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Abstract 

Fine-Tracker is a speech-based model of human speech 

recognition. While previous work has shown that Fine-Tracker 

is successful at modelling aspects of human spoken-word 

recognition, its speech recognition performance is not 

comparable to that of human performance, possibly due to 

suboptimal intermediate articulatory feature (AF) 

representations. This study investigates the effect of improved 

AF representations, obtained using a state-of-the-art deep 

convolutional network, on Fine-Tracker’s simulation and 

recognition performance: Although the improved AF quality 

resulted in improved speech recognition; it, surprisingly, did 

not lead to an improvement in Fine-Tracker’s simulation power. 

Index Terms: convolutional networks, spoken-word 

recognition, computational modelling, articulatory features 

1. Introduction 

There is ample evidence that listeners use subtle acoustic 

information in the speech signal to help resolve temporary 

ambiguity due to words being embedded in other words (e.g., 

[1, 2, 3, 4]). For instance, [2] showed that listeners are able to 

disambiguate between words like ‘ham’ and ‘hamster’ before 

the offset of the first syllable, an effect that the authors attribute 

to the fact that monosyllabic words are on average slightly 

longer than these same syllables embedded in a longer word.  

Fine-Tracker is a speech-based computational model of 

human spoken-word recognition which was specifically 

designed to investigate the role of durational information in 

spoken-word recognition [5]. Fine-Tracker is based on the 

abstractionist theory underlying [6], which assumes that speech 

recognition is a two-staged process. At the prelexical, first 

level, the acoustic signal is mapped to a set of limited ‘abstract’ 

representations. These prelexical units are then mapped to 

words at the lexical, second level. In Fine-Tracker, the 

prelexical representations are extracted from the speech signal 

using neural network classifiers, and consist of articulatory 

features (AFs), which are acoustic correlates of articulatory 

properties of the speech signal. The prelexical representations 

are then passed on to the lexical level for word recognition. 

Fine-Tracker has been successful in simulating the results 

of human experiments on the use of durational information in 

spoken-word recognition [1, 2] and as such provided important 

evidence for the theoretical assumptions on the role of 

durational information in human speech processing [5]. While 

Fine-Tracker’s simulation power is strong, it is a fairly poor 

speech recognition system. The word recognition process, as it 

takes the AF representations as input, is dependent on the 

quality of the extracted AFs. Potentially, Fine-Tracker’s word 

recognition and simulation performance could benefit from 

improved AF classification. The goal of this study is to 

investigate the effects of improved AF quality on Fine-

Tracker’s word recognition and simulation power. The original 

implementation of Fine-Tracker used multi-layer perceptrons 

(MLPs) with a single hidden layer to map the speech signal to 

AFs. Deep convolutional neural networks (CNNs) have been 

applied to automatic speech recognition (ASR) with much 

success (e.g. [7, 8, 9]). Here, we investigate the use of deep 

CNNs for the extraction of the AFs on Fine-Tracker’s 

recognition performance and simulation power, and compare 

the results to the human data [2] and the modelling results [5]. 

2. CNN and Fine-Tracker models 

Fine-Tracker’s prelexical level creates a multi-dimensional AF 

vector for every 5 ms of speech of the speech signal. Each AF 

vector has a continuous value between 0 and 1 (which is the 

posterior probability output by the networks) for each of seven 

AF types: manner and place of articulation, voice, backness, 

height, lip rounding, vowel duration/diphthong (identical to 

[5]), resulting in AF vectors of size 33 for each input frame. A 

separate network is trained for each AF.  

In [10], we created and compared three different DNNs on 

the task of AF classification. The best-performing DNN, a 

CNN, is used in the current study as Fine-Tracker’s prelexical 

level. The CNNs consisted of an input layer, 5 blocks each 

consisting of 2 convolutional layers followed by a max pooling 

layer ending with 4 fully connected layers and a softmax output 

layer. The CNN architecture was trained using Mel Filterbank 

features consisting of 64 filters, which were computed using 25 

ms analysis windows with 5 ms shift. The CNNs were trained 

using the read speech material from the Corpus Spoken Dutch 

(CGN, Corpus Gesproken Nederlands) [11]. The material 

consisted of 64 hours of read speech by 324 unique speakers. 

The training data was split into a training (80% of the full data 

set), validation (10%) and test set (10%) with no overlap in 

speakers. AF labels were derived by first forced aligning the 

speech data with the phonemic transcriptions using a GMM-

HMM system implemented in Kaldi [12]. Next, for each frame, 

the phonemic CGN label was replaced with the canonical AF 

types using a look-up table. These newly created AF CNN-

based classifiers showed relative improvements of up to 

18.61% for each AF compared to the original Fine-Tracker 

MLPs, with AF accuracies of manner: 86.9%, place: 86.3%, 

voicing: 93.5%, backness: 89.2%, height: 89.2%, rounding: 

90.6%, duration/diphthong: 88.2%. This improvement could 

not be explained from an increase in training material (see [10] 

for more details). These AFs were passed on to Fine-Tracker’s 

lexical level. 
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Fine-Tracker’s lexical layer is kept as in the original model 

[5]. The lexicon is represented as a tree where each node is a 

canonical AF vector and branches are words. The search 

consists of a probabilistic, breadth-first word search which 

maps the prelexical AF vectors onto the canonical AF vectors 

of the words. The output consists of a ranked N-best list (N=50) 

of predictions for every input frame. This allows for the 

evaluation of the word activations over time.  

