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Abstract

Wind Energy has experienced rapid growth in recent decades. As the size of offshore wind
farms also increases due to the great demand for the renewable energy, the layout of the wind
farm requires optimisation to maximise the energy yield over the lifetime of the wind farm.
It has been shown that the inter-year variation could lead to a significant risk for the wind
farm developer. This research aims to develop a method to create a wind farm layout that is
robust against the uncertainty source, the inter-year variation of Weibull parameters and wind
direction sector probabilities. A wind farm layout optimisation problem under uncertainty
corresponds to optimisation under uncertainty (OUU), which is computationally expensive.
It is, therefore, proposed to solve the computational issue by applying surrogate modelling.
The resulting layout should have a consistent performance throughout its wind farm lifetime
period.

The research considers and compares two different kinds of surrogate models, polynomial
chaos expansion (PCE) and Kriging, on two different applications. First, the surrogate model
is built for the wind farm power model to emulate the medium-fidelity model, which requires
to evaluate the wake effect in every wind speed and wind direction. From the results, it is con-
cluded that both surrogate techniques provide estimation with an error within 2% compared
to the medium-fidelity model, and the PCE model is 25% faster to construct than the Kriging
model. Another application of the surrogate model is for the uncertainty quantification (UQ).
As the computational expensive Monte Carlo method is traditionally used to propagate the
uncertain variables, the use of surrogate models can further reduce the number of uncertain
samples to obtain the statistic output response. According to the results, the samples are
reduced from 100,000 to 100 with an adequate accuracy on the estimation.

Once the statistic of annual energy production (AEP) of the wind farm can be computed
efficiently, the optimisation under uncertainty problem is performed with the genetic algo-
rithms. The research considers two different starting layouts, which is a self-generated layout
by the algorithm and a well-designed initial layout by the author. The research discovers that
the optimisation brings the self-generated case to a performance that is similar to the well-
designed layout. In the other case, the optimiser seems to be stuck at the well-designed initial
layout and can not easily find a better one. Nonetheless, the computational time of OUU is
reduced by using the surrogate UQ model, which reaches a similar time to the deterministic
optimisation with the medium-fidelity model. Furthermore, OUU provides a layout that may
be more robust to the inter-year variation as indicated by a higher P90 value of AEP than
the layout from the deterministic optimisation.
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Chapter 1

Introduction

1-1 Background information

As climate change and global warming becomes a crucial topic nowadays, renewable energy
has been developing rapidly in recent decades [1]. Wind Energy, in particular, has been one
of the most popular sources of energy among all. In 2019, the global wind power installations
exceeded 60 GW and thus brought the global cumulative installed capacity to more than 650
GW [55]. In contrast to fossil fuels, wind energy is both abundance and independent of the
supply concerns.

However, similar to most renewable energy, the intermittent wind source requires a challenging
economic evaluation for a potential wind farm project. Therefore, feasibility and risk analysis
are often carried out by the investors and the banks before the start of the project to identify
the uncertainties [2]. The uncertainties exist in the wind farm output and turbine lifetime,
and thus the investment risk increased. Recently, it has become a standard measure in
the industry to have a conservative evaluation that includes the effect of this uncertainty
behaviour. It is because that by implementing a probabilistic approach that quantifies the
effect of uncertainties could possibly reduce the costs of wind energy [56].

1-2 Problem analysis

According to Gonzalez et al. [17], the uncertainty in the returns on investment lies within
the future price, costs, and wind. As profitability is the primary concern for the investors,
the cost of construction, operation, and even the final decommissioning of the wind farm
should be dealt with care. A common approach is to classify the uncertainty into aleatory
and epistemic uncertainties [43]. According to the definition, epistemic uncertainties are
the scientific uncertainty in the model of a process that results from the limited data, and
knowledge [19]. They are reducible once the knowledge of the field is increased.

On the other hand, aleatory uncertainties come from the natural randomness in a process.
When an increase in knowledge appears, this kind of uncertainty can be better characterised

Master of Science Thesis J.S. Chuang



2 Introduction

but not reduced. In the field of wind energy, the stochastic properties such as wind speed
and direction are classified as aleatory uncertainties while the wake model uncertainty is
one of the epistemic uncertainties as it can be further understood with research. In this
research, the uncertainties in the future price, construction costs, and investors decision are
ignored. The main focus is on the future wind speed and direction distribution, which are
aleatory uncertainties. In other words, the natural characteristic of wind will be investigated
as it could heavily influence the annual energy production (AEP) of a wind farm. Despite
the farm lifetime production is essential, Quaeghebeur [45] pointed out that the year-to-year
variation in the wind resources is significant and poses financial risks. The uncertainty of
inter-year variation in wind resource is therefore investigated.

The design of a wind farm often aims to generate electricity at its optimum output over its
facility life span or to find the lowest cost of energy. Wind farm layout optimisation (WFLO)
is a method of reaching the goal. The optimisation places the wind turbines at optimum
positions within a wind farm area. It avoids excessive wake effect, which has a severe impact
on energy production as the wake effect would reduce the wind speed for downstream turbines.
The main objective of the layout optimisation is commonly defined by the objective function
such as AEP, net-present value (NPV), and levelized cost of energy (LCOE) [20]. Except for
LCOE, which aims to minimise, most of the objective functions aim to find a maximisation
situation. Nevertheless, a WFLO problem is highly non-linear, where a small uncertainty can
be amplified and resulting in non-smooth responses [25]. Therefore, a recent development,
namely optimisation under uncertainty (OUU), is used to take the uncertainties into account.

Optimiser <

Optimiser <

. Design Statisitic of]
De_5|gn Model variables response
variable response

uQ <
Ly |Uncertain Model | |
variables response
> Model
>» Model

a) Deterministic optimisation S .
(a) P (b) Optimisation under uncertainty

Figure 1-1: Flowchart of two different optimisation procedures (adopted from [43]).

OUU is a robust design approach that takes into account the uncertainties in the input vari-
ables by conducting uncertainty quantification (UQ) in the analyser. An example flowchart is
presented in Figure 1-1b. OUU differs from the deterministic optimisation in Figure 1-1a. It
has a nested loop of uncertainty quantification to compute and form a statistics of response
output for the optimisation process [43]. However, many model evaluations are needed to
compute the relevant statistics for every optimisation step. This results in the characteristic
that OUU is computationally expensive. Furthermore, as the size of a wind farm increases,
the number of simulations for the WFLO become too large and infeasible. Several approaches
have been proposed to tackle the issues, such as improving the efficiency of the model or set-
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1-3 Objectives 3

ting up a better optimisation problem formulation and algorithm [43]. Nevertheless, the most
recent trend for this issue is to develop a better treatment for the stochastic nature of the
problem.

As a result, surrogate models, also known as metamodel or emulator, are proposed. The sur-
rogate models emulate and approximate the computational expensive model or simulation.
In general, surrogate models aim to reduce the evaluation time and cost to make a large and
complex optimisation under uncertainty problem feasible. The principle is to use a limited
number of runs at experimental design values. Stochastic collocation (SC), polynomial chaos
expansion (PCE), and Kriging (Gaussian Processes) are some popular surrogate model tech-
niques for uncertainty quantification. Different from Monte Carlo simulation (MC) that is
based on random samples, SC and PCE utilise a smart sampling technique for the experi-
mental design values, which significantly reduces the number of model evaluations [56]. A
comparison of the two techniques was provided in the work of Eldred and Burkardt [9].

This research provides an assessment of the different surrogate models for wind energy pro-
duction. The method by which the surrogate model can be constructed is also investigated.
The surrogate models serve as a means to alleviate two computationally expensive processes.
The first one being the wind farm performance assessment, where the evaluation of the wake
effects is time-consuming. The experimental design for this stage is the wind speed and wind
direction. The second implementation is for the uncertainty quantification, where the inter-
year variation of the Weibull parameters and wind rose sector probabilities are uncertain.
Once the statistics of the response are obtained, they are treated as the objective in the
optimisation algorithm to conduct wind farm layout optimisation. It is expected that the
resulting optimised wind farm layout will have a more consistent relative performance to the
inter-year variation of the uncertain wind resource.

1-3 Objectives

By conducting optimisation under uncertainty studies, one wishes to understand or aims
to reach an optimal design that is robust under uncertainties. With a robust optimisation,
a system is more likely to handle the uncertainties in its source. Most importantly, the
uncertainty quantification should be feasible as regards the computational cost and within a
range of accuracy. Therefore:

The main research objective of this thesis is to examine an optimisation under
uncertainty problem, WFLO, by implementing surrogate models in the wind
farm performance calculation and uncertainty quantification on the inter-year
variation of the wind resource.

The thesis aims to achieve the main research objective by comparing different surrogates
models, namely PCE and Kriging, to the brute force UQ method, Monte Carlo simulation,
on the P90 value of AEP. The outputs are later used to conduct optimisation on the wind
farm layouts to have a robust layout.
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1-4 Methodology

The following research questions can summarise the objective of this research:

1. What effects do the surrogate models have on the result of the AEP calculation?

2. What is the consequence of implementing the surrogate method in the uncertainty
quantification process?

3. What is the effect of uncertainty quantification with surrogate models on the result of
wind farm layout optimisation?

The methodology to answer the research questions is as follows. First research question focuses
on the surrogate models for the wake effect during the estimation of the wind farm energy
assessment. Surrogate models are developed to alleviate the computational cost caused by
extensive model evaluations. The difference in the AEP estimation from different surrogate
models for wind farm performance is measured. It is also important to acknowledge the
changes in the computational cost from using the surrogate models to the original model.

The second step aims to answer the second research question. It consists of investigating the
influence of the surrogate models when using in an UQ process to look for P90 of AEP. The
changes in the mean and the standard deviation should be noted as well as the computational
cost.

Once the previous two steps are finished, a statistic response of the AEP should be obtained.
The optimisation under uncertainty problem, WFLO, is then conducted. The third research
question is answered by comparing the optimised layouts from deterministic optimisation with
optimised layouts from OUU, that includes surrogate models.

A detailed flowchart that summarised the steps mentioned above is shown in Figure 1-2.

Surrogate models on the power output
Inputs: Wind Speed and Wind Direction

Fayvrr:rBjata D‘ E> P90 D‘ WFLO \

UQ using surrogate models
Inputs: Weibull parameters and sector probabilities

Figure 1-2: Flowchart of the Master thesis research.
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1-5 Thesis outline

This chapter has introduced the problem and some background concerning the OUU and
WEFLO problem. Following the introduction in Chapter 1, the contents of the thesis are
divided into the following chapters:

o Chapter 2 (Wind Farm Annual Energy Yield) presents the concept of wind farm per-
formance and its indicators, namely AEP. A brief introduction of the wake effect is
also included. The last section of the chapter introduces the weather data and the wind
farm model of the research.

o Chapter 3 (Surrogate Modelling) demonstrates the methodologies to construct the surro-
gate model with PCE and Kriging. Both surrogate models are implemented to conduct
the calculation of wind farm performance. The models are verified using the computa-
tion expensive medium-fidelity model. A comparison between the two models is made
as well.

o Chapter 4 (Effectiveness of Surrogate Models) validates the effectiveness of surrogate
models constructed in Chapter 3 on different wind farm layouts. Furthermore, the
randomness from the random sampling scheme is also quantified.

o Chapter 5 (Uncertainty Quantification) provides a review of uncertainty propagation
methods using surrogate models and the Monte Carlo simulation approach. A sensitivity
analysis is also conducted to investigate the effect of uncertain inputs on the function
output.

o Chapter 6 (Wind Farm Layout Optimisation) is dedicated to performing the wind farm
layout optimisation using the developed UQ method. The research focuses on two types
of genetic algorithm, that is binary genetic algorithm and real-coded genetic algorithm.
Both introduction and the results of the algorithms are presented in the chapter.

o Chapter 6 (Conclusion and Recommendations) addresses the conclusion of this thesis
research, and the research objectives and questions are reviewed along with some future
recommendations.
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Chapter 2

Wind Farm Annual Energy Yield

2-1 Introduction to the chapter

In this chapter, the methods of how to calculate AEP are presented. AEP is commonly used
as an objective function for a wind farm layout optimisation problem. The wake effects in the
wind farm are later briefly introduced. Lastly, the research data, such as the wind turbine
model and the wind farm layout, are presented. The purpose of this chapter is to establish
the relationship between the wake model and wind farm layout optimisation. It also points
out the reason of why many model evaluations are required to perform wind farm energy
assessment.

2-2  Wind farm energy estimation

2-2-1 Introduction

In the planning or evaluation stage of a wind farm project, annual energy production (AEP)
is commonly used as a measure of wind farm performance [40]. Different from the calculation
of a solitary turbine, the calculation of AEP of a wind farm requires to take the wake effects
into account. The following subsections give a detail introduction to the methods of energy
estimation.

2-2-2  Annual energy production of a single turbine

It is essential to realise calculation by looking into a solitary turbine and then extending to
the entire wind farm. There is a fundamental difference between the calculation of a single
turbine and a whole wind farm.

The AEP of a single wind turbine is generally expressed as:

Master of Science Thesis J.S. Chuang



8 Wind Farm Annual Energy Yield

hr Umax
AEPyr = o PU) - p(U)dU (2-1)
Umin

where % is the number of hours in a year (typically 8766) while U,,;, and Upsq, denote the
cut-in and cut-out wind speed of the turbine model. P is the power produced by the turbine
and is a function of the hub-height wind speed U. An electrical power curve of the turbine,
as shown in Figure 2-1a is needed from the manufacturers of the wind turbine to obtain the
corresponding power value. Lastly, for p(U), p is the probability of the occurrence of the wind
speeds.
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(b) The fitted Weibull distribution on wind speed proba-
(a) The power curve of Vesta V82 model [60] bility distribution [12]

Figure 2-1: The power curve and wind speed probability distribution.

A probability density function (PDF) of the wind condition at the target site like Figure 2-1b
can provide the information for p(U). Base on empirical experiences, the Weibull distribution
is commonly the preferred distribution for the wind speed distribution

k

S (22)

pUINE) = S5

There are two essential parameters for the Weibull distribution, namely, the scale parameter A
and the shape parameter k in Eq. (2-2). These two parameters can be determined by fitting a
Weibull distribution to the histogram of wind speed distribution as seen again in Figure 2-1b.

2-2-3 Annual energy production of a wind farm

The calculation for a wind farm requires additional information due to the wake effect caused
by different wind direction. Eq. (2-3) is a formula of the annual energy production for the
entire wind farm, in which Np is the total number of the wind farm and n is the n-th turbine
under investigation. To determine P,(U) in Eq. (2-3), wake effect needs to be evaluated to
obtain the local wind speed at turbine n. It is due to the wake effect that every time the
wind direction changes, the local wind speed at turbine varies. Further, a wind rose as shown
in Figure 2-2 which represents the PDF of the wind speed over the wind direction, 4, is
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frequently needed to obtain information on p(U, J). It denotes a bivariate probability density
function that consists of free-stream wind speed and wind direction.

hr DT 360 (Unras
AEPpapm = — 3 / / Po(U) - p(U, 8)dUdS (2-3)
y’r n=1 0 U’mzn

Estimating AEP for a wind farm is much more complicated as the wake effects heavily in-
fluence the wind speed received by some turbines in certain wind directions. The topic of
wind turbine wakes has been a focus of wind energy research for quite a long period [59].
This phenomenon is receiving more attention since the size of the wind turbine and the wind
farm are both increasing rapidly. Next, a section regarding the topic of wake phenomenon is
presented.

Wind Speeds in m/s Wind Rose

W, >25 °
[ Wg > N (0
[]20 <W <25
15 <Wg<20
10 <W <15
5 <W <10
O <W <5

W (270°) E (90)

S (180")

Figure 2-2: lllustration of the wind rose used in this research.

2-3 Wake phenomenon and modelling

2-3-1 Overview

A wind turbine converts the wind energy into usable energy by converting the kinetic energy
from the wind into mechanical energy, which then transfers into electrical energy [50]. As the
energy from the wind is extracted, the wind speed behind the rotor reduced, and the airflow
begins to swirl [37]. Therefore, the downstream wind turbine produces less energy since it
receives lower mean wind speed and higher turbulence intensity. In addition, wind turbine
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10 Wind Farm Annual Energy Yield

wake can be divided into the near wake and far wake [59]. The near wake region is more
dominated by the turbulence and far wake region mainly consists of convection and turbulent
diffusion.

Clifton et al. [7] defined losses as the amounts of energy that a wind farm should be able to
extract but failed to due to technical or other reasons and wake effect is one of the losses. The
estimation of losses should be dealt with care since it will heavily influence the estimation
of wind farm energy production. The losses from the wake effect are essential as it is a
crucial aspect of the wind farm economic evaluation [14]. In order to take the wake effect
into account, various wake models have been developed. In general, the far wake region is
more important than the near wake region in a WFLO problem [50]. The first wind turbine
wake modelling approach was the kinematic model introduced by Lissaman [32], which was
based on self-similar velocity deficit profiles. The kinematic model, however, does not take
the initial expansion region of the wake nor the turbulent intensity in the wake behind the
turbine into account.

As developed over time, modelling the wake effect can be done with the help of computational
fluid dynamic (CFD) software. The Direct Numerical Simulation, Reynolds Averaged Navier-
Stokes, and Large-Eddy Simulation fall in this category. However, even though CFD models
are able to reduce the epistemic uncertainty from the analytic model, their complexity and
high computational requirements are still infeasible for large optimisation. For example,
Direct Numerical Simulation could take up to weeks to complete its simulation. Therefore,
an analytical model is still usually preferred and can already reach quite satisfying results.
Those computationally expensive approaches thus do not fall into the scope of this research.
Alternatively, wake models, which are more computational inexpensive while providing results
with sufficient accuracy, are investigated by previous works [13, 14, 29, 49]. Among them,
the Jensen model can provide an acceptable trade-off between the computational cost and
prediction errors for wind farms, according to VanLuvanee [57]. The research, therefore,
chooses the Jensen model to be the wake model in use. The Jensen model is explained in
more detail in the next subsection.

2-3-2 Jensen model

The Jensen model is the most widely used wake model, and it is also known as the Park
model. An illustration of the model is shown in Figure 2-3a. However, the model proposed
by Jensen [21] is a single wake model. It was later modified by Katic et al. [24] to calculate
the effect of multiple wakes. The model is constructed upon the mass conservation law in a
control volume which is applied to the flow passing the wind turbine. The velocity in the wake
region can be described as a function of distance x from the upstream turbine, and the wake
is assumed to expand linearly. The wake model heavily depends on a dimensionless scalar, «,
which is the decay constant that determines the rate of the wake recovery. « is a parameter
that could be influenced by, for example, surface roughness and atmospheric stability. In
order to calculate the velocity in a wake, thrust coefficient, C'r, and rotor diameter, Dg, from
the wind turbine model are also needed.

In order to calculate the wake effect of multiple wind turbines in a cluster, such as a wind
farm, Katic et al. [24] modified the original Jensen model. It is because the wake effect is
more severe in a cluster. For such a case, it is essential to take the shadowing condition of the
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turbines into account. This is one of the critical reasons that optimisation of the wind farm
layout is needed. As the wake expands, if the downstream turbine is experiencing shadowing
from the upstream turbine, then it can be partially or entirely in the wake of the upstream
turbine. Figure 2-3b presents the illustration of when the wake partially intersects with a
downstream rotor.
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(a) lllustration of Jensen single wake model (b) llustration of a downstream turbine being partially
(adopted from [18]) affected by the wake of an upstream turbine [46]

Figure 2-3: lllustration of Jensen single wake model and when the wake partially intersects with
a downstream turbine.

Using Eq. (2-4) from Chowdhury et al. [6], the area of intersection, which is the effective area
of the wake, can be determined.

d&3; + R} — R? &+ R~ R}
Ay =R: cos TV (— KTy 4 R3 cos™ Y i R
2dkjrk 2dkj7“k (2_4)

1
— 5\/(—dkj + R + Rj)(dkj — Ry + Rj)(dkj + Ry — Rj)(dkj + Ry + Rj)

In Eq. (2-4), Aj; is the area of intersection of the wake from the front turbine & to the turbine
J- Ry and R; are the rotor radius of the two wind turbine while Ry, is the wake radius. Most
importantly, di; is the distance in between the two turbines as this value is crucial to the
wake radius Ry, and thus the area of intersection. On the other hands, if the downstream
turbine is entirely in the wake of the upstream turbine, the effective area of the wake effect
is the rotor diameter itself.

As for the multiple wake effects, they can be treated as a summation of single wake effects. A
simple combination of wakes can use Eq. (2-5) while there exist many more accurate models
for the summation of the wakes.

:s‘=>

(11— 24)2)] (2-5)
Ug

N
Up = ug[l — Z

With the information of the area of intersection Aj; and the undisturbed wind speed ug, the
disturbing local wind speed of turbine n, u,, can be determined. This will be the wind speed
that is "felt" by the turbine in a wake.
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12 Wind Farm Annual Energy Yield

2-4 Wind farm related data

2-4-1 \Variation of wind speed and wind direction

When it comes to the wind resource, wind speed and wind direction are the two common vari-
ables. To better understand the distribution of the two variables, a time series measurement
data from a real wind site is used. The weather data from the IJmuiden weather station is
provided on the Koninklijk Nederlands Meteorologisch Instituut (KNMI) website. IJmuiden
locates at the mouth of the North Sea Canal to Amsterdam with the detailed coordinate of
52°28" N and 04°34’ E. The wind mast at the station measures the temperature, air pressure,
wind and precipitation from Jan 1, 1971, and continues measuring. The data consists of daily
averaged measurement of wind speed and wind direction at a 10-meter height above mean
sea level. Thus, it will be needed to extrapolate the wind speed to the turbine hub height.
The direction of North is denoted at zero degree, and the degree increases clockwise.

