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Abstract
The coarse grid of numerical weather prediction and climate models requires parametrization models
to resolve atmospheric processes that are smaller than the grid size. For parametrization development,
these processes are simulated by a high resolution model. At the Royal Netherlands Meteorological
Institute, the Dutch Atmospheric Large-Eddy Simulation (DALES) is used [15]. This three-dimensional
high resolution model uses advection schemes that are too diffusive when steep gradients are present.
In this thesis, an advection scheme based on the Discontinuous Galerkin (DG) method is implemented
for DALES.

The DGmethod is known to be dispersive [22]. To remove those non-physical oscillations, the moment
limiter of Krivodonova is used [18]. Krivodonova constructed the limiter for one- and two-dimensions.
In this thesis the moment limiter and limiting order are derived for three-dimensions.

DALES is a model based on the finite difference method and uses operational splitting. Therefore, the
DG advection scheme needs a mapping from each cell average to all nodal values that are needed
for one DG cell, and a mapping back, which we called mapping 𝑎 and 𝑏 respectively. Mappings 𝑎 that
are discussed are taking the cell average as value for all nodal points of the DG cell (cell average 𝑎),
and taking the 𝐿ኼ-projection of the cell average to the continuous finite element space (𝐿ኼ-projection).
This thesis describes mappings 𝑏 that calculate cell averages of nodal DG values (cell average 𝑏)
and calculate the cell averages of the tendencies of DG values (cell average of tendency). Using cell
average 𝑎 combined with cell average of tendency, made the DG method as diffusive as the first order
upwind scheme. Substituting the cell average 𝑎 method with the 𝐿ኼ-projection, the DGmethod became
very dispersive, meaning that there was not enough diffusion. At last, cell average 𝑏 was tested with
the 𝐿ኼ-projection. Its numerical results showed that the speed of the advection was slower than the
theoretical velocity. Therefore, a method is suggested which does not need mappings. An option could
be a supergrid that takes multiple DALES cells as a DG cell.

Keywords- Runge-Kutta discontinuous Galerkin (RKDG), large-eddy simulation, three-dimensional
moment limiter.
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1
Introduction

Mathematically modelling atmospheric phenomena is one of the two main challenges of numerical
weather prediction (NWP) and climate models. The most important atmospheric processes are turbu-
lence, convection and cloud formation. However, the coarse grid of the models does not resolve pro-
cesses that are smaller than the grid size, therefore, these sub-grid processes require parametrizations.
For parametrization development, the processes are simulated in a model with a higher resolution. At
the Royal Netherlands Meteorological Institute (KNMI), the Dutch Atmospheric Large-Eddy Simulation
model, also known as DALES, is used. On top of that, DALES can be used to predict weather on a
smaller domain with a higher resolution, for example to provide short-range forecasts for near-surface
wind and solar power for the renewable energy sector.

Nevertheless, DALES can still be improved, especially the implemented advection schemes. Each fi-
nite difference advection scheme of DALES has its own favourable properties, like computational time
or accuracy. However, the implemented high accuracy methods are still too diffusive and/or dispersive
when steep gradients in temperature, moisture and momentum are present.

The other main challenge of NWP and climate models is to evaluate these models as accurate and
efficiently as possible. This can be done by using all the available computational resources. The fun-
damentals of a finite difference scheme do not take full advantage of the architecture of the modern-day
computers and is thus not the most computational efficient method.

To solve these two problems, the discontinuous Galerkin (DG) method is suggested. DG is an attrac-
tive method, because it allows discontinuities, it has a geometric flexibility and it has a high parallel-
scalability due to a compact stencil. However, it is known that non-physical oscillations are generated
with DG [22]. Therefore, a limiter has to be added to remove these non-physical oscillations.

The goal of this thesis is to implement an advection scheme based on the DGmethod in DALES without
changing the other subroutines. The corresponding research question is:

Can DG be used as an advection solver in DALES such that:

• the computational time is less than the WENOmethod, and/or

• the numerical accuracy is better than theWENOmethod, while the computational time
is not doubled?

1.1. Methodology
Before the DG advection scheme is implemented in DALES, the method is created in multiple stages.
In the literature study prior to this work [5], DG is tested for a one-dimensional test case in MATLAB.
Thereafter, the advection equation of DALES is tested in two- and three-dimensions in Fortran, in
which DALES is implemented. Last but not least, the advection scheme is tested in a stripped version
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2 1. Introduction

of DALES such that the computational time is reduced and no other subroutines can influence the
results.

1.2. Outline
In Chapter 2, the background of DALES is given by explaining the origin of the model equations. There-
after, in Chapter 3 the numerical methods of DALES are explained and the shortcomings of the imple-
mented advection schemes are shown. Chapter 4 describes the discontinuous Galerkin method and
the three-dimensional moment limiter is derived. On top of that, the numerical results are shown for
both DG with and without moment limiter. Thereafter, DG is tested in the stripped version of DALES
and compared with the most accurate advection scheme of DALES, the WENO method, in Chapter 5.
This thesis is concluded in Chapter 6 with a conclusion, some encountered implementation problems,
some remarks and recommendations for further research.



2
Atmospheric modelling

In this chapter some general information is given on the atmosphere. Furthermore, the general equa-
tions for atmospheric modelling are shown and explained. Finally, an explanation is given on the ad-
justments for the governing equations of DALES, its boundary conditions and its prognostic variables.

2.1. The atmosphere
The atmosphere is a layer of multiple gasses, known as air, around the Earth that is kept in place by
the Earth’s gravity. The atmosphere consists of a number of layers:

• troposphere,
• stratosphere,
• mesosphere,
• thermosphere,
• exosphere.

Each layer has its own properties like composition and temperature profile. In Figure 2.1, the different
layers are shown with the typical temperature and air pressure as a function of height.

The many different processes that take place in the atmosphere make up the daily weather that we
experience. The most important ones that take place close to the Earth’s surface are turbulence, con-
vection and particularly, cloud formation. These three processes are results of small-scale movement
of air in the atmosphere. The large scale atmospheric circulation acts on scales larger than the domain
used by DALES. These are in general imposed as a large scale forcing in DALES and are not part of
the actual dynamics within the model.

2.1.1. Air movement
Air moves as a result of density differences. For the large scale air circulation, pressure differences and
the Coriolis force, which is an apparent force resulting from the Earth’s rotation, however, for the high
resolution model, density differences are more relevant. The density of air depends on temperature
and pressure, and because of certain factors, the density can differ locally. In this section, the cause
of density differences are explained and thereafter several factors are given.

As the Sun warms up the Earth’s surface, water evaporates and the air near the surface warms up.
Warm air and moist air are lighter than cold air and dry air, therefore, the warm air parcel with water
vapour travels higher into the sky. How far the air parcel rises, depends on the temperature of the
surrounding air and the amount of water vapour the air parcel holds.

During the upward motion of the air parcel, the air pressure of this air parcel decreases and as a result
the air parcel expands. Due to this expansion the air parcel loses energy and consequently, the air

3



4 2. Atmospheric modelling

Figure 2.1: Temperature and pressure of the atmospheric layers. Image taken from [9].

parcel cools (see Figure 2.2). At a certain point, the air pressure and the temperature have decreased
so much that the air parcel cannot hold the amount of water vapour any more; the air parcel becomes
oversaturated. Further cooling leads to condensation, however, the air parcel keeps rising by the re-
lease of latent heat during condensation. For this reason, the water droplets can get higher in the sky
and can even become ice crystals.

The tiny water droplets and ice crystals are so small and light that they are able to stay up in the air.
When there is a visible amount of tiny water droplets, ice crystals or a mixture of both, it forms a cloud
in the sky.

Ultimately the Sun is the major reason behind all rising motion. Other factors causing air to move, are
[23]:

• Orography: Air parcels are forced to rise because of physical obstacles like mountains.

• Large scale convergence: Streams of air flowing from different directions are forced to rise where
they meet.

– For example frontal systems: When warm air and cold air meet each other, the warm air
mass rises over the cold air mass.

Just as the factors of air movement are discussed, the formation of clouds is explained. However,
another important ingredient has not beenmentioned, namely the particles that are needed for the water
vapour to condense onto. These particles are called condensation nuclei. Examples of condensation
nuclei are salt, dust and smoke particles. Nevertheless, there are always enough condensation nuclei
available to initiate condensation in the case of oversaturation.
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Figure 2.2: Temperature changes of air parcel. Image taken from [29].

2.2. Model equations
The dynamics of the atmosphere can be described by the conservation laws of momentum, mass,
energy and moisture. With the four laws, the time evolution of momentum, density, temperature and
humidity can be described.

Conservation of momentum
First, for a small package of air, the momentum must be conserved. The Navier-Stokes equations
describe the differential equations that the motion of air in the atmospheric boundary layer must satisfy:

𝜕𝜌𝑢𝑢𝑢
𝜕𝑡 + ∇ ⋅ (𝜌𝑢𝑢𝑢 ⊗𝑢𝑢𝑢) = −∇𝑝 − 2𝜌(ΩΩΩ ×𝑢𝑢𝑢) − 𝜌𝑔𝑔𝑔, (2.1)

where 𝜌 denotes the density, 𝑢𝑢𝑢 the velocity field, 𝑝 the pressure,ΩΩΩ the Coriolis force and 𝑔𝑔𝑔 the effective
gravity, which is the sum of the true gravity and the centrifugal force. 1 The equation is derived from
Newton’s second law for motion relative to a rotating coordinate frame and says that the acceleration
that follows the relative motion in the rotating frame is equal to the sum of the effective gravity, the
pressure gradient and the Coriolis force. More information on the derivation of the equation can be
found in [16].

Conservation of mass
Second, conservation of mass must hold, which is known as the continuity equation[16]:

𝜕𝜌
𝜕𝑡 + 𝜌∇ ⋅ 𝑢𝑢𝑢 = 0. (2.2)

This means that the local rate of change of density equals the divergence of mass.

Conservation of energy
Third, the energy of the system is conserved. By all means, the change in specific internal energy of
the system 𝑒 is equal to the difference between the heat added to the system 𝑑𝑄 and the work done
by the system 𝑑𝑤, known as the first law of thermodynamics (per unit mass):

𝑑𝑒 = 𝑑𝑄 − 𝑑𝑤 = 𝑇𝑑𝑠 − 𝑝𝑑𝛼. (2.3)
1⊗ denotes the outer product, ፮፮፮⊗፯፯፯  ፮፯፮፯፮፯ᑋ, and × the cross product, ፚፚፚ ×  ‖ፚፚፚ‖ ‖‖ sin(᎕) where ᎕ is the angle between ፚፚፚ
and  in the plane where the two vectors are contained.



6 2. Atmospheric modelling

To create the prognostic equations for thermodynamic variables like temperature, the ideal gas law is
needed:

𝑝 = 𝜌𝑅፝𝑇 =
𝑅፝𝑇
𝛼 , (2.4)

where 𝑅፝ is the gas constant, 𝑇 the temperature and 𝛼 the specific volume.

Using 𝑑𝑝𝛼 = 𝑝𝑑𝛼 + 𝛼𝑑𝑝, the ideal gas law (2.4) and the use of the enthalpy ℎ (which is defined as
ℎ = 𝑒 + 𝑝𝛼), equation (2.3) can be rewritten:

𝑑ℎ = 𝑐፩𝑑𝑇 = 𝑇𝑑𝑠 + 𝛼𝑑𝑝, (2.5)
where 𝑐፩ is the heat capacity at constant pressure for dry air and 𝑑𝑠 is the change in entropy.

The heating of air changes both the temperature and the pressure of the air parcel. Therefore, the
“potential” temperature of the air parcel is defined.

When a dry air parcel is adiabatically moved, it means that the system does not lose or gain heat
(𝑑𝑄 = 𝑇𝑑𝑠 = 0). Using this information, equation (2.4) and integrating (2.5) from state 𝑇ኻ = 𝑇, 𝑝ኻ = 𝑝
to the reference state 𝑇ኺ = 𝜃, 𝑝ኺ = 1000hPa, we obtain:

𝜃 = 𝑇 ( 𝑝𝑝ኺ
)
ዅፑᑕ/ᑡ

⇔ 𝑇 = 𝜃Π, (2.6)

in which Π is the exner function given by Π= ( ፩፩Ꮂ )
ፑᑕ/ᑡ

.

The potential temperature 𝜃 describes what temperature a dry air parcel at a pressure 𝑝 and temper-
ature 𝑇 would have if it were compressed or expanded to the standard pressure 𝑝ኺ. Consequently,
we have redefined the temperature such that the pressure contribution is removed. Moreover, 𝜃 is
conserved under dry adiabatic changes.

However, an air parcel can contain water vapour or even little water droplets. For this mixture, another
variable must be introduced which is also conserved under the phase transition between liquid water
and water vapour.

Conservation of moisture
Since the air is a mixture, the mass of air can be written as the mass of liquid water 𝑚፥, water vapour
𝑚፯ and dry air 𝑚፝:

𝑚 = 𝑚፥ +𝑚፯ +𝑚፝ . (2.7)

Instead of the masses, the mass fractions 𝑞 are used in equations.

𝑞 =
𝑚፥
𝑚 , 𝑞፯ =

𝑚፯
𝑚 , 𝑞፭ = 𝑞፯ + 𝑞 . (2.8)

The total water specific humidity 𝑞፭ is the sum of the water vapour specific humidity 𝑞፯ and the cloud
liquid water specific humidity 𝑞. One can understand that 𝑞፭ is conserved under the phase transitions
from liquid water to water vapour and vice versa.

Consequently, a temperature variable can be constructed which is also conserved under the phase
transition. During the phase transition latent heat is released, i.e. 𝑑𝑄 = 𝑇𝑑𝑠 = 𝐿𝑑𝑞 where 𝐿 is the
latent heat of vaporization. Therefore, when using the same steps as for (2.6), we get a temperature
conserved under the phase transition:

𝜃፥ = 𝜃 exp(
−𝐿
𝑐፩𝑇

𝑞) ≈ 𝜃 −
𝐿
𝑐፩Π

𝑞 . (2.9)
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The liquid water potential temperature 𝜃፥ can be linearly approximated, since 𝑞 is usually very small
(∼ 10ዅኽ, a few grams of liquid water per kilogram of air mixture). More information on the thermody-
namics of atmospheric modelling can be found in [16] and [1].

When there is no precipitation or other explicit sources, 𝜃፥ and 𝑞፭ are conserved and for conserved
variables 𝜙(𝑥, 𝑦, 𝑧, 𝑡) it holds that the total derivative ፃᎫ

ፃ፭ = 0. Writing out the total derivative, we obtain:

𝐷𝜙
𝐷𝑡 =

𝜕𝜙
𝜕𝑡 +

𝜕𝜙
𝜕𝑥
𝜕𝑥
𝜕𝑡 +

𝜕𝜙
𝜕𝑦
𝜕𝑦
𝜕𝑡 +

𝜕𝜙
𝜕𝑧
𝜕𝑧
𝜕𝑡 ,

= 𝜕𝜙
𝜕𝑡 +𝑢𝑢𝑢 ⋅ ∇𝜙 = 0,

(2.10)

which is the advection equation. If there is an explicit source 𝑆Ꭻ, for example precipitation, the equation
is given by:

𝜕𝜙
𝜕𝑡 +𝑢𝑢𝑢 ⋅ ∇𝜙 = 𝑆Ꭻ , (2.11)

2.3. Governing equations of DALES
DALES is a large-eddy simulation, for this reason the equations are slightly different from equations
(2.1), (2.2) and (2.11).

A large-eddy simulation is a numerical model for turbulence. For the simulation of the time evolution of
air flow, all different time and length scales affect the flow field, therefore, all scales must be resolved.
However, the difference between the largest (∼ 1 km) and smallest scales (∼ 1mm) of eddies is sub-
stantial. LES models reduce the computational cost by parametrizing the smallest length scales.

The eddies that are smaller than the grid size, called the sub-grid scales, are filtered out of the nu-
merical solution. This is done by using a low-pass filter, which can be seen as an averaging of the
flow quantities in time and space. The sub-grid scale dynamics are subsequently parametrized by the
sub-grid model. For more details on LES models, the book of Berselli et al. [2] can be read.

Moreover, the variables 𝜑 ∈ {𝑢, 𝑣, 𝑤, 𝜃፥ , 𝑞፭} in DALES are decomposed into a resolved and a subgrid
part by averaging the field over the grid box:

𝜑 = �̃� + 𝜑ᖣ, (2.12)

such that the following properties hold:
̃�̃� = �̃� & 𝜑ᖣ = 0. (2.13)

The ⋅̃ denotes the quantity that is averaged over the LES filter width and the subfilter-scale fluctuations
with respect to the filtered value is denoted with a prime ⋅ᖣ.

In DALES, the anelastic approximation is used. The anelastic approximation takes the density differ-
ences in the vertical direction of the continuity equation into account, while the Boussinesq approxi-
mation, used in the previous version DALES 3.2, takes no density variations into account unless the
density is multiplied by the gravitational acceleration.

The filtered equations of DALES are derived by Böing and can be found in the appendix of his disser-
tation [4]. In general, these filtered equations can be stated as:

𝜕
𝜕𝑡 �̃� = −

1
𝜌ኺ(𝑧)

∇ ⋅ (𝜌ኺ(𝑧)�̃��̃�𝑢𝑢) +
1

𝜌ኺ(𝑧)
∇ ⋅ (𝜌ኺ(𝑧)𝐾፡∇�̃�) + 𝑆Ꭳ , (2.14)

where 𝐾፡ is the eddy diffusivity coefficient, 𝜌ኺ(𝑧) the time-independent base state density and 𝑆Ꭳ is the
source term for variable 𝜑. The focus of this thesis is the advection term, therefore, the diffusion and
source term is ignored in this thesis, since DALES uses operational splitting. This means that these
terms are solved in a routine separate from the advection routine.
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2.3.1. Prognostic variables
The three mandatory prognostic variables of DALES are the velocity 𝑢𝑢𝑢, the liquid water potential tem-
perature 𝜃፥ and the sub-filter scale turbulence kinetic energy 𝑒, which is used in the parametrization of
the sub-filter scale dynamics. On top of that, the total water specific humidity 𝑞፭, the rain water specific
humidity 𝑞፫, the rain droplet number concentration 𝑁፫, and up to 100 passive and reactive scalars can
be included. Even though 𝑞፭ is not obligatory, the humidity is a very important variable and should
always be used. The other additional prognostic variables do not have to be calculated unless these
are used. Figure 2.3 shows the processes of all variables and how the variables are affected by them.

Figure 2.3: Flowchart of DALES. Image taken from [15].

2.3.2. Boundary conditions
Like any other model, boundary conditions are formulated for DALES. As only the advection scheme
is important for this thesis, the constraints on the resolved quantities �̃�𝑢𝑢 and �̃� are named explicitly.

For the lateral directions of the domain, periodic boundary conditions in the lateral directions are applied
for all fields. For the boundary condition at the top, the following conditions are used:

𝜕�̃�
𝜕𝑧 =

𝜕�̃�
𝜕𝑧 = 0, �̃� = 0, 𝜕�̃�

𝜕𝑧 = constant in time. (2.15)
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A sponge layer is used to constrain the sub-grid fluctuations of the velocity and the scalars, such that
the oscillations are damped out.

At the bottom of the computational domain (𝑧 = 0), the boundary conditions become very complex.
To be exact, it needs its own model to parametrize the turbulent drag and the exchange between the
surface and the atmosphere. Fortunately, for the advection equation the surface has a simple no-slip
boundary:

�̃� = 0, �̃� = 0, �̃� = 0. (2.16)

By definition there are no resolved fluctuations in the vertical direction at the surface, as a result the
surface fluxes enter the domain at subfilter-scale. More information on the other processes of DALES
can be found in [15].





