV-at-Risk for all hedging approaches were of the order 104 (refer to Table 5.6). Finally, the strike
rate should be chosen such that the swaption will be exercised in the scenario with a −200 basis points
shock, but not in the baseline scenario. Therefore, as we consider a receiver swaption, the strike rate
𝐾 should satisfy the following inequality:

𝑆(𝑡, 𝑇𝑚 , 𝑇𝑠) − 0.02 < 𝐾 < 𝑆(𝑡, 𝑇𝑚 , 𝑇𝑠), (5.9)

where 𝑆(𝑡, 𝑇𝑚 , 𝑇𝑠) denotes the expected 6M-Euribor swap rate at time 𝑇𝑚 for a swap that matures at
time 𝑇𝑠. It is clear that the relevant expected swap rate is unknown at the start of the calibration, as it
depends on the option maturity 𝑇𝑚 being calibrated. However, we can deduce that the expected swap
rates range between 0% and 3%, so these values will serve as the minimum and maximum bounds for
the strike rate, respectively. Additionally, we set an initial value of 2.8% for the strike rate, to increase
the likelihood of satisfying Inequality (5.9) and, consequently, achieving a successful calibration. In
Algorithm 4, a complete overview of the calibration can be found.
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Algorithm 4: Neutralisation of the NPV-at-Risk in a −200 basis points shock using the Nelder-
Mead algorithm.
Input: The swaption characteristics in Table 5.7, 𝑁𝑃𝑉𝑏 and 𝑁𝑃𝑉−200𝑏𝑝𝑠 of the hedge and the

mortgage excluding the swaption.
Output: Calibrated parameters (�̃�𝑚 , �̃�, �̃�)

1. Initialise parameters 𝜃0 ∶= (𝑇𝑚,0, 𝑁0, 𝐾0) = (60, 10000, 0.028).

2. Define objective function |𝑁𝑃𝑉𝑎𝑅−200𝑏𝑝𝑠(𝑇𝑚 , 𝑁, 𝐾)| = |𝑁𝑃𝑉−200𝑏𝑝𝑠(𝑇𝑚 , 𝑁, 𝐾) − 𝑁𝑃𝑉𝑏(𝑇𝑚 , 𝑁, 𝐾)|.

3. Call the Nelder-Mead optimisation algorithm with the objective function |𝑁𝑃𝑉𝑎𝑅−200𝑏𝑝𝑠(⋅)|, and
initial guess 𝜃0.

return (�̃�𝑚 , �̃�, �̃�)

For each hedging approach covered thus far, starting with the internal funding and ending with
the dynamic value hedge, Algorithm 4 is executed. The algorithm used the corresponding 𝑁𝑃𝑉𝑏 and
𝑁𝑃𝑉−200𝑏𝑝𝑠 of the hedge and the mortgage (excluding the swaption) as input and calibrated the re-
quired parameters. The resulting values, along with the corresponding swaption price and NPVaR, are
presented in Table 5.8. The data in the final column of the table shows that for each hedge approach,
the NPVaR for a −200 basis points interest rate scenario is increased to nearly zero, indicating that
incorporating a single receiver swaption effectively mitigated the value exposure.

Swaption characteristics NPV-at-Risk

Hedging approach Option maturity Notional Strike (%) Price 𝑁𝑃𝑉𝑎𝑅−200𝑏𝑝𝑠

Static Internal funding 43 months 9.657 × 105 2.673 6.851 × 104 1.234 × 10−6

Notional hedge with
zero-coupon bonds

45 months 5.339 × 105 2.781 4.106 × 104 −1.943 × 10−6

Value hedge with
zero-coupon bonds

48 months 2.366 × 105 2.805 1.766 × 104 1.929 × 10−6

Dynamic Notional hedge with
internal contracts

42 months 8.700 × 105 2.735 6.450 × 104 −1.679 × 10−5

Value hedge with
internal contracts

46 months 3.060 × 105 2.877 2.516 × 104 6.681 × 10−6

Table 5.8: An overview of the calibrated characteristics of the receiver swaption to hedge the −200 basis points interest rate
scenario for each proposed hedging approaches.

Upon examining the characteristics of the calibrated swaptions, the first notable observation is that
the optimal option maturities for the different hedging approaches vary between 42 and 48 months,
equivalent to 3.5 to 4 years. Given that the mortgage portfolio we consider has a lifespan of 10 years,
this indicates that the swaptions, if exercised, influence the cash flows of the hedge for the majority of
the portfolio’s duration. Secondly, the notional amounts are consistently in tens of thousands, which
is a factor of ten higher than our initial guess. This implies that a relatively large notional is required
to offset a smaller loss in value. In other words, the notional amount should exceed the value loss.
Examining the third column of Table 5.8, we find that the calibrated strike rates are clustered around
the initially chosen 2.8%. It is important to recall that the 2.8% was chosen to increase the likelihood
of satisfying Inequality (5.9). To verify if this inequality holds for the calibrated strike rates, we need
the expected swap rates 𝑆(𝑡, 𝑇𝑚 , 𝑇𝑠), where 𝑇𝑚 represents the corresponding calibrated option maturity.
These rates are displayed in Table 5.9, and upon verification, we find that the inequality indeed holds
for all hedging approaches.

Considering the prices of the swaption, it is important to note that their values are of the same size as
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Option maturity (�̃�𝑚) Expected swap rate (%)

43 2.878
45 2.881
48 2.886
42 2.877
46 2.882

Table 5.9: The expected 6M-Euribor swap rates 𝑆(𝑡, �̃�𝑚 , 𝑇𝑠) for each calibrated option maturity �̃�𝑚 in Table 5.8.

the value exposures we want to hedge, as given in Table 5.6. This means that no matter the evolution
of the interest rates, you will always lose tens of thousands on the purchase of the swaption, which you
otherwise will only lose if the interest rates exhibit a large decline in value. This raises concerns about
the effectiveness of including a swaption in the hedging portfolios. However, it is worth investigating
whether the incorporation of this financial instrument can have a positive effect on the other risk metrics,
making it valuable addition. This aspect will be further investigated in the next section of this chapter.

Finally, comparing the swaptions associated with the hedging approaches having the largest and
smallest NPV-at-Risk, prior to the incorporation of the swaptions, provides valuable insights into the
relationship between the risk metric and the characteristics of the financial instrument. It becomes
evident that the hedges with greater exposure require a larger notional, a shorter option maturity, and
a lower strike rate. The larger notional can be justified by the resulting larger cash flows, consequently
leading to an overall increase in value. The shorter maturity can be attributed to the fact that an earlier
exercised swaption has more influence on the value, as the swap may generate more cash flows. The
lower strike rate however goes against initial expectations. In a receiver swaption, a higher strike rate
typically results in larger cash flows, as the swaption holder receives the fixed strike rate and pays the
floating rate. Therefore, a higher swap rate was initially anticipated. However, upon further analysis,
an explanation was found. Rather than considering the strike rate on its own, we focus on the fixed
cash flows of the swap, or the product of the notional and the strike rate, as displayed in Table 5.10.
These values align with our expectations, as a higher fixed cash flow corresponds to a more exposed
hedge approach.

Hedging approach Notional × Strike

Static Internal funding 2.581 × 104

Notional hedge with
zero-coupon bonds

1.485 × 104

Value hedge with
zero-coupon bonds

6.637 × 103

Dynamic Notional hedge with
internal contracts

2.379 × 104

Value hedge with
internal contracts

8.804 × 103

Table 5.10: The fixed cash flows of the calibrated receiver swaption to hedge the -200bps interest rate scenario for each proposed
hedging approaches.

Up to now, we have examined two risk appetites of a bank, margin stability and value stability. For
margin stability, we analysed both a static and dynamic notional hedge, and concluded that the dynamic
approach resulted in the lowest variance in the net interest margin. Subsequently, we shifted our focus
to value stability, aiming to achieve a net basis point value of zero and minimise the variance in net
present value. To accomplish this, we employed a static and dynamic value hedge, and once again
found that the dynamic approach was superior. Furthermore, we delved deeper into value stability by
considering the NPV-at-Risk when subject to a ±200 basis points shock in the expected interest rate
curve. In particular, the large negative shock could lead to a significant value decrease. However, by
including a calibrated receiver swaption, we were able to mitigate this exposure. While we evaluated
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these different aspects individually, the optimal goal of a bank is to have a comprehensive risk man-
agement. This entails achieving both margin stability and value stability, while also maintaining a low
NPV-at-Risk. Therefore, in the next section, we will assess the various hedging approaches using all
discussed risk metrics simultaneously. This evaluation will enable us to provide a final recommendation
for the most effective hedge approach.

5.5. Assessment hedge approaches
For each of the ten hedging approaches introduced in the previous sections, all introduced risk metrics
are calculated. An overview for the approaches, with and without the incorporation of the calibrated
receiver swaption, are given in Table 5.11 and 5.12, respectively.

Margin stability Value stability

Hedging approach NIM variance NPV variance Average net BPV NPV-at-Risk

Static Internal funding 1.097 × 10−1 2.767 × 109 247.4 −9.240 × 104

Notional hedge with
zero-coupon bonds

2.466 × 10−2 5.021 × 108 71.33 −5.382 × 104

Value hedge with
zero-coupon bonds

2.022 × 10−2 3.668 × 108 48.30 −2.394 × 104

Dynamic Notional hedge with
internal contracts

1.080 × 10−5 1.480 × 109 28.57 −9.260 × 104

Value hedge with
internal contracts

5.862 × 10−5 4.308 × 105 6.480 × 10−12 −3.230 × 104

Table 5.11: An overview of the risk metrics for all proposed hedging approaches.

