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Counter-Aliasing Is Better Than De-Aliasing:
Application to Doppler Weather Radar

With Aperiodic Pulse Train
Tworit Dash , Graduate Student Member, IEEE, Hans Driessen, O. A. Krasnov ,

and Alexander Yarovoy, Fellow, IEEE

Abstract— The challenge of avoiding aliasing in the Doppler
spectrum for precipitation is addressed. A novel integrative
signal processing approach has been proposed to address the
research gaps from various disciplines. The proposed approach
consists of several steps. First, an aperiodic way of sampling
the echoes (aperiodic sampling refers to aperiodic pulse train in
the context of radar echoes in slow time) has been proposed by
which the maximum unambiguous Doppler frequency (velocity)
is enhanced. Second, the Doppler spectrum moment estimation
is performed with the help of a parametric form of its covari-
ance. The performance of the moment estimation is assessed
by the bias and the variance in the estimated counterparts.
The theoretical variance for the parameter estimation is also
derived. An aperiodic pulse train design recommendation has
been proposed for adequately and unambiguously estimating the
Doppler moments for one extended target (like precipitation).
Finally, a spectrum reconstruction technique is implemented after
the moment estimation on simulated radar echo samples for a
realistic precipitation-like event. The comparison with the other
approaches proves its superiority for parameter estimation and
Doppler spectrum reconstruction.

Index Terms— Aperiodic sampling, Doppler counter-aliasing,
Gaussian processes (GP), hyperparameter estimation, radar
signal processing.

I. INTRODUCTION

IN THE field of weather monitoring, the ability to accurately
estimate the Doppler velocities of precipitation plays a

pivotal role in the safety and operations across various sectors,
including aviation.

Although modern X-band weather radar sensors have been
instrumental in estimating properties related to precipitation,
some challenges remain in the realm of Doppler radial
velocity/frequency spectrum estimation. One such challenge
is the aliasing of the Doppler spectrum. Aliasing is caused
by the sensor configuration, which limits the reconstructed
velocities/frequencies to the Nyquist unambiguous velocity/
frequency limit. Aliasing causes ambiguity when the targets
of interest move with higher velocities than this limit.
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Doppler spectrum aliasing is not a new problem. It can
also be found in other radar-related applications, such as
automotive and millimeter wave applications [1], [2], [3],
and synthetic aperture radar (SAR) remote sensing [4], [5], [6].
Doppler aliasing is also observed in studies other than
radar, such as in ultrasound and ultrasonography sensing [7],
[8], [9]. However, this article focuses on the impact of aliasing
on parameter retrievals and Doppler spectrum reconstruction
for precipitation only. Before discussing how aliasing affects
the parameters related to the Doppler spectrum, let us discuss
which parameters are typically retrieved from the precipitation
Doppler spectrum.

The most popular retrieval practice is to store only the first
three statistical Doppler moments [10], [11], [12], [13], [14],
[15], [16], [17]. The zeroth moment is the total power received
from the radar echoes, and it is a measure of the intensity of
the precipitation. The first Doppler moment is often related
to the mean radial velocity of the raindrops. The square root of
the second moment around the mean Doppler velocity (second
central moment) is a measure of several statistical effects, such
as turbulence in the rain and the effect of the antenna beam
shape [11], [18], [19], [20], [21], [22].

The parameter that is heavily affected by aliasing is the
mean Doppler velocity. It is further used to compute the ver-
tical raindrop speed (also known as the terminal fall velocity)
and the horizontal wind field as a function of space and
time [23], [24], [25], [26], [27], [28], [29]. Some de-aliasing
techniques are addressed in the post-processing phase to cor-
rectly locate the mean Doppler velocity by using information
from other sources (also sometimes non-radar sources). These
methods detect sharp mean Doppler velocity transitions across
resolution volumes, assuming smooth and homogeneous wind
fields. In these post-processing de-aliasing algorithms, chal-
lenges include missing or corrupted mean Doppler velocity
retrievals, addressed by advanced tools like [30] and [31,
Ch. 5] (model-based optimization technique). Some techniques
incorporate temporal reflectivity and mean Doppler velocity
variability to relax the assumption of a homogeneous wind
field [32], albeit at increased computational cost. In addition,
these temporal approaches may still rely on assumptions
like reflectivity conservation [33] (often associated with fluid
flow).

Aliasing in many existing sensor systems is inevitable
due to one crucial system design related to the transmitted
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radar pulse train: the fixed interval between two successive
transmitted signals [also known as the pulse repetition time
(PRT)]. This type of signal sampling is known as periodic
sampling. Therefore, the apparent strategy that has been tried
to avoid aliasing is an aperiodic way of sampling the signal.
Despite numerous efforts to realize optimized sampling strate-
gies and parameter estimation techniques, aliasing remains
an issue due to the lack of an appropriate frequency-domain
conversion technique (leading to much higher ambiguous
lobe levels). One such sampling strategy is the staggered
sampling sequence, where the sequence alternates between
two periodically sampled sequences [34], [35]. Although the
de-aliasing scheme presented with staggered sequences is
computationally efficient, they are susceptible to errors intro-
duced by the individual velocity estimates of the constituent
sampling sequences. External inputs like spatial and temporal
continuity of Doppler moments are often used to mitigate such
errors [34], [36].

To adequately address aliasing issues, one needs to broaden
the research horizon, investigate the problem of ambiguity
from various perspectives, and combine the outcomes of these
investigations in one generic approach.

In this article, we try to construct a generic, novel, and
integrative approach that exploits an aperiodic sampling
sequence. By an integrative approach, we mean that
complementary knowledge from different research areas has
been brought together to address the problem of ambiguity
(the word “integrative” is emphasized to show that it is not
just a combination of techniques).

The various research areas that contribute to the integrative
approach proposed are as follows.

1) The Nyquist limit for aperiodically sampled signals.
2) Radar signal processing approaches to deal with aperi-

odically sampled signals in the frequency domain.
3) Frequency-domain conversion techniques specifically

designed for aperiodic sequences.
4) Model-based parameter estimation and reconstruction of

Doppler frequency spectrum.
Each topic mentioned above in the literature considers

several aspects of aliasing but ignores certain others. Hence,
the significant contribution of this article is a novel integrative
approach for radar-based weather monitoring that addresses
the research gaps among all the areas mentioned above.

The proposed approach is based on complex Gaussian pro-
cess (CGP) regression on aperiodically sampled signals. It is a
parametric technique where parameter estimation is performed
first, followed by spectrum estimation. Apart from the novel
integrative approach to address the gaps and the advantages of
each research area, we present an intuitive study of the Doppler
parameter estimation performance analysis using the proposed
technique. This study presents the benefits of the integra-
tive approach and shows the physical limiting conditions for
accurately estimating Doppler velocity/frequency parameters
unambiguously. The parameter estimation is compared with
the state-of-the-art Doppler moment estimators, such as the
discrete Fourier transform (DFT), pulse pair (PP), the paramet-
ric spectrum estimator (PSE) [11], and a staggered sampling
approach [34]. The performance of the parameter estimation

is also studied with respect to the nonlinearity in the sampling
sequence. Furthermore, the Doppler spectrum is reconstructed
in the frequency domain directly using the CGP posterior [12]
and compared with the nonuniform DFT-based periodogram
(nonuniform Schuster periodogram). The integrative approach
proposed in this article is classified as a counter-aliasing
technique (and not a de-aliasing technique), where the Doppler
velocities and the spectrum are estimated directly from an
aperiodically sampled sequence. It does not involve any
de-aliasing scheme where true velocities are estimated based
on some pre-estimated velocities (e.g., staggered sampling) or
extra information (e.g., Unfold Radar Velocity algorithm or
UNRAVEL [30]).

