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Abstract

Porous asphalt resides on most top layers of Dutch roads. Scheduling maintenance for these roads
is generally dependent on several factors, but ravelling, the loss of aggregates in the top layers, is
the main reason for maintenance on Dutch roads. With the recent framework of the DOS-LCMS
scheme generating values for aggregate loss in percentages, a prediction for the remaining lifetime
of a road section surfaced with porous asphalt with respect to ravelling can be performed. The
lifespan for porous asphalt layers is dependent on the most suffered 25% of the section on the re-
spective 100 meter length. The current threshold is set at 10%, implying that road sections of 100
meter need maintenance if more than 25% of the road (75th percentile) measures aggregate loss
over 10%. The present work approximates these 75th percentiles throughout the years using para-
metric and non-parametric approaches, whereafter the estimates of the 75th percentiles are used to
construct smooth monotonic increasing convex curves. These curves, which are in fact functions
built on P-splines, are then used to perform extrapolation and hence predict the dates on which the
threshold is going to be surpassed. The study reveals problems in the raw data which is particularly
prominent in the sequence of 75th percentiles, frequently showing a lack of monotonicity and con-
vexity. Putting the monotonicity and convexity constraints on a more granular level were found to
be helpful for the predictions and improved the consistency of lifetime predictions over consecutive
years.
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1
Introduction

Reliable estimation of road surfacing lifetimes plays a critical role when striving for efficient main-
tenance planning of roads. The main challenge faced by maintenance planners is deciding when
exactly to perform resurfacing. If this moment in time can be defined, the road surfaces can be used
to its full potential in terms of longevity — resulting in a greater value per cost ratio.

Dutch highways are primarily (> 90% [1]) surfaced with a top layer of porous asphalt (PA). PA is a
permeable road surface type which consists of a mixture of stones, sand, filler material and bitumen,
of which the latter is a highly viscous form of petroleum that functions as a binder. The pros of
using porous asphalt over asphalt concrete (AC) are its reduced noise production, rain drainage,
and resistance against corrugation. However, bitumen in PA are more exposed to ageing due to its
nature, allowing weather conditions to permeate and cause brittleness. After a certain degree of
brittleness, regular traffic flow causes cracks in the bitumen. This ultimately leads to the release
or loss of aggregates, which is called ravelling. Ravelling is the main damage mechanism in Dutch
highways (> 70% [1]).

Recent advances in automated pavement inspection have opened up new means of analysis. In
particular, Rijkswaterstaat 1 (RWS) and TNO 2 have effectively built on the Laser Crack Measurement
System (LCMS) provided by the company Pavemetrics [2] to apply LCMS in the scheme of ravel-
ling [3]. Ravelling measured in percentage aggregate loss is calculated from the LCMS generated 3D
profiles, using Detectie Oppervlakte Schade (DOS) (English: Detection Surface Damage) algorithms
[4]. A search of the literature revealed few studies which consider DOS-LCMS data for their analy-
ses. Recently Leegwater et al. [5] have used DOS-LCMS data for analysis on asphalt lifetimes. The
project led to: a prediction scheme for remaining lifetimes based on machine learning models, a
classifying scheme for road segments categorised on exponential curve fitting, and a dashboard to
visualise the data for the European project BE-GOOD. However, due to the blackbox-nature of the
prediction scheme in Leegwater et al. [5], a more fundamentally statistical approach has still not
been developed.

1Rijkswaterstaat is part of the Dutch Ministry of Infrastructure and Water Management. Specifically, RWS is in charge of
the execution of public works and water management.

2TNO is a Dutch independent research organisation which focuses on applied sciences.
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2
Literature Review

It has previously been observed that the estimation of lifetime distributions can be carried out by
applying methods from the branch survival analysis [6–8]. Verra et al. [6] uses the concept of the
well-known survival function given by t 7→ S(t ), which denotes the probability of survival after time
t for some subject. In particular, the Kaplan-Meier estimator [9] is used to approximate the afore-
mentioned survival function based on independent and identically distributed, right-censored data
as follows

Ŝ(t ) = ∏
i :ti≤t

(
1− di

ni

)
,

in which di > 0 and ni respectively denote the number of deaths at time ti and the number of sur-
vivors until ti . The benefit of this approach is that the Kaplan-Meier estimator is a non-parametric
statistic: as few assumptions as possible are made about the data [10]; besides the assumption of
independent and identically distributed data, there are no heavy assumptions on the underlying
data. As a result, non-parametric methods are flexible in terms of applicability; hence for this case
as well. By definition of S(t ) = 1−F (t ), where F (t ) denotes a cumulative distribution function (CDF),
the estimate of the Kaplan-Meier estimator also generates an estimate of the CDF. Verra et al. [6]
then provides estimates by means of common statistics such as the mean, standard deviation and
the median for different categories. These categories are defined based on the following: the geo-
graphical location of the road (northern, middle, and southern part) in the Netherlands1, and the
position of the lane on the road. The reason for the relevance of the last categorisation can be ex-
plained: given that the norm is to drive on the rightmost lane, the endured load over time should
inevitably be higher on the rightmost lane which effects longevity; this has indeed been concluded
in [6], from which is clear that the lifetimes of the lanes which endures most load are substantially
shorter.

Derksen [7] in 2014 and Ebrahimi et al. [8] in 2019 also use survival analysis for their inference.
The methodology of Derksen [7] is analogous to the one of Verra et al. [6], but Derksen [7] does not
explicitly report the mean, standard deviation and the median per analysis. Ebrahimi et al. [8] takes
a different approach: instead of a priori classifying which lane endures most load, they researched
the effect of multifarious external variables including the following: traffic volume, posted speed
limit, aggregate nominal maximum size, and heavy traffic volume. These were used as categories in
a Cox proportional-hazards model [11], which in this specific research fundamentally involves con-
structing several Kaplan-Meier survival curves for different groups based on said categories. Data
from Ebrahimi et al. [8] suggests that aggregate nominal size and heavy traffic volume are the sig-
nificant factors in longevity of the analysed surfaces.

1The research of Verra et al. [6] was performed in the Netherlands.
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6 2. Literature Review

Until now, we have only mentioned work which applies survival analysis methods as their main
method for research. Although this approach should not be completely undermined and can give
significant insight overall, such expositions are somewhat lacking in applicability. The results from
previous studies produce survival probabilities per year for road segments based on their classifi-
cation. However, it would treat two road sections that belong to the same predefined category2 but
differ significantly in non-predefined influential factors, as having the same survival probability.
For example, consider a probable influential factor such as endured load over time. Such a factor
is quite troublesome to measure with high accuracy. Two road segments could hence belong to
the same category, despite greatly differing in endured load over time, and could not be reclassified
since such data about load is unavailable or not representative. In similar fashion, there are many
external variables which can be considered that undeniably makes each road segment unique, but
can simply not all be captured.

In other words, all inferences from Verra et al. [6] and Derksen [7] and — though in undoubtedly
lesser degree — Ebrahimi et al. [8] are fundamentally based on two moments in time: year of con-
struction and year of reconstruction3. For the purpose of finding average lifetimes, these certainly
suffice and are proper. However, they do not suffice for giving unique lifetime indications per road
segment. There is a clear absence of a lifetime measure in all mentioned studies: some statistic
which indicates whether a road surface needs maintenance. If such a measure is decided upon, it
is possible to monitor that statistic per (fixed) time interval and compute estimations for each road
segment. It would also almost completely negate the issues of unjustified classification, as there is
no classification to begin with. Combining older and more recent work from Rijkswaterstaat and
TNO, it seems feasible to pursue such an approach.

2A category in this context would be similar to the proposed categories from the previous studies [6–8].
3There is a slight ambiguity in the year of reconstruction, because it can be either be the proposed or the actual year of

reconstruction. These two can mismatch for several reasons.



3
Motivation and research questions

This research sets out to investigate the usefulness of data on aggregate loss provided by the DOS-
LCMS scheme to assist Rijkswaterstaat in determining asphalt surfacing lifetimes. RWS also aims
for efficient construction planning and in addition to their own analyses has already consulted help
from external parties. In 2009, RWS started a collaboration with TNO and they have been respon-
sible for implementing and further development of the DOS-LCMS scheme, which has been in use
for annual data acquisition since 2012. Furthermore, using DOS-LCMS data combined with the pro-
posed remaining lifetimes from visual inspectors from RWS, TNO has created a linear discriminant
analysis (LDA) model which provides a means of estimating remaining lifetimes.

Although a model has been established by TNO to predict remaining lifetimes for asphalt sur-
faces, its current iteration is not based on RWS’s predefined aggregate loss threshold for mainte-
nance, or at least in objective manner. To clarify that, we need to specify the actual threshold first.
In 2003 and continuing, the threshold was defined to be the following:

Threshold (Verra et al. [6] and DHV et al. [12])

If more than 25% of a road segment (approximately 100 m) measures an aggregate loss per-
centage of at least 10%, the corresponding road segment needs maintenance.

Clearly, due to the lack of measuring systems before 2012, all proposed remaining lifetimes by the
visual inspectors before this date were not established from data. This method — despite the undis-
puted expertise of the inspectors — is exposed to inconsistencies such as human bias, which in-
duces irreproducibility. The DOS-LCMS implementation, on the other hand, has proven to be
within the tolerance bound and can be concluded to be reproducible according to Van Aalst [13].
The LDA model from TNO used judgements of the visual inspectors but, as stated before, these lack
reproducibility. Therefore, a helpful question to answer would be: how accurate were the visual
inspectors from RWS in their judgements in correspondence with the data?

The threshold mentioned before is certainly not absolute because the planning is ultimately
still decided upon by considering the proposed remaining lifetimes from TNO and visual inspec-
tion from RWS. However, it does raise the question if and how we can use the DOS-LCMS data to
provide reliable estimates of remaining lifetimes. Now that we have data from 2012 — 2019 avail-
able, it presents us with the opportunity to perform more in-depth analysis. The following research
questions are based on the research aims:

7



8 3. Motivation and research questions

Research Questions

Main Question
Given DOS-LCMS data over multiple years from a road section, how can we predict its corre-
sponding remaining lifetime?
Side Questions
• Under which conditions are the predictions representative based on the official threshold?

• To what extent are possible differences in wheel tracks and lanes portrayed in the data?

The results may be used as a proof of concept and a potential modified approach is not unreason-
able. Analysis and producing plots will be done in R, which is software used for statistical comput-
ing.



4
General Terminology

This Chapter describes the terminology that is common at RWS. Due to the nature of RWS, numer-
ous words and notation that are frequently used are quite straightforward in the Dutch language,
but could be ambiguous in the English language for the reader — and myself initially — due to little
experience. The Chapter is brief and consists of two parts: we depict the general notation used for
a road section and its components, and we provide a short vocabulary list for Dutch readers.

Depictions of a Road Section
Figure 4.1 is a visualisation of a road section and its components.

Road

10,0
Right

Road

10,1
RightRoad

10,1
Left

Road

10,0
Left

Road
Carriageway: 1HRL Carriageway: 1HRR

Lane: 1RR Lane: 2RRLane: 2RL Lane: 1RL

Figure 4.1: A cross-section of a road and corresponding notation, including the driver location signs. The illustration does
not contain full detailed notation as explained in Driessen et al. [14], but rather annotates the bare minimum demanded
for the analyses. The driver location signs with respect to the traffic direction determine if a carriageway is named left or
right; an increase indicates a right carriageway, a decrease indicates a left carriageway.

9



10 4. General Terminology

A road or highway1 generally consists of one or more carriageways; a carriageway consists of one
or more lanes. If we would properly join all the road sections as illustrated in Figure 4.1, the union
would be the entire road. Keep in mind that there are several configurations for a road (section),
but to outline all these would defy the purpose of this thesis. Instead, we refer to Driessen et al. [14]
for other possible configurations and even more detailed notation. As for the current notation, note
that it is derived from RWS and thus corresponds to Dutch naming. Fortunately, the Dutch words
for left (links) and right (rechts) start with the same letters, which helps with a general rule of thumb
in naming, a bare minimum for analysis, stated as follows

Rule of Thumb (BPS)

In BPS notation

• the last letter denotes the carriageway relative to the driver location signs; if travelling
forwards leads to an increase (decrease) of the numbers on the hectometre posts it
corresponds to a right (left) carriageway,

• the number denotes the corresponding position relative to the centre.

To give an example; if a lane is indicated as ‘3RR’, we can already deduce that it is situated on a
(not the) right carriageway relative to the driver location signs, and it is the 3rd lane from the mid-
dle. However, from this piece of information only it indeed remains unclear which carriageway it
is; highways with multiple carriageways associated with the same driving direction do exist. There-
fore, in general it is necessary to also declare notation for the carriageway before we can conclude
anything about the specific location. This is particularly important when an event or accident has
occurred and an explicit description of the position on the road is demanded. An example of BPS
notation sufficient for analysis is the following:

Example Notation

A44 - 1HRR - 7.1 - 1RR in BPS notation corresponds to the road section of

• Road: A44

• Carriageway: 1st of the right

• Driver location sign: starting from 7.1 up until 7.2

• Lane: 1st from left-to-right with respect to traffic direction

The final pivotal terms that need to be introduced are the left and right wheel track (LWT, RWT),
shown in Figure 4.2. These are important due to the nature of the provided data, which will be
elaborated on in Chapter 5. In general, there is a difference in damage intensity between LWT and
RWT of the same lane. Additionally, as indicated before, it shows that the 2RR lane has suffered
more from ravelling compared to the 1RR lane — assuming that damage buildup started at roughly
the same time. The widths of the LWT and RWT are assumed to be 1 meter. In practice, however, it
seems to be smaller than the assumed 1 meter.

1Due to personal preference, hereafter we will use ‘road’ rather than ‘highway’.
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Lane: 1RR Lane: 2RR

Left Wheel 
Track

Right Wheel 
Track

Left Wheel 
Track

Right Wheel 
Track

Road

10,0
Right

Figure 4.2: A segment of the road section from Figure 4.1, with the assumption that ravelling-buildup started at (roughly)
the same time. The illustration shows what it is meant by left/right wheel track, and attempts to portray the discrepancy
in severity of damage on these tracks. Although the contrast in severity is well captured for the general case, this situation
does not always hold.

Vocabulary (Dutch-English)

Table 4.1: Dutch words and their English translation for terms common in RWS jargon

Dutch English

weg road,
highway

baan carriageway

strook lane

hectometerpaal driver location sign,
hectometre post

ZOAB
(zeer open asfalt beton)

PA
(porous asphalt)

DAB
(dicht asfalt beton)

AC
(asphalt concrete)

Groot Onderhoud pavement rehabilitation

MJPV
(Meerjarenplanning Verhadingsonderhoud)

SPRS
(Strategic Planning Road Surfaces)

kunstwerk engineering structure





5
Data

Before conducting analysis and basing conclusions on these, it is mandatory to properly assess the
data that we have access to. The data which is available are of the following types: DOS-LCMS,
KernGIS, SPRS. This Chapter will discuss the selection, acquisition, format, and their latent compli-
cations.

5.1. Road Selection
It was necessary to set specific prerequisites for choosing the roads, such that we could perform
sensible analysis. DOS-LCMS data has been gathered for numerous roads and to analyse all these
adequately would take a tremendous amount of time. The initial prerequisites for roads were de-
cided upon with Léon Schouten and are enumerated in Table 5.1 with respective reasoning.

Table 5.1: Data prerequisites with corresponding reasoning.

Prerequisite Reason

1. The road surface is of the
PA(+) type

There are two main reasons for this specific prerequisite.
First of all, over 85% of Dutch roads are of type PA(+), which
implies that a proper analysis could translate to the majority
of the roads. Secondly, the older iteration of the DOS-LCMS
implementation only allows for appropriate aggregate loss
detection on PA types, which excludes surface types which
have finer texture than PA(+). For completeness sake the
most recent DOS-LCMS implementation is capable of han-
dling finer texture, but for analysis we are restricted by the
former iteration.

2. Pavement rehabilitation was
done in a specific year.

Restricting to complete pavement rehabilitation in one year
allows for more uniform analysis for one road; larger likeli-
hood of finding similar patterns across the road. More cru-
cially, however, is that the initial idea was to investigate dif-
ferences in phases of severity of aggregate loss: the further
back in time the most recent rehabilitation was performed,
the higher the degree of severity we can expect.

13



14 5. Data

Prerequisite Reason

3. Maintenance was executed
for a substantial length.

Substantial lengths imply more data and a better means
of comparing — thought not independent — on a specific
road. It increases the likelihood of a proposed methodology
set up for one road section being able to function for other
sections of the corresponding road.

4. No changes have been made
in road configuration since
the pavement rehabilitation.

Road configurations could cause complications in notation
if there were any physical changes in road configuration.
For example, it is immensely convenient if a road section in
the year 2012, say A44 - 1HRR - 7.1 - 1RR, would physically
be the same road section as A44 - 1HRR - 7.1 - 1RR in the
year 2019. Indeed, in general this does not necessarily hold.
If a new lane at the 7.1 driver location sign would be added
to the left for which reason whatsoever during 2013 – 2018,
the 1RR lane in 2012 would then physically be the same as
the 2RR lane in 2019.

Take into consideration that the demands mentioned in Table 5.1 are not an absolute necessity
per se, but they definitely are convenient. For the ultimately chosen roads, Léon Schouten found
several roads which satisfy the prerequisites and these are summarised in Table 5.2 with additional
details. Figure 5.1 shows a map of the topographical locations of the selected roads, and Figures 5.2
to 5.4 display ravelling on these roads; Figures 5.1 to 5.4 are by courtesy of Léon Schouten.

Table 5.2: Final selected roads with details. PRD = Pavement Rehabilitation Date, DLS = Driver Location Sign.

PRD DLS Expected Severity

A44

1HRR 2002-09-09 2.1 – 7.7 High

A50

1HRR 2012-09-17 139.9 – 148.4 Low

1HRL 2002-12-31 205.5 – 202.9 High

A6

1HRR 2005-11-15 280.2 – 288.0 High

1HRR 2005-08-31 288.0 - 295.8 High
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Figure 5.1: A map of the roads owned by the state in which the selected roads from Table 5.2 are highlighted.



16 5. Data

Figure 5.2: Illustration of (ravelling on) the road section starting at hectometer post 7.1 on the carriageway 1HRR of the
A44.
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Figure 5.3: Illustration of ravelling on the road sections between driver location signs 203.3-203.5 on the carriageway
1HRR of the A50.



18 5. Data

Figure 5.4: Illustration of transition in ravelling between two different surfaces and severe ravelling on the road sections
starting respectively at hectometer post 282.7 and 287.3 on the carriageway 1HRR of the A6.

5.2. Detectie Oppervlakte Schade - Laser Crack Measurement System (DOS-
LCMS)

According to Van Aalst et al. [3], DOS-LCMS data is based on 3D road surface generation which are
measured by high-speed measuring of height profiles using laser triangulation. If generated road
surface indicates cavities then the general assumption is that this is due to aggregates being lost.



5.2. Detectie Oppervlakte Schade - Laser Crack Measurement System (DOS-LCMS) 19

5.2.1. Acquisition
The acquisition is briefly explained in Van Aalst et al. [3]. Before the 3D surface is generated, some
pre-processing steps are necessary. This procedure consists of

• detecting roadmarkings,

• ‘flattening’ to compensate for road unevenness and vehicle motion,

• removing marks which do no correspond to ravelling damage,

• determining the wheel paths.

The wheel paths (LWT and RWT) are determined by finding the lateral location of maximum dam-
age. When all these steps have been performed, the ravelling is calculated per wheel path per square
meter by determining the surface area for which a coin can fit in the 3D surface. The application of a
coin finds its use in its size with respect to the size of aggregates in PA. The latter ranges in diameter
from 0 to 16 millimeters.

5.2.2. Format
The DOS-LCMS data was given in ‘.xlsx’ files of which the filename had a pattern: [year of mea-
surement]_[coin radius]_[depth coin]. Furthermore, interpreted as a dataframe, its dimensions are
n × 310, where n is the number of rows which differs per file. The 310 columns are named and
explained in Table 5.3.

Table 5.3: Breakdown of the 310 columns in the DOS-LCMS files. The column names are primarily (based on) Dutch
words, but the explanation clarifies what is meant by these.

Column Explanation

1. Weg Specified road of section

2. Baan Specified carriageway of section

3. Strook Specified lane of section

4. HmStart Starting driver location sign of section

5. HmStop Final driver location sign of section

6. Vehicle Which vehicle was used to measure the data; 20 = Kiwa-KOAC, 30 =
Fugro, 1 = before 2019.

7. Geldigheid Remarks on validity of measurements

8. Errorcode Code for irregularities; 0 = normal, 10 = too many missing data points
usually caused by wet roads

9. lengte_meting Length of measurement

10. Datum_tijd Date and time of measurement

11 - 110. sv_i Aggregate loss in percentages for the i -th meter for i = 1, . . . ,100 mea-
sured across the width of the lane, which means sv_i is not the arith-
metic mean of svL_i and svR_i

111 - 210. svL_i Aggregate loss for LWT in percentages for the i -th meter for i =
1, . . . ,100
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Column Explanation

211 - 310. svR_i Aggregate loss for RWT in percentages for the i -th meter for i =
1, . . . ,100

We would like to address the aggregate loss percentages across the width of the lane. According to
Willem van Aalst, the values for lane-wide aggregate loss available to us are not fully pre-processed
yet and are barely or not even used at all in general. That is why we will focus on the wheel tracks
only. In addition, the threshold found in DHV et al. [12] mentions ravelling in the wheel tracks rather
than lane-wide aggregate loss. A subset of a sample of the ‘2018_6_-2.xlsx’ file is given in Table 5.4.
It would have been impossible to try and fit complete rows due to the large amount of columns.

