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Abstract

The distribution of centered Gaussian random fields (GRFs) indexed by compacta
such as smooth, bounded Euclidean domains or smooth, compact and orientable man-
ifolds is determined by their covariance operators. We consider centered GRFs given
as variational solutions to coloring operator equations driven by spatial white noise,
with an elliptic self-adjoint pseudodifferential coloring operator from the Hérmander
class. This includes the Matérn class of GRFs as a special case. Using biorthogonal
multiresolution analyses on the manifold, we prove that the precision and covariance
operators, respectively, may be identified with bi-infinite matrices and finite sections
may be diagonally preconditioned rendering the condition number independent of
the dimension p of this section. We prove that a tapering strategy by thresholding
applied on finite sections of the bi-infinite precision and covariance matrices results
in optimally numerically sparse approximations. That is, asymptotically only linearly
many nonzero matrix entries are sufficient to approximate the original section of the
bi-infinite covariance or precision matrix using this tapering strategy to arbitrary pre-
cision. The locations of these nonzero matrix entries can be determined a priori. The
tapered covariance or precision matrices may also be optimally diagonally precondi-
tioned. Analysis of the relative size of the entries of the tapered covariance matrices
motivates novel, multilevel Monte Carlo (MLMC) oracles for covariance estimation,
in sample complexity that scales log-linearly with respect to the number p of parame-
ters. In addition, we propose and analyze novel compressive algorithms for simulating
and kriging of GRFs. The complexity (work and memory vs. accuracy) of these three
algorithms scales near-optimally in terms of the number of parameters p of the sample-
wise approximation of the GRF in Sobolev scales.
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1 Introduction
1.1 Background and problem formulation

Several methodologies in uncertainty quantification and data assimilation require the
storage of the covariance matrix C or the precision matrix P = C~! corresponding
to an underlying statistical model as well as computations involving these matrices.
Explicit examples include simulations, predictions and Bayesian or likelihood-based
inference in spatial statistics. Here, one of the main computational challenges is to
handle large datasets, as the covariance and precision matrices C, P are, in general,
densely populated and, for this reason, the computational cost for predictions or infer-
ence which require the matrix factorization of C or P scales cubically with respect to
the number of observations, see [40] for a review of methods devoted to coping with
this.

A widely used class of statistical models is that of Gaussian processes, which are
uniquely defined by their mean and covariance structure. These Gaussian processes
may be indexed by subsets X’ of R”, such as bounded Euclidean domains and surfaces
(or, more generally, manifolds), and also by graphs. In the former case, methods to cope
with the computational challenges named above include low-rank approximations such
as, e.g., fixed-rank kriging, predictive processes, and process convolutions [7, 20, 44].
Furthermore, approaches which reduce the computational cost by exploiting sparsity
have been considered in the literature. More precisely, both sparse approximations
of the covariance matrix C;; = E[Z(x;)Z(x;)] (aka. covariance tapering [28]) and
of the precision matrix [25] for a random field Z have been proposed and used for
statistical applications. Alternatively, one can approximate the random field Z by a
finite dimensional basis expansion,

P
Z() =) zjojx), xeX. (1.1
j=1

Here, it is the choice of the basis functions {¢ j}le that will determine the
sparsity pattern of the covariance and precision matrices of the stochastic weights,
C;j = El[z;z;] as well as the corresponding computational cost. For instance, in the
stochastic partial differential equation (SPDE) approach as proposed in [52], the Gaus-
sian random field (GRF) Z on X C R” is modeled as the solution of a white noise
driven SPDE and its precision operator is, in general, a fractional power of an ellip-
tic second-order differential operator. In the case that this power is an integer, the
precision operator is local, which facilitates sparsity of P if the functions {¢ j}f: | in
(1.1) are chosen, e.g., as a finite element basis. In the general (fractional-order) case,
the covariance and precision operators for the SPDE approach are non-local and more
sophisticated methods have to be exploited for computational efficiency [10, 41]. Note
also that in the case that & is a manifold the fractional-order covariance and precision
operators can be seen as pseudodifferential operators. As an alternative to the finite
element method, multiresolution approximations of the process have been suggested,
where the basis functions {¢; }le in (1.1) originate from a multiresolution analysis
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(MRA), see [48, 57]. This approach seems to perform well (see also the comparison in
[40]); however, to the best of our knowledge no error bounds for these approximations
have been derived and, therefore, they need to be adjusted for each specific model.

In the context of graph-based data, significant attention has been directed in recent
years at computational and statistical modeling in high dimensional settings, see e.g.
[47, 71]. Here, Gaussian random fields play an important role, where the precision
operator is a (regularized) discrete, fractional graph Laplacian. It is known that for large
data, i.e., in the (high-dimensional) large graph limit, the graph Laplacian converges
to a (pseudo)differential operator P, see [27].

In the infinite-dimensional setting, for acompact Riemannian manifold ¥ = M, we
consider GRFs Z obtained by “coloring” white noise on the Hilbert space L?(M) with
the compact inverse of a pseudodifferential operator A that is a positive, self-adjoint
unbounded operator on L?(M). Then, the corresponding covariance and precision
operators C and P are pseudodifferential operators, and we prove that C = A2 and
P = A?. The connection of this setting to the above, is facilitated through biorthogonal
Riesz bases (wavelet bases) W and U of L2 (M), which give rise to equivalent, bi-
infinite matrix representations C,P € RN*N of C and P. Finite sections of these
bi-infinite matrices with p parameters, i.e., C ~ C, € R?*? and P ~ P, € RP*?,
correspond to approximate representations of the GRF as in (1.1), where the basis
functions {g; }5.;1 are those functions of the wavelet basis W corresponding to the
finite set of indices used to generate C,, P),.

1.2 Contributions

We establish optimal numerical sparsity and optimal preconditioning of both, the
precision operator P and the covariance operator C when represented in the wavelet
bases W. Specifically, our compression analysis reveals universal a-priori tapering
patterns for finite sections C,,, P, € RP*? of both, the possibly bi-infinite covariance
and the precision matrices C = C(W)(¥), P = P(¥)(¥) € RN, We prove that, in
the above general setting, the number of nonvanishing coefficients in the numerically
tapered matrices Cf,, P, € R”*? scales linearly with p at a certified accuracy & > 0
compared to C,, P,. In addition, we prove that diagonal preconditioning renders the
condition numbers of the family of e-compressed, and tapered p-sections {P7},>1,
{Cf,} p>1 of P and C, uniformly bounded with respect to the number of parameters
peN.

The sparsity bounds for these wavelet matrix representations are closely related to
corresponding compression estimates for wavelet representation of elliptic pseudod-
ifferential operators [21, 54]. Our setting accommodates general elliptic, self-adjoint
pseudodifferential coloring operators .4 including, in particular, the Matérn class of
GRFs on compact manifolds, but extending substantially beyond these. In particular,
stationarity of Z is not required.

These results on sparsity and preconditioning of C,,, P, give rise to several applica-
tions which are developed in Section 4. Firstly, in Section 4.1, we consider the efficient
numerical simulation of the GRF Z by combining our results on sparsity and precon-
ditioning of the approximate covariance matrix Cf, with an algorithm to compute the
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matrix square root based on a contour integral [33]. In Section 4.2 we furthermore
propose and analyze a wavelet-based numerical covariance estimation algorithm for
the p x p section C,, of the covariance matrix C. The proposed method is of multilevel
Monte Carlo type: Given i.i.d. realizations of the GRF Z in wavelet coordinates with
different, sample-dependent spatial resolution, our multilevel, wavelet-based sam-
pling strategy resulting in an approximate covariance matrix C, € RP*? requires
essentially O(p) data, memory and work. As a final application, we consider spatial
prediction (aka. kriging) for the GRF Z in Section 4.3. Assuming at hand an approx-
imate covariance matrix C p in a wavelet-based multiresolution representation, we
prove (cf. Remark 8) that approximate kriging, consistent to the order of spatial reso-
lution and subject to K noisy observation functionals, can be achieved in O(K + p)
work and memory.

1.3 Layout

This paper is structured as follows. Section 2 introduces the abstract setting of GRFs on
smooth, compact manifolds, pseudodifferential coloring operators and the correspond-
ing estimates for the Schwartz kernels of these operators. Section 3 recapitulates key
technical results on wavelet compression of pseudodifferential operators on manifolds,
with particular attention to numerical compression and multilevel preconditioning of
covariance and precision matrices resulting as finite sections of the equivalent, bi-
infinite matrix representations of the covariance and precision operators. Section 4
presents several major applications of the proposed wavelet compression framework
for computational simulation. Specifically, Section 4.1 discusses a functional-integral
based algorithm of essentially linear O(p) work and memory for approximating the
square root of the covariance matrix. Section 4.2 presents a multilevel covariance esti-
mation algorithm from i.i.d. samples of a GREF, of essentially O(p) complexity, and
Section 4.3 a novel, sparse kriging algorithm for GRFs resulting from pseudodifferen-
tial coloring of white noise. Section 5 then presents a suite of numerical experiments
for the simulation and estimation of GRFs on manifolds of dimension n = 1 and
n = 2. We also comment on the use of the Cholesky decomposition in connection
with wavelet coordinates to achieve efficient numerical simulation. Section 6 summa-
rizes the main results, and indicates further applications and extensions of the sparsity
and preconditioning results.

Finally, this work contains four appendices: Appendix A briefly recapitulates the
Hormander calculus of pseudodifferential operators on manifolds, Appendix B reviews
construction and properties of MRAs on smooth, compact manifolds, Appendix C
presents (Whittle—)Matérn covariance models [52, 53] as particular instances of the
general theory, and Appendix D provides the justification for the work—accuracy rela-
tion for the multilevel Monte Carlo algorithm in Section 4.2.

1.4 Notation

For an open domain G C R”, the support of a real-valued function ¢: G — R
is denoted by supp(¢) := {x € G : ¢(x) # 0}, where the closure is taken in the
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ambient space R”. If for some subset G’ C G C R”, there exists a compact set
G” such that G’ C G” C G, we say that G’ is compactly included in G and write
G’ CC G. The space of all smooth real-valued functions in G is given by C*°(G), and
CSO(G) C C*°(G) is the subspace of all smooth functions ¢ with supp(¢) CC G.
For a smoothness order s € [0, 00), H*(G) is the Sobolev—Slobodeckij space.

For a smooth, compact Riemannian manifold M the geodesic distance on M will
be denoted by dist( -, - ). Forany g € [1, 00),s € [0, 00), the function spaces L9 (M)
and H* (M) denote the g-integrable functions with respect to the intrinsic measure on
M and the Sobolev—Slobodeckij spaces, respectively. We write ( -, - ) for the duality
pairing with respect to the spaces H®(M), where we shall not explicitly include the
dependence on s. For (pseudodifferential) operators on function spaces on M, we
shall use calligraphic symbols. Particular such pseudodifferential operators are the
coloring operator A, as well as the covariance and precision operators C, P. A generic
(pseudodifferential) operator shall often be denoted by 5.

For a vector v € R” or a square-summable sequence v € £%(7) indexed by a

countable set 7, we define ||v||2 := ./ j vjz- . We shall also use the same notation for

the operator norm induced by || - |2 (note that for R” this defines a matrix norm on
R™™). The spectrum and condition number of a matrix A or an operator A on 2()
with respect to the norm || - |2 is denoted by o (A) and cond;(A), respectively . In
addition, ||A||lgs denotes the Frobenius norm if A € R"*" and the Hilbert—-Schmidt
norm in the more general case that A : 2(T) = 2.

For any two sequences (ax)ken and (bg)ren, we write ap < by, if there exists a
constant C > 0 independent of &, such that a; < Cby for all k. Analogously, we write
bx Z ay, and a; = by whenever both relations hold, a; < by and a; = by.

Throughout this manuscript, we let (2, F, IP) be a complete probability space with
expectation operator E[ - ]. For two random vectors or random sequences v, W on

. d . .. . . .
(2, F, P), the notation v = w indicates that v and w have identical distribution, and
v ~ N(m, C) denotes a Gaussian distribution with mean m and covariance C.

2 Gaussian random fields on manifolds

We first give a concise presentation of the Gaussian random fields (GRFs) of inter-
est and of the basic setup. A GRF Z considered in this work on the probability
space (€2, F, P), is centered and indexed by a compact Riemannian manifold M of
dimension n € N. Specifically we assume, (Z(x)),eq is a family of F-measurable
R-valued random variables such that for all finite sets {x1,, ..., x;;} C M the ran-
dom vector (Z(x1), ..., Z(x,))" is centered Gaussian, and such that the mapping
Z: MxQ — Ris Z(M)QF-measurable. Here, (M) denotes the Borel o -algebra
generated by a topology on M with respect to a distance dist(-, -) : M x M — R
which may be chosen, e.g., as the geodesic distance on M. In this case, the covariance
kernel k: M x M — R, k(x, x") := E[Z(x)Z(x')] is a symmetric and positive defi-
nite function. Furthermore, we suppose that (M, Z(M)) is equipped with the surface
measure u induced by the first fundamental form, see [5, Def. 1.73] for a definition,
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see also Subsection A.1.2 in Appendix A. The precise assumptions on the manifold
are spelled out in Assumption 1(I) below. For a recap on notation and definitions
pertaining to smooth manifolds, the reader is referred to Appendix A.1.

Specifically, we consider a GRF Z generated by a linear coloring (elliptic pseudo-
differential) operator A € OPS { ,O(M) of order 7 > n/2 via the white noise driven
stochastic (pseudo) differential equation (SWDE)

AZ =W on M. 2.1

Here and throughout, )V denotes white noise on the Hilbertian Lebesgue space L (M),
ie. itisan L2 (M)-valued weak random variable, cf. [6, Chap 6.4], with characteristic
function L2(M) > ¢ +— Elexp(i (¢, W) 201 = exp( 5 ||¢||L2(M))

Due to 7 > n/2, the Kolmogorov—Chentsov continuity theorem (see, e.g., [4] and
the references there) ensures that there exists a modification of Z in (2.1) whose realiza-
tions are continuous on M, IP-a.s. For some of our arguments we assume that {y; } —1s
a smooth atlas of M so that y;: G — %;(G) = M, Cc Mis dlffeomorphlc for some
openset G C R" and M = Ul | ./\/t Furthermore, we let { x; }, | be a smooth parti-

tion of unity corresponding to the atlas { y,} ie., foralli =1,..., M, the function

i=1

xi: M — [0, 1] is smooth and compactly supported in ﬂ,-, and Z,Ai 1 xi = 1. For
every r € R, the operator class O P S| (M) is then defined through local coordinates
and we will therefore first introduce the class OP S| 0(6) for an open set G C R". To
this end, suppose that the symbol b € C*°(G x R”) satisfies that, for every compact

set K CC G and for any «, B € Njj, there exists a constant Cg 4 g > 0 such that
Vxe K, VEeR": |DEDIb(x.&)| < Cxap(+IED 7. (2

The class of pseudodifferential operators O P S} 0(G) consists then of maps

B: C°(G) — C™(G), (Bf)(x) 1=/ b(x, ) f (&) explix - £)d&,  (2.3)

EeRn

where we note that the Fourier transform f of f is well defined, since f is assumed
to have compact support in G. For the manifold M, the operator class O P S} 0(/\/l)
results by localization using coordinate charts of M, i.e., an operator B: C* (./\/l) —
C°° (M) belongs to OPS" ’O(M) if all of the transported operators do, i.e., B; j» €
OPS{ 1(G) forall i, i"=1,..., M, where

Biyf = [(Blxi(f o7 Mui]odi, feCPG), ii'=1,....,M. (24)

We refer to Section A.2 in Appendix A for further details. There, also elements
of the Hormander pseudodifferential operator calculus of O P S| ;(M) are reviewed
in Section A.2.4. The Laplace-Beltrami operator on M is denoted by A x. It is a
second-order, elliptic differential operator on M (e.g., [5, Chap. 4]) and, therefore, an
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element of OPSfO(M). For s > 0, the Hilbertian Sobolev space H*(M) may thus
be defined by (see, e.g., [5, Chap. 2])

HY M) 1= (1= An) ™2 (L2OM0) - Iollms v = [ (0= A0 0] 12 py-
2.5)
see also Subsection A.1.2. For s > 0, H¥(M) denotes the dual space of H®(M)
(with respect to the identification L>(M) = L?(M)*).
Existence and uniqueness of a solution Z to the SWDE (2.1) are ensured if the man-
ifold M and the coloring operator A in (2.1) satisfy certain regularity and positivity
assumptions. These conditions are summarized below.