The main body of this article is structured as follows.
Section II presents a broad overview of the state of the art
and the rationale behind the proposed approach. Section III
explains the signal and the covariance model for typical
precipitation events. Section IV is devoted to estimating
hyperparameters in the CGP covariance model (parameters of
the Doppler spectrum). Section V presents the technique for
directly reconstructing the Doppler spectrum in the frequency
domain using time-domain measurements. Section VI presents
hyperparameter estimation performance analysis results and
Doppler spectrum reconstruction with simulated radar echoes.
Finally, Section VII concludes this article.

II. STATE OF THE ART AND THE RATIONALE
BEHIND THE PROPOSED APPROACH

In this section, we present a comprehensive analysis of all
the fields of study introduced in Section I to understand better
the issue of aliasing from different perspectives. We present the
missing analysis and research gaps in all these areas of study.
Finally, we show the rationale behind the proposed integrative
approach and its operation.

A. Nyquist Limit for Aperiodically Sampled Signals

For any frequency-domain interpretation, it is essential to
define the maximum observable frequency allowed (also called
the Nyquist limit) based on the measurement setup. The
Nyquist frequency limit is the maximum frequency observable
as a result of digitally sampling a signal. The Nyquist limit
is very well defined when the signal is sampled periodically
( fNY,per = 1/(21tk,per)), where 1tk,per is the periodic sampling
interval. However, the Nyquist limit for aperiodically sampled
sequences is very ill-defined in the literature. A definition is
given in [37] for any sampling sequence (note the ≤)

fNY ≤
1
2

10D Hz (1)

where D is the decimal point precision. For example, if we
consider a time sequence where we can measure time with six
decimal point precision, the maximum Nyquist limit can be
as large as 0.5 MHz if the sequence is aperiodic in nature.
This property of breaking the periodicity of the sampling
sequence is beneficial in avoiding ambiguity or aliasing. The
corresponding velocity parameters are related to the frequency
as v = f λ/2, where λ is the radar central wavelength.
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Therefore, the maximum unambiguous velocity of any sam-
pling sequence as Va is given by

Va ≤
λ

4
10DHz. (2)

Throughout this article, we use the subscript “per” for
periodic sequences, “ap” for aperiodic sequences, and “st” for
staggered sequences for clarity.

A similar conclusion can be drawn from the literature
describing staggered sampling sequences. A staggered sam-
pling sequence is a sampling sequence that switches among
several periodic sampling sequences. In [34] and [35], the stag-
gered sequence is made with two periodic sampling sequences
whose ratio of sampling intervals is denoted as m/n, where
m and n are integers. If the sampling intervals are 1tst,1
and 1tst,2, the underlying sampling interval that satisfies both
should be the greatest common divisor of 1tst,1 and 1tst,2.
If this underlying sampling interval is denoted as 1tu , the
intervals 1tst,1 and 1tst,2 are integer multiples of 1tu (1tst,1 =

m1tu, 1tst,2 = n1tu). This underlying sampling sequence
decides the Nyquist frequency of the staggered sequence, i.e.,
fNY,st = 1/(21tu)Hz. If m and n are relatively prime, the
largest time interval of which 1tst,1 and 1tst,2 are integer
multiples is 10−D s. The Nyqyuist frequency in this case
is fNY,st = 1/2 × 10DHz. Therefore, the expression in (1)
is justified for any sampling sequence. To sum up, in any
aperiodic sequence in which there is no obvious greatest
common divisor for all sampling intervals in the sequence, one
can safely consider that there is still an underlying periodic
structure (grid) of which all the sampling intervals are integer
multiples. It is 1tu = 10−Ds.

Several methods exist to create an aperiodic sampling
sequence, such as linearly increasing chirp sampling, random
sampling based on a Gaussian distribution, and sinusoidal
sampling [38], [39], [40]. However, choosing one for the
required application of interest can be challenging. In this
article, we restrict ourselves to using only the log-periodic
sampling sequence and compare it with the conventional
periodic and staggered sampling cases. First, we choose log-
periodic sampling because it is inherently irrational, and the
user can define the precision based on the desired decimal
point accuracy [an equality sign can be realized for this
sampling in (1) and (2)]. The requirement for a certain number
of decimal point accuracy can arise from hardware constraints
for measuring the sample instances. Second, the parameters
of the sampling rule can be tuned to ensure the minimum
sampling interval does not exceed a threshold; hence, it allows
for a fair comparison with a corresponding periodic sampling
sequence. Third, its performance in the case of point frequency
response has been studied, and it is the best among all the
other nonuniform sampling strategies in terms of sidelobe
levels [38]. A detailed explanation of the sampling rule with
the log-periodic sampling strategy has been presented in
Section VI.

The application of log-periodic sampling can be found in
the field of antenna array design [41] (here, the sampling refers
to the physical placement of antennas in space) and Doppler
processing [38]. In these studies, the effect of the log-periodic

sampling is studied in the case where the signal consists of one
sinusoid in the presence of white Gaussian noise. However,
these analyses do not study the performance when the
frequency spectrum of the target response is continuous and
extended, like a typical precipitation-like Doppler spectrum.

B. Radar Signal Processing Approaches to Deal With
Aperiodically Sampled Signals in the Frequency
Domain

As the raw radar echoes are collected in the physical time
domain, extra processing is often applied to visualize it in the
frequency domain. Let us consider the unambiguous velocity
interval being [−Va,per, Va,per] for a traditional periodic
sampling case.

Let us assume that the majority of the scatterers (raindrops,
in our case, in one big radar volume) are moving with an
average velocity of v = 1.5 Va,per in reality. We construct the
Doppler power spectrum with a traditional frequency-domain
technique; we will find that the majority of the scatterers
are moving with (−Va,per + 0.5 × Va,per), meaning that the
excess from Va,per is circularly shifted and added in the
opposite direction (at −Va,per). If we construct the power
spectrum for velocities [−pVa,per, pVa,per], p > 1, p ϵ Z+

in the hope of finding the true mean velocity at 1.5 × Va,per
with the maximum power level, to our surprise, we will
find that the power levels of all radial velocities that are of
the form v ± 2pVa,per are the same; causing ambiguity
(these lobes in the frequency domain are called as “grating
lobes” or “ambiguous lobes”). As discussed in Section II-
A, in principle, with a proper frequency-domain conversion
technique, an aperiodic sequence should decrease these higher
ambiguous lobe levels, making it unambiguous.

However, there are three missing pieces in the radar liter-
ature related to this issue. First, a suitable frequency-domain
conversion technique is unavailable to realize an unambiguous
frequency spectrum for aperiodically sampled signals. Many
studies use a DFT-based periodogram approach (Schuster
periodogram [42]) to construct the frequency spectrum for
aperiodically sampled signals.