5.2.3. Complications
It is inevitable for data that is gathered in practice to be completely free of inconsistencies and such
is also the case for the DOS-LCMS data. Data cleaning is required before any useful analysis can
be performed and is therefore an important measure [15]. Rather than elaborating on the possible
procedures for cleaning the data, for now we will plainly enumerate problems that we have encoun-
tered in the DOS-LCMS files. In Chapter 9 we will elaborate on an approach which could help in
resolving the non-monotonicity in particular. Below we mention difficulties and why they are clas-
sified as such that we need to consider and treat carefully.

1. Lengths of measurements throughout the years are not exactly the same.
Ideally, all the lengths would be fixed close to 100m but that is not the case. This means that
assuming the true length of a road section is 100m, a measured length of 96.28m, every aggre-
gate loss percentage corresponds to 0.9628m. However, not only does this cause noise longi-
tudinally — meaning in subsequent road sections — but arguably more regretfully throughout
the years for one specific section. In other words: a 1m section defined in 2012 does not nec-
essarily preserve its location until 2019 or even earlier for that matter. Although some margin
of error is inevitable, the presence of the inconsistency should still be acknowledged.

2. No monotonic sequence of aggregate loss per meter per year
This obstacle is arguably the most intricate and compelling one. Indeed, it can be deduced
from the data that for the i -th meter, there is no guarantee of an increasing percentage of ag-
gregate loss over the years. Assuming that no maintenance nor any rejuvenation mechanism
or product has been applied to the section, it defies the logic of the inevitable increasing — or
non-decreasing to speak in more general terms — behaviour of aggregate loss and the ageing
process. However, the DOS-LCMS framework models the road section in height and the cavi-
ties that the aggregates cause could be filled up by some other unknown substances — which
in turn can reflect in lower aggregate loss than in reality. If we assume that this is not the main
reason for the non-monotonic sequences, possible causes of this obstacle are expected to lie
in the questioned precision of the GPS mechanism of the implementation combined with the
1st obstacle. The association of a road surface and the ‘real’ 100 meter section is not the same
in every year: for example, whereas a measurement in 2015 of hectometre post 1.0 indicates
the true road section starting at hectometre post 1.0, the measurement in 2016 might very
well start 25 meters away from 1.0 (1.025) and then run until 1.125. Another possible explana-
tion can be found in the varying measuring systems and the development of the algorithms
to calculate ravelling.

3. Several observations exists per year for one section.



Table 5.4: Sample data from ‘2018_6_-2.xlsx’. Notice that columns sv(L/R)_2 – sv(L/R)_99 have been left out, as they would not have fit or the entire table would not have been readable on A4 paper.

Weg Baan Strook HmStart HmStop Vehicle Geldigheid Errorcode lengte_meting Datum_tijd sv_1 · · · sv_100 svL_1 · · · svL_100 svR_1 · · · svR_100

R007 1HRR 2RR 37.5 37.6 1 0 99.94 27-Feb-2018 12:57:00 1.02 3.91 1.40 5.23 1.26 4.21

R007 1HRR 2RR 37.6 37.7 1 0 100.95 27-Feb-2018 12:57:00 4.28 4.11 5.39 3.55 4.64 4.98

R007 1HRR 2RR 37.7 37.8 1 0 102.98 27-Feb-2018 12:57:00 4.94 5.47 4.49 4.23 6.64 7.22

R007 1HRR 2RR 37.8 37.9 1 0 96.28 27-Feb-2018 12:57:00 4.19 5.03 2.53 4.08 6.14 7.09

R007 1HRR 2RR 37.9 38 1 0 101.56 27-Feb-2018 12:57:00 4.89 4.11 3.79 4.09 6.94 4.51

R007 1HRR 2RR 38 38.1 1 0 100.44 27-Feb-2018 12:57:00 3.81 3.07 3.65 4.34 4.76 2.83

R007 1HRR 2RR 38.1 38.2 1 0 101.20 27-Feb-2018 12:57:00 2.64 3.01 2.90 2.35 3.14 4.98

R007 1HRR 2RR 38.2 38.3 1 0 100.70 27-Feb-2018 12:57:00 2.85 4.36 3.07 5.92 3.70 3.47

R007 1HRR 2RR 38.3 38.4 1 0 99.43 27-Feb-2018 12:57:00 4.86 3.11 6.57 3.52 4.23 3.46

R007 1HRR 2RR 38.4 38.5 1 0 97.40 27-Feb-2018 12:57:00 2.94 5.28 3.60 6.36 2.86 4.99

R007 1HRR 2RR 38.5 38.6 1 0 102.98 27-Feb-2018 12:57:00 5.38 3.54 7.22 4.49 4.44 3.36

R007 1HRR 2RR 38.6 38.7 1 0 108.56 27-Feb-2018 12:57:00 3.61 3.81 4.03 5.27 3.58 3.27

R007 1HRR 2RR 38.7 38.8 1 0 92.33 27-Feb-2018 12:57:00 3.76 3.06 5.80 3.12 2.81 3.46

R007 1HRR 2RR 38.8 38.9 1 0 99.43 27-Feb-2018 12:57:00 3.08 4 3.19 4.20 3.72 4.44

R007 1HRR 2RR 38.9 39 1 0 98.92 27-Feb-2018 12:57:00 3.66 2.87 3.60 2.34 4.22 3.73

R007 1HRR 2RR 39 39.1 1 0 101.46 27-Feb-2018 12:57:00 2.70 2.71 2.94 3.01 3.20 2.99

R007 1HRR 2RR 39.1 39.2 1 0 100.44 27-Feb-2018 12:57:00 3.03 2.36 2.98 2.97 3.69 2.45

R007 1HRR 2RR 39.2 39.3 1 0 98.92 27-Feb-2018 12:57:00 2.34 2.90 2.93 4.32 2.45 2.85

R007 1HRR 2RR 39.3 39.4 1 0 99.94 27-Feb-2018 12:57:00 3.09 2.56 4.33 2.91 2.91 2.96

R007 1HRR 2RR 39.4 39.5 1 0 100.95 27-Feb-2018 12:57:00 2.51 3.33 2.75 3.56 2.99 3.92
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It is possible for one road section to have more than one measuring date. For example, for the
A7 - 1HRR - 37.5 - 1RR in 2018 there is DOS-LCMS data from February 8th, 13th and 26th. TNO
has clarified that the latest measurements are generally the correct ones. Hence this obstacle
is not as laborious to deal with, but it should still be dealt with.

5.3. KernGIS
Geographical information system (GIS) is a framework which attempts to capture spatial and geo-
graphical data. KernGIS is the database that Rijkswaterstaat uses in which many administrative in-
formation is saved and frequently updated. For our purpose it is a useful tool to find the positions of
engineering structures. The parts of the road on which these structures lie should be excluded from
analysis, as asphalt surfaces on engineering structures should be treated differently. The reason for
that is the build-up of wear being different on engineering structures, which could eventually result
in less representative figures for ravelling on said road segments. As an example, we will provide an
overview of parts from the A44 which have to be excluded for analysis in Table 5.5.

Table 5.5: Parts of the A44 which have to be excluded from analysis.

DLS Engineering Structure

2.3 - 2.4 viaduct

5.9 - 6.1 bridge

7.5 - 7.7 bridge

5.4. Strategic Planning Road Surfaces
Strategic Planning Road Surfaces (SPRS) [16] contains administrative information on when which
parts of the road need maintenance and the financial figures required for execution. The SPRS aims
to adhere to quality conditions that serve as safety measures for road users. SPRSs are established
partly by expert advisors from Rijkswaterstaat who aim for efficiency across all factors to be consid-
ered, such as costs and minimal traffic disruption. The process of establishing an SPRS is described
in [16] and is not within our scope of research, apart from the fact that the SPRS recommended
maintenance years are dependent on DOS-LCMS measurements as of now. The model from TNO
maps the measurements to proposed remaining lifetimes which are considered when the SPRS is
formed. Frankly we do not need the proposed remaining lifetimes from the SPRS for our research,
but it would be ignorant to not be aware that the current proposed remaining lifetimes are already
(partially) based on DOS-LCMS data. It should also be noted that ravelling is not the only damage
mechanism which prompts maintenance, so not all lifetimes are based on the state of ravelling.
However, in the SPRS the proposed remaining lifetimes are given for each damage mechanism.
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Methodology

In the remaining Chapters, we will be elaborating on how we establish a method to predict the mo-
ment when a road section needs to be resurfaced according to officially documented RWS standards
[6]. Recall from Chapter 3 that if more than 25% of the road section measures aggregate loss over
10%, the corresponding road section needs maintenance. In mathematical terms it is equivalent to
the 75th percentile of our data being at least 10%. For the predictions, two fundamental steps need
to be considered:

1. Finding the 75th percentile based on the data.

2. Fit the progression of 75th percentiles to a monotonic increasing convex curve.

The first step can be handled in two approaches: the parametric approach and the non-parametric
approach. The parametric approach in Chapter 7 is based on the assumption that the data is from
some parametric distribution and calculates the 75th percentiles based on the functional properties
of the distribution. The non-parametric approach in Chapter 8 does not make any parametric as-
sumptions of distributions. Both approaches view the data at a 100 meter section level and therefore
do not explicitly look at the progression on 1 meter level. Additionally, both approaches are approx-
imations of the 75th percentile. Naturally there is no guarantee for finding the true 75th percentile.

The second step limits itself to a monotonic curve which abides the at first logical assumption of
aggregate loss being monotonically increasing. Furthermore we set a convexity constraint because
visual inspectors have seen that the severity of ravelling gradually increases. Using road sections
which have been ravelled intensively enough, we can extrapolate to give an indication of when
maintenance is required, and compare extrapolations based on the total (most recent) n consec-
utive percentiles and with n − i percentiles for i < n and i not too large. For example, using the
most recent n = 7 percentiles could result into a remaining lifetime of 100 days, while using n−i = 6
percentiles for i = 1 could result into a remaining lifetime of 300 days. That means the prediction
needed to be corrected for by 200 days. Let us refer to this approach as the n− i approach hereafter.

Prototyping
Accompanying Chapters 7 and 8 is the data of road section A44 - 1HRR - 7.1 - 1RR which was men-
tioned as example of BPS notation in Chapter 4. This is not without reason, as this specific road
section satisfies the conditions of being a ‘proper’ prototype to explain the mentioned concepts.
The bare minimum conditions would be:

• The intensity of ravelling surpasses or is close to the 10% threshold for the empirical 75th

percentile in some year, which allows for the n − i approach for at least i = 1.

23
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• Corresponding with the preceding condition, the data admits at least n = 5 values of consec-
utive q0.75 estimates for curve fitting.

• The data contains Obstacle 2 of § 5.2.3, such that a workaround can be presented.

A condition such as there being no maintenance executed is not a necessity but would be a con-
venience by having more quantiles to work with, so it is not stated as a bare minimum condition.
However, it was found to be problematic at times to find a monotonically increasing convex curve to
less than 4 points. Further research based on road sections which have been resurfaced a relatively
long time ago (around 2012-2015) can therefore be troublesome. An important note about the road
section is that we have the required measurements from years 2012 – 2019 except for 2013. DOS-
LCMS measurements were not gathered in that year for this road section, but this is not an issue for
our research and will not be for future research based on the presented work.

With respect to the A44 there were not many road sections in general which we would classify
as a proper prototype. In particular the A44 - 1HRR - 7.1 - 1RR is one of the only 7 road sections
that have been unaltered in asphalt surface since the pavement rehabilitation in 2002. All other
sections have had some sort of maintenance which altered the original surface in 2002, rendering
the DOS-LCMS measurements less effective in setting up a lifetime prediction framework. Road
sections which have undergone maintenance after the DOS-LCMS measurement date in 2019 could
still suffice. However, any road section of which the DOS-LCMS measurements indicate that q0.75 <
10 could in theory suffice for a lifetime prediction. In that regard even road sections which have
recently been resurfaced could be used given that the DOS-LCMS data is available. Whether such a
prediction on newly resurfaced parts of the road is sensible to do remains questionable.

Quantiles

The aim is to make an accurate prediction of when the 75th percentile reaches the threshold of 10.
Recall that a percentile is related to the more general quantile. In particular, for a continuous distri-
bution, a quantile q is a real number that divides the area under the PDF in two parts of set amounts.
More generally speaking, let p ∈ (0,1) and denote qp as the p-th quantile. For a continuous random
variable X with CDF FX , the p-th quantile is defined to be a value which solves Equation (6.1).

FX (qp ) = p (6.1)

For our analysis we will be dealing with continuous random variables and as a consequence, the
continuity assumption required for the existence of a solution to Equation (6.1) is satisfied. Equa-
tion (6.1) allows us to deduce that finding the 75th percentile is equivalent to solving Equation (6.2)

FX (q0.75) = 0.75 (6.2)

In particular for location-scale families, we can denote the p-th quantile qp as

qp =µ+Φ−1(p)σ (6.3)

where µ and σ respectively are a location and scale parameter1, and Φ−1(p) denotes the inverse
CDF of the standardised form (µ = 0, σ = 1) of the location-scale distribution evaluated at p, or in
other words, the 100p-th percentile of the standardised version of the location-scale distribution. A
well-known case is the normal family of distributions. It is common to see Φ denoting the CDF of
the standard normal. By concept of Equation (6.3) it is interesting to pursue an approach based on
location-scale families amongst others.

1µ,σ are not necessarily the mean and standard deviation.
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Reproduciblity
All analyses have been performed using R on version 3.6.1, with packages on their respective ver-
sions on 19-11-2019 for the sake of reproducibility. The majority of — if not all — the Figures and
Tables in the remaining Chapters can be generated with code provided on this Github page. If the
reader would like to reproduce the results, we highly recommend to also install RStudio, an inte-
grated development environment for R, and to contact Rijkswaterstaat for the terms under which
the data can be made available.

https://github.com/liyongg/asphalt




7
Modelling: Parametric Approach

Now that we have given an overview of our available data and explained the methodology, we are
able to formally introduce mathematical notation and concepts. For this Chapter we will explain
concepts with respect to parametric statistics. Broadly speaking, the parametric approach for pre-
dicting lifetimes is to find parametric distributions which fit our data. Although the idea of fitting
distributions might sound elementary, the possible variations and modifications for this process are
plentiful.

7.1. Notation and Background
Let W be a road and S j for j = 1,2, . . . , NW for some NW ∈N its 100m road sections. For every S j , we
have data from 2012 – 20191 for the aggregate loss values per position, per track. That is, for every
S j for every year, we have 3 sets of observations

x = {x1, . . . , x100}

xL = {xL
1 , . . . , xL

100}

xR = {xR
1 , . . . , xR

100}

where xi , xL
i , xR

i for i = 1, . . . ,100 respectively denote the aggregate loss percentage lane-wide, on the
LWT, and on the RWT for the i -th meter. However, recall that we will focus only on the latter two.
For the remaining 2 sets of 100 observations per year that can be considered, we are interested in
their respective cumulative distribution functions (CDF) FL(x),FR (x) and corresponding probability
density functions (PDF)2 fL(x), fR (x). In particular, in this Chapter we assume that any F is the CDF
corresponding to Pθ, where Pθ is a distribution and pθ the corresponding PDF which belongs to a
parametric family

P = {
pθ | θ ∈Θ

}
, (7.1)

where θ ∈Θ is a parameter andΘ⊆Rk is a parameter space.

Example 7.1 (Parametric Families). Frequently used parametric families can be divided into several
groups based on different characteristics. The amount of parameters that fix the distribution and the
distribution being continuous or discrete are the obvious ones. We list cases of parametric families of
continuous distributions.

1Available data can slightly vary per road.
2We do not consider probability mass functions (PMF) as our data is continuous.
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The family of exponential distributions3 is parametrised by θ =λ> 0 with

P =
{

f (x |λ) =λe−λx | x ≥ 0, λ> 0
}

(7.2)

The family of normal distributions is parametrised by θ = (µ,σ) where µ ∈ R and σ > 0 are the
respective location and scale parameters with

P =
{

f (x |µ,σ) = 1p
2πσ2

exp

(
− (x −µ)2

2σ2

)
| x,µ ∈R, σ> 0

}
. (7.3)

In particular, the normal family is also a location-scale family.
The family of logistic distributions is parametrised by θ = (µ, s) where µ ∈ R and s > 0 are the

respective location and scale parameter with

P =
{

f (x |µ, s) = exp(−(x −µ)/s)

s(1+exp(−(x −µ)/s))2 | x,µ ∈R, s > 0

}
. (7.4)

Similar to the normal family, the logistic family is a location-scale family.
The generalised gamma distribution is parametrised by θ = (a,d , p) where a,d , p > 0 are its pa-

rameters and

P =
{

f (x | a,d , p) = p/ad

Γ(d/p)
xd−1e−(x/a)p | x, a,d , p > 0

}
(7.5)

where Γ denotes the gamma function.

There are several reasons to consider a so-called parametric model, but for our case the conve-
nience and interpretation are what stand out the most. Although convenience is a subjective term,
the accessibility of established methods such as goodness-of-fit provide proper means of justifying
steps in analysis. For example, the Anderson-Darling test [17] and Shapiro-Wilk test [18] are known
to be among the most powerful tests for normality [19] and could therefore be of use in justifying
the assumption of normality.

Correlation and Dependence
An important note about our DOS-LCMS data is the possibility of presence of sample autocorrela-
tion. Whereas regular correlation is measured between two different variables, autocorrelation is a
measure of dependency between one variable and a τ-lagged version of itself. For an ordered set
of observations Xk with k ≥ 1, the τ-lagged version of Xk is given by Xk−τ for k > τ. The potential
problem of a high degree of serial correlation clashes with the assumption of independent observa-
tions, which is frequently used in statistical theory. That is in our context, if we have information of
aggregate loss in the second meter x2, a strongly autocorrelated sample would imply that aggregate
loss in the third meter x3 (as an example) is highly dependent on x2 and vice versa. Notice that τ in
our context indicates the jump in 1m sections. Sample autocorrelation function (ACF) plots could
help us in detecting if there is any dependency for lag τ, where τ denotes the order of the considered
difference. For any set of observations, the autocorrelation at lag τ = 0 is 1, since logically it com-
pares two equal sets. For an i.i.d. (independent and identically distributed) set of observations and
τ> 0, however, all autocorrelations should not differ significantly from zero for the i.i.d assumption
to hold.

For the remainder, we assume stationarity of the data, such that sample autocorrelations are
only influenced by the lag. Let us illustrate ACF plots for an i.i.d. sample and the W = A44,S =
1HRR1RR

7.1 , which can both be assumed stationary. For the i.i.d. sample we consider a random sample
of size n = 100 from a standard uniform distribution U (0,1). Its sample autocorrelation function is
given in Figure 7.1. It indeed shows that at lag τ= 0 the sample is correlated with itself and for larger
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Sample autocorrelation for an i. i. d. sample (n = 100) from U (0, 1)

Figure 7.1: Sample autocorrelation function plot for a random sample (n = 100) from U (0,1) where the red lines indicate
the 95% confidence interval for ρ.

values of τ, it is generally well within the 95% confidence interval of ρ. If we take our example road
section, we end up with Figure 7.2. Some key points from Figure 7.2 are the following:

• there indeed seems to be some form of serial dependence,

• the LWT seems to be most consistent with a lag of around τ= 3,

Let us elaborate on these findings. The first point can be argued by observing that the general pat-
tern we see in Figure 7.2 shows that the autocorrelation at lag τ ∈ {1,2,3} are not within the 95%
confidence interval (red dashed lines) for ρ. The second point is established by noticing that for
the LWT, τ= 3 is within or close to the confidence interval of being statistically significantly near 0;
for the other cases this is not as apparent and consistent. What this means for the continuation of
the parametric approach are several things. First of all, due to serial dependency we should be very
careful with relying on the drawn conclusions and results. However, we have only considered one
road section. If for other road sections — which we unfortunately cannot all elaborate on in great
detail — the autocorrelation is less present, then the results from the parametric approach can be
more relied on. For the remainder of the Chapter we will continue using the i.i.d. assumption, while
being mindful of the serial dependence.

7.2. Finding a suitable distribution
The essence of finding a suitable distribution is the following: it provides a method of approximating
the true 75th percentile. In turn, as a consequence of using parametric models, it allows for an exact
and closed-form expression of the 75th percentile which is our statistic of interest, but the exact and
closed-form expression do not necessarily have to be utilised.

3The family of exponential distributions are part of the more general class of exponential families, which in terminology
is not to be confused with parametric families in general.
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Figure 7.2: Plots of autocorrelation functions for W = A44,S = 1HRR1RR
7.1 from 2012 – 2019 except for 2013 faceted on track

and year. τ> 30 has been checked but showed no significant result, hence those are not included and cause no clutter.
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Figure 7.3: Histograms for the progression of aggregate loss on W = A44,S = 1HRR1RR
7.1 from 2012 – 2019 except for 2013.

7.2.1. Histograms
To find suitable distributions, a first elementary attempt would be to observe the respective his-
tograms. Figure 7.3 shows the plotted histograms for the W = A44 and S = 1HRR1RR

7.1 , ordered by
year and position.

Illustrations such as Figure 7.3 allow for a brief overview of the road section and the progression
of aggregate loss throughout the years per position. The key points for this specific section are the
following:

• there is a clear difference in magnitude between the LWT and RWT,

• in general the histograms seem to have a certain degree of symmetry but also show some
right-skewness,

• there is no clear monotonic progression of aggregate loss as presumed in § 5.2.3,

• although the non-decreasing behaviour is not apparent, over the course of 7 years (2012 –
2019) the aggregate loss has increased.