3
Numerical methods of DALES for the

advection equation
The present chapter describes the numerical methods that are important for the advection equation in
DALES. First, the spacial discretisation of the variables are specified and thereafter, the time integration
method is explained. Last but not least, a short summary of the shortcomings of the tested advection
schemes during the literature study prior to this thesis work [5] is given.

3.1. Grid spacing
In DALES, a uniform Cartesian grid is used in the horizontal directions with optional stretching in the 𝑧-
direction. Normally the horizontal grid sizes Δ𝑥 and Δ𝑦 are 100m and the vertical grid size Δ𝑧 is around
50m. On top of that, a staggered grid in space is used, to be exact, the Arakawa C-grid which can be
seen in Figure 3.1. An Arakawa C-grid defines the pressure 𝑝, the SFS-TKE 𝑒 and the scalars 𝜑 in the
centre of the cell, while the velocity components, 𝑢, 𝑣, and 𝑤, are defined at the faces of the cell. As 𝑤
is given at a different height than the other variables, this level is called the half level, denoted by 𝑧፡,
and the other variables are at the full level 𝑧፟. This is summarized in Table 3.1.

Figure 3.1: Arakawa C-grid. Image taken from [15].

Variable Position 𝑧 level
𝑝, 𝑒, 𝜑 𝑥𝑥𝑥 + ኻ

ኼ(Δ𝑥, Δ𝑦, Δ𝑧) 𝑧፟
𝑢 𝑥𝑥𝑥 + ኻ

ኼ(0, Δ𝑦, Δ𝑧) 𝑧፟
𝑣 𝑥𝑥𝑥 + ኻ

ኼ(Δ𝑥, 0, Δ𝑧) 𝑧፟
𝑤 𝑥𝑥𝑥 + ኻ

ኼ(Δ𝑥, Δ𝑦, 0) 𝑧፡

Table 3.1: Position of the variables in the Arakawa C-grid.

3.2. Time integration method
In DALES, the partial differential equations (PDEs) are solved in a semi-discrete way. This means that
the system is discretized in two stages; first only in space, thereafter in time. By only discretizing in

11
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space, the remaining problem problem exists of only ordinary differential equations (ODEs):

𝜕
𝜕𝑡𝜙 = 𝑔(𝜙). (3.1)

Henceforth, an ODE solver, in this case a time integration method, can be used to obtain the solution
of the PDEs. Solving a PDE system in a semi-discrete way is also known as the method of lines [20].

The time integration method that DALES uses, is the third order Runge-Kutta method (RK3) which is
an explicit time integration method. This method calculates the next time step 𝜙፧ዄኻ in three steps as
follows:

𝜙∗ = 𝜙፧ + Δ𝑡3 𝑔(𝜙
፧), (3.2a)

𝜙∗∗ = 𝜙፧ + Δ𝑡2 𝑔(𝜙
∗), (3.2b)

𝜙፧ዄኻ = 𝜙፧ + Δ𝑡𝑔(𝜙∗∗), (3.2c)

where the asterisks denote the intermediate time steps.

The size of the time step Δ𝑡 is determined adaptively to keep the numerical solution stable. The two
criteria that limit the time steps are the Courant-Friedrichs-Lewy (CFL) condition:

CFL =max(|𝑢Δ𝑡Δ𝑥 | + |
𝑣Δ𝑡
Δ𝑦 | + |

𝑤Δ𝑡
Δ𝑧 |) ,

and the diffusion number 𝑑 [38], which is needed for the diffusion terms that arose from the LES-filtering:

𝑑 =max(
ኽ

∑
።ኻ

𝐾፦Δ𝑡
Δ𝑥ኼ።

) ,

where 𝐾፦ is the eddy viscosity coefficient.

3.3. Shortcomings of the implemented advection schemes of DALES
In DALES eight advection schemes can be chosen. Each advection scheme has their own favourable
properties such as high accuracy or little computation time, however they also have their own cons. In
the literature study of this thesis [5], the following four advection schemes are tested:

• First order upwind,

• Second order central difference,

• Fifth order upwind,

• Weighted essentially non-oscillatory (WENO) method.

These advection schemes in DALES have been tested with a one-dimensional test case in [5]. Every
scheme has its own advantages and disadvantages, but none of them are as flawless as they need to
be.

The low order difference methods may have a low computational time, also when implemented for
higher dimensional problems. Nonetheless, the first order upwind is overly diffusive and the second
order central differencing has too many dispersive errors; the initial condition is not recognizable after
a few time steps.

In addition, the high accuracy methods, the fifth order upwind and WENO method, are still diffusive,
though they are not overly diffusive like the first order upwind. Moreover, the fifth order upwind is dis-
persive. This problem is absent when the WENO method is used, but its computational time is much
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longer.

On top of that, the WENO and fifth order upwind method have a time lag making long simulations in-
accurate. This time lag also appears in the solutions of the first order upwind and second order central
methods. It seems that the speed of the numerical solution is lower than the actual speed 𝑢, leading
to a time lag that increases with time. More research is needed to find the source of the time lags.
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(a) The potential temperature ᎕ᑝ as a function in height
፳. (b) The total humidity ፪ᑥ as a function in height ፳.

(c) The flux ፰᎕ᑝ as a function in height ፳. (d) The flux ፰፪ᑥ as a function in height ፳.

Figure 3.2: The time evolution of the development of a convective boundary layer for the averaged variables in the horizontal
directions using second order central difference: the total humidity ፪ᑥ, the potential temperature ᎕ᑝ and their corresponding

fluxes. Images are provided by A.P. Siebesma.

In Figure 3.2, the problems with the current advection schemes are illustrated. In this figure, the sec-
ond order central difference method is used to simulate the development of a dry convective boundary
layer for humidity and potential temperature. The second order central difference method is known for
its dispersion which one can see in Figure 3.2c. In addition, the overshoots in the total humidity and
its flux are non-physical, see Figures 3.2b and 3.2d. These problems are an effect of the incorrect
approximation of the fluxes.

For example, the flux at position 𝑥።ዄኻ/ኼ with 𝜑።ዄኻ = 1, 𝜑። = 0 and wind speed is 𝑢።ዄኻ/ኼ = 1, is approxi-
mated with the second order central difference method:

�̂�2nd።ዄኻ/ኼ =
𝑢።ዄኻ/ኼ
2 (𝜑።ዄኻ + 𝜑።) =

1
2 (1 + 0) =

1
2 . (3.3)

In other words, more 𝜑 is advected to its neighbour than there is (see Figure 3.3).

These overshoots are not present when an upwind scheme is used which is more diffusive in general,
however, when these schemes are used to simulate stratocumulus clouds, the stratocumulus clouds
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𝑥።ዅ ᎳᎴ 𝑥።ዄ ᎳᎴ 𝑥።ዄ ᎵᎴ𝑥። 𝑥።ዄኻ
𝜑። = 0

𝜑።ዄኻ = 1

�̂�2nd።ዄኻ/ኼ = ኻ
ኼ

Figure 3.3: Example of incorrect approximation of the flux with the second order central difference method.

break up faster than observed in nature. Due to excessive numerical diffusion of the advection scheme,
the mixing between the stratocumulus and the dry and warmer air aloft becomes too strong. Note that
the moisture fluxes close to the surface in Figure 3.2d are strongly fluctuating; this is not caused by the
numerical inaccuracy advection scheme, but is just a finite size effect due to the fact that the simulation
was done a rather small domain.

As the advection scheme is important for the DALES model, an other advection scheme should be im-
plemented such that either the accuracy is better than the implemented advection schemes of DALES
or the computational time is less. The best possible outcome of this thesis project is to have an advec-
tion scheme that is better in both accuracy and computational time.



4
Discontinuous Galerkin for the advection

equation
In this chapter the discontinuous Galerkin (DG) method is explained. First, the differences are shown
between DG and the standard methods: finite difference methods, finite volume methods and finite
element methods. Then the basics of DG will be explained. Thereafter, DG is created for the two-
and three-dimensional advection equation of DALES. Moreover, the moment limiter of Krivodonova is
extended to three-dimensions.

4.1. Relations and differences between FDM, FVM, FEM and DG
There are several numerical methods that can be used to solve partial differential equations (PDE),
such as:

• the finite difference method (FDM),

• the finite volume method (FVM),

• the finite element method (FEM).

The most popular method is the finite difference method, which DALES is also based on [22]. In this
section, some general fundamental differences between the methods are named.

The FDM solves PDEs directly by approximating the derivatives using local Taylor expansions, while
FVM solves the differential equations after integration over a control volume. For FEM, the domain is
divided in a finite number of non-overlapping elements so that the numerical solution is reconstructed
on every element by giving weights to specified basis functions. The weights are found by solving the
equations that are obtained by using the weak form of the PDEs.

Both FEM and FDM find the nodal values while FVM gives the cell averages. A disadvantage of FDM
is the difficulty that comes into play when having unstructured grids, while this is not a problem for FVM
and FEM. Only the FVM has the advantage of guaranteeing mass conservation and allowing disconti-
nuities.

DG is a combination of FEM and FVM. FVM is actually a DG method with constant basis functions and
DG is a special case of FEM where discontinuities are allowed (see Figure 4.1). Therefore, DG has
good qualities from both methods ([22],[26]):

• discontinuities are allowed,

• unstructured grids can be used,

• conservation of mass,

15
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Figure 4.1: Relation between FEM, FVM and DG where ፍᑖ is a finite number of non-overlapping elements and ፩ the order of
basis functions. (Spectral elements is a finite element method with high order basis functions and spectral transform is also a

finite element method with only one element and high order basis functions.) Image taken from [22].

• dynamic ℎ-𝑝 refinements (where ℎ is the grid size and 𝑝 the polynomial order of the basis function),

• high scalability - only communication between elements which share faces.

The negative effect of DG is the non-physical oscillations in the results [22]. However, these can be
solved by using a limiter. For these reasons, the discontinuous Galerkin method is chosen to be used
in DALES.

4.2. Basics of discontinuous Galerkin
In this section, the basics of DG are explained by solving a simple one-dimensional advection equation.
Some numerical results are shown with and without using the moment limiter.

The one-dimensional advection equation in flux form that is used to explain DG, is:

{
ᎧᎣ
Ꭷ፭ +

Ꭷ፟(Ꭳ)
Ꭷ፱ = 0 𝑥 ∈ [𝑎, 𝑏], 𝑡 > 0,

𝜑(𝑥, 0) = 𝜑ኺ(𝑥) 𝑥 ∈ [𝑎, 𝑏],
𝜑(𝑎, 𝑡) = 𝜑(𝑏, 𝑡) 𝑡 > 0,

(4.1)

where 𝜑(𝑥, 𝑡) is the quantity of interest and 𝑓(𝜑) = 𝑢𝜑 the given flux function.

First, the domain Ω = [𝑎, 𝑏] is partitioned into 𝐾 non-overlapping elements Ω = ∪ፊ፤ኻ𝐼፤ with 𝐼፤ =
[𝑥፤ዅኻ/ኼ, 𝑥፤ዄኻ/ኼ], 𝑘 = 1,… , 𝐾. Just as in the finite element method, the function 𝜑(𝑥, 𝑡) is approximated
locally on every element 𝐼፤:

𝜑(𝑥, 𝑡) ≅ 𝜑፡(𝑥, 𝑡) =
ፊ

⨁
፤ኻ

𝜑፤፡(𝑥, 𝑡), where

𝜑፤፡(𝑥, 𝑡) ∈ 𝑉ፍ፡ (𝐼፤) = {𝑣 ∶ 𝑣 ∈ ℙፍ(𝐼፤), 𝑘 = 1,… , 𝐾}.

Here ℙፍ is the space of polynomials of degree 𝑁 and ⨁ denotes that 𝜑፡ is the direct sum of local
polynomial functions 𝜑፤፡.

DG is resolved around the weak formulation of the equation which is obtained by multiplying the dif-
ferential equation and initial condition with an arbitrary piecewise continuous function 𝜂 and integrating
over element 𝐼፤:

⎧⎪
⎨⎪⎩

∫
ፈᑜ
[𝜕𝜑𝜕𝑡 +

𝜕
𝜕𝑥𝑓(𝜑)] 𝜂 𝑑𝑥 = 0, (4.2a)

∫
ፈᑜ
𝜑(𝑥, 0)𝜂 𝑑𝑥 = ∫

ፈᑜ
𝜑ኺ(𝑥)𝜂 𝑑𝑥. (4.2b)
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Using integration by parts, equation (4.2a) can be rewritten:

∫
ፈᑜ

𝜕𝜑
𝜕𝑡 𝜂 − 𝑓(𝜑)

𝜕𝜂
𝜕𝑥 𝑑𝑥 + [𝑓(𝜑፡)𝜂]

፱ᑜᎼᎳ/Ꮄ
፱ᑜᎽᎳ/Ꮄ

= 0. (4.3)

As the approximated function is allowed to have discontinuities, there are some ambiguities around the
boundaries of the elements as can be seen in Figure 4.2. Therefore, the following notation is used to

𝑥፤ዅ ᎳᎴ 𝑥፤ዄ ᎳᎴ 𝑥፤ዄ ᎵᎴ𝐼፤ 𝐼፤ዄኻ

𝑔ዄ፤ዅ ᎳᎴ

𝑔ዅ፤ዄ ᎵᎴ

Figure 4.2: Example of a function ፠ which is discontinuous at the element boundaries.

indicate which value is used:

𝜂ዄ፡,፤ዅኻ/ኼ = lim
፱↓፱ᑜᎽᎳ/Ꮄ

𝜂፡(𝑥),

𝜂ዅ፡,፤ዄኻ/ኼ = lim
፱↑፱ᑜᎼᎳ/Ꮄ

𝜂፡(𝑥).

With the given notation, the third term of (4.3) can be written as:

[𝑓(𝜑፡)𝜂፡(𝑥)]
፱ᑜᎼᎳ/Ꮄ
፱ᑜᎽᎳ/Ꮄ

= �̂�፤ዄኻ/ኼ𝜂ዅ፤ዄኻ/ኼ − �̂�፤ዅኻ/ኼ𝜂ዄ፡,፤ዅኻ/ኼ,

where �̂�፤±ኻ/ኼ denotes the numerical flux value on the boundary 𝑥፤±ኻ/ኼ which can depend on both 𝑥ዅ፤±ኻ/ኼ
and 𝑥ዄ፤±ኻ/ኼ.

There are many choices for the numerical fluxes [20], such as:

• upwind,

• Godunov,

• Lax-Friedrich.

The DG solution is not very sensitive to the choice of numerical fluxes for basis functions with polyno-
mial degree 𝑁 ≥ 3. This means that a very simple numerical flux should suffice [22].

Hereafter, 𝜂 is chosen to be a test function from 𝑉፡ and 𝜑፤፡ is approximated by assigning weights to
specified basis functions:

𝜑፤፡(𝑥, 𝑡) =
ፍ

∑
፣ኺ
�̂�፤፣ (𝑡)𝜓፣(𝑥) =

ፍ

∑
፣ኺ
𝑎፤(𝑥፤፣ , 𝑡)ℓ፤፣ (𝑥), ∀𝑥 ∈ 𝐼፤ . (4.4)

The first expression 𝜑፤፡(𝑥, 𝑡) is known as the modal form and the second the nodal form. Thus, �̂�፤፣ (𝑡)
are the modal coefficients and 𝑎፤(𝑥፤፣ , 𝑡) the nodal coefficients. Basis functions 𝜓፣(𝑥) are the functions
belonging to the modal form and ℓ፤፣ (𝑥) to the nodal form. With the use of the Vandermonde matrix
which is defined as a (𝑘 +1)× (𝑘 +1) matrix 𝑉 by 𝑉።፣ = 𝜓፣(𝑥።), one can switch between the two forms:

𝑉�̂̂��̂�𝑎፤ = 𝑎𝑎𝑎፤ . (4.5)

In [5], both forms are applied to the one-dimensional advection equation. Indeed, the two forms gave
exactly the same results, meaning that the solution is insensitive to the form. However, each represen-
tation has its own favourable properties. The modal form can be handy when going from order 𝑁 − 1
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to 𝑁 since only one extra basis function is added. This is not the case for the nodal form, because all
basis functions are changed completely. Moreover, most limiters are used on the modal form of the
solutions. However, for the nodal representation there is no need to transfer between the spectral and
physical space, making it easier to plot and implement the boundary and initial conditions. Also, for
the definition of element continuity the nodal form is handier. Therefore, the nodal representation is
primarily used in this thesis project.

4.2.1. Nodal discontinuous Galerkin method
For nodal DG, the Lagrange polynomials are chosen as basis function ℓ፤፣ (𝑥). The Lagrange polynomi-
als based on points 𝑥ኺ, 𝑥ኻ, …, 𝑥ፍ are defined as:

ℓ፣(𝑥) =
ፍ

∏
።ኺ,።ጽ፣

𝑥 − 𝑥።
𝑥፣ − 𝑥።

(4.6)

In this thesis, the Lagrange polynomials are based on the Legendre-Gauss-Lobatto (LGL) points.
These points are 𝑁 + 1 nodes in the interval [−1, 1] that satisfy:

(1 − 𝑥ኼ) 𝑑𝑑𝑥𝑃ፍ(𝑥) = 0, (4.7)

where 𝑃፧(𝑥) is the 𝑛th Legendre polynomial. In Figure 4.3, the first five Legendre polynomials are
shown.

Figure 4.3: The first five Legendre polynomials ፏᑟ(፱). Image taken from [39].

One can also take 𝑁+1 equidistant nodes, however, the maxima and minima of the Lagrange polyno-
mials can get out of control when 𝑁 becomes greater. In [22], the problems of using equidistant nodes
are explained more thoroughly. For this reason we chose to use LGL nodes.

All elements [𝑥፤ዅኻ/ኼ, 𝑥፤ዄኻ/ኼ] are mapped to a reference element with mapping 𝜉(𝑥). As a result, the
basis functions ℓ፤፣ (𝑥) are the same for every element. In Figure 4.4, the Lagrangian basis function are
shown for 𝑁 = 2 and 𝑁 = 4.



4.2. Basics of discontinuous Galerkin 19

−1 −0.5 0.5 1

0.5

1
ℓኺ(𝑥)
ℓኻ(𝑥)
ℓኼ(𝑥)

(a) ፍ  ኼ.

−1 −0.5 0.5 1

0.5

1
ℓኺ(𝑥)
ℓኻ(𝑥)
ℓኼ(𝑥)
ℓኽ(𝑥)
ℓኾ(𝑥)

(b) ፍ  ኾ.

Figure 4.4: Lagrangian polynomials ℓᑛ(፱) using ፍ ዄ ኻ LGL nodes.