Figure 2-4 presents the probability distributions of the wind direction and wind speed during
a year. The wind direction distribution is built upon a linear interpolation of the measurement
data while a Weibull distribution is fitted to the wind speed data of all wind directions. The
distribution is fitted with a scale parameter A = 8.25 and a shape parameter k = 2.51, shown
in Figure 2-4b.

Nonetheless, there seems to be no suitable statistical distribution to fit the wind direction
distribution shown in Figure 2-4a. It is therefore decided to break the wind direction into
sectors with a sector width of 30° and characterise the uncertainty in the sector probabilities.
This will be further elaborated in the Chapter 5.
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Figure 2-4: The probability distribution of variables constructed from the weather data of the
IJmuiden weather station in a year.
2-4-2 Wind turbine model and wind farm layout

For the research purpose, the wind turbine model is the NREL 5MW wind turbine [23]. An
overview of the turbine model is shown in Table 2-1. The hub height of the wind turbine is
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at 90 meters height as this is important to extract the weather data to make the wind speed
representative.

Parameter Value/description
Rating 5 MW

Hub Height 90 m

Rotor Diameter 126 m

Cut-in, Rated, Cut-out Wind Speed 3 m/s, 11.4 m/s, 25m/s

Table 2-1: Properties of the NREL 5MW Wind Turbine.

A simply two by five wind farm layout that consists of 10 wind turbines is used in most of
the research, and it is shown in Figure 2-5. The wind farm layout is designed by the author
and is constructed with sufficient spacings between turbines to avoid excessive wake effect.
The wake effect utilised the Jensen wake model mentioned in Section 2-3-2. The information
provides here will be later used to investigate the use of the surrogate model on the evaluation
of the wake model in Chapter 3 and the uncertainty quantification in Chapter 5. Meanwhile,
the wind farm layout will be treated as the initial layout in the wind farm layout optimisation
problem.
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Figure 2-5: Overview of the wind farm layout used in this study.
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Chapter 3

Surrogate Modelling

3-1 Introduction to the chapter

Surrogate models were proposed due to the high computation expense of extensive simulations
as accurate results often require many model evaluations. In this chapter, the general theory
and application of polynomial chaos expansion and Kriging are introduced from Section 3-2 to
Section 3-4. The readers who are familiar with this could go to Section 3-5 directly. Based on
the theory, the surrogate models are used to emulate the model of wind farm power output,
and their implementation in wind energy research are presented.

3-2 Surrogate modelling

In many engineering problems, an accurate physics-based simulation can be computation-
ally costly to obtain the details, especially when such computations are repeatedly called.
Therefore, a viable option occurs to tackle the issue, which is the use of surrogate models
(i.e. meta-models). Surrogate models attempt to emulate a model so that an inexpensive-to-
evaluate emulator, M, can replace the expensive-to-evaluate computational model, M [34].
It is, of course, less detailed than before but a lot faster to evaluate. With this speciality,
the application of surrogate modelling in large computation has therefore increased rapidly.
In this chapter, the aim is to build a surrogate model for the evaluation of wind farm power
output, as mentioned in Chapter 2. In this case, the computational expense comes from the
wake model as the wake model requires to evaluate every wind direction for the power output.
The anticipated surrogate models are expecting to provide the wind farm power output with
less wind speed and wind direction evaluations.

Various surrogate models have been developed and exist in the literature. Some example are
given as Polynomial Chaos expansion (PCE) [3], Kriging [16, 38], Polynomial Chaos-based
Kriging (PCK) [48], Stochastic Collocation (SC) [9], and Support Vector Machine (SVM)
[58]. An overview of each surrogate model can be found in Sudret et al. [52].

In essence, a surrogate model is built by the following steps:
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16 Surrogate Modelling

1. Define an initial set of samples in the experimental design space where the true function
is evaluated

2. Determine the type of surrogate model (e.g., from Table 3-1) and fit the model to the
sampled data points

3. Examine the accuracy of the surrogate model by using a set of validation data

A more detailed flowchart of constructing a surrogate model can be seen in Appendix A.

Name Response
Polynomial chaos expansions M(x) = Zae 4 0aVo(z)
Kriging M(z f(z)+ Z(x w)

(z) =
Low-rank tensor approximations ./\El(w) Zl (T, vl( )(:cl))
Support vector machines M(x)=>" a;i K (zi,x) +b

Table 3-1: Examples of different surrogate models (adopted from [52]).

As the technique develops, more advanced and optimal ways of constructing a surrogate model
become available. Adaptive and sequential modelling that involve the iterative procedure of
fitting the surrogate model to the actual model are some examples. For simplicity, details
are not described here. Nevertheless, since the purpose of a surrogate model is to build
an approximation of the expensive model, the accuracy of such approximation needs to be
taken into account. Moreover, the effort of constructing the surrogate model is also essential.
The advantage of using a surrogate model is lost when the construction itself is complicated
and time-consuming [3]. In Murcia et al. [40], the authors study the possibility of using
surrogate models in predicting AEP of a wind power plant. Similar to their research, in
the following sections, two popular surrogate modelling techniques, namely polynomial chaos
expansion (PCE) and Kriging, are introduced with their implementation in this wind energy
research.

3-3 Polynomial Chaos Expansion (PCE)

3-3-1 Introduction

Developed by Wiener [61], PCE is a smart sampling method with pseudo-spectral weighting
on the samples [56]. The sampling choices are based on the probability distribution of the
random variables X as they relate to sets of orthogonal polynomials, ¥(X). For random
variables, there are corresponding classical orthogonal polynomials, as shown in Table 3-2.
An example is that a normally distributed variable has the associated orthogonal polynomials,
Hermite polynomials. PCE stands out as the polynomial functions can be evaluated faster
[35]. Meanwhile, the criteria of using PCE are that it assumes the uncertain variables are
independent with each other.

Using the notation from Marelli and Sudret [34], a random vector with independent vari-
ables X = {X1,..., X)s} is considered with the multivariate orthogonal polynomials that are
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3-3 Polynomial Chaos Expansion (PCE) 17

orthonormal to the joint probability density function p(X). Consider also a computational
model that has a response Y defined as

Y= MX) = Y yala(X) (3-1)

aeNM

where y, denotes the corresponding coefficients to the polynomial basis. However, in practical
applications, Eq. (3-2) is used since the polynomial expansion will need to be truncated to a
certain order.

M(X) % MPE(X) = 3 gaWa(X) (3-2)

acA

Conventionally, the polynomial basis W, (X) is built from a set of univariate polynomials
{pi(x)}22,, where ¢;(x) is a polynomial of degree i. The inner product of the polynomials is
used to define the orthogonality of the polynomial if

(606" [ oi@)oy(a)ol@)de = ey (38)

with
= () (3-4)
- {ni

where the w(x) is the weight function and can be the PDF of random variable x, and d;; is the
Kronecker delta. When ¢; is 1, then the polynomials are so-called orthonormal. For common
uncertain variables with given probability density functions (e.g., Normal, Uniform, Expo-
nential), it is possible to use Askey scheme (Table 3-2 shows a subset of classical orthogonal
polynomials in the Askey scheme) to find the orthogonal polynomials. The scheme leads to
an optimal spectral convergence for the expansion [42]. In Table 3-2, the weight function has
a difference with the probability density function due to the normalisation of the probability
density function [42]. In Figure 3-1, two classical orthogonal polynomials are illustrated with
different polynomial basis degree. On the other hand, if one has arbitrary random variables,
it is possible to use Gram-Schmidt and Stieltjes algorithm to produce custom orthogonal
polynomials for the arbitrary random variable.

Distribution Density function Polynomial Weight function Interval
2 2

Normal \/%e 2 Hermite He,(x) e 2 (—00,0)

Uniform : Legendre P, (x) 1 (—1,1)

Exponential e " Laguerre Ln(x) e " (0,00)

Table 3-2: Corresponding orthogonal polynomials to the common probability distributions
(adopted from [42]).
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Hermite polynomials Legendre polynomials
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Figure 3-1: lllustration of two orthogonal polynomials.

3-3-2 Calculation of coefficients

From the previous section, the only parameters left are the polynomial chaos coefficients y,
in Eq. (3-2). There exist two approaches to compute the polynomial chaos coefficients. The
first one is the intrusive method. An example is the Intrusive Galerkin Projection method.
It is intrusive in the sense that the system of equations is reformulated in order to compute
the coefficients. Since intrusive methods generally enlarge and alter the governing equations,
non-intrusive methods have been more popular in recent days. In contrast, the non-intrusive
methods do not need to modify the simulation codes. The non-intrusive methods compute the
coefficients by sampling the input variables first and carrying out a set of model evaluation [34]
to construct the surrogate model. In the following paragraphs, the non-intrusive Projection,
Regression, and Least-angle regression methods, are introduced.

Projection methods

The projection methods is also called as non-intrusive Galerkin Projection, and it start from
taking the inner product on both sides of the Eq. (3-2) with respect to a polynomial basis
U (X)) which leads to

<M7 \I]b> = Z ya<\Ilou \I]b> (3'6)

a€A

The right hand side of the equation can make use of the orthogonality of the polynomials
where

U2y if a=b
(Voo wy) = {0 (3-7)
0,if a #b
Eq. (3-6) then turns into solving the coefficient y, using the following equation:
(M(X), Ta (X)) 1 /
a = = X)U, (X X)dX -
y o gy | MEOR(X)p(X)d (35)
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in which the denominator (¥2) is known analytically or can be computed inexpensively such
as the Gram-Schmidt method. The coefficients can be obtained by the calculation of the
expectation value ,E, in Eq. (3-9) [34].

Yo = E[Wa(X) - M(X)] (3-9)

One of the projection methods is the quadrature approach. The quadrature method or more
specifically, Gaussian quadrature, can be expressed as a weighted-sum approach:

N
Yoo = / M@)o (@)p(x)dz ~ S M), (20w (3-10)
=1

The weights w® and the quadrature points z(*) are computed by using the theory of orthogo-
nal polynomials and making use of the root of the polynomials shown in Table 3-2. When the
problem is multi-dimensional, the tensor product quadrature can be used [34]. The number of
model evaluations required for PCE by quadrature method is (p+1)¥, with p the degree and
N the number of input variables. It is, therefore, computationally heavy when the number
of input variables is large. This phenomenon is called the curse of dimensionality.

Regression methods

Another method to compute the coefficients in the PCE is by tackling a least-squares min-
imisation problem [34]. A brief introduction of the linear regression method is presented in
this section. Eq. (3-1) and its truncated form Eq. (3-2) can be written as

C-1
Y =MX)=> y¥(X)+er= y U(X) +er (3-11)
=0

where C' denotes the number of coefficients and ep is the truncation error that is supposed to
be a zero-mean variable [51]. The equation can be simplified into a linear system, as shown
in Eq. (3-12) with m samples and n truncated terms in the polynomial chaos expansion. This
results in a matrix-like equation as Eq. (3-13).

Ty = M(X) (3-12)
Uo(ry) ... Wypo1(x;) Y0 M
S HEE (3-13)
‘Ifo(lL‘m) . \Ifnfl(l’m) Yn—1 M,

The least-squares minimisation problem can be formulated as

§ = argmin E[(y' ¥U(X) — M(X))?] (3-14)

Commonly, the ordinary least-squares (OLS) method can be utilised to estimate the coeffi-
cients in Eq. (3-14). It requires a set of input random vectors X which forms the experimental
design and the corresponding model response M. The solution from the ordinary least square
is therefore:

§=@Tw) e M (3-15)

Above all, the ordinary least squares method can have an arbitrary number of sampling points
to calculate the coefficients.
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Sparse PCE: Least-angle regression

When the number of input variables increases, the number of coefficients to be computed
also grows. Adaptive sparse PCE is therefore developed using adaptive training algorithms
to tackle this issue. Sparse PCE keeps only the most relevant polynomials and sets the
coefficient of all the others to 0. In other words, sparse means that only a small number
of terms are retained compared to a normal PCE [5]. Blatman and Sudret [5] applied the
least-angle regression (LARS) algorithm to obtain the sparse PCE models. LARS is utilised
as an effective method for variable selection and can select the polynomial basis that has the
most influence on the model response. In general, the algorithm avoids the issue of over-
fitting when the truncating order is too high and detecting the significant coefficients of the
polynomial expansion to lower the computational effort. A detailed mathematical theory and
derivation can be found in Marelli and Sudret [34] and Blatman and Sudret [5].

3-4 Kriging

3-4-1 Introduction

Kriging is another popular surrogate modelling technique and is also known as Gaussian pro-
cess modelling. It was first conceived by Krige [26] in 1951 for the research in geostatistics.
Kriging has been a popular choice of surrogate models for the deterministic computer models
as it can represent the mapping of the input and output [62]. Besides being able to ap-
proximate the output of a computational model, Kriging can provide information about the
accuracy on local estimates [30]. It can quantify the interpolation errors in terms of Kriging
variance. It also performs better than PCE as a surrogate technique with nonlinear functions,
when estimating the stochastic behaviour of non-smooth output responses [25].

The following equation from Santner et al. [47] describes the realisation of a Gaussian process
model:

MB(x) =BT f(z) + 0 Z(z,w) (3-16)

where the first term captures the trend or the mean value of the Gaussian process, and 5 is the
corresponding coefficient of the P arbitrary basis functions f(z). The second term consists
of the variance of the Gaussian process o2, and a stationary Gaussian process Z(r,w) that
has zero mean and unit variance. w denotes the probability space and is defined by R =
R(xi, xj;60) that is a correlation function between two sampled points and is parameterised
by a hyperparameter vector . Several kinds of Kriging can be classified by, for example,
the trend. When the first term in Eq. (3-16) is a constant number, Kriging can be referred
to as simple Kriging or ordinary Kriging depending on whether the constant is known or
not. Further, universal Kriging is also a type of Kriging as the first term is a combination of
prescribed arbitrary functions. Meanwhile, the choice of the correlation functions R is also
crucial to a Kriging model as more detail will follow in the later sections.

The following equations adopt the notation in Lataniotis et al. [31]. Given an experimen-
tal design of size N, X = {z(1), ..., 20} and the corresponding responses Y = {y(!) =
Mz, .y = M(zN))}, the surrogate model should be able to calculate the prediction
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3-4 Kriging 21

MHE (x) at a new point 2. Once the trend and the correlation function are determined, reali-
sations of the prior Gaussian process can be obtained, as shown in the left of Figure 3-2. The
Kriging surrogate model provides the predictions of the model response upon the posterior
Gaussian process from the samples as seen in the right of Figure 3-2. The prediction will
corresponds to a normally distributed variate ?(w) with mean fy and standard deviation oy
as

A

Y ~ N(py(x),0(x)) (3-17)
20 T T 20
15 15
10"
5.
5
3
5
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Figure 3-2: An illustration of the prior (left) and posterior Gaussian process (right) [30]. The
black lines represent the Gaussian process mean.

The approximation of the computational model is thus the infinite family of the samples of
the posterior Gaussian process. For the surrogate purpose, the mean response will be used,
and the variance can be a measure of the local prediction error [30]. Based on the Gaussian
assumptions, a joint Gaussian distribution, A, of the observed model response ) and the
prediction at x, Y () , which is determined by

A~ T T
() () )

where the elements are described as follows. First, F' is the matrix that consists of observation
points for the Kriging trend and it can be expressed as

Fy=fi@¥), i=1,.,N, j=1,...,P (3-19)
and the expansion is
F=[fW), f@®), ., fa™)) T (3-20)
M) fa(@®) o fp(z)
_ fl(%'@)) fz(:f(z)) fp(fc(z)) 321)
HE™) L@®) o fpa®)

Second, 7;(x) represents the correlation of predicted point z with each design point in X
which is '
ri(z) = R(z,29;0), i=1,...N (3-22)
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To make it easier to explain, the hyper-parameter is rest aside and the expansion reads

r(z) =[R(x, x(l)), R(x, .CC(2)), ey R(z, a:(N))] T (3-23)

Third, R is the correlation matrix of the design points that is given by

R(zW,zM)  RzM,z@) ... R@z®, (V)
73@(2)7 x(l)) R(x@), x(2)) e R(w@)’ x(N))

R = ] . ) ) (3-24)
RE™,20) RE™, £@) ... RN 50

Up till now, it is possible to calculate the mean and variance of the Gaussian random variate

A

Y (x) using the best linear unbiased predictor (BLUP) [47] properties, which yields
_ TA T -1 A
py = f(x) B+r(x) R(Y—Fp) (3-25)

a%(:c) =o?(1 —r"(x)R 'r(z) +u' (z)(FTR'F)lu(z) (3-26)
where B is the generalised least-square estimate of the coefficient 5 as
B=(FTR'F)IFTR Y (3-27)

and
u(z) = F'R™r(z) — f(x) (3-28)

The above derivation formulates the universal Kriging. Meanwhile, ordinary Kriging men-
tioned above is a special case of universal Kriging when the trend has a constant but unknown
value while simple Kriging is when the trend has a known constant value [62]. In essence, the
Kriging model is interpolating all the design points when dealing with noise-free data.

With the theory and derivation of the Kriging model, the following steps are needed to
construct a Kriging surrogate model [31]:

1. Select a Kriging trend for the functional basis. This step refers to the mean of the
Kriging surrogate model. The step is explained in Section 3-4-2.

2. Select a correlation function R(x;, ;;6). With a proper correlation function, the model
can thus properly approximate the new points from the design points. Introduction of
the step is given in Section 3-4-3.

3. An optimisation needs to be set up to estimate the hyperparameter 6. It can be esti-

mated from the observation data. Details are stated in Section 3-4-4.

Therefore, the following sections give introductions to the first three steps. All others unknown
Kriging parameters can be calculated once the optimal value of 6 is known. The procedure
of calculating these parameters are included in the Section 3-4-4.

J.S. Chuang Master of Science Thesis



3-4 Kriging 23

3-4-2 Kriging trend

The mean of the Gaussian process can be referred to as the trend. It has been mentioned and
discussed in the previous section. Depending on the first term 87 f(x) in Eq. (3-16), different
types of Kriging are named which are shown as the following [30]:

e Universal Kriging
Universal Kriging has the most flexibility in terms of formulation. It assumes that the
trend is made up of a sum of P arbitrary functions f;(z) as

P
BT (@)= Bifi(x) (3-29)
j=1

e Simple Kriging
When the trend has a known constant value for a Kriging problem, it can be referred
to as simple Kriging. In this case, all the coefficients 8 are equal to 1.

.
Blf() =" fi(x) (3-30)
j=1

¢ Ordinary Kriging
In ordinary Kriging, the trend is an unknown but constant value where P = 1 and

f1 (ZL') =1.
BT f(x) = Bifi(z) = B (3-31)

3-4-3 Correlation function

Also known as covariance function in the literature, the correlation function R build up the
assumptions for the approximation. It describes the relationship between the observation
(i.e., the sample points or experimental design) and the newly predicted points. In other
words, it determines the smoothness of the Kriging model[62]. The correlation function R is
usually in the form of R(xz;, x;;6), where 6 is a vector referred to as the characteristic length
scale and determines the extent of influence of sampling points.

Correlation family Expression

Exponential R(xi,gcj; ) = exp| _%]
Gaussian R(xi, 25;0) = exp] _%(\xi;lem

Table 3-3: Commonly seen correlation functions and their expressions (adopted from [62]).
As any arbitrary function can not be a valid correlation function, Table 3-3 presents some
commonly seen correlation functions. The correlation function needs to satisfy the conditions,

such as that the elements need to be positive definite for any number of sampling points NV,
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and the function itself needs to be symmetric [31]. All of the shown correlation families are so-
called stationary correlation functions as they only depend on the relative position of its two
inputs. As an example, a set of one-dimensional inputs, z; and z; is used for demonstrating
the correlation families as these families are parameterised by 6 in Table 3-3. When using
different correlation families, the smoothness of the resulting Kriging model changes along
with the influence of the neighbouring sampled points.

When the dimension of the input is more than 1, Lataniotis et al. [30] stated it is possible to
use the separable correlation type such as

M
R(xi, z;;0) = H R(xik, ik, Or) (3-32)
k=1
and the ellipsoidal type
R(ws,5:0) = R(h) (3-33)
h = Z(M)z (3-34)
k=1 Ok

to obtain R from the one-dimensional correlation families.

3-4-4 Estimation of hyperparameters

In order to build a Kriging surrogate model, the hyperparameters 6 are needed, but they
are usually unknown and need to be estimated. Setting up an optimisation problem is then
required, and 3 and o2 in Eq. (3-16) can be calculated once the hyperparameters are known.

The first estimation method is the maximum-likelihood estimation. To find the Kriging
parameters, the maximum-likelihood method can be utilised to find when the likelihood of
the observations Y = {M(zM), ..., M(z™)} is maximal. The likelihood function £ reads

_ det(R)

= 1
(271_0_2)% €xp[ =

202

L(Y|B,0%,0) (Y-FB)R (Y- Fp) (3-35)

Without diving into the mathematical derivation, the hyperparameters 6 can be obtained by
solving the following optimisation problem [30] (readers are referred to Santner et al. [47] for
proof and more detailed),

6 = arg min(—logL(Y|B, %, 0)) (3-36)

The set of parameters 3 and o2 can thus be calculated where f3 is referred to Eq. (3-27) and
02 is determined by the following equation suggested by Santner et al. [47],

o= *(0) = (¥~ FA) R (¥~ FB) (3-37)

The second method is cross-validation, known as the K-fold cross-validation. In general, the
method splits all observations, including X and ), into K equal sized subsets [31]. In K-fold
cross-validation, the K-th subset is preserved when other K — 1 subsets are used to calculate
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3-5 Verification of the surrogate models 25

the Kriging prediction and that K-th set is utilised to evaluate the prediction. The process
is then iterated for K times, leading to that every subset is used exactly once to evaluate the
prediction. The K results are then averaged for the estimation. Again, without diving into
the mathematical derivation, the optimisation problem aims to solve the following objective
function [30],

K
0 = argminy_(M(aV) — py _ (@?))? (3-38)

=1

where 1y (i) is the mean Kriging predictor. The § can again be determined by Eq. (3-27)

—1
and o2 is calculated by

(@))?