The third key point requires some further explanation; if the aggregate loss values per meter would
be monotonic throughout the years, the histograms as depicted in Figure 7.3 would need to shift
towards the right, or at the very least stay in the exact same position in subsequent years. In 2015
– 2016 the shift towards the left is arguably the most clear for both wheel tracks, which means it
invalidates the implied shift towards the right if the sequences were monotonic. Another way to
look at it is to only observe the minimum and/or maximum bin values. By definition, the minimum
and/or maximum bin value needs to increase in subsequent years for monotonicity per meter.
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Although it is quite effortless to interpret a plot such as Figure 7.3, there are pivotal remarks
about the current representation and the approach of histograms to find suitable distributions. First
of all, the perspective can change considerably when changing bin widths. To accommodate, the bin
widths used in Figure 7.3 are based on the Freedman-Diaconis rule [20]. It is based on the following
formula for the bin width:

bin width = 2n−1/3 · IQR(x) (7.6)

where n is the sample size and IQR(x) the interquartile range of sample x = {x1, . . . , xn}. Equa-
tion (7.6) implies that the bin width4 increases if the sample size n decreases and/or the IQR(x)
increases. As n = 100 for all cases, it means a sample xH with higher IQR relates to a larger bin width
compared to a sample xL with lower IQR. For example, the RWT has clear distinct bin widths for the
years 2017 and 2018. Nevertheless, it must be said that there is not necessarily a rule for bin widths
which would or could completely dispose of every skewed view of the data, as is also the case here.

Secondly, the collection of histograms as of now do not properly show off each individual his-
togram. This is not necessarily a problem and was to be expected, as the idea of the format is to
provide a quick glance at the data for one road section. The main cause of this problem is due to
the histograms being plot for a fixed horizontal domain, namely on [0,c] for some real c > 15, linked
with the varying bin widths from the first remark. The link can be explained: suppose that we would
like to know if the data is normally distributed purely by observing the histograms; depending on
the relative size of the histogram, some histograms might ‘tend more towards’ a normal distribu-
tion. To clarify: the histogram of 2018 from the RWT is relatively great in plot size and that helps
to classify it as a reasonable histogram of a sample from a normal distribution at first glance. The
histogram of 2012 from the LWT, however, is relatively much smaller in size, but could very well be
a sample from some normal distribution as well. Figure 7.3 does not portray which sample of these
two would be a better fit to some respective normal distribution.

7.2.2. Data Transformation
Although histograms directly plot from the non-transformed data are clearly lacking in ultimately
deciding which parametric family suits best, it does allow us to find simple graphically interpretable
characteristics such as the presence or lack of symmetry. As mentioned before, the varying bin
widths and the canvas on which all of the histograms were plot are a problem in deciding a suitable
distribution based on the entirety of the histograms. One way to solve this issue is to transform
the data; doing so will result in more comparable histograms. There are numerous methods to
transform data with, so it would be impossible to mention them all. Regardless, we will try to give
an idea of available techniques. All of these are based on a (continuous) function transform t (·) on
a sample x = {x1, . . . , xn} which can be written with slight abuse of notation as

t (x) = {t (x1), ..., t (xn)}.

Standardisation
Let us start with a well-known method which is likely familiar to anyone who is acquainted with
some introductory course about Probability and Statistics: standardisation. It is a method which
combines a location shift with a scaling adjustment. For a sample x = {x1, . . . , xn}, the standardised
value zi of an observation xi is given by

zi = t (xi ) := xi −x

sd(x)
, (7.7)

where x and sd(x) are respectively the sample mean and sample standard deviation. We will demon-
strate a possible application of standardisation.

4This should not be confused with the amount of bins, which is dependent on the spread of the data.
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Example 7.2 (Exam Scores). Consider a French French teacher working in a Dutch secondary school
which attempts to implement a French assessment style. The conventional Dutch scoring norm ranges
from 1 to 10, but the newly styled exam ranges from 1 to 20 as is usual in France. Two of the teacher’s
students, Jeremy and Viola, are in different classes: Jeremy (class A) takes a regular-assessed exam,
while Viola (class B) takes the French-styled exam. After taking the exams, the teacher would like to
know which of Jeremy (score 9.0) and Viola (score 18.0) performed better relative to their classmates.
The teacher acquired the sufficient data to answer the question and denotes the following

x A = 6.1, sd(xA) = 1.2 =⇒ z J = 9.0−6.1

1.2
≈ 2.42

xB = 14.6, sd(xB ) = 1.4 =⇒ zV = 18.0−14.6

1.4
≈ 2.27

The teacher concludes that relative to their respective classmates, Viola performed better than Jeremy.

Example 7.2 does not tell us much more without further information on the data. We could
apply it to our data to find out if the i -th meter in year t1 has suffered relatively more aggregate
loss than in year t2 compared to the other meters, but this is not exactly what we are looking for
now — although it could be interesting for future research. Instead, we would like to find out more
about the distributions when we standardise the data. However, rather than directly applying the
introduced standardisation, we will make use of its robust counterpart:

zi = t (xi ) := xi −median(x)

MAD(x)
(7.8)

where MAD(x) is the median absolute deviation of sample x defined by

MAD(x) = mediani (|xi −median(x)|). (7.9)

Notice how this transformation is similar to the classical standardisation. The advantage of such
robust estimators is that they work better than the classical ones for data which contain outliers. If
we apply Equation (7.8) to the W = A44,S = 1HRR1RR

7.1 , we obtain Figure 7.4.
Figure 7.4 makes it much more workable to detect a potentially suitable family of distributions

which fit our data. One major difference between Figures 7.3 and 7.4 apart from the scale, is the bin
widths. In Equation (7.6), we know that sample size n is constant. Yet now as a result of standardisa-
tion, the IQR of every sample will generally be relatively close to each other. Any difference between
these would likely be unnoticeable at first glance due to its magnitude.

Recall that we wish to find families of distributions for each of the LWT and RWT purely based
on the available data. Whether this is justifiable on physical basis can be argued, but based on the
data, the family of distributions between these positions do not have to coincide. For the sake of
explaining the concept, let us start with viewing the data for the LWT. From Figure 7.4 it appears
to be that most of the histograms have a degree of positive skewness, and this is actually not even
exclusive to the LWT. Now, there are multiple ways to proceed in our pursuit of which we will name
two:

1. Perform a transformation prior to standardisation

2. Fit asymmetric distributions to the standardised data

For the remainder we will only work with the first approach. Furthermore, hereafter we refer to
‘standardisation’ as standardisation using the median and the median absolute deviation.
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Figure 7.4: Histograms for the standardised values of the progression of aggregate loss on W = A44,S = 1HRR1RR
7.1 from

2012 – 2019 except for 2013.
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Figure 7.5: Histograms of transforms prior to standardisation of of the progression of aggregate loss on the LWT of W =
A44,S = 1HRR1RR

7.1 from 2012 – 2019 except for 2013.

Transformation Prior to Standardisation
One of the mentioned key points of Figure 7.3 were that the histograms seemed to have a certain
degree of symmetry. Conversely, this was merely based on the first impression. With the new repre-
sentation in Figure 7.4, multiple histograms tend to look more right-skewed than initially observed.
This is not a problem per se, but if the assumption of normality is justifiable, the vast knowledge of
normal distributions could be of great help. In situations where we try to transform right-skewed
non-negative data to symmetrical data, useful mappings are x 7→p

x, x 7→ 3
p

x, and x 7→ log(x).
Two of the mentioned function mappings do have requirements which the data should meet,

which can be deduced from the respective domains. Specifically, the square root-transform requires
data to be positive; the log-transform requires strictly positive values, while the cube root-transform
can handle any values from the real line. Mapping-wise x 7→ 3

p
x is valid for negative-values, but it is

often not used for negative data. Figure 7.5 shows the new histograms of data which is transformed
(cube root, log-transform, and square root) followed by a standardisation with the median.

From Figure 7.5 all three transformations do not seem to differ too much. There is one interest-
ing thing to note which is exclusive to the log-transform5 for the data of this section. Although data
transformation seemed to be almost indistinguishable from Figure 7.5, a key difference between the
represented transforms are its relation to distributions. Indeed, if we can assume normality after ap-
plying the log-transform, then we found out that our initial data can in fact considered to be from a
log-normal distribution. If a random variable X ∼ Log-normal(µ,σ2), then ln(X ) ∼ N (µ,σ2). That
is to say, if the logarithm of a random variable X is normally distributed with parameters µ,σ2, then

5Geurt Jongbloed rightfully points out that the square of a random variable X ∼N (µ,σ2) exists in the form of the rescaled
non-central χ2 distribution, but it is less easy to work with.
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X is log-normally distributed with parameters µ andσ2. This notation and definition imply that the
parameters of the normal distribution are decisive in denoting the distribution.

7.2.3. Goodness of Fit
This section is dedicated to finding a suitable distribution, yet we have not defined what we mean
by suitable. In broad terms, we could ask ourselves if our model assumptions pass some criteria and
if they do, we could call the model suitable. It is quite common and good practice for statisticians
to formulate suitability in this context very carefully. Rather than saying: ‘The data follows X ∼ Pθ.’,
the formulation should and commonly is more similar to ‘There is not enough evidence to say that
X ∼ Pθ does not hold.’ — which is much more conservative in tone. Indeed, even if there is not
enough evidence to say X ∼ Pθ is not the case, it does not necessarily mean that X ∼ Pθ is in fact
true. We adapt to the conservative mindset and define a distribution to be suitable if we can not find
enough evidence to think otherwise.

Now it remains to see how we can find such evidence. Continuing with the previous findings,
we would like to know if our data of the LWT is log-normally distributed for some µ ∈ R, σ2 > 0.
Model diagnostics help in determining if the statement could be true. In actuality we have already
illustrated one method — observing the histograms — to see what kind of distribution could be
suitable. Exactly this approach has led us to the log-normal distribution as an initial guess. A final
unexplored option for the histograms would be to plot several fitted distributions along the bins,
but this could still provide misleading visuals. Instead we will now focus on the more representative
diagnostics, such as plotting the empirical cumulative distribution function (ECDF) and probability
plots (Q-Q plot).

ECDF
The ECDF will actually prove to be of even greater importance in the discussion of the non-parametric
approach in Chapter 8, but for diagnostics it is also relevant. For a random sample X1, . . . , Xn from
some unknown distribution F , the ECDF F̂n is a piecewise function defined as

F̂n(x) = 1

n

n∑
i=1

1{Xi ≤ x}, (7.10)

where 1 denotes the indicator function defined as

1{Xi ≤ x} =
{

1 Xi ≤ x,

0 else.
(7.11)

In plain English, the ECDF estimates the probability of X being less than or equal to x by counting
the fraction of observations Xi being less than or equal to x. Recall that a CDF evaluated at x is
equivalent to the probability of the associated random variable X being less than or equal to x. For
a small sample size n the ECDF will have few yet relatively large jump discontinuities, but as n →∞
the number of jumps increase but their individual heights become smaller, ultimately resulting in
a seemingly smoother curve compared to the ECDF corresponding to small n. The last remark
is effectively a property of the ECDF as estimator of the true CDF. Indeed, the Glivenko-Cantelli
theorem [21] tells us that F̂n converges to F uniformly, that is

sup
x∈R

|F̂n(x)−F (x)| a.s.−→ 0. (7.12)

This means that with probability 1 (almost surely), the maximum of the differences of the ECDF and
true CDF evaluated at all values x ∈ R goes to 0 as n goes to infinity. In terms of estimators, we call
the ECDF F̂n a consistent estimator for F .
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Figure 7.6: CDF of N (0,1) as a reference curve and ECDFs of standardised log-transformed data of aggregate loss on the
LWT of W = A44,S = 1HRR1RR

7.1 from 2012 – 2019 except for 2013.

As to the relevance of the ECDF in our diagnostics: if we plot the ECDF against the CDF which
we would like to test for and they generally do not overlap well, there is evidence to believe that the
sample is not from the chosen reference CDF. Let us view the ECDF plots for W = A44,S = 1HRR1RR

7.1
in Figure 7.6.

Figure 7.6 shows ECDFs per year and a reference CDF corresponding to the standard normal.
Understandably the plot might seem a bit clustered, but that really is an indication of the reference
distribution — the standard normal in this case — being a decent representation at first sight.

Now, Figure 7.6 is not persuasive enough to say that the log-transformed data is absolutely not
normal. However, a critical look at the plots do reveal that in the right tail there might be some
mismatch as well as in the left tail; the right tail is more important for us though. Figure 7.6 treats
each year separately, hence if we truly want to categorise the entirety of the LWT as coming from
one distribution — standardised that is — we should also examine what the effect of aggregating all
values from all years results into. That is exactly what Figure 7.7 presents. From Figure 7.7 it does
seem more apparent that the initial finding was true — the right tail seems to somewhat deviate
from a standard normal and even the left tail shows signs of deviation. We can use other diagnostics
to see if that conclusion might be correct.

Probability Plots
The idea of Q-Q plots is comparing the quantiles of two different distributions or samples. If these
sets of quantiles approximate a linear relation as in y = ax +b for some a,b ∈ R and where y and x
represent the quantiles, then we could say that the respective samples could very well be from the
location-scale family generated by the distribution whose quantiles are used on the horizontal axis.
In particular for a = 1 and b = 0 it would indicate that it is very likely that the samples stem from the
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Figure 7.8: Q-Q plot of a N (0,1) distribution against the standardised log-transformed data of aggregate loss on the LWT
of W = A44,S = 1HRR1RR

7.1 from 2012 – 2019 except for 2013.

same distribution with equal fixed parameters. If the relation from y and x is far from linear, then it
is feasible to assume that the samples do not come from the same family of distributions. Figure 7.8
shows the Q-Q plots per year.

The Q-Q plots do confirm that our data deviates to some extent in the right tail and to a lesser
degree in the left tail from the proposed normal distribution: for every plot the plotted points in
the tails of the domain are not aligned with the line as properly as the other points. In particular,
Figure 7.8 generally shows that the right and left tails are heavier than the normal distribution. A
distribution which is known to have this property and is comparable to the normal is the logistic
distribution [22 and 23]. In order to compare the standard normal with a logistic distribution we
should be cautious. The standard normal has parameters mean µN = 0 and variance σ2 = 1, but
the standard logistic has parameters µL = 0 and scale s = 1 [22 and 23]. The location parameters
coincide, but while σ2 is the variance for the standard normal, the variance for a logistic distribu-
tion is given by s2π2/3. Hence for appropriate comparison we need to compensate for the inflated
variance of the logistic. As a result we should compare the standard normal to a logistic distribu-
tion with µL = 0, s =

p
3/π2: see Figure 7.9 for the ECDF and Q-Q plots for the specified logistic

distribution.

Figure 7.9 is plot on a smaller scale so the visuals can be slightly misleading, but it indeed looks
to fit the right tail marginally better for the individual years compared to the standard normal. For
the sake of explaining the concepts of goodness-of-fit hereafter we will continue to work with the
normal, but for the results via the parametric approach in Chapter 10 we will consider the logistic
distribution too.

Hypothesis Testing

We will briefly clarify what kind of hypothesis tests we will perform. In our situation, we would like
to know whether our data comes from some parametric distribution. The usual one-sample test
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that we will see and use can be formulated with only the null hypothesis H0

H0 : The data follows X ∼ Fθ,

where Fθ is some parametric distribution. The null hypothesis is rejected if the p-value that corre-
sponds to the test statistic is lower than some significance level α ∈ (0,1). In most scientific studies,
α = 0.05 is used to perform the testing and we will adapt to this convention. The test statistic on
the other hand is inherently dependent on which test is performed. A well-known non-parametric
test 6 is the Kolmogorov-Smirnov [24] test (KS-test). It makes use of the previously defined empirical
cumulative distribution function F̂n in the statistic

Dn = sup
x

|F̂n(x)−F (x)|. (7.13)

The idea of test statistic Dn is quite simple: it considers the maximum of differences of the true
distribution and the empirical distribution evaluated at every point; if this is small, then one could
say that the true CDF and the ECDF coincide. However, Razali and Wah [19] have shown that the
KS-test is quite weak in power, that is, it requires a relatively large sample size to reject the null
hypothesis properly. This means that the associated p-values from KS-tests would generally be very
high for a small sample size, meaning that we do not reject H0 even though the sample that was
used was clearly drawn from a distribution different from the test distribution. It is therefore to
no surprise that statistically more powerful tests such as the Shapiro-Wilk (SW-test) and Anderson-
Darling test (AD-test) should be chosen over the KS-test.

Indeed, if testing for normality, Razali and Wah [19] have shown that the SW-test and AD-test
perform excellently and ‘much better’ than the KS-test. Specifically, Razali and Wah [19] used non-
normal distributions which for relative small sizes are relatively difficult to distinguish from some
normal distribution. For example, in case of testing if samples from Beta(2,2)7 are normal at a sig-
nificance level of α = 0.05 and sample size n = 100, the SW-test and AD-test are able to correctly
reject H0 for approximately 45% and 35% of the cases respectively, where the KS-test only rejects H0

in 10%. If we increase the sample size to n = 200, the values are respectively around 90%, 65%, and
20%. In particular for normality testing, the KS-tests are simply too weak for justifying the assump-
tion of normality if there is no information on the true population.

If we perform the SW, AD, and KS-test for normality, we can combine the results into Table 7.1.

6The use of a non-parametric test would not make our approach any ‘less’ parametric.
7The Beta distribution with parameters θ = (a,b) for a = b ≥ 2 shows similarity in shape with N (0.5,0.25).
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Table 7.1: p-values given by SW, AD, and KS-tests for normality for the standardised log-transform of LWT of W = A44,S =
1HRR1RR

7.1 . A notion on the critical values used: the assumption of independence is made, so these resulting p-values are
not completely representative as there is some dependence.

Sample SW AD KS

2012 0.156 0.424 0.727

2014 0.271 0.276 0.998

2015 0.089 0.160 0.964

2016 0.174 0.120 0.843

2017 0.205 0.058 0.623

2018 0.144 0.130 0.873

2019 0.101 0.224 0.792

Combined 0.000 0.000 0.220

Table 7.1 admits logical yet intriguing results. There are a few things to note:

1. The KS-test admits higher p-values than the SW and AD-tests.

2. At a significance level α = 0.05, assumption of normality can justifiable be assumed to a cer-
tain degree for single-year samples.

3. The null hypothesis is rejected for the union of all single-year samples, except for the KS-test.

Let us elaborate on each item. Firstly, it was mentioned before that the KS-test generally results into
higher p-values due to its weak statistical power. The SW and AD-tests on the other hand produce
much lower p-values whilst p > 0.05 which indicate that accepting the null hypothesis should still
be considered with care. Secondly, for low sample sizes such as n = 100, it is even challenging for
powerful tests to properly reject the null hypothesis. Recall that we opted for a logistic distribution
after observing Figure 7.8. Undoubtedly we have no idea if our reconsideration of the data not
being normal after the log-transform is completely true after all, but these results would indicate
that normality is not a far-fetched assumption. Thirdly, the rejected null hypothesis for the union
of samples could somewhat be expected. After observing Figure 7.7 we saw that the right tail of the
union deviates slightly and given the new sample size n = 7 ·100, the SW and AD-tests are powerful
enough to properly reject the null — coinciding with our remark. The exception is for the KS-test,
but we have stated its weakness numerous times already and this point confirms it to some degree.
However, Geurt Jongbloed rightfully points out that a significant deviation for larger sample sizes is
not necessarily a relevant deviation.

7.3. Methods to Compute the Quantiles
For the remainder of the parametric approach with respect to W = A44,S = 1HRR1RR

7.1 , we will as-
sume that the single-year samples come from the log-normal family.

7.3.1. Fitting the Distribution
There are several parametric methods to fit a parametric distribution to data. The two arguably
most well-known ones are Maximum Likelihood Estimation (MLE) and Method of Moments.
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Maximum Likelihood Estimation
When observing the joint density f (x | θ) for a sample x, the likelihood function is defined as

L(θ) = L(θ | x) = f (x | θ). (7.14)

Equation (7.14) should really be regarded the way it is suggested by its notation: it is a function of θ
(rather than the observed Xi = xi for i = 1, . . . ,n) given x. For L(θ | x) the value x is viewed as fixed
whereas for f (x | θ) the parameter vector θ is viewed as fixed. The idea of the MLE method is to
maximise this function and pick θ such that it maximises L(θ), that is,

θ̂ = argmax
θ∈Θ

L(θ), (7.15)

and θ̂ is called the Maximum Likelihood Estimator of θ. The assumption of x being i.i.d. implies
that the joint density is simply a product of univariate densities. In those cases, the loglikelihood
function is often considered and defined by

l (θ | x) = lnL(θ | x). (7.16)

By continuity and ln being an increasing function, the parameter θ which maximises the likelihood-
function also maximises the loglikelihood function. The idea of applying the log-transform for the
likelihood function is that the partial derivatives with respect to θi are generally effortless to derive
for the loglikelihood.