After the basis functions are chosen, we can fill in:

∀𝑥 ∈ 𝐼፤ ∶
⎧⎪
⎨⎪⎩

𝜂፡(𝑥) = ℓ።(𝜉(𝑥)), 𝑖 ∈ {0, … , 𝑁}, (4.8a)

𝜑፤፡ =
ፍ

∑
፣ኺ
𝑎፤፡(𝑥፤፣ , 𝑡)ℓ፣(𝜉(𝑥)), (4.8b)

into the weak formulation (4.2):

⎧
⎪⎪

⎨
⎪⎪
⎩

∫
ፈᑜ

ፍ

∑
፣ኺ

𝜕
𝜕𝑡𝑎

፤(𝑥፤፣ , 𝑡)ℓ፣(𝜉(𝑥))ℓ።(𝜉(𝑥)) − 𝑓(𝜑፡)
𝜕ℓ።(𝜉(𝑥))

𝜕𝑥 𝑑𝑥 + [𝑓(𝜑፡)ℓ።(𝜉(𝑥))]
፱ᑜᎼᎳ/Ꮄ
፱ᑜᎽᎳ/Ꮄ

= 0, (4.9a)

∫
ፈᑜ

ፍ

∑
፣ኺ
𝑎፤(𝑥፤፣ , 𝑡)ℓ፣(𝜉(𝑥))ℓ።(𝜉(𝑥)) 𝑑𝑥 = ∫

ፈᑜ
𝜑ኺ(𝑥)ℓ።(𝜉(𝑥)) 𝑑𝑥. (4.9b)

This must hold for all 𝑖 ∈ {0, … ,𝑁}.

Before the element matrices can be calculated, the flux function must be known. For this example, the
following are chosen as flux function and as simple numerical flux:

𝑓(𝜑) = 𝑢𝜑 where 𝑢 ∈ ℝጻኺ, (4.10a)
�̂�፤±ኻ/ኼ = 𝑓(𝜑ዅ፡,፤±ኻ/ኼ), (4.10b)

which is known as the upwind flux.

At this instant, all information is known to be able to write the following matrix-vector equation from
(4.9a) and (4.9b):

⎧⎪
⎨⎪⎩

𝑀፤ 𝜕
𝜕𝑡𝑎𝑎𝑎

፤ − 𝑆፤𝑎𝑎𝑎፤ + 𝐹፤ኻ 𝑎𝑎𝑎፤ − 𝐹፤ኼ 𝑎𝑎𝑎፤ዅኻ = 0, (4.11a)

𝑀፤𝑎𝑎𝑎፤(0) = (∫
ፈᑜ
𝜑ኺℓ።(𝜉(𝑥)) 𝑑𝑥)

።
= �̃̃��̃�𝜑፤፡ , (4.11b)

where 𝑎𝑎𝑎፤ = ⎛

⎝

𝑎፤(𝑥፤ኻ , 𝑡)
𝑎፤(𝑥፤ኼ , 𝑡)

⋮
𝑎፤(𝑥፤ፍ , 𝑡)

⎞

⎠

.

It is interesting to note that 𝑀፤𝑎𝑎𝑎፤(0) = �̃̃��̃�𝜑፤፡ has to be solved to get the initial vector 𝑎𝑎𝑎፤(0) instead of just
using the nodal values of 𝜑ኺ(𝑥፤። ), 𝑖 ∈ {0, … ,𝑁}. By solving 𝑀፤𝑎𝑎𝑎፤(0) = �̃̃��̃�𝜑፤፡, the initial condition 𝑎𝑎𝑎፤(0)
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is a projection of the initial condition 𝜑ኺ(𝑥) to the finite element space. The 𝐿ኼ-projection of the initial
condition is the function 𝜑፡(𝑥, 0) which minimizes ‖𝜑ኺ(𝑥) − 𝜑፡(𝑥, 0)‖ፋᎴ . An 𝐿ኼ-projection can be done
to a continuous and a discontinuous space. In Figure 4.5, the differences between the two spaces are
shown. In this thesis, the 𝐿ኼ-projection is done to the discontinuous space.

(a) Continuous space. (b) Disontinuous space.

Figure 4.5: ፋᎴ-projection of ᎣᎲ(፱)   ዄ sin(ኼ) to a finite element space. Image taken from [40].

To test DG, an initial condition is chosen that contains a smooth and a discontinuous part. For this
example, we take domain Ω = [−5, 5] and initial condition (see Figure 4.6):

𝜑ኺ(𝑥) = {
ኻዅcos((፱ዅኻ))

ኼ , 𝑥 ∈ [−3,−1],
1, 𝑥 ∈ [1, 3],
0, otherwise.

(4.12)

Figure 4.6: Initial condition ᎣᎲ.

For example, linear basis functions are used (𝑁 = 1). All elements are mapped to a reference ele-
ment, allowing to generalize the element matrices as much as possible. The coordinate transformation
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𝜉(𝑥) = ፱ዅ፱ᑜᎽᎳ/Ꮄ
ጂ፱ is used in this example to take advantage of a linear coordinate transformation for the

integration. In this case the Lagrange polynomials are defined on [0, 1] by:

ℓኺ(𝜉) = 1 − 𝜉, ℓኻ(𝜉) = 𝜉. (4.13)

Hence the element matrices of the matrix-vector form of the problem, see (4.11a), are defined as:

𝑀፤
።፣ = Δ𝑥∫

ኻ

ኺ
ℓ።(𝜉)ℓ፣(𝜉) 𝑑𝜉 ⇒ 𝑀፤ = Δ𝑥 (

ኻ
ኽ

ኻ
ዀ

ኻ
ዀ

ኻ
ኽ

) , (4.14a)

𝑆፤።፣ = 𝑢∫
ኻ

ኺ
ℓ፣(𝜉)

𝑑
𝑑𝜉 ℓ።(𝜉) 𝑑𝜉 ⇒ 𝑆፤ = 𝑢(

−ኻ
ኼ −ኻ

ኼ

ኻ
ኼ

ኻ
ኼ

) , (4.14b)

𝐹፤ኻ = 𝑢 (
0 0
0 1) , (4.14c)

𝐹፤ኼ = 𝑢 (
0 1
0 0) . (4.14d)

When for example Lax-Friedrichs flux is chosen as numerical flux, only the element flux matrices are
different than the ones above. In Appendix A.1, the flux matrices are derived for that case.

To find the 𝐿ኼ-projection of the initial condition, the initial condition multiplied with the basis function is
integrated exactly:

�̃�፤፡ = (
∫ፈᑜ 𝜑ኺℓኺ(𝜉(𝑥)) 𝑑𝑥
∫ፈᑜ 𝜑ኺℓኻ(𝜉(𝑥)) 𝑑𝑥

) , (4.15a)

∫
ፈᑜ
𝜑ኺℓኺ(𝜉(𝑥)) 𝑑𝑥 =

⎧

⎨
⎩

ጂ፱
ኼ [𝜉 −

ኻ
ኼ𝜉ኼ +

ኻ
ፚᎴ cos(𝑎𝜉 + 𝑏) + (𝜉 − 1)

ኻ
ፚ sin(𝑎𝜉 + 𝑏)]

ኻ

ኺ
, 𝐼፤ ⊆ [−3, −1],

ጂ፱
ኼ , 𝐼፤ ⊆ [1, 3],
0, otherwise,

(4.15b)

∫
ፈᑜ
𝜑ኺℓኻ(𝜉(𝑥)) 𝑑𝑥 =

⎧

⎨
⎩

ጂ፱
ኼ [

ኻ
ኼ𝜉ኼ −

ኻ
ፚᎴ (𝑎𝜉 sin(𝑎𝜉 + 𝑏) + cos(𝑎𝜉 + 𝑏)) ]

ኻ

ኺ
, 𝐼፤ ⊆ [−3, −1],

ጂ፱
ኼ , 𝐼፤ ⊆ [1, 3],
0, otherwise,

(4.15c)

where 𝑎 = 𝜋Δ𝑥 and 𝑏 = 𝜋(𝑥፤ዅኻ/ኼ − 1). The element matrices and initial condition of modal DG with
𝑁 = 1 can be found in [5].

One can also choose to calculate the integrals inexactly, for example, when 𝑁 is quite large or the initial
condition is given as a vector of values instead a function. Then one can choose to use quadrature rules.
The quadrature rule that works well with the LGL nodes 𝑥። is the Lobatto-Gauss-Legendre quadrature:

∫


ፚ
𝑓(𝑥)𝑑𝑥 ≈

ፍ

∑
።ኺ
𝜔።𝑓(𝑥።) with 𝜔። =

2
𝑁(𝑁 + 1)(𝑃ፍ(𝑥።))ኼ

. (4.16)

This rule is exact for all polynomials of order 2𝑁 − 1 or less [17].

The linear coordinate transformation 𝜉(𝑥) = ኼ(፱ዅ፱ᑜ)
ጂ፱ is used in order to have reference element [−1, 1]
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where also the LGL nodes lay. Then the following element matrices are obtained for (4.11a):

𝑀፤
።፣ = ∫

ፈᑜ
ℓ።(𝜉(𝑥))ℓ፣(𝜉(𝑥)) 𝑑𝑥 =

Δ𝑥
2 ∫

ኻ

ዅኻ
ℓ።(𝜉)ℓ፣(𝜉) 𝑑𝜉 ≈

Δ𝑥
2

ፍ

∑
፩ኺ

𝜔፩ℓ።(𝜉፩)ℓ፣(𝜉፩) =
Δ𝑥
2 𝜔።𝛿።፣ , (4.17a)

𝑆፤።፣ = 𝑢∫
ፈᑜ
ℓ፣(𝜉(𝑥))

𝑑ℓ።(𝜉(𝑥))
𝑑𝑥 𝑑𝑥 = 𝑢∫

ኻ

ዅኻ
ℓ፣(𝜉)

𝑑ℓ።(𝜉)
𝑑𝜉 𝑑𝜉 ≈ 𝑢

ፍ

∑
፩ኺ

𝜔፩ℓ፣(𝜉፩)ℓᖣ።(𝜉፩) = 𝑢𝜔፣ℓᖣ።(𝜉፣),

(4.17b)

𝐹ኻ,።፣ = 𝑓(𝜑ዅ፤ዄኻ/ኼ)ℓ፤። (𝑥ዅ፤ዄኻ/ኼ) ⇒ 𝐹ኻ = 𝑢(
0 … … 0
⋮ ⋱ ⋮
⋮ ⋱ 0
0 … 0 −1

) , (4.17c)

𝐹ኼ,።፣ = 𝑓(𝜑ዅ፤ዅኻ/ኼ)ℓ፤። (𝑥ዅ፤ዅኻ/ኼ) ⇒ 𝐹ኼ = 𝑢(
0 … 0 1
⋮ ⋱ 0
⋮ ⋱ ⋮
0 … … 0

) . (4.17d)

The integral for the 𝐿ኼ-projection of the initial condition can also be calculated using the LGL quadrature:

�̃�፤። = ∫
ፈᑜ
𝜑ኺℓ።(𝜉(𝑥)) 𝑑𝑥 ≈

Δ𝑥
2

ፍ

∑
፩ኺ

𝜑ኺ(𝜉፩)𝜔፩ℓ።(𝜉፩) =
Δ𝑥
2 𝜑ኺ(𝜉።)𝜔። . (4.18)

With the element matrices and initial condition, one can solve the problem with DG. In the literature
study of this thesis project [5], DG has been tested and indeed we have shown that the method is
dispersive. Therefore, a limiter will be introduced.

4.2.2. Moment limiter for one-dimensional problems
A disadvantage of the DG method is the presence of non-physical oscillations in the results, therefore,
a limiter is needed. However, with most limiters the solution is reduced to first order accuracy and the
advantage of high order methods is lost.

The limiters that are made for DG are defined for the modal form of the DG, thus, the following steps
have to be taken:

1. Transform from nodal to modal representation,

2. Apply limiter,

3. Transform back from modal to nodal representation.

These steps can be done on element basis [22], meaning that there is no global assembly operation
needed, which can save computational time. On top of that, the transformations are done with the
Vandermonde matrix using (4.5).

In this thesis project the moment limiter is used. The choice for the moment limiter is the simple im-
plementation and the underlying idea. This allowed us to create a three-dimensional moment limiter,
which will be discussed in Section 4.3.6.

The moment limiter was first developed by Biswas et al. and is a generalization to higher order of the
second order minmod limiter of van Leer [3]. Krivodonova generalized the limiter and extended it to
two-dimensional problems on tensor product meshes [18].

The moment limiter gradually reduces the order if limiting is needed. It limits the derivative of order 𝑗 in
a given cell using the derivatives of order 𝑗 − 1 in the neighbouring cells. The limiter starts by limiting,
when needed, the highest orders first. Then the limiting process continues until it is not needed to limit
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any more or until all terms are limited. With this strategy the solution has the highest order accuracy
possible when limiting is needed. Furthermore, by limiting gradually the limiter avoids artificial limiter-
induced steepening, which turns sine waves into square waves.

The moment limiter uses the minmod function which is defined as:

𝑚(𝑎ኻ, … , 𝑎ፍ) = {
𝑠minኻጾ፣ጾፍ |𝑎፣|, if sgn(𝑎ኻ) = … = sgn(𝑎ፍ) = 𝑠,
0, otherwise.

(4.19)

The moment limiter also uses the modal form of the DG solution 𝜑፤፡(𝑥, 𝑡) = ∑ፍ፣ኺ �̂�፤፣ (𝑡)𝜓፣(𝑥). The
pseudoalgorithm of the Moment limiter can be found in Algorithm 1.

Algorithm 1 Moment Limiter.
for all elements 𝐼፤ do
Set 𝑗 = 𝑁
while 𝑗 = 𝑁 or (�̃�፤፣ ≠ �̂�፤፣ and 𝑗 > 1) do
𝛼፣ = √፣ዅኻ/ኼ

√፣ዄኻ/ኼ

�̃�፤፣ = 𝑚(�̂�፤፣ , 𝛼፣(�̂�፤ዄኻ፣ዅኻ − �̂�፤፣ዅኻ), 𝛼፣(�̂�፤፣ዅኻ − �̂�፤ዅኻ፣ዅኻ ))
𝑗 = 𝑗 − 1

end while
end for

The idea behind this algorithm is that roughly speaking the �̃�፤፣ corresponds to the 𝑗th derivative of the
solution of element 𝑘. Thus, this coefficient is compared with the numerical derivative using forward
and backward differences. More information can be found in Section 4.3.6 where, among other things,
the derivation of the moment limiter is given.

4.2.3. CFL condition for Runge-Kutta discontinuous Galerkin
In Chapter 3, it is explained that DALES uses the third order Runge-Kutta method to integrate in time
and the CFL condition to adaptively choose the size of the time step. For the Runge-Kutta discontinuous
Galerkin (RKDG) the CFL condition is not restricted by the common 1-limit, but the condition has to
ensure 𝐿ኼ-stability:

‖𝑢 Δ𝑡Δ𝑥‖ ≤ CFLፋᎴ . (4.20)

In [7], Cockburn and Shu give the CFLፋᎴ conditions for different order Runge-Kutta integration methods
and polynomial orders. These CFLፋᎴ numbers are given in Table 4.1.

𝑁 0 1 2 3 4 5 6 7 8
𝑣 = 1 1.000 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
𝑣 = 2 1.000 0.333 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
𝑣 = 3 1.256 0.409 0.209 0.130 0.089 0.066 0.051 0.040 0.033
𝑣 = 4 1.392 0.464 0.235 0.145 0.100 0.073 0.056 0.045 0.037
𝑣 = 5 1.608 0.534 0.271 0.167 0.115 0.085 0.065 0.052 0.042

Table 4.1: CFLᑃᎴ for RKDG order ፯ and polynomial order ፍ. The ⋆ denotes that the method is unstable when the ratio ᏺᑥ
ᏺᑩ is

held constant. Table taken from [7].

4.2.4. Error calculation for discontinuous Galerkin
The numerical error is estimated by measuring the difference between the exact solution 𝜑(𝑥, 𝑡) =
𝜑ኺ(𝑥 − 𝑢𝑡) and its approximation 𝜑፡(𝑥, 𝑡). In the error calculation, instead of the exact solution, the
𝐿ኼ-projected initial condition is compared to the numerical solution after 𝑐 periods which should exactly
be the 𝐿ኼ-projected initial condition. This is chosen, since the 𝐿ኼ-projection is advected, which is the
finite element version of the initial condition and not the initial condition, moreover, comparing the 𝐿ኼ-
projection simplifies the error calculation. For the initial condition given by (4.12) with computational
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domain Ω = [−5, 5] and velocity 𝑢 = 1, one period is 10 seconds.

A very simple way to obtain the error is by using vector norms. The vector norms that are used in [5]
are the ℓኻ-norm, ℓኼ-norm (Euclidean norm) and the ℓጼ-norm (infinity norm):

‖𝑎𝑎𝑎፡(0) − 𝑎𝑎𝑎፡(10𝑐)‖ኻ =∑
።
|𝑎፡(0)። − 𝑎፡(10𝑐)።| , (4.21a)

‖𝑎𝑎𝑎፡(0) − 𝑎𝑎𝑎፡(10𝑐)‖ኼ = √∑
።
(𝑎፡(0)። − 𝑎፡(10𝑐)።)ኼ, (4.21b)

‖𝑎𝑎𝑎፡(0) − 𝑎𝑎𝑎፡(10𝑐)‖ጼ =max
።
|𝑎፡(0)። − 𝑎፡(10𝑐)።| , (4.21c)

where 𝑐 ∈ ℕ is the number of periods.

Since two functions are compared, a function norm should be used. For this reason the difference
between the two functions is also calculated with the 𝐿ኼ-norm:

‖𝜑 − 𝜑፡‖ኼ = √∫

|𝜑 − 𝜑፡|ኼ 𝑑Ω = √𝛼𝛼𝛼ፓ𝑀𝛼𝛼𝛼, (4.22)

where 𝛼𝛼𝛼 is defined as 𝛼፤፣ = 𝑎፤፡(𝑥፤፣ , 0) − 𝑎፤፡(𝑥፤፣ , 10𝑐). The derivation of the 𝐿ኼ-norm can be found in [5].

4.2.5. Numerical results for the one-dimensional problem
In this section, a summary is given of the numerical results for the one-dimensional tests with and
without moment limiter of the literature study [5]. First, the numerical results are given for DG without
limiter. Moreover, the computation time and convergence of the methods are given. Thereafter, a
summary of the results with the moment limiter are shown.

DG without limiter
For all three different polynomial orders 𝑁 = 1, 𝑁 = 2 (see Figure 4.7) and 𝑁 = 4, DG seems to work
well, obviously for higher polynomial degree the accuracy is higher. DG is especially good in smooth
regions and is also conservative. Moreover, there is no time lag as the tested finite difference methods
in [5]. Nevertheless, DG is as diffusive as the fifth order upwind and the WENO method. The only
disadvantage of DG is the dispersion error around the discontinuity.

(a) DG with ፍ  ኼ at ፭  ኻኺ. (b) DG with ፍ  ኼ at ፭  ኺ.

Figure 4.7: DG with ፍ  ኼ using exact integration, ጂ፱  ኺ.ኻ and ጂ፭  ኺ.ዃCFLᑃᎴ ᏺᑩ|ᑦ| .

In [5], the computational time of the three different DGs and the tested advection schemes are com-
pared. We have seen that the low order schemes, the first order upwind method and the second order
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central difference were the fastest, and the fifth order upwind, the WENO method and DG with 𝑁 = 1
were neither the fastest nor the slowest. DG with 𝑁 = 2 and DG with 𝑁 = 4 were the slowest. In
comparison with the WENO method, DG with 𝑁 = 2 was 2.5 times slower and for 𝑁 = 4 even 10 times
slower.

The convergence of DG for Cartesian grids is 𝒪(Δ𝑥ፍዄኻ), which has been proven by LeSaint and Raviart
[19]. In [5], this is tested by coupled and decoupled tests, and by smooth and less smooth functions.
The coupled tests are done since the advection equation depends on both time and space. However,
the time integration method is theoretical of order 3, thus DG with𝑁 = 4 is tested without the coupling to
time. For both coupled and decoupled tests, we have seen that the DG method with basis functions of
polynomial order 𝑁 can indeed superconverge with order 𝑁+1. However, when less smooth functions
or even discontinuous functions are advected, the superconvergence is not obtained.