3. Experimental set-up 

The goal of the modelling study is to investigate the role of 

durational information in human speech processing which is 

done by comparing two models: one with and one without the 

ability to use durational information. To investigate the 

improved AFs effect on the modelling and recognition power 

of Fine-Tracker, we similarly compared the original MLP-

based and the new-CNN-based versions of Fine-Tracker with 

and without the ability to use durational information. We used 

the (read-speech) stimulus materials, like was done in [5], from 

the eye-tracking study [2]: 28 multi-syllabic target words of 

which the first syllable was also an embedded monosyllabic 

word, such as ‘ham’ in ‘hamster’. There were two conditions 

for every word: 1) MONO condition: the first syllable of the 

target word ‘hamster’ was replace by a recording of the 

monosyllabic word ‘ham’; 2) CARRIER condition: the first 

syllable of ‘hamster’ came from another recording of ‘hamster’. 

During the original experiment, participants’ eye movements 

were monitored while they were listening to the target words 

embedded in sentences. Analysis of the eye movements showed 

that there were significantly more transitory fixations to 

pictures representing monosyllabic words (e.g., ‘ham’) in the 

MONO condition than in the CARRIER condition.  

Following [5], durational information is hard-coded in 

Fine-Tracker’s lexicon. To investigate the effect of durational 

information, there were two lexicons. In the canonical lexicon 

(= no durational information), the lexical AF representations for 

the monosyllabic words and the first syllable of the target words 

were identical. To accommodate the use of durational 

information, in the duration lexicon, each phoneme of the 

monosyllabic words was (arbitrarily) represented by two 

identical AF vectors, while each phoneme of the first syllable 

of a multi-syllabic word was represented using a single AF 

vector. The lexicon used in this study contained only the target 

words and the embedded words, i.e., a lexicon size of 56. 

Fine-Tracker’s simulation performance is evaluated by 

comparing the word activations of the embedded words over 

time in the MONO and CARRIER conditions. Following [5], a 

correct simulation is when, before the end of the first syllable 

of the target word (e.g., ‘hamster’), the word activation for the 

embedded word (e.g., ‘ham’) is higher in the MONO condition 

than in the CARRIER condition. If durational information is 

indeed important for the disambiguation of the embedded and 

target words, the duration lexicon condition should result in 

more correct simulations than the canonical lexicon condition. 

Table 1. The number of times (max = 28) the target word 

was found in the final 50-best list per lexicon type. Between 

brackets:#target word was top prediction.  

Condition MLPs-[5] CNNs 

can dur can dur 

MONO 27 (20) 25 (15) 28 (23) 23 (19) 

CARRIER 23 (21) 22 (16) 28 (23) 21 (18) 

4. Results 

Word recognition performance was higher for the CNN 

architecture compared to the MLP architecture from [5]: 23 

times (in both lexicon conditions) the target word was the top 

prediction (see Table 1 for the full results). However, for the 

duration lexicon, the number of target words appearing in the 

50-best list is slightly lower than for MLP-[5], although the 

CNN-based AF vectors do outperform MLP-[5] in terms of 

words that were correctly recognised (= the top prediction).  

Comparing the modelling ability of Fine-Tracker with the 

MLP-based and CNN-based architectures showed that both 

architectures correctly simulated the effect of the role of 

durational information in embedded word disambiguation: the 

duration lexicon outperformed the canonical lexicon. The 

number of times the embedded word (e.g., ‘ham’) had a higher 

activation over time in the MONO condition than in the 

CARRIER condition, i.e., where the ‘winning’ condition had 

the highest activation over the largest part of the stimulus, was 

9 for both architectures for the lexicon without durational 

information. When the duration lexicon was used, these 

numbers increased to 17 for the MLPs and 15 for the CNNs. A 

one-tailed McNemar for paired samples (without continuity 

correction) showed that the difference between the canonical 

and duration lexicons was significant for both architectures (see 

[5] for the MLP results; CNN: ꭓ2 = 3.6, p = .029).  

In the human experiment, the correct image attracted on 

average more eye fixation only for 18 out of the 28 stimuli. 

Comparisons of the model performance and human behaviour 

on a stimulus-by-stimulus level shows that the Fine-Tracker 

results agree with the human data on 10 out of 18 cases for the 

CNNs and 8 out of 18 times for the results reported in [5].  

5. Concluding remarks 

As expected, the higher quality of the AF vectors from the 

CNN-based system resulted in improved word recognition 

performance. For the canonical lexicon, all of the target words 

appeared in Fine-Tracker’s final predictions with 23 (out of 28) 

words appearing as the top prediction which is the best 

recognition performance reported so far, while also the duration 

lexicon condition outperformed the original model’s 

recognition performance.  

The results suggest that Fine-Tracker’s modelling 

performance is to some degree dependent on the AF vectors’ 

quality. However, even though the CNNs showed large AF 

classification improvements and the best word recognition 

results, these improved AFs did not increase Fine-Tracker’s 

ability to model human behavioural data compared to the results 

in [5], although on a stimulus-by-stimulus basis they did 

outperform the MLP-version of the model. It is not clear why 

these improvements did not result in better modelling of the use 

of durational information. In order to make a fair comparison to 

previous Fine-Tracker results the simulation settings were the 

same as those in [5]. Perhaps these parameters need to be tuned 

to the new AF vectors in order to allow Fine-Tracker to make 

better use of the increased quality of the AF vectors.  
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