Example 7.3 (MLE of Log-normal Parameters). Let X1, . . . , Xn be i.i.d. with density

f (xi | θ) = x−1
i φ(ln(xi ) |µ,σ) (7.17)

where φ is the density function for the normal distribution. The loglikelihood function is given by

l (θ | x) = lnL(θ | x)

= ln

(
n∏

i=1

1

xi

p
2πσ2

exp

(
− (ln(xi )−µ)2

2σ2

))

=−
n∑

i=1
ln(xi )− 1

2
n ln(2πσ2)−

n∑
i=1

(ln(xi )−µ)2

2σ2 . (7.18)

Partial derivatives are found by

∂l

∂µ
(µ,σ | x) = 1

σ2

n∑
i=1

(ln(xi )−µ) (7.19)

and
∂l

∂σ2 (µ,σ | x) =− n

2σ2 +
n∑

i=1

(ln(xi )−µ)2

2σ4 . (7.20)

Now setting these equations equal to 0, we find an MLE for µ

n∑
i=1

ln(xi )−nµ= 0 ⇐⇒ µ̂= 1

n

n∑
i=1

ln(xi ) (7.21)

and an MLE for σ2

n∑
i=1

(ln(xi )−µ)2 −nσ2 = 0 ⇐⇒ σ̂2 = 1

n

n∑
i=1

(ln(xi )−µ)2. (7.22)

Thus the MLE for θ is given by θ̂ = (µ̂, σ̂2). Alternatively if we consider X̃1 = ln(X1), . . . , X̃n = ln(Xn)
with density φ(x̃i | µ,σ), the MLE method could also be applied to the log-transformed data to find
estimates for µ and σ2 using the density of a normal distribution.
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Method of Moments
The j -th moment of a random variable X is denoted as E(X j ). The idea of the Method of Moments
is that the parameter vector θ of the underlying distribution can be expressed by its moments, that
is, if θ1, . . . ,θk are the parameters then

E(X j ) = m j (θ1, . . . ,θk ) (7.23)

for j = 1, . . . ,k. Equation (7.23) admits a system of k equations of k unknowns, which therefore can
be solved to find all values for θ j . It requires the knowledge of the structures of the m j . This is
related to characteristic functions of random variables, as they (as their name suggests) completely
define a distribution. Moments can also be approximated by sample data: for a set of observed
values x1, . . . , xn of X , the k-th sample moment is defined as

E(xk ) = 1

n

n∑
i=1

xk
i . (7.24)

Example 7.4 (Method of Moments for Log-normal Parameters). Let X1, . . . , Xn be a sample and let
the moments be defined by

E(X k ) = exp(kµ+k2σ2/2). (7.25)

The system of equations that it admits is

ω1 ≡ E(X ) = exp(µ+σ2/2), (7.26)

ω2 ≡ E(X 2) = exp(2µ+2σ2). (7.27)

Applying a log-transform on Equations (7.26) and (7.27) yields linear equations for µ and σ2. Multi-
plying Equation (7.26) by 4, subtracting Equation (7.27) from Equation (7.26) and dividing by 2 gives
the Moment estimator for µ

µ̂= ln

(
ω2

1p
ω2

)
, (7.28)

while multiplying Equation (7.26) by 2 and subtracting Equation (7.26) from Equation (7.27) gives
the Moment estimator for σ2

σ̂2 = ln

(
ω2

ω2
1

)
. (7.29)

Thus the Method of Moments estimator for θ is given by θ̂ = (µ̂, σ̂2). Similar to Example 7.3, this
approach can be applied to data which is log-transformed already. In that case the result of Method
of Moments estimator is similar to the MLE in Equations (7.21) and (7.22).

7.3.2. Extracting Quantiles
Assume that we have found the parameter vector θ which corresponds to the best fit for a certain
parametric distribution in some family. It implies that we have a fixed CDF Fθ(x) and PDF f (x | θ).
To find qp , we can solve either one of the following equations:

Fθ(qp ) = p (7.30)∫ qp

−∞
f (x | θ)dx = p (7.31)

Observe that as we are working with parametric distributions, we can attempt to solve this ana-
lytically, but it also allows us to use numerical methods for finding qp . The latter can be done by
subtracting p from both sides of Equations (7.30) and (7.31) and use root-finding algorithms, such
as Newton’s method [25].
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If the parametric distribution originates from a location-scale family, then we can use Equa-
tion (6.3). The standardised version of the distribution, that is with some location and scale param-
eter not necessarily limited to the meanµ and standard deviationσ, admits its own p-th quantile. By
multiplying with the scale parameter used to standardise and adding the location parameter used
to standardise, we have another method to calculate the p-th quantile. Clearly we are interested in
the case that p = 0.75.





8
Modelling: Non-parametric Approach

The idea of this Chapter is similar to Chapter 7 but with a significant change in assumption. Non-
parametric statistics does not use models or methods based on parametric families. Akin to the
parametric case we will present quantile estimations. We shall look at two different approaches:

• Empirical estimations,

• Density estimations

Non-parametric approaches are not limited to only these two; an example is the Average Group
Quantile method introduced by Heidelberger and Lewis [26] which is particularly useful for esti-
mating more extreme quantiles (p > 0.9) and for relatively large datasets. Due to time constraints
we will focus on the mentioned ones. We will begin with some general remarks on notation.

8.1. Notation and Background
8.1.1. Order Statistics
The ECDF F̂n has been defined before and can be used again and another distribution-free concept
to consider are order statistics. For random variables X1, . . . , Xn its order statistics are denoted X(i )

such that
X(1) ≤ X(2) < . . . ≤ X(n−1) ≤ X(n). (8.1)

In case there are no ties in the data, that is Xi 6= X j for all i 6= j , all the inequalities in Equation (8.1)
change to strict inequalities. Note that X(1) and X(n) are by definition the minimum and maximum;
X(1) = mini Xi , X(n) = maxi Xi .

As for parametric models, they also come with a set of disadvantages which should be acknowl-
edged. These directly translate to the advantages of the non-parametric models. In particular the
following points are relevant:

• parametric models are risky in the sense of misspecification,

• it can be quite cumbersome to find a suitable parametric model,

• non-parametric methods are generally less sensitive to outliers.

8.1.2. Location-Scale Approach
Again we recall Equation (6.3) and rethink how we can use it with some location-scale family. If
we assume some starting density in the first year of ravelling progression and that aggregate loss
should progress monotonically over time, it is not irrational to believe that this starting density shifts

47
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over time without losing too much of its original shape. This starting density then admits its own
quantiles and these can take the role of Φ−1(p) in Equation (6.3). Hence finding a representative
starting density is key in this approach of approximation.

For taking into account the various shapes of the densities throughout the years, one idea is to
aggregate the standardised data from all years. The standardisation is performed with the median
and MAD for each year and the aggregation should culminate in a density which is centered near 0
with MAD close to 1. This derived density then serves as the starting density from which we deduce
Φ−1(p), which combined with the median, MAD and Equation (6.3) admit a p-th quantile.

8.2. Empirical Estimation
Let X1, . . . , Xn be some sample from a continuous distribution FX (x). Then we can use order statis-
tics for a point estimator of any p-th quantile. Recall Equation (6.1) and consider the case that F in
Equation (6.1) is not continuous or strictly increasing. Then the generalised inverse

F−1(p) = inf{q : F (q) ≥ p} (8.2)

is used and Equation (8.2) implies that F−1(p) is the p-th quantile qp . In particular this can be
applied with the ECDF F̂n and we find by continuity of FX that there are no ties in the data, hence
the quantile qp can be point estimated by

q̂n(p) = F̂−1
n (p). (8.3)

Now since FX is continuous, we can estimate the p-th quantile of FX by its order statistic by

F̂−1
n (p) = X(i ) ⇐⇒ p ∈ ( i−1

n , i
n

]
(8.4)

In particular for n = 100 and p = 0.75 we find that

q̂100(0.75) = X(75). (8.5)

The observant reader will recognise that in the trivial case that n = 100, the non-parametric point
estimator for q0.75 is simply the 75th smallest observation. The approximation of quantiles using
order statistics can be directly applied to the aggregated standardised data, that is, we can calculate
the standardised sample p-th quantile and perform extrapolation on these quantiles using Equa-
tion (6.3).

8.3. Density Estimation
In density estimation we attempt to estimate a density of interest f from independent observations
X1, . . . , Xn which are from density f . It is crucial to realise that f is not observable, just as it was
the case in Chapter 7. In fact, in Chapter 7 we attempted to estimate the density by approximating
it with some data-dependent member of a parametric family of densities. In the non-parametric
case, however, we need to use another strategy for a density estimator which we denote in similar
fashion as the ECDF: f̂n . The goal is to find an f̂n smooth enough to be representative for the data.

A Remark on Smoothness of Functions
To introduce smoothness as blatantly as we did neglects the mathematical interpretation. Smooth-
ness can be broadly defined and for comparison sake, it would be practical to be able to characterise
if some functions are ‘smoother’ than others. This can be achieved by notion of the differentiability
classes C k for k ∈N∪ {0}. The class C k serves as a classification for functions and the properties of
their derivatives: its derivatives up until order k must exist and be continuous. A function of class C 0

is simply continuous everywhere, but a function of class C 1 is a function which is C 0 (continuous
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everywhere) and of which its 1st derivative exists and is continuous (continuously differentiable).
Some properties are that C k+1 is contained in C k (C k+1 ( C k ), and the strict requirement for the
k-th derivative to be continuous to be classified as C k — existence of the k-th derivative is not suf-
ficient. The two extremes of smoothness could be defined by C 0 and C∞, of which the former is the
class of continuous functions and of which the latter is the classification for functions which have
derivatives of all order. An example of a non-trivial1 case which is C∞ is the function f (x) = ex with
domain R. A trivial case is the class of polynomials on domain R: all polynomials have derivatives
of any order.

Bias-Variance Trade-Off

First we need to give proper definitions of bias and variance of a function estimator f̂ (x), because
these properties are essential for finding an optimal estimator. The bias of an estimator is the differ-
ence between the expected value of an estimator and the true value of the parameter (or function)
being estimated. At first thought one would like this to be small, but this point of view changes when
one realises that low bias generally comes with worse estimates outside the original domain com-
pared to estimators which have slightly higher bias. The variance of an estimator is a measure for
sensitivity to small deviations from the original domain. For example, if an estimate f̂ (0.5) differs
significantly from f̂ (0.6), the function estimator f̂ suffers from high variance. The bias and variance
of f̂ (x) with respect to the true function f (x) are respectively given by

bias(x) = E(
f̂ (x)

)− f (x) (8.6)

Var(x) = Var
(

f̂ (x)
)

. (8.7)

In terms of how well an estimator performs, we can fall back to some kind of loss function L. The Lp

loss function is defined by

Lp
(

f̂ (x), f (x)
)

(x) = ∣∣ f̂ (x)− f (x)
∣∣p

. (8.8)

It is clear that a desirable feature would be for Lp to be small. Let us fix p = 2 and introduce the
Mean Squared Error (MSE) which is a term which in fact combines the bias and variance:

MSE(x) = E[
L2

(
f̂ (x), f (x)

)
(x)

]
= (
E
[

f̂ (x)
]− f (x)

)2︸ ︷︷ ︸
bias(x)2

+Var
(

f̂ (x)
)︸ ︷︷ ︸

Var(x)

. (8.9)

Equation (8.9) leads to the bias-variance trade-off : we would like the MSE to be small, but the con-
tribution of the bias and variance somehow needs to be managed. One reason to use the L2 loss
function is its relation to the bias-variance trade-off for the MSE. Notice that both bias and variance
are denoted as functions, but that is a simple consequence of our objective of estimation. More im-
portantly is the fact that the MSE alone is not a direct measure of f̂ being a good estimator because
of its dependence on x. As a result one should opt for the Mean Integrated Squared Error (MISE)
given by

MISE =
∫
R

MSE(x)dx. (8.10)

Equation (8.10) is actually proportional to the average function value of MSE(x). For two distinct
estimators f̂1, and f̂2 which admit MSE1(x) and MSE2(x), one can justify picking the estimator with
lowest MISE.

1One could argue that the exponential function is frankly quite trivial as an example, but in this sense we mean that it is
not a polynomial.
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8.3.1. Histograms
The histograms introduced in Chapter 7 are in fact density estimators. The bin width h = 1/m for
some m ∈ N of histograms is called the bandwidth in the context of smoothing. The view of the
histogram changes drastically as h varies and it can therefore be called a smoothing parameter. The
histogram estimator for f is given by

f̂n(x) =
#bins∑
j=1

∑n
i=1 1{xi ∈ B j }

nh
1{x ∈ B j } =

#bins∑
j=1

p̂n

h
1{x ∈ B j }, (8.11)

where p̂ j = Y j /n and Y j denotes the number of observations in bin B j . Let us explain the idea of
Equation (8.11). First we should recognise a property which it shares with the ECDF: it is a sum
of modified indicator functions, of which each individual modfied indicator function is uniquely
defined by its corresponding bin B j with length h. That is, f̂n approximates the density f per bin
B j . The value that it assigns to bin B j then depends on p̂n/h, the fraction of the total observations
in B j . h serves as the parameter which controls the size of the bins by definition, but also as the
normalising parameter such that f̂n integrates to 1, as a property of probability density functions.
Wasserman [10] motivates why the histogram estimator is not unrealistic as a choice for a density
estimator; for small h and x ∈ B j the histogram estimator is unbiased

E( f̂n(x)) = E(p̂ j )

h
=

∫
B j

f (t )dt

h
≈ f (x)h

h
= f (x), (8.12)

where

• the first equality is a property of expectations,

• the second equality is due to p̂ j being binomially distributed with parameters n, P(X ∈ B j ),

• the third equality is by the Mean Value Theorem (for integrals) and f being continuous.

We will not be using the histogram estimator despite the fact that it is approximately unbiased from
Equation (8.12), because there is a better alternative.

8.3.2. Kernels
We use the notions as in Wasserman [10]. A kernel is a smooth function K which is non-negative on
its domain and satisfies two Equations: ∫

R
K (x)dx = 1, (8.13)∫

R
xK (x)dx = 0. (8.14)

The requirements imply that any PDF with mean 0 can be classified as a kernel. Examples of kernels
used in practice are visualised in Figure 8.1 and defined by

(Rectangular) K (x) = 1

2
·1{|x| ≤ 1} (8.15)

(Triangular) K (x) = (1−|x|) ·1{|x| ≤ 1} (8.16)

(Epanechnikov) K (x) = 3

4

(
1−x2) ·1{|x| ≤ 1} (8.17)

(Biweight) K (x) = 15

16

(
1−x2)2 ·1{|x| ≤ 1} (8.18)

(Gaussian) K (x) = 1p
2π

e−x2/2 (8.19)
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Figure 8.1: Plots of the rectangular, triangular, Epanechnikov, biweight, and Gaussian kernel.

The kernel density estimator is defined by

f̂n(x) = 1

n

n∑
i=1

1

h
K

(
x −Xi

h

)
︸ ︷︷ ︸

= K̃i ,h

. (8.20)

Let us try to understand what Equation (8.20) enforces by carefully considering values for x. From
the conditions of kernels we know that any kernel is centered. For x = Xi the term K̃i ,h does not
vanish; instead it reaches its peak value. So if we imagine the real positive half-line and position our
data Xi accordingly, we are placing ‘modified’ kernels K̃i ,h at each Xi position. By taking 1/n we are
taking the local (weighted) average at x for terms K̃i ,h for i = 1, . . . ,n. Even though we mention it last,
the bandwidth h is extremely important in this process! First consider h → 0: one should visualise
that the modified kernel is actually being ‘squeezed’ from the sides towards Xi , which causes the
peak value to increase since 1/h →∞, but as a consequence has decreased the length of the interval
of support2. The squeezing causes the local (weighted) average to depend on less modified kernels
and more on the data point which is closest to x. On the other hand for h →∞, we are spreading the
distribution by pushing it down form the peak value until it eventually becomes a straight line y ≡ 0,
since the term 1/h → 0: see Figure 8.2. In terms of smoothing, for h → 0 we are undersmoothing
while for h →∞ we are oversmoothing. According to Wasserman [10], the choice of K is not crucial
but the choice of the bandwidth is. One thing that we would like to add to that is that Wasserman
probably meant to say: from the smoother kernels, the choice of the kernel is not that fundamen-
tal. If one opts for the rectangular kernel, the density estimator will genuinely not be as smooth as
desired; this will be shown at the end of this Section.

2The support is the closure of the set of values for which a function is not 0.
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Figure 8.2: Plots of the rectangular, triangular, Epanechnikov, biweight, and Gaussian kernel with varying bandwidths h.

It is now time to see how the kernels for the same bandwidth h estimate the density: see Fig-
ure 8.3. The f̂n were fit using all the mentioned kernels and it is clear that the rectangular kernel
density estimator is the odd-one-out. The density curve is much more rigid than any of the other
estimators, but this was to be expected since the rectangular kernel is not as smooth. The Gaus-
sian kernel is convenient as the antiderivative of it can be used for approximating quantiles, which
we will show at the end of this Section. Another more relevant topic is how the bandwidth h was
chosen exactly. The essence of the bandwidth h was not emphasised too long ago, so it needs some
clarification for depicting in Figure 8.3.

The optimal value h∗ for the smoothing parameter h is sometimes called an oracle [10]. Several
approaches exist for finding h∗ of which we will mention one: see [10] for other methods. For finding
an oracle we can consider the L2 loss function introduced before. Now that we know that the density
estimator f̂n is in fact dependent on the bandwidth h, we can use the integrated squared error loss
function to write

ISL(h) =
∫
R

( f̂n(x | h)− f (x))2 dx

=
∫
R

f̂n(x | h)2 dx −2
∫
R

f̂n(x | h) f (x)dx +
∫
R

f (x)2 dx (8.21)

For finding the oracle h∗ the last term in Equation (8.21) can be neglected, as this does not depend
on h. A cross-validation estimator of ISL(h) [10] is given by

ÎSL(h) =
∫
R

f̂n(x | h)2 dx − 2

n

n∑
i=1

f̂(−i )(Xi | h) (8.22)
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Figure 8.3: Kernel density estimates with similar bandwidth h of the standardised data of the LWT from W = A44,S =
1HRR1RR

7.1 of all years, using rectangular, triangular, Epanechnikov, biweight, and Gaussian kernels.
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where f̂(−i ) is the density estimator calculated without the i -th observation. Our oracle h∗ is the
value which minimises Equation (8.22) and hence (attempts to) minimise ISL(h).

Now that we clarified the choice of the bandwidth and finally have a density estimate, it is pos-
sible to approximate the quantiles. It is based on finding a solution to

F̂n(x)−p = 0 ⇐⇒ 1

n

n∑
i=1

κ

(
x −Xi

h

)
−p = 0 (8.23)

where F̂n(x) is the antiderivative of F̂n and κ(x) = ∫ x
−∞ K (t )dt . Here the Gaussian kernel is conve-

nient since its antiderivative is the CDF of the standard normal which is implemented in computing
software. Although in terms of convenience, solving Equation (8.23) really is equivalent to solving∫ qp

−∞
f̂n(x)dx = p, (8.24)

for which we can approximate the solution numerically as well. For Equation (8.24) we do not need
an intermediate step in the form of (analytically) finding the antiderivative.



9
Extrapolation

The theory from Chapters 7 and 8 leads to approximations of the 75th percentiles for a specific road
section along the years. Now it remains to find ways to predict when a threshold has been reached
with knowledge of the current progression of aggregate loss. In this Chapter, we will discuss meth-
ods to provide predictions for reaching this level by the use of shape constrained additive models
(SCAMs). The reason for this is that by using shape constraints, we can circumvent the problem of
non-monotonicity as hinted in Chapter 5.

9.1. Generalised Additive Model (GAM)
The concept of SCAMs are based on generalised additive models (GAMs). GAMs in turn are linked
to the less broad term of generalised linear models (GLMs). For the remainder of Chapter 9 we will
consider the univariate case. Recall that for ordinary linear regression, the response variable has
a normal (error) distribution. That is, for the response variable Yi and predictor variable Xi , for
simple linear regression it holds for i = 1, . . . ,n that

E(Yi ) =µi =β0 +Xiβ1, Yi ∼N (µi ,σ2) (9.1)

where β0,β1 ∈R and σ2 constant. Simple linear regression is a specific case of GLMs which implies
that the assumptions in GLMs are more flexible. Instead of being restricted to the normal distri-
bution, GLMs come with link functions which expresses the relation of the expected E(Yi ) with the
linear predictor β0 +Xiβ1. This leads us to a relaxed version of Equation (9.1) in

E(Yi ) =µi , g (µi ) =β0 +Xiβ1, Yi ∼ P (µi ,σ2(µi )), (9.2)

The comprehending reader will notice that in the case of a Gaussian distribution, the link function g
is the identity function z 7→ z and P is the Gaussian family — de facto the relaxation of Equation (9.1).
Equation (9.2) implies that

E(Yi ) = g−1(β0 +Xiβ1) (9.3)

Var(Yi ) = Var(g−1(β0 +Xiβ1)), (9.4)

meaning that for GLMs the variance can be seen as a function of the mean. Relaxations on GLMs
result in what we are ultimately going to use for obtaining results: GAMs. The framework for GAMs
can be denoted by

E(Yi ) =µi , g (µi ) =β0 + s(Xi ), Yi ∼ EF, (9.5)

where s is some smooth function and EF belongs to some exponential family of distributions. The
significant difference between Equation (9.2) and Equation (9.5) is the freedom in the smooth func-
tion s applied to Xi . This could very well be simply a scalar transform as Xiβ1 admits, but in the
use-case for GAMs this is uncommon.
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9.2. Shape Constrained Additive Model (SCAM)
Now that we have defined GAMs, we can introduce the shape constrained additive models as they
were worked on in detail by Pya and Wood [27]. Pya and Wood provide an extension of Equation (9.5)
to account for constraints — such as the combination of monotonicity and convexity/concavity —
as

g (µi ) =β0 + s(X1,i )+m(X2,i ), Yi ∼ EF (µi ,ψ), (9.6)

where g is a known smooth monotonic link function, m is an (unknown) shape constrained smooth
function, andψ a ‘scale’ parameter, which in bare minimum should express the relation between the
mean and variance [27]. This extension assumes that there are several predictor variables, namely
X1,i and X2,i (and perhaps more). For our case, however, we only need to consider one predictor
variable, which means that the function s in context of Equation (9.6) is abundant. Our predictor
variable is based on the date of measurement; if future research on the topic of ravelling would
like to consider the addition of another predictor variable, then this can be achieved by adding
another smooth function s j or m j depending on the assumptions. The shape constraints in m are
the defining features for SCAMs.

9.2.1. Constructing Functions
The SCAMs that we will ultimately be using to find a function which represents the progression of
aggregate loss is based on the idea of constructing a function by combining basis functions [28]. Say
that we want to approximate a function R(x) by a set of basis functionsφ(x). Then the basis function
expansion of R is given by

R̂(x) =
K∑

k=1
ckφk (x), (9.7)

where ck ∈ R for k = 1, . . . ,K are coefficients. A basis function expansion is hence fundamentally a
linear combination of the basis functions. Depending on the characteristics of R(x) — in particu-
lar its (non-)periodicity — the φk are often chosen from a particular group of basis functions: the
Fourier basis or the spline basis. The DOS-LCMS data that has been gathered until now imply a
non-periodic function that we would like to approximate. In the far future with measurements of
a road section going through multiple maintenance, it would be possible to opt for a Fourier basis.
However as of now the wiser choice would be to stick with the spline basis system.