Assumption 1

(I) The manifold M is a smooth, closed, bounded and connected orientable Rie-
mannian manifold of dimension n immersed into Euclidean space R” for some
D > n. In particular, M has no boundary M = .

(II) The operator A € OPS{ ,O(M) for some 7 > n/2 is self-adjoint and positive
in the sense that there exists a constant a— > 0 such that

Yw e HAM) : (Aw,w) = a-[wliyn

Under Assumptions 1(I)—(II), the operator A € O PS{ ’O(M) is a continuous, bijec-
tive mapping from H* (M) to H® (M) for any s € R (see Proposition 11(iii) and
Proposition 12) and, therefore, Z in (2.1) is well-defined. Moreover, the mapping
properties of A imply regularity of the GRF Z: Since W € H "/?7¢(M) (P-a.s.) for
any ¢ > 0,

Ze H' (M), forevery s <r—n/2 (P-as.), (2.6)

and, for any integrability ¢ € (0,00),0 <s <7 —n/2,
q
E[I1Z211%: aq] < 00- 2.7)

This follows, e.g., asin [19, LemA. 3] and [41, Lem. 2.2] using the asymptotic behavior
of the eigenvalues of A € OPS{’O(M) (Weyl’s law).

Example 1 In models of Whittle—-Matérn type (see also Appendix C), the pseudodiffer-
ential operator 4 in (2.1) takes the form A = (L + «2)P with base (pseudo)differential
operator L € OPSI_’O(./\/I) for some 8,7 > 0. In particular, k € C*°(M) deter-
mines the local correlation scale of the GRF Z. For any ¢ € C° (M), the multiplier
with ¢, i.e., the operator f +— ¢ f, is an element of OPS?’O(M). For this reason,

A e OPSf)O(M) with 7 = BF > 0, see Propositions 11 and 12 in Appendix A.
Explicit examples include the SPDE-based extensions of GRFs with Matérn covari-
ance structure [53] to the torus M = T" or the sphere M = S", where £ = —A \4,
r =2, and x > 0 is constant, see e.g. [52].
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101  Page 8 of 57 H. Harbrecht et al.

The covariance operator C: L?(M) — L?*(M) of the GRF Z in (2.1) is defined
through the relation

Cv, )20 = E[(Z, ) 1200y (2, w)20g)] Vv, w € LEM).

If it exists, we define the precision operator P := C~! corresponding to Z. The
operators C, P inherit several properties from the coloring operator A in (2.1).

Proposition1 Let 7 > n/2 and suppose that M and A € OPSf’O(M) satisfy
Assumptions 1(1)—(1l). The covariance operator C of the GRF Z in (2.1) is then

C=A2e0PS (M) 2.8)

and, for every s € R, C: HS(M) — H**Y (M) is an isomorphism. Furthermore,
under these assumptions, the covariance operator C in (2.8) is self-adjoint, (strictly)
positive definite and compact on L*>(M), with a finite trace.

Vice versa, the precision operator P of the GRF Z in (2.1) is

P =A% € OPSTH(M) (2.9)

and, for every s € R it is an isomorphism as a mapping P: H* (M) — H*~ 2 (M).
The precision operator P = A? is a self-adjoint, positive definite, unbounded operator
on L?(M), whose spectrum is discrete and accumulates only at co.

Proof Assumption 1 implies that A € OPSf’O(M) is boundedly invertible as a map-
ping from H*(M) to H*~" (M), for every s € R. For this reason, by Proposition 12,
the covariance operator C = A2 eoP Sl_f); (M) is well-defined, self-adjoint, and
positive definite. By Proposition 11(iii), continuity of C: H*(M) — H S+2F (M) for
all s € R follows. In particular, the choice s = 0 shows that C: L>(M) — L*(M) is
compact due to the compactness of the embedding H* (M) C L*(M) for any r > 0
which, in turn, is a consequence of the assumed compactness of M and of Rellich’s
theorem.

To verify that C has a finite trace on L2(M), we let {Lj(O)}jen and {1 (A} jeN
denote the eigenvalues of C and A, respectively, and we note that self-adjointness
of A (stipulated in Assumption 1) and the spectral mapping theorem imply, for all
J € N, the asymptotic behavior A;(C) = A; (A2 ~ j_2;/" for j — oo. Since
{j7%/"} jen € €' (N) if and only if 27 /n > 1, the claim follows.

The assertions for P can be shown along the same lines by using that the eigenvalues
of P are given by A;(P) = 1/A;(C). O

An important relation between GRFs obtained by “pseudodifferential coloring”
of white noise as in (2.1), their covariance operators, and their covariance kernels is
established in the classical Schwartz kernel theorem, see e.g. [45, Thm. 5.2.1]. Every
continuous function k € C (X1 x X»7) on the Cartesian product of two bounded, open,
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nonempty sets X1, X, C R” defines an integral operator K: C(X;) — C(X1) via

(Kp)(x1) =/ k(x1, x2)¢(x2) dxp Vxi € Xj.

X2

This definition may be extended to the case that & is a generalized function and ¢
is smooth and compactly supported, cf. [45, Eq. (5.2.1)]. Suppose now that G C R”
is open and consider a generic B € OPSf,O(G). By the Schwartz kernel theorem,
cf. [45, Thm. 5.2.1], the pseudodifferential operator B admits a distributional Schwartz
kernel kp. We (forrnally)l calculate for u, v € CgO(G) with integrals understood as
oscillatory integrals

(kp,u @ v) = / v(x)b(x, D)u(x)dx
supp(v)
- f f b(x. &) expix - )v(0)A(E) d dx
supp(v) JR
= (2N)_”/ / / b(x,&)exp(i(x —y) - &E)v(x)u(y)dy dé dx.
supp() R Jsupp(u)

‘We thus obtain, in the sense of distributions,
kp(x,x —y) = 2m)™" [ b(x, &) exp(i(x — y) - £) d&,
so that for w € R" and for a € Njj
wkp(x, w) = 7)™ [paexpliw - §)Dgb(x,§)dé (2.10)

with b(x, &) = [; exp(—iw - §)kp(x, w) dw where w* := [[7_; w". Since b(x, §)
satisfies (2.2), the integral in (2.10) is absolutely convergent for r — |¢| < —n, i.e.,
|a| > n 4 r. On the compact manifold M, a corresponding result holds by repeating
the preceding calculation in coordinate charts {¥; }M | of (a finite atlas of) M.

Proposmon 2 LetBe OPS] 0(/\/1) with corresponding Schwartz kernel k. In addi-
tion, fori,i’ =1, , M, let B; ;€ OPST o(G) be defined according to (2.4), and
denote the correspondmg Schwartz kernel by kp, .-

Then, for every o, ﬂ e Ny withn+r+|a|+ |ﬂ| > 0, there exist constants cq g > 0
such that, foralli,i’ =1,..., M,

Vx*, y* e ./F\;l,'i—?i,, x® £ y* |8§‘85k3i,i/ (x, y)| < Cq,p dist(x™, y*)~trlal+BD
(2.11)
where we used the notation ./\/ln = ./\/l, N ./\/l x =y Y(x*) and y =y, (y*)
In particular, kg(-, -) € C°°(./\/l x M\A) where A = {(x*, x*) : x* € M}.

The kernel estimates (2.11) are in principle known. For a detailed derivation of
(2.11), we refer, e.g., to [65, Lem. 3.0.2, 3.0.3].

! The derivation is rigorous, when understood “in the sense of distributions”.
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Remark 1 The kernel bound (2.11) is stated with respect to the distance dist which
could be either the geodetic distance intrinsic to M or also the Euclidean distance of the
points x*, y* immersed via M into R? for suitable dimension D > n. This follows
directly from our assumptions on M, in particular its compactness. The numerical
values of the constants ¢y, g > 01in (2.11) will, of course, depend on the precise notion
of distance employed in (2.11).

Remark 2 1In the case that M and the coefficients of A in (2.1) are analytic, the kernel
estimates (2.11) hold with explicit dependence of the constants cy g on the differenti-
ation orders |«/|, |8]. This follows from an analytic version of the pseudodifferential
calculus which was developed in [14]. It implies that the covariance kernel is asymp-
totically smooth in the sense of [32]. This, in turn, mathematically justifies low-rank
compressed, numerical approximations of covariance matrices in 7{-matrix format, as
described in [32] and, in connection with GRFs on manifolds, in [26]. The presently
proposed, wavelet-based compression results and (2.11) hold also for finite differen-
tiability of the covariance function in greater generality.

3 Covariance/precision preconditioning and compression

We consider a GRF Z indexed by a compact Riemannian manifold M as described in
Assumption 1(I). We assume that Z is colored via the white noise driven SWDE (2.1)
with coloring operator A € OP S f o(M) satisfying Assumption 1(II). We recall from
Example 1 that the coloring operator .A can possibly be obtained as a fractional power
of a shifted base elliptic (pseudo)differential operator L € O P S f_ ,O(M). This Whittle—
Matérn scenario is detailed in Appendix C. The covariance and precision operators in
(2.8) and (2.9) of the GRF Z allow for equivalent, bi-infinite matrix representations

C=CW) V) e RN and P=PWw)(¥) e RN (3.1
with respect to a MRA W as introduced in Subsection 3.1 below.

For a suitable choice of the MRA W we will show the following.

1. Diagonal preconditioning renders the condition numbers of arbitrary sections of
the bi-infinite matrices C and P in (3.1) uniformly bounded with respect to the
number p of active indices.

2. The covariance and precision operators admit numerically sparse representations
with O (p) nonvanishing entries with respect to the MRA W.

These are our main findings on the compression of the covariance matrix C and the
precision matrix P and they are detailed in Subsections 3.2-3.3.

3.1 Multiresolution analysis on manifolds

We let {V;};- j, be a sequence of nested, linear finite-dimensional subspaces V; C
Visi C ... C L?(M). We then say that the family {Vj}j>j, has regularity y > 0
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and (approximation) order d € N if

y =sup{s eR:V; C H'(M)Vj > jo},

d :sup{s eR: ing lv—vill2om) §2_js||v||Hx(M) Yve HS(M) Vj > jo].
j

Vi€

3.2)

We shall suppose that the subspaces {V} ;- j, are H" /2(M)-conforming, i.e., that in
(3.2) we have y > max{0, r/2} for some fixed order r € R.

We furthermore assume that dim(V;) = O(2") and, for each j > jo, the space V;
is spanned by a single-scale basis @, i.e.,

Vj>jo: Vj=span®;, where ®;:={¢p;i:kecAj} (3.3)

Here, the index set A ; describes the spatial localization of elements in @ ;. Analogously
to the spaces {V;} - j,» we assume without loss of generality that the finite index sets
{Aj}j>j, are nested, Aj, C ... C Aj C Ajy. We associate with these bases dual
single-scale bases defined by

Vi>jo: @j:={¢jir:keAj}, with (djr, ¢jr) =0 Vk, kK e Aj.
3.4)
The vector spaces Vj = span CB.,', j > Jjo, are also nested, \7/' C Vj.H C ... C
éz(/\/l), and the family {Vj} = jo provides regularity y > 0 and approximation order
d. In particular, having the dual basis at hand, we define the projector Q ; onto V; via

YoeLX(M): Q=Y (v.¢jx)d)x. (3.5)

keA Jj
We refer to Appendix B for a summary of basic properties of the bases ®; and o j
and for a brief description how they can be constructed on manifolds.

Given single-scale bases ®; and EISJ, set V;j := A1\ A;. One then can construct
biorthogonal complement bases

W ={Yjr:keV;) and ¥, ={;r:keV;}, j>jo, (3.6
satisfying the biorthogonality relation

~ 1, if j=j andk =K/,
Wk ¥jw) =80, k) = { 3.7

0, otherwise,

such that '
diam(supp ¥j k) =277, j > jo, (3.8)

@ Springer



101 Page 12 of 57 H. Harbrecht et al.

see Appendix B. For j > jo, define W; := spanW¥; and Wj ‘= span \TJ]-. The
biorthogonality (3.7) implies that, for all j > jo,

Viei=W; e V;, Viei=W; e V;, Vi LW;, Vi L W;.
In what follows, we use the convention
Wio 1= Vigrt, Wjo := Vi1, and - Wjo := Pjopr, Wy := Pyt

As explained in Appendix B, a biorthogonal dual pair W, U of wavelet bases is now
obtained from the union of the coarsest single-scale basis and the complement bases,

ie.,
v=Jw, 9=]J9,
Jj=Jo j=Jjo
We refer to W, resp. to U, as primal, resp. dual, multiresolution analysis (MRAs).

Here and throughout, all basis functions in W and W are assumed to be normalized in
L?(M). Furthermore, they satisfy the vanishing moment property:

v, W70 S 277D supi g equppipy 0 1070 VG €T (3.9)
Here, the countable index set is defined by
J =10,k ] = jo, k€ Vj} (3.10)

where we set Vj, := Aj 41, and the constant implied in < in (3.9) is independent
of (j,k) € J. A corresponding property holds for the duals Ui j.k- We note that the
biorthogonality allows constructions of W, U with d > d, which will be crucial in
effective compression of covariance operators, compare [17, 22, 38].

The second key property of the multiresolution bases W, U is that they comprise
Riesz bases for arange of Sobolev spaces on M and corresponding norm equivalences
hold: For all v € H' (M), we have

WGy = Y. Y. 22 1w g0l e 7.y,

JjZJjo keV;

WG = Y. Y. 25 w0l te =y 9.

J=Jjo keV;

@3.11)

3.2 Covariance and precision operator preconditioning

Recall the index set 7 from (3.10). For . = (j, k) € J, weset |A| := j. Furthermore,
D? denotes the bi-infinite diagonal matrix

D' :=diag(2’* : 2 € J), seR. (3.12)

The next result is based on Proposition 13 in Appendix B.
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Proposition 3 Let Z be a GRF indexed by a manifold M which is defined through
the white noise driven SWDE (2.1). Assume that the manifold M and the coloring
operator A € OPSI;‘O(M) in (2.1) satisfy Assumptions 1(I)—(IlI). Let ¥ be a Riesz
basis for L>(M) which, properly rescaled, is a MRA in H* (M) for —# < s < 0 such
that the norm equivalences (3.11) hold with y > ¢ and y > 0.

Then, the bi-infinite matrix representation C for the covariance operator (2.8) in
the MRA W, see (3.1), satisfies the following:

(i) The bi-infinite matrix representation C is symmetric positive definite, and it
induces a self-adjoint, positive definite, compact operator on £>(J). Further-
more, there exist constants 0 < c_ < c4 < 00 such that G(D? (6))4 ) C [c—, c4]
and condy (D' CD') ~ 1, with D' defined according to (3.12).