From Table 5.11 we observe some expected and surprising results. First of all, we note that the
dynamic notional has the lowest net interest margin variance, whereas the dynamic value hedge ex-
hibits the lowest net present value variance and the best net basis point value. Both can be justified
as they were constructed with the main focus on margin and value stability, respectively. However, we
also observe that the NIM variance of the dynamic value hedge is comparable to that of the dynamic
notional hedge, which may seem surprising at first sight. However, upon closer examination, we find
that the dynamic notional and value hedge exhibit similar behaviour. In both hedge approaches, the
notional of the internal contracts increases when the interest rates are low, and vice versa. In the case
of the notional hedge, this is due to the higher number of repayments in a low interest rate environ-
ment. While this relation for the value hedge may not immediately be apparent, our earlier analysis in
this chapter led us to the conclusion that a shock in a high interest rate environment has a lesser effect
on the NPV compared to the same shock in a low interest rate environment. Consequently, we will
observe higher BPV values when the rates are low, resulting in larger notional amounts of the internal
contracts.

For our final observations we note that the hedging approach with the best NPV-at-Risk is the static
value hedge, but the difference with all other hedges is minimal. Additionally, we see that the internal
funding performs the worst in almost all aspects. This emphasises again the need of a hedging portfolio.

Table 5.12 shows the risk metrics for all hedging approaches, but with the inclusion of the receiver
swaption as calibrated in the previous section. With the colouring from light green to red indicating
a large positive until a large negative effect of the incorporation the swaption. Clearly, the swaptions
have a full positive effect on the NPV-at-Risk as it is constructed to minimise the NPVaR in a−200 basis
points interest rate scenario. Consequently, the new value exposure, which is derived in Appendix C, is
automatically lower. As for the other metrics, we observe diverse results. For all static approaches the
inclusion of a swaption does not significantly affect their risk metrics. We only see little improvements
and deteriorations. The final two rows show however a different picture. In particular, for the dynamic
value hedge, all risk metrics, except for the NPVaR worsened. This can be attributed to the fact that the
notionals of the internal contracts were constructed based on the observed cash flows of the mortgage
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Margin stability Value stability

Hedging approach NIM variance NPV variance Average net BPV NPV-at-Risk

Static Internal funding
with a swaption

1.117 × 10−1 1.637 × 109 229.7 1.235 × 10−6

Notional hedge with
zero-coupon bonds and
a swaption

2.531 × 10−2 4.540 × 108 58.26 −315.4

Value hedge with
zero-coupon bonds and
a swaption

1.874 × 10−2 1.351 × 108 42.50 −2083

Dynamic Notional hedge with
internal contracts and
a swaption

1.77 × 10−3 2.395 × 109 9.674 −1.679 × 10−5

Value hedge with
internal contracts and
a swaption

2.817 × 10−4 4.856 × 108 −7.816 −9396

Table 5.12: An overview of the risk metrics for all proposed hedging approaches including the calibrated receiver swaption. The
colours red, orange, dark green and light green represent a significant deterioration, a slight deterioration, a slight improvement,
and a significant improvement, respectively, in comparison to the hedging approaches excluding the swaption.

and hedge excluding the swaption. This implies that if the swaption is exercised, the BPV is no longer
matched. On the contrary, in the case of no exercise the hedge would perform as required.

From this analysis, we can conclude that the incorporation of the swaption has the most effect on
the NPV-at-Risk but does not significantly affect the other risks metrics in a positive matter. Therefore,
taking into account our earlier observation of the swaption price being of the same order of magnitude
as the value exposure we intend to hedge, it raises questions about its value. However, further research
taking into account other risk factors is necessary in order to make conclusive statements on this matter.

Combining all results, we can construct a separate ranking of the hedging approaches for each risk
metric. This is displayed in Table 5.13, in which 1 refers to the best performing hedge for that specific
risk metric, and 10 refers to the worst performing. Based on this ranking, a final conclusion about the
most effective hedging portfolio can be drawn.

The table shows that the dynamic notional hedge has the best margin stability, the dynamic value
hedge has the best NPV variance and the best net BPV, and the internal funding with the swaption
has the best NPV-at-Risk. A bank is however interested in a comprehensive risk management rather
than the mitigation of one single risk metric. Therefore, from all hedging approaches discussed within
this research, the dynamic value hedge without swaptions can be seen as the best choice for a bank
without a strong risk appetite. This is due to the fact that even though it is constructed to maintain a
stable value, it simultaneously results in a stable margin, as can be seen by its second place in the
corresponding ranking. On the other hand, a bank which prioritises margin stability over value stability
should consider a dynamic notional hedge without swaptions. This approach simply leads to the lowest
variance in the net interest margin. For a bank that prefers value stability, the dynamic value hedge
without a swaption exhibits the best results. However, it should be noted that the ultimate choice will
not only depend on the bank’s preference but may also be subject to the mandatory requirements of
financial regulators, such as the European Central Bank.
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Margin stability Value stability

Hedging approach NIM variance NPV variance Average net BPV NPV-at-Risk

Static Internal funding 9 10 10 9

Internal funding
with a swaption

10 8 9 1

Notional hedge with
zero-coupon bonds

7 6 8 8

Notional hedge with
zero-coupon bonds and
a swaption

8 4 7 3

Value hedge with
zero-coupon bonds

6 3 6 6

Value hedge with
zero-coupon bonds and
a swaption

5 2 5 5

Dynamic Notional hedge with
internal contracts

1 7 4 10

Notional hedge with
internal contracts and
a swaption

4 9 3 2

Value hedge with
internal contracts

2 1 1 7

Value hedge with
internal contracts and
a swaption

3 5 2 4

Table 5.13: The final rankings of all proposed hedging approaches for each riskmetric. The number 1 denotes the best performing
approach, while 10 represents the worst performing approach.
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Conclusion and discussion

6.1. Conclusion
Throughout this thesis we have investigated different methodologies to hedge the prepayment risk
arising from a given mortgage portfolio, evaluating their effectiveness in maintaining value and mar-
gin stability under various interest rate scenarios. The one-factor Hull-White model was employed to
simulate interest rate scenarios, while an interest rate-dependent logistic prepayment model provided
monthly prepayment rates based on the mortgagors’ refinancing incentive. We explained that during
period of low interest rates, customers are more inclined to prepay their mortgages since they can re-
finance their existing loan at a lower rate. This impacts the size and timing of incoming mortgage cash
flows for a bank, posing possible challenges to the stability of the net interest margin and value of the
mortgage. Such instability is undesirable for banks and also regulatory bodies, such as the European
Central Bank, acknowledge the interest rate risk and impose restrictions on banks to ensure its effective
management. This highlights the importance of implementing effective hedging strategies.

In total, ten different hedging techniques are discussed within this research. We started with the
internal funding, explored the static and dynamic notional hedge, which aim to maintain margin stabil-
ity, and proceeded to a static and dynamic value hedge, focusing on value stability. Additionally, we
included a receiver swaption into each of these five hedging approaches. Upon analysing all hedge
portfolios, several noteworthy findings arise. Firstly, the sole utilisation of internal funding performs
the worst in terms of both margin and value stability. Secondly, the dynamic hedges generally outper-
formed their static counterparts, which can be attributed to their flexibility to respond to market changes.
Thirdly, as expected, the notional hedge demonstrates the best margin stability, while the value hedge
exhibits the best value stability. Moreover, analysis reveals that incorporating a swaption into the hedg-
ing strategies leads to a significant improvement in NPV-at-Risk. However, the other risk metrics remain
relatively stable or may even worsen. Furthermore, considering that the price of a swaption is com-
parable in magnitude to the potential exposure in value in a −200 basis points shocked scenario, the
inclusion of a swaption does not contribute significant value to the initially constructed hedge portfolios.

Taking into account all observations, we can address the research question posed at the beginning
of this report:

”Which portfolio of financial instruments provides the most effective hedge for a given
mortgage portfolio, ensuring stability in terms of net interest margin and net present

value under various interest rate simulations?”

Based on the research conducted in this thesis, there is no definitive answer, as the choice for a
hedging approach depends heavily on the risk appetite of a bank. Therefore, we provide recommenda-
tions for three different types of banks. If a bank prioritises attaining margin stability, the recommended
choice would be the dynamic notional hedge without the incorporation of the receiver swaption. On
the other hand, for a bank that prefers value stability over margin stability, the dynamic value hedge
without the inclusion of a swaption should be considered. Finally, for a bank that is indifferent and aims
to ensure both value and margin stability to the greatest extent possible, the optimal choice would also
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be the dynamic value hedge without the utilisation of a swaption. It should however be noted that the
final decision for a hedge portfolio should not solely rely on the bank’s risk appetite but may also be
influenced by mandatory requirements imposed by financial regulators, such as the European Central
Bank.

6.2. Discussion
The research conducted in this thesis has shed light on effective hedging strategies to mitigate the
prepayment risk associated with a mortgage portfolio. However, certain limitations should be acknowl-
edged, highlighting potential areas for future research.