However, using a simple DFT on aperiodically sampled
signals is inefficient as the DFT approach inherently constructs
the resonant peaks based on the sampling intervals. If the
sampling interval is aperiodic, the DFT response becomes
noise-like. Although the ambiguous lobe levels can be reduced,
they are not considerably suppressed. These partly suppressed
ambiguous lobes that create noisy artifacts in the spectrum
will be referred to as “ambiguous artifacts” further in the
text. The term “ambiguous locations” refers to the loca-
tions in frequency where ambiguous lobes are expected. For
example, aperiodic sampling has been used for Doppler fre-
quency response for time series [38]. However, the analysis
is restricted to point targets, and the frequency response is
studied only with the Schuster periodogram, resulting in higher
levels of ambiguous artifacts. Another example can be found
in spatial aperiodic sampling, which is deliberately used in
antenna array design for communication and radar applications
for two main purposes. The first purpose is to increase the
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aperture size with fewer antenna elements than if designed
periodically to have a larger gain and suppression of the
ambiguous lobes to avoid confusion regarding the angle of
arrival (radiation pattern). However, the radiation patterns of
these antenna arrays in these studies are usually computed
with a Schuster periodogram, resulting in higher levels in the
ambiguous artifacts. Some extra processing is usually applied
to suppress the artifacts further [43], [44].

Second, the Nyquist limit of such aperiodic sampling strate-
gies is not well discussed. Third, the effect of aliasing on
continuous and extended frequency responses (like that from
precipitation-like Doppler spectrum) is not discussed. For con-
tinuous and extended frequency response, by the application
of the Schuster periodogram, ambiguity remains a problem
when the normalized spectral width of the target crosses a
threshold, even with an aperiodically sampled sequence. It is
demonstrated in Section VI. Usage of Schuster periodogram
can be found in [45] for log-periodic sampling for weather
Doppler radar data. As this periodogram produced higher
levels of ambiguous artifacts (especially deteriorating the
frequency response as the spectral width increases), it suggests
the use of techniques like the iterative adaptive approach
(IAA) proposed in [46] to suppress the artifacts further. The
frequency grid chosen for this analysis can be very large;
therefore, the computational complexity grows as a function
of the number of iterations in the IAA algorithm. If used
incorrectly, the useful spectra levels can also get suppressed
along with the artifacts. Therefore, special care must be taken
when applying these techniques.

A useful de-aliasing algorithm has been presented for
the mean Doppler frequency in the study of the staggered
sampling sequence of [34]. However, the algorithm is highly
sensitive to errors in the individual estimates of the mean
Doppler frequency by the two constituent periodic sampling
sequences. Statistical performance analysis of the estimate of
the mean Doppler frequency is not presented with respect to
the spectral width in [34]. Therefore, Section VI of this article
presents the performance of the Doppler moments estimation
with a staggered sampling sequence with a staggered sam-
pling ratio m/n ≈ 2/3 and is compared with the proposed
log-periodic sampling sequence.

C. Frequency-Domain Conversion Techniques Specifically
Designed for Aperiodic Sampled Signals

After discussing the problem in the radar domain, we extend
the analysis to the spectral estimation domain. Therefore,
we explore the literature based on spectrum estimation explic-
itly theorized for aperiodically sampled signals [47], [48], [49].
These techniques are typically found in the radio astronomy
literature, where the received signal is usually not acquired at
periodic intervals.

The Lomb–Scargle periodogram mentioned in [47], [48],
and [49] is based on a least-squares fit of the observations
with a Fourier-like basis, having discrete frequencies, but
different amplitudes for the real and imaginary parts. The study
drawn from a Bayesian periodogram analyzed by Jaynes and
Bretthorst [50] shows that the Lomb–Scargle periodogram is

the optimal periodogram for aperiodic sequences, assuming
that the signal is resonant with one sinusoid in the presence
of white Gaussian noise. The Bayesian formalism of the gen-
eralized Lomb-Scargle periodogram is given in [48] and [51].

The exponentiation of the generalized Lomb–Scagrle peri-
odogram for sinusoids with white Gaussian noise, as explained
in [48], acts like a spectral window, where the idea is to sup-
press the sidelobes and ambiguous artifacts significantly while
retaining the shape of the main lobe; however, exponentiation
should be performed carefully [37].

Although the nuances of such approaches are discussed,
derivation of the power spectrum with a generalized Lomb–
Scargle periodogram [52] for a complex signal (with real and
imaginary parts of the signal acquired at the same instant with
no decay factor in the model, demonstrates no difference from
the classical Schuster periodogram. On the other hand, there
is also a minimal difference in the sidelobe levels, even for
real-valued signals. These techniques are also often designed
for a Dirac comb-like frequency response (a combination of
pointed frequencies placed at sparse locations in the frequency
domain). The issues related to extended frequency responses
still remain.

The staggered sampling of [34] is used in [35] to construct
the autocorrelation spectral density (ASD). This technique is
useful in separating clutter from precipitation. Although it
shows the ASD preserves the spectral response of the clutter
near the zero frequency and the sidelobe levels are adequate
enough in the frequency range f < fNY/5 for a staggered
sampling ratio of m/n = 2/3, it does not show the power
levels at the ambiguous locations. Therefore, it is difficult to
judge the ambiguous artifacts in the construction of ASD.

The approach proposed in this article is compared with the
aperiodic Schuster periodogram in Section VI, because the
radar echoes in slow time are also complex-valued, and the real
and imaginary parts of the signal are received at the same time
instant.

D. Model-Based Parameter Estimation and Reconstruction
of Doppler Frequency Spectrum

Using model-based techniques, some crucial parameters of
the Doppler spectrum can be estimated first before reconstruct-
ing the spectrum. The literature on Gaussian processes (GP)
addresses this issue. The covariance of the signal is mod-
eled with these parameters. These parameters of the GP are
estimated by performing the maximum likelihood estimation
(MLE) on the marginal log-likelihood.

There are a few missing points in all these studies. The
literature that studies the signal reconstruction in its original
domain (e.g., in this case, the time domain) often ignores the
rebuilding of the frequency domain [53]. The literature that
deepens into the frequency-domain reconstruction often avoids
the aliasing issue and complex signals and only deals with
real-valued signals [54]. The ones that study complex signals
with CGPs and frequency-domain reconstruction [12] do not
address the ambiguity issues in detail. In all the GP literature,
the spectrum/signal reconstruction is often assumed to be non-
parametric. Still, in reality, the covariance of the signal is
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modeled with some parameters. These parameters are known
as hyperparameters, and the signal/spectrum reconstruction
is highly dependent on the estimated counterparts of these
parameters.

The periodic covariance models (or periodic kernel func-
tions) of the GP literature often have a quantity that can
characterize an extended object (the spectral width explained
earlier in Section I) and a quantity that characterizes the tar-
get’s location (the mean Doppler frequency explained earlier).

For correlating the meaning of these parameters with nor-
malized weather Doppler parameters mentioned in Section I,
it is advised to check the literature: γq , and θq of [54, eq. (15)]
is similar as 2π2σ 2

f n , and µf n of [12, eq. (23)], respectively.
However, as these studies focus on reconstructing the signal,

they often do not present a performance analysis of the
estimation of the hyperparameters. For example, the focus
of [55] is finding a global maximum in the log-likelihood
containing these parameters. It is understood that they try to
find the global maxima in an attempt to reach the true location
of the target(s) by avoiding getting stuck at the ambiguous
lobes (the local maxima). However, the performance of such
hyperparameter estimations has not been appropriately stud-
ied for extended targets (by varying the normalized spectral
width).