Ramsay et al. [28] rightfully point out how basis systems are not new and are more common
than one might imagine. In particular Ramsay et al. recall how the class of polynomials are a con-
crete example of the use of a basis system. Indeed, any polynomial P (x) is a linear combination of
monomials φk (x) = xk for k ∈N, that is,

P (x) =
K∑

k=0
ck xk . (9.8)

Splines
Splines are piecewise-defined functions for which every piece is a polynomial: a piecewise polyno-
mial function. A spline ξ(x) of order p on an interval [a,b] with non-decreasing knots {xi }n−1

i=1 and
x0 = a, xn = b can be defined as

ξ(x) =


ξ0(x) x ∈ [x0, x1],

...

ξn−1(x) x ∈ [xn−1, xn],

(9.9)

where ξ j on [x j , x j+1] are polynomials of order p — which implies a degree of p −1, and a smooth
connection between the ξ j and its derivatives is required in the knots. A non-trivial case is realised
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for p = 2, and the spline would then consist of linear polynomials while its derivative is a step func-
tion, which in terms of smoothness leaves a lot to be desired. Another non-trivial but more fre-
quently used case is attained for p = 4. In that case we are dealing with cubic splines which are
useful due to their smoothness in both the regular function fit as well as its derivative which is fit
piecewise by quadratic polynomials.

B-splines
Within the use of splines there are actually several basis systems for constructing spline functions
[28]. The most commonly used are the B-splines which gained attention in 1978 by work of De
Boor and was revised quite recently in 2001 by De Boor [29]. B-splines are basis functions for spline
functions. The naming intuitively indicates that the basis functions φk are splines as well which
is indeed the case. Multiples of splines remain spline functions as well as sums and differences
of splines remain splines, which means that any linear combination of spline (basis) functions are
splines as well [30]. For the scope of our research it is not necessary to get into all the details of the
underlying basis system, but we will try to give the required minimum knowledge of how B-splines
are constructed for our purpose.

Adhering to De Boor [29], it helps to first define the B-splines of order 1 Bi ,1(x) for a knot se-
quence {xi }n

i=1 which are in fact indicator functions

Bi ,1(x) :=
{

1 if xi ≤ x < xi+1,

0 else.
(9.10)

Some other properties also need to be satisfied, of which we will focus on one; the others can be
found in De Boor [29] for the interested reader. A defining property for B-splines is that for every
value of x in the respective domain, the values of the basis functions should add up to 1; mathemat-
ically this can be denoted as

n∑
i=1

Bi ,1(x) = 1, for all x. (9.11)

Recall that these are the basis functions, hence this constraint does not imply that functions with
values greater than 1 cannot be fit. De Boor [29] introduced the recurrence formula for higher-order
B-splines:

Bi ,p :=ωi ,p Bi ,p−1 + (1−ωi+1,p )Bi+1,p−1 (9.12)

for which the coefficients ωi ,p are defined as

ωi ,p (x) :=


x −xi

xi+p−1 −xi
if xi 6= xi+p−1,

0 else.
(9.13)

Now the polynomial structure might not be as apparent from the definitions at first sight. It certainly
is absent for the B-splines of order p = 1 — although you could say that the number 1 is a polynomial
of degree 0 — but for p > 1 it is more clear. The B-splines of order p = 2 can be deduced from
Equations (9.12) and (9.13) and are given by

Bi ,2(x) := x −xi

xi+1 −xi
Bi ,1(x)+

(
1− x −xi+1

xi+2 −xi+1

)
Bi+1,1(x). (9.14)

Equation (9.14) shows a polynomial of degree 1: the coefficients of Bi ,1(x) and Bi+1,1(x) are both of
degree 1 — the term x is the highest order monomial — and Bi ,1(x), Bi+1,1(x) are indicator functions.
Now with Equation (9.12) it should be more clear that for order p = 2, a term containing x is being
multiplied by another term containing x, resulting in a polynomial of degree 2. With recurrence the
polynomial structure becomes more clear and it is evident that a B-spline of order p corresponds to
a piecewise polynomial function with degree p −1— similar to regular splines. For more details of
properties of B-splines we refer to De Boor [29].
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9.2.2. Constructing a Smooth Monotone Convex Function
We started § 9.2 with the approach from Pya and Wood [27]. When we continue with their approach,
we can construct the monotonically increasing smooth function m from Equation (9.6) using B-
splines as basis. It allows us to write

m(x) =
d∑

j=1
γ j B j (x), (9.15)

in which d is the dimension of the basis and B j are B-spline basis functions of order p ≥ 2 to account
for a bare minimum of smooth functions. If we want m to be smooth monotone increasing, then
a bare minimum condition is for the first derivative of m to be non-negative, m′(x) ≥ 0 for all x in
some domain. According to formulas in [29], this is satisfied when the first order differences for γ j

are non-negative: γ j ≤ γ j+1 for all j = 1, . . . ,d . Hence if we find an increasing1 sequence of spline
coefficients γ j , the resulting smooth function m is monotone. Pya and Wood [27] opt for a clever
re-parameterisation by defining

βββ := (β1,β2, . . . ,βd ), (9.16)

β̃ββ := (β1,eβ2 . . . ,eβd ), (9.17)

ΣΣΣ :=



1 0 . . . 0

1 1 . . . 0
...

...
. . . 0

1 1 . . . 1


, (9.18)

Xi := (B1(xi ),B2(xi ), . . . ,Bd (xi )), (9.19)

whereΣΣΣ is (d ×d) and imposing
γγγ :=ΣΣΣβ̃ββ, (9.20)

which results in

γ j =β1 +
j∑

l=2
eβl (9.21)

g (µi ) = m(xi ) = XiΣΣΣβ̃ββ (9.22)

for which the β j are unknown unconstrained parameters. As ex > 0 for every x ∈ R, it is clear that
for all j , γ j ≤ γ j+1.

Penalisation
In the context of smoothing a paradigm which is often considered is penalisation [10 and 30 and 31].
It is important for finding a regression function which is representative for our data and hence the
population which we want to model, even though we acknowledge that it is nearly impossible to
find the ‘true’ behaviour. In case the regression function is an underfit or overfit of the data, then it
respectively fails to capture a general pattern or ignores the general pattern and fails to account for
variability. This is closely related to the bias-variance trade-off mentioned earlier, that demonstrates
how finding optimal model parameters such that the bias and variance of the model lead to a min-
imal model error is of crucial importance. An extremely biased fit does not use the data (constant
function, hence lacks variance), but a model with high variance and low bias is often not able to fil-
ter (random) noise from the data. Penalisation attempts to achieve a balance between underfitting
and overfitting.

1Non-decreasing would also be fine, but then one has to take into account that the resulting function is not strictly mono-
tonic.
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P-splines

In the scope of B-splines, Eilers and Marx [31] introduced P-splines (penalised B-splines) to ac-
count for penalties in B-spline fits. Eilers and Marx penalise the differences in basis coefficients of
a B-spline basis. Pya and Wood [27] adapt that idea for their shape constrained models. Pya and
Wood state how the β j for j ≥ 2 are really just ln differences in γ j , and we can see this as follows:

eβ j = γ j −
(
β1 +

j−1∑
l=2

eβl

)
eβ j = γ j −γ j−1

β j = ln
(
γ j −γ j−1

)
, (9.23)

where the first and second equality are due to Equation (9.21). Since β j represent (ln) differences
of the spline coefficients γ j , it maintains the notion of Eilers and Marx [31] to impose a penalty on
these. A general way to incorporate this is to introduce a matrix D and penalise for ||Dβββ||2, where
|| · || is the Euclidean norm: for a vector x = (x1, . . . , xn) the Euclidean norm is defined by

||x|| :=
√

n∑
i=1

x2
i , (9.24)

and D is the matrix on which conditions can be specified to account for shape constraints [27],
and of which its dimensions are also dependent on the constraints. We want to be able to measure
differences in adjacent β j ’s and by penalising on ||Dβββ||2, as this controls the wiggliness of the curve
fit, of which we will soon show an explicit illustration.

Minimisation Objective

So far we have defined all necessary terms to state the objective to minimise. To compute the
smooth increasing convex function m, we know from Equation (9.15) that after fixing the order of
the B-splines, it only requires appropriate values for γ j — which implies that we need to find an
appropriate vector of values βββ. If data points are denoted (xi , yi ) for i = 1, . . . ,n, y = (y1, . . . , yn) and
X is the matrix such that Xi j = B j (xi ), then we need to find

argmin
βββ

||y−XΣΣΣβ̃ββ||2 +λ||Dβββ||2, (9.25)

where λ is a smoothness parameter. It controls the bias-variance trade-off [31 and 32]: if λ→ 0 the
roughness is neglected, while for λ→∞ the roughness plays an essential role in the minimisation
objective. Now it only remains to find the constraint for ΣΣΣ, D such that the resulting function m is
increasing and convex. The ΣΣΣ defined before was an example of a simple monotone increasing m.
For convexity we also need m′′(x) ≥ 0 besides the m′(x) ≥ 0 constraint. By [29] the former and latter
are satisfied if

γ j −γ j−1 ≥ 0, for j = 3, . . . ,d (9.26)

γ j −2γ j−1 +γ j−2 ≥ 0, for j = 3, . . . ,d . (9.27)

Equation (9.26) actually holds for j = 1, . . . ,d but since both Equations (9.26) and (9.27) need to be
satisfied simultaneously, j = 3, . . . ,d is the proper condition. These are satisfied if the (d ×d)-matrix
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ΣΣΣ is defined as

ΣΣΣ=



1 0 0 0 · · · 0

1 1 0 0 · · · 0

1 2 1 0 · · · 0

1 3 2 1 · · · 0
...

...
...

...
. . .

...

1 d −1 d −2 d −3 · · · 1


(9.28)

and the ((d −3)×d) smoothness matrix D as

D =



0 0 1 −1 0 0 · · · 0

0 0 0 1 −1 0 · · · 0

0 0 0 0 1 −1 · · · 0
...

...
...

...
...

. . .
. . .

...

0 0 0 0 0 0 1 −1


. (9.29)

The penalty λ||Dβββ||2 is now given by

λ||Dβββ||2 =λ(
(β3 −β4)2 +·· ·+ (βd−1 −βd )2) . (9.30)

From Equation (9.30) it is clear that the singular bands of 1 and −1 in Equation (9.29) could be
swapped around: the squares of the differences do not change in Equation (9.30). If λ→ 0 then the
curve is wiggly, while for λ→ ∞ the fit is not wiggly: see Figure 9.1. For λ = 10 the fit looks to be
linear, for λ = 10−6 the fit is wiggly, and λ = 1 produces a decent estimate between overfitting and
underfitting.

Akin to the bandwidth h in Chapter 8, there exists several optimisation schemes for the smooth-
ness parameter λ. Again we can consider some cross-validation optimiser with respect to λ, or opt
for the Akaike Information Criterion (AIC) which is another prediction error measure. As for any
criterion, we want to minimise the prediction error and the value for λ which fulfils this will be
considered as the ‘optimal’ penalty. We will not provide the details here, but refer to [27] for the
interested reader.

9.3. Extrapolation Methods
Assuming that we have fit a smooth monotonic curve to our percentile data points, we can attempt
extrapolations based on the curve. However, extrapolations with splines is cumbersome due to the
behaviour of splines outside of their support. For both methods we would like to address that we
should be cautious with extrapolating far into the future.

9.3.1. Linear Extrapolation
In general the predictive behaviour outside of the given knot range is not representative: the con-
structed smooth function is an interpolation method, meaning that behaviour outside of the sup-
port is generally hard if not impossible to predict. Nonetheless, Pya [32] has implemented a method
to predict outside of the provided support in the R package called scam. Its implementation as of
now is using linear extrapolation. The slope of the line is determined by the value of the first deriva-
tive at the end point.
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λ = 10e-07

λ = 10

λ = 0.1

Figure 9.1: Simulation of points from y(x) = x2/3+εwith noise term ε∼U (−2,2) with P-spline fits using various smooth-
ness penalties λ.
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As a consequence for our results this will mean that for a smooth and rather convex curve fit,
a linear extrapolation will be conservative in its predictions: in other words, when looking for the
value for which the curve surpasses a threshold, the linear extrapolation will predict this value gen-
erally later than a continuation of the curve would have predicted. In particular for curves which
have not been fit to be increasing convex2, which is possible for a small amount of data points where
monotonicity leaves a lot to be desired, it could cause unnatural predictions for lifetimes (25+ years).
Yet, we can argue that when the curve fit is simply a straight line, it was difficult to find a represen-
tative increasing convex curve to begin with. This would also indicate that according to the state of
the road up till now, maintenance does not seem necessary. In such cases we can opt to say that for
a remaining lifetime of great value, we can categorise it as ‘no maintenance needed in the coming 5
years’. This categorisation is similar to what Rijkswaterstaat has been using now.

9.3.2. Polynomial Extrapolation
The linear implementation by Pya in the scampackage is understandable yet somewhat unsatisfying
for our research in particular. The conservative approach as explained before can be circumvented
by implementing a polynomial extrapolation. Do note that it only applies in cases such as these,
where we assume to have knowledge on the progression of some quantity (aggregate loss). The idea
is to use the smooth curve and its interpolated results. By definition we know there must exist a
decent polynomial approximation to the smooth spline curve of order p (degree p − 1). Then by
fitting the interpolated results, we have a new model which of which the natural extrapolation is
based on the curve fit. The interpolated results in this context are the approximated values of the
75th percentile on every single day between the original domain, which ranges from the first mea-
surement date until the last measurement date. In general a polynomial fit does not have to satisfy
the constraints imposed before, but by providing many data points — one data point per day — it
is possible to achieve such a fit. The model defined by this has two advantages over the linear ex-
trapolation. Firstly, the method is less conservative and represents the assumption of smooth con-
vex monotonicity by continuation of the curve fit. Secondly, the polynomial extrapolation within a
short range from the original provided domain is almost equal to the linear extrapolation: at best
we do not lose any information by choosing the polynomial over the linear version. The problems
mentioned for the linear extrapolation, however, are still present in the polynomial extrapolation.
As long as the estimated 75th percentiles do not show a pattern in line with our assumption, the pre-
diction will remain skewed independent of the type of extrapolation used. The only disadvantage
and risk using the polynomial extrapolation is that the extrapolation outside the domain does not
always continue the curve as we expect it to go. Specifically, after following the trend of increasing
convexity outside of the provided domain, we could for some reason see that the polynomial ex-
trapolation goes downwards. This is not contrary to the constraint that we set, as these were put
on the provided domain. One way to deal with such an outcome is to simply choose the linear
extrapolation if this occurs.

2Here we mean that the curve fit is not simply a straight line, which lacks curvature.
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Results and Discussion

10.1. Results for Prototype
Let us start with a reminder that the build-up for all the results for our prototype (W = A44,S =
1HRR1RR

7.1 ) can be applied to the any other road section which satisfies similar conditions as men-
tioned in Chapter 6. The only difference in applying the results for other road sections is in the
parametric approach, where the data was manually observed and suitable parametric distributions
were suggested.

10.1.1. Quantile Estimates
From the parametric approach, there was reason to believe that either

• the raw unmodified data is log-normal, or

• the log-transformed data is logistic.

For the log-normal approximation we can simply perform MLE or Moment estimators for the pa-
rameters of the distribution, which we then use to calculate the quantiles. Though for the logistic
approach, we need to log-transform the data and perform MLE/Moment estimation for the param-
eters and then take the inverse log function (exp) for the quantile on the proper scale.

From the non-parametric approach, we can aggregate the standardised data (done per individ-
ual year) and

• use the empirical quantile,

• estimate the quantile from a kernel density estimator by performing root-finding algorithms.

In the case of the kernel estimator we chose the Gaussian kernel. Furthermore the non-parametric
approaches are not limited to only this prototype which is a significant advantage over the para-
metric estimates. The estimates for all approaches are noted in Table 10.1 and plot in Figure 10.1.
From Figure 10.1 the estimates from all four approaches seem to be extremely close to each other.
Especially all estimates besides the log-normal are not distinguishable from the linear interpolation
in Figure 10.1. If we take a look at Table 10.1 then we can confirm that the log-normal estimates are
clearly dominating for all seven estimates, while the other estimate interchange the position of 2nd

highest estimate. Although we do say ‘clearly dominating’, the differences are of an extremely small
order between the highest and lower estimates. The interpretation of this observation is that

• investing time in finding a suitable parametric distribution results in similar numbers as a
distribution-free approach does, which in turn could imply;

63



64 10. Results and Discussion

Table 10.1: Estimates for quantiles and parameters of the LWT of W = A44,S = 1HRR1RR
7.1 , where MLE was performed for

the parameters of the parametric distributions.

Parametric Non-parametric

Log-normal Logistic Empirical Kernel

Date ln(µ) ln(σ) q0.75 µ s q0.75 med. MAD q0.75 q0.75

2012-07-27 0.49 0.23 1.90 0.49 0.126 1.88 1.65 0.34 1.88 1.89

2013 data was not measured for the prototype.

2014-03-20 0.96 0.17 2.93 0.95 0.096 2.88 2.58 0.44 2.89 2.89

2015-03-19 0.98 0.18 3.00 0.98 0.097 2.96 2.66 0.42 2.96 2.96

2016-02-27 0.95 0.19 2.95 0.95 0.106 2.89 2.57 0.42 2.86 2.86

2017-02-14 1.18 0.18 3.69 1.18 0.098 3.62 3.26 0.47 3.58 3.59

2018-03-27 1.76 0.16 6.50 1.76 0.089 6.40 5.79 0.88 6.40 6.40

2019-03-30 1.94 0.15 7.68 1.93 0.083 7.56 6.90 0.98 7.58 7.59

• investing time in the parametric approach is too time consuming for analysis on a greater
scale.

It raises the question what estimates for q0.75 a non-suitable distribution would admit. From Fig-
ure 7.3 we believe it is fair to classify exponential distributions and uniform distributions as bad
fits for the data. If resulting quantile estimates using non-suitable distributions end up similar to
quantile estimates from the suitable distributions, there is more reason to neglect the parametric
approach. Parameter estimation for these non-suitable parametric distributions to the unmodified
data are given in Table 10.2. A comparison between Tables 10.1 and 10.2 instantly shows that the
q0.75 estimates from Table 10.2 are much higher compared to Table 10.1. Even more it shows how
investing time in finding an appropriate parametric family leads to estimates closer to the non-
parametric ones. Despite all this, we should acknowledge that we simply do not and cannot know
what the ‘true’ value of q0.75 is or should be, although the similar estimates from Table 10.1 do seem
persuasive as reasonable approximations.

10.1.2. Predictions of Remaining Lifetime
Aside from quickly visualising the estimated quantiles, Figure 10.1 is not useful for predictions: a
linear extrapolation based on linear interpolation of q0.75 throughout the years will clash with what
we expect to be a smooth monotonic progression of aggregate loss. Specifically this means that a
prediction of q0.75 of a date which is approximately one year later than the date of the last mea-
surement (2019-03-30) is based on the slope of the line segment from 2018-03-27 till 2019-03-30.
Although the final prediction could be based on linear extrapolation, the slope of the last line seg-
ment is not based on the general pattern of progression. Using the scam package and its underlying
functions, we can fit the q0.75 estimates as the response variable with our date of measurements as
the predictor variable. From Figure 10.1 we should expect that the fitted smooth monotone curves
should be very similar in form because the point estimates are close. That is exactly what Figure 10.2
illustrates and more. Using a P-spline basis with dimension d = 4 and order p = 4 (cubic splines) we
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Figure 10.1: Linear interpolation of q0.75 estimates from 2012 – 2019 plotted for the LWT of W = A44,S = 1HRR1RR
7.1 . The

dashed horizontal line is the RWS threshold.

Table 10.2: Estimates for quantiles of the LWT of W = A44,S = 1HRR1RR
7.1 , where MLE was performed for parameters of

non-suitable parametric distributions.

Exponential Uniform

Date q0.75 q0.75

2012-07-27 2.32 2.17

No 2013 data

2014-03-20 3.68 3.77

2015-03-19 3.74 3.39

2016-02-27 3.66 3.65

2017-02-14 4.61 4.69

2018-03-27 8.19 8.33

2019-03-30 9.74 9.72
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Figure 10.2: Linear and polynomial extrapolations of q0.75 estimates from 2012 – 2019 plotted for the LWT of W = A44,S =
1HRR1RR

7.1 after fitting smooth monotone curves with P-splines as basis with dimension d = 4 and order p = 4 (cubic
spline). The curved dashed lines represent the polynomial extrapolation, while the dotted lines represent the linear ex-
trapolation. The dashed horizontal line is the RWS threshold. The top-left corner contains a zoomed in version of the
clutter on the top-right.

find smooth monotone and convex curves as explained in Chapter 9. Figure 10.2 shows the smooth
convex monotone curves and both the linear and polynomial extrapolation. We warn the reader for
the clutter that is shown in Figure 10.2, but have provided a zoomed-in section of the clutter and
also would like to use it to prove the point made in Chapter 9: the closer the polynomial extrapo-
lation is to the provided dates, the more it resembles the linear extrapolation. In addition it proves
another point made about conservatism: the linear predictions of the proposed remaining lifetimes
(PRL) are slightly farther in the future. For the remainder and the reader’s eyesight, however, we
will refrain from plotting as much as we did in Figure 10.2 and provide plots corresponding to one
method. The estimated PRL based on only the LWT per method are given in Table 10.3. From Ta-
ble 10.3 it is evident that the differences in estimated PRL are minimal: the largest difference for the
polynomial extrapolation is 18 days, whereas 23 is the largest for the linear; both per the log-normal
and the logistic method.

A Remark on the Proposed Remaining Lifetimes

For Rijkswaterstaat and the contractors who perform maintenance on roads, one specific day might
be a harsh cut-off and we acknowledge that it is not very desirable. However, the current implemen-
tation does not allow for a mathematically justified confidence interval for the PRL. Future research
could very well explore the possibilities of such intervals.