Firstly, the interest rate model and prepayment model employed in this study were relatively sim-
plistic. The one-factor Hull-White model assumes a single driver for the complete yield curve, enabling
it to only capture parallel movement in the interest rate curve. In practice, we also observe non-parallel
movements such as the flattening of the yield. To capture these more sophisticated interest rate dy-
namics, further research could explore advanced interest rate models, such as the two-factor Hull-
White model or the CIR model. Similarly, enhancing the prepayment model by incorporating additional
drivers, such as the age of the contract or the time of the year, would provide a more comprehensive
understanding of prepayment risk. Together, these improvements could lead to more realistic market
scenarios, and therefore more realistic risk metrics. However, we do not expect this to change the final
conclusions drawn in this research, as all hedging approaches used assumed the same underlying
interest rate scenario.

Another limitation lies in the calculations of the different risk metrics. In this research, the net inter-
est margin was determined under the assumption of a run-off balance sheet, where no new business
was included. However, in practice, banks are more concerned with maintaining a stable NIM on a
going-concern basis, considering the continuous issuance of new mortgages. Therefore, future re-
search could consider a going-concern approach for the net interest margin, offering a more realistic
perspective. Additionally, the discount factors used in the net present value calculations were based
on the single-curve framework. We justified this choice for the potential unnecessary complexity intro-
duced by any alternative approach, which is not required for the analyses conducted in this research.
However, in the present market, the single-curve framework is seen as obsolete, and the multi-curve
approach is typically employed instead. An interesting and valuable extension of this thesis would thus
be to investigate the impact of incorporating the multi-curve framework on the hedging effectiveness.
Finally, for the calculation of the basis point value and NPV-at-Risk, a simplified approach was used
for the implementation of interest rate shocks. This involved applying a uniform shock to all relevant
rates, including the spot rate and the swap rate. However, in practice, it is common to shock the swap
rates and subsequently construct spot rates using bootstrapping techniques. Future studies could con-
sider incorporating these nuances and assess their influence on the risk metrics and the conclusions
drawn. Moreover, alternative scenarios for interest rate shocks, such as shifted curves or varying shock
sizes, could be explored when evaluating the NPV-at-Risk. This would provide a more comprehensive
understanding of the effectiveness of the proposed hedging approaches.

In this thesis we briefly touched upon the hedging costs when comparing the NPV-at-Risks with the
price of the corresponding calibrated swaptions. We noted that their sizes were comparable, raising
questions about the value of including swaptions in the hedging portfolio. However, it is important to
note that hedging costs should not be limited to swaptions alone. By considering the hedging costs as-
sociated with each of the hedging approaches, future studies can achieve a more accurate evaluation
of their overall effectiveness. Furthermore, in a dynamic hedge approach, there are additional costs
associated with rebalancing that were not taken into account in this research. Future studies should
incorporate the impact of rebalancing costs into the analysis, as this factor could potentially influence
the preference for a dynamic hedging approach. An important aspect to consider within this research
would be the frequency of rebalancing. Evaluating the optimal frequency becomes crucial as it may
reveal that banks should not rebalance their hedge portfolios on a monthly basis but instead consider
(semi-)annually rebalancing. This adjustment in frequency could potentially impact the value and mar-
gin stability of the corresponding hedge approach and result in the revision of the conclusions drawn
in this thesis.

The final potential extension we propose is related to the risk metrics. This research focused on
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margin and value stability and assessed the various hedging approaches by considering the variance
of the net interest margin, the variance of the net present value, the average basis point value, and the
NPV-at-Risk for a parallel shock of 200 basis points. In addition to these metrics, alternative metrics
could be explored to evaluate the effectiveness of hedging strategies. For example, one could incorpo-
rate the economic value of equity or the net interest income (NII) and the NII-at-Risk. This could provide
a more comprehensive assessment of the risk exposure of the mortgage portfolio and the effectiveness
of the proposed hedge portfolios.

Addressing these limitations and exploring the suggested future research topics would further enrich our
understanding of effective hedging strategies for mortgage portfolios and contribute to the advancement
of risk management practices in the financial industry.





A
Preliminary financial mathematics

This appendix provides a brief overview of preliminary financial mathematics concepts that are relevant
to the research conducted in this thesis. It covers key definitions, as well as important theorems, aiming
to ensure a comprehensive understanding of the underlying mathematical principles necessary for the
analysis presented in this thesis.

A.1. Financial definitions
A.1.1. Money-market account
The money market account𝑀(𝑡) represents the value of a bank account at time 𝑡 and is defined by the
following system:

{d𝑀(𝑡) = 𝑀(𝑡)𝑟(𝑡)d𝑡;𝑀(0) = 1,
where 𝑟(𝑡) denotes the bank deposit interest rate. By solving this system, we obtain the equivalent
definition:

𝑀(𝑡) = exp(∫
𝑡

0
𝑟(𝑠)d𝑠).

This notation plays a crucial role in pricing financial products since it enables the discounting of future
cash flows.

A.1.2. Euribor rate
The Euribor rate is an interest rate based on the average interest rates at which banks within the
Eurozone borrow from one another. It is widely used as a reference rate in the European money
market for various financial instruments, including mortgages, swaps and swaptions. The Euribor rate
comes in different maturities, ranging from 1 week to 1 year, where the 6M-Euribor rate is used most
often.

The Euribor rate is denoted by 𝐸(𝑡; 𝑇𝑘−1, 𝑇𝑘), which can be read as the interest rate at time 𝑡 for
settlement date 𝑇𝑘−1 and maturity date 𝑇𝑘. This means that 𝐸(𝑡; 𝑇𝑘−1, 𝑇𝑘) is a forward rate over the
period [𝑇𝑘−1, 𝑇𝑘] which resets at 𝑡. To derive the simply compounded forward rate we look at two
counterparties: A and B. Suppose A wants to borrow 1 euro from B at future time 𝑇𝑘−1 and will pay this
back at time 𝑇𝑘, including some interest 𝐸. The value of such a contract for B at time 𝑡 will be

𝑉(𝑡) = 𝔼ℚ [
−1

𝑀(𝑇𝑘−1)
+ 1 + 𝐸 ⋅ (𝑇𝑘 − 𝑇𝑘−1)𝑀(𝑇𝑘)

|ℱ(𝑡)] (A.1)

= −𝑃(𝑡, 𝑇𝑘−1) + 𝑃(𝑡, 𝑇𝑘) ⋅ (1 + 𝐸 ⋅ (𝑇𝑘 − 𝑇𝑘−1)),
where 𝑃(𝑡, 𝑇) denotes the price of zero-coupon bond at time 𝑡 that pays out €1 at time 𝑇. Setting this
equation equal to zero and rewriting gives the fair value for the interest rate 𝐸:

𝐸 = (𝑃(𝑡, 𝑇𝑘−1)𝑃(𝑡, 𝑇𝑘)
− 1) ⋅ 1

𝑇𝑘 − 𝑇𝑘−1
= 𝑃(𝑡, 𝑇𝑘−1) − 𝑃(𝑡, 𝑇𝑘)
(𝑇𝑘 − 𝑇𝑘−1) ⋅ 𝑃(𝑡, 𝑇𝑘)
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Typically, we write

𝐸(𝑡; 𝑇𝑘−1, 𝑇𝑘) =
𝑃(𝑡, 𝑇𝑘−1) − 𝑃(𝑡, 𝑇𝑘)

𝜏𝑘𝑃(𝑡, 𝑇𝑘)
,

with 𝜏𝑘 = 𝑇𝑘 − 𝑇𝑘−1.

A.2. Financial theorems
In the probability space (Ω, ℱ, ℙ), where Ω is the set of all possible outcomes and ℱ the 𝜎-algebra en-
compassing all feasible events, the real-world measure ℙ reflects the true probability of events that
could occur. Specifically, the probability measure ℙ assigns probabilities to each set 𝐴 ∈ ℱ, so that
ℙ ∶ ℱ → [0, 1]. In finance, however, pricing is done under the so-called risk-neutral measure ℚ. This
measure is equivalent to ℙ, meaning they agree on which sets are assigned probability zero to, but they
may disagree on the probability of the feasible scenarios. The risk-neutral measure is artificially con-
structed so that the expected return on any asset equals the risk-free rate of return. This characteristic
enables universal pricing of any derivative, regardless of the underlying asset’s actual probabilities, by
stating that its price is precisely the present value of its expected payoff. This feature will be used to
price the zero-coupon bonds, swaps and swaptions used in this thesis.

A.2.1. Change of measure
The risk-neutral measure is essential in pricing financial products. However, the pricing of exotic deriva-
tives can be problematic due to the complexity of their payoff functions. One way to address this is
through the change of measure approach, which can simplify the instrument’s payoff significantly and
may even lead to a closed form solution. Bayes’ theorem is a well-known theorem that relates two
expectations under different measures and can be used in this context.

Theorem 1 (Bayes). Let ℕ ∼ 𝕄 be two absolutely continuous probability measures on probability
space (Ω, ℱ) and 𝒢 ⊆ ℱ a 𝜎-algebra. Let 𝑋 ∈ 𝐿1(Ω, ℱ, ℕ), then

𝔼ℕ[𝑋|𝒢] =
𝔼𝕄 [Λℕ,𝕄𝑋|𝒢]
𝔼𝕄 [Λℕ,𝕄|𝒢]

,

with Radon-Nikodym derivative

Λℕ,𝕄 ∶=
dℕ
d𝕄|𝒢

.