It is also plausible that for certain values of normalized
spectral widths, the global maxima for the location parameter
(mean Doppler) becomes highly sensitive to the measure-
ments, and the solution becomes truly ambiguous.

These techniques are also often applied to signals with
missing observations, but they do not often study the aliasing
phenomenon.

For the application discussed in this article, the hyperparam-
eters directly relate to physical phenomena in the atmosphere
and are highly important for wind and turbulence predictions.
As described in [10] and [11], modern fast-scanning weather
radars do not have enough time on the extended target volumes
due to their fast scanning nature. The “CGP” approach is
often preferred, especially when the number of data points
is small. Therefore, this article presents an estimation of these
parameters with a few data points mimicking fast scanning
radars.

E. Rationale Behind the Proposed Approach

In this section, we present the proposed integrative approach
for counter-aliasing. A log-periodic sampling is adopted for
this study as it has a good frequency response for point-like
targets [38]. The explanation is given in Section II-A.

After that, we formulate the signal as a CGP with a covari-
ance function that combines components containing three
parameters (their strength, location, and width).

In this article, hyperparameter estimation is conducted to
assess the applicability of the proposed log-periodic sampling,
focusing on the spectral width’s impact on the perfor-
mance. The spectral width, also a hyperparameter, reflects the
Doppler power spectrum’s “flatness.” Larger spectral widths
make unambiguous mean Doppler frequency detection more
challenging. The study compares hyperparameter estimation

performance with classical Doppler moment estimators like
DFT-based and PP algorithms and a parametric spectrum
estimation approach [11] (referred to as PSE). The novelty
lies in examining how parameter estimations are influenced
by this spectral width, addressing the question of “How wide
is too wide?” The word “wide” is used to dictate a larger
spectral width; typical spectrum width values for severe storms
are discussed in [56]. Next, this article discusses the physical
limitations of accurately estimating parameters. By enhancing
the Nyquist unambiguous limit with the chosen sampling
strategy, the study avoids global maxima estimation, favoring
Newton-based gradient descent optimization from random
starting points.

The performance analysis of such estimations is presented in
terms of the bias and variance in the estimation (by performing
a Monte Carlo simulation). The theoretical variances of such
parameter estimation are also derived and compared with the
numerical variances obtained from the simulations.

Then, the power spectrum reconstruction is carried out
directly in an extended frequency domain (avoiding the recon-
struction in the time domain) using CGP posterior to reduce
computation complexity [12], [54].

Furthermore, a realistic simulation of weather radar echoes
is performed, having three extended targets (one clutter and
two extended precipitation-like targets), and the reconstruction
is shown using the proposed integrative approach.

III. SIGNAL AND COVARIANCE MODEL

The echo sample model with time is given in [10] and [11].
The signal at each instant of time is an ensemble of the
backscattered signals from each scatterer in the radar resolu-
tion volume. The signal is assumed to be stationary (meaning
that the frequency content remains constant over a short
period). The noise in the measurement model is assumed to be
zero-mean complex white Gaussian. The measurement model
is given as

z = s + n, {nk}
N−1
k=0

i.i.d
∼ CN

(
0, σ 2

n

)
(3)

where z = [z(0), z(1), · · · , z(N − 1)]T is the complex mea-
surement vector with N echo samples, s is the signal vector,
and n is the noise vector with noise variance σ 2

n . The signal is
assumed to be a circularly symmetric CGP (proper CGP) [12].
Proper CGPs have the following properties:

E
[
z(ta)z(tb)∗

]
= C(ta, tb) = C(ta − tb) (4)

E[z(ta)z(tb)] = 0 (5)

where C is the covariance of the echo samples and only a
function of the time difference between the echoes (ta−tb), and
the asterisk (∗) refers to the complex conjugate. The expression
in (5) is the pseudo covariance, 0 for a proper CGP. The pseudo
covariance of Doppler weather radar echoes is 0 because the
signal model [11, eqs. (3) and (4)] assumes that the initial
positions of the scatterers are uniformly distributed in the
resolution volume. The covariance is modeled as a mixture
of periodic kernels with Gaussian envelopes

C(τ ) =

Q∑
q=1

Pq exp
(
−2π2σ 2

q, f nτ
2) exp

(
j2πµq, f nτ

)
(6)
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where Q is the number of Gaussian components in the mixture
model, Pq is the total power, µq, f n = µq,v/(2Va,per) is the nor-
malized mean Doppler frequency, and σq, f n = σq,v/(2Va,per) is
the normalized Doppler spectrum width of the qth component
in the mixture. The term j refers to the imaginary unit
(−1)1/2. The Va,per is the maximum unambiguous velocity for
a periodic sampling case, and the parameters are normalized
with 2Va,per to make the performance comparison and analysis
easier. For velocity estimates, these normalized quantities can
be scaled with 2Va,per. The periodic sequence considered
here is a sequence having a sampling interval similar to or
lesser than the minimum sampling interval of the aperiodic
sequence. The details of the sampling sequences that are
used in this article for performance analysis are given in
Section VI-A.

The motivation for modeling the weather radar signal
covariance as a combination of multiple periodic Gaussian
kernels is the following.

1) If the radar volume is considerably large and spans
multiple altitudes in the atmosphere, there is a chance
that the wind field is not constant in the volume and can
have different mean velocities in the response.

2) Convective rain and vortices can contain multiple
extended components in the Doppler response [57], [58].

3) Due to several types of clutter, an extended tar-
get response can be observed at the zero Doppler
[59], [60], [61].

The approach developed in this article is also applicable to
persistent stratiform rain events. The stratiform rain Doppler
spectrum is usually modeled as one Gaussian-shaped contin-
uous and extended spectrum. However, as mentioned earlier,
if the radar volume is large and covers several altitudes, it can
also contain multiple Gaussian-shaped spectra at different
mean Doppler velocity locations (due to inhomogeneity in the
wind field as a function of height), and the Q value can be
adjusted in that case.

As the proposed approach can also handle a small amount of
echo samples, the change in the Doppler velocity parameters
can be tracked in time, which is beneficial for applications like
hydrology.

In this article, the Doppler covariance is modeled with
mean velocity and spectral width. However, applications like
hydrology may need more atmospheric parameters like the
drop size distribution (DSD) parameters or the DSD-derived
parameters such as the rainfall rate and the terminal fall
velocity of raindrops. The covariance can also be modeled
with these parameters and considered in the future.

The signal z can then be considered a zero-mean proper
CGP

z ∼ CGP(0, CCN, 0) (7)

where the first entry is the mean, the second is the covariance,
and the third is the pseudo-covariance. The covariance CCN is
nothing but the complex covariance C with added covariance
of the zero-mean complex white Gaussian noise CCN = C +

σ 2
n IN×N .

Algorithm 1 Optimization Algorithm
1: for i = 1 to K do

1) Initialize parameters 2
(0)
i ∼ U(2l , 2u)

2) 2̂i = max2 log(p(z|2))

3) Ji = log(p(z|2̂i ))

2: end for
3: imax = maxi Ji

4: 2̂ = 2̂imax .