DG with moment limiter
In [5], the moment limiter is tested for DG with 𝑁 = 1, 𝑁 = 2 (see Figure 4.8) and 𝑁 = 4. Hence for
𝑁 = 1, only one coefficient can be limited, meaning that when limiting is needed, the second order
derivatives are set to zero. For 𝑁 = 2, two coefficients can be limited and for 𝑁 = 4 four coefficients.
The moment limiter adds extra diffusion which results in the removal of the dispersion. For longer time
simulations, the diffusion has a significant impact on the results. On top of that, at 𝑡 = 10 the remainder
of the dispersion is still shown except for 𝑁 = 4. In the tests, we have seen that for 𝑁 ≥ 2 the limited
results are the same after a few periods. This is probably because the limiter categorizes this function
as a smooth function.

(a) at ፭  ኻኺ (b) at ፭  ኺ

Figure 4.8: Moment limited DG using exact integration with ፍ  ኼ,ጂ፱  ኺ.ኻ and ጂ፭  ኺ.ዃCFLᎴ ᑦ
ᏺᑩ .

Clearly, the moment limiter slows down the routine. For 𝑁 = 2 and 𝑁 = 4 the computational time is
doubled, but for 𝑁 = 1 it becomes even six times slower. Compared to the WENOmethod, the moment
limited DG with 𝑁 = 2 is six times slower and with 𝑁 = 4 18 times. However, we suspect that with
parallelization the simulations of DG can be computed much faster.

In general, a limiter reduces the order of the method. This is also the case for the moment limiter. For
all tests, even the tests with smooth functions the convergence of order 𝑁+1 is not obtained. However,
compared to the WENO method, the total numerical error of the limited DG with 𝑁 = 4 is smaller than
of the WENO method.
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4.3. Discontinuous Galerkin for DALES
In this section, the DG method is applied on the advection equation of DALES. First, the equation is
solved in two-dimensions and later extended to the three-dimensional model. Moreover, the derivation
of the moment limiter is shown in one- and three-dimensions.

4.3.1. Advection equation of DALES
The exact equation from DALES that is to be solved is given in Chapter 2 by Equation (2.14). However,
as it is told in that chapter, only the advection part of the equation has to be solved by the DG routine.
Therefore, the advection equation for the model is given by:

𝜕𝜑(𝑥𝑥𝑥, 𝑡)
𝜕𝑡 + 1

𝜌(𝑧) (
𝜕
𝜕𝑥 (𝜌(𝑧)𝑢(𝑥𝑥𝑥, 𝑡)𝜑(𝑥𝑥𝑥, 𝑡)) +

𝜕
𝜕𝑦(𝜌(𝑧)𝑣(𝑥𝑥𝑥, 𝑡)𝜑(𝑥𝑥𝑥, 𝑡)) +

𝜕
𝜕𝑧(𝜌(𝑧)𝑤(𝑥𝑥𝑥, 𝑡)𝜑(𝑥𝑥𝑥, 𝑡))) = 0,

(4.23)
which can be written in vector form:

𝜕𝜑
𝜕𝑡 +

1
𝜌(𝑧)∇ ⋅ 𝑓𝑓𝑓(𝜑) = 0, with 𝑓𝑓𝑓(𝜑) = 𝜌(𝑧)(

𝑢(𝑥𝑥𝑥, 𝑡)
𝑣(𝑥𝑥𝑥, 𝑡)
𝑤(𝑥𝑥𝑥, 𝑡)

)𝜑. (4.24)

Again 𝜑(𝑥𝑥𝑥, 𝑡) is the quantity of interest, such as the total water specific humidity 𝑞፭ or the liquid water
potential temperature 𝜃፥. Variables 𝑢, 𝑣 and 𝑤 are still the wind speeds in the 𝑥-, 𝑦- and 𝑧-direction
respectively and 𝜌(𝑧) denotes the density function in height 𝑧.

First, the partial differential equation will be solved in the (𝑥, 𝑧)-domain. This is done to understand the
counting of the elements and their grid points and the definition of the element matrices. Moreover,
the numerical results of the two-dimensional problems are still understandable. On top of that, the
extension to three-dimensions can be done quite easily, since the density 𝜌 depends on the height
𝑧 and not on 𝑥 and 𝑦. This will have influence on the derivation of the element matrices. The terms
depending on the 𝑦-direction are derived equivalent to the terms depending on the 𝑥-direction. As a
result, the element matrices can be easily extended to three-dimensions.

4.3.2. Two-dimensional problem
First, one needs to know what the computational domain is of DALES and how it is partitioned. Recall
that the domain in DALES is split into cuboids, to be precise the Arakawa C-grid (see Section 3.1).
For this reason, the two-dimensional computational domain is partitioned into quadrilateral elements.
In the 𝑥- and 𝑧-direction the domain is partitioned into 𝐾፱ elements and 𝐾፳ elements respectively. To
number the 𝐾 elements, where 𝐾 = 𝐾፳𝐾፱, 𝑥-lexicographic counting [32] is used. Figure 4.9 shows a
non-equidistant grid with its 𝑥-lexicographic counting and in Table 4.2, the counting is indicated more
clearly. Every element Ω፤ is defined by the tensor product [𝑥፤ዅኻ/ኼ, 𝑥፤ዄኻ/ኼ] × [𝑧፤ዅኻ/ኼ, 𝑧፤ዄኻ/ኼ] and its
width and length are denoted by Δ𝑥፤ and Δ𝑧፤ respectively (see Figure 4.9).

Ωኻ Ωኼ Ωፊᑩ

Ωፊᑩዄኻ Ωኼፊᑩ

Ωፊᑫፊᑩ

Ω፤

Δ𝑥፤

Δ𝑧፤

𝑥

𝑧

Figure 4.9: Domain partitioned into ፊ elements using ፱-lexicographic counting.

(𝐾፳ − 1)𝐾፱ + 1 … … 𝐾፳𝐾፱
(𝐾፳ − 2)𝐾፱ + 1 (𝐾፳ − 1)𝐾፱

⋮ ⋮
𝐾፱ + 1 2𝐾፱

1 … … 𝐾፱
Table 4.2: ፱-lexicographic counting of the

domain.
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The function 𝜑(𝑥𝑥𝑥, 𝑡) is approximated locally on each element Ω፤ as follows:

𝜑(𝑥𝑥𝑥, 𝑡) ≅ 𝜑፡(𝑥𝑥𝑥, 𝑡) =
ፊ

⨁
፤ኻ

𝜑፤፡(𝑥𝑥𝑥, 𝑡), where

𝜑፤፡(𝑥𝑥𝑥, 𝑡) ∈ 𝑉፡(Ω፤) = {𝑣 ∶ 𝑣 ∈ ℙፍᑩ([𝑥፤ዅኻ/ኼ, 𝑥፤ዄኻ/ኼ]) × ℙፍᑫ([𝑧፤ዅኻ/ኼ, 𝑧፤ዄኻ/ኼ]), 𝑘 = 1,… , 𝐾፳𝐾፱}.

Here ℙፍ is the space of polynomials of degree 𝑁. The polynomial orders in the 𝑥-direction and 𝑧-
direction are denoted by 𝑁፱ and 𝑁፳.

The weak formulation is derived by multiplying the partial differential equation (4.24) with an arbitrary
test function 𝜂 and integrating over element Ω፤:

∫
ᑜ
(𝜕𝜑𝜕𝑡 +

1
𝜌(𝑧)∇ ⋅ 𝑓𝑓𝑓(𝜑)) 𝜂 𝑑Ω = 0, (4.25)

Integrating by parts and using Gauss’s theorem, the equation can be rewritten:

∫
ᑜ

𝜕𝜑
𝜕𝑡 𝜂 𝑑Ω − ∫ᑜ

𝑓𝑓𝑓(𝜑) ⋅ ∇ 𝜂
𝜌(𝑧) 𝑑Ω + ∫Ꭷᑜ

[𝑓𝑓𝑓(𝜑) 𝜂
𝜌(𝑧)] ⋅ 𝑛𝑛𝑛 𝑑Γ = 0. (4.26)

The quantity of interest, 𝜑, is approximated by a weighted sum of basis functions 𝜙፣:

𝜑፤(𝑥𝑥𝑥, 𝑡) =
ፍᑡ

∑
፣ኻ
𝑎፤፡(𝑥𝑥𝑥፤፣ , 𝑡)𝜙፣(𝜉𝜉𝜉(𝑥𝑥𝑥)). (4.27)

where 𝑁፩ = (𝑁፱ + 1)(𝑁፳ + 1).

Like in the one-dimensional case, Lagrangian basis functions based on the LGL nodes are chosen
(see Figure 4.4). These functions are extended to two-dimensions by using a tensor product of the
one-dimensional Lagrangians:

𝜙፣(𝜉፱ , 𝜉፳) = ℓ፱,፣(𝜉፱)ℓ፳,፣(𝜉፳), with 𝑗 ∈ {1, … , 𝑁፩}. (4.28)

In Figure 4.10, some examples of two-dimensional basisfunctions𝜙፣(𝜉፱ , 𝜉፳) are shown. Hence𝜙፣(𝜉𝜉𝜉(𝑥𝑥𝑥።)) =
𝛿።፣, thus it is always zero in an LGL-node 𝜉𝜉𝜉(𝑥።𝑥።𝑥።) except if 𝑖 = 𝑗.

For the implementation and clarification, the grid points and their corresponding basis functions are
counted in an 𝑥-lexicographic way (See Table 4.3).

𝑧

𝑥

𝑁፳(𝑁፱ + 1) + 1 … … (𝑁፱ + 1)(𝑁፳ + 1)
⋮ ⋮

(𝑁፱ + 1) + 1 2(𝑁፱ + 1)
1 … … 𝑁፱ + 1

Table 4.3: ፱-lexicographic counting of the grid points of element ᑜ.

The element Ω፤ = [𝑥፤ዅኻ/ኼ, 𝑥፤ዄኻ/ኼ] × [𝑧፤ዅኻ/ኼ, 𝑧፤ዄኻ/ኼ] is mapped to a reference element [−1, 1] × [−1, 1]
with a linear transformation:

𝜉𝜉𝜉(𝑥𝑥𝑥) = (𝜉፱ , 𝜉፳)(𝑥𝑥𝑥) = (
2(𝑥 − 𝑥፤)
Δ𝑥፤

, 2(𝑧 − 𝑧፤)Δ𝑧፤
) . (4.29)

For the change of variables, the corresponding Jacobian |𝐽| is needed. The Jacobian that belongs to
this transformation is given by:

|𝐽(𝜉፱ , 𝜉፳)| = |
Ꭷ፱
Ꭷᑩ

Ꭷ፱
ᎧᑫᎧ፳

Ꭷᑩ
Ꭷ፳
Ꭷᑫ
| = |

ኻ
ኼΔ𝑥፤ 0
0 ኻ

ኼΔ𝑧፤
| = 1

4Δ𝑥፤Δ𝑧፤ . (4.30)
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(a) Basis function ᎫᎳ(ᑩ, ᑫ) for ፍ  ኼ. (b) Basis function ᎫᎶ(ᑩ, ᑫ) for ፍ  ኼ.

(c) Basis function ᎫᎴᎷ(ᑩ, ᑫ) for ፍ  ኾ. (d) Basis function ᎫᎳᎺ(ᑩ, ᑫ) for ፍ  ኾ.

Figure 4.10: Some basis functions for different ፍ.
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After the basis functions are chosen, we can substitute

∀𝑥𝑥𝑥 ∈ Ω፤ ∶
⎧⎪
⎨⎪⎩

𝜂(𝜉𝜉𝜉(𝑥𝑥𝑥)) = 𝜙።(𝜉𝜉𝜉(𝑥𝑥𝑥)), 𝑖 ∈ {1, … , 𝑁፩}, (4.31a)

𝜑፤ =
ፍᑡ

∑
፣ኻ
𝑎፤፡(𝑥፤፣ , 𝑡)𝜙፣(𝜉𝜉𝜉(𝑥𝑥𝑥)), (4.31b)

into the weak formulation (4.26).

The first term of (4.26) can be rewritten to:

∫
ᑜ

𝜕𝜑
𝜕𝑡 𝜂 𝑑Ω = ∫ᑜ

𝜕
𝜕𝑡 [

ፍᑡ

∑
፣ኻ
𝑎፤(𝑥𝑥𝑥፤፣ , 𝑡)𝜙፣] 𝜙። 𝑑Ω =

ፍᑡ

∑
፣ኻ

𝜕
𝜕𝑡 (𝑎

፤(𝑥𝑥𝑥፤፣ , 𝑡))∫
ᑜ
𝜙።(𝜉𝜉𝜉(𝑥𝑥𝑥))𝜙፣(𝜉𝜉𝜉(𝑥𝑥𝑥)) 𝑑Ω, (4.32)

and the second term to:

∫
ᑜ
𝑓𝑓𝑓(𝜑) ⋅ ∇ 𝜂

𝜌(𝑧) 𝑑Ω = ∫ᑜ
𝑓𝑓𝑓(𝜑) ⋅ ∇ 𝜙።

𝜌(𝑧) 𝑑Ω, (4.33)

= ∫
ᑜ
𝜌(𝑧) (𝑢(𝑥𝑥𝑥, 𝑡)𝑤(𝑥𝑥𝑥, 𝑡))𝜑 ⋅ (

Ꭷ
Ꭷ፱

Ꭻᑚ((፱,፳))
(፳)

Ꭷ
Ꭷ፳

Ꭻᑚ((፱,፳))
(፳)

) 𝑑Ω, (4.34)

= ∫
ᑜ
𝜑𝜌(𝑧) (𝑢(𝑥𝑥𝑥, 𝑡)𝑤(𝑥𝑥𝑥, 𝑡)) ⋅ (

ኻ
(፳)

ᎧᎫᑚ((፱,፳))
Ꭷ፱

ኻ
((፳))Ꮄ(𝜌(𝑧)

ᎧᎫᑚ((፱፱፱))
Ꭷᑫ

Ꭷᑫ
Ꭷ፳ −𝜙።(𝜉𝜉𝜉(𝑥𝑥𝑥))

Ꭷ(፳)
Ꭷ፳ )

) 𝑑Ω, (4.35)

=
ፍᑡ

∑
፣ኺ
𝑎፤(𝑥𝑥𝑥፤፣ , 𝑡)∫

ᑜ
𝜙፣(𝜉𝜉𝜉(𝑥𝑥𝑥))(𝑢(𝑥𝑥𝑥, 𝑡)

𝜕𝜙።(𝜉𝜉𝜉(𝑥𝑥𝑥))
𝜕𝜉፱

2
Δ𝑥፤

+ 𝑤(𝑥
𝑥𝑥, 𝑡)
𝜌(𝑧) (𝜌(𝑧)

𝜕𝜙።(𝜉𝜉𝜉(𝑥𝑥𝑥))
𝜕𝜉፳

2
Δ𝑧፤

− 𝜙።(𝜉𝜉𝜉(𝑥𝑥𝑥))
𝜕𝜌(𝑧)
𝜕𝑧 )) 𝑑Ω. (4.36)

This must hold for every test function 𝜙። with 𝑖 ∈ {1, … , 𝑁፩}, thus, it can be cast into a matrix-vector
form:

𝑀፤ 𝜕𝑎𝑎𝑎፤
𝜕𝑡 = 𝑆፤𝑎𝑎𝑎፤ −𝑓𝑓𝑓፤ , with 𝑎𝑎𝑎፤ = ⎛

⎝

𝑎፤(𝑥፤ኻ , 𝑡)
𝑎፤(𝑥፤ኼ , 𝑡)

⋮
𝑎፤(𝑥፤ፍᑡ , 𝑡)

⎞

⎠

. (4.37)

The third term of the weak formulation (4.26) results in the vector 𝑓𝑓𝑓፤, which describes the fluxes on the
boundary of the element. This vector is explained after the definition of the element mass matrix 𝑀፤

and the element stiffness matrix 𝑆፤.

For the integration of the element matrices, one can choose to integrate inexact. In this case, the
Lobatto-Gauss-Legendre quadrature rule is used for two-dimensional problems:

∫
ኻ

ዅኻ
∫
ኻ

ዅኻ
𝑔(𝜉፱ , 𝜉፳) 𝑑𝜉፱𝑑𝜉፳ = ∫

ኻ

ዅኻ

ፍᑩ
∑
።ኺ
𝜔፱,።𝑔(𝜉፱,። , 𝜉፳) 𝑑𝜉፳ =

ፍᑫ
∑
፣ኺ

ፍᑩ
∑
።ኺ
𝜔፳,፣𝜔፱,።𝑔(𝜉፱,። , 𝜉፳,፣), (4.38)

where the weights are given by

𝜔፱,። =
2

𝑁፱(𝑁፱ + 1)(𝑃ፍᑩ(𝜉፱,።))ኼ
, 𝜔፳,፣ =

2
𝑁፳(𝑁፳ + 1)(𝑃ፍᑫ(𝜉፳,፣))ኼ

.

The theorem of Cools (2002) says that this quadrature rule is exact for polynomials 𝑔(𝑥𝑥𝑥) with degree
less than max(2𝑁፱ + 1, 2𝑁፳ + 1) [12]. More information on two-dimensional quadrature rules can be
found in [8].
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Element mass matrix
From Equations (4.32) and (4.37), a change of variables and the quadrature rule, the element mass
matrix is written as:

𝑀፤
።፣ = ∫

ᑜ
𝜙፣(𝜉𝜉𝜉(𝑥𝑥𝑥))𝜙።(𝜉𝜉𝜉(𝑥𝑥𝑥)) 𝑑Ω = ∫

ኻ

ዅኻ
∫
ኻ

ዅኻ
𝜙፣(𝜉𝜉𝜉)𝜙።(𝜉𝜉𝜉)

1
4Δ𝑥፤Δ𝑧፤ 𝑑𝜉፱ 𝑑𝜉፳ (4.39)

≈
ፍᑩ
∑
፩ኺ

ፍᑫ
∑
፪ኺ

1
4Δ𝑥፤Δ𝑧፤𝜔፱,፩𝜔፳,፪𝜙፣(𝜉፱,፩, 𝜉፳,፪)𝜙።(𝜉፱,፩, 𝜉፳,፪) =

1
4Δ𝑥፤Δ𝑧፤𝜔፱,።𝜔፳,።𝛿።፣ . (4.40)

This means that the element mass matrix is a diagonal mass matrix when inexact integration is used.
Consequently, the inversemassmatrix that is needed for the time integration, is easily computed. When
exact integration would be used, the inverse mass matrix has to be found by solving linear equations.
Moreover, when inexact integration is used, it is computational easy to change the polynomial degrees
of 𝑁፱ and 𝑁፳.