) — o
Ly M U)% M?(_Z (3-39)
Y

)
(%)

A comparison of the surrogate results using the two estimations is included in Appendix B. It
is suggested to read through this Chapter first as the comparison is explained in the follow-
ing sections. For further detailed explanations of maximum-likelihood and cross-validation,
readers are referred to Lataniotis et al. [30, 31].

3-5 Verification of the surrogate models

3-5-1 The original model

With the previous theoretical background on the two surrogate models, it is possible to
construct surrogate models that are needed for the research. However, it is important to
acknowledge the medium-fidelity model that will be emulated by the surrogate models. In this
research, the model is named as the original model and abbreviates as the OM model. The
original model consists of the NREL 5MW wind turbine power curve, as shown in Figure 3-3a
and the Jensen wake model mentioned in Section 2-3-2.

The original model evaluates the wind farm performance using the recommended interval
sizes from Feng and Shen [12], where Au = 1 [m/s] and Af = 1° [deg]. Even though
this interval sizes in wind speed and wind direction could lead to a fine evaluation of the
wind farm performance, some research has been looking into the use of surrogate models for
this evaluation. The reason that the surrogate models are needed is that the wake model is
evaluated in every interval of wind direction resulting in a great computation effort. The total
number of the wake model evaluations using the above interval sizes leads to 26 - 360 = 9360
times, where 26 is the wind speeds interval from 0 to 25 [m/s|, and 360 is the wind direction
interval from 0 [deg] to 359 [deg]. The evaluation can be reduced to 23 - 360 = 8280, where
the number 23 comes from the interval from the cut-in wind speed to the cut-out wind speed
of the wind turbine, which is 3 [m/s] and 25 [m/s], respectively. It is because that the model
yields zero power output when the wind speed is lower than the cut-in wind speed or above
the cut-out wind speed as the power curve figure shows. It is thus no need to take those
condition into the evaluation.
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(a) The power curve of NREL 5 MW model (b) Power output rose at wind speed 10 [m/s]

Figure 3-3: The wind turbine power curve and the power output rose of the wind farm under
investigation using the original model.

The power output rose when the wind speed is at 10 [m/s| of the investigated wind farm is
shown in Figure 3-3b. The wake effect is captured as expected. When the wind direction is 0
[deg] and 180 [deg], the two columns of wind turbines align with the wind direction, causing
the wake effect to be most severe. The wake effect also causes the deficits of power output in
other wind directions since no other influence factors, such as the availability of the turbines,
are taken into account in this research. Lastly, a two-dimensional surface plot of the power
production of the layout for every wind speed and wind direction is shown in Figure 3-4. The
wake effect within the investigated wind farm can be clearly seen in Figure 3-4 as the power
deficits are represented as "dips" in both partial-load and full-load regions. Here, the full-load
region is where the wind speed is close to the rated wind speed.
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Figure 3-4: The two-dimensional power production surface plot of the layout for every wind
speed and wind direction using the original model.
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3-5 Verification of the surrogate models 27

It is also possible to calculate the AEP with the original model using the power output. The
AEP is calculated with the wind rose in Figure 2-2 while dividing the wind direction into 12
sectors (i.e. bins) and taking the mean sector probabilities from the 50 years measurement.
The Weibull scale and shape parameters are obtained in a similar fashion of using the mean
value of the 50 years measurement. Finally, Eq. (2-3) can be used to obtain the AEP.

To verify the original model used in this research is correct, Wind Atlas Analysis and Ap-
plication Program (WAsP) by Risg, is utilised. WASP is commonly utilised to perform wind
resource assessment, wind farm micro-siting, and for the calculation of wind turbine and wind
farm energy yield. The wake effect model implemented in WAsP is approximately the same
model used in the current research, the Jensen model (aka Park model), from Katic et al.
[24], but with a slight difference in the parameters. For a WAsP analysis to work, users are
required to provide wind turbine parameters, wind turbine locations, wind climate data, and
terrain analysis. Ten NREL 5 MW wind turbines are again used in this case. The layout
of the wind turbine has been shown in Figure 2-5 with 800 meters distance to the closest
turbine. The wind climate data is derived from the Global Wind Atlas ! website. However, it
should be noted that the weather data from KNMI are measured from a meteorological mast
of 10 meters high while the Global Wind Atlas translates the data from 100 meters to the
hub-height of 90 meters. Due to lack of data, the terrain analysis data used in the research
comes from the example data in WAsP, which present the analysis of a Danish offshore wind
farm, Tung offshore wind farm. Since the investigated wind farm is also an offshore wind
farm, the study continues with the existing data.

The comparison of the results from the OM model and the WASP software is presented in
Table 3-4. The gross AEP is the value without the wake effect. The OM model directly gives
the net AEP where the deficit from the wake effect has been considered. The differences in
the net AEP could be explained with the wind climate data source as the original model uses
the measurement data from the KNMI mast, and WAsP uses the re-analysis data from Global
Wind Atlas. Nevertheless, the results are approximately close to each other, and therefore,
the OM model is verified. An extensive WAsSP wind farm report is placed in Appendix C for
the reader who is interested in the results.

Original Model WAsP

Total Gross AEP [MWh] - 2.2700 - 10°
Total Net AEP[MWHh] 2.2348 - 10° 2.1484 - 105
Capacity Factor [%] 48.17 46.3

Table 3-4: Comparison between the original model and values from the WASsP software on the
wind farm performance.

For the purpose of this work, UQLab [33], a MATLAB Toolbox is used to perform surrogate
modelling. The toolbox is developed at the Chair of Risk, Safety and Uncertainty Quan-
tification of Swiss Federal Institute of Technology in Zurich (ETH). It is free to academic
researchers with non-commercial usage. UQLab provides a framework for uncertainty quan-
tification. It features the ability to carry out uncertainty propagation through Monte Carlo

1Global Wind Atlas 3.0, a free, web-based application developed, owned and operated by the Technical
University of Denmark (DTU). The Global Wind Atlas 3.0 is released in partnership with the World Bank
Group, utilising data provided by Vortex, using funding provided by the Energy Sector Management Assistance
Program (ESMAP). For additional information: https://globalwindatlas.info
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simulation (MC), building surrogate models (e.g., polynomial chaos expansions, Kriging),
sensitivity analysis, and more.

The following sections present the verification steps of the surrogate model using PCE and
Kriging model. For the purpose of evaluating the quality of the surrogate model, it is impor-
tant to define a measuring method. The percentage error, €, is used in this research and is
shown in Eq. (3-40) to measure how accurate the surrogate model is.

_ |AEP — AEPoy|

€ [%) = T - 100 (3-40)

3-5-2 Verification of the PCE model

After the OM model is tested and verified, the research moves on to the verification of the
PCE model. Here, PCE serves as a surrogate technique for power output. First, the random
variables of interest need to be defined. For a wind farm model, the wind speed and wind
direction will be the choices. The first verification is conducted to the wind speed surrogate
model for the PV curve of the turbine. The second one is about the wind direction surrogate
model for the wind farm power output. A two-dimensional surrogate model that considers
both wind speed and wind direction follows after the two previous models.

After the surrogate model is built, a validation set for the surrogate models is implemented,
which varies per cases. Wind speed surrogate model uses an interval of 1 [m/s] from 0 to
25 [m/s] as the validation set. In contrast, the wind direction surrogate model utilises wind
direction with an interval of 1° from 0° to 359°. Similarly, the two-dimensional surrogate
model also has a validation set that takes the full interval size of wind speed and wind
direction.

Surrogate on wind speed

The first case under investigation is the surrogate model with wind speed, which affects the
wind turbine power production. The power curve of the wind turbine is thus the original
model upon which the surrogate model is constructed. Considering a case with a single
wind turbine and using the quadrature method, Figure 3-5a demonstrates the results of the
surrogate models on the NREL 5MW wind turbine power curve.

It can be seen with the zeroth-order expansion that the surrogate does not represent the real
model well. As the order increases, the surrogate starts to become a better fit. Figure 3-5b
further supports this finding, where the performance of the surrogate model becomes closer
to the true response. Nevertheless, since the power curve is not a polynomial function, it is
hardly possible to have an exact surrogate model. This is also in agreement with the work
of Bailleul [3]. The difference [%] of the AEP between the estimation by PCE and the PV
model is defined by using the surrogate model in the AEP calculation as shown in Eq. (2-1).
Similar to what has been seen in fitting the PV model, the differences in AEP decreases as
the order of quadrature increases. It eventually converges to a percentage error around 1%
when the order is more than 6, which is considered a sufficient approximation.

J.S. Chuang Master of Science Thesis



3-5 Verification of the surrogate models 29

x108
7=
5
6 . 45
w_-, 4
50
_ ‘\ 35
=
=4r w 3
= &
ng) > 25
33r —— PV Curve 2
o Order: 0 | €aEp 91%
2 / Order: 1| e,gp: 37% 15 Order: 3
/’ Order: 3| ¢,p: 13% 1 +  Order: 6
1r . . 199 Order: 10
1 v, Order: 6 | €ppp: 1.2% 0.5 + Order: 14
0 '/“ | Order: 10 | €,pp: 1.6% 0
0 5 10 15 20 25 0 1 2 3 4 5 ,
Wind Speed [m/s] Yirue x10
(@) Visualisation of the power curve (b) Validation of PCE surrogate model

Figure 3-5: Different order of PCE quadrature models on the NREL 5MW turbine PV curve

Surrogate on wind direction

The second case is the investigation of the surrogate model with the wind direction. This
case is important when there are multiple wind turbines in a wind farm, causing the wake
effect to take place. The wind speed is fixed at 10 [m/s], which is the wind speed in between
the cut-in and rated wind speed of the wind turbine, and thus the wake effect can be clearly
presented.

As mentioned in Section 3-3-2, there are several ways of building up a PCE model. Figure 3-6
and Figure 3-7 show the investigation of two different sampling schemes with a different order
of polynomial basis and number of sampling points using different methods. The sampling
points are also called the collocation points, where the sampled wind directions are used as
the experimental design that evaluates the true power output. Before introducing the two
sampling scheme, it is worthy to note that the quadrature method depends on the order of
the polynomial basis to determine the number of sampling points, which follows the Gaussian
quadrature rule. The sample points for the quadrature method is, therefore, cannot be chosen
by the researcher. For OLS and LARS, the first scheme is random sampling, which randomly
sampled the wind direction from [0° 360°]. The random sampling scheme can be based on
Monte Carlo sampling or Latin hypercube sampling (LHS), and the research continues with
the Latin hypercube sampling scheme. The second scheme is linearly spaced sampling (LSS)
where the samples are drawn from [0° 360°] with linearly spaced interval.

The difference [%)] of the 10 [m/s] power output between the estimation by PCE and the OM
model is defined by making the wind direction into 12 sectors (e.g. bins) and using the mean
probability of each sector from the 50 years measurement. It also considers the number of
sampling points in wind direction. The sector probability is divided by the number of wind
directions that are sampled within that sector. With these probabilities, the power yield is
calculated, assuming that the wind speed is 10 [m/s] throughout the entire year. In addition,
the power yield of the original model is calculated with the interval of one degree for the wind
direction from [0° 360°], and the PCE model is validated with the same intervals.

Figure 3-6 compares the random sampling scheme, Latin hypercube sampling, to the linearly
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spaced sampling with a different order of polynomial basis using different PCE methods. The
linearly spaced sampling seems to have a more stable convergence rate on accuracy. Also,
based on the convergence plots in Figure 3-7, it is concluded that using the linearly spaced
sampling could possibly lead to an earlier convergence for OLS and LARS methods. Under
such sampling theme, the order of polynomial basis seems to have little effect on the difference
of power output between the surrogate model and the original model. On the other hands,
the number of sampling points indicates the accuracy of less than 1% can be achieved when
more than 50 points are used for the polynomial order higher than one. The linearly spaced
sampling scheme is, therefore, selected to continue the construction of the surrogate model.
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Figure 3-6: The difference [%] of power output between the estimation by PCE and the original
model for various polynomial basis order with different PCE methods at 10 [m/s] wind speed.
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Figure 3-7: The difference [%] of power output between the estimation by PCE and the original
model for varying number of sampling points on wind direction with different orders at 10 [m/s]
wind speed.

Finally, Figure 3-8 presents the results of the PCE surrogate model in terms of power roses
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using different polynomial basis orders. The surrogate was constructed by 100 wind direc-
tions with linearly spaced samples and using the OLS method to calculate the polynomial
chaos coefficients. The samples are also called collocation points, where the true function is
evaluated.

(a) Surrogate at 3rd order (b) Surrogate at 6th order (c) Surrogate at 9th order

Figure 3-8: PCE power output surrogate models on wind direction at 10 [m/s] wind speed. The
black line is the power output from the original model, the blue line comes from the constructed
surrogate model, and the markers * denote the collocation points.

As clearly seen, none of the orders is a representative fit. Even with a higher polynomial
expansion degree, the surrogate models can only catch the large wake effect in the 0 degree
but failed in the 180 degrees. Moreover, with a higher polynomial expansion degree, the
surrogate models start to yield discontinuity at 0° or 360°. It has been identified in some
literature [3, 42] that the surrogate models work better on wind speed than on wind direction.
This might be due to the polynomial being better at representing the PV curve than the power
rose of a wind farm as the power rose is more erratic. Nevertheless, the results in Figure 3-8
yield considerable accuracy on the power output with respect to the original model where
the difference with the 3rd order is 0.0022%, the 6th order is 0.0739%, and the 9th order is
0.4033%.

Surrogate on wind speed and wind direction

Now, both surrogate models on wind speed and wind direction have been built. The con-
struction of a two-dimensional surrogate model hence follows. It is called a two-dimensional
model because the two inputs, wind speed and wind direction are both sampled to calculate
the wind farm power output. To showcase the three different PCE methods, Figure 3-9 is
created.

The quadrature method depends on the order of the polynomial basis to determine the number
of sampling points, which follows the Gaussian quadrature rule. Therefore, the order is fixed at
15th to have a similar amount of collocation points to compared with the regression methods.
The result using the ordinary least square method shown in Figure 3-9b and the one utilising
the least angle regression method is shown in Figure 3-9c. The methods both use 9th order
polynomial basis with 200 samples in wind speed and wind direction, shown as the red markers
in the figures. It is worth to note that the power surface plots are plotted using the validation
set that is every wind speed and wind direction at integer intervals. From the power surface
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plot of the three methods, it is suspected that PCE is not able to catch the power deficit
from the wake effect that well as one could hardly see dips in the partial-load and full-load
region as Figure 3-4 has shown. The reason behind this could possibly be understood from
the one-dimensional results as the PCE model can not well capture the wake effect.
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Figure 3-9: The two-dimensional power production surface plots of the investigating layout for
every wind speed and wind direction using PCE models. The red markers denote the collocation
points.

An investigation of the accuracy using different methods and sampling points is also con-
ducted. The result is presented in Figure 3-10. In the figure, PCE using quadrature method
is indicated as PCE-Q, PCE using least square regression is denoted as PCE-OLS, and PCE
using least-angle regression is PCE-LARS. The difference [%] of the AEP between the es-
timate by PCE and the OM model is again defined by making the wind direction into 12
sectors and using the mean probability of each sector from the 50 years measurement. The
same goes to the Weibull parameters. Based on the result, both regression methods converge
to a certain level when the number of samples becomes more than 200. The difference is
that PCE-LARS performs better even with smaller sample size, and this might be because
least-angle regression is a sparse PCE, which is a more advanced and efficient method that is

able to select the polynomial basis that has the most significant impact on the model response
[5].
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Figure 3-10: The difference [%] of power output between the estimation by PCE and the original
model for varying number of collocation points on wind speed and wind direction.

A further detailed investigation is conducted to see the effect of taking a different number
of sampling points in wind speed and wind direction. To assign different sampling points in
the two dimensions, the linearly spaced sampling scheme needs to be used. The results of
difference in AEP approximation is shown in the contour plots of Figure 3-11a and its detailed
view of Figure 3-11b. Based on the results, it can be concluded that the number of samples
in wind speed is more important than the number of samples in wind direction. For example,
an accuracy of 2% can be reached when the number of collocation points for wind speed is
more than 6, whereas that is 10 for the wind direction. The surrogate model was constructed
using a polynomial basis of 9th order with the LARS method.
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Figure 3-11: The difference [%)] of the AEP approximation between the surrogate model and
the original model using different collocation points in wind speed and wind direction.
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3-5-3 Verification of the Kriging model

Next to the PCE surrogate model, the verification of the Kriging surrogate model follows.
In a similar manner, the wind speed surrogate model is investigated first and then the wind
direction one. Once the two models are constructed, a two-dimensional Kriging surrogate
model is made. The verification also consists of studying different Kriging setting and number
of samples used to build the surrogate model. The same validation set with the one used
for the PCE model is also implemented once the surrogate model is built. In general, the
validation set takes every wind speed and wind direction into account.

Surrogate on wind speed

The Kriging model is also utilised to create the PV curve surrogate model. Visualisation
of the surrogate model is made and can be seen in Figure 3-12. Based on the number of
sampling points (i.e., experimental design) used to construct the model, the accuracy of the
approximation varies. Moreover, the Kriging model can also provide information regarding
the variance of the approximation. In Figure 3-12, the blue lines denote the mean value
of the Kriging model, and the grey areas show the 95% confidence interval based on the
variance. As a demonstration, both models are built with universal Kriging of 3-degree
polynomial, exponential correlation function, and use the cross-validation method to estimate
the hyperparameters. The difference in AEP is determined in the same way as mentioned in
the PCE verification. According to the results, the Kriging model is in good agreement with
the original PV model when using 15 samples as using this surrogate PV model can reach a
difference with the original model within 1%.
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Figure 3-12: The Kriging PV surrogate model of the NREL 5MW wind turbine
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Surrogate on wind direction

The second investigating case for Kriging is also the surrogate models based on wind direction.
The wind speed is again fixed at 10 [m/s] to ensure that the wake effect is clearly presented.
Similar to the PCE modelling, the two sampling schemes are tested to see the effect on the
power output differences. The results are shown in Figure 3-13. The results are similar to
the ones shown before, as the linearly spaced sampling performs slightly better in terms of
the rate of convergence. It is not expected that this sampling scheme turns out to have such
similar results with a different order of universal Kriging trends, especially when the number
of sampling points on wind direction is more than 50. In general, the differences in AEP from
the OM model and the Kriging model reach less than 2.5% when the number of sampling
points is more than 50. Regarding the method used to construct the Kriging surrogate model
on the wind direction, the results can hardly tell which method performs the best as the
differences are relatively small as clearly seen in Figure 3-13b.
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Figure 3-13: The difference [%] of the power output between the estimation by Kriging and
the original model for varying number of sampling points on wind direction with different Kriging
methods at 10 [m/s] wind speed.

Based on the convergence plots, it is concluded that using the linearly spaced sampling with
4th order universal Kriging results in a reasonable accuracy of power output approximation.
Figure 3-14 shows the power roses with different sample numbers for the Kriging surrogate
and plotted with equally spaced points from [0°,360°] degree. According to the power roses, it
can be said that the Kriging model performs better than PCE models when it comes to fitting
the wind direction as it catches the wake effect better even with small amount of sampling
points. The differences between the power yield from the Kriging model and the original
model for the three power output roses is 0.2139%, 0.3604%, and 0.0217%, respectively. Nev-
ertheless, it should also be noted that the construction of Kriging is much more complicated
and computationally expensive than the construction of the PCE model. Many parameters
need to be defined, and the hyperparameter itself is an optimisation problem that requires
several iterations. A comparison of the time requirement of the two surrogate methods will
be carried out in Section 3-6.

Master of Science Thesis J.S. Chuang



36 Surrogate Modelling

180 180 180

(a) Kriging built with 50 samples  (b) Kriging built with 100 samples () Kriging built with 150 samples

Figure 3-14: Kriging power output surrogate models on wind direction at 10 [m/s] wind speed.
The black line is the power output from the original model, the blue line comes from the con-
structed surrogate model, and the markers * denote the collocation points.

Surrogate on wind speed and wind direction

Now, surrogate models are created for the power curve and the wake evaluation using the
Kriging model. Wind speed and wind direction are now both considered to build a two-
dimensional surrogate model. To showcase the Kriging surrogate models, Figure 3-15 is
created. All construction methods of the Kriging surrogate model use 200 random samples
(shown as the red markers in the figures) to create the power output surface plots. After
the construction of the models, the validation set is used to evaluate the power output using
every wind speed and wind direction at integer intervals. The ordinary Kriging presented
in Figure 3-15a reaches a difference between the surrogate model and the original model of
0.3081%. The 2nd order, 3rd order, and 4th order universal Kriging displayed in Figure 3-15b
to Figure 3-15d reach 0.1945%, 0.5179%, and 0.5666%, respectively. Based on the surface
plots of the power output, it is possible to conclude that Kriging surrogate model captures
the power deficit from the wake effect much better than the PCE model as the "dips" can be
clearly seen in regions like wind direction at 180 [deg].

The construction of the surrogate model requires an investigation of the methods to build a
Kriging model, and the number of samples needed to achieve a certain accuracy. The selection
of Kriging settings is based on the investigation using different construction methods shown in
Figure 3-16. It is seen from the result that all settings converge to roughly the same difference
as the sampling numbers reach 300. However, the 2nd order universal Kriging outperforms
other methods in lower sampling points in wind speed and wind direction.

A further detailed investigation is conducted to see the effect of taking a different number
of sampling points in wind speed and wind direction. The surrogate model was constructed
using 2nd order universal Kriging with linearly spaced sampling scheme. This parameter
configuration is obtained from the convergence plot in Figure 3-16. The result of difference
in AEP approximation is shown in the contour plots of Figure 3-17a and its detailed view of
Figure 3-17b. Similar to the PCE case, the number of sampling points in the wind speed is
more important than the one in the wind direction. According to the results, it can be seen
that accuracy of 5% can be reached when the number of collocation points for wind speed is
more than 5, whereas this is 10 for the wind direction.
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Figure 3-15: The two-dimensional power production surface plot of the investigating layout
for every wind speed and wind direction using the Kriging model. The red markers denote the
collocation points.
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Figure 3-16: The difference [%)] of the AEP between the estimation by Kriging and the original
model for varying number of collocation points on wind speed and wind direction.
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Figure 3-17: The difference [%)] of the AEP approximation in between the surrogate model and
the original model using different collocation points in wind speed and wind direction.