(ii) For every index set A C J with p = #(A) < oo, the A-section of C, Cy =
{Cov @ A, A € A} € RP*P, is symmetric, positive definite and it satisfies
o(D/,CADY) C [c—, ci]. Here, Dy :={D} ,, : A, )/ € A} € RP*P.

Proof Under Assumptions 1(I)~(II) by Proposition 1 C = A~2 € OPS; 3; (M) is
a self-adjoint, compact operator on L?(M). This implies that the bi-infinite matrix
C is symmetric and compact as an operator on £2(.7). In addition, Assumption 1(II)
implies positivity of C: by Proposition 11(iii) and Proposition 12, the linear operator
C1/2. L2(M) — H~" (M) is bounded. Thus, there is a constant Cy > 0 such that

— ||C_1/ZCI/2U||§1

2
A, o

< ColIC vl 72 pgy = ColCv,v) Vv e H(M).

(M)

By writingv =v' W € H~"(M) forv € H™" (M), the norm equivalences in (3.11)
imply that there exists a constant c_; > 0 such that

—1 —F o2 2 —F o112
DTS < vl ) < e IDT'VIS

and we conclude that, for every v € £2(7),

—F o2 2 T
ID™"vIiz < czlivlly, c_+Co(Cv,v) = c_;Cov Cv.

My =
As W is a Riesz basis, v # 0 holds if and only if v = v W # 0, whence
vICv>0 < v#0 and v Cv>2D7v|3

with ¢ := c:rl Cy 'S 0 follow. Restricting this statement to sequences v which satisfy
v, = 0for i € J\ A, we obtain that also C4 € RP*? is symmetric positive definite,
where we recall that p = #(A) < oco. Furthermore, there exists a constant ¢ > 0 such
that for all subsets A C 7 it holds

v eRA: vICuv =D, V3. (3.13)
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The assumed norm equivalences (3.11) of ¥ show in particular stability for t = —F
and forz = 0, and (B.1) holds with —27 in place of r. Thus, (B.2) with C; in place of
B and taking limit J — oo implies o(D'CD’) C [c_, c+]and cond,(D'CD’) ~ 1
in (i). From this, also U(D’ C AD’ ) C [c—, c4+] in (ii) follows, as the convex hull of
the spectrum o (C 4) is contained in that of C. O

In the next proposition we state the corresponding result for the precision operator
‘P of the GRF Z.

Proposition 4 Let Z be a GRF indexed by a manifold M which is defined through
the white noise driven SWDE (2.1). Assume that the manifold M and the coloring
operator A € OPS{AVO(M) in (2.1) satisfy Assumptions 1(I)—(Il). Let ¥ be a Riesz
basis for L>(M) which, properly rescaled, is a MRA in H* (M) for 0 < s < 7 such
that the norm equivalences (3.11) hold with y > 7 and y > 0.

Then, the bi-infinite matrix representation P for the precision operator (2.9) in the
MRA , see (3.1), satisfies the following:

(i) The bi-infinite matrix representation P is symmetric positive definite and it
induces a self-adjoint, positive, unbounded operator on 62(.7 ). Furthermore,
there exist constants 0 < ¢— < ¢4 < 00 such that o (D~ "PD) C [c, c+]
and cond,(D"PD7) =~ 1, where D~ is defined according to (3.12).

(ii) For every index set A  J with p = #(A)A< oo, the A-section Py of P is
symmetric, positive definite and o (D ,"P,D ") C [c_, c4].

Remark 3 At first glance, the implementation of the preconditioning in Proposi-
tion 3(ii) or Proposition 4(ii) requires knowledge of the order 7 of the coloring operator
A in (2.1). However, note that the diagonal entries of C 4 satisfy

~ 0=27]

(CYjs, Yju) =277,
Therefore, in wavelet coordinates, a diagonal scaling would be sufficient for precon-
ditioning and even improves it. Nonetheless, in covariance estimation from data, the

order 7 could be estimated from the coefficient decay rate from i.i.d. realizations of Z
in wavelet coordinates. We refer to Subsection 5.4 for a numerical illustration.

3.3 Covariance and precision operator sparsity

The GRF Z may be expanded in the MRA W,

Z=z7W= Z Z ZjkVjk = Z Z (Z, 00V ks

J=jokeV; J=jokeVv;
or in the dual MRA W,

Z= ZZ H/ffk—zzzw,kw]k (3.14)
J=Jjo keV;

JZJjokeV;
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The latter MRA representation of the GRF Z is related to the bi-infinite covariance
matrix C via

Ciw = (Cyu, ¥o) = EUZ, a2, Y] = E[LZ0] YA, M €T, (B.19)

where we again used the notation A = (j, k) € J with [A| = j > joand k € V;.
Note that forany f =fTW¥ =" re7 Jawa the MRA coordinates of C f are (formally)
given by
Cf =) (COLY,.
reJ

Also the white noise driven SWDE (2. 1) may | be cast in the dual MRA coordinates
Z =7 U, which implies thatZ ~ N(0, A~'MA ") and thus by (3.15),

C=A"MAL

Here, we used the notation A = AW)(¥) and M= Id(W)(P) in RNV<N,

3.3.1 Matrix estimates

The significance of using MRAs W, U for the representation (3.14) is in the numerical
sparsity of the corresponding matrices that result after truncating the index set J to
finite index sets A. By numerical sparsity, we mean that for any ¢ > 0 there exists a
sparse matrix, which is e-close to the in general fully populated matrix.

In the following, we use index sets of theform Ay = {(j, k) : jo < j < J,k € V;},
J > jo, and define, throughout what follows, the number p of parameters as

p=p(J)=#(A)). (3.16)

The matrices will be denoted by A, := A,,, C, := C4, and P, := Py4,. Specif-
ically, when represented in the MRA W the matrices A, C, and P, of size p x p
corresponding to coloring, covariance and precision (pseudodifferential) operators .A,
C and P of the GRF Z can be replaced by compressed approximations Aj,, C7, and
Pf, of the same size p x p with O(p) nonvanishing entries while preserving the
consistency orders O(p~¢) of these matrices with respect to the exact counterparts
A, C and P. Thus, the components 7, of the random coefficient vectors in the dual
representation (3.14) of Z are generically nonzero, but decorrelate numerically in the
sense that £[Z, 7] is negligible for most pairs (A, A"). This facilitates fast approximate
simulation of Z and efficient matrix estimation of C, P, see Section 4.

Specifically, for a generic pseudodifferential operator 5 € O P Sj (M) the kernel
estimates (2.11) combined with the cancellation property (3.9) of the MRA V¥ (and a
related property of the dual basis ) imply that the majority of the p? entries

Byl =BWy )W) = BYjw, ¥k, r=,k0,2 =" K)e Ay,
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are nonzero, in general, but negligibly small [21, 23, 65]. The following result quanti-
fies this smallness. Recall that the singular support of a function f on M, denoted by
sing supp(f), is given by sing supp(f) = {x € M : f is not smooth at x} and define

S k := conv hull(supp(¥; ) C M, S},k = sing supp(¥j x) C M, (3.17)

where (j, k) € J, see (3.10). The next proposition presents asymptotic size bounds
on the entries [B,]; j/ taken from [21, Thms. 6.1, 6.3].

Proposition 5 AssumethatB € O P S} ’0(./\/1) and, furthermore, that a pair of mutually
biorthogonal MRAs W, U withn+r +2d > 0as defined above in local coordinates
are available on M, where M fulfills Assumption 1(I).

Then, the bi-infinite matrix representation B = B(V) (V) of B has entries which
admit the following estimates, uniformly in j € N:

(i) Forevery (j, k), (j', k") € J suchthat Sj N Sj p = ¥, we have
(B s ¥y )] S 27D dii(S) g, 80 ) 2D,
(ii) Forevery (j, k), (j', k") € J such thatdlst(S’ ko Sik) 227 7', we have

(B Wi + Bk W aed| S 2002270 @H02D) dist(S, S i) =0 HD.
3.3.2 Matrix compression

Proposition 5 allows to compress the (densely populated) matrices Cp, P), cor-
responding to the action of the covariance and precision operators C and P on
finite-dimensional subspaces to O(p) nonvanishing entries while retaining optimal
asymptotic error bounds afforded by the regularity of Z.

We describe the compression schemes for a generic, elliptic pseudodifferential
operator B € OPS] (M) of order r € R. Note that, for our purposes, we have
B e{AC, P} where the psudodifferential operators A, C, and P are as introduced
in Section 2. Furthermore, we write A = (j, k) € Ay, A’ = (j/, k') € A;. With
these multi-indices we associate supports S;, S, C M as well as singular supports
S5, S;, € M as defined in (3.17).

Definition 1 The a-priori matrix compression (or “matrix tapering”), denoted by
means of the superscript ¢, is defined in terms of positive block truncation (or “taper-
ing”) parameters {r i T Jo < j,j < J}asfollows:

0 dist(Sx, Sy') > t;;» and j, j' > jo,
0 dist(Sy, S;/) < 2 mint/.J"} and
[BS 15, = dist(S}, $,) > ;i j' > j = jo, (3.18)

diSt(S)u S;L/) > ‘Cj/'j/ lf] > j/ > jo’
(Byr;r, W) otherwise.
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Here, with fixed, real-valued constants
a,a’ > 1 sufficiently large and d <d' <d +r, (3.19)

the parameters t;; and IJ’.J., in (3.18) are

Tjjr = amax [2_ mi"{j’j/}’ 2[2‘](‘1,_”/2)—(j+j/)(d/+g)]/(2g+r)] .
o / o PO (3.20)
Tj/'j’ = a’ max {2* max{j, }7 2[2J(d' =r/2)=(j+j")d —max{j, j }d]/(dJrr)} )

The operator corresponding to the tapered matrix Bf, defined in (3.18)—(3.20) will be
denoted by B¢, i.e.,
B, () (V) = B,

The compression of (a p x p section of) the matrix B = B(W¥) (V) according to
Definition 1 above, is based a) on a-priori accessible information on the locations of
supports Sy, Sy C M and of singular supports S}, S;, C M, respectively, and b)
on sufficiently large (with respect to the order r of B and n = dim(M)) polynomial
exactness orders d, d of the MRAs and norm equivalences y, ¥ in (3.11). In particular,
the second relation in (3.19) imposes an implicit constraint on the MRAs W, U in that
the order d of exactness of U is greater than the order d of exactness of W reduced by
the order r of B,i.e.,d >d —r.

Remark 4 For a coloring operator A € OPSf,O(M) with 7 > 0, the covariance

operator satisfies C € OPS| gf (M) (see Proposition 1) so that optimal numerical

covariance matrix compression requires MRAs with d>d+2F (or d>d+ 207 if
A= L£P with £ € OPSiO and B > 0). Correspondingly, due to P € OPS%?O(M),
optimal precision matrix compression requires MRAs with d > d — 2, a much less
restrictive requirement on the MRAs W, v, Proposition 5 thus implies that in one
common MRA the precision matrix P, of the precision operator P affords stronger
compression than the corresponding covariance matrix Cp, and that the dual system
W should have a correspondingly larger number d of vanishing moments.

For a GRF Z defined via the SWDE (2.1) with a coloring operator A €
O PSi (M), most of the p coefficients of Z have numerically negligible correla-

tion when represented in the MRA . That is to say, MRA representations provide
spatial numerical decorrelation of the GRF Z. By Propositions 3 and 5, when repre-
sented in suitable MRAs, the Galerkin-projected covariance matrices {C,},>1 of 2
furthermore are numerically sparse and well-conditioned, uniformly with respect to
the level of spatial resolution O@2~7) of Z accessed by mesh level J, where we recall
that p =#(Ay)and Ay ={(j, k) : jo<j < J,keV;}

3.3.3 Consistency and convergence

The matrix compression in (3.18), (3.19), and (3.20) results in a family {B‘;(J) }7>jo of

compressed matrices B‘;( 7€ RPU*PU) and, via the basis W, in associated perturbed
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operators B;( 7 where p(J) = #(Ay). It turns out that the consistency error in B ,(j) —

B¢ ;) can be quantified. The assertions of the next proposition are proven in [21,
Thms. 9.1 & 10.1].

Proposition 6 Suppose that M fulfills Assumption 1(I) and let \V, U be MRAs on M
which satisfy d < d+r. Inaddition, let B € O PSj ((M) for somer € R, and assume
that B is self-adjoint and elliptic.

Then, forr/2 <t,t < d andforeveryw € H' (M), v € H" (M), the consistency
estimate

(B —=B5,)Qrw, Qyv)| < g2t _r)”w”Hf(M)”U”Hr/(M) (3.21)
holds, where < is uniform with respect to J, and where
6= a2y (@)@, (3.22)

If, moreover, ¢ > 0 is sufficiently small (independently of J) (or, equivalently, the
parameters a,a’ > 1 in (3.22) are sufficiently large), the family of compressed oper-
ators {B;( J)} J=jo is uniformly stable: There exists a constant ¢ > 0, independent of
J, such that

VwJ S Vj . |<B;(1)w1a U)J>| > C”wJ”iIr/Z(M)'

We apply these results to the representations of C and P in the MRA W. They afford
optimal compressibility of their equivalent, bi-infinite matrix representations (3.1)
provided the biorthogonal pair of MRAs W, U has sufficient regularity and vanishing
moments: Whereas for the diagonal preconditioning results in Section 3.2 only stability
in H' (M) was required (¢ as specified in (3.11) and in Proposition 3 or Proposition 4,
respectively), the numerical compressibility of the bi-infinite matrices C and P? is
based on additional properties of the MRAs W, v quantified by parameters d, d, v,y
from Section 3.1.

Proposition 7 Let M satisfy Assumption I(I) and let the coloring operator A €
OPS] o(M) fulfill Assumption I(1l) for some ¥ > n/2. In addition, let WV be a
MRA such that (3.2)~(3.11) hold with ¥ > 7 and y > 0. Let C = A~ be the
covariance operator of the GRF Z in the SVDE (2.1). Denote the tapered covari-
ance matrix by C;( 7y with tapering (3.18) and covariance tapering parameters
{zj;(0), ‘L’]/-j,(C) 2 jo < j.j < J)}, defined as in (3.19)—(3.20) with —2F in place
of r.

Then, there exists g > 0 such that, for every ¢ € (0, &y), there are parameter
choices a,a’ > 0in (3.19), which are independent of p(J), such that:

(i) Forevery J > jo, the tapered matrix C;( 7) is symmetric, positive definite.

2 We emphasize that the bi-infinite matrices C and P in (3.1) are in general densely populated. Sparsity
can therefore only be asserted up to a numerical compression error which is bounded in Proposition 6.
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(ii) Diagonal precondltlomng renders C¢ () uniformly well-conditioned: There are
constants 0 < C_ < ¢y < 00 such that

VI = jo: o (D), Co D) C[E-, T4l

(iii) The tapered covariance matrices {C‘;( J)} J=jo are optimally sparse in the sense
that, as J — 00, the number of non-zero entries ofC‘;(J) is O(p(J))).
(iv) Let C;( 7 be the operator corresponding to the tapered covariance matrix C‘;( 7
and assume that ~
—r<t,t' <d<d-2F. (3.23)

Then, for every J > jo and all v € H' (M), w € H (M),

((c- C;(J))ijv Q)| < e~ ) t+1'+27) Il e vl e (aq

holds, where Q j is the projector in (3.5).

Proof Throughout this proof, we write p = p(J), see also (3.16).