10.1.3. Predictions with the n − i approach

With respect to the n − i approach, it raises the question how the extrapolations would have been if
we removed the last few quantiles from the sequence of quantiles. The corresponding curves and
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Table 10.3: Estimates for the proposed remaining lifetime (PRL) of the W = A44,S = 1HRR1RR
7.1 based on the LWT.

Threshold Surpassing Date1 PRL

Method Polynomial Linear Polynomial Linear

Log-normal 2020-02-24 2020-04-06 331 days 373 days

Logistic 2020-03-13 2020-04-29 349 days 396 days

Empirical 2020-03-03 2020-04-16 339 days 383 days

Kernel 2020-03-01 2020-04-14 337 days 381 days

Table 10.4: Differences in the estimated proposed remaining lifetime (PRL) of the W = A44,S = 1HRR1RR
7.1 based on the

LWT and excluding the most recent quantile estimate.

Threshold Surpassing Date ∆PRL

Method Polynomial Linear Polynomial Linear

Log-normal 2019-09-16 2020-02-14 161 days 52 days

Logistic 2019-10-06 2020-03-16 159 days 44 days

Empirical 2019-10-08 2020-03-21 147 days 26 days

Kernel 2019-10-07 2020-03-19 146 days 26 days

numbers for i = 1 are given in Figure 10.3 and Table 10.4 for only the log-normal2 plots in Figure 10.3.
The last column of Table 10.4 denotes how much later the threshold is reached compared to the fit
with all quantiles: a ∆PRL of 52 means that data up until 2018 implied a surpassed threshold 52
days before the estimate including 2019 data. For this particular prototype, PRLs calculated using
2019 data too were farther in the future than using data up until 2018. Furthermore the ∆PRL are
surprisingly small: if the estimate from 2019 can be used as a ‘correct’ reference, then in 2018 we
would only have been off by 52 days at max for the prototype.

It should be acknowledged that there is no way to classify if the PRL estimate from 2019 is more
accurate than the one from 2018. The only remark we can add is that small differences between
these estimates from consecutive years is beneficial as it admits consistency throughout extrapola-
tions over the years.

For i = 1 the predictions seem to be reasonable, but for i = 2 this changes drastically. Notice
that by removing the quantile estimates in 2018 and 2019, the remaining quantile estimates do not
seem to be a representation of a proper monotone increasing convex curve. If the estimates were
more in line with the usual behaviour, the predictions are not as extreme. To showcase this, we
manually modify the values for the log-normal approach: the problem mainly lies in the three in-
termediate values in 2014 – 2016. Figure 10.4 shows how forcing a curve through the manipulated
points and the other points leads to a hugely improved fit over the latter linear and polynomial fits
— which in this case coincide. Figure 10.4 should help with emphasising the value in accuracy of

2The choice for the log-normal is arbitrary: due to the small differences in estimates any other approach would also have
brought the point across, yet it makes Figure 10.3 less cluttered.
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Figure 10.3: Linear and polynomial extrapolations of log-normal q0.75 estimates from 2012 – 2018 plotted for the LWT
of W = A44,S = 1HRR1RR

7.1 after fitting smooth monotone curves with P-splines as basis with dimension d = 4 and order
p = 4 (cubic spline). The curved dashed line represents the polynomial extrapolation, while the dotted line represents the
linear extrapolation.

the GPS mechanism: the curve generally tends more towards the logical assumption (montone in-
creasing convex) as the accuracy increases, hence towards a more accurate PRL approximation as
the accuracy increases. Despite that, Figure 10.4 also illustrates that the further away the last used
estimated quantile is from the threshold, the more the predicted PRL is off from the reference PRL
(2019). Furthermore we see how the conservative linear extrapolation differs more than the poly-
nomial extrapolation with respect to the reference PRL: the former indicates a PRL around the third
quarter of 2023, while the latter indicates a PRL during the second quarter of 2020 — much more in
line with the reference PRL.

Whereas the PRL estimates in Table 10.3 between the polynomial and linear predictions shows
small differences, these differences are much more apparent in Table 10.4. The reason for that is that
the threshold of 10 was closer under the conditions of the latter; it agrees with how the polynomial
and linear predictions are close when the predictor variable is near the support of the smooth curve.

10.1.4. Predictions using the RWT
All results mentioned up till now were for the LWT of the prototype road section. For maintenance,
the official documents which state the threshold [6 and 12] consider both wheel tracks. This can
be easily translated to the data we have at hand, while the lane-wide aggregate loss is much more
ambiguous in terms of definitions. The reason for the initial focus on the LWT was arbitrary: in
Chapter 7 we opted to show concepts for the LWT as the general ideas are similar for the RWT.

The naive approach – not bad per se — of incorporating RWT data is to find the date for which
the data averaged over the LWT and RWT surpass the threshold. It is the most obvious manner for
the resulting PRL to be based on both wheel tracks and in fact is mentioned in DHV et al. [12]. How-
ever, we do not agree with this methodology as taking the average in such a case will generally result
in lower quantiles for p > 0.5. That is, averaging will diminish the observed severity in the individual
wheel tracks. This is contrary to the threshold, which implicitly looks at the worst performing 25%
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Figure 10.4: Linear and polynomial extrapolations of log-normal and modified log-normal q0.75 estimates from 2012 –
2017 plotted for the LWT of W = A44,S = 1HRR1RR

7.1 after fitting smooth monotone curves with P-splines as basis with
dimension d = 4 and order p = 4 (cubic spline). The curved dashed lines represent the polynomial extrapolation, while
the dotted lines represent the linear extrapolation. For the regular log-normal estimates these extrapolations coincide.
The dashed horizontal line is the RWS threshold.

of the road section.

Rather, the approach we would commend is to group the data for the LWT and RWT and per-
form density estimation on the pooled data. A PRL based on the joint data is naturally based on both
wheel tracks, and we do not downplay the severity of ravelling by averaging: this happens specifi-
cally if the severities in both wheel tracks are not of the same order of magnitude. Nevertheless we
do respect the respective interpretation of users of DOS-LCMS data and their decisions in how the
data should be interpreted, but we choose a different practice. In this case, by observation of a lo-
cation difference in the LWT and RWT from Figure 7.3, the density will likely be a mixed-density or
at the very least be bimodal. Figure 10.5 indeed shows the bimodality by aggregating the LWT and
RWT data.

For a potential parametric approach for the aggregated data, in general it is possible to find a
mixed parametric density. For the sake of presenting results for multiple road sections, however,
such a step is an obstacle. The logical circumvention is then to perform non-parametric methods
in order to present the progression of aggregate loss. In particular when observing that our suitable
parametric densities result in very similar quantile estimates as the non-parametric approach with
respect to the prototype, the latter approach is more favourable.

A familiar problem emerges if we were to use the mixed data from the prototype. Mixing the data
results in estimates which showed no monotonic convex increasing pattern, shown in Table 10.5
and Figure 10.6. In particular, the threshold of 10 would have been reached in 2018 already, while
the preceding q0.75 estimates would have indicated a maintenance required over 14(!) years later
seen in Figure 10.6. This should yet again stress the significance of a pattern of convexity for a proper
PRL prediction. For these estimates specifically, it is unsettling to see how the values in years 2014 –
2016 steadily decrease. This problem will be prominent in a later Section as well, but an attempt to
tackle it along with other emerging problems will be given in § 10.3.
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Figure 10.5: Kernel density approximations of mixing LWT and RWT from 2012 – 2019 plotted for W = A44,S = 1HRR1RR
7.1 .

The left plot shows density approximations per year, while the right one shows the density estimation of the aggregated
standardised data over all respective years.

Table 10.5: Kernel q0.75 estimates of W = A44,S = 1HRR1RR
7.1

Date LWT RWT Mixed

2012-07-27 1.89 3.31 2.49

No 2013 data

2014-03-20 2.89 5.08 4.67

2015-03-19 2.96 4.87 4.41

2016-02-27 2.86 4.21 3.86

2017-02-14 3.59 5.31 4.99

2018-03-27 6.40 12.00 10.25

2019-03-30 7.59 12.70 12.18
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Figure 10.6: Polynomial extrapolations of kernel q0.75 estimates for mixed LWT and RWT data from 2012 – 2017 plotted
for W = A44,S = 1HRR1RR

7.1 after fitting smooth monotone curves with P-splines of dimension d = 4 and order p = 4
(cubic spline). The curved dashed lines represent the polynomial extrapolations. The dashed horizontal line is the RWS
threshold.

10.1.5. Comparing Wheel Tracks and Lanes
For the prototype we have seen that the LWT and RWT showed a difference significant enough to
see that the mixed density is multimodal. It brings up the issue of whether this can be observed
systematically or not. Additionally we can analyse the differences per lane given that there are at
least two lanes for a road section. To illustrate the difference we will explore the sample year q0.75

values of the data for both wheel tracks for every road section and every year that is available for W =
A44. For a non-skewed representation of the results, we exclude the road sections associated with
engineering structures and also exclude measurements from all road sections after maintenance
has been performed3.

The results for W = A44 are summarised in Figure 10.7. It is clear that for W = A44, the aggregate
loss of the LWT generally is lower than on the RWT for the 1RR. It is slightly harder to see for the 2RR
lane. As by logical reasoning the 2RR lane seems to suffer more from aggregate loss than the 1RR
lane due to the nature of the traffic4. From 2016 onward there seems to be no sign of 2RR data, but
this corresponds to the fact that (partial) maintenance had been executed in 2016.

Figure 10.7 also indicates that our previously determined maintenance dates from the adminis-
tration might be incomplete if not wrong, or that the DOS-LCMS data we used was invalid. Notice
how in 2016 and 2017 for the 1RR the sample year empirical q0.75 seem to be close to 0 for both
LWT and RWT, indicating that maintenance has been executed. However, we have already excluded
these measurements as a precondition based on our prior information, which makes the inclusion
of such values peculiar.

Unlike for the contrasts per lane, the discrepancy between the wheel tracks cannot be explained
by traffic flow only. Even though the phenomenon cannot be directly clarified from the data we have

3Usually the exact date of maintenance is complicated to retrieve. That is why we subtract one year from the actual date
and fix this date whereafter measurements are dropped.

4The rightmost lane(s) have to endure more load from trucks and by traffic rules (in the Netherlands) in general.



72 10. Results and Discussion

LWT RWT

1R
R

2R
R

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

6.
0

6.
5

7.
0

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

6.
0

6.
5

7.
0

0%

5%

10%

15%

0%

5%

10%

15%

Hectometer Post

Year

2012

2014

2015

2016

2017

2018

2019

A44: Progression of q0.75 

Figure 10.7: Sample empirical q0.75 values per year per wheel track and per lane plotted for the road sections of W = A44.

at our hands and therefore is also out of scope, Léon Schouten has proposed that the cause might
lie in the cross slope of a road. The cross slopes are introduced such that (rain)water or liquids in
general can drain from the road. If this proposition turns out to be true, we would be able to deduce
the direction of which the cross slope drains water towards by viewing the most ravelled wheel track.

10.2. Results for Roads
Now that the prototype has been discussed, we will attempt to extend these results to the corre-
sponding road and even other roads. In particular we would like to see what the PRL estimates give
and if there is consistency with the n − i approach. The road sections which are considered have to
satisfy the properties mentioned in Chapter 6 and which we will reiterate:

• The intensity of ravelling surpasses or is close to 10% for the empirical quantile in some year,
allowing comparisons with the n − i approach for at least i = 1.

• There are at least n = 5 values of consecutive q0.75 estimates in order to fit the curve for the n
and n −1 percentiles.

• The data contains Obstacle 2 of § 5.2.3, such that a workaround can be presented.

The first condition is quite easily satisfied if we already found one prototype of some road, since the
state of the road across its sections is quite comparable conditioned on the sections which have not
undergone maintenance.

We will adhere to the interpretation of the LWT and RWT being the most important indicators
and decide to look at the combined values of the LWT and RWT per year. As location differences
of the LWT and RWT values cannot be assumed to be near 0, our current framework with the para-
metric approach will not be able to provide reasonable estimates. Therefore we will approximate
values of q0.75 per year by the non-parametric approach using the kernel method5. Smooth convex

5The empirical estimates were also checked, but showed minimal differences to the kernel estimates.
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monotonic curves will be fit to these estimates using P-splines of order 4. The predictions will be
based on polynomial extrapolation, as it performs as linear extrapolation at worst.

10.2.1. A44
The first road to consider will be W = A44, associated to our prototype. It had its most recent pave-
ment rehabilitation on 2002-09-09 — or sometime close to this date for that matter. The DOS-LCMS
data that is available to us for the W = A44 is from one stretch of road. The intermediate mainte-
nance it has undergone is given in Table A.2 in Appendix A.

Table 10.6 provides an overview of estimates for W = A44 and its road sections S j = 1HHR1RR
j .

It should be viewed in combination with Figure 10.9, of which a PDF file illustrating each plot in
greater detail can be found on the Github page. Recall that Table 10.6 and Figure 10.9 are based on
the joint data of LWT and RWT per year. That might clarify discrepancies between visualisations in
Figure 10.9 and the ones shown earlier in Figures 10.2 and 10.3.

From both Table 10.6 and Figure 10.9 we generally see how the computed q0.75 estimates are
not sufficiently convex in pattern. Additionally the n −1 prediction suffers from inconsistency with
respect to the n prediction due to this lack of convexity in the estimates. The lack of consistency
can be deduced by observing the values of |∆PRL|: the lower this measure, the more consistent the
prediction is in consecutive years. Possible solutions to tackle this problem will be discussed in
§ 10.3 along with other emerging problems.

Table 10.6: Lifetime predictions for W = A44 and its road sections using kernel approximations and polynomial extrapo-
lations. n denotes the number of consecutive q0.75 values used for the calculation, PRL = Proposed Remaining Lifetime
(days relative to the date of the last percentile used), ∆PRL = difference in PRL between prediction n and n −1 (negative
implies that prediction n − i was |∆PRL| further in future time).

C.way Hm Lane n q0.75 Age Date TSD PRL ∆PRL

1HRR 2.1 1RR 5 7.49 14.44 2017-02-14 2021-03-11 1486 -568

1HRR 2.2 1RR 5 6.01 14.44 2017-02-14 2025-01-11 2888 -12

1HRR 2.4 1RR 5 5.68 14.44 2017-02-14 2026-06-04 3397 157

1HRR 2.5 1RR 5 5.57 14.44 2017-02-14 2022-07-16 1978 -4734

1HRR 2.6 1RR 5 5.34 14.44 2017-02-14 2027-09-04 3854 -246

1HRR 2.7 1RR 5 9.92 14.44 2017-02-14 2017-10-02 230 -857

1HRR 3 1RR 5 9.09 14.44 2017-02-14 2019-03-15 759 -595

1HRR 3.2 1RR 5 9.08 14.44 2017-02-14 2018-07-31 532 -2053

1HRR 3.7 1RR 5 8.86 14.44 2017-02-14 2019-09-12 940 -4730

1HRR 3.9 1RR 5 7.98 14.44 2017-02-14 2020-04-25 1166 -2668

1HRR 4.1 1RR 5 9.12 14.44 2017-02-14 2018-12-14 668 -1179

1HRR 4.2 1RR 5 9.91 14.44 2017-02-14 2017-06-01 107 -108

1HRR 4.7 1RR 5 6.45 14.44 2017-02-14 2021-05-19 1555 -11055

1HRR 4.8 1RR 5 5.42 14.44 2017-02-14 2025-08-01 3090 -24218

https://github.com/liyongg/asphalt
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C.way Hm Lane n q0.75 Age Date TSD PRL ∆PRL

1HRR 4.9 1RR 6 9.47 15.56 2018-03-27 2018-07-12 107 -1336

1HRR 5 1RR 5 4.52 14.44 2017-02-14 2031-08-23 5303 -14421

1HRR 5.1 1RR 5 5 14.44 2017-02-14 2023-05-20 2286 -17354

1HRR 5.2 1RR 6 9.06 15.56 2018-03-27 2018-09-08 165 -1968

1HRR 5.3 1RR 6 7.79 15.56 2018-03-27 2019-01-29 308 -1945

1HRR 5.4 1RR 6 7.80 15.56 2018-03-27 2019-02-09 319 -3979

1HRR 5.5 1RR 6 9.36 15.56 2018-03-27 2018-09-20 177 -9355

1HRR 5.6 1RR 5 5.70 14.44 2017-02-14 2024-05-11 2643 -2890

1HRR 5.7 1RR 6 9.42 15.56 2018-03-27 2018-07-13 108 -1417

1HRR 5.8 1RR 6 8.80 15.56 2018-03-27 2018-10-13 200 -4841

1HRR 6.4 1RR 5 7.29 14.44 2017-02-14 2019-05-25 830 -2183

1HRR 6.5 1RR 6 9.69 15.56 2018-03-27 2018-08-14 140 -8019

1HRR 6.6 1RR 5 5.74 14.44 2017-02-14 2025-09-22 3142 -692

1HRR 6.8 1RR 6 4.28 15.56 2018-03-27 2034-11-04 6066 2020

1HRR 6.9 1RR 5 5.59 14.44 2017-02-14 2026-09-11 3496 -502

1HRR 7.1 1RR 5 4.96 14.44 2017-02-14 2029-06-13 4502 -264

1HRR 7.2 1RR 5 6.04 14.44 2017-02-14 2020-10-06 1330 -3791

1HRR 7.3 1RR 5 5.20 14.44 2017-02-14 2023-11-03 2453 -3874

1HRR 7.4 1RR 5 6.33 14.44 2017-02-14 2024-12-04 2850 -771

10.2.2. A50
A second road we wish to analyse is W = A50, of which we in fact have two stretches of the road.
The first stretch ranges from hectometer 139.9 – 148.8 and has low expected severity, and the second
stretch ranges from hectometer 202.9 - 205.5 of which the expected severity is higher. We will treat
these two separately.

139.9−148.4
According to KernGIS, the pavement rehabilitation date was around 2012-09-17. As the available
DOS-LCMS data is from 2012 – 2019, the initial expectation is that we will not see a high intensity
of ravelling. This indeed turns out to be the case seen in Figure 10.8. It visualises how for each
road section defined by its starting hectometer value, the empirical quantile of the sample com-
puted from each year barely increases. For example, the peak for S = 1HRR1RR

144.6 indicates that for
the 1RR lane from hectometre post 144.6 till 144.7, the sample (empirical) q0.75 of that year for the
LWT was around 4%. The hectometres for which no lines are drawn at all correspond to the engi-
neering structures which, as we recall, have different build-up of wear. Figure 10.8 includes road
sections with measurements which were taken at least one year later than its most recent mainte-
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Figure 10.8: q0.75 values per year per wheel track and per lane plotted for W = A50 and road sections Si j = 1HRRi
j for

i ∈ {1RL, 2RL, 1RR, 2RR} and 139.9 ≤ j ≤ 148.4.
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Figure 10.9: Polynomial extrapolations of q0.75 estimates plotted for W = A44 and its road sections based on the joint data of LWT and RWT. The blue curves represent the fits with
n −1 q0.75 values, while the red curves use n q0.75 values; all curves are fit using P-splines of order 4. The dashed curves are the extrapolations based on the solid curves. The dashed
horizontal lines represent the RWS threshold.
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nance. The reason for this, as Léon Schouten suggests, is that the DOS-LCMS measurements can
be unreliable for new surfaces. Aside from the odd value of S = 1HRR1RR

144.6 in 2019 the road sections
from this stretch of the road seem not to show an increase significant enough to be able to apply our
prediction scheme.

To confirm or disprove this observation, let us consider S = 1HRR1RR
145.5. This road section has

undergone its last maintenance on 2013-03-19 according to Table B.2 in Appendix B. In Figure 10.10
we have fit a smooth monotone convex curve using P-splines of order 4 and we see something
surprising. Notice that for a prediction using all available n = 6 estimates of q0.75, the prediction
seems less realistic than using n = 5 estimates of q0.75. This can be explained by the value of the last
q0.75 estimate, which is relatively much lower than initially forecast in the preceding year. It goes to
show that a single additional point estimate can change the prediction drastically for a small set of
data points, which is yet another problem which will be discussed in § 10.3. We will not provide the
predictions of lifetimes in Tables of Figures for this stretch of the road as it makes little sense to do
it for these low values as observed in Figure 10.10.

202.9−205.5
If once again we rely on KernGIS, the date of the pavement rehabilitation was around 2002-07-12. It
indicates that we can expect more intensely ravelled road sections. Figure 10.11 indeed does show
that this is the case for lane 1RL, whereas 2RL shows significantly less aggregate loss. It implies that
we should expect to see more sensible predictions for the 1RL than the 2RL lane, if the latter ad-
mits predictions at all. S = 1HRL1RL

204.8 is an interesting outlier because in Figure 10.11, the jump in
aggregate loss is the most extreme in both the LWT and RWT. We show the progression on a meter
level in Figure 10.12. The plot could either signal the margin of error in GPS accuracy of the mea-
surements, or it could mean that the build-up of aggregate loss gradually shifts along the lane. More
importantly though is the incredibly high values for aggregate loss, reaching over 40% on the RWT. A
quick look-up in the provided DOS-LCMS data does not show multiple measurements for this year,
so assuming that the measurements are valid, it certainly does explain our observations from Fig-
ure 10.11. An overview of lifetime predictions for this stretch of W = A50 given in Figure 10.15, and
Table 10.7 in Appendix B.

Table 10.7: Lifetime predictions for W = A50 and its road sections using kernel approximations and polynomial extrapo-
lations. n denotes the number of consecutive q0.75 values used for the calculation, PRL = Proposed Remaining Lifetime
(days relative to the date of the last percentile used), ∆PRL = difference in PRL between prediction n and n −1 (negative
implies that prediction n − i was |∆PRL| further in future time).