3-6 Comparison of the surrogate models

Two different surrogate models with different techniques have been constructed to provide a
faster evaluation for the wind farm power output. This section aims to provide a comparison
of the two surrogate models and establish the optimal parameters for the models. Based
on the previous verification, the polynomial basis order for the PCE model and the universal
Kriging order has been determined as 28th and second order, respectively. The configurations
are results from several attempts that look for the best estimation.
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Figure 3-18: Comparison of time required and accuracy for the two surrogate models.

Therefore, with the fixed orders, the first comparison is on time required to build the sur-
rogate model. Since the computational time depends on the hardware used, the relative
differences are more crucial than the absolute time needed. For an OM model, it requires
215.2038 seconds for MATLAB to complete the 9360 evaluations of the wind farm power out-
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put. Figure 3-18a shows the time required by the surrogate models with a different number of
samples. It is noteworthy that the random sampling scheme is used here to have the freedom
of varying sample size. Based on the result, Kriging seems to require a little bit longer time
than the PCE model. Second, the effect of the number of samples on the accuracy of the
models compared to the OM model is investigated. The result is shown in Figure 3-18b and is
consistent with what has been shown in the previous sections. The Kriging model is slightly
more accurate than the PCE model despite that they both are able to have accuracy within
2% when more than 200 samples are used.

The optimal setting for the two models after the verification is presented in Table 3-5. Both
models have an experimental design of 200 samples. As mentioned before, the PCE model
uses the LARS method with 28th order of polynomial basis while the Kriging model uses the
2nd order universal Kriging.

Number of samples Method Settings
PCE - 00 LARS 28th Order
. . 2nd Degree Exponential Correlation Family,
Kriging 200 Universal Kriging Cross-Validation Estimation

Table 3-5: The parameters and settings used to construct the optimum surrogate models.

The results are visualised in Figure 3-19. The 200 sampling points are further categorised
by how they are generated, either by Latin Hypercube sampling or using linearly spaced
samples. From Figure 3-19a and Figure 3-19b, the difference between the estimation by PCE
model and the original model is considered small but the power output surface plots vary a
lot. The error of the models is shown in Table 3-6. When using a random sampling scheme
for the collocation points, there are discontinuities at the boundary of wind speed and wind
direction sampling ranges. On the other hands, PCE model using linear sampling scheme
performs better but fails to capture the power deficit caused by the wake effect. Nevertheless,
the differences between both PCE models to the original model on the AEP value are within
1%, which is not expected by looking at the figures at first sight, especially for the one with
the random sampling scheme. The reason maybe because of the PCE model tends to smooth
out the power deficits caused by the wake effect as already seen in Figure 3-8. When using
linearly spaced samples as in Figure 3-19b, the sampling scheme only sampled certain wind
speed and wind direction, which may cause the model to be biased toward those sampled
points and averaging out the power yield. In contrast, using Latin hypercube samples, the
model is less biased by the sampled points as every wind speed, and wind direction are all
likely to be sampled to evaluate the true power output.

Meanwhile, both Kriging models are able to capture the wake effects as the dips in the surface
plots are easy to spot. Even though the Kriging model with linearly spaced samples seems to
be a better representation of the original model when looking at the figure, the difference of it
to the original model is surprisingly higher compared to the case where random samples are
used. The reason behind it could be similar to what has been discussed for the PCE model.
Such that as long as there are an adequate amount of sampling points, using the random
sampling scheme (i.e., Latin hypercube sampling) could lead to a better result. It is because
that all wind speed and wind direction are possible to be sampled for the true evaluation.

Lastly. a comparison of the time required to build and evaluate the surrogate models men-
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tioned in the figure is presented in Table 3-7. As can be concluded from the table, the
time difference of the two sampling schemes for the surrogate models does not show a large
difference.
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Figure 3-19: The two-dimensional power production surface plot of the investigating layout
for every wind speed and wind direction using the two surrogate models with different sampling

schemes.
AEP [MWh] CF [%] Time [s] Error [%]
Original Model 2.2348 - 10° 48.17 215.2038 -
"PCE LHS Model  22379-10° 4824 48327  0.1365
PCE LSS Model 2.2407 - 10° 48.30 4.7239 0.2636
Kriging LHS Model 2.2350 - 10° 48.18 6.4206 0.0089
Kriging LSS Model 2.2275 - 10° 48.01 6.4719 0.3295

Table 3-6: Comparison of OM model and the surrogate models on AEP and the time required
to construct the models.

To sum up, it is suggested to use random sampling schemes for the surrogate models when
one is mainly concerned about the AEP value but not about the wake effect being fully
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represented. Nevertheless, both PCE and Kriging model are considered accurate surrogate
models to the OM model. The Kriging model outperforms the PCE model regarding the
ability to catch the wake effect but fails on the time required to build the model. In the
current research on the surrogate model for power output, it is seen that PCE is a better
method to construct surrogate models than Kriging as it can give a better accuracy compared
to the original model. Furthermore, regarding the procedure of setting the surrogate models,
PCE is far more straightforward. The overall complexity of setting up a Kriging model and
the computational time is more intense than for other methods.

PCE PCE Kriging Kriging

LHS LSS LHS LSS
Model building (s) 4.7976 4.6820 6.2808 6.3267
Evaluation (s) 0.0351 0.0419 0.1398 0.1452
Total time (s) 4.8327 4.7239 6.4206 6.4719

Table 3-7: The computational time required to build and evaluate each surrogate model.

3-7 Summary of the chapter

This chapter explains and illustrates the surrogate modelling techniques, namely polynomial
chaos expansion and Kriging. The surrogate models aim to emulate the expensive compu-
tational procedure of estimating the wind farm power output. Both surrogate models reach
satisfactory accuracy, where the percentage error of AEP lies within 2% when using an ade-
quate amount of samples. Kriging has shown a slight advantage in capturing the wake effect
over PCE. Nevertheless, it requires additional computational effort in terms of time compared
to the other methods, and the accuracy is not higher than PCE under the same amount of
samples. Overall, PCE can be considered a better method when considering both evaluation
effort and accuracy.
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Chapter 4

Effectiveness of Surrogate Models

4-1 Introduction to the chapter

From Chapter 3, it has been proven that surrogate modelling, both PCE and Kriging, can be
a good replacement of a time-consuming wind farm power model. However, the investigation
was built on a specific layout that is a gridded and aligned one. The influence of different
layouts is still not known, and this chapter, therefore, focuses on the effectiveness of the
surrogate model on different wind farm layouts. Furthermore, it has also been found that when
using a random sampling scheme (e.g., Latin hypercube sampling) to sample the collocation
points, the surrogate models produce different results due to the stochastic characteristic of
the scheme. Hence, Section 4-3 is dedicated to study and quantify the randomness from the
sampling scheme.

4-2 Effectiveness on different wind farm layouts

4-2-1 Overview of wind farm layouts

Besides the wind farm layout mentioned in Figure 2-5, the research further looks into six
additional wind farm layouts. Here, the six additional wind farm layouts are named as case
layout from 2 to 6 while case 1 is the layout that has been investigated in Chapter 3, namely
the one shown in Figure 2-5. The number of wind turbines is still fixed to 10. From Chapter 3,
it has been acknowledged that using the original model to calculate the energy yield is time-
consuming, so it is possible to use a surrogate model to improve the calculation speed of a
wind farm layout optimisation problem. The main goal is to study if the surrogate model
that has been constructed only works properly on a specific type of wind farm layout. This
study is useful if the surrogate model is implemented in wind farm layout optimisation to
reduce the computational effort. As many layouts are evaluated while the optimiser looks for
a layout with a maximum wind farm energy output, it is essential to know the limit of the
surrogate models.
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The wind farm layout for case 2 to 7 is shown in Figure 4-1 while case 1 is the layout mentioned
in Chapter 2 and Chapter 3. These cases are determined by the author based on three different
aspects. The first one is changing aligned layouts into staggered ones. The two layouts, in
case 2 and case 3, are determined based on this aspect. The reason for the staggered layout
is to reduce the wake effect. Instead of an aligned layout, Figure 4-1a and Figure 4-1b shift
the rear wind turbines away from the front rows to avoid wake effect. The second aspect is
creating as many wake effect as possible while maintaining the area constraints and safety
distance. This aspect can be seen in Figure 4-1c and Figure 4-1d, where the turbines are
placed close to each other. The third aspect is changing the regular grid layout to irregular or
random ones. Figure 4-1e shows an L-shape layout, while Figure 4-1f is randomly generated
to mimic the progress within a wind farm layout optimisation.

x { X x { X
3000 3000 + 3000
2500 x * 2500+ = > 2500 x
E 2000 E 2000 1 E 2000
p % % 0 * x o * * *
7 1500 ® 1500 + % 1500
B B =S
1000 1000 r . 1000
kY * kS * x kS s
500 500 - 500
X x x X x x X
0 + 0 + 0 .
0 500 1000 1] 500 1000 0 500 1000
x-axis [m] x-axis [m] x-axis [m]
(a) Case 2 layout (b) Case 3 layout (c) Case 4 layout
x
3000 3000 + 3000
x x
2500 2500 > 2500 X
x x
.§. 2000 52000 r I§.2DDD r
n x 0 pe 0 b4
§ s 1500 + § 1500
¥ 1500 < >
X x X X
1000 1000 | 1000
X % % .- x
500 x * 500 [~ 500 x
x x » x ®
0 - 0 - 0 -
0 500 1000 0 500 1000 0 500 1000
x-axis [m] X-axis [m] x-axis [m]
(d) Case 5 layout (e) Case 6 layout (f) Case 7 layout

Figure 4-1: Overview of the 6 additional wind farm layouts under investigation.
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45

In order to have a clear visualisation of the wake effect, the power rose for wind speed at 10
[m/s| is a preferred choice as this wind speed is below rated and above cut-in wind speed.
The power rose of case 1 has been presented in Figure 3-3b, and the power rose of case 2 to
7 at 10 [m/s| using the original model are shown in Figure 4-2.

330 30
0
300 60
20
10
270 0 )
240 120
210 150
180
(a) Case 2
0
330 40 30
3
300 60
20
10
270 0 9%
240 120
210 150
180
(c) Case 4
0
330 40 30
30
300 60
20
10
270 0 )
240 120
210 150
180
(e) Case 6

330 30
30
300 60
20
10
270 0 9%
240 120
210 150
180
(b) Case 3
0
330 40 30
30
300 60
10
270 0 )
240 120
210 150
180
(d) Case 5
0
330 40 30
30
300 60
20
10
270 0 )
240 120
210 150
180
(f) Case 7

Figure 4-2: Power roses of each layout when wind speed is at 10 [m/s].
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Several findings can be identified from Figure 4-2. It should be noted that the following
comparisons are based on the AEP in Table 4-1. The AEPs are calculated with the full range
of wind speeds and wind directions using the original wind farm power model. Firstly, the
staggered layouts in case 2 and case 3 do not surpass the aligned layout in case 1 as expected.
This could be because the dominant wind direction of the site is from the southwest direction,
as shown in Figure 2-2. The dominant wind direction is not aligned with the closely spaced
lines of wind turbines in case 1. As for case 2 and case 3, the staggered formation of the wind
turbines coincide to this dominant wind direction and results in an inferior performance by
the wake effect.

AEP [MWh] Capacity factor [%)]

Case 1 2.2348 - 10° 48.17
Case 2 2.1967 - 10° 47.34
Case 3 2.2075 - 10° 47.58
Case 4 2.0991 - 10° 45.24
Case 5 1.9387 - 10° 41.78
Case 6 2.1818 - 10° 47.02
Case 7 2.1787 - 10° 46.96

Table 4-1: Summary of the AEP of all cases along with the capacity factor of the layouts.

Second, for the wake-intense cases, such as case 4 and case 5, a significant reduction in AEP
can be seen. The power deficit from the wake effect is worst when the wind turbines are
placed too close as case 5 implies.

Last, irregular layouts are hard to predict their performance. The L-shaped layout seems to
experience a considerable wake effect when the wind direction is 180 degree, but it is expected
that this layout can overcome the dominant southwest wind direction. Nevertheless, the AEP
from this layout does not surpass the grid layout in case 1. A ranking on the AEP of all 7
cases using the original model is shown in the first row of Table 4-2. The best layout is case
1 with a standard gridded layout, follows by the two staggered layouts. The two irregular
layouts are ranked 4th and 5th while the two wake-intense layouts are the worst ones.

4-2-2 Results of surrogate models on different wind farm layouts

Both PCE and Kriging surrogate models mentioned in Chapter 3 are implemented for the 6
additional wind farm layouts. The configuration of the wind farm power surrogate is kept the
same for all layouts to have a valid comparison.

The study first looks into the percentage error of all cases on AEP for both surrogate models
with different sampling schemes, namely the Latin hypercube sampling samples (LHS) and
the linearly spaced samples (LSS). The comparison is shown in Figure 4-3. The differences
show whether the surrogate models work better or worse on some wind farm layout. Based on
the results, the differences between the estimation by the two surrogate models to the original
model mostly lie within 2%. It is hard to tell from the comparison whether there is a kind
of wind farm layout that cannot be handled by the surrogate models. The only observation
is that the wake-intense layouts, such as case 4, show higher differences using both surrogate
models.
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Figure 4-3: The AEP percentage error of all wind farm layout cases evaluates by the original
model and the surrogate models.

Furthermore, the effectiveness of the surrogate models is compared. It has decided to present
the effectiveness of the surrogate model as ranking for the easiness of interpretation. The
advantage of showing ranking is that it could simulate the procedure within the wind farm
layout optimisation. The wind farm layout optimisation compares the performance of every
possible layout and chooses the best one out of it. As a consequence, the importance of
checking the effectiveness of the surrogate models stands out as a false optimised layout may
occur if one includes an ineffective surrogate model in the layout optimisation.

Besides the ranking using the original model, Table 4-2 also presents the ranking using the two
surrogate models with two sampling schemes. Based on the ranking results, only PCE with
LHS obtained the same ranking as the original model while other cases deviate from what
has been known from the original model. Even though the ranking order from the 7 cases is
different, all models reach the same conclusion that the two wake-intense cases perform the
worst. Based on the ranking order, both surrogate models with LHS scheme seem to have a
more accurate approximation than using the linearly spaced sample scheme. Overall, there is
a possibility that the surrogate models may be effective for most kind of realistic wind farm
layouts as the types of wind farm layout does not seem to have a significant influence.

Ranking of cases
oM Case 1 > Case 3 > Case 2 > Case 6 > Case 7 > Case 4 > Case 5

LHS Casel > Case 3 > Case 2 > Case 6 > Case 7 > Case 4 > Case 5
,,,,,, LSS Case2 > Case 1 > Case 3 > Case 7 > Case 6 > Case 4 > Case 5

LHS Casel > Case 3 > Case 2 > Case 7 > Case 6 > Case 4 > Case 5
LSS Case3 > Case 7 > Case 2 > Case 1 > Case 6 > Case 4 > Case 5

Table 4-2: The AEP ranking of every cases using different wind farm power models.
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4-3 Randomness from the sampling scheme

As the name of the sampling scheme implies, the random sampling scheme randomly samples
from the wind speed and wind direction to construct the surrogate model for wind farm
power output. As mentioned before, Latin hypercube sampling is used for this scheme. From
Chapter 3 and the previous investigation on the effectiveness of the surrogate models, it was
concluded that this sampling scheme had provided a better approximation to the results of
the original model. However, it is found that this sampling scheme further causes uncertainty
on the results as the samples could be different in each construction. This section looks at
the results of the surrogate models with the Latin hypercube sampling scheme. It should
be noted that as long as no predefined samples are specified, this phenomenon will exist for
any random sampling methods. This randomness is actually epistemic uncertainty, and more
simulations can better understand it. On that account, the models are iterated for 50 times,
and the results are compared to see the uncertainty and the differences in different wind farm
layouts.

Figure 4-4 presents the percentage error of surrogate models for different case layouts. As
the uncertainty exists in the constructed surrogate models due to the random samples, box
plots are used. According to the results, 50% of the error samples (denotes as the blue box),
lie within 1.5%. The blue box represents the interquartile range of the data set. If outliers
are taken into account, the uncertainty from both surrogate models in each case lies within
4%. The median of error (denotes as the red line in the box plot), is below 1% and more
specifically, around 0.7% for every case. It has been learned in the previous section that PCE
and Kriging surrogate models do not seem to be sensitive to different types of wind farm
layout. The results from the figure confirm the previous findings.
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Figure 4-4: The percentage error from the random sampling schemes for the two surrogate
models on different wind farm layouts.

The LHS sampling scheme has been proven to be a better one than the linearly spaced
sampling scheme from both Chapter 3 and this chapter. However, as the upper bound of
the medium shows an approximately 1% error in all cases, it results in additional uncertainty
within the approximation of the surrogate model to the original model. Therefore, a solution
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for this is proposed, which is to have a pre-defined sample set that is generated via Latin
hypercube sampling. The use of the pre-defined samples preserves the advantage of sampling
throughout the entire wind speed, and wind direction domain as linearly spaced samples are
not capable of doing so. Moreover, it also keeps the variable sampling density of LHS while
eliminating the randomness in each construction of surrogate models. This pre-defined sample
set is then used for the construction of the surrogate models. It is possible to use this method
to eliminate the uncertainty in random sampling and leave only the approximation error of
the model itself.

4-4 Summary of the chapter

This chapter looks into the effectiveness of the surrogate models on different types of wind
farm layout besides the one discussed in Chapter 3. The first type of layout is the staggered
layout, the second type is the wake-intense layout, and the last one is the irregular layout.
According to the results, the effectiveness of the surrogate models is considered accurate
enough except some slight deviation in cases with a wake-intense layout. Nevertheless, the
percentage error for all layouts lies within 2.5%. Next, the randomness from the random
sampling scheme is discussed. It introduces additional uncertainty in the approximation of
surrogate models. Based on the findings, the upper bound of the medium in error in all
cases is approximated 1%. This error is then considered as the additional uncertainty caused
by the Latin hypercube sampling scheme. A solution has also been proposed to avoid this
uncertainty. It is by using a pre-defined sample set that is generated via Latin hypercube
sampling. In this way, it is possible to preserve the advantage of sampling throughout the
whole domain and the variable sampling density of LHS while eliminating the randomness in
each construction of surrogate models.
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Chapter 5

Uncertainty Quantification

5-1 Introduction to the chapter

Fundamental knowledge of the uncertainty quantification is introduced in this chapter. In
various research in the uncertainty quantification field, Monte Carlo simulation is most com-
monly seen. However, it has been identified that the high computational cost in this tradi-
tional uncertainty quantification method yields problems for high-fidelity and large simulation.
Chapter 3 has verified that the use of surrogate models can reduce the computational effort of
determining wind farm power and AEP. In Chapter 5, the surrogate models will be used for
uncertainty quantification of AEP as a function of stochastic wind climate, which focuses on
the year-by-year variation of Weibull distribution and wind rose. Lastly, a sensitivity analysis
of the uncertain inputs is carried out to study how the inputs affect the output value.

5-2 Background overview

5-2-1 Introduction to uncertainty quantification

The research on uncertainty quantification (UQ) has seen rapid growth in almost all domains
of sciences and engineering in the last decades. Deterministic-based modelling is gradually
replaced by stochastic modelling to have a better understanding of the uncertainty in phys-
ical phenomena, and measurements [34]. In this case, it is crucial to analyse the statistical
moments, such as mean and standard deviation of the probability density function (PDF)
and cumulative density function (CDF) of performance functions, in other words, quantity of
interest (Qol). The field of UQ covers a lot of topics, such as parameter estimation and cali-
bration and sensitivity analysis [56]. In this research, UQ is used as a method to include the
statistics and randomness from the natural wind phenomenon into the evaluation of annual
wind farm yield.

Most commonly, an UQ process starts with a characterisation step that determines the nature
of the uncertainties. Besides the distinction between aleatory and epistemic uncertainties,
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another critical part of characterisation is to use probability theory, for example, finding the
PDF for the uncertain variable. Once the characteristics of the uncertainties are known, a
propagation step is conducted. The uncertainties are propagated through a computational
model to obtain the relation between inputs and Qol. UQ can be further distinguished into
intrusive and non-intrusive based on the propagation method. The difference is that the
intrusive methods require one to change the mathematical model and demand a great coding
effort while the non-intrusive methods treat the models as a black boxr. An example of a
non-intrusive UQ flowchart is shown in Figure 5-1. The non-intrusive method is the choice of
this research and is most widely applied in the wind energy community [56].

input pdf output pdf

geometry

boundary conditions ) ) )
—p{ Computational model _»| quantity of interest

initial conditions

physical parameters

Figure 5-1: Flowchart of a non-intrusive forward uncertainty propagation [56].

However, the black box models used in UQ could be prohibitively computationally expensive.
Therefore, various methods are proposed to obtain accurate outputs with as few samples as
possible [56]. In particular, the high computational cost in traditional UQ via sampling-based
approaches (e.g., Monte Carlo method) yield problems for high-fidelity (e.g., CFD codes)
and large simulation. Thus, surrogate models are again proposed to alleviate the cost and
making the process more efficient by smartly sampling the input parameters, which will be
addressed in the later sections. The UQLab toolbox is also utilised to conduct the uncertainty
quantification.