IV. HYPERPARAMETER ESTIMATION

The hyperparameters are estimated by maximizing the log-
likelihood

log(p(z|2)) = −
1
2

zH CCN
−1z (8)

−
1
2

log(|CCN|) −
N
2

log (2π)

2̂ = max
2

log(p(z|2)). (9)

A constrained quasi-Newton optimization strategy is applied
to optimize it. It uses active-set method and the limited
memory Broyden–Fletcher–Goldfarb-Shanno (L-BFGS) algo-
rithms [62]. The optimization is performed several times
with random starting points (following a uniform distribution)
inside the parameter space to avoid getting stuck at local min-
ima if any. The normalized mean Doppler velocity parameter
space is chosen as several multiples of the Nyquist interval of
the equivalent periodic sequence. The algorithm adopted for
optimization is presented in Algorithm 1.

Here, 2
(0)
i are the starting points of the parameters in

iteration i , and 2l , 2u are the lower and upper limits of the
parameter space, and K is the number of iterations. The values
of these quantities for our simulation purposes are given in
Section VI.

Several other strategies can also be applied for global
maxima optimization, such as Markov chain Monte Carlo
(MCMC) sampling methods [63]; we avoid using these tech-
niques as they are computationally expensive.

For the hyperparameter estimation performance analysis in
Section VI-B, only one of these components (Q = 1) is
studied to make an intuitive comparison among the different
approaches. The total power P , and the noise variance σ 2

n are
considered known quantities for this analysis.

In Section VI-E, three components are considered: two for
two extended weather targets and one for clutter (Q = 3).
In this case, the number of unknown hyperparameters is 8.
The mean frequency of the clutter and the noise variance
are considered known in this case. The unknown parameters
are then the total powers of all the components, the mean
frequencies of the extended targets, and the spectral widths of
extended targets and clutter. The information on the number
of components is assumed to be a known quantity. We do not
study closely spaced multiple extended weather targets. If the
number of components is unknown, it can also be used as
a parameter to be estimated. There are several techniques to
address the estimation of Q. It can be separately estimated
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using the Akike information criterion (AIC) and the Bayesian
information criterion (BIC) [64]. It can also be estimated
jointly with the other parameters if a reversible jump MCMC
parameter estimation strategy is adopted [65].

For very closely spaced extended targets with velocities
modeled with a mixture model, it is a difficult problem and
requires many data points. Even with many data points, the
parameter estimation is difficult in practice for several other
factors and requires dedicated attention [66].

V. SPECTRUM RECONSTRUCTION

After the estimation of the hyperparameters, the Doppler
spectrum can be reconstructed by the posterior of the proper
CGP. The posterior of a zero-mean proper CGP prior is
also a proper CGP. As this is a Bayesian technique, many
realizations of the reconstruction can be drawn (sampled) from
this posterior distribution. The posterior can be computed both
in the time and frequency domain directly [12], [54]. The
covariances are rearranged to make them real-valued instead
of complex ones. For CGPs, the real-valued covariances can
be represented as

CR=

[
Crr Cri
Cir Cii

]
(10)

where Crr is the covariance of the real part with itself, and Cii
is the covariance of the imaginary part with itself. The entries
Cri and Cir are the covariances between the real and imaginary
parts. For a proper complex CGP, Crr = Cii and Cri = −Cir.
Hence, (10) becomes [12, eq. (7)]

CR=

[
Crr Cri

−Cri Crr

]
. (11)

The real and imaginary parts of the measurements z are
stacked to have a real-valued measurement vector. The pos-
terior formulae in the time are available at [12, eqs. (12)
and (13)], and the posterior formulae in the frequency
domain are available at (and used in this article) from [12,
eqs. (15) and (16)]. The extra covariances required for the
frequency-domain posterior are the covariance in the frequency
domain (CFF) and the cross-covariance between the time and
frequency domain (CtF).

For the time covariance model of (6), the CFF is given by
[12, eq. (24)]

CFFrr
(

f p, fq
)

=
1
2
FT (C(τ ))

(
f p + fq

2

)
δ
(

f p − fq
)

=

Q∑
q=1

Pq

2
√

2πσ 2
q, f n

exp

−

(
f p+ fq

2 − µq, f n

)2

2σ 2
q, f n


× δ

(
f p − fq

)
,

CFFri
(

f p, fq
)

= 0 (12)

where the operator FT is the Fourier transform operator, and
δ is the Dirac delta function; making it a diagonal matrix. It is

also the power spectral density (PSD) of the signal model. The
matrix CtF is given by [12, eq. (21)]

CtFrr(t, f ) =
1
2
FT (C(τ ))( f ) cos(2π f t)

=

Q∑
q=1

Pq

2
√

2πσ 2
q, f n

exp

×

[
−

(
f − µq, f n

)2

2σ 2
q, f n

]
cos(2π f t), (13)

CtFri(t, f ) = −
1
2
FT (C(τ ))( f ) sin(2π f t)

= −

Q∑
q=1

Pq

2
√

2πσ 2
q, f n

exp

×

[
−

(
f − µq, f n

)2

2σ 2
q, f n

]
sin(2π f t). (14)

VI. NUMERICAL SIMULATION

This section presents the performance analysis of the hyper-
parameter estimation with Q = 1. The performance metrics
are the bias and the variance.

A. Sampling Strategy

The specifications of the log-periodic sampling are given
below. The sample time instances of the sampling strategy are
given by the following rule:

tk,ap =
d1

d2

[
exp(d2k) − 1

]
, k = 0, 1, 2, . . . , Nap − 1. (15)

The parameter d2 is the exponential growth rate of the
sequence. If d2 approaches 0, the sequence resembles a
periodic sequence because limd2→0[exp(d2k)−1]/d2 = k. The
larger the d2, the more nonuniform the sequence becomes.

Let us define a periodic sampling sequence adequate enough
for a fair comparison. The parameter d1 is chosen such that the
minimum sampling interval of 1tk,ap (i.e., 1tk,ap,min) remains
greater or equal to the sampling interval of the periodic
sampling tk,per (i.e., 1tk,per)

d1 ≈ 1tk,per. (16)

First, this is deliberately posed in this article to have a fair
comparison of the performance. By imposing this, we ensure
that the number of samples present in the aperiodic case is
not greater than the periodic one. The spectral quantities,
such as the Doppler moments, are normalized to the Nyquist
unambiguous velocity interval 2Va,per associated with this
periodic sampling sequence for intuitive performance analysis.

Second, for practical applications involving FMCW radars,
this fixed minimum interval between sweeps ensures a desired
maximum range and avoids the issues related to the range
overlaid signals. In practice, only the field view (maximum
unambiguous range) corresponding to this minimum sampling
interval can be studied. A practical suggestion regarding the
realization of the proposed aperiodic sampling sequence is
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Fig. 1. Sampling sequences: periodic and aperiodic cases.

presented in Section VI-F. We do not study the impact of
overlaid signals.

To ensure the same dwell time T , the number of samples
in the periodic sequence is typically larger than that of the
aperiodic one

tk,per = k1tk,per, k = 0, 1, 2, . . . , Nper − 1

Nper =

⌈
T

1tk,per

⌉
+ 1 > Nap, ∀d2 > 0. (17)

A sequence of Nper = 82 samples for the periodic case and
Nap = 64 samples for the aperiodic case is shown in Fig. 1
with d1 = 1 and d2 = 0.0074. The decimal point precision in
this sampling example is restricted to D = 3 for the aperiodic
sequence for the performance analysis.