Element stiffness matrix
The element stiffness matrix is derived from (4.36) and (4.37), and is given by:

𝑆፤።፣ ≈
1
4Δ𝑥፤Δ𝑧፤𝜔፱,፣ᑩ𝜔፳,፣ᑫ(

2
Δ𝑥፤

𝑢(𝑥𝑥𝑥(𝜉፱,፣ᑩ , 𝜉፳,፣ᑫ), 𝑡)
𝜕ℓ፱,።(𝜉፣ᑩ)
𝜕𝜉፱

𝛿።ᑫ ,፣ᑫ (4.41)

+
𝑤(𝑥𝑥𝑥(𝜉፱,፣ᑩ , 𝜉፳,፣ᑫ), 𝑡)

𝜌(𝑧(𝜉፳,፣ᑫ))
[ 2Δ𝑧፤

𝜌(𝑧(𝜉፣ᑫ))
𝜕ℓ፳,።(𝜉፣ᑫ)
𝜕𝜉፳

𝛿፱።,፣ᑩ − 𝛿።,፣
𝜕𝜌(𝑧(𝜉፣ᑫ))

𝜕𝑧 ]). (4.42)

Note that the 𝑆፤።፣ has only a contribution when the 𝑥-coordinates of gridpoints 𝑖 and 𝑗, and/or the 𝑧-
coordinates are the same. The derivation of the element stiffness matrix can be found in Appendix
A.2.

Element fluxes
For 𝑓𝑓𝑓፤, the third term of the weak formulation (4.26), some extra steps have to be taken. First of all,
the integral over the element’s boundary is split up into a sum of edges 𝑒:

∫
Ꭷᑜ

[𝑓𝑓𝑓(𝜑፡)
𝜂
𝜌(𝑧)] ⋅ 𝑛𝑛𝑛 𝑑Γ = ∑

፞∈ᑜ

∫
፞
[𝑓𝑓𝑓(𝜑፡)

𝜂
𝜌(𝑧)] ⋅ 𝑛𝑛𝑛፞ 𝑑Γ = ∑

፞∈ᑜ

∫
፞

𝜂
𝜌(𝑧)ℎ፞,፤ 𝑑Γ. (4.43)

On the element boundaries 𝑒, the function 𝜑 is discontinuous, making 𝑓𝑓𝑓(𝜑) ambiguous. Therefore,
𝑓𝑓𝑓(𝜑) ⋅𝑛𝑛𝑛፞ must be replaced by a numerical flux ℎ፞,፤ where 𝑛𝑛𝑛፞ is the outward pointing vector normal vec-
tor of the element boundary 𝑒. The ambiguity that was solved by using 𝜑ዄ and 𝜑ዅ in the one-dimension
case, is in higher dimensions solved by naming them 𝜑int and 𝜑ext which are defined by the values in
the interior and exterior of the element respectively [6].

As mentioned previously in Section 4.2, DG is not very sensitive to the choice of numerical fluxes for
basis functions of polynomials of degrees 𝑁 ≥ 3 [22]. For this application the Lax-Friedrichs flux is
chosen. The Lax-Friedrichs flux has more numerical diffusion than upwind; ኻ

ኼ(
ጂ፱Ꮄ
ጂ፭ ) [24] instead of

(ጂ፱ኼ −
ጂ፭
ኼ ) [31]. We chose it with the idea that less dispersion will occur with Lax-Friedrichs.

In general, the local Lax-Friedrichs flux is defined by:

ℎ፞,፤(𝜑int, 𝜑ext) = 1
2 (𝑓𝑓𝑓(𝜑

int) ⋅ 𝑛𝑛𝑛፞,፤ +𝑓𝑓𝑓(𝜑ext) ⋅ 𝑛𝑛𝑛፞,፤ − 𝛼፞,፤ [𝜑ext − 𝜑int]) , (4.44)

where 𝛼፞,፤ is an estimate of the biggest eigenvalue in absolute value of the Jacobian in the outward
pointing normal direction Ꭷ

ᎧᎣ (𝑓𝑓𝑓(𝜑(𝑥𝑥𝑥, 𝑡)) ⋅ 𝑛𝑛𝑛፞,፤) for 𝑥𝑥𝑥 on the elements boundary 𝑒 at time 𝑡 [6]. In general,
the Lax-Friedrichs flux sets 𝛼፞,፤ = ጂ፱

ጂ፭ while for the local Lax-Friedrichs flux the 𝛼 is not a constant.
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Even though, the value of 𝛼፞,፤ seems hard to calculate, in this case, it can be generalized. As we
have taken a Cartesian grid, the normal vectors are the plus and minus standard unit vectors. Since
Ꭷ
ᎧᎣ𝑓𝑓𝑓(𝜑(𝑥𝑥𝑥, 𝑡)) = 𝜌(𝑧)𝑢𝑢𝑢(𝑥𝑥𝑥, 𝑡), Ꭷ

ᎧᎣ (𝑓𝑓𝑓(𝜑(𝑥𝑥𝑥, 𝑡)) ⋅ 𝑛𝑛𝑛፞,፤) is not a matrix. For this reason, 𝛼 is taken as the
largest eigenvalue of Ꭷ

ᎧᎣ (𝑓𝑓𝑓(𝜑(𝑥𝑥𝑥, 𝑡)) ⊗𝑛𝑛𝑛፞,ፊ) 1 in absolute value:

𝜕
𝜕𝜑 (𝑓𝑓𝑓(𝜑(𝑥𝑥𝑥, 𝑡)) ⊗𝑛𝑛𝑛፞,ፊ) =

𝜕
𝜕𝜑 (𝜌(𝑧)𝑢𝑢𝑢(𝑥𝑥𝑥, 𝑡)𝜑 ⊗𝑛𝑛𝑛፞,ፊ) =

⎧⎪
⎨⎪
⎩

𝜌(𝑧) (±𝑢(𝑥𝑥𝑥, 𝑡) 0
±𝑤(𝑥𝑥𝑥, 𝑡) 0) eigenvalues: ± 𝜌(𝑧)𝑢(𝑥𝑥𝑥, 𝑡), 0,

𝜌(𝑧) (0 ±𝑢(𝑥𝑥𝑥, 𝑡)
0 ±𝑤(𝑥𝑥𝑥, 𝑡)) eigenvalues: ± 𝜌(𝑧)𝑤(𝑥𝑥𝑥, 𝑡), 0.

As a result, 𝛼፞,፤ is given by:
𝛼፞,፤ = max

(፱፱፱,፭)∈፞
(|𝜌(𝑧)𝑢𝑢𝑢(𝑥, 𝑡𝑥, 𝑡𝑥, 𝑡) ⋅ 𝑛𝑛𝑛፞,፤|) . (4.45)

𝜉፳

𝜉፱

𝑒ፍ

𝑛𝑛𝑛፞,፤ = (
0
1)

−1−1

1

1

Ω፤

Figure 4.11: Element boundary ፞ᑅ of the element ᑜ shown with its outward pointing normal vector ፧፧፧ᑖ on its reference
element.

Every element has 4 element boundaries. For example, the integral over the Northern boundary of the
element (see Figure 4.11) on which the grid points 𝑁፳(𝑁፱ +1)+1,𝑁፳(𝑁፱ +1)+2, …, (𝑁፳ +1)(𝑁፱ +1)
lay, can be written as:

∫
፞ᑅ

𝜂
𝜌(𝑧)ℎ፞,፤ 𝑑Γ = ∫

፱ᑜᎼᎳ/Ꮄ

፱ᑜᎽᎳ/Ꮄ

𝜙።
𝜌(𝑧፤ዄኻ/ኼ)

ℎ፞,፤ 𝑑𝑥, (4.46)

= ∫
ኻ

ዅኻ

𝜙።(𝜉፱ , 1)
𝜌(𝑧፤ዄኻ/ኼ)

ℎ፞,፤(𝜑int, 𝜑ext)Δ𝑥፤2 𝑑𝜉፱ , (4.47)

≈
ፍᑡ

∑
፩ፍᑫ(ፍᑩዄኻ)ዄኻ

Δ𝑥፤
2 𝜔፱,፩

𝜙።(𝜉𝜉𝜉፩)
𝜌(𝑧፤ዄኻ/ኼ)

ℎ፞,፤(𝜑(𝜉𝜉𝜉int፩ ), 𝜑(𝜉𝜉𝜉ext፩ )). (4.48)

Since 𝜙።(𝜉𝜉𝜉፩) = 𝛿።፩ is non-zero if 𝑖 = 𝑝, and the normal vector corresponding to the Northern boundary

is (01), it can be rewritten as:

∫
፞ᑅ

𝜙።
𝜌(𝑧፤ዄኻ/ኼ)

ℎ፞,፤ 𝑑Γ ≈
Δ𝑥፤
4

𝜔፱,።
𝜌(𝑧፤ዄኻ/ኼ)

(𝜌(𝑧፤ዄኻ/ኼ)𝑤(𝜉𝜉𝜉int። , 𝑡)𝜑(𝜉𝜉𝜉int። ) + 𝜌(𝑧፤ዄኻ/ኼ)𝑤(𝜉𝜉𝜉ext። , 𝑡)𝜑(𝜉𝜉𝜉ext። )

− 𝛼፞,፤[𝜑(𝜉𝜉𝜉ext። ) − 𝜑(𝜉𝜉𝜉int። )]), (4.49)

1The definition of the outer product⊗ is ፮፮፮⊗፯፯፯  ፮፮፮፯፯፯ᑋ.
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the Northern boundary of Ω፤ is shared with Ω፤ዄፊᑩ

= Δ𝑥፤
4

𝜔፱,።
𝜌(𝑧፤ዄኻ/ኼ)

(𝜌(𝑧፤ዄኻ/ኼ)𝑤(𝜉𝜉𝜉int። , 𝑡)
ፍᑡ

∑
፣ኺ
𝑎፤፣𝜙፣(𝜉𝜉𝜉int። )

+ 𝜌(𝑧፤ዄኻ/ኼ)𝑤(𝜉𝜉𝜉ext። , 𝑡)
ፍᑡ

∑
፣ኺ
𝑎፤ዄፊᑩ፣ 𝜙፣(𝜉𝜉𝜉ext። )

− 𝛼፞,፤[
ፍᑡ

∑
፣ኺ
𝑎፤ዄፊᑩ፣ 𝜙፣(𝜉𝜉𝜉ext። ) −

ፍᑡ

∑
፣ኺ
𝑎፤፣𝜙፣(𝜉𝜉𝜉int። )]), (4.50)

grid point 𝑖 of Ω፤ is grid point 𝑖 − 𝑁፳(𝑁፱ + 1) of Ω፤ዄፊᑩ

= Δ𝑥፤
4

𝜔፱,።
𝜌(𝑧፤ዄኻ/ኼ)

(𝜌(𝑧፤ዄኻ/ኼ)𝑤(𝜉𝜉𝜉int። , 𝑡)𝑎፤። + 𝜌(𝑧፤ዄኻ/ኼ)𝑤(𝜉𝜉𝜉ext። , 𝑡)𝑎
፤ዄፊᑩ
።ዅፍᑫ(ፍᑩዄኻ)

− 𝛼፞,፤[𝑎፤ዄፊᑩ።ዅፍᑫ(ፍᑩዄኻ) − 𝑎
፤
። ]), (4.51)

= Δ𝑥፤𝜔፱,።
4𝜌(𝑧፤ዄኻ/ኼ)

(𝜌(𝑧፤ዄኻ/ኼ)𝑤(𝜉𝜉𝜉int። , 𝑡) + 𝛼፞,፤)𝑎፤።

+ Δ𝑥፤𝜔፱,።
4𝜌(𝑧(𝑠።))

(𝜌(𝑧፤ዄኻ/ኼ)𝑤(𝜉𝜉𝜉ext። , 𝑡) − 𝛼፞,፤)𝑎
፤ዄፊᑩ
።ዅፍᑫ(ፍᑩዄኻ), (4.52)

where 𝛼፞,፤ =max(፱፱፱,፭)∈፞ᑅ (|𝜌(𝑧)𝑤(𝑥, 𝑡𝑥, 𝑡𝑥, 𝑡)|). Here 𝑖 was chosen arbitrarily, so it can be written in a matrix-
vector form:

∫
፞ᑅ

𝜙።
𝜌(𝑧፤ዄኻ/ኼ)

ℎ፞,፤ 𝑑Γ, ∀𝑖 ∈ {1, … , 𝑁፩} ⟹ �̂�(𝑘)𝑎𝑎𝑎፤ + 𝐹ፍ(𝑘)𝑎𝑎𝑎፤ዄፊᑩ . (4.53)

Similarly, the integrals of the other three element boundaries are calculated and casted in a matrix-
vector form. Consequently, the flux vector 𝑓𝑓𝑓፤ in (4.37) is defined as:

𝑓𝑓𝑓፤ = 𝐹(𝑘)𝑎𝑎𝑎፤ + 𝐹ፍ(𝑘)𝑎𝑎𝑎፤ዄፊᑩ + 𝐹ፄ(𝑘)𝑎𝑎𝑎፤ዄኻ + 𝐹ፒ(𝑘)𝑎𝑎𝑎፤ዅፊᑩ + 𝐹ፖ(𝑘)𝑎𝑎𝑎፤ዅኻ. (4.54)

4.3.3. Numerical results for the two-dimensional problem
In order to check whether the element matrices are correctly defined, the two-dimensional problem is
implemented and tested in Fortran, just as DALES is. Since the three-dimensional case is going to be
implemented, only a few tests with the two-dimensional case are done to assure whether the element
matrices are defined correctly.

The initial condition that is chosen to test the model with, is the same as in the one-dimensional case,
given in Equation (4.12), extended to two dimensions:

𝜑(𝑥, 𝑧, 0) = 𝜑ኺ(𝑥, 𝑧) = {
ኻዅcos((፱ዅኻ))

ኼ , 𝑥 ∈ [−3, −1], 𝑧 ∈ [0, 10],
1, 𝑥 ∈ [1, 3], 𝑧 ∈ [0, 10],
0, 𝑥 ∉ [−3, −1] ∪ [1, 3], 𝑧 ∈ [0, 10].

(4.55)

In Figure 4.12 the initial condition is shown in a three-dimensional plot, a filled contour plot and a slice
of the three-dimensional plot.

For the first test case, the velocities 𝑢 in the 𝑥-direction and 𝑤 in the 𝑧-directions are given by 𝑢 = 1
and 𝑤 = 0, which is actually the same test case that was used in the one-dimensional case. In Figure
4.13, the results are given after simulating till 𝑡 = 10 s. The independence of 𝑧 is clearly shown as was
expected. In comparison with the one-dimensional test with upwind (see Figure 4.8), the results show
more dispersion. This difference is not caused by choosing a different numerical flux, but because of
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(a) Initial condition Ꭳ(፱, ፳, ኺ) in three-dimensions. (b) Contourplot of initial condition Ꭳ(፱, ፳, ኺ).

(c) Initial condition Ꭳ(፱, ፳̃, ኺ) in one-dimension for ፳̃ ∈ [ኺ, ኻኺ].

Figure 4.12: The initial condition Ꭳ(፱, ፳, ኺ).

inexact integration that is chosen for DALES.

To be sure whether the model calculate the fluxes correctly, different velocities are used. Firstly, in
Figure 4.14a, the result at 𝑡 =2 s is given where 𝑢 = 0 and 𝑤 = 1. Secondly, the velocities 𝑢 = 𝑤 = 1
are tested. In both test cases the zero-flux boundary is shown perfectly. Clearly, the result is like one
could foresee.

All in all, the results of the two-dimensional problem show indeed the one dimensional results extended
in the z-direction. Moreover, the element matrices and fluxes seem to work correctly. This means that
it can be assumed that the two-dimensional problem is correctly implemented and can be extended to
three-dimensions.
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(a) Contourplot. (b) Ꭳ(፱, ፳, ኻኺ) with ፳  0.15m.

Figure 4.13: Ꭳ(፱, ፳, ኻኺ), ፊᑩ  ፊᑫ  ኻኺኺ, ፍᑩ  ፍᑫ  ኼ and ጂ፭  ኼ ⋅ ኻኺᎽᎴ.

(a) ፮  ኺ,፰  ኻ. (b) ፮  ኻ,፰  ኻ.

Figure 4.14: Ꭳ(፱, ፳, ኼ), ፊᑩ  ፊᑫ  ኻኺኺ, ፍᑩ  ፍᑫ  ኼ and ጂ፭  ኻ ⋅ ኻኺᎽᎴ.

4.3.4. Three-dimensional problem
In this section the two-dimensional problem is extended to three dimensions. Moreover, the moment
limiter is derived for three-dimensional problems.

The extension of the DG method for (4.24) from two dimensions to three dimensions is quite straight-
forward. For example, element 𝑘 is given by:

Ω፤ = [𝑥፤ዅኻ/ኼ, 𝑥፤ዄኻ/ኼ] × [𝑦፤ዅኻ/ኼ, 𝑦፤ዄኻ/ኼ] × [𝑧፤ዅኻ/ኼ, 𝑧፤ዄኻ/ኼ]. (4.56)

As a result, there are more grid points and basis functions in every element. For this reason, the count-
ing must be extended, we chose to use 𝑥-lexicographic counting, then 𝑦-lexicographic, and last but not
least 𝑧-lexicographic counting.

Consequently, the quantity of interest, 𝜑, is approximated by a larger weighted sum of basis functions:

𝜑፤(𝑥𝑥𝑥, 𝑡) =
ፍᑡ

∑
፣ኻ
𝑎፤፡(𝑥𝑥𝑥፤፣ , 𝑡)𝜙፣(𝜉𝜉𝜉(𝑥𝑥𝑥)). (4.57)

where 𝑁፩ = (𝑁፱ + 1)(𝑁፲ + 1)(𝑁፳ + 1) and 𝜙፣(𝑥, 𝑦, 𝑧) = ℓ፱,፣(𝑥)ℓ፲,፣(𝑦)ℓ፳,፣(𝑧), with 𝑗 ∈ {1, … ,𝑁፩}.



4.3. Discontinuous Galerkin for DALES 35

Moreover, the linear transformation has to be done for all three coordinates. Thereupon, the Jacobian
|𝐽| becomes:

|𝐽(𝜉፱ , 𝜉፲ , 𝜉፳)| = ||

Ꭷ፱
Ꭷᑩ

Ꭷ፱
Ꭷᑪ

Ꭷ፱
Ꭷᑫ

Ꭷ፲
Ꭷᑩ

Ꭷ፲
Ꭷᑪ

Ꭷ፲
Ꭷᑫ

Ꭷ፳
Ꭷᑩ

Ꭷ፳
Ꭷᑪ

Ꭷ፳
Ꭷᑫ

|| =
1
8Δ𝑥፤Δ𝑦፤Δ𝑧፤ . (4.58)

On top of that, an extra LGL weight is summed over in the quadrature rule:

∫
ኻ

ዅኻ
∫
ኻ

ዅኻ
∫
ኻ

ዅኻ
𝑔(𝜉፱ , 𝜉፲ , 𝜉፳) 𝑑𝜉፱𝑑𝜉፲𝑑𝜉፳ = ∫

ኻ

ዅኻ

ፍᑪ

∑
፣ኺ

ፍᑩ
∑
።ኺ
𝜔፳,፣𝜔፱,።𝑔(𝜉፱,። , 𝜉፲,፣ , 𝜉፳) 𝑑𝜉፳ , (4.59)

=
ፍᑫ
∑
፦ኺ

ፍᑪ

∑
፣ኺ

ፍᑩ
∑
።ኺ
𝜔፳,፦𝜔፲,፣𝜔፱,።𝑔(𝜉፱,። , 𝜉፲,፣ , 𝜉፳,፦), (4.60)

where

𝜔፱,። =
2

𝑁፱(𝑁፱ + 1)(𝑃ፍᑩ(𝜉፱,።))ኼ
, 𝜔፲,፣ =

2
𝑁፲(𝑁፲ + 1)(𝑃ፍᑪ(𝜉፲,፣))ኼ

, 𝜔፳,፦ =
2

𝑁፳(𝑁፳ + 1)(𝑃ፍᑫ(𝜉፳,፦))ኼ
.