5-2-2 Wind resource inter-year uncertainty

Mentioned in Chapter 1, a wind farm project typically contains significant financial risks while
developing and operating. Consequently, to lower such risk, several researchers have investi-
gated the topic of uncertainty characteristics within wind energy. Discussed in Quaeghebeur
[45], the lifetime production of a wind farm is important, but so is the yearly production.
A large inter-year variation could lead to financial risks, and the author concluded that the
inter-year wind resource varies massively in real measurement. In order to investigate the
inter-year uncertainty of the wind resource, the weather data is divided into yearly data. The
results of post-processing the weather data, the joint probability distributions in Figure 5-2,
clearly show the inter-year difference in wind resource. The shown inter-year difference sup-
ports the statement made in Quaeghebeur [45]. The research continues to find a method to
characterise the uncertainty for the year-to-year variation in the wind resource.
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Figure 5-2: A comparison of joint probability distribution of wind speed and wind direction in
different years.

The first attempt is to characterise the Weibull distribution within each wind direction sector.
In this sense, each wind direction sector will have independent Weibull parameters to other
sectors. These Weibull parameters vary from year-to-year and can therefore be considered to
be stochastic variables. The statistics of the yearly wind speed distribution, as expressed in
the probability distribution of the Weibull parameters, is then dependent on wind direction.
Nevertheless, this approach turns out to introduce a significant amount of uncertain variables
if one wants to characterise the uncertainty in the wind speed distribution within every wind
sector. For example, if one divides the wind direction into 12 sectors, there will be 12-2 = 24
uncertain variables for wind speed if a two-parameter Weibull distribution is used. This
number of uncertain variables has only taken the wind speed into account, and it will be
even more when uncertainty in the probability of occurrence per wind sector is considered as
well. Therefore, a second attempt that utilises an aggregated Weibull distribution for all wind
direction sectors is implemented. The precision in estimating AEP will reduce, but the yearly
variation will still be captured. This approach is suitable for this research as the research
aims to deal with the inter-year variability in wind resource. The uncertain variables for the
wind speed, thus reduce to two, which are the Weibull scale and shape parameters.

The 50 years measurement from the website of KNMI is processed to have information about
the yearly wind speed and wind direction distributions. After sorting out the occurrence of
wind speed in individual years, Figure 5-3a can be obtained. In Figure 5-3a, each colour
represents a year within the 50 years, and from each Weibull distribution curve, the Weibull
scale and shape parameters can be extracted. In contrast, there is no suitable mathematical
probability distribution for the wind direction, as shown in Figure 2-4a, and is therefore
normally presented by a wind rose. It is decided to break down the wind direction into
sectors (e.g. bins). Based on the number of occurrences of wind direction that falls inside a
sector, a sector probability is assigned. The uncertainties related to the wind direction are
thus the sector probabilities in the wind frequency rose. The different colours in Figure 5-3b
denote different wind frequency roses of each year with different colours. The figure evidently
presents the inter-year variation in wind direction. Further, the changes in probability inside
each sector can also be clearly seen.
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Figure 5-3: The uncertain variables concluded from the 50 years measurement data.

5-2-3 Statistical inference on wind data

Using the 50 years of weather data from the IJmuiden station, the uncertain variables (e.g.,
Weibull parameters and wind rose sector probabilities) are obtained by post-processing the
daily data to investigate the yearly differences. These uncertain variables are subjected to
distribution fitting using the UQLab toolbox. There are two main steps for conducting
statistical inference. The first one being fitting different probabilistic models to the data,
and the second is to select the one with the best fitting performance[54]. In this research,
the data is fitted with the parametric inference that gives probability distributions with fixed
analytical expressions. The fitted distribution generally utilised the maximum likelihood
solution, in which the likelihood function £ is the maximum:

n
arg maxg H px (M) 0) = arg maxy L£(6) (5-1)
h=1

Eq. (5-1) [54] considers a case with a random vector X where px is the probability distribution
function. The fitted distribution parameters 6 are determined by n independent observations
Z of X. The final distribution is determined by the one that has the minimum Akaike Infor-
mation Criterion (AIC), where k is the number of model parameters and £ is the likelihood
function.

AIC =2k —2log(L) (5-2)

Table 5-1 summarised the probability distribution and the statistical moments of the inferred
uncertain variables. It has to be noted that it is not possible to simply infer all 12 sectors
of wind direction. As the probability of the sectors is the uncertain variable, it still needs to
satisfy the rule of probability that the probability from every sector has to sum up to one.
As the sector probabilities become uncertain variables, they are now represented by PDF
instead of a fixed value. When sampling from the PDF of each wind sector, the summation
could likely be more or less than one. Therefore, to avoid such matters, the wind sector of
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[210°,240°] is intentionally left out as its the most dominant sector among all sectors. This
makes the fact that only 11 out of 12 sectors are statistically inferred. The omitted sector is
determined by the rest of the sectors. It comes from the total possibility one subtracts the
summation of all others 11 sector probabilities. This guarantees that the total probability of
all wind sector can be "one", as stated in the mathematical and probability theory.

Uncertain variables Distribution Mean Standard deviation
Weibull scale parameter A Gaussian 10.1746 0.5728
Weibull shape parameter k Gaussian 2.5063 0.1191
~ Wind sector probability [0°, 30°] Beta ~ 0.0645 00176
Wind sector probability [30°, 60°] Laplace 0.0575 0.0208
Wind sector probability [60°, 90°] Beta 0.0947 0.0250
Wind sector probability [90°, 120°] Weibull 0.0529 0.0171
Wind sector probability [120°, 150°] Beta 0.0439 0.0138
Wind sector probability [150°, 180°] Beta 0.0617 0.0150
Wind sector probability [180°, 210°] Lognormal 0.1113 0.0213
Wind sector probability [240°, 270°] Logistic 0.8888 0.0400
Wind sector probability [270°, 300°] Gaussian 0.0801 0.0177
Wind sector probability [300°, 330°] Weibull 0.0649 0.0172
Wind sector probability [330°, 360°] Weibull 0.0646 0.0143

Table 5-1: Uncertain variables and the corresponding statistical properties from the inferred
data.

5-2-4 Quantity of interest

In order to lower the risk for an investment of a wind farm even more, a statistic confidence
level P90 could be utilised. In the name of Pxx, xx can range from 1 to 99, and denotes the
probability percentage that the value will be exceeded in a statistic response. For example, due
to the uncertainty in the wind condition, AEP of a wind farm is actually not a deterministic
value but a statistical response. To be more specific, the inter-year uncertainty in wind
resource is the reason that makes the AEP into a statistic response. The AEP that has been
mentioned in the previous chapters is a mean, which is obtained by:

paepp = 8766 - up (5-3)
pe = EIP(X)] = | P(0p(X)dx (5-4)

where X = (X1, Xy, ..., X,,) is a vector of variables, which contains wind speed U and wind
direction 0. p(X) = [lp—; px(Xk) is the joint probability density function of the random
variables, 2 is the domain of the variable, and P is the power production by the wind farm.
When the statistic response results in a symmetrical probability distribution, such as the
normal distribution, the equations denote the P50 of the statistic responses. The value 50
after P indicates that there is a probability of 50% that the actual AEP of the wind farm will
exceed this P50 value. For a normal distribution, this value is also the mean value y or the
expected value E as shown in Eq. (5-4).
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For a statistic response like the normal distribution, the P90 value is smaller than the pagp.
In this sense, P90 means that the actual AEP is expected to have the 90% chance that the
value will be larger than the P90 value, and there is only 10% chance that it will be lower. It
should be noted that the standard deviation o is also crucial when calculating the P90 value.
The P90 value is different for two normal distribution with the same mean u but different
standard deviation o, as seen in Figure 5-4. The need for accurately performing uncertainty
quantification is thus required as an inaccurate approach could lead to a consequence of the
wind farm financing [10].

—  Normal distribution 1

with g and g
Normal distribution 2
with g and o

.‘”:m ,-‘M/ 1EP, can . AFP

Figure 5-4: lllustration of P90 values with two normal distributions with the same mean value
but different standard deviation [10].

Nevertheless, it should be noted that when the probability distribution is not symmetrical,
the mean will not be the P50 value as what has been for a normal distribution. In this case,
the Qol will then obtain from the cumulative density function of the statistical response, as
shown in Figure 5-5. The P90 value will correspond to the 10% cumulative probability, while
the P50 value denotes the 50% cumulative probability.
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Figure 5-5: lllustration of cumulative density function with P90, P50, and P10 values.
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5-3 Uncertainty propagation methods

5-3-1 Monte Carlo method

One of the non-intrusive methods of uncertainty propagation via sampling is the Monte Carlo
(MC) method. The method is based on drawing random samples from the probability distri-
bution of the random variables. The mean and the variance of the Qol can be approximated
by

py =E

N
Z (5-5)

0% = Var[Y] ~ (Y — E[Y])? (5-6)

gl 2\

1
N -

where Y is the model response and NN is the number of samples.

Advantages of the Monte Carlo simulation (MC) are the ease of implementation, and it is free
of the curse of dimensionality. However, the method can be expensive when applied to a high-
fidelity simulation code that requires hours for a single simulation [15]. This is because the
accuracy for MC increase with O(1/v/N), where N is the number of samples. Therefore, for
an accurate uncertainty analysis, MC may require more than thousands of samples or model
evaluations. It is, therefore, exploring the possible use of surrogate models for uncertainty
propagation.

5-3-2 Propagation with surrogate models

As mentioned in the previous paragraph, even though the Monte Carlo method is robust and
versatile for uncertainty quantification, it can yield an excessive large computational expense.
Due to this situation, the application of surrogate modelling in UQ has been investigated. For
example, it is possible to acquired statistical information of the output (i.e., Qol) analytically
from the PCE coefficients.

The uncertain inputs for the UQ model have been mentioned in the previous section. Based
on the experience from the previous chapter, it has been acknowledged that PCE is faster in
term of construction and providing statistical output. However, when the research focuses on
the wake effect phenomenon, the Kriging surrogate model is able to provide a better solution.
The conclusion is based on the results of building a surrogate model for the wind farm power
output. It will be tested whether the conclusion also holds when using the surrogate model
as a mean in the uncertainty quantification process.

Applying the PCE model in UQ
The PCE has been a popular surrogate technique in the uncertainty quantification field, espe-
cially as an alternative method to Monte Carlo simulation method [39]. The use of calculating

the polynomial chaos coefficients for uncertainty quantification is not yet clarified. Before
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knowing the application, some statistical knowledge needs to be explained. Statistically, the
mean (i.e., expected value) of a function M(X) can be defined as

pan = EIM) = [ M(X)p(X)dX (5-7)

With the polynomial expansion in Eq. (3-2), the above expression of mean is then transformed
into

P
ot = /Q > i (X)p(X)dX (5-8)

The expression can be further simplified using the orthogonality of the polynomials. The
mean can therefore be obtained and is thus the zeroth coefficient as

pim = EMPC(X)] = yo (5-9)

The variance has a more complex expression but can also be simplified using the polynomial
approximation and the mean as

0% = E[(MPC(X) — EIMPC(X)))?] (5-10)
— E[MPC(X)?] — (EIMPC (X)) (5-11)
= | MOO2(X)dX — 4, (5-12)
p
= > ya(vi(X)) (5-13)
=1

Therefore, once the coefficients are computed, the statistics of the model response can be
inexpensively computed as the mean and variance are functions of the coefficients.

Applying Kriging model in UQ

The statistical moments of the output response is a must-know property for most of the UQ
problem. Similar to PCE;, it is possible to use the theory of Kriging model that mentioned in
Chapter 3 to the uncertainty quantification process. Once the Kriging model has been built,
the statistical moment can be efficiently computed via Monte Carlo analysis. The mean of
the response can obtain again by Eq. (5-7) and the variance can be calculated by:

P = [ (M) =~ ju)*p(X)dxX (5-14)

Even though Kriging model does not have the advantage in analytically obtain the mean and
variance of the output response from the polynomial coefficient, it is still more efficient than
the traditional Monte Carlo method once the surrogate model is built.
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5-4 Implementation of the surrogate models

5-4-1 Overview

Once the surrogate models on the wind farm power production were built as shown in Chap-
ter 3, uncertainties in the inputs (i.e. Weibull parameters and wind rose sector probabilities)
are propagated using MC, and surrogate models using PCE and Kriging. Different combina-
tions of surrogate techniques for the AEP model and uncertainty quantification are investi-
gated with a reference case. The reference case is where an original model with uncertainty
propagation through a MC method. Here, MC is regarded as the ground truth for the UQ
results. There is no use of surrogate modelling techniques, and thus, it is regarded as a ref-
erence case for the comparisons. The reference case is illustrated first and is abbreviated as
the OM-MC combination.

However, an analysis of the number of uncertain sample or number of trials needed for MC is
required. It is because one of the disadvantages of MC is that a single run of MC simulation
may not be reliable and the result may vary a lot from a different simulation. Nevertheless,
the greater the number of samples in a MC simulation, the more stable will be the output
response. It is, therefore, looking into the number of samples that is adequate enough for
the MC simulation. Figure 5-6 demonstrates the investigation and presents the finding that
with 100,000 number of samples, the mean AEP and the standard deviation AEP converges
to a very small variation. It is especially important for the standard deviation to present this
convergence as it represents the uncertainty of the measurand [11].
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Figure 5-6: Variation of mean and standard deviation AEP calculated by different number of
samples per Monte Carlo simulation. 20 different Monte Carlo simulation are trialled per number
of samples.

Therefore, the MC simulation propagates the uncertain inputs with 100,000 samples. The
P50 AEP value in this case is 2.2270 - 10° [MWh] with a capacity factor of 48%. The value
differs a bit from what has been obtained from the original model of the wind farm power
production. However, this is expected as the original model uses the average of the Weibull
scale and shape parameters and the average probability per wind rose. Since the P50 value
is not always the same as the mean value, the values are reasonable. The P90 value of AEP
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is 1.9231 - 10° [MWHh]. In addition to that, the histogram of the number of occurrence of
AEP value, PDF, and CDF obtained by OM-MC are shown in Figure 5-7. The shape of the
PDF curve does not appear to be a Gaussian distribution as it slightly displayed a negative
skewness. This phenomenon could be a result of what has been shown in Table 5-1, where
all different input distributions are mixed up with each other while some inputs have larger
effects over others. A sensitivity analysis of the input variables to the output response could
help to understand this effect more and Section 5-5 is dedicated to this.
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Figure 5-7: The PDF and CDF of the AEP value using OM-MC combination.

In order to conduct a validation of the stochastic approach, the original model mentioned in
Chapter 3 is referred to as the deterministic approach. The deterministic approach uses the
mean value of the uncertain variables (i.e. Weibull parameters and sector probabilities) from
the 50 years measurement. The deterministic AEP for the investigated wind farm is computed
as 2.2348 - 10° [MWh] while the stochastic approach of this chapter considers a value with
90% probability of exceedance. As a result, the cumulative chance of 10% (i.e., P90) for the
AEP is expected to return a value that is less than 2.2348-10% [MWh]. Table 5-2 presents the
comparison between the two approaches, where the AEP value from the deterministic OM
model and the P50 AEP value of OM-MC are similar, and the P90 value is indeed smaller
than the value from the OM model. The difference in evaluation time indicates that an
additional step is conducted to propagate the yearly uncertain inputs by MC simulation.

Deterministic OM OM-MC

Number of uncertain samples - 100,000
AEP/Mean AEP [MWh] 2.2348 - 105 2,2275-10°
P50 AEP [MWHh] - 2,2270-10°
P90 AEP [MWh] - 1.9623-10°
Std AEP [MWHh] - 2.0287-10%
Time [s] 215.2038 217.0501

Table 5-2: The performance of the OM model compared to OM-MC method for uncertainty
quantification.

Next, a comparison of the multiple combinations of surrogate models is performed. The goal
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is to find the combination that can provide the best estimation on the P50 and P90 value
of AEP with a small number of samples and time effort. For simplicity, the name of the
combination is shortened with the abbreviations where the first acronym denotes the model
used to calculate the wind farm power output and the second one indicates the model used
to propagate the yearly uncertain inputs.

5-4-2 \Verification of different configurations

Figure 5-8 presents the difference in the estimation of P50 and P90 value of AEP and model
building time with a different number of samples from uncertain inputs for various combina-

tion configurations. There are in total of 6 combinations that are under investigation, namely,
PCE-MC, PCE-PCE, PCE-KG, KG-MC, KG-PCE, and KG-KG.

First of all, the most apparent differences between the 6 cases are the time required. Based
on the figure, the combinations that use the PCE surrogate model for the wind farm power
output lead to a faster computational time except for the PCE-KG case. The reason leads back
to Chapter 3 where it indicates that Kriging requires more time to construct the surrogate
model. The same behaviour is observed in the cases where Kriging takes part in, either as
the surrogate model of power output or as a means to propagate the uncertain inputs. It
is worthy to note that model building time mentioned here is regarding the UQ surrogate
model. Both PCE-MC and KG-MC cases do not consist of the UQ surrogate model, so only
the total computational time is shown for the two cases.

Regarding the accuracy of the estimations on P50 and P90 value of AEP, the approximation
of the P50 value of AEP is better than the P90 value. Moreover, when PCE surrogate model
is used as an UQ model, the required number of samples to reach an adequate accuracy is
less than using Kriging as an UQ model. In general, PCE UQ model requires at least 100
samples for P50 and P90 value to converge while the Kriging UQ model commonly requires
200 samples from the uncertain inputs. Lastly, the two configurations that use the Monte
Carlo method to propagate the uncertainty need more samples to reach the accuracy of using
the surrogate model configuration, which is often more than 500 samples.

The following paragraphs present the PDFs and CDFs of the AEP, determined with the
implementation of the six mentioned combinations.

1. PCE-MC

After introducing the reference OM-MC case, the investigation first focuses on the
uncertainty quantification with the PCE power production surrogate model. The con-
figuration for the first surrogate model follows the suggestion in Chapter 3. The first
combination under this scenario is the combination of PCE-MC, where a PCE surro-
gate model on wind farm power performance is used, and the uncertainty inputs are
propagated with MC simulation with 1,000 samples. The number of samples for the
uncertain inputs is based on the results in Figure 5-8a, where a sufficient accuracy is
reached with an acceptable computational time. As shown in Figure 5-9, PCE-MC
model has an acceptable agreement with the OM-MC model, yielding a P50 value of
2.2519 - 10° [MWh] and a P90 value of 1.9837 - 10° [MWHh].
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Figure 5-8: The difference [%] in the estimation of P50, P90, and model building time with
different number of uncertain samples for various configurations.

2. KG-MC
Similar to the PCE-MC model, a Kriging surrogate model on wind farm power perfor-
mance is used, and the uncertain inputs are propagated with MC simulation with 1, 000
samples. Based on the results in Figure 5-8b, it seems that 1,000 samples can already
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provide an accurate estimation as the PDF and CDF plot in Figure 5-10 verifies it. Both
models, PCE-MC and KG-MC, utilise MC simulation for the uncertainty propagation
demonstrate a slightly over-estimate but still a good fit to the OM-MC model. Accord-
ing to the results, a P50 value of AEP using this combination is 2.2514-10° [MWh)] and
1.9893 - 105 [MWHh] for the P90 value. It is observed that the estimations of both P50
and P90 values of AEP are inferior to PCE-MC as the values are further away from the
OM-MC model.

3. PCE-PCE
In PCE-PCE combination, a PCE surrogate model on wind farm power performance is
built and followed by UQ that propagates uncertain variables using the PCE techniques.
The configuration for the second surrogate model that propagates the uncertain inputs
is determined by trial and error method, after which a 4th order LARS is chosen as it
can provide a better estimation. With 100 samples from the uncertain inputs, the PDF
and CDF are displayed in Figure 5-11.

4. PCE-KG

In PCE-KG case, a PCE surrogate model on wind farm power performance is built and
followed by UQ that propagates uncertain variables with the Kriging techniques. The
PCE model for the wind farm power evaluation follows the one suggested in Chapter 3
and the second one is determined by searching for the best estimation from several
attempts. The configuration is set to second-order Universal Kriging. From the at-
tempts, the author finds that the Kriging model can not handle large sample size while
using a high order of Universal Kriging as a means to propagate uncertain variables. It
results in significantly long computation time and does not guarantee an accurate esti-
mation. With 100 samples from the uncertain inputs, the PDF and CDF are displayed
in Figure 5-12.

5. KG-PCE

A Kiriging surrogate model on wind farm power performance is built and is followed
by UQ that propagates uncertain variables with the PCE techniques with 100 samples
from the uncertain inputs. Same with the PCE-PCE case, the configuration for the
second surrogate model is a 4th order LARS as it can provide a better estimation.
Compared to the PCE-PCE model where the PCE technique is also used to propagate
the uncertain inputs, both KG-PCE and PCE-PCE provides a good agreement with
the OM-MC model.

6. KG-KG
Lastly, a Kriging surrogate model on wind farm power performance is built and followed
by another Kriging model that propagates 100 samples from the uncertain variables.
The UQ configuration is also set to second-order Universal Kriging.
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Figure 5-11: PDF and CDF of the AEP value using the PCE-PCE combination.
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Table 5-3 gives a summary of the selected configurations for all combinations. In general, the
computational time for every combination depends heavily on the power output surrogate
modelling. Further, Figure 5-15 displays the percentage error of the estimated Qol and the
standard deviation using different combinations. The estimation on the P50 and P90 value
of AEP from all combinations can reach within 2% for P90 and even less than 1% for P50.
The estimations of the P50 value of AEP using PCE as the surrogate model for wind farm
power yields percentage errors within 1%, which are considered to be very accurate. The
same behaviour can be seen when using the Kriging model for wind farm power evaluation.

Number of P50 P90 Time [s]
samples for UQ AEP [MWh] AEP [MWh]
OM-MC 100,000 2.2340 - 10° 1.9623 - 10° 217.0501
"PCE-MC 1,000 2.2519-10°  1.9837-105  13.39

PCE-PCE 100 2.2506 - 10° 1.9854 - 10° 2.61
PCE-KG 100 2.2525 - 10° 1.9865 - 10° 4.41
KG-MC 1,000 2.2514 - 10° 1.9893 - 10° 117.89
KG-PCE 100 2.2519 - 10° 1.9890 - 10° 14.00
KG-KG 100 2.2515 - 10° 1.9921 - 10° 16.48

Table 5-3: Summary of the performance of every UQ surrogate model.