C.way Hm Lane n q0.75 Age Date TSD PRL ∆PRL

1HRL 203.2 1RL 5 5.59 14.52 2017-07-04 2019-09-09 797 722

1HRL 203.3 1RL 5 4.13 14.52 2017-07-04 2022-12-10 1985 -1979

1HRL 203.4 1RL 5 4.96 14.52 2017-07-04 2020-11-07 1222 -2564

1HRL 203.5 1RL 5 7.44 14.52 2017-07-04 2018-08-22 414 275

1HRL 203.6 1RL 5 5.02 14.52 2017-07-04 2021-09-24 1543 801

1HRL 203.7 1RL 6 9.02 15.51 2018-07-02 2018-11-15 136 -1546

1HRL 203.8 1RL 6 8.48 15.51 2018-07-02 2018-12-22 173 -1517

1HRL 203.9 1RL 6 5.53 15.51 2018-07-02 2020-03-02 609 -1417
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C.way Hm Lane n q0.75 Age Date TSD PRL ∆PRL

1HRL 204 1RL 6 5.03 15.51 2018-07-02 2020-05-23 691 -8326

1HRL 204.1 1RL 6 6.05 15.51 2018-07-02 2020-03-08 615 -3621

1HRL 204.2 1RL 5 4.80 14.52 2017-07-04 2019-10-28 846 -562

1HRL 204.3 1RL 6 9.22 15.51 2018-07-02 2018-09-25 85 -788

1HRL 204.4 1RL 6 8.88 15.51 2018-07-02 2018-12-06 157 -502

1HRL 204.5 1RL 5 4.09 14.52 2017-07-04 2021-11-26 1606 -74

1HRL 204.6 1RL 5 5.74 14.52 2017-07-04 2021-06-23 1450 987

1HRL 204.7 1RL 5 7.58 14.46 2017-06-12 2018-07-03 386 161

1HRL 204.8 1RL 5 9.95 14.46 2017-06-12 2017-06-29 17 37

1HRL 205.5 2RL 5 3.18 14.99 2017-07-04 2021-01-15 1291 -278

10.2.3. A6
The last road which we wish elaborate on is W = A6. Figure 10.13 allows us to gain an idea of its
situation. The most staggering part in the visualisation is S = 1HRR1RR

285.8. A meter level plot is given
in Figure 10.14. Aside from the non-optimal alignment of the ‘bobble’ centered at the 72nd meter,
the maximum aggregate loss on meter level from 2017 to 2018 and 2019 seems to have increased by
a factor of 2(!). From the perspective of q0.75, the sample quantile (empirical) on the RWT increased
from approximately q0.75 = 5 to approximately q0.75 = 12.8 in 2018, and q0.75 = 20.5 in 2019. The
difference between the LWT and RWT for this road section is stark, and especially in 2019: whereas
the LWT seems to only suffer extreme aggregate loss at meters 40 to 50, the RWT shares the same
extremeness for meters 15 to 50. This could partially be explained by Figure 10.14: the difference in
ravelling build-up is quite evident. While the LWT showed the ‘bobble’ much clearer and in earlier
stages, its other meters were quite undamaged. The RWT on the other hand did not show this ‘bob-
ble’ as clearly, but already depicted that a longer stretch of its track underwent ravelling build-up.

For W = A6, we found a total of 270(!) possible extrapolations. In line with the first stretch of
W = A50, we will only show the results for the most ravelled sections. Specifically we condition on
road sections which suffered more than 6% aggregate loss in either wheel track and in either lane for
some year. The interested reader can view the PDF file on the Github page which contains all of the
extrapolations. Having said that, Figure 10.16 shows the extrapolations for the remaining sections
and Table 10.8 contains the exact corresponding values.

Table 10.8: Lifetime predictions for W = A6 and its road sections using kernel approximations and polynomial extrapo-
lations. n denotes the number of consecutive q0.75 values used for the calculation, PRL = Proposed Remaining Lifetime
(days relative to the date of the last percentile used), ∆PRL = difference in PRL between prediction n and n −1 (negative
implies that prediction n − i was |∆PRL| further in future time).

C.way Hm Lane n q0.75 Age Date TSD PRL ∆PRL

1HRR 280.3 1RR 8 6.73 13.41 2019-04-12 2022-01-23 1017 -398

https://github.com/liyongg/asphalt
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C.way Hm Lane n q0.75 Age Date TSD PRL ∆PRL

1HRR 280.8 1RR 8 5.94 13.41 2019-04-12 2021-01-07 636 -136

1HRR 283.8 1RR 8 5.79 13.41 2019-04-12 2020-12-19 617 -124

1HRR 283.8 2RR 5 5.60 10.34 2016-03-16 2018-12-24 1013 -3423

1HRR 285.8 1RR 7 7.76 12.48 2018-05-07 2019-02-08 277 -291

1HRR 285.8 2RR 5 5.56 10.34 2016-03-16 2019-03-31 1110 -13961

1HRR 288.6 1RR 8 3.54 13.62 2019-04-12 2023-01-30 1389 119

1HRR 288.7 1RR 8 3.49 13.62 2019-04-12 2023-05-25 1504 128

1HRR 288.7 2RR 8 7.55 13.63 2019-04-14 2019-11-11 211 141

1HRR 288.8 1RR 8 3.48 13.62 2019-04-12 2023-07-01 1541 -10

1HRR 288.8 2RR 8 9.14 13.63 2019-04-14 2019-05-25 41 92

1HRR 288.9 1RR 8 3.51 13.62 2019-04-12 2023-08-26 1597 111

1HRR 288.9 2RR 8 6.61 13.63 2019-04-14 2020-03-09 330 176

1HRR 290.4 1RR 8 2.58 13.62 2019-04-12 2024-12-01 2060 255

1HRR 290.4 2RR 8 4.83 13.63 2019-04-14 2021-02-23 681 177

1HRR 291.1 1RR 8 2.42 13.62 2019-04-12 2025-01-27 2117 433

1HRR 291.1 2RR 8 5.01 13.63 2019-04-14 2021-02-27 685 150

1HRR 293.4 1RR 8 3.26 13.62 2019-04-12 2024-11-07 2036 -505

1HRR 293.4 2RR 8 4.97 13.63 2019-04-14 2021-02-16 674 139

1HRR 293.5 1RR 8 3.63 13.62 2019-04-12 2023-08-26 1597 -146

1HRR 293.5 2RR 8 5.57 13.63 2019-04-14 2020-09-06 511 151

1HRR 293.7 1RR 8 2.66 13.62 2019-04-12 2025-06-15 2256 99

1HRR 293.7 2RR 8 4.08 13.63 2019-04-14 2022-02-28 1051 21

1HRR 293.8 1RR 8 2.48 13.62 2019-04-12 2026-08-22 2689 -9378

1HRR 293.8 2RR 8 4.71 13.63 2019-04-14 2021-03-12 698 262

1HRR 293.9 1RR 8 2.55 13.62 2019-04-12 2025-08-29 2331 266

1HRR 293.9 2RR 8 5.30 13.63 2019-04-14 2020-09-12 517 258

1HRR 294.0 1RR 8 3.18 13.62 2019-04-12 2024-07-02 1908 -118

1HRR 294.0 2RR 8 4.80 13.63 2019-04-14 2021-02-27 685 223
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Figure 10.10: Polynomial extrapolations of kernel q0.75 estimates from 2013 – 2019 plotted for the the mixed data (LWT
and RWT) of W = A50,S = 1HRR1RR

145.5 after fitting smooth monotone curves with P-splines as basis with dimension d = 4
and order p = 4 (cubic spline). The dashed curved lines represent the extrapolations, while the dashed horizontal line is
the threshold from RWS.
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Figure 10.11: Sample empirical q0.75 values per year per wheel track and per lane plotted for the road sections of W = A50.
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Figure 10.12: Aggregate loss values per year per wheel track plotted for W = A50,S = 1HRL1RL
204.8.
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Figure 10.13: Sample empirical q0.75 values per year per wheel track and per lane plotted for the road sections of W = A6.
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Figure 10.14: Aggregate loss values per year per wheel track plotted for W = A6,S = 1HRR1RR
285.8.



84
10.R

esu
lts

an
d

D
iscu

ssio
n

1HRL - 203.2 - 1RL 1HRL - 203.3 - 1RL 1HRL - 203.4 - 1RL 1HRL - 203.5 - 1RL 1HRL - 203.6 - 1RL 1HRL - 203.7 - 1RL

1HRL - 203.8 - 1RL 1HRL - 203.9 - 1RL 1HRL - 204 - 1RL 1HRL - 204.1 - 1RL 1HRL - 204.2 - 1RL 1HRL - 204.3 - 1RL

1HRL - 204.4 - 1RL 1HRL - 204.5 - 1RL 1HRL - 204.6 - 1RL 1HRL - 204.7 - 1RL 1HRL - 204.8 - 1RL 1HRL - 205.5 - 2RL

Figure 10.15: Polynomial extrapolations of q0.75 estimates plotted for W = A50 and its road sections based on both LWT and RWT. The blue curves represent the fits with n −1 q0.75
values, while the red curves use n q0.75 values; all curves are fit using P-splines of order 4. The dashed curves are the extrapolations based on the solid curves. The dashed horizontal
lines represent the RWS threshold.
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Figure 10.16: Polynomial extrapolations of q0.75 estimates plotted for W = A6 and some of its road sections based on both LWT and RWT. The blue curves represent the fits with
n −1 q0.75 values, while the red curves use n q0.75 values; all curves are fit using P-splines of order 4. The dashed curves are the extrapolations based on the solid curves. The dashed
horizontal lines represent the RWS threshold.
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10.3. Emerging Problems
After having expanded the concept to multiple roads and their sections, we have seen problems
emerge in different orders of magnitude. The following interrelated problems are apparent from
§ 10.2, in increasing order of complexity/resolution:

1. With the current approach, predictions using data from both wheel tracks could be less con-
sistent than when using either individually.

2. There are not many road sections satisfying our conditions mentioned earlier and in Chap-
ter 6.

3. The consistency between the n−1 prediction and the n prediction is extremely dependent on
the progressed n-th value of q0.75 .

4. The general pattern of convexity is lacking in such sense that a prediction of surpassing q0.75 =
10 is complicated.

We will attempt to provide possible methods to overcome these problems. For each problem a clar-
ification can be given and we will proceed to do so.

For the first problem one should recognise that the current approach of using both wheel tracks
depends on the consistency in pattern of consecutive q0.75 estimates for the mixed data. Our inter-
pretation as of now joins the LWT and RWT data and regards it as one. Another method we suggest
is similar to the ‘averaging’ mentioned before, but then in terms of the threshold surpassing date.
If the LWT and RWT separately truly are more consistent in consecutive q0.75 estimates, modelling
these should then be done separately which gives two distinct6 threshold surpassing dates. If it is
desired to base the maintenance on both wheel tracks, a naive but efficient estimated threshold
surpassing date would lie exactly in between the two TSDs from the LWT and RWT. However, Geurt
Jongbloed points out that the minimum of the two TSDs might be more natural to choose for.

The second problem is frankly entirely dependent on the current amount of data we have. As
time progresses and more DOS-LCMS data is available, more road sections will be available for
proper analysis. That alone is the reason why this problem could initially be considered the least
complicated. However, we can understand if the reader thinks this not a fulfilling suggested so-
lution due to its impracticality. For another more practical suggestion one really needs to wonder
why there are not enough consecutive q0.75 in the first place. We believe it can generally be agreed
upon that for road sections which have undergone maintenance, there is not much we can try. The
other cause of not enough consecutive q0.75 values comes from the fact that we are trying to esti-
mate the date on which q0.75 = 10, which renders estimates greater than 10 useless: one can opt to
decide to perform maintenance in the succeeding year of observing the estimate being larger than
10. Combined with the results we have seen in § 10.2 it naturally implies that often the jump in
q0.75 was hardly possible to predict given the known sequence of q0.75. This in turn could mean that
q0.75 = 10 is too low of a threshold to predict under the current conditions7 — assuming the lack of
convexity in preceding estimates. Recall that this threshold was adhered to as these were the offi-
cial ones, but an in-depth analysis of the norm using DOS-LCMS data has not been performed yet.
This is a reason to consider analysing which norm with respect to the gathered DOS-LCMS data is
actually being abode by.

As for the third problem — even though it is stating the obvious — deserves to be mentioned
separately in potentially practical use for Rijkswaterstaat. If hypothetically some road section in
2020 is prognosed due for maintenance in 2030, whereas in 2021 the prognosis admits that main-
tenance is required in 2022 — or worse, 2021 — it is imaginably extremely complicated to plan

6Not in general, but it is highly unlikely for these two end up as the exact same extrapolated date.
7Official documents specifically condition on a 100m road section, of which we want to highlight the fact that they do not

mention a road segment of arbitrary length in general.
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around such cases for an executive agency such as Rijkswaterstaat. The solution to this, however,
can only be realised if the threshold turns out to be higher than q0.75 = 10 providing more flexibility
in potentially unfavourable behaviour in the DOS-LCMS data, or if the pattern in convexity is more
apparent in q0.75 estimates. The latter is clearly directly related to problem four which we will soon
discuss, but could also be resolved by providing more data to estimate q0.75. The DOS-LCMS data as
of now is gathered on a yearly basis, but doing so biannually (twice a year) could significantly help
in recognising noise in the data.

The fourth and final problem we have observed is in one sense the most complex and in another
sense quite straightforward given our current knowledge. A first suggestion would be to always
include a fixed point q0.75 < 1 on the date of the most recent pavement rehabilitation, in order to
enhance the convexity in the pattern. This is justifiable, as the aggregate loss progresses relatively
slow when the asphalt was just resurfaced as seen in Figure 10.8. The idea adds one q0.75 value and
could have resulted in more road sections accessible for analysis. The only potential problem with
this suggestion is that it assumes proper administration, and this can imaginably be hard to register
correctly for such a great amount of road sections. The second suggestion is a rerun of what we have
done for the q0.75 estimates, but on individual meter level. Indeed, it is possible to also fit smooth
convex monotone curve fits on a 1m — or technically a 1/100th length — level. Initially we planned
to circumvent the noise in data by considering the complete 100 aggregate loss values per year and
consider its progression in time. However, from the results of W = A44 in particular, it appears that
even that sometimes does not find a way around the not monotonically increasing pattern. By doing
so, we are forcing the behaviour we seek in regard of individual meter level, but should be wary of
how this tends to average aggregate loss values, which in turn can downplay the severity of ravelling.

As the last problem is such an influential one, we will show what the results are of putting mono-
tonic increasing and convexity constraints on a 1m level for W ∈ {A44, A50, A6}. Figure 10.17 shows
the effect of this on W = A44 and the first thing to notice is that ∆PRL appears to be much smaller
relative to the prior values in Table 10.6. If this were to be true in general, the third problem (large
values for ∆PRL) would be partially solved. Do note that for W = A44, S = 1HRR1RR

2.5 , we see a failure
of the polynomial extrapolation with all n q0.75 estimates. This was not unexpected as we already
warned for this potential problem in Chapter 9, but in cases like these we could opt for the linear
extrapolation. Table A.3 in Appendix A provides the exact values of Figure 10.17 similar to Table 10.6.
For the remaining roads, the visualisations are given in Figures 10.18 and 10.19 while the exact val-
ues are provided in Tables B.3 and C.3 in Appendices B and C. Figures 10.17 to 10.19 should be
compared to Figures 10.9, 10.15 and 10.16 on Pages 76, 84 and 85.
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Figure 10.17: Polynomial extrapolations of q0.75 estimates plotted for W = A44 and its road sections based on both LWT and RWT, where the data was transformed on 1 meter level
under the constraints of monotonic increasing and convex. The blue curves represent the fits with n −1 q0.75 values, while the red curves use n q0.75 values; all curves are fit using
P-splines of order 4. The dashed curves are the extrapolations based on the solid curves. The dashed horizontal lines represent the RWS threshold.
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Figure 10.18: Polynomial extrapolations of q0.75 estimates plotted for W = A50 and its road sections based on both LWT and RWT, where the data was transformed on 1 meter level
under the constraints of monotonic increasing and convex. The blue curves represent the fits with n −1 q0.75 values, while the red curves use n q0.75 values; all curves are fit using
P-splines of order 4. The dashed curves are the extrapolations based on the solid curves. The dashed horizontal lines represent the RWS threshold.
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Figure 10.19: Polynomial extrapolations of q0.75 estimates plotted for W = A6 and its road sections based on both LWT and RWT, where the data was transformed on 1 meter level
under the constraints of monotonic increasing and convex. The blue curves represent the fits with n −1 q0.75 values, while the red curves use n q0.75 values; all curves are fit using
P-splines of order 4. The dashed curves are the extrapolations based on the solid curves. The dashed horizontal lines represent the RWS threshold.
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Conclusion and Recommendations

Conclusion
The main question which we wanted to answer was the following:

Main Question

Given DOS-LCMS data over multiple years from a road section, how can we predict its corre-
sponding remaining lifetime?

The lifetime of a road section is currently defined as:

Threshold (Verra et al. [6] and DHV et al. [12])

If more than 25% of a road segment (approximately 100 m) measures an aggregate loss per-
centage of at least 10%, the corresponding road segment needs maintenance.

To answer the main question, we have constructed two fundamental steps introduced in Chapter 6:

1. Finding the 75th percentile based on the data.

2. Fit the progression of 75th percentiles to a monotonic increasing convex curve.

For each road section it is possible to handle the first step in a parametric or non-parametric method.
The parametric approach is appealing in the sense that the quantiles can be computed explicitly,
but definitely needs manual (human) inspection if one does not want to rely on distribution fit-
ting algorithms in statistical software packages. For an immediate overview of an entire road it is
simply not viable to find unique data transformations per road to fit proper parametric distribu-
tions. Additionally the little discrepancy between the parametric and non-parametric estimates of
q0.75 found for the prototype supports the assumption that finding such parametric distributions
is perhaps too time consuming for large scale analysis. Therefore it is advisable to work with non-
parametric estimates for their time-efficiency, showing barely any difference in estimates computed
using manpower with respect to the prototype.

The second step can be realised using P-splines to construct a function which tries to capture
the general pattern admitted from the 75th percentiles found in the first step. Although the con-
straints of monotonic increasing and convexity can be asked, whether the curve fit is simply linear
will eventually be entirely dependent on the pattern of the estimates. Fitting an increasing curve
is not difficult, as the most trivial way to fit such a line is by simple linear regression on the esti-
mates. The result of the convexity condition, however, is the part which is extremely dependent on

91
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the data. We have seen that if the general pattern does not seem to be convex, the only fit that can
be acquired is the straight — though increasing — line. While in theory a linear fit is convex, it does
not coincide with the pattern we expect to see for severely ravelled road section in particular. If such
a convex pattern is lacking, putting constraints on a meter level proved to be quite helpful. Yet we
did not thoroughly analyse the differences in quantile approximations for the roads we applied this
to.

For extrapolations we have seen that the predictions are consistent the closer we are to the Rijks-
waterstaat threshold. We do have to reiterate that we do not know whether the threshold is correct
in terms of being applied in practice, and additionally, our analysis has not cross-validated whether
the road sections which had undergone maintenance were in fact due to ravelling. More complex
even, is that if a road section was said to be resurfaced due to ravelling, we still cannot conclude that
the road section has reached the threshold right before the date of maintenance: for all we know
it could have been due to convenience of resurfacing a longer stretch of a road. The complexity
lies in the fact that the current threshold was not based on DOS-LCMS data. If such a threshold is
decided upon, even if it turns out that the current one is valid, the predictions can also be used as
mere indications of overdue maintenance.

Recommendations
Our analysis has led to several options for improvements which could be made for future research
which we will state and clarify. These are mainly based on the two general topics:

• optimal alignment,

• threshold recalibration.

Keep in mind that we have provided quite some suggestions in § 10.3 in terms of applying DOS-
LCMS data in our framework, which we believe need not be restated here. Prior to the two general
recommendations, we do like to point out that potential future research using this framework could
be explored in various ways. Unfortunately due to time constraints, these could not be included in
the presented work. One could focus on

• aggregate loss on a meter basis: why are some parts of the road section more prone to aggre-
gate loss?

• analysis on differences between constraints and no constraints on a meter basis: although
∆PRL appeared to be favourable in terms of consistency for the former, at what cost was this
acquired, that is, are the constraints justifiable?

• analysis of accuracy of the quantile estimates: how accurate are the current approximations
of the 75th percentile?

• analysis of accuracy of proposed remaining lifetimes: in line with the previous item, how ac-
curate are the current proposed remaining lifetimes?

• setting up more well-defined rules with the current provided predictions: how do the current
predictions fare in comparison to their actual years of maintenance1?

Finally we would also like to dedicate a part for the interest of Rijkswaterstaat. That part will con-
clude the recommendations.

1This does remain slightly ambiguous, because performing maintenance on a road section is not guaranteed to be due to
its short remaining lifetime.
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Optimal Alignment

Before starting the main point, we suggest that the involved parties do not only register the hec-
tometer posts properly to the first decimal, but also to the second decimal. Now it is still ambiguous
whether maintenance from hectometer post 2.1 - 2.2 means that this happened exactly on this road
section between the two respective driver location signs, or if in fact it ranges from 2.05 - 2.15. If
the planned boundaries deviated from the actually used boundaries, it is extremely helpful if this is
registered adequately.

Although the non-convex patterns are not necessarily caused by GPS inaccuracies, it still does
not help with predictions using our proposed scheme. A particular distressing example can be
found in Figure 11.1. In years 2012-2015 there does not seem to be too much inaccuracy in the
assignment of the aggregate loss values on a meter basis, although one could argue that in years
2014 and 2015, the values seem to have slightly shifted towards the right compared to 2012. Re-
gardless, that is not the point of Figure 11.1: year 2017 clearly shows high aggregate loss values in
the first ±20 meters, while in 2016 it seems that asphalt was completely resurfaced. This is partially
true and can be confirmed by Table A.2, where it shows that there was maintenance on lane 1RR of
W = A44 from hectometer 2.9 - 3.0 supposedly on 2016-07-13. The DOS-LCMS data shows that this
date might be faulty, because the DOS-LCMS measurements were supposedly done on 2016-02-27.
Nevertheless, the initial high aggregate loss values in 2017 in Figure 11.1 should then coincide with
the final meters of hectometer 2.8 - 2.9. Indeed, we cannot find a date of maintenance for this road
section and Figure 11.2 shows high aggregate loss values throughout. In particular in year 2018 for
Figure 11.2, the final meters yield low aggregate loss values opposed to the other measured values.
Now the point is almost complete: assuming that there was a shift in position assignation caused by
whichever reason, Figure 11.1 and especially year 2017 shows that the only logical deduction2 is that
for the consecutive road section ranging from hectometers 3.0 - 3.1 will admit low aggregate values
in particular for year 2017, but perhaps also for other years. Indeed, as you might expect from this
build-up, Figure 11.3 depicts this.