Proof of (iv): The consistency estimate will follow from (3.21) in Proposition 6
once the assumptions of that proposition are verified. As Assumptions 1(I)—(II) hold,
A e OPSI;’O(M) is self-adjoint, positive and C = A2 ¢ OPS[(%f(M) satisfies
the assumptions of Proposition 6 with r replaced by —27. Since by assumption also
the MRAs W, U satisfy (3.2)—(3.11) with —27 in place of r, the tapering scheme
(3.18)—(3.20) with covariance tapering parameters t;;/(C), tj’.j,(C) corresponding to
these orders will allow using Proposition 6. This implies assertion (iv). The moment
conditions on the MRA W in Remark 4 also imply the sparsity assertion (iii) (see [21,
Thm. 11.1], [65, Thm. 8.2.10]).

To prove positive definiteness for the tapered covariance matrix C? 7)» We use
positive definiteness of the finite section C ), see (ii) of Proposition 3, combined with
item (iv). Namely, choosing in the tapering coefficients 7;;/(C), r/’.j, (C) the parameter

¢ > 0 sufficiently small, it follows from (iv) with ¢ = ¢/ = —r and the H —F (M)
Riesz basis property of W that there exists a constant C > 0, independent of J and
p = p(J), such that, for every ¢ € (0, &9),

W e R VT(Cpy — €5 p))V| < Ce DT 5. (3.24)

We therefore find, for v e R?)\ {0} withv =v'W € H 7 (M),
& & ~ 2
viC V=V TCppv+v' (CP(J) —Cp)V = (- Cs)”Dp(J)v”2 >0,

provided that ¢ > 0 is so small that ¢ — Ce > 0. Here ¢ > 0 is the constant in (3.13),
which is independent of p. This proves (i).

To show (ii), we again combine Progosition 3(ii2 with part (iv). By Proposition 3(ii)
there exist c_, c4 > 0 such that J(D’ (J)CP(J)D;U)) C [c—, c4]. Furthermore, by

(3.24) ||Dp(J)(C,,(]) Cp(J)) ) ||2 c_ /2 for sufficiently small & > 0. Thus, we
obtain assertion (ii) for the constants ¢_ > ¢_/2 and ¢} < ¢4 + ¢_/2. |
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Along the same lines, one proves the following result for the precision operator.

Proposition 8 Let M satisfy Assumption 1(I) and let the coloring operator A €
OPS{:O(M) Sulfill Assumption I(Il) for some ¥ > n/2. In addition, let ¥ be a
MRA such that (3.2)-(3.11) hold with y > 7 and ¥ > 0. Let P = A? be
the precision operator of the GRF Z in the SWDE (2.1). Denote the tapered pre-
cision matrix by P;( 7y with tapering (3.18) and precision tapering parameters
{z;j/(P), IJ’.].,(P) Cjo < j,j' < T}, defined as in (3.19)—=(3.20) with 2r in place
of r.

Then, there exists g > 0 such that, for every ¢ € (0, &g), there are parameter
choices a,a’ > 0in (3.19), which are independent of p(J), such that

(i) Forevery J > jo, the tapered matrix P;( 7 is symmetric, positive definite.
(ii) Diagonal preconditioning renders P;( 7 uniformly well-conditioned: There are
constants 0 < c_ < ¢y < 00 such that

VI zjor oDy P D) C e .

(iii) The tapered precision matrices {P;( j)} J>jo are optimally sparse in the sense
that, as J — oo the number of non-zero entries ofP;(J) is O(p(J))).
(iv) Let 73;( 7 be the operator corresponding to the tapered precision matrix P;( 7

and assume that _
F<t,t'<d<d+?2F. (3.25)

Then, for every J > jo and allv € H' (M), w € H' (M),

(P =P Quw, Qo) S &2 H 20wl g gy 0l g gy
holds, where Q j is the projector in (3.5).

Remark5 (i) Propositions 7 and 8 state that the matrix representations of both
covariance and precision operator of the GRF Z in suitable wavelet bases can
be optimally compressed. We emphasize that in Proposition 7, the moment con-
ditions (3.23) on the MRA W for optimal covariance matrix compression are
considerably stronger than (3.25) imposed for optimal precision matrix compres-
sion in Proposition 8. Note also that in Propositions 7 and 8 possibly different
MRAs for covariance and precision matrix compression are admitted. With
respect to one common MRA WV the compressibility of the precision operator
matrix is higher than the compressibility of the covariance operator. This is con-
sistent with the fact that a Gaussian Whittle-Matérn field with precision operator
P = (—Axr + k2)?P (see Appendix C) satisfies a Markov property whenever
2B € N, compare e.g. [62, Chap. 3].

(ii) The results are robust with respect to the parameters a, a’ > 1 in (3.19): Once
a,a’ > 1 are sufficiently large, increasing these values in the parameter choices
(3.20) will not affect the asymptotic statements in Propositions 7 and 8. Increas-
ing a, a’ will, however, change the constants in the asymptotic error bounds, e.g.,
the constant implied in O(p(J)) will increase with a, a’.
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(iii) In the case of the Whittle—Matérn coloring, where A = (L+Kk2)P see Example 1
and Appendix C, a shift function k> € C*(M), which takes large values
k2(x) = k2 > 0 (corresponding to small spatial correlation lengths), might
allow quantitative improvements in the matrix compression, see Subsection 5.3

for a numerical illustration.

(iv) For a fixed order 7 > n/2 of the coloring operator A, the tapering pattern
(3.18)—(3.20) is universal, i.e., independent of the particular (pseudodifferential)
operators P and C and contains explicit a-priori information about the locations
of the O(p(J)) many “relevant” entries of C;, P;. It may be employed in
constructing oracle estimators in graphical LASSO algorithms (e.g., [47, 71]
and the references there) to infer P, from (multilevel) estimates for C,,.

4 Applications: simulation, estimation, and prediction
4.1 Efficient numerical simulation of colored GRFs

As afirst application of the results from Section 3 we consider the problem of sampling
from the GRF Z which solves the white noise equation (2.1). We recall from (3.14)-
(3.15) that the GRF Z and the SYDE (2.1) may equivalently be cast in coordinates
corresponding to the dual MRA W:

Z=Y(Z.y)¥n = Ai=w. 4.1
reJ

Here, A denotes the bi-infinite matrix A(‘TJ)(\TI) and the coefficient sequences Z, w have
entries 7, = (Z, ¥) and w), = (W, WA) respectively. By the properties of Gaussian
white noise, the random vector w is N(0, M)-distributed, where M = Id(lI/)(\lf)
denotes the Gramian with respect to the dual MRA U. For a sequence & of i.i.d.
N(O, 1)-distributed random variables we therefore conclude that

weUMé and 7LA'VME F~NO,C), C=A"'MA~'. (@42

We now consider the vectorZ, € R”, where the subscript p = p(J) corresponds to
the finite index set A(J) asin (3.16). As aresult of the distributional equalities in (4.2),
sampling fromZ, can be realized efficiently in essentially (up to log factors) linear com-
putational cost by approximating the matrix square root of the well-conditioned mass
matrix M as suggested in [33] and by preconditioning the compressed matrix Ag
(Note that an analogous preconditioning result as in (B.2) of Proposition 13 can also
be obtained for the dual MRA W.) A similar approach employing multilevel Finite
Element Methods with linearly scaling computational work per realization has been
discussed in [41, Sec. 5] and, more recently, in [13].

In what follows, we discuss a different viewpoint. A common scenario in applica-
tions is that the coloring operator A is not explicitly available, but the kernel related to
the covariance operator C via the Schwartz kernel theorem (see Section 2) is known.
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In this case, it is in principle possible to determine all entries for every finite section
C,, of the bi-infinite covariance matrix C = C(¥) (W) but not of A. For this reason,
in order to sample from Z, ~ N(0, C,), we will focus on approximating the matrix
square root \/G of the covariance matrix.

To this end, we first note the following: By letting I, € R”*” denote the identity
matrix and & p € R? be a random vector with distribution § ~ N(0, I,), we obtain

7, 2D, [DiC,Di €, 7, ~NO,Cp), 4.3)

where 7 > n/2 is the order of A € OPSf’O(M) and Di, denotes the finite A; x Ay

section of the diagonal matrix D’ defined in (3.12). We let C; be the tapered covariance
matrix with tapering (3.18)—(3.20) (with —2r in place of r) and define the matrices

R, :=D/C,D), e R"*? R’ :=D/CD) e RP*, (4.4)
as well as the approximation

7 =D, /DiCsDh g, =D 7 [REE, T ~ N, C). (4.5)

Note that R, is well-conditioned, uniformly in J, and, for ¢ € (0, &¢) sufficiently
small, also the compressed (sparse) matrix R}, is uniformly well-conditioned, see
Proposition 3(ii) and Proposition 7(ii)—(iii), respectively. In particular,

30,8 >0: VI=zjo: o(RY) C[e-, . (4.6)

Therefore, the contour integral method suggested in [33] to approximate the matrix
square root will converge exponentially in the number of quadrature nodes of the
contour integral. Specifically, for fixed K € N, we consider (see [33, Eq. (4.4) and
comments below]) the approximation

~—1

2Eye & dn (k- 2%)

R; ~ Sg = — YR, Y —————=
4 - lcnz(tk|1— 1;)

(R*? +w?, ) e

Here, sn, cn and dn are the Jacobian elliptic functions [2, Ch. 16], E is the complete
elliptic integral of the second kind associated with the parameter >z "2, ch. 17),
2R :=Cy/c_,and, fork € {1,..., K},

n tk|1—2};1)

Wk :=\/ZS E and 1 :=

nll - 5% K
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Employing the approximation Sgx from (4.7) in (4.5) finally yields a computable
approximation for Z, in (4.3),

Z, k= D;fSKEp, Z, x ~ N(O, D;fS%D;f). (4.8)

Theorem 1 Suppose that the manifold M and the operator A € OPSI?’O(M) satisfy

Assumptions 1(I)~(II) for some 7 > n/2. Let C = A~? be the covariance operator
of the GRF Z that solves the SWDE (2.1), and let Z = (Z, V) be the coordinates of
Z when cast in the dual MRA U, see (3.14). For p = p(J), see (3.16), denote the
tapered covariance matrix by C¢, with tapering (3.18)—(3.20), where ¢ € (0, &) is
sufficiently small such that (i)—(iv) of Proposition 7 hold.

1. Let Rf, € RP*P be defined as in (4.4) and let c—, ¢4 > 0 be the constants in (4.6).
Then, the family of matrices {Sk } kN defined by (4.7) satisfies

3¢,C>0 VK eN: ||\/1T;,—SK||che—CK,

where the constants ¢, C > 0 depend on »r = ¢4./¢—, but not on p and K.

2. Let the R?-valued random vectors Zp, i;, 'i; x be defined as in (4.3), (4.5) and
(4.8), respectively. Then, there exist constants C, ¢ > 0 such that for every p, K €
N, e € (0, &), and 0 < s <7 —n/2 we have

(BLE -7, 4 13])" = C2™ 5+ ¢7K), @9)

In (4.9), the integers J and p are related as in (3.16).

Proof Part 1 is proven in [33, Thm. 4.1].
To show (4.9) of 2, we first split the error as follows,

(E[E-7, ¢ 13]) =< (E[E-Z,13]) 2+ (E[1Z, -7, 13))° + (E[I%,— 7, ¢ 13])?
=:(A)+ B)+ (O).

To bound term (C), we note the identity
B[, - 7, 18] = E[ [0 (/R; Sk, [3] = 077 (/R5 ~$6) |3

which follows from the fact that &1, ..., §, are i.i.d. N(O, 1)-distributed. Since

D57 (/R S s = [(/R5 — D57 = | /R — S |17 s

the estimate (C) < Ce~“K follows from part 1 if ||D;; llus < 1.Indeed, the assumption
dim(V;) = O(2") combined with the identity Vigr = W; @V, yields that #(V;) =
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dim(W;) = O((2" — )2%), for all j > jo, and by definition (3.12)

J J
Iy = Yo 2= 3 Y s ey Y@,

reAy J=JjokeV; J=Jo

Since 7 > n/2 is assumed, we conclude that

o0

”D_r“HS Z —QF-n)j _ 2—(2f—n))—1<oo7

where the constant implied in < is independent of J and, thus, of p = p(J).
Similar arguments yield the bound

®) = D, (VR — /RS ) [1ys < VR, — /R [0, |5

We recall from Proposition 3(ii) and Proposition 7(ii) that

o(Ry) =0 (D),C,D)) Cle_.cy] and o(R5) =0 (D)C5DL) C -, 4]

This allows us to apply a Lipschitz-type estimate for the matrix square root (see, e.g.,
[64, Lem. 2.2]), which gives

IV - [R5, < =R, ~ Ry |, = <=L [D}C, — C D} |,

For the norm on the right-hand side, we then obtain

D7 (C, — CHD |, = sup x"D7(C, — C5)D x|
||XH2 1
TC. _
_ o G OM

VERP, 1D, v||3
0 p V2

where the last estimate has already been observed in (3.24) in the proof of

Proposition 7(i). Thus, (B) < ¢.
Finally, for term (A) we find, for any s € [0, 7 — n/2), that

(A) = E[Z h: ‘ﬁj,k>|2i| < ZZ“E[Z PR EA[2 wj,wlz}

j>J keV; Jj=JjokeV;

For this reason, regularity of the GRF Z in L2(Q; H*(M)), see (2.7), combined with
the second of the norm equivalences in (3.11) (recalling the approximation property
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7 > 7 —n/2 of the dual basis &) show that (A) < 277 (E[II 21| )/ for every
s € [0,7 —n/2). This completes the proof of 2. g

4.2 Multilevel Monte Carlo covariance estimation

The estimation of covariance matrices X, € R”*7 of Gaussian random variables z
taking values in R?” from M i.i.d. realizations of z has received attention in recent
years (e.g. [8, 9, 60] and the references there). Focus in these references has been on
incorporating a-priori structural assumptions on X, such as bandedness etc. Here,
we utilize the compression patterns from Subsection 3.3 (which are universal for
pseudodifferential coloring A by our results in Section 3).

To this end, we estimate blocks of finite sections C 4, , P 4, for the bi-infinite matrix
representations (3.1) which resolve the GRF Z at finite spatial (multi) resolution level
J, i.e., at spatial resolution O(2~7). We will directly analyze a multilevel estimator.
The number p of parameters (in the usual terminology as, e.g., in [8, 9, 60]) in the
truncated MRA representation (3.14) of samples of Z isthen p = #(A,) = o).

We suppose that we are given M approximate, i.i.d. samples of the GRF Z at
various levels of spatial resolution with p = O(2"”) parameters at the highest resolu-
tion level J. A plain Monte Carlo approach to sample the corresponding covariance
matrix would result in computational cost O (M p). The goal of multilevel Monte Carlo
(MLMC) estimation is to reduce this computational cost while keeping the accuracy
consistent: we aim at a sampling strategy reducing the cost of O(Mp) in certain cases
to O(max{M, p}) with asymptotically the same accuracy.

According to Proposition 7, the covariance operator C of the random field Z in
(2.1) satisfies

Vo e H' (M).w e H'M) & [(€=Cp)Qsw. Quv)| S 27 & wl .