On the other hand, The estimation of the P90 value of AEP varies per cases. While PCE-MC
and PCE-PCE yield the most accurate P90 approximations, KG-PCE and KG-KG both give
a relatively large percentage error compared to other cases. The time needed to construct
and evaluate the combination set-ups is also investigated. It should be noted that PCE-MC
and KG-MC use 1,000 samples, which is the reason that KG-MC yields a relatively high
computational time. Despite that PCE-MC does not require that much computational time,
it still takes longer than the other cases that use PCE as the wind farm evaluation model.

Next to that, the percentage error regarding the standard deviation of AEP via all six combi-
nations is presented. PCE-PCE gives the best standard deviation estimation when compared
to other combinations. The optimal configuration depends on the efficiency of the model that
takes the time effort and accuracy into account. As shown in the previous PDF and CDF
figures, PCE-MC and KG-MC combinations provide satisfying estimations on both P50 and
P90 value of AEP. Nevertheless, both PCE-MC and KG-MC show the results from 1,000
uncertain input samples, and when talking about reducing the size of samples, PCE-PCE and
KG-PCE are stable in terms of accuracy regarding the different number of uncertain samples.
In general, it is possible to agree that PCE-PCE outperforms all other combinations with its
fast computational time along with its accuracy.

According to the results, PCE-PCE could be a suitable UQ model to carry out the following
study on the WFLO due to its fast calculation with adequate accuracy. The reason is that
when the accuracy from all combinations are relatively similar, the time required to construct
and evaluate the model becomes essential. The small differences in the required time enlarge
when implementing the model in an iterative simulation, such as WFLO.
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Figure 5-15: The percentage error of the estimated statistical quantities from different combi-
nations.

5-5 Sensitivity analysis on the uncertain parameters

5-5-1 Introduction

Sensitivity analysis is a study that is closely related to the uncertainty analysis and aims to
study the variability of the input variables or their combined effect on the model response.
It is also useful as a method to conduct model refinement [4] for a mathematical model or a
numerical system that has a large number of input variables. For example, there are in total
13 uncertain inputs for the UQ models as shown in Table 5-1. Assessment of the variables
could be done by sensitivity analysis, especially so that the most influential variables can be
identified and studied. The remaining parameters can be neglected to make the model into a
lower-dimensional one.

Various methods of sensitivity analysis have been developed over time. One-at-a-time (OAT)
is the simplest and most common methods [41]. The essence of such a method is to alter one
input variable while keeping others the same value. The next step is to return the altered
variable to its original value and repeat the process for every other input. OAT is often used
to investigate the correlation of the input and output. In the next section, the Weibull scale
and shape parameters along with wind rose sector probabilities are the varying input variables
to be tested. Even though OAT is easy for implementation, the approach has a drawback of
not exploring the entire input space since no combination effect from multiple input variables
is taken into account.

5-5-2 The effect of Weibull parameters

As stated in the previous sections, wind speed distribution is commonly approximated by the
Weibull distribution. In this research, the 2-parameter Weibull distributions with scale and
shape parameters have been implemented to calculate the power output and the AEP of the
investigated wind farm. In order to see how exactly the Weibull scale parameter, A, influences
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the simulation result, the other parameters are fixed as the method OAT stated. Figure 5-
16a shows the PDF of the scale parameter along with the expected AEP calculated with the
original model using different values of the Weibull scale parameter. From the result, the
Weibull scale parameter exhibits a positive correlation with the AEP value. In other words,
with a larger scale parameter, a wind farm could yield larger AEP when other parameters
are fixed. This can be explained by the fact that the Weibull scale parameter is proportional
to the mean wind speed at a site [27].

On the other hand, it is also possible to observe how the Weibull shape parameter, k, influence
the results of the simulation. The result is presented in Figure 5-16b, and it shows that the
Weibull shape factor also has a positive correlation with the AEP value. According to both
cases, it is possible to suspect that the Weibull scale parameter poses a much larger influence
on the AEP value as the y-axis of the two figures differs in range.
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Figure 5-16: Sensitivity of the original model to Weibull parameters.

Until now, it has acknowledged that the AEP value is clearly dependent on the values of both
Weibull parameters. Inspired by Lackner et al. [27], Figure 5-17 is created. Instead of using
AFEP as the output parameter, the capacity factor is used and is defined by:

AEP
Prated : NWT : Tyr

CF[%] = (5-15)
where Pr4teq is the rated power of the wind turbine model, Ny is the number of wind
turbines in the wind farm, and T}, is the total hours in a year.

The figure shows the ranges of values of the Weibull scale and shape parameters from the
50 years measurement. As seen from the result, the capacity factor increases as the scale
parameter increases, which means AEP also increase. This corresponds to what has been
seen in Figure 5-16a. The same behaviour can be seen for the Weibull shape parameter
except for the magnitude of increment in capacity factor as the shape parameter increases
is not as large as the case for the scale parameter. This can be understood by the effect
of shape parameter on the Weibull distribution, where a higher shape parameter makes the
distribution more condense than spread out. Therefore, the dependence of the capacity on
the shape parameter highly depends on the scale parameter. It can be seen from the figure
that when the scale parameter is high, the increase in the shape parameter can result in a
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higher increment in the capacity factor. In contrast, the case for lower scale parameter does
not have the same magnitude of increment.

Capacity factor [%]

2.7
2.6

10.5 :
2.4
10 44 . =

Scale parameter Shape parameter

Figure 5-17: Sensitivity of capacity factor to Weibull scale and shape parameters.

5-5-3 The effect of sector probabilities

The analysis on the sector probabilities follows after the analysis of the Weibull parameters.
The sector probabilities influence the wind farm yield when there exist multiple wind turbines,
and wake effects play a role. However, while the OAT technique works well for the Weibull
parameters, it is not the same for the sector probabilities. The reason is that the total
probability from all sectors needs to equal one. Due to this reason, sector probabilities are
dependent to some degree.

In this case, an alternative method is proposed. As displayed in Figure 2-2 and Figure 5-
3b, there is a dominant wind sector, where the wind direction is within [210°, 240°]. The
sensitivity analysis thus focuses on this specific sector to study how this sector affects the wind
farm yield. The approach has a rationale that as the research aims to study the inter-year
uncertainty, the most dominant sector prevails other sectors on the probability of occurrence.
When this sector has a larger probability, the other sectors will have smaller probabilities
and vice versa. Figure 5-18 displays three different estimations of AEP when the dominant
wind direction sector has the largest, mean, smallest probabilities of the 50 measured years.
The results show that the differences in these three scenarios are not as large as what has
been shown for the Weibull distribution parameters but rather small. It is suspected that
the sector probabilities do not have the same influence on the wind farm yield as the Weibull
scale factor has.
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Figure 5-18: Sensitivity of the output response (AEP) to the dominant wind direction sector
probability.

5-6 Summary of the chapter

In this chapter, a background overview of the uncertainty quantification for the study has
been discussed. The uncertain variables are the year-to-year variation in the wind resource,
namely, the Weibull scale and shape parameters, and the wind direction sector probabilities.
The research aims to find the P90 value of AEP when taking these uncertainties into account.
The propagation of uncertainty is crucial for uncertainty quantification, and the Monte Carlo
method and surrogate models have both been implemented to study the accuracy and the
computational effort in terms of time required. The Monte Carlo method has shown its
strong and weak points that it is simple to implement but computationally heavy compared
to the surrogate models introduced here. When using the surrogate models to propagate the
uncertainty, the number of samples needed from the uncertain variables drastically decreased
while keeping the percentage error with respect to the ground truth model relatively small. A
sensitivity analysis has also been conducted to see which uncertain variables affect the wind
farm energy yield in the most significant way. It turns out that the Weibull scale parameter
has the most extensive influence on the wind farm energy yield.
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Chapter 6

Wind Farm Layout Optimisation

6-1 Introduction to the chapter

This chapter presents the fundamental knowledge on the optimisation of wind farm layouts.
It further applies the uncertainty quantification and surrogate modelling techniques from
previous chapters within the wind farm layout optimisation (WFLO). As a consequence,
the optimisation problem develops into an optimisation under uncertainty (OUU) problem.
The main optimisation algorithm used in the chapter is the genetic algorithm (GA), and two
different kinds of it are implemented, namely, real-coded genetic algorithm (RGA) and binary
genetic algorithm (BGA). Lastly, the results from the deterministic approach and OUU are
discussed in the later sections.

6-2 Optimisation problem definition

As the demand for renewable energy rises, the scale of the wind farm also increases. Due to
the substantial investment capital of a wind farm, the optimisation of the wind farm layout
is starting to show its important aspect. First, some background knowledge of optimisation
theory needs to be reviewed. As stated in Pérez et al. [44], there are four basic elements to
start any optimisation problem, which are as follows:

1. Objective function

The objective function presents how each variable contributes to the optimisation prob-
lem. It also shows whether a decision is good or bad. With different considerations on
economic aspects of wind farm development, different objective functions can be chosen.
The most widely used metrics in wind energy-related fields are the AEP, LCOE, and
NPV [20]. A detailed explanation of AEP has been presented in Section 2-2. Regarding
the cost of energy (COE), it requires more information to calculate the value, including
AEP and can be expressed by:

C’F arm

E=—r—
co AEPFarm

(6-1)
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where C' denotes the total cost of the generation of energy for a year, and it’s divided
by the total energy generated in a year. It can be defined as the cost per unit of energy
and shows either the wind farm has economic profit or loss over its operational lifetime
[20]. The definition of the cost has many different approaches. Many research works
have reviewed the cost function proposed by Mosetti et al. [36]:

2 1
C = NT(g + 56—0.00174N%) (6—2)

in which the cost function assumes that the total cost of the wind farm is a function
of the number of wind turbines N7 in the farm. It should be noted that the cost
function by Mosetti et al. [36] is meant to try-out the optimisation algorithm rather
than optimising a real wind farm.

Furthermore, levelised cost of energy (LCOE) shares a similar definition with COE but
has a clear difference between the fixed and variable costs, which can be expressed as

LCOE = (Cy % FCR + Cogn)/AEP (6-3)

where C, is the total installed capital cost of the wind farm, and FCR is the fixed
charge rate, which includes information about the taxes, insurance, and financing [28].
The parameter Cog s refers to the annual operation and maintenance cost for the wind
farm.

Nevertheless, when more information is taken into account, the uncertainty within the
whole calculation increases. To lower the uncertainty and restricted it to the wind
resource, the maximum power production is chosen to be the optimisation objective.
Therefore, the objective function of this research is still AEP, which should be max-
imised.

2. Problem variables
In a WFLO problem, the problem or design variables are often the locations of the wind
turbines because the locations of the turbines could heavily influence the wake effect
and foundation costs. The problem variables are often represented by vectors and can
be integrated into a matrix X as:

1 U1

N T2 Y2
X = (6-4)

TN YN

where x and y denote the exact location in z-coordinates and y-coordinates of each
turbine from the first one to the Nth one.

3. Constraints
In an optimisation problem, it is crucial to set some constraints to the problem variables.
Otherwise, the problem variables become unbounded, and the optimiser will be search-
ing in an unlimited domain. Constraints could be set due to the availability of area
and safety factors. The most common constraints are the minimum distance between
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turbines, and the wind farm area limits [44]. Once the constraints are not violated, the
problem variables are considered since they are within the feasible region. Based on the
wind farm area limits, certain bounds can be applied to the problem variables, which
are the wind turbine coordinates. As shown in Figure 2-5, the wind farm has an area
of 3400 [m] x 1000 [m]. The x coordinates in Eq. (6-4) are limited to a lower bound of
0 and a higher bound of 1000. In the meantime, the y coordinates are appointed to the
range of 0 to 3400.

The minimum distance between the wind turbines is another constraints to the opti-
misation problem. It is set due to safety reasons as the distance is limited to be larger
than two rotor diameters. It can be mathematically expressed as
,j=1...N
i F ]

in which S is the distance between the wind turbines (WT), WT) is the rotor diameter,
z and y are the coordinates of the turbines, and N is the number of turbines.

S@j = ’W’Tz(x’y) — WTj(:c,y)‘ > 2- WTD, for{ (6—5)

4. Data

In order to make an optimisation problem, it is essential to have the information needed
to calculate the aforementioned objective function and constraints. For example, the
wind resource data mentioned in the previous chapters are required. As mentioned
before, 50 years of measurement data from KNMI’s IJmuiden weather station is utilised.
Secondly, the wind turbine data is also needed. The wind turbine model used here is
the NREL 5MW model, and the hub height, rotor diameter, thrust coefficient and the
power curve can be found in Jonkman et al. [23]. Moreover, the wake effect model
follows the one in Jensen [21] and Katic et al. [24] where a suggestion of the decay
factor k can be found. Finally, the number of wind turbines in the wind farm and a
reference location of them is necessary for the wind farm data.

The current optimisation problem can be expressed in the mathematical notation as:
maximise AEP(X)
subject to Sij=>2D Vi, j=1,..,10 Vi#j
0<z; <1000 Vi,5=1,...,10 (6-6¢
0<y, <3400 Vi,57=1,...,10 (6-6d
where S; ; denotes the distance between the two wind turbines as shown in Eq. (6-5), D is
the rotor diameters, and x; and y; are the coordinates of the wind turbines. Even though
using a single straightforward objective function is not the best function for a WFLO problem

[53], it is still decided to use AEP as the sole objective function since none of the construction
uncertainties was considered in the research.

6-3 Optimisation algorithms

6-3-1 Overview

Several optimisation algorithms have been developed to maximise or minimise the objective
function. The work by Mosetti et al. [36] was the first one to use a genetic algorithm (GA) in
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the field of WFLO to minimise the COE under three different wind conditions. Following this
work, quite an amount of studies looked into the problem using either the same algorithm
or others. Typically, the algorithms can be categorised into deterministic and heuristics (i.e.,
random search-based) [3, 45]. In general, the differences are the ability to find the optimal
solutions (i.e., the quality of the solution) and the required computational costs, where the
deterministic approach yields a faster but lower quality optimisation result.

The research decides to follow the steps of Mosetti et al. [36] and used GA as the choice
of the algorithm after studying different optimisation algorithms and surveying the toolbox
in hand. Based on the domain of search space, different kinds of GA have been developed.
The following paragraphs give an introduction to two different kinds of GA, namely, binary
genetic algorithm (BGA) and real-coded genetic algorithm (RGA). The differences between
them will be pointed out in later sections.

6-3-2 Introduction to genetic algorithm

Developed by John [22], genetic algorithms are population-based and are an analogy to the
Darwinian-fitness theory of natural selection. The design parameters of the optimisation
problem are defined as genes and transformed into arrays of bits or character strings like
chromosomes. The selection of the solution is based on the fitness of the objective function.
If the criteria are not met, a new population is created by performing selection, crossover, and
mutation to replace the old population. As evolution goes on, the algorithms produce more
generations. Each generation evaluates its fitness, and once the criteria are met, an optimum
solution is obtained from the last generation. Figure 6-1 shows a simplified flow chart of the
algorithm, and as presented, GA relies heavily on its operators, which can be summarised as
follows:

« Initialisation
An initialised population needs to be defined first for GA. The population can be
generated randomly or by user-defined values. The size of the population also needs to
be taken into account since it can severely increase the computational cost or constrain
the solution in a local extremum (i.e., minimum or maximum) if the size is too small.

e Selection

In GA, the concept of generation is utilised, and thus the term "parents" and "children"
emerged. Within an existing population, a portion of them is chosen to be the parents.
The selection is based on the fitness to the objective function. The fitter they are, the
more likely they will be chosen to generate the next generation, which is the children.
A common option for the selection process is the roulette wheel selection, where the
probability of being selected is proportional to the fitness of every chromosome in the
population [16].

o Crossover
Once the selection is completed, a crossover operation is applied to create the next gen-
eration. There are different methods to perform the crossover, for example, single-point
crossover and uniform crossover. In a single-point crossover, two chromosomes from
the selection process, which act as the parents, will have a randomly chosen crossover
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points, where the gene (or string) before and after that crossover points will exchange
in between the two chromosomes. As a consequence, it emerges two new chromosomes.

o Mutation
Besides the crossover operation, the mutation is also a critical operator in GA. The
operator randomly alters one or more values in a chromosome. It does not occur in
every creation of a new generation, but it is an essential operation in GA. It ensures the
evolution occurs in the algorithm and does not trap in the local solution or extremum.

Initialize population

[y

Evaluate Fitness

No

Cutput results

Figure 6-1: An overview of the steps in a genetic algorithm.

Crossover and
Mutation

6-3-3 Binary genetic algorithm

In binary genetic algorithm (BGA), the search space is discretised into cells. A cell with a
wind turbine inside is coded as 1, and a cell with no turbine is coded as 0. In this case, the
entire search space is coded into a chromosome with a binary gene. For example, for a design
space of 3 [km] x 3 [km], it can be divided into a discrete space of 3 x 3 cells with each cell
representing 1 [km] x 1 [km]. In this case, it could result in 2° possible layouts and can be
coded as a chromosome with nine binary numbers. Figure 6-2 illustrates the coding process
of such a layout.

In general, BGA is easier for the study with varying number of turbines since the mutation
and crossover could create more or fewer turbines within the search space. These genetic
operators make the number of turbines changeable during the optimisation. However, since
the search space is discrete, BGA may not be able to find the most optimal solution and the
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fitness may differ based on how fine is the grid. It is possible to have a better result with a
finer grid, but the computational cost increases. In general, BGA is the easiest type of GA,
and if the demand for accuracy is not high, the required computational power is usually lower
than other kinds of genetic algorithms.

= 1 0 1 |=[of[a21]ofa1]o]a1]o]1]o0]

Figure 6-2: Binary representation of the chromosome from a wind farm layout. The black squares
and 1's denote the cells are occupied by wind turbines. The white squares and 0's denote empty
cells.

6-3-4 Real-coded genetic algorithm

In contrast, real-coded genetic algorithm (RGA) has continuous coordinates of turbines as
the variant in the searching space instead of binary encoding in discretised cells. Besides this
difference, other elements within the genetic algorithm are the same. The same operators are
implemented to search for the optimal solution.

However, it is worth noting that RGA is easier for the study of a fixed number of turbines but
difficult to simultaneously optimise the number of turbines and locations as the size of the
design vector pre-defines the number of turbines. RGA can be more complicated due to its
continuous coordinates, which can easily result in the violation of optimisation constraints,
e.g. minimum distance between two wind turbines. This constraint is not a problem for BGA
since the cell itself can already create separation for turbines. As already mentioned, the
constraint of the distance between any two wind turbines follows Eq. (6-5), where it should
be at least larger than two times of rotor diameter due to safety reason and most importantly,
to avoid excessive wake effect.

6-3-5 Optimisation toolbox options

There are many options within the Global Optimisation toolbox in MATLAB. Based on
the documentation, some options of the toolbox are explained. The following paragraphs
introduce the options that are chosen to conduct wind farm layout optimisation for this
research.

First, it must be emphasised that the toolbox treats an optimisation problem with integer
constraints differently. When integer constraints are specified, such as is the case for BGA, the
toolbox has its genetic operator options to ensure that the integer constraints are honoured.
The detail of its modified setting can be found in Deep et al. [8]. When a user tries to define
the options, the optimiser may provide a result that fails to meet the constraints. Therefore,
the following optimisation toolbox options are mainly for RGA.

J.S. Chuang Master of Science Thesis
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The selection option determines the way of picking parents for the next generation. The
tournament selection is a commonly seen option as it picks individuals from a population to be
selected for crossover operation. It involves having several tournaments for a few individuals
that are randomly chosen from the population. As parents, each candidate is compared based
on its fitness value against each other. The winners of each tournament are therefore select
for the crossover to produce the next generation. Other than that, the remainder selection
assigns parents based on a given scaled value, such as 2.3. Depending on the integer part of
the scaled value, an individual is listed that many times as a parent. The rest of the parents
are chosen arbitrarily besides the prescribed ones. The fractional part of the scaled value
then determines the probability that a parent is selected. It is suggested by Bailleul [3] that
the remainder selection can result in a faster calculation time in RGA even though this might
be case dependent.

Once the selection is made, the crossover operator follows and also has its options. The
crossover option determines the way that the algorithm combines the parents to form a
crossover child for the next generation. The scatter crossover is based on a randomly created
binary vector with the same length as the parents. The crossover selects the genes from the
first parent, where the vector is an '1’, and the genes from the second parent, where the vector
is a ’0’. The child is created based on the combination.

The last option is the mutation option, which defines the way the algorithm alters the indi-
viduals in the population to create mutation children. The uniform mutation assumes that a
fraction of the gene has a probability of mutating. The selected ones are replaced by random
values that are selected uniformly from the range of that gene. An overview of the chosen
options for the GAs is presented in Table 6-1.

Genetic Algorithm inputs WFLO options

Types of GA BGA RGA
Design variables Grid numbers Turbine coordinates
Selection function - Remainder
Crossover function - Scatter
Mutation function - Uniform
Fitness function AEP AEP
Constraint tolerance 1073 1073

Table 6-1: Parameters settings for the genetic algorithms.

6-4 Deterministic optimisation

Deterministic optimisation is named deterministic because no uncertainty in the Weibull
parameters and wind sector probabilities are involved. In the deterministic optimisation, the
Weibull parameters are the mean values from the 50 years measurement, and so do the wind
direction sector probabilities. As mentioned before, the Weibull parameters are not defined
by sectors but aggregated ones for all wind sectors. The AEP is, therefore, a deterministic
value.

Both kinds of GA are used to study the WFLO and are implemented in MATLAB. In the
optimisation using BGA, the wind farm of 3400 x 1000 m? is divided into 17 x 5 square cells
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(in total 85 cells of 200 x 200 m?), and the wind turbine is placed in the central point of each
cell. RGA shares the same constraint dimensions of the search space as BGA, but without
the constraint of grid points. The numbers of turbines for both GAs is fixed at ten turbines.