Once the Radon-Nikodym derivative is known, the Bayes’ theorem enables us to calculate expectations
under different measures. The following theorem provides a formula for this derivative.

Theorem 2 (Change of measure). Let 𝑋 be the price of any traded asset and𝑀 a numéraire. Suppose
that 𝑋𝑀 is a martingale under 𝕄 ∼ ℚ, i.e.

𝔼𝕄 [
𝑋(𝑇)
𝑀(𝑇)|ℱ(𝑡0)] =

𝑋(𝑡0)
𝑀(𝑡0)

.

Furthermore, let 𝑉 be the price of any self-financing derivative, 𝑁 a quantity and suppose that 𝑉𝑁 is a
martingale under ℕ ∼ ℚ, i.e.

𝔼ℕ [
𝑉(𝑇)
𝑁(𝑇)|ℱ(𝑡0)] =

𝑉(𝑡0)
𝑁(𝑡0)

.

Then the Radon-Nikodym derivatives is given by

Λℕ,𝕄(𝑇) ∶=
dℕ
d𝕄|ℱ(𝑇)

= 𝑁(𝑇)𝑀(𝑡)
𝑁(𝑡)𝑀(𝑇) .

The Radon-Nikodym derivative is most often used in combination with the Girsanov theorem. This
theorem provides insights into how a stochastic process changes when changing from one measure to
another. Specifically, we will present the theorem in the context of a special case when the underlying
process is a Brownian motion.
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Theorem 3 (Girsanov). Let ℚ ∼ ℙ with corresponding Radon-Nikodym derivative Λℚ,ℙ. Let 𝑋 be a
martingale such that Λℚ,ℙ is the solution of the system

{dΛℚ,ℙ(𝑡) = Λℚ,ℙ(𝑡)d𝑋(𝑡);Λℚ,ℙ(𝑡0) = 1.
(A.2)

Then 𝑊ℙ is a martingale under ℙ if and only if 𝑊ℚ = 𝑊ℙ − [𝑊ℙ, 𝑋] is a martingale under ℚ. Conse-
quently, using system A.2, the dynamics of𝑊ℚ become

d𝑊ℚ(𝑡) = d𝑊ℙ(𝑡) − d𝑊ℙ(𝑡)d𝑋(𝑡)

= d𝑊ℙ(𝑡) −
dΛℚ,ℙ(𝑡)
Λℚ,ℙ(𝑡)

d𝑊ℙ(𝑡).

Change of measure from ℚ to ℚ𝑇
Any tradable asset can act as a numéraire, but as the scope of this thesis is limited to a handful financial
products, we will only consider two assets - the money-market account and the zero-coupon bond -
which will be discussed below.

1. The risk-neutral measure ℚ corresponds to the money-market account 𝑀(𝑡), so that

𝔼ℚ [
𝑋(𝑡)
𝑀(𝑡) |ℱ(𝑡0)] =

𝑋(𝑡0)
𝑀(𝑡0)

.

2. The forward measure ℚ𝑇 is associated with the zero-coupon bond 𝑃(𝑡, 𝑇) as numéraire, so that

𝔼ℚ𝑇 [
𝑋(𝑡)
𝑃(𝑡, 𝑇) |ℱ(𝑡0)] =

𝑋(𝑡0)
𝑃(𝑡0, 𝑇)

.

Consequently, the relevant change of measure is that ofℚ toℚ𝑇 since the opposite is simply the inverse.
From Theorem 2 we know that for 𝑡0 < 𝑡 < 𝑇 the corresponding Radon-Nikodym derivative is given by

Λℚ,ℚ𝑇(𝑡) ∶=
dℚ
dℚ𝑇 |ℱ(𝑡)

= 𝑀(𝑡)𝑃(𝑡0, 𝑇)
𝑀(𝑡0)𝑃(𝑡, 𝑇)

.

A.2.2. Itô’s lemma
A different essential tool in mathematical finance is Itô’s lemma. It provides a formula for the stochastic
differential of a function of a stochastic process and reads as follows:

Lemma 1 (Itô’s lemma). Let 𝑓(𝑡, 𝑥) be a function with well-defined and continuous partial derivatives
𝑓𝑡, 𝑓𝑥 and 𝑓𝑥𝑥, and let 𝑋(𝑡) a stochastic variable with dynamics

d𝑋(𝑡) = 𝜇𝑡 d𝑡 + 𝜎𝑡 d𝑊(𝑡).

Then 𝑓(𝑡, 𝑋(𝑡)) has the dynamics

d𝑓(𝑡, 𝑋(𝑡)) = d𝑓
d𝑡 d𝑡 +

d𝑓
d𝑥 d𝑋(𝑡) +

1
2
d2𝑓
d𝑥2 d𝑋(𝑡)d𝑋(𝑡). (A.3)

To illustrate the use of Itô’s lemma, let us consider the function 𝑓(𝑥) = ln(𝑥). Suppose 𝑋(𝑡) follows the
stochastic differential equation

d𝑋(𝑡) = 𝜇𝑋(𝑡)d𝑡 + 𝜎𝑋(𝑡)d𝑊(𝑡),

then the dynamics of ln(𝑋(𝑡)) are as follows:
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d ln(𝑋(𝑡)) = d𝑓
d𝑡 d𝑡 +

d𝑓
d𝑥 d𝑋(𝑡) +

1
2
d2𝑓
d𝑥2 d𝑋(𝑡)d𝑋(𝑡)

= 0d𝑡 + 1
𝑋(𝑡) d𝑋(𝑡) +

1
2 ⋅ −

1
𝑋(𝑡)2 d𝑋(𝑡)d𝑋(𝑡)

= 1
𝑋(𝑡) [𝜇𝑋(𝑡)d𝑡 + 𝜎𝑋(𝑡)d𝑊(𝑡)] −

1
2

1
𝑋(𝑡)2𝜎

2𝑋(𝑡)2 d𝑡

= (𝜇 − 12𝜎
2)d𝑡 + 𝜎 d𝑊(𝑡),

where we used Itô’s multiplication table, Table A.1, to determine the second order term.

× d𝑊(𝑡) d𝑡
d𝑊(𝑡) d𝑡 0
d𝑡 0 0

Table A.1: Itô’s multiplication table for the multiplication of stochastic/deterministic infinitesimal increments.
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Additional insights about the Hull-White

model
The one-factor Hull-White model is a valuable tool for simulating interest rate scenarios. Moreover,
its simplicity enables us to derive analytical formulas for pricing various financial instruments. In this
appendix, we will explore some of its useful characteristics that will be subsequently employed in pricing
a zero-coupon bond, an interest rate swap, and a swaption

B.1. Characteristics of the Hull-White model
This section discusses two important characteristics of the Hull-White model: it generates normally
distributed short rates, and it belongs to class of affine term structure models.

B.1.1. Normality assumption
The dynamics of the Hull-White model are given by

d𝑟(𝑡) = (𝜃(𝑡) − 𝛼𝑟(𝑡))d𝑡 + 𝜎 d𝑊ℚ(𝑡). (B.1)

One can see that this stochastic differential equation corresponds to a normally distributed short rate
by applying Itô’s lemma (Lemma 1) to 𝑥(𝑡) = 𝑒𝛼𝑡 𝑟(𝑡):

d𝑥(𝑡) = d𝑥(𝑡)
d𝑡 d𝑡 + d𝑥(𝑡)

d𝑟(𝑡) d𝑟(𝑡) +
1
2
d2𝑥(𝑡)
d𝑟(𝑡)2 d𝑟(𝑡)d𝑟(𝑡)

= 𝛼𝑒𝛼𝑡𝑟(𝑡)d𝑡 + 𝑒𝛼𝑡 d𝑟(𝑡) + 0
= 𝛼𝑒𝛼𝑡𝑟(𝑡)d𝑡 + 𝑒𝛼𝑡 [(𝜃(𝑡) − 𝛼𝑟(𝑡))d𝑡 + 𝜎 d𝑊ℚ(𝑡)] (Using (B.1))
= 𝑒𝛼𝑡𝜃(𝑡)d𝑡 + 𝜎𝑒𝛼𝑡 d𝑊ℚ(𝑡).

Integrating on both sides gives

𝑥(𝑡) − 𝑥(𝑡0) = ∫
𝑡

𝑡0
𝑒𝛼𝑠𝜃(𝑠)d𝑠 + 𝜎∫

𝑡

𝑡0
𝑒𝛼𝑠 d𝑊ℚ(𝑠),

which can be rewritten by using the definition of 𝑥(𝑡) to

𝑟(𝑡) = 𝑒−𝛼(𝑡−𝑡0)𝑟(𝑡0) + ∫
𝑡

𝑡0
𝑒−𝛼(𝑡−𝑠)𝜃(𝑠)d𝑠 + 𝜎∫

𝑡

𝑡0
𝑒−𝛼(𝑡−𝑠) d𝑊ℚ(𝑠).