The matrix corresponding to the tapered covariance operator Cj, may be represented
as C), = E[(ip’i;)g], with the GRF Z being cast in the dual MRA, Z = Z' ¥ =
D iz o 2okev; Lk ¥ x and 7, denotes the truncated coefficient vector of Z, see (3.14).
In the MLMC sampling algorithm we exploit that in wavelet coordinates, the blocks
of the covariance matrix need to be approximated with block-dependent threshold
accuracy in order to obtain a consistent approximation of the covariance operator C.
For J > jy, define the MLMC estimator by

J
C, ~ E5(C)) = Y Eum, (ChopalisJ")-
JJ'=Jjo
Here, C*(j, j') is the section of C® corresponding to {(j, k) : k € V;} x{(j', k') : k' €
Vj}and CZlobal (j, j') is the respective global matrix padded with zeros at indices that

arenotin{(j, k) : k € V;}x{(j', k') : k" € V/}. Furthermore, for j, j' € {jo,..., J},
E M; denotes a Monte Carlo estimator with M; ; samples. More specifically, the
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Monte Carlo estimator E M; (Czlobal( Jj. J") is realized by M; ;s i.i.d. samples of the
coefficient vector Z at discretization levels j, j’ of spatial resolution, i.e.,

M;
1 JsJ » . )
C;(jv ]/) ~ EM]-V]-/(CE(.].’ ]/)) = M] P Z (Zi(_])Zl‘(‘]/)T)S,
’ i=1

where Z(j”) is the restriction of the coordinate vector to the coordinates with indices
in{(j",k):keV j»}. The operator that corresponds to the MLMC estimator £ j (C‘;)
will be denoted by Ej (C;), ie.,

Vi, M € Ay (EJCOY, ) = (EF(C))) -

Recall that B? is the tapered version of some matrix B, as defined in Definition 1.
We suppose that we are given samples, which are independent realizations of Z at
multiple scales of resolution, expressed in terms of the coordinate vector

[Z:i=1,....Mo},...{Z :i=1,..., M},
where Z/ denotes the truncation of the coordinate vector Z to coordinates with indices
in {(j/, k") : jo < j < j.k' € Vj}. In this setting, the sample numbers M; ; are
given by
J
Mj j = M)y, Where Mj:= ) Mj:. (4.10)
=i

Proposition 9 Suppose Assumptions 1(I)—(1l) hold for some ¥ > n/2. Let further the
assumptions of Proposition 7 hold with wavelet and dual wavelet parameters d, d
such thatd < d — 2F.

Then, for any B < i — n/2 and —F < t,t' < d, there exists a constant C > 0
such that the multilevel Monte Carlo estimator E7 (C;) with sample numbers (4.10)
satisfies the error bound

- wp NG = ESC)0u. 01
weH (MNO} yer? Moy Nl a0l e ag)

L2(Q)

— i(mi N 2
27D Y 2024 o 8 vy Nl 0l

J
2C 1
<
— 1 — 2—(min{t,/'}+p) Z ~
J=jo 4/ M;

The projectors Q j are as in (3.5).

Proof By the estimate in [21, Equation (9.3)] (also exploiting the estimates [21, Equa-
tions (4.3) and (4.2)])

(5 — E5(C5) Quu, Qv)]
sup sup

@D =
ue H' (MO\{0} ye H' (M)\ {0} lull ey llv ||Ht’(M)

LX)

@ Springer



Multilevel approximation of Gaussian random fields: Covariance... Page 27 of 57 101

J
<| 3 2 i) — Ew, (€G],
joi'=o | L@
J . w
< Z 27”271 ! H ||C;(]’ .]/) - EMj‘j/ (Ce(]7 ]/)) ||HS L2(Q)
s j’:jo

"

IA

[Z7G) s .

Ji'=jo Vv Mj.j

where we used that the operator matrix norm with respect to the Euclidean norm is
upper bounded by the Hilbert—Schmidt (or Frobenius) norm. The Frobenius norm
satisfies that |w(w’) " |lus < lwll2[lw’]2 forall w € R™, w’ € R™ , m, m’ € N. Also
note that by (3.11), [[Z(j)ll2 < 27/P|| 2l ys a4y- Thus,

M<cC Z I b (YL SN NG )] ”Z”L4
]s]

(HA(M)) "
Jsi’=Jo

Furthermore,

J J
Z ! I b (250 T M UE ) R Z - 0= Jjt+B)y—j (' +B)
M] / R ’
\/ JJ] max{JJ} =j

P -

J.J'=Jo Jj=j
and

S i

j.jmax{j,j'}=j

. j _ j
< 9= Ji+h) Z 2= WHB) 4 9= +B) Z =i t+p)
J'=0 j=0
2= (t+p) 2= (' +p) o —j(min{z,1'}+6)
< + <2 - .
1 =2-W+p 1 —2-0+p — 71 — p—(min{t,t'}+p)

In conclusion the asserted estimate follows, i.e.,

J
2C 1 Fmints !
§ : —j(min{z,7"}+B) 2
(I) = 1— 2—(min{t,t’}+ﬁ) p \/ﬁz ||Z||L4(Q,Hﬂ(/\/l)) “M”[“U”[/
Jj=Jjo J

O
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The required computational cost of the estimator E7 is

I
work = 0( 3 M,-2/"> A.11)

J=Jo

and by Propositions 7 and 9 the accuracy is

I .
error = 0(21“0 + 3 M/.‘”zzf“), 4.12)
j=jo

where @« < g < 2F +t+ 1t and @ = 7 — n/2 — gy + min{z, ¢’} and where we
inserted 8 = 7 — n/2 — gq for arbitrary small gy > 0. It remains to choose the sample
numbers M j and equivalently the sample numbers M;, j = jo, ..., J,insuchaway to
optimize accuracy versus computational cost. This has been considered in the context
of multilevel integration methods and GRFs, e.g., [43]. Following this reference, we
choose the following sample numbers

i, = [ o210 2R] = o,

and
27200 if 2o > n,
Mj, = {27202, if 200 = n,
2](2ao+2n/374a/3)’ if 20 < m.
The overall computational cost is
O(2720), if 2a > n,
work = 1 02720 j3), if 20 = n,

O n=2x0=)y " if 2y < p.

The proof of the following theorem is postponed to Appendix D.

Theorem 2 Let the assumptions of Proposition 9 be satisfied. In addition, let ag €
[a,2F +t +1'] fora < F —n/2 + min{z, t'}.
An error threshold ¢ > 0 may be achieved, i.e.,

(C}, — EZ(C))Qu, Qyv)
sup sup L Ip = O(e)
ue H' (M)\{0} ve H! (M)\{0} ”M”H’(M)”v”Ht’(M) L2(Q)
with computational cost
O(e?) if2a > n,

work = 1 O(¢ 72| log(e™ 1)) if 20 = n,
0(8—(n/050—2(1—a/010))) if2oz < n.
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Remark 6 The results of Proposition 7 on the compression of the covariance matrix
can, of course, also be used in combination with single-level Monte Carlo estimation
by computing only those entries of the sample covariance matrix which are needed
according to the tapering scheme (3.18)—(3.20).

Remark 7 The MLMC convergence results of this section hold in the root mean squared
sense. Bounds that hold in probability could also be derived. For the case of single-level
Monte Carlo estimation with M samples, a computational cost estimate of O(Mp)
follows readily by [9, Lem. A.3]. Specifically [9, Lem. A.3] (where convergence in
probability is derived based on [63]) may be applied to the preconditioned compressed
covariance matrix D C:D, = (D/,C,D")* = E[(D}Z,)(D,Z,)"]. This matrix
satisfies the assumptions of [9, Lem. A.3], since it is uniformly well-conditioned.
This is a consequence of Proposition 7(ii). Similarly, the use of wavelet coordinates
will imply p-uniform bounds in several classes of regression methods. Bounds of
covariance estimators that hold in probability may be of interest when certified bounds
on the condition number of the estimator are required. For example when the estimator
of the covariance matrix is further used inside an iterative solver for linear systems to
approximate the precision matrix.

4.3 Spatial prediction in statistics

Optimal linear prediction of random fields which is also known as “kriging”, is a
widely used methodology in spatial statistics for interpolating spatial data subject to
uncertainty (see, e.g., [67] and the references there). The kriging predictor is the linear
predictor for a real-valued quantity of the random field (e.g., a point evaluation) based
on the observations such that the variance of the error is minimized. Therefore, the
kriging predictor corresponds to the orthogonal projection in L?(£2) onto the finite-
dimensional subspace generated by the observations, see [49, Section 2], and the theory
for kriging without observation noise may be formulated in an infinite-dimensional
setting, with a separable Hilbert space as state space of a GRF, see also [58]. For
the computational algorithm discussed in this section we shall consider the GRF Z
defined through the SWDE (2.1) and its (bi-infinite) covariance matrix C € RN*N
represented in the MRA W, which is truncated to a finite dimension p, see (3.16),
C~C, e RF*P,

A typical model in applications is to assume that Z is observed at K distinct spatial
locations {x;} lK: | € M under i.i.d. centered Gaussian measurement noise:

yvi=Z@)+ni, i=1,...,K, n ~N(@0, 0% iid.

One is now interested in predicting the field Z at an unobserved location x, € M (or at
several locations) conditioned on the observations {y; }iK= |- In other words, one needs
to calculate the posterior mean E[Z(x,)|y1, ..., yk 1. However, this task turns out to
be computationally challenging as, assuming a finite spatial resolution of dimension
p for approximating the GRF Z, direct approaches to solve the arising linear systems
of equations entail computational costs which are cubic either in K or in p or in both.
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In this section we address how the multiresolution representation of the covariance
and of the precision matrices of Z in the MRA W allow an approximate, compressed
kriging process whereby the matrices and vectors are numerically sparse due to the
cancellation properties of the MRAs. For p € N, we truncate the bi-infinite covariance
matrix C of the GRF Z in the MRA W to the “finite-section” matrix C, € R”*? using
the index set A; C 7, see (3.16), where p = #(A ). Also, we consider an abstract

setting with functionals g1, ..., gx which gives us the model
y=GZ+n,
where y = (y1,...,yk) ' is the random vector correspondmg to_the observations,

G € RXXP s the observation matrix with entries Gijx = (&> 1//1 ©), and Z, 5 are
independent, centered multivariate Gaussian distributed random vectors with covari-
ance matrices C, € R”*” and 0’1 € REXK respectively. We recall that the GRF
Z=%"Uis represented in the dual MRA U, see (3.14). Admissible choices for the
functionals g; are local averages around points x; € M. The joint distribution of Z
and y is thus given by

7\ _N((° C, C,G"
y 0/ \GC, GC,G" +0°1) )"

Then, the law of the posterior Z|y is again Gaussian and the kriging predictor is given
by the posterior mean, namely,

—1
way = C,67 (GC,67 +071) . (4.13)

In what follows, we will address how the posterior mean in (4.13) can be approx-
imately realized with low computational cost when represented in the MRA U
exploiting wavelet compression and multilevel preconditioning techniques.

We will proceed in two steps. First, we will analyze the computational cost for
approximately computing the posterior mean. Secondly, we estimate the consistency
error incurred by the compression of the covariance matrix.

The main challenge is the efficient numerical evaluation of (GC,G " + crzl)_1 y.
It will be approximated numerically by the conjugate gradient (CG) method applied
to approximately solve the linear system to find v such that (GC,, G +oDv=y. It
is well-known that after NV iterations of CG to approximately solve the linear system
Aw = f by w" € RX for a SPD matrix A starting from the initial guess being the
zero vector, it holds [30, Thm. 10.2.6] with ||w||i := w ! Aw that

N
Jw—wV|, 52<VC°nd2(A)_ 1) Wlla. (4.14)

Jecondy(A) + 1

To estimate the condition number of the matrix A := GC pGT + 21, we observe

vweRK: vIGC,G'v>0.

@ Springer



Multilevel approximation of Gaussian random fields: Covariance... Page310f57 101

On the other hand, by Proposition 3(ii)
vy € RX . VTGCPGTV < c+vTGGTv.

We assume that g; € Lz(M), i =1,..., K, and that they have disjoint supports, i.e.,
u(supp(gi) N supp(gi’)) = O forany i,i’ = 1,..., K such that i # i’. We obtain
with (3.11) that, for every v € RX,

K
vIGG v = Z Zvi(ghwj,k)(gi/71/fj,k)vi’
iil=1 jk

_szl gu%k Zvlg,

<szgul/fj k>

Jok =1 Lz(M)
The disjoint support property of g1, ..., gx implies that
K
1 ; Pgila ey = IVIE,_max {llgilgau )

Thus, there exists a constant C > 0 that depends neither on K nor on p such that for
every v e R
vIGC,G v = CIVIZ max {lgil7a )

We conclude that, for every v € REK,

.....

which implies that

Cmaxi—1.__ x{lgl?,
(et |

condy(GC,G " +071) < > (4.16)
o
The argument applies verbatim to the compressed matrix C%, i.e.,
C maxi—1....x {8l
cond>(GC5GT +071) < l 2{ gl .17)
o
Let us denote by
s . exT exT 2\ !
oy = C5G (GCPG Yo I) y (4.18)

the posterior mean that results from the compressed covariance matrix C%,.
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Furthermore, let vV be the result of N iterations of CG to approximately solve the
linear system (GC%,G " 4 o> I)v = y. Then, by (4.16), (4.15) and by (4.14)

—1\V
nv—vN||2<zK(ﬁ+l) M.

.....

C;G—r v and observe that

N
“ e s,N” <2 \/E_l Gl 4.19)
M7y — Mgy [y = 2K W 1C,G " ll21vll2- (4.

Theorem 3 The computational cost of ﬂ%;v to achieve a consistency error for any
e, 1
e,N _
H‘L%Iy ~ K3y Hz =0()

is O((K log(p) + p)o ' log(8~ 1o —2)), where
N > o llog(s~lo72).

Proof By elementary manipulations, we observe that the made choice on the number
of iterations in CG N, guarantees the claimed consistency error by (4.19).

The matrix C"; has O(p) non-zero entries and the matrix G has O(K log(p)) many
non-zero entries. This implies that the application of the matrix GC‘;,GT to a vector
has computational cost O(K log(p) + p), which is required N times to compute v/,
The computational cost of the application of C;G—r is again O(p + K log(p)). Thus,
the claimed estimate on the computational cost follows. (|

Remark 8 As single-scale basis functions have supports proportional to the step size,
the observation matrix G has only O(K) many, nonzero entries when computed with
respect to the single-scale basis {qb .k} in comparison with O(K + log(p)) many
nonzero entries when computed with respect to the wavelet basis W k). Denoting
by Tg_, 7 the dual fast wavelet transform, both versions of the observation matrix are

interconnected by G¢ GoT = Glz. Consequently, as the fast wavelet transform is of

linear complexity, computing the action of G C5, G% on a vector via
£ ~xT
G¢ 5 ¢CPT¢H¢G$ (4.20)

reduces the complexity from O(K log(p) + p) to O(K + p). An illustration of this
matrix product is shown in Fig. 7, see Subsection 5.7 for the details.