The LGL quadrature rule is still exact for functions of degrees max(2𝑁፱ + 1, 2𝑁፲ + 1, 2𝑁፳ + 1) or less
(Theorem Cools, 2002 [12]).

These minor changes influences the element matrices, such as an extra weight of the quadrature rule
and/or an extra ኻ

ኼΔ𝑦፤ of the Jacobian when variables are changed. In the next paragraphs the element
matrices of (4.37) are shown.

Element mass matrix
The element matrix for the three-dimensional problem is given by:

𝑀፤
።፣ = ∫

ᑜ
𝜙፣(𝜉𝜉𝜉(𝑥𝑥𝑥))𝜙።(𝜉𝜉𝜉(𝑥𝑥𝑥)) 𝑑Ω = ∫

ኻ

ዅኻ
∫
ኻ

ዅኻ
∫
ኻ

ዅኻ
𝜙፣(𝜉𝜉𝜉)𝜙።(𝜉𝜉𝜉)

1
8Δ𝑥፤Δ𝑦፤Δ𝑧፤ 𝑑𝜉፱ 𝑑𝜉፲ 𝑑𝜉፳ , (4.61)

≈
ፍᑩ
∑
፩ኺ

ፍᑪ

∑
፪ኺ

ፍᑫ
∑
፫ኺ

1
8Δ𝑥፤Δ𝑧፤𝜔፱,፩𝜔፲,፪𝜔፳,፫𝜙፣(𝜉፱,፩, 𝜉፲,፪ , 𝜉፳,፫)𝜙።(𝜉፱,፩, 𝜉፲,፪ , 𝜉፳,፫), (4.62)

= 1
8Δ𝑥፤Δ𝑦፤Δ𝑧፤𝜔፱,።𝜔፲,።𝜔፳,።𝛿።፣ . (4.63)

Hence, the element mass matrix is with inexact integration still a diagonal matrix.

Element stiffness matrix
The addition of the 𝑦-direction also gives an extra term in the element stiffness matrix, which is in the
three-dimensional case defined as:

𝑆፤።፣ ≈
1
8Δ𝑥፤Δ𝑦፤Δ𝑧፤𝜔፱,፣ᑩ𝜔፲,፣ᑪ𝜔፳,፣ᑫ(𝑢(𝑥𝑥𝑥(𝜉፱,፣ᑩ , 𝜉፲,፣ᑪ , 𝜉፳,፣ᑫ), 𝑡)

𝜕ℓ፱,።(𝜉፣ᑩ)
𝜕𝜉፱

𝛿።ᑪ ,፣ᑪ𝛿።ᑫ ,፣ᑫ
2
Δ𝑥፤

+ 𝑣(𝑥𝑥𝑥(𝜉፱,፣ᑩ , 𝜉፲,፣ᑪ , 𝜉፳,፣ᑫ), 𝑡)
𝜕ℓ፲,።(𝜉፣ᑪ)
𝜕𝜉፲

𝛿።ᑩ ,፣ᑩ𝛿።ᑫ ,፣ᑫ
2
Δ𝑦፤

+
𝑤(𝑥𝑥𝑥(𝜉፱,፣ᑩ , 𝜉፲,፣ᑪ , 𝜉፳,፣ᑫ), 𝑡)

𝜌(𝑧(𝜉፳,፣ᑫ))
[𝜌(𝑧(𝜉፣ᑫ))

𝜕ℓ፳,።(𝜉፣ᑫ)
𝜕𝜉፳

𝛿።ᑩ ,፣ᑩ𝛿።ᑪ ,፣ᑪ
2
Δ𝑧፤

− 𝛿።,፣
𝜕𝜌(𝑧(𝜉፣ᑫ))

𝜕𝑧 ]). (4.64)
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Element fluxes
The boundary of element Ω፤ consists of six faces, instead of four edges in the two dimensional case,
which are defined as follows:

bottom 𝑓፤ኻ = {(𝑥, 𝑦, 𝑧) ∈ Ω፤ ∶ 𝑧 = 𝑧፤ዅኻ/ኼ},
top 𝑓፤ኼ = {(𝑥, 𝑦, 𝑧) ∈ Ω፤ ∶ 𝑧 = 𝑧፤ዄኻ/ኼ},
left 𝑓፤ኽ = {(𝑥, 𝑦, 𝑧) ∈ Ω፤ ∶ 𝑥 = 𝑥፤ዅኻ/ኼ},

right 𝑓፤ኾ = {(𝑥, 𝑦, 𝑧) ∈ Ω፤ ∶ 𝑥 = 𝑥፤ዄኻ/ኼ},
front 𝑓፤ = {(𝑥, 𝑦, 𝑧) ∈ Ω፤ ∶ 𝑦 = 𝑦፤ዅኻ/ኼ},
back 𝑓፤ዀ = {(𝑥, 𝑦, 𝑧) ∈ Ω፤ ∶ 𝑦 = 𝑦፤ዄኻ/ኼ}.

𝑥
𝑦

𝑧

Figure 4.15: Element ᑜ with its 6 faces.

As a result, 𝑓𝑓𝑓፤ of Equation (4.37) becomes:

𝑓𝑓𝑓፤ = 𝐹(𝑘)𝑎𝑎𝑎፤ + 𝐹ኻ(𝑘)𝑎𝑎𝑎፤ዅፊᑩፊᑪ + 𝐹ኼ(𝑘)𝑎𝑎𝑎፤ዄፊᑩፊᑪ + 𝐹ኽ(𝑘)𝑎𝑎𝑎፤ዅኻ

+ 𝐹ኾ(𝑘)𝑎𝑎𝑎፤ዄኻ + 𝐹(𝑘)𝑎𝑎𝑎፤ዅፊᑩ + 𝐹ዀ(𝑘)𝑎𝑎𝑎፤ዄፊᑩ . (4.65)

For example, the integral over 𝑓፤ኼ of element Ω፤ with 𝑖 such that 𝑥። ∈ 𝑓፤ኼ can be written as:

∫
፟ᑜᎴ

𝜙።
𝜌(𝑧፤ዄኻ/ኼ)

ℎ፞,፤ 𝑑Γ ≈
Δ𝑥፤Δ𝑦፤
8

𝜔፱,።𝜔፲,።
𝜌(𝑧፤ዄኻ/ኼ)

(𝜌(𝑧፤ዄኻ/ኼ)𝑤(𝜉𝜉𝜉int። , 𝑡)𝑎፤። + 𝜌(𝑧፤ዄኻ/ኼ)𝑤(𝜉𝜉𝜉ext። , 𝑡)𝑎
፤ዄፊᑩፊᑪ
።ዅፍᑫ(ፍᑪዄኻ)(ፍᑩዄኻ)

− 𝛼፞,፤[𝑎
፤ዄፊᑩፊᑪ
።ዅፍᑫ(ፍᑪዄኻ)(ፍᑩዄኻ) − 𝑎

፤
። ]), (4.66)

where 𝛼፞,፤ = max(፱፱፱,፭)∈፟ᑜᎴ (|𝜌(𝑧፤ዅኻ/ኼ)𝑤(𝑥𝑥𝑥, 𝑡)|). As one can see, there are a few minor changes com-
pared to the two-dimensional case, namely the quadrature weight 𝜔፲,። and the Jacobian change ኻ

ኼΔ𝑦፤.

4.3.5. Numerical results for the three-dimensional problem
In this section, the numerical results of DG are shown. The test case that is used is the same test case
as the one-dimensional test case and the two-dimensional test case extended to three dimensions. In
all tests, Δ𝑡 = 0.99CFLፋᎴ

፮
ጂ፱ is chosen such that the time step is big enough to be computationally fast,

but also small enough to avoid numerical instability.

Since the initial condition is independent of 𝑦 and 𝑧, only the interesting (𝑦, 𝑧)-contour plots are shown.
The (𝑥, 𝑦)- and (𝑥, 𝑧)- contours are both shown to confirm the independence of 𝑦 and 𝑧. Moreover,
the plots only show one value of every node even though there are two values for the nodes on the
element boundary. In the plots half cells are shown [𝑥፤ዅኻ/ኼ, 𝑥፤ዄኻ/ኼ)× [𝑦፤ዅኻ/ኼ, 𝑦፤ዄኻ/ኼ)× [𝑧፤ዅኻ/ኼ, 𝑧፤ዄኻ/ኼ).

In Figure 4.16, the result after simulating 10 seconds with 𝑢 = 1, 𝑣 = 𝑤 = 0 can be seen. Hence,
the result is the same as in the two-dimensional case (Figure 4.13), only extended in the 𝑦-direction.
Moreover, the numerical errors are calculated in the 𝐿ኼ- and ℓኼ-norm in the same way as described in
Chapter 4.2.4. The numerical error in 𝐿ኼ-norm is 2.2096 and in ℓኼ-norm 5.3843.

When 𝜑(𝑥, 𝑦, 𝑧, 𝑡) is approximated after 50 s, the dispersion becomes worse. However, the continuous
part almost remained the same with exceptions of the small oscillations before and after the wave.
These small oscillations are the result of the continuous part that is not smooth enough for DG to have
no problems with it and when the dispersion is advected, they seem to get amplified. The numerical
errors in 𝐿ኼ- and ℓኼ-norm are 2.6459 and 6.2813 respectively.

On top of that, the computational time per time step is calculated by averaging the computation time
per time step using 2393 samples (which is a simulation till 𝑡 =50 s). The average computational time



4.3. Discontinuous Galerkin for DALES 37

(a) Ꭳ(፱,ዅ, ፳, ኻኺ) (b) Ꭳ(፱,ዅ, ፳, ኻኺ)

(c) Ꭳ(፱,ዅ, ኺ, ኻኺ)

Figure 4.16: The approximation of Ꭳ(፱, ፲, ፳, ኻኺ) with DG using ፊᑩ  ኻኺኺ, ፊᑪ  ፊᑫ  ኼ, ፍᑩ  ፍᑪ  ፍᑫ  ኼ and
ጂ፭  ኺ.ዃዃCFLᎴ ᑦ

ᏺᑩ .

for DG with 𝑁 = 2 is 0.150 s per time step.

All in all, the same conclusion can be drawn as in the literature study prior to this thesis work [5] is
drawn; DG works very well for smooth functions, but for non-smooth functions dispersions occur which
worsen in time. Therefore, a limiter is needed to remove the dispersion.
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(a) Filled contourplot of the approximation of
Ꭳ(፱, ፲, ኺ, ኺ).

(b) Filled contourplot of the approximation of
Ꭳ(፱,ዅ, ፳, ኺ).

(c) The approximation of Ꭳ(፱,ዅ, ኺ, ኺ).

Figure 4.17: The approximation of Ꭳ(፱, ፲, ፳, ኺ) with DG using ፊᑩ  ኻኺኺ, ፊᑪ  ፊᑫ  ኼ, ፍᑩ  ፍᑫ  ኼ and ጂ፭  ኺ.ዃዃCFLᎴ ᑦ
ᏺᑩ .

4.3.6. Moment limiter derivation and extension to three-dimensions
In Section 4.2.2, the moment limiter is introduced for the first time. For our three-dimensional problem,
the moment limiter has to be extended to three dimensions. First, the derivation of the moment limiter
is explained for one-dimensional problems. Thereafter, the extension to three dimensions and its cor-
responding limiting order are given.

Derivation of the one-dimensional moment limiter
Just like most limiters for DG, the limiter is based on the modal form of the solution. As noted before
in Section 4.2, switching between nodal and modal form can easily be done with the VanderMonde
matrix. For a one-dimensional problem, the modal form is written as:

𝜑 =
፩

∑
።ኺ
�̂�፤። 𝑃።(𝜉), (4.67)
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with 𝑃።(𝜉) the 𝑖th Legendre polynomial and for example, the following linear transformation

𝜉 = 2(𝑥 − 𝑥፤)
Δ𝑥፤

, (4.68)

is used such that the element [𝑥፤ , 𝑥፤ዄኻ] is mapped to [−1, 1].

In [18], Krivodonova explains that using a Taylor series shows that

�̂�፤። ≈ 𝐶Δ𝑥።
𝜕።𝜑(𝜉)
𝜕𝑥። , 𝑖 ∈ {1, … , 𝑝}, (4.69)

when there are no discontinuities. This means that forward and backward differences using �̂�፤።ዅኻ, �̂�፤ዄኻ።ዅኻ
and �̂�፤ዅኻ።ዅኻ can be used to approximate the 𝑖th derivative �̂�፤። . As a result, the derivative of 𝜑 is to be
calculated to derive the moment limiter.

Using the fact that Ꭷ
Ꮄ
Ꭷ፱Ꮄ = 0, the first 𝑖 derivatives of 𝜑 are given by:

𝜕𝜑
𝜕𝑥 =

𝜕𝜉
𝜕𝑥
𝜕𝜑
𝜕𝜉 , (4.70)

𝜕ኼ𝜑
𝜕𝑥ኼ = (

𝜕𝜉
𝜕𝑥)

ኼ 𝜕ኼ𝜑
𝜕𝜉ኼ +

𝜕ኼ𝜉
𝜕𝑥ኼ

𝜕𝜑
𝜕𝜉 = (

𝜕𝜉
𝜕𝑥)

ኼ 𝜕ኼ𝜑
𝜕𝜉ኼ , (4.71)

𝜕ኽ𝜑
𝜕𝑥ኽ =

𝜕
𝜕𝑥 [(

𝜕𝜉
𝜕𝑥)

ኼ 𝜕ኼ𝜑
𝜕𝜉ኼ ] = 2

𝜕𝜉
𝜕𝑥
𝜕ኼ𝜉
𝜕𝑥ኼ

𝜕ኼ𝜑
𝜕𝜉ኼ + (

𝜕𝜉
𝜕𝑥)

ኽ 𝜕ኽ𝜑
𝜕𝜉ኽ = (

𝜕𝜉
𝜕𝑥)

ኽ 𝜕ኽ𝜑
𝜕𝜉ኽ , (4.72)

⋮
𝜕።𝜑
𝜕𝑥። = (

𝜕𝜉
𝜕𝑥)

። 𝜕።𝜑
𝜕𝜉። . (4.73)

For the derivative of ᎧᎣᎧ , the derivative of the 𝑖th Legendre polynomial [39] is needed, which is defined
as follows:

𝜕
𝜕𝜉𝑃።(𝜉) = (2𝑖 − 1)𝑃።ዅኻ(𝜉) + (2𝑖 − 5)𝑃።ዅኽ(𝜉) + (2𝑖 − 7)𝑃።ዅ(𝜉) + … , (4.74)

and the second derivative is given by:

𝜕ኼ
𝜕𝜉ኼ𝑃።(𝜉) =

𝜕
𝜕𝜉((2𝑖 − 1)𝑃።ዅኻ(𝜉) + (2𝑖 − 5)𝑃።ዅኽ(𝜉) + (2𝑖 − 7)𝑃።ዅ(𝜉) + …), (4.75)

= (2𝑖 − 1)((2𝑖 − 3)𝑃።ዅኼ(𝜉) + (2𝑖 − 7)𝑃።ዅኾ(𝜉) + …) +
𝜕
𝜕𝜉((2𝑖 − 5)𝑃።ዅኽ(𝜉) + (2𝑖 − 7)𝑃።ዅ(𝜉) + …). (4.76)

As one can see that the derivatives of the Legendre polynomials are, like the Legendre polynomials
itself, recursive. The recursion can be written with the double factorial (2𝑖−1)! !. The double factorial[35]
is defined as:

𝑎! ! = {
𝑎(𝑎 − 2)(𝑎 − 4)⋯5 ⋅ 3 ⋅ 1 𝑎 > 0 odd, (4.77a)
𝑎(𝑎 − 2)(𝑎 − 4)⋯6 ⋅ 4 ⋅ 2 𝑎 > 0 even, (4.77b)
1 𝑎 = −1, 0. (4.77c)
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Using this information, the (𝑖 − 1)th derivative of 𝜑 can be written as follows:

𝜕።ዅኻ𝜑፤
𝜕𝑥።ዅኻ = (𝜕𝜉𝜕𝑥)

።ዅኻ 𝜕።ዅኻ
𝜕𝜉።ዅኻ(

፩

∑
።ኺ
�̂�፤። 𝑃።(𝜉)), (4.78)

= (𝜕𝜉𝜕𝑥)
።ዅኻ 𝜕።ዅኻ

𝜕𝜉።ዅኻ( ∑
ኺጺ፦ጺ።ዅኻ

[�̂�፤፦𝑃፦(𝜉)] + �̂�፤።ዅኻ𝑃።ዅኻ(𝜉) +
፩

∑
፦ጻ።ዅኻ

�̂�፤፦𝑃፦(𝜉)), (4.79)

= ( 2
Δ𝑥፤

)
።ዅኻ
(0 + �̂�፤።ዅኻ(2𝑖 − 3)! ! +

𝜕።ዅኻ
𝜕𝜉።ዅኻ

፩

∑
፦ጻ።ዅኻ

�̂�፤፦𝑃፦(𝜉)), (4.80)

= ( 2
Δ𝑥፤

)
።ዅኻ
(�̂�፤።ዅኻ(2𝑖 − 3)! ! +

𝜕።ዅኻ
𝜕𝜉።ዅኻ

፩

∑
፦ጻ።ዅኻ

�̂�፤፦𝑃፦(𝜉)), (4.81)

and the 𝑖th derivative as:

𝜕።𝜑፤
𝜕𝑥። = (

2
Δ𝑥፤

)
።
(�̂�፤። (2𝑖 − 1)! ! +

𝜕።
𝜕𝜉።

፩

∑
፦ጻ።

�̂�፤፦𝑃፦(𝜉)). (4.82)

Using forward differencing, the 𝑖th derivative of 𝜑 can be approximated by:

(𝜕
።ዅኻ𝜑፤ዄኻ
𝜕𝑥።ዅኻ − 𝜕

።ዅኻ𝜑፤
𝜕𝑥።ዅኻ ) /Δ𝑥፤ = (

2
Δ𝑥፤

)
።
(12(2𝑖 − 3)! ! (�̂�

፤ዄኻ
።ዅኻ − �̂�፤።ዅኻ) +

1
2
𝜕።ዅኻ
𝜕𝜉።ዅኻ

፩

∑
፦ጻ።ዅኻ

(�̂�፤ዄኻ፦ − �̂�፤፦)𝑃፦(𝜉)).

(4.83)

Comparing the right-hand side of (4.83) with that of (4.82), we find that

�̂�፤። =
�̂�፤ዄኻ።ዅኻ − �̂�፤።ዅኻ
2(2𝑖 − 1) + 𝒪(Δ𝑥።ዄኻ፤ ). (4.84)

This means that the leading term of the 𝑖th derivative is allowed to be 2(2𝑖 −1) bigger than the forward
and backward differences of the (𝑖 − 1)th derivatives of the neighbouring cells. Therefore, the limited
version of �̃�፤። is chosen to be:

�̃�፤። = minmod(�̂�፤። , 𝛼።(�̂�፤ዄኻ።ዅኻ − �̂�፤።ዅኻ), 𝛼።(�̂�፤።ዅኻ − �̂�፤ዅኻ።ዅኻ )), (4.85)

where
1

2(2𝑖 − 1) ≤ 𝛼። ≤ 1. (4.86)

When 𝛼። is chosen outside the interval, it resulted in either loss of accuracy or numerical instability [18].
Using 𝛼። = ኻ

ኼ(ኼ።ዅኻ) more dissipation is added than when 𝛼። = 1 is used.