6-4-1 Optimisation with the original model

The first deterministic optimisation is the optimisation with the OM model. The wind speed
is fixed at 10 [m/s] and the wind only comes from 225 [deg], which is the dominant wind
direction of the investigated site as the wind rose shown in Figure 2-2. This restriction is set
to test the feasibility of the optimisation algorithm with regard to the computational effort.
The AEP is then computed with this set of wind speed and wind direction. There are in total
of four scenarios that are studied. Besides looking into different types of genetic algorithm,
the effect of an initial layout is also investigated. One set of scenarios gives an initial layout
that is the grid layout, as shown in Figure 2-5 (case 1 in Chapter 4). It should be underlined
that the initial layout is acting as one of the individuals in the first generation and the other
individuals are self-generated by the optimiser. It is a well-designed layout by the author,
which guarantees each wind turbine has a sufficient distance with other turbines to avoid
excessive wake effects. On the other hand, the other set of scenarios allows the optimiser to
self-generate the entire first generation for an initial layout.

The resulting optimised layouts are shown in Figure 6-3. If an initial layout is given, it is
denoted as the red circles in the figures. As the dominant wind direction is from the southwest
direction, most of the optimised layouts follow the general pattern of avoiding aligning the
turbines in that southwest to northeast direction. This is reasonable as this alignment leads
to severe wake effects.

Ge. ! AEP [MWh] Efficiency[%] Time [min.]

Ref. layout free-stream - 5.4652 - 103 - -
" Ref. layout - 44788-10° 81% -
"BGA 78 54652-10° 100% 247

RGA 55 5.4652 - 103 100% 3.98

BGA Init. 66 5.4652 - 103 100% 2.91

RGA Init. 62 5.4652 - 103 100% 2.96

Table 6-2: Summary of the optimisation results regarding different optimisation methods with
the original model. Reference (Ref.) layout is the grid layout in Figure 2-5 and is used as the
initial layout for the optimiser. Init. denotes the case is given an initial layout.

A summary of the optimised results is presented in Table 6-2. According to the results, the
optimised AEP are mostly the same for all four scenarios. The efficiency in the table is defined
as the ratio of the wind farm produce, and the wind farm would produce if no wake effect
exists, which is the AEP by the Ref. layout free-stream in the table. Based on the table, the
reference layout reaches an efficiency of 81%. For this single wind speed and wind direction
case, the optimiser is able to find a highly efficient layout with no wake losses. In addition,
as the optimised layouts in Figure 6-3 are all different, it can be concluded that there are a
lot of local optima with similar performance. This is a similar finding to Padrén et al. [42].

! Generations until termination
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Nevertheless, the highly efficient optimised layouts are caused by the simplification of having
only one wind direction. The simplification makes it possible to find layouts where turbines

are not in the wakes of other turbines and resulting in an 100% efficiency.
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Figure 6-3: Deterministic optimisation of wind farm layout with original model. The blue crosses
are the optimised wind turbine locations and the red circles are the reference initial wind farm
layout, if specified.

Instead of using one wind speed and one wind direction, the research also looks into the
optimisation using the entire domain of wind speed and wind direction. It is, however, resulted
in an extremely long computation and was not able to continue with the computational power
in hand. As the medium-fidelity OM model evaluates a wind farm layout in around 4 minutes
for every evaluation, the genetic optimiser undergoes a great computational effort if a large
generation and population are specified. Representative results are commonly coming from
a sufficient number of generation and population, and thus, the long computational time for
this case is not avoidable.

6-4-2 Optimisation with the surrogate models

It has been mentioned that optimisation with a full OM model leads to a substantial compu-
tational effort. As has been shown and verified in Chapter 3, surrogate models can help to
reduce the computational effort in terms of computational time. The optimisation with the
surrogate models utilises PCE model instead of the Kriging model. This is because it has
been shown that the approximation using the PCE is slightly better, and the time required
to construct the PCE model is also shorter.

As already mentioned in Chapter 3, there are two sampling schemes to make surrogate models.
The two schemes are expected to influence the results of the optimisation. Moreover, the
randomness inside the random sampling scheme, Latin hypercube sampling (LHS), has proven
to add some additional uncertainty to the approximation by the surrogate models. This has
been presented in Chapter 4 and it has been proposed to use pre-defined (PD) samples
that are generated via Latin hypercube sampling to eliminate this additional uncertainty.
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80 Wind Farm Layout Optimisation

Nevertheless, it is decided to test a smaller size of generations and population of the genetic
algorithms for the sake of easiness of investigation. Therefore, the number of generations and
the population are both set to 20.

The differences between the two LHS (R & PD) schemes are presented in Table 6-3 and
Table 6-4, where the two tables are based on whether an initial layout is given to the optimiser
or not. However, the optimised results are only evaluated using the surrogate models. There
may exist an approximation error between the AEP value from the surrogate model and the
one from the original model. Hence, the optimised layouts are verified by the original model
to see if they truly improve and are not affected by the approximation error of the surrogate
models. The original model is used to calculate the true AEP of the optimised layout and
the real improvement (denoted as A. Imp. in the table) is checked to see if the layout indeed
improves. The original model calculates 2.2348 - 10° [MWh] of AEP for the reference grid
layout and the improvements (denoted as Imp. in the tables) are based on this value. For
cases in Table 6-3, there is no initial layout given to the optimiser, so the improvement is just
a reference value to see if the optimised layout surpasses the reference grid layout.

Ge AEP [MWh] Imp. [%] A.AEP ? [MWh] A.Imp. °[%] Time [hr.]

BGA R 20 2.1905 - 10° -1.98% 2.1770 - 10° -2.59% 0.5
BGA PD 20 2.1941 - 10° -1.82% 2.1727 - 10° -2.78% 0.55
RGA R 20 2.1970 - 10° -1.69% 2.1607 - 10° -3.32% 0.4
RGA PD 20 2.2136 - 10° -0.95% 2.1928 - 10° -1.88% 0.5

Table 6-3: Summary of the optimisation results regarding different optimisation methods with
surrogate models and a self-generated layout. R in the first column denotes random sampling
scheme by LHS, and PD means there is a pre-defined set of LHS samples.

First, the randomness from the samples is inspected. According to the results in Table 6-3,
if the model does not have a pre-defined sample set, the existing randomness could lead to a
larger difference between the improvement by the surrogate models and the actual improve-
ment by the original model. This is also a finding in Section 4-3. It was found that not having
a pre-defined sample set could lead to additional uncertainty on the estimation of approxi-
mately 1%. It is also noteworthy that the randomness also confuses the optimiser. Figure 6-4
presents the convergence history of the BGA optimisation. The best fitness in Figure 6-4a
does not show a step-by-step improvement as in Figure 6-4b but rather an unstable one as the
generation increases. On the other hand, it is reasonable to see this unstable improvement in
the mean fitness as the population of each generation is performing the genetic operators to
find a better generation.

Similar to this finding, Table 6-4 shows another finding. It is found that the random LHS
scheme could result in a negative improvement even when an initial reference layout is given.
Figure 6-5 shows the convergence history of the BGA optimisation when an initial layout is
given to the optimiser. As all methods failed to find a better layout than the given initial lay-
out, the difference between the surrogate improvement and the actual improvement indicates
the approximation error by the surrogate model. Nevertheless, the convergence history in
Figure 6-5a clearly shows that the randomness from the sample set is confusing the optimiser
as the initial layout is still the optimised layout after these 20 generations. This is a clear

2Actual AEP
3 Actual improvement
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evidence that the samples from the wind speed and wind direction matter to the accuracy
of the approximation. Until now, it has been shown that using a pre-defined sample set is
better for the optimiser.
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Figure 6-4: Convergence history of the BGA optimisation with the surrogate model. No initial
layout is given to the optimiser.

Ge AEP [MWh] Imp. [%] A. AEP [MWh] A.Imp. [%] Time |hr.]
BGA R 20 2.2157 - 10° -0.85% 2.2348 - 10° 0% 0.57
BGA PD 20 2.2538 - 10° 0.85% 2.2348 - 10° 0% 1.21
RGA R 20 2.2412 - 10° 0.29% 2.2348 - 10° 0% 0.5
RGA PD 20 2.2538 - 10° 0.85% 2.2348 - 10° 0% 0.41

Table 6-4: Summary of the optimisation results regarding different optimisation methods with
surrogate models and a given initial layout. R in the first column denotes random sampling scheme
by LHS, and PD means there is a pre-defined set of LHS samples.
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Figure 6-5: Convergence history of the BGA optimisation with the surrogate model. An initial
layout is given to the optimiser.
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Next, the research compares the random sampling scheme with the linearly spaced samples
(LSS). Table 6-5 presents the optimised results from the optimisation and the verification by
the original model. As the differences between the improvement from the surrogate models
and the actual improvement are large, it considers that LSS is not a good choice of the
sampling scheme. This could lead back to Chapter 3, where it was mentioned that LSS is not
able to accurately sample enough conditions, and it results in a poor approximation.

Ge AEP [MWh] Imp. [%] A.AEP [MWh] A.Imp. [%] Time [hr.]

BGA LSS 20 2.3811-10° 6.55% 2.1462 - 10° -3.96% 0.51
RGA LSS 20 2.4126 - 10° 7.94% 2.1756 - 10° -2.65% 0.47
BGA LSS Init. 20 2.4303 - 10° 8.76% 2.1851 - 10° -2.22% 0.54
RGA LSS Init. 20 2.3183 - 10° 8.21% 2.2033 - 10° -1.41% 0.41

Table 6-5: Summary of the optimisation results regarding different optimisation methods with
surrogate models using fixed linearly spaced samples. Init. denotes the case is given an initial
layout.

Therefore, it has been verified that using a pre-defined sample set is a better approach to
conduct optimisation, along with using RGA. Next, once the algorithm and the methods are
clarified and decided, larger generations and population are applied to the optimiser. The
number of generations and population is set to 100 in this case. The optimised layouts are
again verified by the original model to see if they truly improve and are not affected by the
approximation error of the surrogate models.

According to Table 6-6, the differences between the verification of OM model and the PCE
model on the optimised layout are small and can be regarded as the approximation error
of the surrogate model. The optimisation with a self-generated layout fails to find a better
layout than the one that is hand-picked by the author. Nevertheless, it still verifies that
the optimiser can find a better layout if more generations are used. This is concluded as
the difference to the reference layout is only 0.3%, and it is considered that the optimiser
starts from a layout that was generated randomly. On the other hand, the optimiser also
does not find a layout with great improvement in AEP when an initial layout is given. It is
possible that the initial layout could have been superior to most of the layouts in the genetic
population, making the optimiser fail to find a better one. The optimised layouts are shown
in Figure 6-6. In general, the cases that start with an initial reference layout could possibly
lead to a better optimal result than the ones that start from a random layout. However,
starting from a random layout (self-generated layout by the optimiser) makes it possible to
explore more of the design space and therefore lead to different layouts instead of ones that
are similar to the reference layout.

AEP improvement AEP improvement
w/ self-generated layout  w/ initial layout
Method PCE oM PCE oM
RGA 0.77% -0.30% 1.31% 0.14%

Table 6-6: The improvement in AEP of the optimised layouts using RGA with respect to their
starting layout.

So far, several findings on the optimisation algorithm can be concluded based on the optimi-
sations. From the theory of genetic algorithms, BGA is faster than RGA to reach a certain
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generation, which could mean less computational power is needed for BGA. This is not yet
observed from the results by this point as the generations are still small. In contrast, RGA is
able to provide a better improvement than BGA with a limited number of generations. This
is because the search domain for RGA is not limited to the pre-defined grid points as in BGA.
These findings will be rechecked to see if they still hold when the optimisation is conducted
with surrogate models and UQ models.
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Figure 6-6: Deterministic optimisation of wind farm layout with surrogate models. The blue
crosses are the optimised wind turbine locations and the red circles are the reference initial wind
farm layout, if specified.

6-5 Optimisation under uncertainty

Different from the deterministic optimisation, the optimisation objective is now a function
of turbine locations, X, and uncertain variables, &. Here, the uncertain variables are the
ones that are mentioned in Chapter 5, namely the Weibull parameters and the wind sector
probabilities. The probability distributions have been given in Table 5-1.

The optimisation under uncertainty problem can be expressed in the mathematical notation
as:
maximise P90 AEP(X,¢) (6-7a
subject to Sij>2D Vi, j=1,..,10 Vi#j (
0<zx; <1000 Vi,j=1,..,10 (6-7c
0<y; <3400 Vi,j=1,..,10 (6-7d

Traditionally, the optimisation under uncertainty is conducted by the brute force Monte
Carlo method. This approach might be feasible for a simple objective model but not for a
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high-fidelity model or large simulation. As shown in Figure 1-1b, the concept of OUU is that
a nested loop exists to compute and form a statistics of response output for the optimisation
process. Even though the wind farm power model here is not a high-fidelity model like
CFD codes, a high computational time is required to evaluate the wind farm power with
a fine interval in wind speed and wind direction. Consequently, to overcome this issue, the
optimisation under uncertainty uses the developed UQ model, which consists of two surrogate
models.

6-5-1 Optimisation with the UQ model

It has been shown and verified in Chapter 5 that the use of surrogate models in uncertainty
quantification leads to a reduction in computational time without scarifying too much of the
estimation accuracy. Among all of the combinations of the surrogate model on wind farm
power output model and on the ability to propagate the uncertainty inputs, PCE-PCE stands
out as it provides a reasonable estimation on P50, P90 value of AEP, and standard deviation.
The UQ model consists of two surrogate models. The first surrogate model corresponds to
the one in Section 6-4-2, and the second one is the surrogate model uses to propagate the
inter-year uncertainty to compute the statistics of AEP response. Furthermore, OM-MC in
Chapter 5 is treated as a comparison, which is based on a medium-fidelity original wind farm
model and propagates 100,000 Monte Carlo samples to compute the AEP response.

Similarly, both BGA and RGA are implemented as the optimiser. The optimised wind farm
layout from the optimisation is presented in Figure 6-7. For the two cases with self-generated
layouts, the algorithms shift the wind turbine locations to the boundary to avoid wake effects.
On the other hand, the two cases with a given initial layout sort of stick at a local extremum
(i.e., the initial reference layout). A summary of the optimised results is reported in Table 6-7.
In the table, PD refers to the pre-defined samples in wind speed and wind direction. The
samples for the uncertainty inputs are random samples via Monte Carlo sampling. Despite
the use of PCE model, it is not possible to use the analytical expression of mean and variance
from PCE model as the output response is not necessarily a normal distribution, as shown
in Figure 5-7a. The P50 value is not equal to the mean of the response in this case. The
OM-MC model is used to verify that the optimised layout is indeed better in the P90 value
of AEP. Furthermore, based on the Table 6-7, it is seen that the optimisation with BGA
takes around 17 hours to complete 100 generations while RGA requires more than 20 hours.
However, the longer computational time might be worthy as the design space for RGA is not
constrained to the pre-defined grid points, and the resulting P90 AEP is possibly higher than
the one from BGA.

Iter. P90 [MWh] Improv. (%] A.P90 [MWh] A.Improv. %] Time [hr.]

BGA PD 100 1.9666 - 10° 0.22% 1.9393 - 10° -1.17% 16.34
RGA PD 100 1.9646 - 10° 0.12% 1.9558 - 10° -0.33% 22.71
BGA Init. PD 100 1.9642 - 10° 0.10% 1.9628 - 10° 0.02% 16.75
RGA Init. PD 100 1.9874 - 10° 1.28% 1.9580 - 10° -0.22% 22.37

Table 6-7: Summary of the optimisation results regarding different optimisation methods with
UQ models. Init. denotes the case is given an initial layout.
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Figure 6-7: Optimisation under uncertainty of wind farm layout with UQ model. The blue
crosses are the optimised wind turbine locations and the red circles are the reference initial wind
farm layout, if specified.

In order to show the advantage of optimisation under uncertainty, the optimised layout in
Figure 6-7d is investigated to study the difference with the deterministic optimisation. The
deterministic OM model computes the AEP of the optimised layout by 2.2291 - 10° [MWh].
On the other hand, the UQ model with an OM-MC method gives a P50 value of 2.2272 - 10°
[MWHh] and a P90 value of 1.9580 - 10° [MWHh] for the wind farm AEP. The probabilistic
analysis from Figure 6-8 suggests that the AEP calculated by the deterministic model has
only 49.5% of chance for the AEP to be larger than 2.2291 - 105 [MWh], which is a lower
chance than the P50 value.
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Figure 6-8: AEP probability distribution of the optimised layout compared to the deterministic
model. The crosses denote the AEP calculated by the deterministic OM model.

Further, two optimised layouts from deterministic optimisation and optimisation under un-
certainty are investigated with their robustness against inter-year variation in wind resource.
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These optimised layouts are shown in Figure 6-6a, and Figure 6-7b and they are both op-
timised by RGA with no initial layout given to the optimiser. The size of the population
and the number of generation for the optimiser are the same for both cases. As stated in
Eq. (6-7), the OUU optimiser looks for the P90 value of AEP. The optimised layout from
the deterministic optimisation is then subjected to the UQ model to have a valid comparison.
The P90 value of AEP from both layout are given in Table 6-8. It can be concluded that
the layout from the optimisation under uncertainty possesses a higher P90 value, which could
mean that it is more robust to the inter-year variation.

Deterministic Optimisation
Optimisation wunder Uncertainty
P90 AEP [MWh] 1.9537 - 10° 1.9548 - 10°

Table 6-8: Comparison of P90 value of AEP on the optimised layout with deterministic optimi-
sation and optimisation under uncertainty using RGA.

From the above findings, they indicate optimisation under uncertainty is likely to give a
more robust layout as it looks for a more conservative objective value, P90 of AEP, and can
give a higher value of the objective value. It is, therefore, a necessary procedure when the
uncertainty variables in wind resource are considered.

Nevertheless, some findings need to be pointed out. First, it is possible that the initial layout
that was hand-picked by the author may be too good in terms of AEP. As the distances
are more than six rotor diameters in that layout, it already lowers the wake effects to some
certain extent. This further causes the optimiser to linger around this local optimum. After
these optimisations, insights into the wind farm layout optimisation based on the genetic
algorithm can be concluded. BGA has an advantage in computational time. RGA has the
advantage of possibly giving better results. The two genetic algorithms are easy to implement
and work well with optimisation under uncertainty in this research. The time of performing
optimisation under uncertainty is reduced by the surrogate UQ model and is now similar to
the deterministic optimisation with the medium-fidelity model. However, it provides a layout
that may be more robust to the inter-year variation as indicated by the P90 value of AEP.
Despite this, it must be stressed that these conclusions are based on the cases investigated in
this research, and it might be case sensitive. Also, there are many more algorithms for the
optimisation that could engage with the topic of optimisation under uncertainty.

6-6 Summary of the chapter

In this chapter, the optimisation algorithm, genetic algorithm, is explained along with its
two variation types. A various number of options exist in the MATLAB toolbox environment.
However, it should be noted that the options chosen are heavily case dependent. In deter-
ministic optimisation, it failed to optimise the wind farm layout with a complete wind farm
model due to the massive computational effort. As an alternative approach, a single wind
speed and wind direction are used to optimise the layout. The results show that the genetic
optimiser can indeed improve the layout into a more efficient one. Nevertheless, it shows the
need for using the surrogate model in order to tackle the computational issue. The surrogate
models have been proven the ability to reduce the computational time but at the cost of
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a small approximation error. As for the optimisation under uncertainty, the surrogate UQ
model has shown its ability to reduce the number of uncertain samples needed in the AEP
evaluation. This reduction further leads to less optimisation time. In the end, the two types
of the genetic algorithm have shown their ability to optimise the wind farm layout despite
that they stuck at local extrema in some cases. This can be because the initial hand-picked
layout by the author is already performing well in terms of AEP.
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Chapter 7

Conclusion & Recommendations

7-1 Conclusions

The purpose of this thesis research is to examine an optimisation under uncertainty problem,
WFLO, by implementing surrogate models in the wind farm performance calculation and
uncertainty quantification on the inter-year variation within the wind resource. PCE and
Kriging surrogate models on the wind farm power model are introduced in Chapter 3. Both
surrogate models perform well for the one-dimensional case of wind speed but deviate for the
case of wind direction. It has been found that the PCE model struggles with the approxi-
mation of the power output in the case of wind direction. It is unable to capture the wake
effects in certain wind directions. In contrast, Kriging is good at capturing the wake effect in
this case.

Nonetheless, when looking into a two-dimensional case, where both wind speed and wind
direction are taken as surrogate input variables, the two surrogate models reach a satisfactory
accuracy on the estimation of AEP. The errors of AEP between the estimation and the one
from the original model lie within 2% for both models. Besides the accuracy of the estimation
using the surrogate models, the time required to construct such models is also measured. A
two-dimensional PCE model of wind farm power needs 25% less time to build than a two-
dimensional Kriging model. In order to be sure that the constructed surrogate models work
correctly on different types of layout, an investigation on 7 user-defined wind farm layouts is
performed. Based on the results in Chapter 4, both PCE and Kriging wind farm power model
are slightly more incapable of wake-intense layouts in terms of approximation. However, the
error is still within 2.5% to the original medium-fidelity model.

Many research has suggested to conduct uncertainty quantification in energy and cost analysis
of a wind farm. As the objective parameters (e.g., AEP and LCOE) become statistical
responses due to the effect of uncertain sources, the evaluation on the risk in financial aspect
and the uncertainty quantification becomes essential. Traditionally, the uncertainties are
propagated by the Monte Carlo method. This research has proposed and verified the use of
surrogate models as a replacement of the computationally expensive Monte Carlo method.
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According to the results, the combination of PCE to model wind farm power output, and
again PCE to propagate inter-year uncertainty in wind conditions has a good estimation on
P50, P90 of the AEP and the standard deviation. The number of samples from the inter-year
uncertain inputs are reduced to 100 from 100,000 with an error around 1%.