We estimate the error ||z, — y/%y l2 incurred by using the compressed covariance
matrix C‘;.
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Proposition 10 Let the assumptions of Proposition 7 hold. Recall that p = p(J) for
J = Jjo.
Then, there exists a constant C > 0 independent of J such that

|y — wiy |, < Co iyl 27
Proof The result is an elementary bound obtained from the 2-norm of SPD matrices
in terms of their spectrum. For any two symmetric, positive semi-definite matrices
A, B e REXK
IA+0’D™" = B+0’D 7'l <o *I|A —B2.
This can be seen by

A —B ' =A'B,B;' —B;! = (A;'B, —DB;!

and
AJ'B, —T1=A;'B, —A'A, = AI(B, — A,),

which implies

1A' =B 2 < 1A 121Bs — As l121B; 112 = 1A, 1121IB5 ' 121A — B2,
where A, := A + ¢’ and B, := B + o ’I. The assertion of the proposition now
follows by Proposition 7 with (4.13) and (4.18). U
5 Numerical experiments
5.1 Preliminary remarks and settings

For the numerical illustration of our results, we shall consider the boundary of the
domain G shown in Fig. 1. It is given by the 27 -periodic, analytic parametrization

y 10,271 > M=0G, y(@)=g() [ij((jjﬂ ,
where S
1
8@) = a0+ 105 ) (i sinkg) + ok cos(kg)
k=1

is a finite Fourier series with the following coefficients:

a_5=22, a_4=056, o_3=0.14, a_r,=1.1, a_1=14, o= 50,
a5 =089, ay=-15, az3=-12, ar=-1.5, o =-0.57.
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Fig. 1 The domain G under
consideration, with a co-ordinate
grid. Its boundary is used for the
numerical tests

The covariance kernels under consideration are from the Matérn family [34, 53],

namely?
Z V3z 3z
kijp(@) =exp| —= ), k3p@=(1+—)exp|—— ],
£ L £
NG V52
k =14+ — =72 —-—,
5/2(2) ( + 7 Z+3EZ )exp( 7 >
where z = ||x — y||2 for x, y € M and where the non-dimensional quantity £ > 0
denotes the spatial correlation legth. These covariance operators are pseudodifferential
operators of order r = —2, r = —4, and r = —6, respectively.

We discretize the covariance operators by the (periodic) biorthogonal spline wave-
lets W@4 constructed in [17]. This class of wavelet bases has two parameters, namely
the order d of the underlying spline space and the number of vanishing momentsd > d,
where d + d is even. When d increases, then the dual wavelet functions become more
regular, enabling preconditioning of pseudodifferential operators of negative order.

For computing the compressed covariance matrix, the domain is scaled to unit
diameter. Then, we choose a = @’ = 2 andd = d + (47 —d +r)/4 in (3.19).
This choice turned out to be robust for different applications. The p x p compressed
covariance matrix can be assembled in cost which scales linearly with p if exponen-
tially convergent 4p—quadrature methods are employed for the computation of matrix
entries, cf. [16, 37, 39]. Further matrix operations such as matrix-vector multiplica-
tions admit additional a-posteriori compression which is here applied. This was found
to reduce the number of nonzero entries by an additional factor between 2 and 3,
see [21, Thm. 8.3]. The pattern of the compressed system matrix shows the typical
“finger-band” structure, see also Fig. 2.

1-v_2
3 Here, we represented the Matérn kernel &y, (z) = % («/ZV%)VKV (v2v3), with o2 = 1,as a product

of an exponential and a polynomial which is possible for v = g — 1/2 with g € N.
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Fig. 2 A-priori compression pattern for p = 4096 wavelets in case of the Matérn covariance kernel kj /2

and W (%0 (left) and in case of the Matérn covariance kernel k3,7 and v (2.8) (right). In the left and right
matrix, only 5.0 % and 6.8 % of the matrix coefficients are relevant, respectively

5.2 Condition numbers and compression rates

We choose first the correlation length £ = 1 and focus on the covariance operators
for k12 and k3/>. From the inequality d < d + r for achieving optimal compression
rates, we conclude that we need at least d=6 vanishing moments to discretize k1,2
andd = 8 vanishing moments to discretize k3,2. In our experiments, we also include
the borderline case of d = d — r vanishing moments, which leads only to a loglinear
compression rate.

The numerical results are listed in Table 1 for the Matérn covariance kernel k1, and
in Table 2 for the Matérn covariance kernel k32. We find therein the condition numbers
and the a-priori compression rates for the discretization by p = 27 piecewise linear hat

Table 1 Condition numbers and compression rates in case of the Matérn covariance kernel ky

k

pl/2 J single-scale nnz w4 nnz W (2.0) nnz (2.8
32 5 2.6-103 100 24102 100 1.8-10% 100 6.6 - 102
64 6 1.1-10% 80 27102 88 1.9-10% 98 6.7 - 102
128 7 45.10% 60 3.1-102 65 1.9-10% 71 6.8 - 102
256 8 1.9-10° 40 3.4.10% 42 1.9-10% 48 6.8 - 102
512 9 7.6-10° 25 3.7-10% 26 1.9 102 30 6.8 - 102
1024 10 3.1-100 16 3.9.10% 16 1.9 102 18 6.8 - 102
2048 11 1.2-107 9.4 4.0-102 9.0 1.9 102 10 6.8 - 102
4096 12 5.0-107 5.0 42102 5.0 1.9 102 5.7 6.8 - 102

The compression rates validate the asymptotically linear behaviour. The condition numbers stay bounded
for U(2.0) and \11(2’8), whereas for W24 a slight increase is observed
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Table2 Condition numbers and compression rates in case of the Matérn covariance kernel k3 /2

k

p3/2 J single-scale nnz v (2.0 nnz v (2.8) nnz W (2.10)
32 5 3.2-10° 100 23.10° 100 1.9-10% 100 1.9-10%
64 6 5.8-10° 9] 3.3-103 98 2.3.10% 100 2.0-10%
128 7 1.1-108 69 49.103 75 2.5.10% 79 2.0-10%
256 8 1.9-10° 48 6.9-103 51 2.6-10* 55 2.0-10%
512 9 3.3.1010 31 1.0 10* 33 2.6-10* 36 2.0-10%
1024 10 5.4. 10! 19 1.3-10% 20 2.7 10* 21 2.0-10%
2048 11 8.8-10!2 11 1.8-10% 12 2.7-10* 12 2.1-10%
4096 12 1.4-10M4 6.7 2510 6.8 2.8-10% 7.0 2.8-10%

The numerical compression rates validate the asymptotically linear behaviour. The numerical condition
numbers stay bounded for W28 and w2100 whereas for w20 a slight increase is observed

functions and wavelets, respectively. It is seen from the column labelled “single-scale”
that the condition number grows indeed by the factor 2!"! in case of the discretization
by piecewise linear hat functions. In contrast, the condition numbers in case of the
discretization by wavelets is bounded for all choices of d except for the borderline
case d = d — r, where the condition numbers still grow, although quite moderately.

The compression rates, measured by the percentage of the number of nonzero
coefficients (nnz) relative to p2, are also good in the (borderline) case d=d-—r,
although then only a loglinear compression rate can generally be expected. This is
caused by wavelets with fewer vanishing moments tending to have smaller supports
as is known to hold for the wavelets @4 from [17] which are presently used.
Hence, we obtain less matrix coefficients in the system matrix which correspond to
wavelets with overlapping supports. The compression pattern of the system matrices
and p = 4096 wavelets are displayed for the Matérn covariance kernel ky > and W)
on the left and in case of the Matérn covariance kernel k3,2 and w28 on the right
panel of Fig. 2.

5.3 Influence of the correlation length on the compression rates

We should finally comment on the dependence of the compression on the correlation
length. Since we do not consider the correlation length in the a-priori compression,
it has no effect on this compression. Nonetheless, the correlation length has a con-
siderable effect on the a-posteriori compression. This can be seen in Fig. 3, where
we plotted the compression rates versus the correlation length in case of the Matérn
covariance kernels k1,2 and k3, for a fixed level of resolution and wavelet basis (we
use W20 for k1> and W28 for k3;2). While the a-priori compression rates are
fixed, the a-posteriori compression improves as the correlation length decreases: as
the spatial correlation becomes more and more local, the far-field interaction becomes
numerically negligible.
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Matern 1/2 (¥(29)) Matern 3/2 (029)

10 T T 10 T T
o---Level 10: a-priori o Level 10: a-priori
—e— Level 10: a-posteriori —o— Level 10: a-posteriori
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Fig. 3 Influence of the correlation length on the compression rates (measured by the number of nonzero
matrix entries in percent) in case of the Matérn covariance kernel k1 /> and p(2.0) (left) and in case of the

Matérn covariance kernel k32 and W 2.8 (right). While the a-priori compression is unchanged, a-posteriori
compression improves as the spatial correlation length decreases

5.4 Smoothness estimation via decay of the diagonal entries

We next consider the behavior of the diagonal of the covariance matrices in wavelet
coordinates. In Fig. 4, we plotted the diagonal entries for the Matérn covariance kernels
k12, k32, and ks;». We clearly see the transition between the levels at the abscissa
values 2/. And indeed, if we compute the mean of the diagonal entries per level, the
jump size between subsequent levels is precisely 4, 16, and 64, which corresponds
to 277 with r being the covariance operator order. This order determines, in turn,
the (IP-a.s.) Sobolev smoothness of sample paths of the GRF. As a consequence, the
knowledge of the diagonal entries (or their mean) of just two subsequent levels is
sufficient to estimate the coloring operator order, which, in turn, determines the path
regularity (P-a.s.) and the tapering pattern.

Fig.4 Size of the diagonal
coefficients in case of the Matérn
covariance kernels k1 /2, k32,
and ksjp for £ = 1andn = 1.
We clearly observe the wavelet
coefficient decay relative to the
discretization level, which
depends on the order of the
covariance operator. The jump 1010t
between the level is of relative
height 4, 16, and 64 and reflects
the operator order. Jump height
is 2"l where r = —2v + 1) 1015t

Decay of the diagonal entries

——Matérn kernel 1/2
——Matérn kernel 3/2
——Matérn kernel 5/2
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C(&nvcrgcncc of thc matrlx squarc root computatlon

+Mdtcm kcmcl 1/2: Ryl = 2/\mm/)\max
—e—Matérn kernel 1/2: ®z' = Ain/Amax
—e—Matérn kernel 1/2: 5! = 0.5\min/Amax
——Matérn kernel 3/2: R' = 2Amin/Amax
10® —e—Matérn kernel 3/2: Rp' = Ain/Amax
——Matérn kernel 3/2: ®Bz' = 0.5\ min/Amax

10-10 L

107 ‘ ‘ ‘ ‘ ‘ ‘

5 10 15 20 25 30 35 40

Fig.5 Convergence of the approximation (4.7) of the matrix square root of the diagonally scaled covariance
matrix in case of the Matérn covariance kernel k1 /2 and W(2.0) and in case of the Matérn covariance kernel

k3/2 and p(2.8) Displayed is the || - [|2-norm of the matrix approximation error versus K in (4.7). The
convergence rate is independent of the discretization level

5.5 Fast simulation

We shall next illustrate the efficient numerical simulation of GRF samples on the
algorithm from Subsection 4.1. We apply this algorithm to compute the square root of
the compressed covariance matrix. To this end, we employ again the Matérn covari-
ance kernel k17 and W29 a5 well as the Matérn covariance kernel k3 2 and y2.8),
The correlation length is chosen as £ = 1. We numerically evaluate the || - || norm
error between the exact matrix square root (computed by using the sqgrtm-function
from MATLAB*) and the approximation by (4.7) in dependence on the parameter K.
A sensitive input parameter is >z ! which is the ratio between the smallest and largest
eigenvalue. Therefore, we use its exact value on one hand and its over- or underestima-
tion by a factor of two on the other hand, which accounts for numerical approximation.
The results are displayed in Fig. 5.

It turns out that the convergence heavily depends on >z ! and, thus, on the con-
dition number of the matrix under consideration. Especially, underestimation of 3z !
seems to be harmless while overestimation slows down convergence considerably.
Nonetheless, in any case, we achieve after for K = 40 machine precision. Although
the computations have been only carried out for fixed discretization level (namely,
for p = 1024 wavelets), we obtain exactly the same plots for other values of p
as the condition number of the covariance matrix stays constant in accordance with
Tables 1 and 2.

5.6 Covariance estimation

We shall next illustrate the multilevel Monte Carlo estimation of the covariance matrix.
To that end, we consider the £-difference between the original (uncompressed) covari-
ance matrix and its approximation by the multilevel Monte Carlo method, using

4 Release 2018b
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wavelet matrix compression. As test case, we consider the Matérn kernel k12, which
is of order —2. Consequently, it holds r = 1,n = 1, and t = ¢’ = 0 in Section 4.2.
The wavelet basis used to discretize the covariance matrix is W>® . For the Monte
Carlo sampling, we choose the fixed number of M J = 100 samples on the finest
level J of spatial resolution and increase the number M j of MC samples by the factor
22(n+e)/3 — 2 when passing from spatial resolution level jto j —1,1 < j < J.There,
we consider the borderline case @ = 1/2. This essentially (i.e., up to logarithmic terms)
yields the convergence order 27/2 of the multilevel Monte Carlo method.

The results are presented in Table 3. Here, one figures out the sample numbers 1\7]
per level j in case of discretization level J = 12. For smaller levels, one just has to
remove the largest numbers accordingly. We moreover tabulated the £2-error between
the (uncompressed) covariance matrix and its estimate, where the given numbers
correspond to the mean of 10 runs. The convergence order is like expected, as validated
by the contraction factor 1.41 between the levels, which is approximately observed.
In Fig. 6, one finds the original covariance matrix of size 512 x 512 on the left and
its Monte Carlo estimate on the right. In the (single-level) MC estimate, no a-priori
(oracle) information on the sparsity pattern has been provided. Still, the compression
pattern has clearly been identified.

5.7 Sparse approximate kriging

We next consider the kriging approach presented in Subsection 4.3 and especially in
Remark 8. To this end, we consider that we have given K = 32 locally supported func-
tionals g; which are equidistantly distributed at the boundary M of the computational
domain under consideration. Then, using p = 512 piecewise linear ansatz functions

Table 3 MLMC Covariance —

estimation p J Mj ¢2-error

8 3 51200 1.1-1071 —

16 4 25600 5.4.1072 2.1
32 5 12800 49.1072 1.1)
64 6 6400 29.1072 (1.7)
128 7 3200 1.9-1072 (1.5)
256 8 1600 1.3-1072 (1.4)
512 9 800 1.1-1072 (1.3)
1024 10 400 8.5-1073 (1.2)
2048 11 200 53.1073 (1.6)
4096 12 100 29.1073 (1.3)

Sample sizes M j and accuracy of the multilevel Monte Carlo covari-
ance estimation, with 117] = 100, and with Mj = A?]ZJ_j;presented
here for J = 12. Estimation error in operator norm with respect to the
(densely populated), exact covariance matrix Cp, in wavelet coordi-
nates
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Fig. 6 Truth covariance matrix (left) in wavelet representation and its multilevel Monte Carlo estimation
(right) for p = 512 parameters. Spatial dimensiond = 1, Matérn covariance kernel k1 /2, spatial correlation

length £ = 1, wavelet v (2.0

and wavelets W29 we obtain the matrix representation (4.20) which is illustrated in
Fig. 7.

We emphasize that the matrix which arises from the fast wavelet transform (second
and fourth matrix in Fig. 7) has obviously O(p log p) nonzero matrix coefficients.
However, its application to a vector can be realized numerically in O(p) operations
with a very small constant that depends on the filter length of the wavelets.

5.8 Computations of a GRF on S?

Having illustrated the theoretical findings on a 1-manifold in two spatial dimensions,
we shall also demonstrate the wavelet compression for GRFs in spatial dimension n =
2. We consider the simulation of the centered GRF Z on the unit sphere M = S? ¢ R3.
The covariance kernel under consideration is assumed to be the Matérn kernel k1 2,
defined in terms of the geodesic distance on S?, with unit geodesic correlation length.
We apply piecewise constant wavelets with three vanishing moments, as constructed in
[38]. Since (3.19) is violated and the wavelets are also not suitable for preconditioning
since ¥ = 1/2, we perform the matrix compression as for an operator of order 0. This is
justified since also the Karhunen-Loéve expansion is computed with respect to LZ(S?).