Three-dimensional moment limiter
The approximated function 𝜑 is defined as:

𝜑 =
ፍᑩ
∑
።ኺ

ፍᑪ

∑
፣ኺ

ፍᑫ
∑
ℓኺ

�̂�፤ᑩ ,፤ᑪ ,፤ᑫ።,፣,ℓ 𝜓።(𝜉፱)𝜓፲(𝜉፲)𝜓፳(𝜉፳), (4.87)

where 𝜓(𝜉) is the basis function in one dimension. Likewise, the nodal DG is defined in (4.57), the
three-dimensional basis functions are the tensor products of one-dimensional basis functions. In this
case, the scaled Legendre polynomials are chosen, such that the function space of basis functions 𝜓፧
is orthonormal:

𝜓፧(𝜉) = √𝑛 +
1
2𝑃፧(𝜉), 𝑛 = {𝑖, 𝑗, ℓ} (4.88)
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When 𝜑 is differentiated 𝑖 > 0 times in the 𝑥-direction, 𝑗 > 0 times and ℓ > 0 times in the 𝑦- and
𝑧-direction, the derivative is given by:

𝜕።ዄ፣ዄℓ𝜑
𝜕𝑥።𝜕𝑦፣𝜕𝑧ℓ = (

2
Δ𝑥)

።

( 2Δ𝑦)
፣

( 2Δ𝑧)
ℓ

[√𝑖 + 12
√𝑗 + 12

√ℓ + 12(2𝑖 − 1)! ! (2𝑗 − 1)! ! (2ℓ − 1)! ! �̂�
፤,፦,፩
።,፣,ℓ

+ 𝜕።ዄ፣ዄℓ
𝜕𝑥።𝜕𝑦፣𝜕𝑧ℓ

ፍᑩ
∑
፮ጻ።

ፍᑪ

∑
፯ጻ፣

ፍᑫ
∑
፰ጻℓ

�̂�፤,፦,፩፮,፯,፰𝜓።(𝜉፱)𝜓፲(𝜉፲)𝜓፳(𝜉፳)]. (4.89)

In contrast with the one-dimensional derivative, see Equation (4.82), the coefficient �̂�፤,፦,፩።,፣,ℓ is also mul-
tiplied with the scaling of the basis function and correspondingly, the influence of the 𝑦- and 𝑧-direction
is present.

If 𝜑 is one time less differentiated, for example in the 𝑥-direction, it looks like this:

𝜕።ዅኻዄ፣ዄℓ𝜑
𝜕𝑥።ዅኻ𝜕𝑦፣𝜕𝑧ℓ = (

2
Δ𝑥)

።ዅኻ

( 2Δ𝑦)
፣

( 2Δ𝑧)
ℓ

[√𝑖 − 12
√𝑗 + 12

√ℓ + 12(2𝑖 − 3)! ! (2𝑗 − 1)! ! (2ℓ − 1)! ! �̂�
፤,፦,፩
።ዅኻ,፣,ℓ

+ 𝜕።ዄ፣ዄℓ
𝜕𝑥።𝜕𝑦፣𝜕𝑧ℓ

ፍᑩ
∑
፮ጿ።

ፍᑪ

∑
፯ጻ፣

ፍᑫ
∑
፰ጻℓ

�̂�፤,፦,፩፮,፯,፰𝜓።(𝜉፱)𝜓፲(𝜉፲)𝜓፳(𝜉፳)]. (4.90)

Comparing (4.89) with its approximation using forward differencing with (4.90), we find that:

�̂�፤,፦,፩።,፣,ℓ =
�̂�፤ዄኻ,፦,፩።ዅኻ,፣,ℓ − �̂�፤,፦,፩።ዅኻ,፣,ℓ

2√4𝑖ኼ − 1
+ 𝒪(Δ𝑥።ዄኻΔ𝑦፣ዄኻΔ𝑧ℓዄኻ). (4.91)

Hence, the same can be done for the 𝑦- and 𝑧-direction, which all results to the same lower bound for
𝛼፧ with 𝑛 = {𝑖, 𝑗, ℓ}:

1
2√4𝑛ኼ − 1

≤ 𝛼፧ ≤
√2𝑛 − 1
√2𝑛 + 1

, 𝑛 = {𝑖, 𝑗, ℓ}. (4.92)

Again the lower bound is the most dissipative choice, while the upper bound is the least. Note that these
bounds are the one-dimensional bounds (4.86) multiplied by √ኼ፧ዅኻ

√ኼ፧ዄኻ
. This factor is a result of the scaling

factors of the Legendre polynomials. This was also found by Krivodonova in [? ] for two-dimensions.

Consequently, the limited version of �̃�፤,፦,፩።,፣,ℓ is found by:

�̃�፤,፦,፩።,፣,ℓ = minmod(�̂�፤,፦,፩።,፣,ℓ , 𝛼።(�̂�
፤ዄኻ,፦,፩
።ዅኻ,፣,ℓ − �̂�፤,፦,፩።ዅኻ,፣,ℓ), 𝛼።(�̂�

፤,፦,፩
።ዅኻ,፣,ℓ − �̂�

፤ዅኻ,፦,፩
።ዅኻ,፣,ℓ ), 𝛼፣(�̂�

፤,፦ዄኻ,፩
።,፣ዅኻ,ℓ − �̂�፤,፦,፩።,፣ዅኻ,ℓ),

𝛼፣(�̂�፤,፦,፩።,፣ዅኻ,ℓ − �̂�
፤,፦ዅኻ,፩
።,፣ዅኻ,ℓ ), 𝛼ℓ(�̂�

፤,፦,፩ዄኻ
።,፣,ℓዅኻ − �̂�፤,፦,፩።,፣,ℓዅኻ), 𝛼ℓ(�̂�

፤,፦,፩
።,፣,ℓዅኻ − �̂�

፤,፦,፩ዅኻ
።,፣,ℓዅኻ )), (4.93)

where 𝛼፧ is in the interval (4.92).

In this thesis project, 𝛼፧ = √ኼ፧ዅኻ
√ኼ፧ዄኻ

is chosen, since the KNMI wants to have an advection scheme that
is the least diffusive.

Limiting order for the three-dimensional moment limiter
The limiting order for three-dimensional problems is less straightforward than for one-dimensional prob-
lems, however, the idea stays the same: limit from the highest to the lowest order. This is more dif-
ficult, because different functions can have the same polynomial degree. For example, the functions
𝑥ኼ𝑦, 𝑥ኽ, 𝑥ኼ𝑧, and 𝑥𝑦𝑧 are polynomials of degree three. Thus, the question is which coefficient is limited
first.
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In [18], Krivodonova shows the limiting order for two-dimensional problems when the polynomial de-
gree of the basis functions is 𝑁፱ = 𝑁፲ = 𝑁. In short, the limiter stops when a coefficient 𝑎።,። does not
need limiting or a symmetric pair 𝑎።,፣ and 𝑎፣,። does not need limiting. The order in which is limited can
be found in Table 4.4. First 𝑎ፍ,ፍ is limited, when no limiting is needed, the limiter is stopped. Otherwise,
the coefficients 𝑎ፍ,ፍዅኻ and 𝑎ፍዅኻ,ፍ are limited. When both are limited, the limiter stops. If not, the next
coefficients are checked.

𝑎ፍ,ፍ
𝑎ፍ,ፍዅኻ & 𝑎ፍዅኻ,ፍ
𝑎ፍ,ፍዅኼ & 𝑎ፍዅኼ,ፍ
⋮
𝑎ፍ,ኺ & 𝑎ኺ,ፍ
𝑎ፍዅኻ,ፍዅኻ
𝑎ፍዅኻ,ፍዅኼ & 𝑎ፍዅኼ,ፍዅኻ
𝑎ፍዅኻ,ፍዅኽ & 𝑎ፍዅኽ,ፍዅኻ
⋮
𝑎ፍዅኻ,ኺ & 𝑎ኺ,ፍዅኻ
𝑎ኻ,ኻ
𝑎ኻ,ኺ & 𝑎ኺ,ኻ

Table 4.4: Limiting order for two-dimensional domains with polynomial orders ፍᑩ  ፍᑫ  ፍ.

When the limiting order is extended for three-dimensional problems, there are no symmetrical coeffi-
cients anymore, because the coefficients depend on an uneven number of parameters. Instead of the
symmetry of the coefficients, the combination of the three parameters 𝑖, 𝑗, ℓ is looked at. When multiple
combinations of the three parameters 𝑖, 𝑗, ℓ exist, all the coefficients 𝑎።,፣,ℓ, 𝑎።,ℓ,፣, 𝑎፣,።,ℓ, 𝑎፣,ℓ,።, 𝑎ℓ,።,፣ and
𝑎ℓ,፣,። must be limited. When all of them are not limited, the limiting is stopped.

In Table 4.5, the limiting order is given when the polynomial degree of the basis functions in the 𝑥-, 𝑦-
and 𝑧- directions are equal. Each row shows the parameters 𝑖, 𝑗, ℓ and represents all the coefficients
with all existing combinations of 𝑖, 𝑗, ℓ. The limiter stops when all the coefficients from the row do not
need limiting. This limiting order is also described in the appendix of [13].

Bear in mind, when a parameter 𝑖, 𝑗 or ℓ is 0, the backward and forward difference are undefined.
Consequently, the terms with 𝛼ኺ are left out in (4.93).

When 𝑁፱, 𝑁፲ and 𝑁፳ differ from each other, the limiting order changes. The ℓ-column (the fastest
changing column) now stands for max(𝑁፱ , 𝑁፲ , 𝑁፳) and the 𝑖-column for min(𝑁፱ , 𝑁፲ , 𝑁፳). One should
be careful with the combinations, several combinations may not exist.

Hence, the polynomial degree of the basis function is not taken into account. For example, the co-
efficients with 𝑁, 0, 0 are the corresponding weights of the basis functions with polynomial degree 𝑁.
These coefficients has to be limited before the coefficient with 𝑁 − 1,𝑁 − 1,𝑁 − 1, which belongs to
the basis function with polynomial degree 3𝑁 − 3. However, if one take the polynomial degree of the
basis function into account, it would be the other way around. Nevertheless, the basis functions of the
coefficients 𝑁, 0, 0 have a high order polynomial in one direction instead of lower order polynomials in
all three dimensions. In Figure B.1, numerical results are shown when the incorrect limiting order is
used; the basis function 𝑥𝑦𝑧 is limited before the basis functions 𝑥ኼ, 𝑦ኼ and 𝑧ኼ. This small difference in
the limiting order lead to more peak clipping. In short, the limiting order is very important for the results
of the moment limiter.
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𝑖 𝑗 ℓ
𝑁 𝑁 𝑁
𝑁 𝑁 𝑁 − 1
⋮ ⋮ ⋮
𝑁 𝑁 0
𝑁 𝑁 − 1 𝑁 − 1
𝑁 𝑁 − 1 𝑁 − 2
⋮ ⋮ ⋮
𝑁 𝑁 − 1 0
𝑁 𝑁 − 2 𝑁 − 2
𝑁 𝑁 − 2 𝑁 − 3
⋮ ⋮ ⋮
𝑁 𝑁 − 2 0
⋮ ⋮ ⋮
𝑁 0 0

𝑁 − 1 𝑁 − 1 𝑁 − 1
⋮ ⋮ ⋮

𝑁 − 1 𝑁 − 1 0
⋮ ⋮ ⋮
1 0 0

Table 4.5: Limiting order for three dimensional domains using ፍᑩ  ፍᑪ  ፍᑫ  ፍ. Each row shows the three parameters ።, ፣, ℓ
that represent all the coefficients with all existing combinations of ።, ፣, ℓ.

4.3.7. Numerical results with the three-dimensional moment limiter
In this section, the numerical results are shown using DG with the moment limiter and basis functions
of polynomial order 𝑁፱ = 𝑁፲ = 𝑁፳ = 2 for a three-dimensional test case.

Limit after every time step
In Figure 4.18, the effect is shown when the moment limiter is used after every time step. Indeed the
dispersion is removed, nevertheless, the peak of the continuous part is clipped. On top of that, there is
some diffusion in the discontinuous part, which can also be seen in Figure 4.16 where there is no limiter
used. Another interesting observation is the asymmetry at the discontinuity, which is the remainder of
the bigger oscillations. The numerical error in 𝐿ኼ-norm is 2.1766 and in ℓኼ-norm 4.9466.

The approximation of 𝜑 after 50 s can be seen in Figure 4.19. In contrast with the simulation till 10 s,
the peak is more clipped which means that more mass is lost. Recall that without limiter (see figure
4.17), no mass was lost, meaning that the limiter does not necessarily conserve mass. Moreover, more
diffusion took place in the discontinuous part. The numerical errors of this simulation are 2.5570 and
5.7656 in the 𝐿ኼ- and ℓኼ-norm respectively. The average time step takes 0.152 s.

In comparison with the one-dimensional result of the moment limiter using exact integration (see Figure
4.8), more peak clipping takes place with inexact integration. Nevertheless, the discontinuous part looks
better, because it has less diffusion. Even though, the use of exact integration looks better when 𝜑
is approximated after simulating 10 s, after 50 s the results with inexact integration show much less
diffusion, making inexact integration a better option in this case. Like Krivodonova mentioned in [18],
the moment limiter indicates to be especially beneficial for long-time simulations.

Limit after every RK3 step
Another option could be to limit after every RK3 step instead only once after a complete time step. The
advantage of this is that no distinction has to be made between every RK3 step. Moreover, it will save
some extra memory space in DALES. This is explained in Chapter 5.

In Figures 4.20 and 4.21, the approximations of 𝜑 at 𝑡 = 10 s and 𝑡 = 50 s are given. With the naked
eye one cannot see any difference between limiting every RK3 step instead of only once every time
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(a) Ꭳ(፱, ፲, ኺ, ኻኺ) (b) Ꭳ(፱,ዅ, ፳, ኻኺ).

(c) Ꭳ(፱,ዅ, ኺ, ኻኺ)

Figure 4.18: Ꭳ(፱, ፲, ፳, ኻኺ) with ፊᑩ  ኻኺኺ, ፊᑪ  ፊᑫ  ኼ when limiter is used, ጂ፭  ኼ.ኺዂዃ ⋅ ኻኺᎽᎴ.

step. Though in numerical error there is a small difference. Limiting every RK3 step has a smaller
numerical error in the order of 10ዅኽ; The numerical error after simulating till 𝑡 =10 s is 2.1759 and
4.9435, and till 𝑡 =50 s 2.5551 and 5.7607 in 𝐿ኼ- and ℓኼ-norm respectively. The average time step
takes longer than when only once every time step is limited, namely it takes 0.158 s.

Conclusion
In short, using a limiter clearly improves the results by removing the oscillations. Two choices can
made; limit every Rk3 step or only limit once after the last RK3 step. The numerical results show no
significant difference, except that the accuracy is slightly better for limiting every RK3 step, but it also
takes about 0.006 s longer to compute per time step.
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(a) Ꭳ(፱, ፲, ኺ, ኺ). (b) Ꭳ(፱,ዅ, ፳, ኺ)

(c) Ꭳ(፱,ዅ, ኺ, ኺ), ጂ፭  ኼ.ኺዂዃ ⋅ ኻኺᎽᎴ

Figure 4.19: Ꭳ(፱, ፲, ፳, ኺ) with ፊᑩ  ኻኺኺ, ፊᑪ  ፊᑫ  ኼ when limiter is used.
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(a) Ꭳ(፱, ፲, ኺ, ኻኺ) (b) Ꭳ(፱,ዅ, ፳, ኻኺ).

(c) Ꭳ(፱,ዅ, ኺ, ኻኺ)

Figure 4.20: Ꭳ(፱, ፲, ፳, ኻኺ) with ፊᑩ  ኻኺኺ, ፊᑪ  ፊᑫ  ኼ when limiter after every Rk3 step is used, ጂ፭  ኼ.ኺዂዃ ⋅ ኻኺᎽᎴ.
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(a) Ꭳ(፱, ፲, ኺ, ኺ). (b) Ꭳ(፱,ዅ, ፳, ኺ)

(c) Ꭳ(፱,ዅ, ኺ, ኺ), ጂ፭  ኼ.ኺዂዃ ⋅ ኻኺᎽᎴ

Figure 4.21: Ꭳ(፱, ፲, ፳, ኺ) with ፊᑩ  ኻኺኺ, ፊᑪ  ፊᑫ  ኼ when limiter after every RK3 step is used.





5
Comparison of WENO and DG in

DALES
In this chapter, the discontinuous Galerkin method is compared with the WENO method in a DALES
setup. First, the choices on how DG is implemented in DALES are explained. After that, the numerical
results of both methods are compared.

5.1. Implementation choices
We have chosen to work first with a stripped version of DALES which we call the LES wrapper. In this
stripped version, only the advection subroutine is used; all other subroutines are not included in the
LES wrapper. This means that no subroutines can influence the numerical results except the advection
scheme.

The LES wrapper did not take into account to simulate exactly the run time. As a result, when one
wants to simulate 𝜑(𝑥, 𝑦, 𝑧, 10), it is possible that the results show 𝜑(𝑥, 𝑦, 𝑧, 10 + 𝛽Δ𝑡) with 0 ≤ 𝛽 < 1.
In our test case, Δ𝑡 = 2 ⋅ 10ዅኼ is chosen which satisfies the CFL condition for both WENO and DG for
𝑢 = 1, 𝑣 = 0 and 𝑤 = 0.

Each DG cell exists of one DALES cell (see Figure 5.1). This is chosen such that the accuracy is as
high as possible without increasing the computational cost by taking more DG cells in one DALES cell.

Figure 5.1: One DG cell as one DALES grid box in two-dimensions. The black node is the one node which is also the DALES
variable ᎣFVM, all other nodes are only DG variables.

The advection subroutines of DALES obtain the variable 𝜑 that must be advected as input and returns
the tendency ᎧᎣ

Ꭷ፭ as output. The input and output variable are one value for each grid cell, which is the
cell average like with the finite volume method (FVM). For DG with 𝑁፱ = 𝑁፲ = 𝑁፳ = 2, 27 nodal values
are needed for each grid cell (see Figure 5.1). Therefore, a mapping is used to create the variables
needed for DG, which will be referred to as mapping 𝑎 (see Figure 5.3). One can test several mappings;
we have chosen two mappings:

49
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1. Cell average 𝑎: Give all 27 nodal values the cell average as value.
2. 𝐿ኼ-projection: Use the 𝐿ኼ-projection to the continuous finite element space.

For each method for mapping 𝑎, a name is given, Cell average 𝑎 and 𝐿ኼ-projection.

Thereafter, DG can be applied on 𝜑 to find the tendency ᎧᎣ
Ꭷ፭ of every 27 nodal points. Again a mapping,

refered to as mapping 𝑏, is needed to return the needed output of DALES. In this thesis, two mappings
are explained and tested:

1. Cell average of tendency: Take the cell average of the tendencies of the DG values.
2. Cell average 𝑏: Calculate the advected 𝜑DG(𝑥𝑥𝑥, 𝑡 + 𝛽Δ𝑡). Thereafter, the cell average of 𝜑DG is

determined to find 𝜑FVM(𝑥𝑥𝑥, 𝑡 + 𝛽Δ𝑡) with which the tendency of 𝜑FVM is calculated.

When a limiter is needed, extra steps have to be taken. The limiter is used on 𝜑 itself and not the ten-
dency, so the tendency needs to be integrated in time before it can be limited. With the limited �̃�, the
tendency can be recalculated which can be again mapped to the tendency that is needed for DALES.
In Figure 5.2, a summary of all steps are given in a flow chart.