Taking into account that an Itô integral is normally distributed, we can easily find that under theℚ−measure

𝑟(𝑡) ∼ 𝒩 (𝑒−𝛼(𝑡−𝑡0)𝑟(𝑡0) + ∫
𝑡

𝑡0
𝑒−𝛼(𝑡−𝑠)𝜃(𝑠)d𝑠, 𝜎

2

2𝛼 (1 − 𝑒
−2𝛼(𝑡−𝑡0))) ,

63
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where the variance is obtained by applying Itô’s isometry:

𝔼 [(∫
𝑇

𝑡
𝑋(𝑠)d𝑊(𝑠))

2

] = 𝔼 [∫
𝑇

𝑡
𝑋(𝑠)2 d𝑠] .

B.1.2. Affine term structure model
Suppose we have the following system of stochastic differential equations:

dX(𝑡) = �̄�(X(𝑡))d𝑡 + �̄�(X(𝑡))dW̃(𝑡),

where W̃(𝑡) are independent Brownian motions. This process is in the affine diffusion class, if we can
write the drift, volatility, and interest rate components in affine form. That is,

�̄�(X(𝑡)) = 𝑎0 + 𝑎1X(𝑡) for (𝑎0, 𝑎1) ∈ ℝ𝑛 × ℝ𝑛×𝑛 ,
�̄�(X(𝑡))�̄�(X(𝑡))𝑇 = (𝑐0)𝑖𝑗 + (𝑐1)𝑇𝑖𝑗X(𝑡) for (𝑐0, 𝑐1) ∈ ℝ𝑛×𝑛 × ℝ𝑛×𝑛×𝑛 ,

�̄�(X(𝑡)) = 𝑟0 + 𝑟𝑇1 X(𝑡) for (𝑟0, 𝑟1) ∈ ℝ × ℝ𝑛 .

From the stochastic differential equation (B.1) it is clear to see that the Hull-White model belongs to the
affine term structure class, with

𝑎0 = 𝜃(𝑡),
𝑐0 = 𝜎2,
𝑟0 = 0,

𝑎1 = −𝛼,
𝑐1 = 0,
𝑟1 = 1.

With this class comes a powerful theorem that shows formula for the corresponding discounted char-
acteristic function (Duffie et al., 2000) and therefore is vital for pricing financial instruments under the
Hull-White model.

Theorem 4. Consider the discounted characteristic function for an affine term structure model, defined
as

𝜙(X(𝑡), 𝑡, 𝑇,u) = 𝔼ℚ [𝑒−∫
𝑇
𝑡 𝑟(X(𝑠))d𝑠𝑒𝑖u X(𝑇)|ℱ(𝑡)] for u ∈ ℂ𝑛 ,

with boundary condition
𝜙(X(𝑇), 𝑇, 𝑇,u) = 𝑒𝑖u𝑇X(𝑇).

Then its solution is of the following form:

𝜙(X(𝑡), 𝑡, 𝑇,u) = 𝑒𝐴(u,𝑡,𝑇)+B(u,𝑡,𝑇)𝑇X(𝑡).

If we define 𝜏 = 𝑇 − 𝑡, we can write 𝐴(u, 𝑡, 𝑇) = 𝐴(u, 𝜏) and B(u, 𝑡, 𝑇) = B(u, 𝜏). These coefficients
have to satisfy the following system of Ricatti-type of ordinary differential equations:

d𝐴(u, 𝜏)
d𝜏 = −𝑟0 + B(u, 𝜏)𝑎0 −

1
2B(u, 𝜏)

𝑇𝑐0B(u, 𝜏),
dB(u, 𝜏)

d𝜏 = −𝑟1 + 𝑎𝑇1B(u, 𝜏) +
1
2B(u, 𝜏)

𝑇𝑐1B(u, 𝜏).

B.2. Pricing financial instruments under the Hull-White model
In this thesis, it is important to determine the prices of a zero-coupon bond, interest rate swap, and
swaption under the Hull-White model. In particular, understanding the cost associated with a receiver
swaption is vital for evaluating its incorporation in the hedging approaches, and this calculation relies
on the prices of the other instruments. The valuation of all the aforementioned instruments will be
consecutively discussed in the following sections.
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B.2.1. Zero-coupon bond
The cash flows of a standard zero-coupon bond consist of a single payment of 1 at maturity. So, under
the risk neutral measure, the price at time 𝑡 of a zero-coupon bond maturing at time 𝑇 is given by

𝑃(𝑡, 𝑇) = 𝔼ℚ [𝑒−∫
𝑇
𝑡 𝑟(𝑠)d𝑠|ℱ𝑡] .

From the fact that the Hull-White model is an affine term structure model and Theorem 4, we know that
the price of the zero-coupon bond has the form

𝑃(𝑡, 𝑇) = 𝑒𝐴(𝑡,𝑇)+𝐵(𝑡,𝑇)𝑟(𝑡), (B.2)

where

⎧
⎪
⎨
⎪
⎩

d𝐴(𝜏)
d𝜏 = −𝑟0 − 𝑎0𝐵(𝜏) +

1
2𝑐0𝐵(𝜏)

2,
= 0 + 𝜃(𝑇 − 𝜏)𝐵(𝜏) + 1

2𝜎
2𝐵(𝜏)2

d𝐵(𝜏)
d𝜏 = −𝑟1 + 𝑎1𝐵(𝜏) +

1
2𝑐1𝐵(𝜏)

2

= −1 − 𝛼𝐵(𝜏) + 0.

(B.3)

Moreover, we know that
𝑃(𝑇, 𝑇) = 𝜙(𝑟(𝑇), 𝑇, 𝑇, 0) = 1,

so that
𝐴(0) = 0 and 𝐵(0) = 0

or equivalently,
𝐴(𝑇, 𝑇) = 0 and 𝐵(𝑇, 𝑇) = 0.

Now we can solve system (B.3) and find that

𝐴(𝑡, 𝑇) = −∫
𝑇

𝑡
𝜃(𝑠)𝐵(𝑠, 𝑇)d𝑠 + 12𝜎

2∫
𝑇

𝑡
𝐵(𝑠, 𝑇)2 d𝑠

𝐵(𝑡, 𝑇) = 1
𝛼 (𝑒

−𝛼(𝑇−𝑡) − 1) .

However, this is not yet sufficient since the coefficient 𝐴(𝑡, 𝑇) depends on the drift 𝜃(𝑡), and this term
is still unknown. This can be solved since we know that it was chosen by fitting the theoretical bond
prices to the yield curve observed in the market. For this we can use the instantaneous forward rate
𝐹(𝑡, 𝑇), defined as

𝐹(𝑡, 𝑇) = − d
d𝑇 log𝑃(𝑡, 𝑇).

Substituting Equation (B.2) and the derived equations for the coefficients 𝐴(𝑡, 𝑇) and 𝐵(𝑡, 𝑇), we obtain

𝐹(𝑡, 𝑇) = − d
d𝑇 log𝑃(𝑡, 𝑇)

= − d
d𝑇𝐴(𝑡, 𝑇) −

d
d𝑇𝐵(𝑡, 𝑇)𝑟(𝑡)

= − d
d𝑇 [−∫

𝑇

𝑡
𝜃(𝑠)𝐵(𝑠, 𝑇)d𝑠 + 12𝜎

2∫
𝑇

𝑡
𝐵(𝑠, 𝑇)2 d𝑠] − d

d𝑇𝐵(𝑡, 𝑇)𝑟(𝑡)

= − [−∫
𝑇

𝑡
𝜃(𝑠) d

d𝑇𝐵(𝑠, 𝑇)d𝑠 +
1
2𝜎

2∫
𝑇

𝑡
2𝐵(𝑠, 𝑇) d

d𝑇𝐵(𝑠, 𝑇)] −
d
d𝑇𝐵(𝑡, 𝑇)𝑟(𝑡). (B.4)

The final equation gives a relation between the forward rate and the drift term, which can be used to
derive the analytical form of the coefficient 𝐴(𝑡, 𝑇), which will be done in the remaining of this subsection.
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Using Equation (B.2), we can write

log(𝑃(0, 𝑇)𝑃(0, 𝑡) ) = 𝐴(0, 𝑇) − 𝐴(0, 𝑡) + (𝐵(0, 𝑇) − 𝐵(0, 𝑡))𝑟(0)

= −∫
𝑇

0
𝜃(𝑠)𝐵(𝑠, 𝑇)d𝑠 + 12𝜎

2∫
𝑇

0
𝐵(𝑠, 𝑇)2 d𝑠

+ ∫
𝑡

0
𝜃(𝑠)𝐵(𝑠, 𝑡)d𝑠 − 12𝜎

2∫
𝑡

0
𝐵(𝑠, 𝑡)2 d𝑠 + (𝐵(0, 𝑇) − 𝐵(0, 𝑡))𝑟(0)

= −∫
𝑇

𝑡
𝜃(𝑠)𝐵(𝑠, 𝑇)d𝑠 − ∫

𝑡

0
𝜃(𝑠)(𝐵(𝑠, 𝑇) − 𝐵(𝑠, 𝑡))d𝑠

+ 12𝜎
2∫

𝑇

𝑡
𝐵(𝑠, 𝑇)2 d𝑠 + 12𝜎

2∫
𝑡

0
(𝐵(𝑠, 𝑇)2 − 𝐵(𝑠, 𝑡)2)d𝑠 + (𝐵(0, 𝑇) − 𝐵(0, 𝑡))𝑟(0).