Let us define a staggered sampling sequence as well for
comparison. To make a fair comparison, we also choose the
minimum spacing between the samples to be greater than
1tk,per. To create a staggered sampling sequence with an
underlying periodic sequence (with an interval of 10−D1tk,per),
we have chosen m = 1001 and n = 1502. The sampling
sequence for the staggered case is, therefore,

tst = [0, 1.001, 2.503, 3.504, . . . ]T
× 1tk,per. (18)

It can be observed from (18) that the staggered sampling
sequence has a minimum sampling interval greater than 1tk,per
has a decimal point precision of D = 3, and a staggered
sampling ratio 1t1,st/1t2,st = m/n = 1001/1502 ≈ 2/3.
The constituent sampling intervals in this staggered sequence
are 1t1,st = 1.0011tk,per, and 1t2,st = 1.5021tk,per. The
theoretical unambiguous velocity for this sequence is

Va,ap =
λm

41t1,st
=

λn
41t2,st

≈
10D

21tk,per
= 10D Va,per. (19)

The mean Doppler frequency in the case of staggered sampling
is estimated using the velocity difference transfer function
approach given in [34]. Although the performance shown
in [34] is as expected for smaller values of m and n
(typically < 100), we deliberately chose higher values for m
and n (> 1000) to test the performance when the theoretical
maximum unambiguous velocity is much higher than the

maximum unambiguous velocity of each constituent sampling
sequence.

In Sections VI-B and VI-C, the performance analysis of the
parameter estimations is studied with the normalized spectral
width parameter σf n and d2, respectively.

The performance analysis contains the bias and the standard
deviation (square root of the variance) for the estimated
parameters 2̂.

The bias of the parameter is given by

B
[
2̂

]
= E

[
2̂

]
− 2. (20)

The variance is computed as follows:

V
[
2̂

]
= E

[(
2̂ − E

[
2̂

])2
]
. (21)

The expectation of the parameter estimation is performed
numerically by Monte Carlo simulations.

The theoretical variances have been implemented and
plotted for the CGP approach. The inverse Fisher information
matrix is computed for the CGP likelihood (with real-valued
covariance), and the diagonal entries of its inverse are
considered. The entries of the Fisher information matrix are

Im,n = −E
[
∂2 log(p(z|2))

∂θm∂θn

]
(22)

=
1
2

Tr
(

C−1
R (2)

∂CR(2)

∂θm
C−1

R (2)
∂CR(2)

∂θn

)
where the operator “Tr” refers to the matrix trace. The
theoretical variance is, therefore,

VTheor[θm] =
(
I−1)

m,m . (23)

The inverse of this Fisher information matrix should not be
confused with the unbiased CRB in this case, as the retrievals
are not entirely unbiased. However, these theoretical variances
converge to the unbiased CRB for an infinite number of
echo samples N → ∞ as the estimates are asymptotically
unbiased. The biased-CRB limits can also be inferred by
studying the bias gradient of the estimator, as shown in [67].
However, this is out of the scope of this article, because a
functional form of the bias gradient is harder to achieve.

B. Performance Analysis of Hyperparameter Estimation
With σf n

In this section, the bias and standard deviation for the
hyperparameters (Doppler moments) are studied with respect
to the normalized spectral width σf n at a fixed d2 = 0.0074.
The normalization here is performed with the unambiguous
interval for the periodic case (µf n = µv/(2Va,per), σf n =

σv/(2Va,per), where µv and σv are the denormalized Doppler
velocity moments). The total power and the noise standard
deviation are considered known quantities in these simulations.
As both DFT and PSE use PSD for the estimation, an extended
normalized frequency axis is used for a fair comparison. The
bias and standard deviation in the estimation of the mean
Doppler and Doppler spectrum width are presented in Fig. 2.
The number of Monte Carlo simulations performed in this case
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Fig. 2. Estimation and performance of the Doppler moments with respect to σf n . For the periodic case, the number of samples is 82, whereas for the
aperiodic case, it is 64. Bias in estimating (a) mean normalized Doppler frequency µ̂f n and (b) normalized Doppler frequency width σ̂ f n . Standard deviation
in estimating (c) normalized mean Doppler frequency µ̂f n and (d) normalized Doppler spectrum width normalized σ̂ f n . The abbreviation “per” refers to the
periodic sampling, “aper” refers to the aperiodic one, “ST” refers to staggered sampling, and “Theor” refers to the theoretical plots. (e) Legend for the plots.

is 128. The optimization parameters listed in Section IV are
set to the following values:[

µf n,l , µf n,u
]

= [−3, 3][
σf n,l , σf n,u

]
= [0, 0.5]

K = 256. (24)

In the examples of this article, we chose the parameter space
for normalized mean Doppler velocity as three times the
Nyquist unambiguous interval for the periodic counterpart.

1) Algorithms Performed on the Periodically Sampled Data:
The estimators presented for periodically sampled sequences
are DFT, PSE of [11], and the PP algorithm.

The DFT approach of Doppler moment estimation is non-
parametric and uses Schuster’s periodogram as measurement.

It is non-parametric because it assumes no parametric structure
of the signal or its Schuster periodogram. The formula men-
tioned in [15, eq. (9)] is used to compute the mean Doppler
frequency (similarly, the square root of the second central
moment is computed) for the DFT approach with a known
noise variance. For a fair comparison, first, the peak location
(frequency at which the power is maximum) of the Schuster
periodogram is detected, and one Nyquist unambiguous inter-
val is chosen by keeping this location at the center.

The PSE algorithm is a parametric moment estimator that
uses a parametric semianalytical model for the expected
Doppler PSD. We chose to use PSE on the PSD of a peri-
odic sequence because the semianalytical model of the PSD
[11, eq. (10)] has a lower bias when dealing with periodic
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Fig. 3. Histogram of parameter estimates µ̂f n for staggered (“ST”) and the proposed CGP approach at (a) σf n = 0.01 and (b) σf n = 0.1. True mean Doppler
velocity is µf n = −1.2.

sequences (because it considers the time on target in the model
of the PSD as well). The performance analysis in [11] shows
that the PSE is more accurate than Levin’s approach (which
uses a closed form of the Doppler PSD [68] without the time
on target). Therefore, we do not study the performance using
Levin’s approach.

The PP estimates of the Doppler moments are based on
the signal’s autocorrelation with integer time lags. It is used
on a periodic sequence where contiguous pairs can be found.
The estimation of mean Doppler with the PP approach is
used from [15, eq. (16)]. For the Doppler spectrum width (PP
R0/R1), the formula [16, eq. (6.17)] is used as this estimator
is asymptotically unbiased.

2) Algorithms Performed on the Aperiodically Sampled
Data: A DFT moment estimator is implemented on the
Schuster periodogram computed for the aperiodically sampled
data with log-periodic sampling. A similar approach with the
peak location detection is performed for a fair comparison,
as in the periodic case. The moments are computed using
this as the frequency window with the DFT approach. The
proposed CGP approach has also been implemented on the
aperiodically sampled data with log-periodic sampling.

For the staggered sampling case, the de-aliasing approach
based on the velocity difference transfer function is used
to compute the mean Doppler frequency [34]. To compute
the de-aliased mean Doppler frequency, the individual mean
Doppler frequencies corresponding to the two constituent
periodic sampling sequences need to be estimated first. These
mean frequencies [14, eqs. (5.a) and (5.b)] are estimated by
the PP approach, but the one-lag autocorrelation can only
be performed on independent pairs [14, eqs. (3) and (4)]
(contiguous pairs are not available in the case of a staggered
sampling sequence). The Doppler spectrum width for the
staggered sampling is computed using only one constituent
sampling (the smaller one) [14, eq. (6)] using the PP technique.