——————————
—_——

!

Fig.7 Sparse factorization of the approximate kriging matrix GCf,GT =G:T!] _C:T accord-

. g7
¢ gy PV g
ing to Thm. 3, Rmk. 8 and (4.20)

@ Springer



Multilevel approximation of Gaussian random fields: Covariance... Page410f57 101

Fig.8 GRFon M = s sparsity pattern of the compressed covariance operator in wavelet coordinates
(left), its nested dissection, “skyline” reordering (middle), and sparsity pattern of the exact Cholesky factor
(right) of the compressed, reordered covariance matrix C, € RP*? for p = 393216. Consistent with [61,
Proposition 1], see also [29, Chap. 4.2]

As pointed out in [35], the Cholesky decomposition of the compressed covariance
matrix can efficiently be computed with nested dissection reordering, compare Fig. 8.
Here, we see the original matrix pattern of the compressed covariance operator on the
left, its reordered version in the middle, and the resulting Cholesky factor on the right.
Indeed, the number of nonzero matrix coefficients of the Cholesky factor is only about
4-5 times higher than that of the compressed covariance operator (compare Table 4).
This appears to be consistent with [61, Proposition 1].

The efficient drawing of numerically approximated random samples proceeds as
follows. Let C‘f denote the compressed covariance operator, C'f = L’f (Llf)T its

Cholesky decomposition, and G? the mass matrix with respect to the piecewise con-
stant single-scale basis, which is a diagonal matrix. Then, for a uniformly normally
distributed random vector X(w), the random vector Y(w) = (G?)_lTwﬁ(pLyX(w)
represents the sought Gaussian random field on the unit sphere S?, expressed with
respect to the piecewise constant single-scale basis. As can be seen in the last col-
umn of Table 4, the computation time per sample is very small. Four realizations are
depicted in Fig. 9.

All the computations have been carried out on a compute server with dual 20-core
Intel Xeon E5-2698 v4 CPU at 2.2 GHz and 768 GB RAM. The computation of the

Table4 Compression rates and computing times in case of the Matérn covariance kernel k1 /, on the sphere

Sphere

P J nnz(Cy) cpu(Cy) nnz(L ) cpu(Ly) cpu(sample)
6144 5 4.70 18 10.3 0.65 0.0017
24576 6 1.22 113 443 5.1 0.015
98304 7 043 692 1.68 26 0.096
393216 8 0.12 4108 0.59 151 0.46
1572864 9 0.03 23374 0.20 865 2.7

Once the Cholesky decomposition of the wavelet-compressed, p x p covariance matrix C¢ has been
computed (exact, up to rounding), each sample of Z can be computed essentially in O (p) operations
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Fig. 9 Four realizations of a Gaussian random field on S? for the Matérn covariance k1,2 with respect to
the geodesic distance

compressed covariance operator has been done with the help of a C-program on a
single core in line with [39], while nested dissection and the Cholesky factorization
have been computed by using MATLAB?.

Let us emphasize that, according to [55, 68], wavelets with the same properties
are available also in case of unstructured triangulations. Furthermore, the efficient
assembly of the system matrix in case of such wavelets has been presented in [3].
Therefore, the algorithm proposed here can be expected to perform efficiently also
in practical situations, e.g., for high-dimensional graphical models, where the present
hypotheses may not hold or may be difficult to verify.

6 Conclusions

For a GRF Z indexed by a smooth manifold M which is obtained by “coloring”
white noise WV with an elliptic, self-adjoint pseudodifferential operator A as in (2.1),
we proved that in suitable wavelet coordinates in L?(M) precision and covariance
operators P and C of Z both admit numerical approximations that are optimally sparse.
This is to say, for any number p € N of leading wavelet coordinates of Z, the p x p
sections P, and C,, of equivalent, bi-infinite matrix representations P, C € RNXN of
C and P admit sparse approximations P}, and C;, with O(p) nonzero entries that are
optimally consistent with C and P. The location of the O(p) “essential” entries of P},
and Cj, is universal (for the pseudodifferential colorings under consideration) and can
either be given a-priori, based on regularity of Z, or numerically estimated a-posteriori
from the decay of the wavelet coefficients, see Fig. 4. This a-posteriori compression is
facilitated by a wavelet representation of the GRF Z, since sample-wise smoothness
of Z in Sobolev and Besov scales on M is encoded in the decay (of the components)
of the random coefficient sequence Z corresponding to the MRA. We furthermore have
proven that diagonal preconditioning renders the condition numbers of both, Pf, and
C¢, bounded uniformly with respect to the number of parameters, p.

Theory and algorithms developed herein do not rely on stationarity of the GRFs.
Furthermore, the assumption of self-adjointness on the coloring operator .A was made
only for ease of presentation. In the general case A* # A the covariance operator
C = (A*A)~! will still be self-adjoint and the GRF Z = A~ colored by A has
the same distribution as a GRF colored by the self-adjoint operator |.A| = (A*A)!/2.

5 Release 2018b
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The wavelet-based numerical covariance compression and preconditioning is in
line with work to leverage a-priori structural hypotheses on covariance matrix sparsity
for the efficient numerical approximation of (samples of) GRFs and of algorithms to
estimate their covariance operators and functions. As one possible extension of the
present analysis, the a-priori known locations of the O(p) many nonzero entries of
P’ and C}, may be leveraged in oracle versions of covariance estimation method-
ologies such as (group) LASSO. These are well established for statistical inference
in high-dimensional, graphical models (e.g. [47, Condition A1]), where numerical
constructions of MRAs have been proposed e.g. in [18, 36].

The hierarchic nature of wavelet MRAs naturally facilitates novel, multilevel ver-
sions of established covariance estimation algorithms as described in [8, 9,47, 60] and
the references there. They amount to sampling the GRF Z represented in the MRA with
a number of samples which depends on the spatial resolution level, with large num-
bers of low-resolution samples, and only few samples at the highest spatial resolution.
We presented one such multilevel estimation algorithm and proved its asymptotically
optimal, linear complexity for all pseudodifferential colorings under consideration.
We introduced a novel, numerically sparse multilevel algorithm for kriging, i.e., for
the spatial prediction given data. This is only a first application of the present results
to methodologies in spatial statistics and more are conceivable. For instance, the com-
putational benefits of wavelet representations may be exploited for computationally
challenging tasks such as statistical inference of parameters. In particular, we mention
the numerical estimation of the order r of the covariance operator of the GRF in terms
of decay-rates of wavelet coefficients of samples as indicated in Section 5.4, see also
the recent work [51] and references there.

The compression estimates which underpin the present result admitted pseudodif-
ferential coloring operators corresponding to the Hérmander symbol class S, see
Appendix A.2.1. Schwartz kernels of these covariance operators are smooth functions
outside of the diagonal, cp. Proposition 2. The present results require this property
as a consequence of our use of the Hérmander calculus. The wavelet compression
analysis in [21, 65], however, only leverages Calderon-Zygmund estimates (2.11) of
finite order. It can therefore be reasonably expected that the present results remain
valid also for pseudodifferential coloring operators of finite (Holder) regularity, for
which corresponding calculi are available (e.g. [1, 70] and the references there).

A Pseudodifferential operators on manifolds
We consider orientable manifolds satisfying Assumption 1(I). In the case that M is

not orientable, there exists a covering manifold M of M with two sheets such that
M is orientable [5, Thm. 1.58] and of dimension n > 1.

A.1 Surface differential calculus

A tangent vector at x € M is a mapping X: f — X(f) € R which is defined on
the set of functions f that are differentiable in a neighborhood of x which satisfies
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a)for A, u € R, X(Af + ng) = AX(f) + uX(g), b) X(f) = 0if f is flat, c¢)
X(fg) = f(x)X(g) + g(x)X(f). The tangent space T, (M) to M at x € M is the
set of tangent vectors at x. In any coordinate system {x’} in M at x, the vectors 3/dx’
defined by (3/3x),(f) = [3(fop1)/dx"]y(x) belong to Ty (M), and form a basis of
the tangent vector space at x € M. Here, ¢ is any diffeomorphism on a neighborhood
of x. Its dual vector space is denoted by 7,"(M). The tangent space T (M) to M is
Urem Tx (M), the dual tangent space T*(M) is | e nq T (M). The tangent space
T (M) carries a vector fiber bundle structure. More generally, for r, s € N, the fiber
bundle T (M) of (r,s) tensorsis | J,c g Tx M?® ® T (M)®.

The manifold M gives rise to the compact metric space (M, dist( -, -)), where the
distance dist( -, -) can be chosen, for example, as the geodesic distance in M of two
points x, x’ € M, see [5, Prop. 1.35].

A.1.1 Coordinate charts and triangulations

Provided that the manifold M of dimension n satisfies Assumption 1(I), it can be
locally represented as parametric surface consisting of smooth coordinate patches.
Specifically, denote by [J = [0, 1]" the unit cube. Then we assume that M is parti-
tioned into a finite number M of closed patches M; such that

M
M= JM;. Mi=y@©). i=1.....M.

i=1

Here, each y;: 00 — M; is assumed to be a smooth dlffeomogghmm We also assume
that there exist smooth extensions M, D M;and y;: O — M; such that ;| = i,
where (] = (—1, 2)". Note that, in the notation of Section 2, G = 0.

The intersections M; N M for i # j are either assumed to be empty or to be
diffeomorphic to [0, l]k for some 0 < k < n. We assume the charts y; to be C 0.
compatible in the sense that for every X € M; N M, exists a bijective mapping
®: 00 — O such that (y 0 ©)(x) = x for x = (x1,...,x,) € O with y;(x) = *.
Note that C%-compatibility admits M = dG for certain polytopal domains G.Inthe
case that M = 9G is smooth, we shall assume that the extensions satisfy M; C M
and that the charts y; are smoothly compatible.

In the construction of MRAs on M, we shall require triangulations of M. We shall
introduce these in the Euclidean parameter domain [J and lift them to the coordinate
patches M; on M via the charts y;.

A mesh of refinement level j on M is obtained by dyadic subdivisions of depth j
of O into 2/" subcubes Cjr € U, where the. multi-index k = (ky,...,k,) € Ng
tags the location of C; with 0 < k, < 2/. With this construction in each co-
ordinate patch, and taking into account the inter-patch compatibility of the charts y;,
this results in a regular quadrilateral triangulation of M consisting of 2/" M cells
Cijk:=v(Cjx) CM; C M.
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A.1.2 Sobolev spaces

Let M denote a compact manifold as in Section A.1.1. Sobolev spaces on M are
invariantly defined in the usual fashion, i.e., in local coordinates of a smooth atlas
{)’Z}f‘i | of coordinate charts on M.

As in Assumption 1(I), we assume that M has dimension n € N, dM = (4, and
is equipped with a (surface) measure . It is given in terms of the first fundamental
form on M which, on M;, is given by

Ki() = (0,700 - 055 (0) 0 x €77 (M), (A1)

The matrix K; in (A.1) is symmetric and positive definite uniformly in x € M;. The
L*(M) inner product on M can then be expressed in the local chart coordinates via

(v, w)LZ(M) = /M v(x)w(x)du(x)

M
= Z [ﬁ((XiU) 0 P @) ((xiw) o ¥i)(x)y/ det(K; (x)) dx,
i=1

where { X,-},.Ai | denotes a smooth partition of unity which is subordinate to the atlas
{v: }f‘i 1-Forl < p < o0, L? (M) shall denote the usual space of real-valued, strongly
measurable maps v: M — R which are p-integrable with respect to .

__ Sobolev spaces on M are invariantly defined by lifting their Euclidean versions on
[ to M; via y;. For s > 0, the respective norm on H* (M) may be defined by

M
ol sy == Y 106D 0 Bill yo )

i=1

This definition is equivalent to the definition of H*(M) and || - ||gsay in (2.5).
For further details the reader is referred to [42, pp. 30-31 of Appendix B] and the
references therein. (Note that the proof of this equivalence on the sphere M = S? as
elaborated in [42] exploits only compactness and smoothness of S?. Thus, it can be
generalized to any manifold as considered in this work.)

For s < 0, the spaces H*(M) are defined by duality, here and throughout identi-
fying L?(M) with its dual space.

A.2 (Pseudo)differential operators
We review basic definitions and notation from the Hérmander—Kohn—Nirenberg cal-

culus of pseudodifferential operators, to the extent that they are needed in our analysis
of covariance kernels and operators.
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A.2.1 Basic definitions

Let G be an open, bounded subset of R”, r, p, § € Rwith0 < p < § < 1. The
Hoérmander symbol class S;Y 5(G) consists of all b € C®°(G x R") such that, for all
K CC G and for any «, 8 € N7, there is a constant Ck ,a,p > 0 with

Vxe K, VEeR": |0f0gb(x.&)| < Ckap(l+ [E]) P 1TWL (A.2)

When the set G is clear from the context, we write S’, s- In what follows, we shall
restrict ourselves to the particular case p = 1, § = 0, and consider S{ 0 In addition,
we write S, 0° := (T),er 5] o- A symbol b € Si , gives rise to a pseudodifferential
operator B via the relation (2.3).

Whenb € S} 0 the operator B is said to belong to O P S| ,O(G) and itis (in a suitable
topology) a continuous operator B: C;°(G) — C*(G), cf. [69, Thm. IL.1.5]. We
write OPS™(G) = (), cr OPSLO(G). We say that the operator B € OPST’O(G)
is elliptic of order r € R if, for each compact K CC G, there exist constants Cx > 0
and R > 0 such that

Vxe K, VIE[=R: [|b(x.&)] > Cx(1+£]})"

A.2.2 (Pseudo)differential operators on manifolds

We suppose Assumption 1. Having introduced the class O P S7 (G) for an Euclidean
domain G, the operator class O P S} (M) is defined by the usual “lifting to M in
local coordinates™ as described, e.g., in [69, Sec. I1.5]. The definition is based on the
behavior of O PSS ,(G) under smooth diffeomorphic changes of coordinates which
we consider first.

Let G,O C R” be open and let y: G — O be a diffeomorphism. Consider
B € OPS]((G),sothat B: C5°(G) — C*(G). We define the transported operator
B by _

B: CF(O) — C*(0), ur> Buoy)o y L
For r € R, we then consider O P S| ’O(M ), the Hormander class of pseudodifferential
operators on M (investigated earlier by Kohn and Nirenberg [50]). We alert the reader
to the use of the notation O PS" (M) for the so-called classical pseudodifferential
operators which afford (pseudohomogeneous) symbol expansions and comprise a
strict subset of OPSLO(M), see, e.g., [66].

Pseudodifferential operators in OPS{’O(M) on manifolds M are defined in local
coordinates. A linear operator B: C*°(M) — C*°(M) is a pseudodifferential oper-
ator of order r € Ron M, B € OPS] ’O(M), if for any finite, smooth partition of
unity {x,- € COOO('/’\ZZ.) i=1,..., n'1} with respect to any atlas {(ﬂi, )7,)}7':1 of M
all transported operators satisfy

[ Bif=fr[BOa(f o7 Mxr]oFi € OPS @ (M) Vi,i'=1,....1.
(A3)
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The class of all such operators is denoted O P S 0(/\/l) Importantly, OPSf o(M)
defined in this way does not depend on the choice of the atlas of M and is 1nvar1ant1y
defined [69, Sec. 11.5], [46, Def. 18.1.20].