Now since 𝐵(𝑠, 𝑇) − 𝐵(𝑠, 𝑡) = −𝐵(𝑡, 𝑇) d
d𝑡𝐵(𝑠, 𝑡), we can rewrite this to

log(𝑃(0, 𝑇)𝑃(0, 𝑡) ) = −∫
𝑇

𝑡
𝜃(𝑠)𝐵(𝑠, 𝑇)d𝑠 + 12𝜎

2∫
𝑇

𝑡
𝐵(𝑠, 𝑇)2 d𝑠 + 𝐵(𝑡, 𝑇)∫

𝑡

0
𝜃(𝑠) d

d𝑡𝐵(𝑠, 𝑡)d𝑠

− 12𝜎
2𝐵(𝑡, 𝑇)∫

𝑡

0
(𝐵(𝑠, 𝑇) + 𝐵(𝑠, 𝑡)) d

d𝑡𝐵(𝑠, 𝑡)d𝑠 − 𝐵(𝑡, 𝑇)
d
d𝑡𝐵(0, 𝑡)𝑟(0)

= 𝐴(𝑡, 𝑇) + 𝐵(𝑡, 𝑇) [∫
𝑡

0
𝜃(𝑠) d

d𝑡𝐵(𝑠, 𝑡)d𝑠 −
1
2𝜎

2∫
𝑡

0
2𝐵(𝑠, 𝑡) d

d𝑡𝐵(𝑠, 𝑡)d𝑠 −
d
d𝑡𝐵(0, 𝑡)𝑟(0)]

− 12𝜎
2𝐵(𝑡, 𝑇)∫

𝑡

0
(𝐵(𝑠, 𝑇) − 𝐵(𝑠, 𝑡)) d

d𝑡𝐵(𝑠, 𝑡)d𝑠

= 𝐴(𝑡, 𝑇) + 𝐵(𝑡, 𝑇)𝐹(0, 𝑡) + 12𝜎
2𝐵(𝑡, 𝑇)2∫

𝑡

0
( d
d𝑡𝐵(𝑠, 𝑡))

2
d𝑠 (By (B.4))

= 𝐴(𝑡, 𝑇) + 𝐵(𝑡, 𝑇)𝐹(0, 𝑡) + 𝜎2
4𝛼 (1 − 𝑒

−2𝛼𝑡) 𝐵(𝑡, 𝑇)2.

Rewriting gives

𝐴(𝑡, 𝑇) = log(𝑃(0, 𝑇)𝑃(0, 𝑡) ) − 𝐵(𝑡, 𝑇)𝐹(0, 𝑡) −
𝜎2
4𝛼 (1 − 𝑒

−2𝛼𝑡) 𝐵(𝑡, 𝑇)2.

Finally, we conclude that the price for a zero-coupon bond under the Hull-White model is given by

𝑃(𝑡, 𝑇) = 𝑒𝐴(𝑡,𝑇)+𝐵(𝑡,𝑇)𝑟(𝑡),

where

𝐴(𝑡, 𝑇) = log(𝑃(0, 𝑇)𝑃(0, 𝑡) ) − 𝐵(𝑡, 𝑇)𝐹(0, 𝑡) −
𝜎2
4𝛼 (1 − 𝑒

−2𝛼𝑡) 𝐵(𝑡, 𝑇)2

𝐵(𝑡, 𝑇) = 1
𝛼 (𝑒

−𝛼(𝑇−𝑡) − 1) .

Note that this price is independent of the drift term 𝜃(𝑡).
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Dynamics zero-coupon bonds under the risk-neutral Hull-White model
With the use of the price derived in the previous section, we can determine the dynamics of the zero-
coupon bond under the risk neutral measure:

d𝑃(𝑡, 𝑇) = d𝑃(𝑡, 𝑇)
d𝑡 d𝑡 + d𝑃(𝑡, 𝑇)

d𝑟(𝑡) d𝑟(𝑡) + 12
d2𝑃(𝑡, 𝑇)
d𝑟(𝑡)d𝑟(𝑡) d𝑟(𝑡)d𝑟(𝑡)

= 𝑃(𝑡, 𝑇) (d𝐴(𝑡, 𝑇)
d𝑡 + d𝐵(𝑡, 𝑇)

d𝑡 𝑟(𝑡))d𝑡 + 𝑃(𝑡, 𝑇)𝐵(𝑡, 𝑇)d𝑟(𝑡) + 12𝑃(𝑡, 𝑇)𝐵(𝑡, 𝑇)
2 d𝑟(𝑡)d𝑟(𝑡)

= 𝑃(𝑡, 𝑇) (−𝜃(𝑡)𝐵(𝑡, 𝑇) − 12𝜎
2𝐵(𝑡, 𝑇)2 + (1 + 𝛼𝐵(𝑡, 𝑇))𝑟(𝑡))d𝑡

+ 𝑃(𝑡, 𝑇)𝐵(𝑡, 𝑇) ((𝜃(𝑡) − 𝛼𝑟(𝑡))d𝑡 + 𝜎 d𝑊ℚ) + 12𝑃(𝑡, 𝑇)𝐵(𝑡, 𝑇)
2𝜎2 d𝑡

= 𝑟(𝑡)𝑃(𝑡, 𝑇)d𝑡 + 𝜎𝐵(𝑡, 𝑇)𝑃(𝑡, 𝑇)d𝑊ℚ

B.2.2. Interest rate swap
Consider a swap with payments at 𝑇𝑚+1, … , 𝑇𝑠 with a notional amount of 𝑁. Then the fixed leg at 𝑇𝑘
equals 𝜏𝑘𝑁𝑟𝑓𝑖𝑥𝑒𝑑 and the floating leg is equal to 𝜏𝑘𝑁𝑟𝑓𝑙𝑜𝑎𝑡𝑖𝑛𝑔(𝑇𝑘), where we define 𝜏𝑘 = 𝑇𝑘 − 𝑇𝑘−1.
Typically, the floating rate is an Euribor rate 𝐸 such that

𝑟𝑓𝑙𝑜𝑎𝑡𝑖𝑛𝑔(𝑇𝑘) = 𝐸(𝑇𝑘−1; 𝑇𝑘−1, 𝑇𝑘),

with the Euribor rate over the period [𝑇𝑘−1, 𝑇𝑘] which resets at 𝑡 is defined as

𝐸(𝑡; 𝑇𝑘−1, 𝑇𝑘) =
𝑃(𝑡, 𝑇𝑘−1) − 𝑃(𝑡, 𝑇𝑘)

𝜏𝑘𝑃(𝑡, 𝑇𝑘)
.

Note that the lengths in between the payment dates correspond to the tenor of the Euribor rate. Then
the payoff of a payer and receiver swap is given by

𝑉𝑠𝑤𝑎𝑝(𝑇𝑚 , … , 𝑇𝑠) =
𝑠

∑
𝑘=𝑚+1

�̄�𝜏𝑘𝑁(𝐸(𝑇𝑘−1; 𝑇𝑘−1, 𝑇𝑘) − 𝑟𝑓𝑖𝑥𝑒𝑑),

with

�̄� = {1 for a payer swap;
−1 for a receiver swap.

In order to find the value of an interest rate swap at time 𝑡, the future cash flows at 𝑇𝑚+1, … , 𝑇𝑠 should
be discounted. So, under the risk neutral measure, the price at time 𝑡 of a payer (�̄� = 1) and receiver
(�̄� = −1) interest rate swap that starts with payments at 𝑇𝑚+1, … , 𝑇𝑠 is given by

𝑉𝑠𝑤𝑎𝑝(𝑡) = 𝔼ℚ [
𝑠

∑
𝑘=𝑚+1

𝑀(𝑡)
𝑀(𝑇𝑘)

�̄�𝜏𝑘𝑁(𝐸(𝑇𝑘−1; 𝑇𝑘−1, 𝑇𝑘) − 𝑟𝑓𝑖𝑥𝑒𝑑)|ℱ(𝑡)]

= �̄�𝑀(𝑡)𝑁
𝑠

∑
𝑘=𝑚+1

𝜏𝑘𝔼ℚ [
1

𝑀(𝑇𝑘)
(𝐸(𝑇𝑘−1; 𝑇𝑘−1, 𝑇𝑘) − 𝑟𝑓𝑖𝑥𝑒𝑑)|ℱ(𝑡)]

= �̄�𝑁
𝑠

∑
𝑘=𝑚+1

𝜏𝑘𝑃(𝑡, 𝑇𝑘)(𝔼ℚ𝑇𝑘 [𝐸(𝑇𝑘−1; 𝑇𝑘−1, 𝑇𝑘)|ℱ(𝑡)] − 𝑟𝑓𝑖𝑥𝑒𝑑) (Change of measure: ℚ to ℚ𝑇𝑘)

= �̄�𝑁
𝑠

∑
𝑘=𝑚+1

𝜏𝑘𝑃(𝑡, 𝑇𝑘)(𝐸(𝑡; 𝑇𝑘−1, 𝑇𝑘) − 𝑟𝑓𝑖𝑥𝑒𝑑) (𝐸(𝑇𝑘−1; 𝑇𝑘−1, 𝑇𝑘) martingale under ℚ𝑇𝑘)
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Now we can substitute the definition of the Euribor rate,

𝑉𝑠𝑤𝑎𝑝(𝑡) = �̄�𝑁
𝑠

∑
𝑘=𝑚+1

𝜏𝑘𝑃(𝑡, 𝑇𝑘) (
𝑃(𝑡, 𝑇𝑘−1) − 𝑃(𝑡, 𝑇𝑘)

𝜏𝑘𝑃(𝑡, 𝑇𝑘)
− 𝑟𝑓𝑖𝑥𝑒𝑑)

= �̄�𝑁
𝑠

∑
𝑘=𝑚+1

(𝑃(𝑡, 𝑇𝑘−1) − 𝑃(𝑡, 𝑇𝑘)) − �̄�𝑁𝑟𝑓𝑖𝑥𝑒𝑑
𝑚

∑
𝑘=𝑖+1

𝜏𝑘𝑃(𝑡, 𝑇𝑘)

= �̄�𝑁(𝑃(𝑡, 𝑇𝑚) − 𝑃(𝑡, 𝑇𝑠)) − �̄�𝑁𝑟𝑓𝑖𝑥𝑒𝑑
𝑠

∑
𝑘=𝑚+1

𝜏𝑘𝑃(𝑡, 𝑇𝑘) (Telescopic sum) (B.5)

Equation (B.5) gives the final price of a payer (�̄� = 1) and receiver (�̄� = −1) interest rate swap. This
expression was achieved without any assumptions about the underlying interest rate model. Therefore,
this formula holds in general.