The true normalized mean Doppler frequency with
which the simulation of the signals is carried out is µf n =

−1.2. The noise is added with an input SNR of 12 dB [69].

3) Performance Analysis: It can be observed that the “DFT
aperiodic” technique for the mean Doppler estimation has a
small bias for extremely small normalized spectral widths.
This validates the results in the literature for the periodogram
techniques because a very small normalized spectral width
is analogous to having one sinusoid in the signal. The
nonuniform Schuster periodogram peak detection becomes
increasingly ambiguous with increased spectral width.

The periodic counterparts, including the PP algorithm, also
show biased results because of aliasing.

In contrast to all these approaches, the proposed CGP
approach has a much smaller bias in the normalized mean
Doppler frequency estimates for normalized spectral widths
less than 0.2. For larger normalized spectral widths, the
estimates become increasingly biased because the optimized
mean Doppler frequency becomes truly ambiguous and is
highly sensitive to the measurement.

The normalized spectral width estimates follow a similar
trend in terms of bias for the proposed CGP approach. The
PP approach has a smaller bias in the higher normalized
spectral width regions. The PSE has the smallest bias across
all normalized spectral widths. It has also been shown in [11].

The standard deviation for normalized spectral width of
σf n > 0.3 is not shown as the results of all estimators
are increasingly biased. For the normalized mean Doppler
frequency, the proposed approach has lower standard devia-
tions than all the other approaches except for the PP below
a normalized spectral width of less than 0.16. PP has the
smallest standard deviation because it does not consider an
extended frequency axis. Therefore, the estimation result is
always near the fixed aliased frequency inside the bound
[−0.5, 0.5]. The periodic approaches of DFT and PSE have a
more significant standard deviation.

All the methods work similarly to the estimation of normal-
ized spectral width except the DFT aperiodic approach.

The theoretical variances for CGP are smaller than the
numerical ones for the mean Doppler µf n . The theoretical
variance for the spectral width σf n is higher than the numerical
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Fig. 4. Estimation and performance of the normalized mean Doppler frequency µ̂f n with respect to σf n and d2. The number of samples is 33. Bias
in estimating the mean normalized Doppler frequency µ̂f n . (a) CGP. (b) DFT aperiodic. Standard deviation in estimating the mean normalized Doppler
frequency µ̂f n . (c) CGP. (d) DFT aperiodic.

one if σf n > 0.16. The differences between the numerical
and theoretical variances can be explained by the principles
of biased CRB. However, as explained earlier in this section,
we do not study the biased CRBs.

The staggered sampling technique also suffers from a large
bias for the normalized mean Doppler frequency. The reason
for the large bias can be attributed to the fact that the values
of m and n are large, although the ratio m/n ≈ 2/3. It shows
the limitation of the staggered sampling technique when the
desired theoretical Nyquist unambiguous velocity is much
larger than the Nyquist unambiguous velocity of the individual
constituent periodic sequences. For large values of m and n
(> 1000), to avoid errors, there are recommendations sug-
gested in [34]. However, these suggestions need manual
intervention and additional information based on continuity
in space and time. Therefore, we did not implement all
the suggestions for such a configuration. However, we have
noticed that the algorithm successfully estimates the true
Doppler velocity almost half of the time across the Monte
Carlo simulations. Therefore, instead of only bias and standard
deviations in the estimates, we show the distribution (in terms

Fig. 5. Spectral width at which |B[µ̂f n]| = 0.24 as a function of the
nonlinearity in the sampling (d2).

of histograms) of the estimated normalized mean Doppler
frequency by both the staggered sampling technique and the
proposed CGP technique at normalized Doppler spectrum
widths of σf n of 0.01 and 0.1 in Fig. 3. The comparison
with the staggered sampling approach shows that the proposed
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Fig. 6. Estimation and performance of the normalized Doppler spectrum width σ̂ f n with respect to σf n and d2. The number of samples is 33. Bias in
estimating the mean normalized Doppler frequency σ̂ f n . (a) CGP. (b) DFT aperiodic. Standard deviation in estimating the mean normalized Doppler frequency
σ̂ f n . (c) CGP. (d) DFT aperiodic.

CGP approach is robust against different realizations of the
measurements.

The histograms suggest that the proposed CGP approach
is distributed around the true normalized mean Doppler fre-
quency, and the width of this distribution increases with an
increase in the normalized spectral width. However, the mean
of this distribution is closer to the true normalized mean
Doppler frequency. In the case of staggered sampling, the
distribution is more discrete and only around half of the
estimates are around the true value. Therefore, the mean of
all the estimates is far away from the true value, causing a
larger bias in the estimates. For the Doppler spectrum width,
however, the absolute bias is below 0.02 for smaller normal-
ized spectral widths σf n < 0.16, indicating good performance.
However, overall, the bias of the proposed CGP approach is
smaller than that of the staggered PRT approach.

C. Performance Analysis of Hyperparameter Estimation
With d2 for the Aperiodically Sampled Sequence

In this section, we present the performance analysis results
of the hyperparameter estimation with both the normalized

spectral width σf n and the nonlinearity in the aperiodic sam-
pling sequence d2. The value of d1 is 1 and number of samples
Nap is 33 for this analysis. We have chosen the DFT-aperiodic
approach for the comparison. The results are shown in Fig. 4
for the normalized mean Doppler frequency.

It can be observed that the bias of µ̂f n decreases with
increasing nonlinearity d2 for smaller spectral widths. It can
also be observed that the spectral width at which the absolute
bias starts to rise for CGP decreases with an increase in d2.
This implies a trade-off between the spectral width at which
µ̂f n gets increasingly biased and the estimator’s accuracy for
smaller spectral widths. To demonstrate this, Fig. 5 shows
the location of the σf n (represented as σ

(Th)
f n ) at which the

bias of µ̂f n reaches a threshold that is 20% of its true value.
In this analysis, the true µf n = −1.2, and the threshold for
the absolute bias is |B[µ̂f n]| = 0.24. It can be observed that
the σ

(Th)
f n is converging to 0.16 with increasing d2. The values

of σ
(Th)
f n for the DFT aperiodic approach are much smaller

than the proposed CGP approach, indicating the superiority
of CGP for applications involving extended targets (larger
spectral widths).
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Fig. 7. Spectrum reconstruction: (a) power spectrum, (b) power spectrum zoomed in, and (c) legend for the plots. The posterior spectrum contains five
realizations of the power spectrum.

The standard deviation for µ̂f n of the DFT aperiodic
approach has much smaller values than the proposed CGP
approach because of its rigid biased nature due to aliasing
(for σf n > 0.1).

The performance analysis for the normalized Doppler
spectrum width is shown in Fig. 6.

For the spectral width estimation, the bias of the proposed
CGP approach is nearly zero for σf n < 0.16 for all values of
d2. The proposed approach is superior and less biased than
the DFT aperiodic approach. The standard deviation of CGP
approach for σ̂ f n is smaller than that of the DFT-aperiodic
approach with increasing d2. For σf n > 0.16, with increas-
ing d2, the standard deviation of CGP is smaller than that of
the DFT aperiodic approach.