A.2.3 Principal symbols

For a bounded, open set O C R”, the principal symbol by(x, &) of B € OPS] 0((’))
is the equivalence class in S} ,(O)/ ST ((9) (see, e.g., [69, p. 49]). Any member of
the equivalence class will be called a prlnClpal symbol of B. For B € OPSj ((M),

its principal symbol by (x, &) is invariantly (with respect to the choice of atlas on M)
defined on T*(M) (see [69, Eq. (5.6)]).

A 2.4 Pseudodifferential calculus

The symbol class S} 1.0 admits a symbolic calculus (e.g., [69, Prop. 11.1.3]). In the
sequel, we assume all pseudodifferential operators to be properly supported, see [69,
Def. 11.3.6]. This is not restrictive, as every B € O P S} 1.0 o (M) can be written as B =
Bi+R, where By € OP S (M) is properly supported and where R € O PS™>°(M)
[46, Prop. 18.1.22].

Proposition 11 Letr,t € Rand A € OPS| (M), B € OPSLO(M) be properly
supported. Then, it holds

(i) A+Be 0PSI " (M,
(ii) AB € 0Psr+’(M)
(iii) Vs e R: A: HS(M) — H* (M) is continuous.

max{r t

Proof The symbol class S| 1.0 1s constructed such thatby (A.2), S’ c s,

Sio S Sﬁlgw’t}. Assertion (i) follows from the construction of the class OPS} (M)
via an atlas, see Section A.2.2.

Recall the atlas {¥; }M , of M with subordinate smooth partition of unity {x; }l 1
The transported operators A;;» and B; ;s defined according to (A. 3) belong to
OPSTO(D) andto OPS! O(D) By [69, Thm.11.4.4], A j/Bj j € OPSI (D) Thus,
claim (ii) holds by the construction of the class O P Sr (./\/l) in Subsection A.2.2.

Finally, the third assertion (iii) follows from [69, Thm 11.6.5], which is elucidated
on [69, p. 53 of Sec. I1.7]. ]

and also

Proposition 12 Lerr € Rand A € O P S} (M) be self-adjoint, positive definite, and
elliptic, i.e., there exists a constant a_ > 0 such that

2 . 2
Yw € Hr/ (M) . (Aw7 w) 2 afl|w||Hr/2(M)'

Then, for every B € R, AP € OPS’ﬁrO(M)'

Proof Since a_ > 0, A is invertible. The assertion follows from [66, Thm. 3]. O
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B Multiresolution bases on manifolds

In this section we briefly explain how the single-scale basis @, the dual single-scale
basis <I> as well as the biorthogonal complement bases W; and W; in (3.3), (3.4) and
(3.6) can be constructed on a manifold M which satisfies Assurnptlon 1(I). We collect
some of their basic properties.

We recall from (3.3) that, for j > jo, the subspaces V; C V41 C ... C Lz(/\/l)
are spanned by single-scale bases ®; := {¢; x : k € A}, where A; denote suitable
index sets describing spatial localization of the ¢; x. Furthermore, the subspaces are
of cardinality dim(V;) = O(2"/). We assume elements ¢; x € V; to be normalized in
L*(M), and their supports to scale according to diam(supp Gjk) = 27J. We associate
with these bases so-called dual single-scale bases D; j = A{pjx : k € Aj}, for which
one has (¢; «, d)j w) = Sk for k, k' € Aj. Such dual systems of one-scale bases
on M can be lifted in charts M via parametr1zat1ons y; from tensor products of
univariate systems in the parameter domains OJ C R”". For example, for primal bases
®; obtained from tensorized, univariate B-splines of order d in L] with dual bases
of order d such that d + d is even, the ®; and CD have approx1mat10n orders d and
d, respectively, see (3.2). The respective regularlty indices y and ¥, see (3.2), satisfy
y =d—1/2,whereas y ~ d. Wereferto [22, 24,55, 56,59] for detailed constructions.

The biorthogonality of the systems @, P ;j allows to introduce canonical projectors
Q; and Q;‘. for j € Nwith j > jo:

Qjvi= Y (W.dj0jx Q=D (.6 1)Pjx

keA; keA;

associated with corresponding multiresolution sequences {V} ;- j, and {\7j Vi o
The L2(M)-boundedness of Q ;j implies the Jackson and Bernstein inequalities,

v — Qvllmsmy S 27V Nvllgimy Yo € H' (M),
forall —d <s <t <d,s <y,—Y <t,and

10 vl asvy S 275710 vl vy Yo € H (M),

for all + < s < y, with constants implied in < which are uniform with respect to j.
To define MRAs, we start by introducing index sets V; := Aj11\Aj, j > jo.
Given single-scale bases @ ;, @, the biorthogonal complement bases V; and W; in
(3.6) satisfying the biorthogonality relation (3.7) can be constructed such that (3.8)
holds. We refer to [55, 56, 59] for particular constructions. ~
With the convention Q j, = Qjo =0, one has for v; € V; and for v; € V; that

J—1 J—1
vi= Y (01— 0y, V=) (0 — 0D,

Jj=Jo i=Jo

@ Springer



Multilevel approximation of Gaussian random fields: Covariance... Page490of57 101

(Qjr1— Q= (Wi (5 —0Hv= > (0. vk

kEVj kGVj

From this observation, a second wavelet basis U such that W and W are mutually
biorthogonal in L2(M) is now obtained from the union of the coarse single-scale
basis and complement bases, i.e.,

v = U\I/j and \T/: U\Yf]
Jj=Jo Jj=Jo

where we use the convention ¥ := ® 41, 0, jo = ® jox1 and assume that all basis
functions are normalized in L2(M). The bases W and W are called the primal and
dual MRAs, respectively.

The key to the preconditioning results for the covariance and precision matrices in
Subsection 3.2 is the effect of diagonal preconditioning for pseudodifferential opera-
tors in MRAs.

To address this, we let B € O PS| ;(M) be a pseudodifferential operator which
satisfies Assumption 1(I), so that B: H'/>(M) — H"/?(M) is an isomorphism.
Assume thaty > 0.By (3.11), ¥ is a Riesz basis for L2(M), so that the corresponding
finite section matrices

BJ = ((Blpj/’k/, wj’k>)]‘()fj,j/f«/,k€vj', k/evj/
are ill-conditioned, cond(B;) ~ 2I"IV. Stability of the Galerkin projection in

H"/2(M) and the Riesz-basis property (3.11) in H"/?(M) imply the following result
on diagonal preconditioning of B .

Proposition 13 For r € R, define the diagonal matrix D', € RPI*PU) by
D), = diag(2"* 1 x € Ay),
where |A| = j for .. = (j, k) and, as in (3.16),
Ay =L, jo=j=J.keVj},  plJ):=#A)).

Suppose that the manifold M and the operator B € OPS] 1.oM) satisfy Assump-
tions 1(I) and (Il), respectively. Furthermore, assume that (3 11) holds with

r/2e(=Y,y), (B.1)

Then, forevery J € N, the diagonal matrices D'} define uniformly spectrally equivalent
preconditioners for By, i.e.,

conda(D,"*B;D,"?) ~ 1, (B.2)

with constants implied in > independent of J.
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Proof Under Assumptions 1(I)—(II) the operator B € O P S} ’0(/\/1) defines an isomor-
phism between H'/?(M) and H ~"/>(M), see Proposition 11(iii) and Proposition 12,
and the norm equivalence

VI3 200 = (B, v) Yo € H2(M)

holds. Here, (-, - ) denotes the (H~"/>(M), H"/?(M)) duality pairing. The assertion
then follows from the Riesz basis property (3.11). (|

C Coloring of Whittle-Matérn type

Three essential characteristics of the covariance structure of a random field are given
by its smoothness, the correlation length, and the marginal variance. A convenient
approach to define models, for which these important properties can be parametrized,
i.e., controlled in terms of certain numerical parameters, is to generalize the Matérn
covariance family. Such a parametrization in turn facilitates for instance likelihood-
based inference in spatial statistics.

Specifically, let us consider the white noise equation (2.1) for an elliptic, self-
adjoint coloring pseudodifferential operator .4 which is a fractional power 8 > 0 of
an elliptic “base (pseudo)differential coloring operator” £L € O P S{_,O(M) of order
r > 0, shifted by the multiplication operator with respect to a nonnegative length-scale
function x: M — R, i.e.,

A= (L+ KZ)/3 for some 8 > 0. (C.1)

Here, 8 > 0 and £ are such that the resulting coloring operator A fulfills
Assumption 1(II). In particular, k € C*°(M).

For a linear, second-order (so that 7 = 2) elliptic (surface) differential operator £
on M in divergence form, models of this type have been developed, e.g., in [12, 52].
Moreover, computationally efficient methods to sample from such random fields or
to employ the models in statistical applications, involving for instance inference or
spatial predictions, have been discussed recently, e.g.,in [10, 11, 19, 41]. The following
proposition extends and unifies these approaches, admitting rather general operators
L (which, in the classic Matérn case, see [53, 72], is the Laplace—Beltrami operator
L=—-Ap\ € OPS%,O(M), with ¥ = 2 and constant correlation length parameter
Kk > 0).

Proposition 14 Suppose that the manifold M satisfies Assumption 1(I) and that L €
OPS{’O(M) for some ¥ > 0 is self-adjoint and positive. Let § > 0 be such that
rB > n/2 and let Zg denote the GRF solving the white noise equation (2.1) with
coloring operator A = (L + k)P on M, where k: M — R is smooth. Then, the
covariance operator Cg of the GRF Zg is a self-adjoint operator, (strictly) positive
definite, compact operator on L*(M), with finite trace. Furthermore, the covariance
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operator of Zg is given by

Cs=(L+K2) " eors M.

It defines an isomorphism between H* (M) and HT?"B (M) for all s € R.
The associated precision operator Pg satisfies, for all s € R,

Pp = (L +x%)* e 0PI (M)

and, for any s € R, it defines an isomorphism between H* (M) and H*~*"F(M).
A GRF Zg defined as in (2.1) with coloring operator A = (L + k)P admits the
regularity
Zg € H'(M), P-as., for s <rp —nj/2.

Proof We first note that by Proposition 11(i) £ +«2 € O PSlf (M), since the multi-
plication operator with the function > € C® (M) is an element of O P.S ?’O(M). By

Proposition 12 A = (£ + «%)# € OPST%(M). Therefore all results follow by the
same arguments as used in the proof of Proposition 1. (]

Proposition 14 shows that the covariance and precision operator of the GRF Zg
defined by the white noise driven SWDE (2.1) with coloring operator of Whittle—
Matérn type, A = (L + k%), satisty Cs € OPS; o " (M) and Pg € OPS} ] (M.
For this reason, all results of Subsections 3.2 and 3.3 on optimal preconditioning and
matrix compression are applicable for covariance operators B = Cg and precision
operators B = Pg of Whittle-Matérn type, where the order r € R is given by —2r 8

and 2r B, respectively.

Remark 9 The coefficient 8 > 0 in the Whittle-Matérn like coloring operator A =
(L + «2)? and the order 7 > 0 of the base operator £ € OPS] o(M) govern the
spatial regularity of the GRF Zg (in L”(£2)-sense and PP-a.s.). The shift «2 does not
influence the smoothness, but controls the spatial correlation length of Zg. Allowing
for a function-valued shift k> € C*°(M) thus corresponds to models with a spatially
varying correlation length which form an important extension of the classical Matérn
model.

As noted in Proposition 14 above, the corresponding Whittle-Matérn like covari-
ance operator Cg is a self-adjoint, positive definite, compact operator on the Hilbert
space L% (M). By the spectral theorem and by the (assumed) nondegeneracy of C, there
exists a countable system {e;} ;en of eigenvectors for Cg which forms an orthonormal
basis for L2(M). The corresponding positive eigenvalues {A;(Cg)}jen accumulate
only at zero and we may assume that they are in non-increasing order. This gives rise
to a Karhunen—Loeéve expansion of the centered GRF Zg,

Zp(x,0) = Y \J1;(Cp) ej(X)Ej (), (C2)

jeN
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with equality in L%(Q; L>(M)). Here, {§j}jen are ii.d. N(O, 1)-distributed random
variables.

Partial sums of the Karhunen—Log¢ve expansion (C.2) are of great importance for
deterministic numerical approximations of PDE models in UQ which take Zg as a
model for a distributed uncertain input data, see, e.g., [15, 31, 41] and the references
there.

The errorin a J-term truncation of the expansion (C.2) is governed by the eigenvalue
decay A;(Cg) — 0 as j — oo. Assuming that k > 0 is constant on M, we find by
using the spectral asymptotics A ; (£) = ¢ jTm 4 o(jT/M) for £ [69, Thm. XI1.2.1] as
well as the spectral mapping theorem that

VjieN: 1j(Cp) = (Kz + Aj(ﬁ))_zﬁ _ K—4ﬁ(1 +K—2C/jf/n + O(jf/n))—Zﬁ.

This shows that the asymptotic behavior A ; (Cg) ~ j~2#7/", which is expected from
(69, Thm. XII.2.1] applied for the operator Cg € OPSl_’ (2)’3 ;(M), is only visible for
j>Jt =Jk,L) = O(KZ”/ r ) where the constant implied in O( ) is independent
of the value of 8 > 0. For 1 < j < J*, one expects an eigenvalue “plateau”

Aj(Cp) =k, 1< j<Tr=0w>"). (C.3)

Since in models of Whittle-Matérn type with L € OP S f ’O(M) the (nondimensional)

spatial correlation length s k72T, (C.3) indicates tl}at for_ small values of X, the
plateau in the spectrum of Cg scales as J* = O™y = L7". Due to Aj(Pg) =
Aj (Cgl) = 1/1;(Cp), analogous statements hold for the precision operator Pg.

D Proof of Theorem 2

The idea of this proof is similar to techniques in [43] and the references therein.

Proof of Theorem 2 We recall the asymptotic estimates of the computational work and
error of the MLMC covariance estimation from (4.11) and (4.12)

J
work = O Z M;20" 4.11)
Jj=Jjo
and
4 2
_ —Jao 7 1/27—ja
error = O | 2779 4+ Z M; 2 . (4.12)
J=Jo
We seek to find sample numbers M j»J =0,..., J that optimize the computational

work to achieve a certain accuracy. We consider M as a continuous variable and seek
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to find stationary points of the Lagrange multiplier function
o 1/24—j Lo
£ g(8) =270 4 N M P g Y M2
J=Jo j=Jjo

Hence, we seek Mj, j :Njo, e, J such that 3g(§)/81\71j =0,j=jo,...,J. This
results in the conditions M; = 2-ite)2/3 5 — o4 1, ..., J, and we thus choose

MJ — {Mjoz_j(n-‘ra)z/:s-" ] — jO + 1’ . J,

where M jo 18 still to be determined. This yields

J
work = O | Mj, Y E; (D.1)
Jj=Jo

and

J
_ —Jag vy 1/2 .
error =0 | 2 +Mj0 E E;|,
J=Jo

where E; = 27/92/3Hin/3 j — jo ... J.Itholds that

J o) if 2a > n,
Z E;=30() if 200 = n,
Jj=Jo ORI n/3=22/3)y if 2 < .

We choose M o to equilibrate the error contributions in 277/%0 + M jol/ : Z]J-=o Ej,

which leads us to
22Jeo if 2a > n,

M, = {22/ 2 if 20 = n,
2](2a0+2n/3—4a/3) if 20 < n.
By inserting the corresponding value of M jo and of ZJJ: jo Ej into (D.1), we obtain
that
02720 if 2a > n,

work = { @272 3) if 2o = n,
O(zj(n—Z((xo—Ol))) if20 <n.

The assertion now follows by expressing the computational work as a function of ¢
with the choice & = 22/, O
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