The point to consume is that Figures 11.1 to 11.3 show that the assignment of aggregate loss
values per meter are not consistent across the years, which explains why on a meter basis — apart
from some noise — the sequence of aggregate loss throughout the years is not increasing. This in
turn will also influence quantiles on the entire road section, which skews the predictions. It should
be redundant to point out that a q0.75 approximation of year 2017 in Figure 11.3 could be one of the
reasons why the threshold surpassing date for some road sections changed drastically with respect
to the n − i approach; in this case the q0.75 prediction based on the data could be too low, exposing
why the jump in consecutive years at times seemed rather unforeseen.

These inconsistencies should help with convincing that for proper use of DOS-LCMS data in
whichever proposed method — such as the one presented in this thesis but by far not limited to this
method — the position assignation should be much more consistent throughout the years. The only
reason for seeing ravelling not increasing should be due to standard noise in data measurements or
from resurfaced asphalt if the consecutive year shows very minimal ravelling. Therefore we suggest
that if the involved parties are going to rely more and more on only the DOS-LCMS data in whichever
manner and less on manpower in the form of visual inspections, an excellent investment to start
with would be in GPS accuracy. However, if such an investment is difficult to implement directly
— which we can imagine as many parties could be involved in such a process — the data could be
aligned prior to usage. At worst case, one could plot visuals such as Figures 11.1 to 11.3 and propose
to shift the data manually. The best case scenario without fundamentally changing steps in the
current DOS-LCMS measurement scheme would be to compute an algorithm or apply some set of
rules which align the data: for example, as we have seen in this brief example, an immediate look-up

2A small remark to also acknowledge is that maintenance, though registered to be for only one road section, could be
extended slightly further into the preceding and succeeding road section.
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Figure 11.1: Aggregate loss values per year per wheel track plotted for W = A44,S = 1HRR1RR
2.9 .
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Figure 11.2: Aggregate loss values per year per wheel track plotted for W = A44,S = 1HRR1RR
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Figure 11.3: Aggregate loss values per year per wheel track plotted for W = A44,S = 1HRR1RR
3.0 .

for road maintenance can indicate which values should belong where. Alternative ambitious and
innovative ideas could stem from some metric which indicates monotonicity in the desired manner,
and perform cross-validation using this measure. A quick but probably naive measure would be to
compute the differences in consecutive aggregate loss values along the years for each meter; we can
imagine many much more polished and effective measures would exist if this concept is considered
more carefully.

Threshold Recalibration
Not unrelated to the previous topic is analysis on determining a new threshold entirely based on
DOS-LCMS data. The current threshold indicates when to resurface asphalt per 100 meter road sec-
tions. Regardless of being nit-picky on this specific length of exactly 100 meters, one could first of
all consider looking at longer stretches of the road. From Tables A.2, B.2 and C.2 in Appendices A
to C, maintenance is often performed on a span of more than 100 meters rather than exactly on one
road section. Reasons for this may vary, but if in practice the policy is based on a factor such as con-
venience, it makes sense to also reconsider the threshold to account for more than 100 meters. In
turn this will help with more robust estimates of statistics such as the 75th percentile. The downside
to this is that if maintenance was actually performed for only one road section while the preceding
and succeeding road sections were untouched, it would skew the predictions too.

The other part of the threshold is characterised by the percentile and its corresponding value to
consider. We iterate yet again that the threshold was defined using specific values for aggregate loss,
even though no data was available to associate these with. Now that the DOS-LCMS scheme is avail-
able, it makes sense to validate in how many cases the threshold was actually adhered to. If there is
interest in recalibrating or even redefining the threshold, a starting point would be to first validate
how often the threshold was lived up to. If this is less than anything tolerable from Rijkswaterstaat
standards, say below 80%, then it suggest that the norm should be seriously reconsidered. One idea
to deduce new thresholds is by inspecting the data and in particular the stretches of the road which
have been resurfaced: one should ask themselves why these parts in specific were resurfaced with
respect to ravelling. Parts of which the maintenance was not due to ravelling should logically be
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excluded. Specifically we can look at the DOS-LCMS measurements 1 year before maintenance was
performed. By doing so, we can find patterns in maintenance policy which could in turn be depen-
dent on factors such as the respective district, but more importantly: a new percentile and a new
cut-off as opposed to the 75th percentile and 10% as of now can be deduced and be considered the
new norm.

Practical Proposals for Rijkswaterstaat
From the current framework in which the data has been explored and the important extrapolation
step has been proposed, the research has unfortunately not led to a model in operational use for
Rijkswaterstaat3. We acknowledge that such a model is extremely interesting for Rijkswaterstaat,
but due to some constraints — of which one is our available time — this has not been realised yet.
We will attempt to provide a setup for a model which could potentially be used by Rijkswaterstaat
for predictions. However, this setup naturally is completely dependent on the DOS-LCMS data for
which some serious (quality) demands are required and which we will discuss first.

Demands for DOS-LCMS Data
The framework is entirely data-dependent, and hence it is sensible to be critical about the DOS-
LCMS measurements we had available. Here we will reiterate what is still lacking and what exactly
may be expected from the data.

A starting requirement for the data is for it to be consistent and stable. Specifically, if the data in-
dicates that over two (consecutive) years there is an increase of aggregate loss of some x%, it should
correspond with actual aggregate loss and not to the result of other factors such as:

• a change in algorithms which compute the aggregate loss percentages,

• positional inaccuracies previously discussed with respect to optimal alignment,

• a change in measuring or processing methods.

The first factor essentially means that for the same raw data, a change in algorithms could lead to
significantly different aggregate loss percentages. The second factor has been largely discussed just
before, but we would like to add that it is also possible to set some ‘business rules’ which allow the
disqualification of certain data points. This implies that the used measure for the threshold does
not always have to be based on 100 values of aggregate loss percentages, but in general probably
less. The third factor is related to the improvements in the measuring methods; in 2018, the res-
olution of the sensor was increased from 5 mm to 2 mm, which allows for detection of ravelling
on finer textures of pavement than only PA. In particular two layer porous asphalt (TLPA) is one of
the surface types which have finer textures, and has become more and more desired due to their
increased noise reduction over regular PA. However, it also implies that we are not certain on the
comparability of the aggregate loss of both devices: are they significantly different? We acknowl-
edge that innovation and development is a great initiative, but for a model to work properly and be
representative, consistency in data is key.

Severity of Ravelling
It is shown in Chapter 10 that there is little to no use in the predictions for which the ravelling in-
tensity is relatively low, say around 0-3%, because of its sensitivity to deviations. From Chapter 10 a
clear threshold for reasonable predictions is not evident — and even dependent on how much we
can rely on the computed aggregate loss values — but it appears to become reasonable from 4%
onward.

3Although this was not the intention of the research, it was an overzealous personal aim initially.
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Model Framework
The input for the model would be DOS-LCMS measurements over multiple years satisfying the de-
mands, including potential business rules. The output can greatly vary, but it fundamentally pro-
vides a proposed remaining lifetime extrapolated from fitted curves. Using that, other interesting
approaches are rendered possible such as

• deducing when the remaining lifetime is 5 years, such that rejuvenating products can be ap-
plied appropriately;

• providing overviews of parts of the road which are due for maintenance the earliest.

The actual output really depends on where the interests of Rijkswaterstaat lie.
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A
A44

Table A.1: Construction dates of W = A44 on carriageway 1HRR

HmStart HmStop Lane Date

2.1 7.7 ALL 2002-09-09

Table A.2: Maintenance of W = A44 on carriageway 1HRR.

HmStart HmStop Lane Date Surface

6.0 6.1 ALL 2009-06-01 PA

2.1 2.9 2RR 2015-10-01 PEA

2.9 5.5 2RR 2016-07-13 PEA

5.5 6.7 2RR 2015-10-01 PEA

6.7 7.6 2RR 2016-07-13 PEA

2.9 3.0 1RR 2016-07-13 PEA

3.3 3.4 1RR 2016-07-13 PEA

4.4 4.7 1RR 2016-07-13 PEA

6.9 7.6 2RR 2016-07-13 PEA

6.0 6.2 2RR 2018-04-09 PA

2.1 2.3 ALL 2018-09-25 PEA

2.3 6.9 1RR 2018-09-25 PEA
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HmStart HmStop Lane Date Surface

2.3 5.9 2RR 2018-09-25 PEA

5.9 6.2 2RR 2018-01-10 PA

6.2 6.9 2RR 2018-09-25 PEA

Table A.3: Lifetime predictions for W = A44 and its road sections using kernel approximations and polynomial extrapola-
tions, where the data is constraint to be increasing and convex on a 1m level. n denotes the number of consecutive q0.75
values used for the calculation, PRL = Proposed Remaining Lifetime (days relative to the date of the last percentile used),
∆PRL = difference in PRL between prediction n and n −1 (negative implies that prediction n −1 was |∆PRL| further back
in time.

C.way Hm Lane n q0.75 Age Date TSD PRL ∆PRL

1HRR 2.1 1RR 5 6.95 14.44 2017-02-14 2019-02-08 724 -270

1HRR 2.2 1RR 5 5.76 14.44 2017-02-14 2022-06-15 1947 233

1HRR 2.4 1RR 5 5.86 14.44 2017-02-14 2021-11-16 1736 6

1HRR 2.5 1RR 5 5.09 14.44 2017-02-14 2026-04-24 3356 1389

1HRR 2.6 1RR 5 5.42 14.44 2017-02-14 2023-07-10 2337 934

1HRR 2.7 1RR 5 9.40 14.44 2017-02-14 2017-06-24 130 16

1HRR 3.0 1RR 5 7.27 14.44 2017-02-14 2019-05-25 830 -2407

1HRR 3.2 1RR 5 8.55 14.44 2017-02-14 2018-03-22 401 -139

1HRR 3.7 1RR 5 7.59 14.44 2017-02-14 2018-10-07 600 -1363

1HRR 3.9 1RR 5 7.63 14.44 2017-02-14 2019-02-04 720 219

1HRR 4.1 1RR 5 6.73 14.44 2017-02-14 2020-01-24 1074 -677

1HRR 4.7 1RR 5 5.09 14.44 2017-02-14 2023-10-22 2441 -104

1HRR 4.8 1RR 5 4.77 14.44 2017-02-14 2021-01-05 1421 -1493

1HRR 4.9 1RR 6 8.93 15.56 2018-03-27 2018-09-02 159 43

1HRR 5.0 1RR 5 4.71 14.44 2017-02-14 2022-10-02 2056 95

1HRR 5.1 1RR 5 4.63 14.44 2017-02-14 2022-08-28 2021 187

1HRR 5.2 1RR 6 8.05 15.56 2018-03-27 2018-11-09 227 27

1HRR 5.3 1RR 6 6.99 15.56 2018-03-27 2019-05-28 427 -37

1HRR 5.4 1RR 6 7.15 15.56 2018-03-27 2019-04-30 399 -66

1HRR 5.5 1RR 6 8.22 15.56 2018-03-27 2018-10-10 197 -106
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C.way Hm Lane n q0.75 Age Date TSD PRL ∆PRL

1HRR 5.6 1RR 5 5.14 14.44 2017-02-14 2021-09-10 1669 -296

1HRR 5.7 1RR 6 8.84 15.56 2018-03-27 2018-08-13 139 -99

1HRR 5.8 1RR 6 8.39 15.56 2018-03-27 2018-09-24 181 -43

1HRR 6.4 1RR 5 6.77 14.44 2017-02-14 2019-07-16 882 77

1HRR 6.5 1RR 6 8.23 15.56 2018-03-27 2018-11-26 244 52

1HRR 6.6 1RR 5 5.91 14.44 2017-02-14 2023-08-20 2378 -4

1HRR 6.8 1RR 6 4.90 15.56 2018-03-27 2024-11-05 2415 -1042

1HRR 6.9 1RR 5 5.42 14.44 2017-02-14 2027-11-24 3935 -77

1HRR 7.1 1RR 5 4.92 14.44 2017-02-14 2026-06-08 3401 1663

1HRR 7.2 1RR 5 5.57 14.44 2017-02-14 2021-04-11 1517 40

1HRR 7.3 1RR 5 5.11 14.44 2017-02-14 2021-09-04 1663 802

1HRR 7.4 1RR 5 6.87 14.44 2017-02-14 2019-11-26 1015 -1268





B
A50

Table B.1: Construction dates of W = A50 on carriageway 1HRL

HmStart HmStop Lane Date

139.9 140.3 ALL 2010-03-18

140.3 141.6 ALL 2012-11-08

141.6 142.2 ALL 2013-04-16

142.2 142.9 ALL 2012-03-30

142.9 146.7 ALL 2013-03-19

146.7 148.4 ALL 2012-09-17

139.9 140.3 ALL 2006-06-04

140.3 146.7 ALL 2013-05-07

146.7 148.5 ALL 2012-09-17

205.4 205.5 1RL 2007-11-01

205.4 205.5 2RL 2002-07-12

204.8 205.4 ALL 2002-01-01

203.2 204.8 ALL 2002-12-31

203.1 203.2 ALL 2003-01-01

202.9 203.1 1RL 2003-01-01

202.9 203.1 2RL 2002-07-12
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Table B.2: Maintenance of W = A50 on carriageway 1HRL.

HmStart HmStop Lane Date Surface

205.5 205.4 2RL 2017-11-01 PA

205.4 204.8 ALL 2014-08-14 PA

203.6 203.1 1RL 2018-02-02 PA

204.8 203.6 1RL 2018-11-29 PA

204.8 203.1 2RL 2016-11-30 PA

Table B.3: Lifetime predictions for W = A50 and its road sections using kernel approximations and polynomial extrap-
olations, where the data is constraint to be increasing and convex on a 1m level. n denotes the number of consecutive
q0.75 values used for the calculation, PRL = Proposed Remaining Lifetime (days relative to the date of the last percentile
used),∆PRL = difference in PRL between prediction n and n−1 (negative implies that prediction n−1 was |∆PRL| further
back in time.

C.way Hm Lane n q0.75 Age Date TSD PRL ∆PRL

1HRL 203.2 1RL 5 5.53 14.52 2017-07-04 2019-05-16 681 -259

1HRL 203.3 1RL 5 4.20 14.52 2017-07-04 2021-07-22 1479 -502

1HRL 203.4 1RL 5 4.86 14.52 2017-07-04 2020-07-14 1106 11

1HRL 203.5 1RL 5 7.60 14.52 2017-07-04 2018-11-19 503 191

1HRL 203.6 1RL 5 5.42 14.52 2017-07-04 2020-05-12 1043 -472

1HRL 203.7 1RL 6 8.21 15.51 2018-07-02 2018-12-17 168 27

1HRL 203.8 1RL 6 7.40 15.51 2018-07-02 2019-03-06 247 -11

1HRL 203.9 1RL 6 5.11 15.51 2018-07-02 2020-07-04 733 -243

1HRL 204.0 1RL 6 4.40 15.51 2018-07-02 2020-08-31 791 -72

1HRL 204.1 1RL 6 5.58 15.51 2018-07-02 2020-02-26 604 19

1HRL 204.2 1RL 5 4.85 14.52 2017-07-04 2019-07-26 752 122

1HRL 204.3 1RL 6 8.27 15.51 2018-07-02 2019-01-11 193 -68

1HRL 204.4 1RL 6 8.99 15.51 2018-07-02 2018-10-24 114 72

1HRL 204.5 1RL 5 4.28 14.52 2017-07-04 2020-06-09 1071 -195

1HRL 204.6 1RL 5 5.95 14.52 2017-07-04 2019-08-28 785 -113

1HRL 204.7 1RL 5 7.80 14.46 2017-06-12 2018-05-01 323 -63
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C.way Hm Lane n q0.75 Age Date TSD PRL ∆PRL

1HRL 204.8 1RL 5 9.14 14.46 2017-06-12 2017-09-27 107 -125

1HRL 205.5 1RL 7 1.20 11.82 2019-08-25 2032-10-10 4795 883

1HRL 203.0 2RL 7 3.40 17.03 2019-07-18 2068-08-03 17914 7222

1HRL 203.1 2RL 7 2.82 17.03 2019-07-18 2033-06-26 5092 -12937

1HRL 205.5 2RL 5 3.33 14.99 2017-07-04 2020-09-07 1161 -186





C
A6

Table C.1: Construction dates of W = A6 on carriageway 1HRR

HmStart HmStop Lane Date

288 280.2 ALL 2005-11-15

295.8 288 ALL 2005-08-31

Table C.2: Maintenance of W = A6 on carriageway 1HRR.

HmStart HmStop Lane Date Surface

280.4 280.3 2RR 2012-12-31 PA

282.5 280.4 2RR 2013-06-13 PA

284.1 283.9 2RR 2012-12-31 PA

280.5 280.3 2RR 2016-10-21 PA

280.8 280.6 2RR 2016-10-01 PA

282.1 282 2RR 2018-08-20 PA

282.4 282.3 2RR 2018-06-26 PA

282.8 282.5 2RR 2018-10-20 PA

283 282.8 2RR 2016-10-01 PA

283.4 283.2 2RR 2016-10-01 PA

283.7 283.5 2RR 2018-08-20 PA
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HmStart HmStop Lane Date Surface

284 283.7 2RR 2016-10-01 PA

284.3 284.1 2RR 2016-07-28 PA

284.6 284.4 2RR 2016-10-01 PA

286 285.8 2RR 2016-10-01 PA

287.3 287.2 2RR 2018-08-20 PA

288.6 287.8 2RR 2018-09-05 PADI

288.9 288.6 2RR 2019-05-22 PA

290.4 289.9 2RR 2018-09-05 PA

292.8 292.3 2RR 2018-09-04 PA

295.5 295.2 2RR 2018-09-04 PA

Table C.3: Lifetime predictions for W = A6 and a sample of its road sections using kernel approximations and polyno-
mial extrapolations, where the data is constraint to be increasing and convex on a 1m level. n denotes the number of
consecutive q0.75 values used for the calculation, PRL = Proposed Remaining Lifetime (days relative to the date of the last
percentile used), ∆PRL = difference in PRL between prediction n and n − 1 (negative implies that prediction n − 1 was
|∆PRL| further back in time.

C.way Hm Lane n q0.75 Age Date TSD PRL ∆PRL

1HRR 280.3 1RR 8 6.03 13.41 2019-04-12 2021-10-14 916 -364

1HRR 280.8 1RR 8 5.25 13.41 2019-04-12 2021-06-13 793 130

1HRR 283.8 1RR 8 5.45 13.41 2019-04-12 2021-02-18 678 20

1HRR 283.8 2RR 5 5.13 10.34 2016-03-16 2019-01-21 1041 527

1HRR 285.8 1RR 7 7.70 12.48 2018-05-07 2019-01-14 252 63

1HRR 285.8 2RR 5 5.38 10.34 2016-03-16 2017-11-13 607 -538

1HRR 288.6 1RR 8 3.38 13.62 2019-04-12 2023-10-17 1649 -70

1HRR 288.7 1RR 8 3.45 13.62 2019-04-12 2023-10-21 1653 -103

1HRR 288.7 2RR 8 8.11 13.63 2019-04-14 2019-11-11 211 35

1HRR 288.8 1RR 8 3.32 13.62 2019-04-12 2024-02-10 1765 59

1HRR 288.8 2RR 8 9.60 13.63 2019-04-14 2019-05-20 36 10

1HRR 288.9 1RR 8 3.39 13.62 2019-04-12 2024-09-13 1981 41

1HRR 288.9 2RR 8 6.93 13.63 2019-04-14 2020-06-17 430 -12
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C.way Hm Lane n q0.75 Age Date TSD PRL ∆PRL

1HRR 290.4 1RR 8 2.48 13.62 2019-04-12 2026-05-07 2582 22

1HRR 290.4 2RR 8 5.21 13.63 2019-04-14 2021-03-27 713 91

1HRR 291.1 1RR 8 2.41 13.62 2019-04-12 2031-04-22 4393 724

1HRR 291.1 2RR 8 5.76 13.63 2019-04-14 2020-12-01 597 -76

1HRR 293.4 1RR 8 2.90 13.62 2019-04-12 2027-05-09 2949 110

1HRR 293.4 2RR 8 6.59 13.63 2019-04-14 2020-06-03 416 -7

1HRR 293.5 1RR 8 3.36 13.62 2019-04-12 2025-07-31 2302 404

1HRR 293.5 2RR 8 6.39 13.63 2019-04-14 2020-07-09 452 -34

1HRR 293.7 1RR 8 2.56 13.62 2019-04-12 2028-01-03 3188 -60

1HRR 293.7 2RR 8 4.47 13.63 2019-04-14 2022-03-17 1068 87

1HRR 293.8 1RR 8 2.25 13.62 2019-04-12 2029-04-16 3657 -396

1HRR 293.8 2RR 8 5.52 13.63 2019-04-14 2021-02-14 672 94

1HRR 293.9 1RR 8 2.42 13.62 2019-04-12 2031-06-12 4444 987

1HRR 293.9 2RR 8 5.85 13.63 2019-04-14 2020-11-10 576 187

1HRR 294.0 1RR 8 2.93 13.62 2019-04-12 2026-09-14 2712 232

1HRR 294.0 2RR 8 5.37 13.63 2019-04-14 2021-03-08 694 32
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