Regarding the wind farm layout optimisation, both binary and real-coded genetic algorithms
are used. Before implementing them to conduct optimisation under uncertainty, both genetic
algorithms are verified with the original and surrogate wind farm power model, and they
indeed provide a better layout in various cases. It is found that the optimised layout depends
on the initial layout of the optimiser. If an initial layout is given, the optimiser appears to
linger around this layout as it could be possible that the given layout is already a good design.
In contrast, a self-generated layout by the optimiser is able to reach a similar performance
of that well-designed layout. However, the improvement in AEP over the reference layout is
not significant in most of the investigated cases. As for the optimisation under uncertainty,
the surrogate UQ model reduces 98% computational time from a model with the combination
of the medium-fidelity original model for wind farm power output, and Monte Carlo method
that propagates the inter-year uncertainty in wind conditions. This also contributes to a
faster optimisation of OUU. In the end, the optimised layout from the optimisation under
uncertainty provides a layout that may be more robust to the inter-year variation as indicated
by a higher P90 value of AEP than the layout from the deterministic optimisation.

7-2 Recommendations for future work

Even though the research objectives and questions have been achieved and answered, several
approaches have been kept as simple as possible to obtain the results due to the time limit
of this research. It, therefore, considers some recommendations for future work. These
recommendations can be divided into three categories, as each of them corresponds to an
essential part of this research. The first part is about surrogate modelling techniques. The
second part considers the uncertainty quantification approach, whereas the third reflects on
the recommendation on the optimisation of wind farm layout.

Surrogate modelling

To begin with, the first surrogate model is based on the wind farm power model. It is also
possible to use a more advance and accurate wake model than the Jensen wake model. It
will be interesting to see how the two surrogate models perform with different wake models.
There are also more options for surrogate models, such as low-rank tensor approximations
and support vector machines that could possibly yield better approximations. Lastly, for the
surrogate model on the wind farm power output, it is recommended to perform the same study
on a wind farm with a larger scale or even on a real-life wind farm to verify the effectiveness
instead of a simplified case as studied in this research.

Uncertainty quantification

The uncertain variables in this research are the yearly Weibull parameters and the wind
direction sector probabilities. Extensions on these uncertain variables are possible as the
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Weibull parameters can be defined per wind direction sector instead of using an aggregated
one for all. This could lead to an improvement in the AEP estimation. As for the wind sector
probabilities, future work is to characterise them properly. In the current approach, the
dominant wind sector is left out to ensure the sum of all wind sector can reach a probability
of one. The consequence of this approach is still unknown and may lead to results that are
not fully representative.

Further, it is possible to add more uncertain variables into the calculation of AEP. For
example, turbulence intensity and the availability of the wind turbines could be additional
variables. Nonetheless, with additional variables, the dimension of the problem becomes large.
In this case, sensitivity analysis and gradient analysis could be in hand to avoid turning the
problem into an infeasible one.

Optimisation

The optimisation under uncertainty problem is a challenging application which can further
improve the robustness of an optimised result. It is suggested to experiment with other
surrogate UQ models than the combination of PCE to model wind farm power output, and
again PCE to propagate inter-year uncertainty in wind condition as it might lead to different
optimised results. Further, a straightforward extension of the wind farm layout optimisation
would be to consider a different optimisation objective. For example, LCOE seems to be
a more realistic objective function for the wind farm layout optimisation. The number of
generations and population size for the genetic algorithm could also be increased to search for
a better result. Another extension could be using a different optimisation algorithm, which
might be a better choice than the genetic algorithm regarding computational efficiency. Last
but not least, it is suggested to run the wind farm optimisation with actual wind farm data.
For example, the initial layout can be based on existing wind turbine coordinates while
optimising the wind farm layout using the site condition data.
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Surrogate model flowchart
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Surrogate model flowchart
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Figure A-1: Flowchart of constructing a surrogate model. The step of Metamodel-based UQ is
only for the use of surrogating an UQ process.
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Appendix B

Kriging modelling parameters

As the Kriging model requires more effort on deciding its parameters set-up, a study on
these parameters are conducted. The comparisons are based on the percentage error between

the approximation by the Kriging models and the original model with respect to a different
number of samples on wind speed and wind direction.

The first comparison is on the correlation functions R, namely linear, exponential, and Gaus-
sian correlation function. The mathematical expression of each correlation function has been
shown in Table 3-3. The second comparison is on the estimation of hyperparameters 6.
Within each comparison, the trend of the Kriging model varies from using constant ordinary

Kriging to universal Kriging with different degree of polynomials. The results are presented
in Figure B-1, Figure B-2, and Figure B-3.
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Figure B-1: Kriging models based on the linear correlation function.
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Figure B-2: Kriging models based on the exponential correlation function.
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Figure B-3: Kriging models based on the Gaussian correlation function.

From the comparisons in all figures, the percentage error of the approximation by the Gaussian
correlation function is the worst. As the correlation function indicates the influence of nearby
points to the approximation points, it can say that the Gaussian correlation function does not
describe the case well. On the other hands, both linear and exponential correlation functions
are more accurate compared to the Gaussian one. There is no obvious point to conclude
which correlation function is better. In the end, this research uses exponential correlation
with a cross-validation estimation on hyperparameters. It is because, in a similar wind farm
research of Gkoutis [16], the author recommends using exponential correlation function as it
is the most typical choice for most Kriging modelling problems.

Nevertheless, it should be noted that this study of parameters is heavily case dependent. The
conclusion may be suitable for this research only.
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'2x5 Layouts' wind farm

Summary results

Parameter Total Average Minimum Maximum

Net AEP [GWh] 214.842 21.484 21.098 21.962

Gross AEP [GWh] 227.004 22.700 22.640 22.760

Wake loss [%] 5.36 - - -

Site results

Site Location Turbine Elevation Height Net AEP Wake loss
[m] [ma.s.l.] [ma.g.l] [GWh] [%]

Turbine 001 | (585100, NREL 5MW 0 90 21.962 3.0
6205000)

Turbine 002 | (585900, NREL 5MW 0 90 21.953 3.43
6205000)

Turbine 003 | (585100, NREL 5MW 0 90 21.530 4.9
6205900)

Turbine 004 | (585900, NREL 5MW 0 90 21.374 5.98
6205900)

Turbine 005 | (585100, NREL 5MW 0 90 21.385 5.6
6206700)

Turbine 006 | (585900, NREL 5MW 0 90 21.127 7.12
6206700)

Turbine 007 | (585100, NREL 5MW 0 90 21.390 5.61
6207500)

Turbine 008 | (585900, NREL 5MW 0 90 21.098 7.3
6207500)

Turbine 009 | (585100, NREL 5MW 0 90 21.644 4.55
6208300)

Turbine 010 | (585900, NREL 5MW 0 90 21.380 6.06
6208300)

Site wind climates

Site Location Height A k u E RIX dRIX
[m] [ma.g.l]  [m/s] [m/s]  [W/m2]  [%] [%]

Turbine 001 | (585100, 90 10.3 222 9.15 811 0.0 N/A
6205000)

Turbine 002 | (585900, 90 10.4 222 9.18 820 0.0 N/A
6205000)

Turbine 003 | (585100, 90 10.3 222 9.5 811 0.0 N/A
6205900)
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The wind farm lies in a map called "Tunoe elevation map'.
1
—

The wind farm is in a project called 'Project 1'
A wind atlas called 'TJmuiden_offshore' was used to calculate the predicted wind climates

Calculation of annual output for '2x5 Layouts'
Decay constants: 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04

Sector 1 (0°)

Turbine A[m/s] k Freg. [%] U [m/s] MWh (free) MWh (park) Eff. [%]
Turbine 8.1 2.24  6.06 7.21 932.382 691.398 74.15
001
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Turbine 8.1 2.24  6.06 7.21 932.287 691.271 74.15
002

Turbine 8.1 2.24 6.06 7.21 931.860 686.326 73.65
'(I)'?l?bine 8.1 2.24 6.06 7.21 931.655 686.165 73.65
'(I)'gjbine 8.1 2.24 6.06 7.21 931.763 707.779 75.96
'(I)'?Jfbine 8.1 2.24 6.06 7.21 931.733 708.765 76.07
'(I)'g?bine 8.1 2.24 6.05 7.21 931.345 746.316 80.13
'(I)'SZbine 8.1 2.24 6.06 7.21 931.301 746.051 80.11
'(I)'?J?bine 8.1 2.24 6.05 7.21 931.290 931.290 100.0
'(I)'(L)J?bine 8.1 2.24 6.05 7.21 930.977 930.977 100.0
gégtor 1 - - - - 9316.593 7526.338 80.78
total

Sector 2 (30°)

Turbine A [m/s] k Freg. [%] U [m/s] MWh (free) MWh (park) Eff. [%]
Turbine 8.5 283 3.6 7.55 573.826 455.495 79.38
'(I)'g:bine 8.5 283 345 7.55 573.739 573.739 100.0
'(I)'?Jfbine 8.5 2.83 3.45 7.55 573.462 457.981 79.86
'(I)'g?bine 8.5 283 345 7.55 573.283 573.283 100.0
'(I)'g‘rlbine 8.5 2.83  3.45 7.55 573.394 479.361 83.6
'(I)'(L)Jfbine 8.5 2.83 3.45 7.55 573.275 573.275 100.0
'(I)'g?bine 8.5 2.83  3.45 7.55 573.018 530.384 92.56
'(I)'g:bine 8.5 2.83 3.45 7.55 573.014 573.014 100.0
'(I)'?J?bine 8.5 283  3.45 7.55 572.954 572.954 100.0
'(I)'S?bine 8.5 2.83 3.45 7.55 572.756 572.756 100.0
gégtor 2 - - - - 5732.722 5362.243 93.54
total

Sector 3 (60°)

Turbine A [m/s] k Freg. [%] U [m/s] MWh (free) MWh (park) Eff. [%]
Turbine 9.2 3.04 5098 8.23 1185.106 1165.267 98.33
'(I)'g:bine 9.2 3.04 5098 8.23 1185.346 1185.346 100.0
'(I)'?Jfbine 9.2 3.04 5.97 8.23 1184.197 1103.065 93.15
'E’E?bine 9.2 3.04 5.97 8.23 1184.305 1184.305 100.0

4
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Turbine 9.2 3.04 5.97 8.23 1183.610 1102.512 93.15
'(I)'?Jfbine 9.2 3.04 597 8.23 1184.016 1184.016 100.0
'(I)'gfbine 9.2 3.04 5.97 8.23 1182.640 1101.598 93.15
'(I)'g:bine 9.2 3.04 597 8.23 1183.354 1183.354 100.0
'(I)'?J?bine 9.2 3.04 5.96 8.23 1182.253 1182.253 100.0
'(I)'g?bine 9.2 3.04 597 8.23 1182.703 1182.703 100.0
gtlegtor 3 - - - - 11837.532  11574.419 97.78
total

Sector 4 (90°)

Turbine A [m/s] k Freg. [%] U [m/s] MWh (free) MWh (park) Eff. [%]
Turbine 10.3 294 774 9.20 1863.696 1562.477 83.84
'?'S:bine 10.3 294 7.74 9.19 1860.007 1860.007 100.0
'(I)'gfbine 10.3 294 775 9.21 1867.595 1566.027 83.85
'(I)'?J::bine 10.3 294 774 9.20 1865.273 1865.273 100.0
'(I)'g‘rlbine 10.3 294 775 9.22 1871.488 1569.559 83.87
'(I)'?Jfbine 10.3 294 775 9.21 1870.306 1870.306 100.0
'(I)'g?bine 10.3 294 775 9.23 1874.164 1572.146 83.89
'(I)'gaine 10.3 294 7.75 9.23 1875.280 1875.280 100.0
'(I)'(L)J?bine 10.3 2.94 7.75 9.23 1877.167 1574.992 83.9
'(I)'g?bine 10.3 294 7.75 9.23 1878.094 1878.094 100.0
gégtor 4 - - - - 18703.071 17194.164  91.93
total

Sector 5 (120°)

Turbine A [m/s] Kk Freq. [%] U [m/s] MWh (free) MWh (park) Eff. [%]
Turbine 9.0 243 524 7.98 975.470 975.470 100.0
'(I)'gibine 9.0 244 524 8.02 984.931 984.931 100.0
'(I)'gfbine 9.1 244 525 8.06 995.849 981.040 98.51
'(I)'?J?bine 9.1 2.44 5.27 8.08 1003.252 1003.252 100.0
'(I)'g‘rlbine 9.1 244 527 8.09 1005.596 943.824 93.86
'(I)'?Jfbine 9.1 244 526 8.10 1006.538 1006.538 100.0
'z'gzbine 9.1 244  5.28 8.10 1009.042 947.147 93.87

Master of Science Thesis

J.S. Chuang



Turbine 9.1 244  5.26 8.10 1005.455 1005.455 100.0
'(I)'?J?bine 9.1 244 5.26 8.10 1008.138 946.364 93.87
'(I)'gfbine 9.1 244  5.26 8.09 1005.329 1005.329 100.0
gégtor 5 - - - - 9999.601 9799.350 98.0
total

Sector 6 (150°)

Turbine A [m/s] [ Freq. [%] U [m/s] MWh (free) MWh (park) Eff. [%]
Turbine 10.1 242 5.18 8.99 1169.271 1169.271 100.0
'(I)'?Jibine 10.1 242 5.19 8.94 1162.883 1162.883 100.0
'(I)'gfbine 10.1 242 518 8.95 1162.023 1076.695 92.66
'(I)'?J?bine 10.0 243 5.19 8.89 1153.026 1153.026 100.0
'(I)'g‘r}bine 10.1 243 5.8 8.93 1160.310 1048.536 90.37
'(I)'gfbine 10.0 243 519 8.90 1156.103 1156.103 100.0
'(I)'?J?bine 10.1 243 5.18 8.94 1161.694 1001.086 86.17
'(I)'SZbine 10.1 243 5.19 8.93 1159.642 1159.642 100.0
'(I)'?J?bine 10.1 243 5.18 8.95 1163.823 1002.354 86.13
'(I)'g?bine 10.1 243 5.18 8.95 1162.766 1162.766 100.0
gégtor 6 - - - - 11611.542  11092.363  95.53
total

Sector 7 (180°)

Turbine A [m/s] k Freq. [%] U [m/s] MWh (free) MWh (park) Eff. [%]
Turbine 11.8 271 9.15 10.48 2574.685 2574.685 100.0
'(I)'?Jibine 11.8 271  9.16 10.48 2575.803 2575.803 100.0
'(I)'gfbine 11.8 271 9.15 10.48 2573.685 2307.404 89.65
'(I)'?Jibine 11.8 271 9.15 10.48 2574.366 2308.000 89.65
'(I)'?l?bine 11.8 2.71 9.15 10.48 2573.578 2179.918 84.7
'(I)'g?bine 11.8 271 9.15 10.48 2574.798 2180.933 84.7
'(I)'?J?bine 11.8 2.71 9.15 10.48 2573.237 2134.514 82.95
'(I)'g:bine 11.8 2.71 9.15 10.48 2574.354 2135.408 82.95
'(I)'?Jsr;bine 11.8 271 9.15 10.49 2574.163 2068.593 80.36
'z'gzbine 11.8 271 9.15 10.48 2573.755 2068.201 80.36
1
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Sector 7 - - - - 25742.422  22533.460  87.53
total

Sector 8 (210°)

Turbine A [m/s] k Freq. [%] U [m/s] MWh (free) MWh (park) Eff. [%]
Turbine 12.2 2.40 14.11 10.79 3947.183 3947.183 100.0
001

Turbine 12.2 2.40 14.08 10.83 3950.302 3950.302 100.0
002

Turbine 12.1 2.39 14.14 10.76 3937.080 3937.080 100.0
003

Turbine 12.2 2.40 14.10 10.80 3945.469 3741.293 94.83
004

Turbine 12.1 2.39 14.14 10.75 3935.685 3935.685 100.0
005

Turbine 12.2 2.40 14.10 10.80 3945.171 3678.574 93.24
006

Turbine 12.1 2.39 14.16 10.72 3929.363 3929.363 100.0
007

Turbine 12.1 2.40 14.12 10.77 3938.869 3554.518 90.24
008

Turbine 12.1 2.39 14.16 10.71 3928.021 3928.021 100.0
009

Turbine 12.1 2.39 14.14 10.74 3932.951 3545.099 90.14
010

Sector 8 - - - - 39390.093  38147.117 96.84
total

Sector 9 (240°)

Turbine A [m/s] k Freq. [%] U [m/s] MWh (free) MWh (park) Eff. [%]
Turbine 11.3 2.22 16.20 10.04 4111.796 4111.796 100.0
001

Turbine 11.4 2.23 16.21 10.12 4153.426 4153.426 100.0
002

Turbine 11.3 2.23 16.19 10.05 4117.167 4117.167 100.0
003

Turbine 11.4 2.23 16.20 10.13 4153.530 4114.836 99.07
004

Turbine 11.4 2.23 16.19 10.07 4123.355 4123.355 100.0
005

Turbine 11.4 2.23 16.20 10.14 4156.108 3989.281 95.99
006

Turbine 11.4 2.23 16.18 10.08 4127.839 4127.839 100.0
007

Turbine 11.5 2.23 16.20 10.15 4160.954 3994.247 95.99
008

Turbine 11.4 2.23 16.18 10.07 4120.696 4120.696 100.0
009

Turbine 11.4 2.23 16.19 10.14 4153.414 3986.616 95.98
010

Sector 9 - - - - 41378.284  40839.258  98.7
total

Sector 10 (270°)

Turbine A [m/s] k Freq. [%] U [m/s] MWh (free) MWh (park) Eff. [%]
Turbine 10.3 2.08 10.67 9.11 2375.028 2375.028 100.0
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001

Turbine 10.4 2.08 10.68 9.18 2399.250 2079.532 86.67
'(I)'(L)Jsbine 10.3 2.08 10.67 9.10 2370.207 2370.207 100.0
'(I)'g:rgbine 10.3 2.08 10.67 9.16 2392.322 2071.905 86.61
'(I)'g‘r}bine 10.2 2.08 10.66 9.07 2361.059 2361.059 100.0
'(I)'?J?bine 10.3 2.08 10.67 9.14 2383.943 2064.076 86.58
'(I)'g?bine 10.2 2.08 10.66 9.06 2353.582 2353.582 100.0
'(I)'?JZbine 10.3 2.08 10.66 9.13 2379.395 2059.153 86.54
'(I)'?J?bine 10.2 2.08 10.66 9.02 2341.584 2341.584 100.0
'(I)'g?bine 10.3 2.08 10.66 9.11 2374.095 2054.079 86.52
g::-gtor 10 - - - - 23730.465  22130.205 93.26
total

Sector 11 (300°)

Turbine A [m/s] k Freg. [%] U [m/s] MWh (free) MWh (park) Eff. [%]
Turbine 9.0 215  8.79 7.99 1627.456 1627.456 100.0
'(I)'S:bine 9.1 2.15 8.79 8.05 1647.224 1624.795 98.64
'(I)'?Jfbine 9.0 215 8.78 7.97 1620.819 1620.819 100.0
'?'?Jfbine 9.1 215  8.79 8.06 1651.108 1557.842 94.35
'(I)'g‘r}bine 9.0 215 8.78 7.99 1627.888 1627.888 100.0
'?'?Jfbine 9.1 215  8.79 8.08 1659.006 1565.458 94.36
'(I)'g?bine 9.1 215 8.78 8.03 1640.486 1640.486 100.0
'(I)'?JZbine 9.2 215 879 8.12 1671.174 1577.324 94.38
'?'?J?bine 9.2 2.15 8.78 8.12 1668.591 1668.591 100.0
'(I)'g?bine 9.2 215 879 8.17 1687.364 1687.364 100.0
gcle(c)tor 11 - - - - 16501.115 16198.021  98.16
total

Sector 12 (330°)

Turbine A [m/s] k Freg. [%] U [m/s] MWh (free) MWh (park) Eff. [%]
Turbine 8.8 191 741 7.80 1306.135 1306.135 100.0
'(I)'S:bine 8.8 1.91 7.41 7.81 1306.754 1110.670 84.99
'(I)'?Jfbine 8.8 191 741 7.81 1305.985 1305.985 100.0
'Z'Eir:bine 8.8 191 741 7.81 1306.112 1114.412 85.32
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Turbine 8.8 1.91 7.40 7.81 1305.723 1305.723 100.0

005

Turbine 8.8 1.91 7.41 7.81 1306.352 1149.791 88.02

006

Turbine 8.8 1.91 7.40 7.81 1305.591 1305.591 100.0

007

Turbine 8.8 1.91 7.41 7.81 1306.187 1234.425 94.51

008

Turbine 8.8 1.91 7.40 7.81 1306.045 1306.045 100.0

009

Turbine 8.8 1.91 7.40 7.81 1305.947 1305.947 100.0

010

Sector 12 - - - - 13060.830 12444.724  95.28

total

All Sectors

Turbine Location Gross AEP Net AEP Efficiency
[m] [MWh] [MWh] [%]

Turbine 001 (585100, 6205000) 22642.033 21961.660 97.0

Turbine 002 (585900, 6205000) 22731.952 21952.705 96.57

Turbine 003 (585100, 6205900) 22639.929 21529.795 95.1

Turbine 004 (585900, 6205900) 22733.701 21373.590 94.02

Turbine 005 (585100, 6206700) 22653.452 21385.202 94.4

Turbine 006 (585900, 6206700) 22747.347 21127.117 92.88

Turbine 007 (585100, 6207500) 22662.001 21390.051 94.39

Turbine 008 (585900, 6207500) 22758.982 21097.871 92.7

Turbine 009 (585100, 6208300) 22674.723 21643.737 95.45

Turbine 010 (585900, 6208300) 22760.151 21379.930 93.94

Wind farm - 227004.269 214841.655 94.64
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