In practice, a swap is usually considered to be ”at-the-money”, which refers to a scenario where
the value of the fixed cash flows matches that of the floating cash flows, resulting in zero value of the
swap. This allows for entering into the swap contract without any initial costs. The fixed rate required
to achieve this, known as the swap rate, can be derived by setting Equation (B.5) equal to zero, and it
is given by

𝑆(𝑡, 𝑇𝑚 , 𝑇𝑠) ∶=
𝑃(𝑡, 𝑇𝑚) − 𝑃(𝑡, 𝑇𝑠)
∑𝑠𝑘=𝑚+1 𝜏𝑘𝑃(𝑡, 𝑇𝑘)

. (B.6)

B.2.3. Swaption
The price of a swaption at time 𝑡, denoted by 𝑉𝑠𝑤𝑎𝑝𝑡𝑖𝑜𝑛(𝑡, 𝑇𝑚 , 𝑇𝑠) can be expressed as the expected
sum of discounted cash flows. These cash flows are either zero, or equal to those of the underlying
swap, depending on whether the option is exercised. In practice, one would compare the swap rate
at time 𝑇𝑚 to the contractually agreed-upon fixed rate. Then in case of a receiver swaption, the holder
would exercise if the observed rate were below the fixed rate, and the converse holds in case of a payer
swaption. Mathematically, we can write

𝑥𝑝𝑎𝑦(𝑡) = {
1 if 𝑟𝑓𝑖𝑥𝑒𝑑 < 𝑆(𝑡, 𝑇𝑚 , 𝑇𝑠);
0 otherwise, (B.7)

and

𝑥𝑟𝑒𝑐(𝑡) = {
1 if 𝑟𝑓𝑖𝑥𝑒𝑑 > 𝑆(𝑡, 𝑇𝑚 , 𝑇𝑠);
0 otherwise, (B.8)

where 𝑆(𝑡, 𝑇𝑚 , 𝑇𝑠) denotes the swap rate at time 𝑡 of a swap with exchanges at future times 𝑇𝑚+1, … 𝑇𝑠
and is defined as in (B.6). The reasoning behind this is that the market swap rate is derived such that
the present value of the swap equals zero. So, whenever the cash flows of the agreed swap exceed
those expected by the market, you may expect a profit. Equivalently, we could say that one should only
exercise if the value of the swap at 𝑇𝑚 is positive. Therefore, the value of a receiver swaption can be
written either by (1) using Equations (B.7) and (B.8), or by (2) the value of a swap as derived in (B.5):

(1) 𝑉𝑠𝑤𝑎𝑝𝑡𝑖𝑜𝑛,𝑟𝑒𝑐(𝑡, 𝑇𝑚 , 𝑇𝑠) = 𝔼ℚ [
𝑀(𝑡)
𝑀(𝑇𝑚)

𝑥𝑟𝑒𝑐(𝑇𝑚)𝑉𝑠𝑤𝑎𝑝,𝑟𝑒𝑐(𝑇𝑚)|ℱ(𝑡)]

(2) 𝑉𝑠𝑤𝑎𝑝𝑡𝑖𝑜𝑛,𝑟𝑒𝑐(𝑡, 𝑇𝑚 , 𝑇𝑠) = 𝔼ℚ [
𝑀(𝑡)
𝑀(𝑇𝑚)

max (𝑉𝑠𝑤𝑎𝑝,𝑟𝑒𝑐(𝑇𝑚), 0) |ℱ(𝑡)]

A similar equation can be derived for a payer swap. In practice, method (1) is used more often, as
the swap rate can directly be observed in the market, and thus the comparison can be made without
any computations. Theoretically, however, method (2) is preferable because there is a wide range of
theorems that can be applied while using this notation, which will be discussed hereafter.
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So, using notation (2), the price at time 𝑡 of a receiver swaption with expiry 𝑇𝑚 and maturity of the
underlying swap 𝑇𝑠 under the risk neutral measure is given by

𝑉𝑠𝑤𝑎𝑝𝑡𝑖𝑜𝑛,𝑟𝑒𝑐(𝑡, 𝑇𝑚 , 𝑇𝑠) = 𝔼ℚ [
𝑀(𝑡)
𝑀(𝑇𝑚)

max (𝑉𝑠𝑤𝑎𝑝,𝑟𝑒𝑐(𝑇𝑚), 0) |ℱ(𝑡)]

= 𝑃(𝑡, 𝑇𝑚)𝔼ℚ𝑇𝑚 [max (𝑉𝑠𝑤𝑎𝑝,𝑟𝑒𝑐(𝑇𝑚), 0) |ℱ(𝑡)] (Change of measure ℚ to ℚ𝑇𝑚)

Using the expression obtained in the previous section, we can write

𝑉𝑠𝑤𝑎𝑝𝑡𝑖𝑜𝑛,𝑟𝑒𝑐(𝑡, 𝑇𝑚 , 𝑇𝑠) = 𝑃(𝑡, 𝑇𝑚)𝔼ℚ𝑇𝑚 [max(𝑁(𝑃(𝑇𝑚 , 𝑇𝑠) − 𝑃(𝑇𝑚 , 𝑇𝑚)) + 𝑁𝑟𝑓𝑖𝑥𝑒𝑑
𝑠

∑
𝑘=𝑚+1

𝜏𝑘𝑃(𝑇𝑚 , 𝑇𝑘), 0) |ℱ(𝑡)]

= 𝑁𝑃(𝑡, 𝑇𝑚)𝔼ℚ𝑇𝑚 [max(
𝑠

∑
𝑘=𝑚+1

𝑐𝑘𝑃(𝑇𝑚 , 𝑇𝑘) − 1, 0) |ℱ(𝑡)] ,

where 𝑐𝑘 = 𝑟𝑓𝑖𝑥𝑒𝑑𝜏𝑘 for 𝑘 = 𝑚 + 1,… , 𝑠 − 1 and 𝑐𝑠 = 1 + 𝑟𝑓𝑖𝑥𝑒𝑑𝜏𝑘. Now by using ”Jamshidian’s trick”
(Jamshidian, 1989), we obtain

max(
𝑠

∑
𝑘=𝑚+1

𝑐𝑘𝑃(𝑇𝑚 , 𝑇𝑘) − 1, 0) =
𝑠

∑
𝑘=𝑚+1

𝑐𝑘max (𝑃(𝑇𝑚 , 𝑇𝑘) − 𝑃∗𝑘 , 0) ,

where 𝑃∗𝑘 ∶= 𝑒𝐴(𝑇𝑚 ,𝑇𝑘)+𝐵(𝑇𝑚 ,𝑇𝑘)𝑟
∗ and 𝑟∗ chosen such that

𝑠

∑
𝑘=𝑚+1

𝑐𝑘𝑒𝐴(𝑇𝑚 ,𝑇𝑘)+𝐵(𝑇𝑚 ,𝑇𝑘)𝑟
∗ = 1.

Substituting this expression gives

𝑉𝑠𝑤𝑎𝑝𝑡𝑖𝑜𝑛,𝑟𝑒𝑐(𝑡, 𝑇𝑚 , 𝑇𝑠) = 𝑁𝑃(𝑡, 𝑇𝑚)𝔼ℚ𝑇𝑚 [
𝑠

∑
𝑘=𝑚+1

𝑐𝑘max (𝑃(𝑇𝑚 , 𝑇𝑘) − 𝑃∗𝑘 , 0) |ℱ(𝑡)]

= 𝑁𝑃(𝑡, 𝑇𝑚)
𝑠

∑
𝑘=𝑚+1

𝑐𝑘𝔼ℚ𝑇𝑚 [max (𝑃(𝑇𝑚 , 𝑇𝑘) − 𝑃∗𝑘 , 0) |ℱ(𝑡)] .