D. Recommendation for Minimum Pulse Repetition Interval

With the abovementioned analysis, it can be concluded
that for a normalized spectral width less than 0.16, the pro-
posed approach produces unambiguous Doppler moments for
a precipitation-like extended target. Therefore, we recommend
using the log-periodic sampling with a minimum sampling
interval (1tap,min), which satisfies the following relationship:

λ

21tap,min
≥ 6σv (25)

which implies

1tap,min ≤
λ

12σv

. (26)
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TABLE I
HYPERPARAMETER ESTIMATION

Here, λ is the radar central wavelength, and σv is the extended
target’s absolute, denormalized Doppler spectral width. The
choice of σv depends on the application.

E. Simulation Study of the Spectrum Reconstruction

Three extended targets are used to simulate the radar
echoes in time. Two of these extended targets mimic two
precipitation-like targets. The mean locations of these two
targets are kept outside the Nyquist unambiguous interval
of the periodic sampling case purposefully to evaluate the
retrieval and reconstruction. The third extended target is a
clutter whose mean location is µ3, f n = 0, which is assumed to
be a known quantity. The unknown hyperparameters are 2 =

[µ1, f n, µ2, f n, σ1, f n, σ2, f n, σ3, f n, P1, P2, P3]. The number of
echo samples for the periodic case is Nper = 213, and for the
aperiodic case is Nap = 128. The parameters for the aperiodic
sequence are d1 = 1 and d2 = 0.0074.

The hyperparameter estimation is shown in Table I. The
spectrum reconstruction is then followed using the principles
mentioned in Section V.

As it is a Bayesian approach, we present several different
realizations of the power spectrum in Fig. 7 by first sampling
from the posterior distributions of its real and imaginary parts,
respectively.

It can be concluded that the proposed CGP-based recon-
struction avoids the ambiguous responses of the extended
targets in the extended frequency domain by the counter-
aliasing strategy. The reconstruction in the frequency domain
is performed using the measurements in the time domain,
posing no additional computational burden. The Schuster peri-
odogram with the periodic sequence has produced an aliased
Doppler spectrum in the extended frequency domain, making
it uninformative. Likewise, the Schuster periodogram with the
aperiodic sequence (same as the generalized Lomb–Scargle
periodogram) has produced very high levels of artifacts
(comparable with the power of the real targets), making it
ambiguous. However, the CGP posterior avoids these ambigu-
ous artifacts and has smaller sidelobe levels (around 35 dB) in
this case. Therefore, there is an improvement of around 20 dB
over the other approaches as far as the ambiguous artifact
levels are concerned.

F. Recommendations for Real Radar Application

An application to real radar measurements with this pro-
posed setting should be studied. Changing the reset time
T (reset)

k aperiodically by applying the sampling rules for a

frequency modulated continuous wave (FCMW) radar can be
beneficial in realizing such a configuration. The reset time is
the time difference between the end of one chirp and the start
of the next. The chirp duration T (chirp) is constant and is very
less than 1tk,per

T (reset)
k = tk

(
1tk,per, d1, d2

)
− tk−1

(
1tk,per, d1, d2

)
− T (chirp)

T (chirp)
≪ 1tk,per. (27)

A constant reset time (when tk(1tk,per, d1, d2)−tk−1(1tk,per,

d1, d2) = 1tk,per) will redirect the radar to the periodic pulse
repetition mode.

The software used in the simulation studies was written with
the help of Matrix Laboratory (MATLAB) optimization tool-
box [70] on a Linux platform. The optimization is performed
by the constrained optimization tool (“fmincon”) of MATLAB
with options given in Section IV. As this tool is a local minima
finder, we have used the negative log-likelihood as the fitness
(cost) function.

VII. CONCLUSION

This article proposes a novel integrative Doppler counter-
aliasing signal processing strategy for precipitation-like
extended targets using aperiodically sampled radar echoes in
time.

Although the existing signal processing approaches have
addressed the issues related to aliasing/ambiguity in the
Doppler spectrum, the research gaps have been explicitly
stated in various research areas. After assessing these research
gaps carefully, a novel counter-aliasing strategy is proposed for
extended targets like precipitation.

We do a novel study on the effect of aperiodic sampling
on the statistics of the Doppler parameter estimation for
precipitation-like extended targets. We propose to apply CGP
regression to aperiodically sampled signals. Using this para-
metric technique, we estimate the parameters first and then
reconstruct the Doppler spectrum. The advantage of such
aperiodic sampling over its periodic counterparts is that the
maximum observable frequency (in the context of this arti-
cle, it is the maximum unambiguous Doppler frequency or
velocity) is much higher. The results with the aperiodically
sampled signal are compared with a periodic sampling case
with a sampling time shorter than the minimum sampling time
of the aperiodic case for a fair comparison. For a large range of
normalized Doppler spectrum widths, the proposed approach
can accurately estimate the mean Doppler velocity when the
true mean Doppler velocity is larger than the unambiguous
velocity of its periodic counterpart. The aperiodic sequence
proposed in this article is also compared with a state-of-the-art
staggered sampling sequence. A post-processing de-aliasing
algorithm is performed on the staggered sequence, and the
results of the Doppler moments estimation are compared with
the proposed approach. The proposed approach is found to be
superior to the staggered sampling algorithm in terms of the
bias in the estimates.
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We propose a novel criterion for designing a log-periodic
sampling sequence with a minimum sampling interval lower
than λ/(12 × σv) (where the spectral width σv is related
to the storm’s severity) for an unambiguous retrieval of the
mean Doppler velocity. The more severe the storm in terms
of spectral width (which can result from strong turbulence,
vortices, and convective storms), the smaller the minimum
sampling interval needed.

In addition, this article presents a Bayesian inference
approach to reconstructing the Doppler spectrum with an
extended velocity domain by directly using the aperiodically
sampled echoes in the time domain. The reconstruction poses
no additional computational burden. As it is a Bayesian
technique, we get several different realizations of the power
spectrum. To the authors’ knowledge, this is the first-ever
implementation of the direct frequency-domain Gaussian pro-
cess posterior on aperiodically sampled sequences for extended
targets, making it novel. The mean estimate of the power
spectrum converges to the true spectrum. It is shown that the
posterior spectrum of the proposed reconstruction outperforms
the conventional periodogram techniques capable of handling
aperiodic signals, such as the aperiodic Schuster periodogram,
in terms of accuracy. The problem of higher ambiguous
artifacts is avoided using the proposed approach. It has been
shown in Fig. 7 that there is at least 20 dB improvement in
the ambiguous artifact levels.

This study does not include the impact of such a pulse
train on estimating the target’s range. However, as with the
log-periodic sampling technique, the minimum sampling inter-
val in the slow time can be maintained at a desired level,
which can decide the maximum unambiguous range to which
the mean Doppler velocity and Doppler spectrum width can
be recovered.

In addition, more theoretical statistical studies should be
carried out for the performance analysis of random pro-
cesses having Gaussian mixture-type covariance functions.
The Gaussian mixture (with two or more targets) type covari-
ance functions are useful to model the response from severe
weather conditions. The performance of parameter estimation
for Gaussian mixture models (GMM) is highly sensitive to the
distance between the means of any two individual Gaussian
components and their spectral widths.
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