Notice that this is no more than a scaled sum of call options on a zero-coupon bond. Indeed, the value
of this derivative at time 𝑡 with strike 𝑃∗𝑘 , expiry 𝑇𝑚 and bond maturity 𝑇𝑘 reads

𝑉𝑍𝐶𝐵,𝑐𝑎𝑙𝑙(𝑡, 𝑇𝑚; 𝑇𝑘 , 𝑃∗𝑘) = 𝔼ℚ [
𝑀(𝑡)
𝑀(𝑇𝑚)

max (𝑃(𝑇𝑚 , 𝑇𝑘) − 𝑃∗𝑘 , 0) |ℱ(𝑡)]

= 𝑃(𝑡, 𝑇𝑚)𝔼ℚ𝑇𝑚 [max (𝑃(𝑇𝑚 , 𝑇𝑘) − 𝑃∗𝑘 , 0) |ℱ(𝑡)] (Change of measure ℚ to ℚ𝑇𝑚).

Finally, we obtain

𝑉𝑠𝑤𝑎𝑝𝑡𝑖𝑜𝑛,𝑟𝑒𝑐(𝑡, 𝑇𝑚 , 𝑇𝑠) = 𝑁
𝑠

∑
𝑘=𝑚+1

𝑐𝑘𝑉𝑍𝐶𝐵,𝑐𝑎𝑙𝑙(𝑡, 𝑇𝑚; 𝑇𝑘 , 𝑃∗𝑘)

as required.

From this expression it is a logical next step to find a closed-form formula for a call option on a zero-
coupon bond under the Hull-White model. This is given by the following theorem:
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Theorem 5. The value of a call option on a zero-coupon bond at time 𝑡 with strike 𝐾, expiry 𝑇𝑚 and
bond maturity 𝑇𝑛 is given by

𝑉𝑍𝐶𝐵,𝑐𝑎𝑙𝑙(𝑡, 𝑇𝑚; 𝑇𝑛 , 𝐾) = 𝑃(𝑡, 𝑇𝑛)Φ(ℎ) − 𝐾𝑃(𝑡, 𝑇𝑚)Φ(ℎ − 𝜎𝑝),

with Φ(⋅) the cumulative distribution function of a standard normal distribution and

ℎ =
log ( 𝑃(𝑡,𝑇𝑛)

𝐾⋅𝑃(𝑡,𝑇𝑚)
) + 1

2𝜎
2
𝑝

𝜎𝑝

𝜎𝑝 = −𝜎 ⋅ 𝐵(𝑇𝑚 , 𝑇𝑛)√
1 − 𝑒−2𝛼(𝑇𝑚−𝑡)

2𝛼 .

Proof. Under the forward measure 𝑄𝑇𝑚 , the value of the call option on a zero-coupon bond can be
expressed as

𝑉𝑍𝐶𝐵,𝑐𝑎𝑙𝑙(𝑡, 𝑇𝑚; 𝑇𝑛 , 𝐾) = 𝑃(𝑡, 𝑇𝑚)𝔼ℚ𝑇𝑚 [max (𝑃(𝑇𝑚 , 𝑇𝑛) − 𝐾, 0) |ℱ(𝑡)] .

To compute this expression, the dynamics of the short rate 𝑟 under the 𝑇𝑚-forward measure 𝑄𝑇𝑚 is
required. Remember that under the risk-neutral measure ℚ, we have

d𝑟(𝑡) = (𝜃(𝑡) − 𝛼𝑟(𝑡))d𝑡 + 𝜎 d𝑊ℚ(𝑡).

Then by Girsanov’s theorem (Theorem 3), we obtain

d𝑊ℚ𝑇𝑚 (𝑡) = d𝑊ℚ(𝑡) −
dΛ𝑄𝑇𝑚 ,ℚ(𝑡)
Λ𝑄𝑇𝑚 ,ℚ(𝑡)

d𝑊ℚ(𝑡),

with

Λ𝑄𝑇𝑚 ,ℚ(𝑡) =
𝑃(𝑡, 𝑇𝑚)𝑀(𝑡0)
𝑃(𝑡0, 𝑇𝑚)𝑀(𝑡)

and

dΛ𝑄𝑇𝑚 ,ℚ(𝑡) =
𝑀(𝑡0)
𝑃(𝑡0, 𝑇𝑚)

( 1
𝑀(𝑡) d𝑃(𝑡, 𝑇𝑚) −

𝑃(𝑡, 𝑇𝑚)
𝑀(𝑡)2 d𝑀(𝑡)) (Itô’s lemma)

= 𝑀(𝑡0)
𝑃(𝑡0, 𝑇𝑚)

( 1
𝑀(𝑡) (𝑟(𝑡)𝑃(𝑡, 𝑇𝑚)d𝑡 + 𝜎𝐵(𝑡, 𝑇𝑚)𝑃(𝑡, 𝑇𝑚)d𝑊

ℚ(𝑡)) − 𝑃(𝑡, 𝑇𝑚)𝑀(𝑡)2 𝑟(𝑡)𝑀(𝑡)d𝑡)

= 𝑀(𝑡0)
𝑃(𝑡0, 𝑇𝑚)

𝜎𝐵(𝑡, 𝑇𝑚)𝑃(𝑡, 𝑇𝑚)d𝑊ℚ(𝑡)
𝑀(𝑡) ,

where we used the dynamics of the zero-coupon bond and the money market account as given in B.2.1
and A.1.1, respectively. Substituting leads to

d𝑊ℚ𝑇𝑚 (𝑡) = d𝑊ℚ(𝑡) − 𝜎𝐵(𝑡, 𝑇𝑚)d𝑊ℚ(𝑡)d𝑊ℚ(𝑡)
= d𝑊ℚ(𝑡) − 𝜎𝐵(𝑡, 𝑇𝑚)d𝑡 (Itô’s multiplication)

Then finally,
d𝑟(𝑡) = (𝜃(𝑡) + 𝜎2𝐵(𝑡, 𝑇𝑚) − 𝛼𝑟(𝑡))d𝑡 + 𝜎 d𝑊ℚ𝑇𝑚 (𝑡).

Consequently, we can write
𝑟(𝑡) ∼ 𝒩(𝜇𝑟,𝑇𝑚(𝑡), 𝜎2𝑟,𝑇𝑚(𝑡))

with

𝜇𝑟,𝑇𝑚(𝑡) = 𝑒−𝛼(𝑡−𝑡0)𝑟(𝑡0) + ∫
𝑡

𝑡0
𝑒−𝛼(𝑡−𝑠)(𝜃(𝑠) + 𝜎2𝐵(𝑠, 𝑇𝑚))d𝑠

𝜎2𝑟,𝑇𝑚(𝑡) =
𝜎2
2𝛼 (1 − 𝑒

−2𝛼(𝑡−𝑡0)) .
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As a consequence, applying the general Black’s formula (Black, 1976), the call option on a zero-coupon
bond becomes

𝑉𝑍𝐶𝐵,𝑐𝑎𝑙𝑙(𝑡, 𝑇𝑚; 𝑇𝑛 , 𝐾) = 𝑃(𝑡, 𝑇𝑛)Φ(ℎ) − 𝐾𝑃(𝑡, 𝑇𝑚)Φ(ℎ − 𝜎𝑝),
with Φ(⋅) the cumulative distribution function of a standard normal distribution and

ℎ =
log ( 𝑃(𝑡,𝑇𝑛)

𝐾⋅𝑃(𝑡,𝑇𝑚)
) + 1

2𝜎
2
𝑝

𝜎𝑝

𝜎𝑝 = −𝜎 ⋅ 𝐵(𝑇𝑚 , 𝑇𝑛)√
1 − 𝑒−2𝛼(𝑇𝑚−𝑡)

2𝛼 .





C
Derivation NPV-at-Risk after

incorporating swaptions
In Section 5.4.1 we have calibrated receiver swaptions to offset the value exposure in a parallel−200 ba-
sis points shock in the interest rates. The reason for this specific scenario is twofold. On the one hand,
the European Banking Authority (EBA) suggests using a parallel shock with a magnitude of 200 basis
points for outlier testing. Moreover, we observed in Table 5.6 that the downward shock resulted in larger
losses than the upward shock. To derive the new NPVaR in the 200 basis points parallel shock, we
should again consider the exposure in an upward and downward scenario, as given in the first and sec-
ond column of Table C.1, respectively. This table shows that the NPV-at-Risk in the upward scenario
does not change when the calibrated swaption is included in the hedge portfolio. This is due to the fact
that a receiver swaption is only exercised if the prevailing swap rate at the option maturity is below the
strike rate. In an interest rate environment with a 200 basis points upward shock, it is highly unlikely
this would occur. On the other hand, the NPV-at-Risk for the downward scenario improved significantly
since the exposure for all hedging approaches is reduced to approximately zero. Consequently, the
total NPV-at-Risk, which is defined as the most negative of the two, is improved as well, as visible in
the final column of Table C.1.

Value stability

Hedging approach NPV-at-Risk +200bps NPV-at-Risk -200bps NPV-at-Risk

Static Internal funding 3.196 × 104 1.235 × 10−6 1.235 × 10−6

Notional hedge with
zero-coupon bonds

−315.4 −1.943 × 10−6 −315.4

Value hedge with
zero-coupon bonds

−2083 1.929 × 10−6 −2083

Dynamic Notional hedge with
internal contracts

3.302 × 104 −1.679 × 10−5 −1.679 × 10−5

Value hedge with
internal contracts

−9396 6.681 × 10−6 −9396

Table C.1: An overview of the NPV-at-Risks for all proposed hedging approaches including the swaption. The colours green and
grey represent a positive and no change in comparison to the hedging approaches excluding the swaption.
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