𝜑FVM
𝑢DG, 𝑣DG,

𝑤DG and 𝜑DG

ᎧᎣDG
Ꭷ፭

want to
use

limiter
and not
yet

limited?

ᎧᎣFVM
Ꭷ፭

𝜑DG(𝑥𝑥𝑥, 𝑡 + 𝛽Δ𝑡)�̃�DG(𝑥𝑥𝑥, 𝑡 + 𝛽Δ𝑡)

mapping ፚ

DG

yes, integrate in time

moment limiter

calculate tendency

no, use mapping 

Figure 5.2: Flow chart of the DG advection scheme of DALES in general. ᎏ denotes the RK3 coefficient.

One can ask why the DG variable is not saved every time step instead of using mappings; this would
probably result in the same numerical results as in Chapter 4. However, this would bring several com-
plications with it. First of all, the time integration is done outside the advection scheme meaning that it
would be done twice. Second of all, DALES uses operational splitting which means that the variable is
also influenced outside the advection scheme. Consequently, extra mappings for all other tendencies
of the variable are needed from their FVM variable to the DG variable, which are not straightforward.
Third of all, the advection scheme can be used for multiple variables, which would also acquire more
memory space. This means that for each variable a corresponding DG variable must be saved. On the
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one hand, this could be solved by using dynamic variable names, nevertheless, Fortran does not sup-
port this. On the other hand, an allocatable multiple dimensional vector could be used which requires
some creativity in implementation, like the number of variables that are going to be advected with DG,
must be known before it can be allocated. In short, saving the DG variable did not seem to be a good
option.

In Figure 5.2, it is shown that there is no distinction made of every RK3 step in our advection scheme.
In other words, the limiter is used every RK3 step instead only once every time step. There are two
reasons for this choice. Firstly, the other option would acquire to save all DG variables of all variables
that use our advection scheme, which is not easy as discussed above. Secondly, the numerical accu-
racy is slightly better for more or less the same computational time.

5.1.1. Mappings
In this section the ideas of the mappings 𝑎 and 𝑏 are explained and how they work.

FVM DG

Mapping 𝑎

Mapping 𝑏

Figure 5.3: A two-dimensional illustration for mappings ፚ and .

Mappings 𝑎
Cell average 𝑎
Cell average 𝑎 is the most simple method that can be used as mapping 𝑎. Since the LES filtered
variable is the cell average of the grid box, all values of the element are more or less the average.
Henceforth, all nodal values of the grid cell are chosen to be the cell average of the grid cell. This can
mean that at the element boundaries the function can be discontinuous, which is one of the advantages
of DG, as allowing discontinuities gives an extra degree of freedom to find the approximated function.

𝐿ኼ-projection
Instead of using the cell average for all the nodal values of the element, the nodal values can be cal-
culated by using its neighbours. The interpolation method has to satisfy certain conditions; it has to
conserve mass and the nodal values should lay near the cell averages. Therefore, the 𝐿ኼ-projection to
the continuous space is chosen.

The 𝐿ኼ- projection 𝜑CG is the optimal solution of:

min ‖𝜑FVM − 𝜑CG‖ፋᎴ() . (5.1)

This can be rewritten to:

∫

𝜑CG𝜂 𝑑Ω = ∫


𝜑FVM𝜂 𝑑Ω, ∀𝜂, (5.2)

where the test function 𝜂 is an arbitrary piecewise continuous function.

Recall that in Chapter 4.2.1, the initial condition of DG is similarly calculated. The difference between
them is the 𝐿ኼ-projection is done to the continuous space instead of the discontinuous space. When
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the FVM variable is projected to the continuous space, there are less degrees of freedom than when it
is projected to the discontinuous space; if the FVM variable is 𝐿ኼ-projected to the discontinuous space,
it results in the previous mapping, cell average 𝑎.

Since the computational domain is partitioned into non-overlapping elements, the integrals over the
domain of (5.2) can be written as:

∑
፤∶ᑜ⊂

∫
ᑜ
𝜑CG𝜂 𝑑Ω = ∑

፤∶ᑜ⊂
∫
ᑜ
𝜑FVM𝜂 𝑑Ω. (5.3)

As told above, (5.3) is almost the same as Equation (4.2b), the only difference is that it is solved glob-
ally instead of locally per element. Rather than allowing multiple values on the boundaries, 𝜑int and
𝜑ext, there is only one value per node. Thereupon, a global matrix 𝑀 is assembled using the element
matrices 𝑀፤.

The first integral of (5.3) can be written as:

∑
፤∶ᑜ⊂

∫
ᑜ
𝜑CG𝜙። 𝑑Ω ≈ ∑

፤∶ᑜ⊂

ፍᑡ

∑
፣ኻ
𝑎(𝑥𝑥𝑥፣ , 𝑡)𝑀፤

።፣ , (5.4)

and the integral over one element for the cell average as follows:

∫
ᑜ
𝜑FVM𝜙። 𝑑Ω ≈

1
8Δ𝑥፤Δ𝑦፤Δ𝑧፤𝜔፱,።𝜔፲,።𝜔፳,።𝜑FVM(Ω፤) = 𝑀፤

።።𝜑FVM(Ω፤). (5.5)

All in all, a matrix-vector equation is to be solved:

𝑀𝑎𝑎𝑎 = 𝜑𝜑𝜑FVM, (5.6)

where 𝑎𝑎𝑎 is the vector of the continuous Galerkin weights and 𝜑𝜑𝜑FVM represents ∫ 𝜑FVM𝜙። 𝑑Ω.

For the assembly of the matrix-vector equation, a mapping is needed from our nodal value𝑚 of element
(𝑖, 𝑗, 𝑘) to the nodal value in the physical space ℎ(𝑖, 𝑗, 𝑘,𝑚). Hence, a nodal value (𝑖, 𝑗, 𝑘,𝑚) does not
necessarily have a unique number ℎ(𝑖, 𝑗, 𝑘,𝑚) (see Figure 5.4). In other words, the mapping is a many-
to-one function. With this mapping, every element mass matrix can be assembled in the global mass
matrix and 𝜑𝜑𝜑FVM can be calculated. This goes similarly to the finite element method, see Section 6.2.6
of [31] for more information.

ℎ(𝑖, 𝑗, 𝑘,𝑚) ℎ(𝑖 + 1, 𝑗, 𝑘,𝑚ᖣ)

Figure 5.4: Many-to-one mapping from node ፦ of element (።, ፣, ፤) and node፦ᖤ of element (። ዄ ኻ, ፣, ፤) to node ፡(።, ፣, ፤,፦) of
the domain.
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Mappings 𝑏
In general, the cell average of element Ω፤ of a three-dimensional function 𝑔(𝑥𝑥𝑥) is calculated as follows:

𝑔ᑜ ,FVM =
1

Δ𝑥Δ𝑦Δ𝑧 ∫ᑜ
𝑔(𝑥𝑥𝑥) 𝑑Ω፤ , (5.7)

= 1
Δ𝑥Δ𝑦Δ𝑧 ∫

ኻ

ዅኻ
∫
ኻ

ዅኻ
∫
ኻ

ዅኻ
𝑔(𝑥𝑥𝑥(𝜉𝜉𝜉))18Δ𝑥Δ𝑦Δ𝑧 𝑑𝜉𝜉𝜉, (5.8)

≈ 1
8

ፍᑫ
∑
፦ኺ

ፍᑪ

∑
፣ኺ

ፍᑩ
∑
።ኺ
𝜔፳,፦𝜔፲,፣𝜔፱,።𝑔(𝜉፱,። , 𝜉፲,፣ , 𝜉፳,፦). (5.9)

Here the function 𝑔 can be𝜑DG or its tendency. This is how themapping cell average of tendency works.

For cell average 𝑏, extra steps are taken which are shown in Figure 5.5. The time integration step is
done by doing one RK3 step and the cell average of 𝜑DG is calculated by (5.9). For the tendency of
𝜑FVM, the difference is taken between the input variable 𝜑FVM(𝑡) and 𝜑FVM(𝑡 + 𝛽Δ𝑡) with 𝛽 the RK3
coefficient.

ᎧᎣDG
Ꭷ፭ 𝜑DG(𝑡 + 𝛽Δ𝑡)

𝜑FVM(𝑡 + 𝛽Δ𝑡) ᎧᎣFVM
Ꭷ፭

time integration

cell average

calculate tendency

Figure 5.5: Flow chart of method cell average . ᎏ denotes the RK3 coefficient.

Invertible mappings
When mappings are used, the question arises whether the actions are invertible. For mappings 𝑎 and
𝑏, this property is not immediately clear. In this paragraph, it is looked at whether the mappings are
invertible.

A mapping is invertible if the function is a bijection, for which the following two conditions must hold:

1. The function is injective.
2. The function is surjective.

In Figure 5.6, the two properties are illustrated.

The mappings 𝑎 and 𝑏 are needed to map from a FVM variable to a DG variable and back. A mapping
from FVM to DG is surely surjective which means that every FVM variable has a DG variable and the
other way around. However, the mapping is not injective; multiple DG variables can be mapped to the
same FVM variable since its a cell average of multiple DG values. This means that there exists no
invertible mapping from FVM variable to a DG variable. Similarly, there exists no invertible mappings
from FVM to CG and from CG to DG.

To sum up, there exist no mappings 𝑎 and 𝑏 which are invertible.
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Figure 5.6: Injection and surjection. Images taken from [36] and [37].

5.2. Numerical results of DG
In this section, the numerical results of DG are shown with different combinations of mappings. First
of all, it should be mentioned that smaller domains are tested, because there was not enough memory
to compute bigger domains after the 𝐿ኼ-projection was implemented.

5.2.1. Cell average 𝑎 and cell average of tendency
In Figure 5.7 and Figure 5.8, the approximations of 𝜑 after 5 s and 25 s are shown. The (𝑥, 𝑧)-slices
are not shown, since these are same as the (𝑥, 𝑦)-slices. The computation took about 2.482 × 10ዅ3 s
per time step. One can see that it looks as diffusive as using upwind without DG which is also the
case (See Figure 3.3 in [5]). The numerical error in ℓኼ-norm for continuous 𝜑 is 2.7909 and 4.3186 for
𝑡 =5 s and 𝑡 =25 s respectively. For the discontinuous 𝜑 the numerical errors are 3.73844 and 6.1688
respectively. The diffusion could be caused by themapping from theDALES variable to the DG variable.

Whereas one could expect, the results are smooth to a degree that there is no effect after applying a
limiter. Indeed, it had no effect and the numerical results are exactly the same with identical numerical
errors. Except the average computational time of a time step is longer, 3.590 × 10ዅ3 s. The figures can
be found in Appendix B.2 as Figures B.2 and B.3.

5.2.2. 𝐿ኼ-projection and cell average of tendency
When the 𝐿ኼ-projection is used instead of cell average 𝑎, the diffusion becomes significantly less, see
Figure 5.9 and Figure 5.10. To be exact, the method is underdiffusive which means that a lot of os-
cillations are created. An other striking result is the discontinuity in the 𝑧-direction that arose after
simulating. Further testing excluded the incorrect implementation of the 𝐿ኼ-projection as the cause of
the discontinuity. Most likely, the discontinuity is caused by the boundary condition at the bottom and/or
the periodic boundary conditions which use the ghost cells.

Just as with the cell average 𝑎 method, the limiter has no influence. In both cases of with and without
limiter, the numerical errors in ℓኼ-norm for the continuous part and discontinuous of 𝜑 are 1.8889 and
3.90622, and 3.2956 and 9.5786 for both 𝑡 =5 s and 𝑡 =5 s. However, the computational time with
limiter is 3.900 × 10ዅ3 s while it was 2.755 × 10ዅ3 s without limiter.

Another test has been done by adding extra diffusion by using the moment limiter with an other param-
eter 𝛼. The most diffusive 𝛼፧ = ኻ

ኼ√ኾ፧Ꮄዅኻ
, which is still stable, is chosen. However, this did not have any

impact; still the same results are obtained.
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(a) Ꭳ(፱, ፲, ኺ.ኻ, ) (b) Ꭳ(፱, ፲, ኺ.ኻ, )

(c) Ꭳ(፱, ኺ.ኻ, ኺ.ኻ, ) (d) Ꭳ(፱, ኺ.ኻ, ኺ.ኻ, )

Figure 5.7: Continuous and discontinuous Ꭳ(፱, ፲, ፳, ) with ጂ፱  ጂ፲  ጂ፳  ኺ.ኻ, ጂ፭  ኼ ⋅ ኻኺᎽᎴ, using cell average ፚ and cell
average of tendency.
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(a) Ꭳ(፱, ፲, ኺ.ኻ, ኼ) (b) Ꭳ(፱, ፲, ኺ.ኻ, ኼ)

(c) Ꭳ(፱, ኺ.ኻ, ኺ.ኻ, ኼ) (d) Ꭳ(፱, ኺ.ኻ, ኺ.ኻ, ኼ)

Figure 5.8: Continuous and discontinuous Ꭳ(፱, ፲, ፳, ኼ) with ጂ፱  ጂ፲  ጂ፳  ኺ.ኻ, ጂ፭  ኼ ⋅ ኻኺᎽᎴ, using cell average ፚ and cell
average of tendency.



5.2. Numerical results of DG 57

(a) Ꭳ(፱, ፲, ኺ.ኻ, ) (b) Ꭳ(፱, ፲, ኺ.ኻ, )

(c) Ꭳ(፱, ኺ.ኻ, ፳, ) (d) Ꭳ(፱, ኺ.ኻ, ፳, )

(e) Ꭳ(፱, ኺ.ኻ, ኺ.ኻ, ) (f) Ꭳ(፱, ኺ.ኻ, ኺ.ኻ, )

Figure 5.9: Continuous and discontinuous Ꭳ(፱, ፲, ፳, ) with ጂ፱  ጂ፲  ጂ፳  ኺ.ኻ, ጂ፭  ኼ ⋅ ኻኺᎽᎴ, using ፋᎴ-projection and cell
average of tendency.
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(a) Ꭳ(፱, ፲, ኺ.ኻ, ኼ) (b) Ꭳ(፱, ፲, ኺ.ኻ, ኼ)

(c) Ꭳ(፱, ኺ.ኻ, ፳, ኼ) (d) Ꭳ(፱, ኺ.ኻ, ፳, ኼ)

(e) Ꭳ(፱, ኺ.ኻ, ኺ.ኻ, ኼ) (f) Ꭳ(፱, ኺ.ኻ, ኺ.ኻ, ኼ)

Figure 5.10: Continuous and discontinuous Ꭳ(፱, ፲, ፳, ኼ) with ጂ፱  ጂ፲  ጂ፳  ኺ.ኻ, ጂ፭  ኼ ⋅ ኻኺᎽᎴ, using ፋᎴ-projection and cell
average of tendency.
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5.2.3. 𝐿ኼ-projection and cell average 𝑏
As KNMI wants an advection scheme with the least diffusion as possible, the 𝐿ኼ-projection is used as
mapping 𝑎 combined with the cell average 𝑏 to test whether the oscillations are removed.

In Figure 5.11, the results of this method is shown. At first glance, the results are highly improved,
however, the results are given for 𝑡 =2 s and not for 𝑡 =5 s. The simulation till 𝑡 =2 s shows that the
‘numerical’ velocity of this method is much lower than the actual velocity which would not have been
clear from the simulations till 𝑡 =5 s. All in all, this method cannot be used.

(a) Ꭳ(፱, ፲, ኺ.ኻ, ኼ) (b) Ꭳ(፱, ፲, ኺ.ኻ, ኼ)

(c) Ꭳ(፱, ኺ.ኻ, ኺ.ኻ, ኼ) (d) Ꭳ(፱, ኺ.ኻ, ኺ.ኻ, ኼ)

Figure 5.11: Continuous and discontinuous Ꭳ(፱, ፲, ፳, ኼ) with ጂ፱  ጂ፲  ጂ፳  ኺ.ኻ, ጂ፭  ኼ ⋅ ኻኺᎽᎴ, using ፋᎴ-projection and cell
average .

5.3. Numerical results of WENO
The WENO method is the most accurate advection scheme implemented in DALES. Therefore, the
DG method will be compared to the fifth order WENO. In the literature study prior to this work [5], more
information on WENO can be found, including numerical results for a one-dimensional test case.

In Figure 5.12, the approximation of 𝜑(𝑥𝑥𝑥, 5 s) is given. The continuous part is perfectly kept, but some
diffusion has taken place around the discontinuous part. If we compare this to DG with limiter outside
the LES wrapper (see Figure 4.18), the continuous part is more accurately simulated with WENO while
the discontinuous part is less accurate with WENO. In addition, when the limiter is used every RK3
step (see Figure 4.20), there is less diffusion with DG. The numerical errors in ℓኼ-norm are 0.0021 and
0.1167 for the continuous and discontinuous initial condition respectively.
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(a) Ꭳ(፱, ፲, ኺ.ኻ, ) (b) Ꭳ(፱, ፲, ኺ.ኻ, )

(c) Ꭳ(፱, ኺ.ኻ, ኺ.ኻ, ) (d) Ꭳ(፱, ኺ.ኻ, ኺ.ኻ, )

Figure 5.12: Continuous and discontinuous Ꭳ(፱, ፲, ፳, ) with ጂ፱  ጂ፲  ጂ፳  ኺ.ኻ, ጂ፭  ኼ ⋅ ኻኺᎽᎴ using WENO.

The results of simulating till 𝑡 = 25 s with WENO can be seen in Figure 5.13. Simulating four more
periods did not have a lot of effect, like the numerical errors are 0.0024 and 0.1565 for continuous and
discontinuous 𝜑. The average computational time step takes 2.110 × 10ዅ4 s. Even though, the numer-
ical results of WENO seems quite accurate. For long term time simulations, the advection scheme has
more diffusion than wanted, which can be seen in Figure B.4. In addition, the comparison of WENO
and DG method outside the LES wrapper can be found in Appendix B.3.

5.4. Conclusion
All in all, in the LES wrapper the WENO method gives much better numerical results than the DG
method. On top of that, the computational time of theWENOmethod, without parallelization, is 10 times
less (see Table 5.1). This was to be expected, since DG solved 27 nodal values per element instead
of one value per element. The tested mappings that are needed for the implementation in DALES, do
not give accurate results. While the combination cell average 𝑎 and cell average of the tendency has
too much diffusion, the combination, 𝐿ኼ-projection and cell average of tendency, is underdiffusive. The
combination 𝐿ኼ-projection and cell average 𝑏 has a very long delay in time, therefore, it is a fruitless
method. Since the methods are less accurate than WENO, we did not test them in DALES. However,
when the DG method does not need any mapping from FVM variable to DG variable and back, the DG
method is a very good opponent of the WENO method with good perspectives for the future.
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(a) Ꭳ(፱, ፲, ኺ.ኻ, ኼ) (b) Ꭳ(፱, ፲, ኺ.ኻ, ኼ)

(c) Ꭳ(፱, ኺ.ኻ, ኺ.ኻ, ኼ) (d) Ꭳ(፱, ኺ.ኻ, ኺ.ኻ, ኼ)

Figure 5.13: Continuous and discontinuous Ꭳ(፱, ፲, ፳, ኼ) with ጂ፱  ጂ፲  ጂ፳  ኺ.ኻ, ጂ፭  ኼ ⋅ ኻኺᎽᎴ using WENO.

Method Comp. time Run time Continuous Discontinuous
Cell average 𝑎 & 2.482 ⋅ 10ዅኽs 5 s 2.7909 3.7384

Cell average of tendency 25 s 4.3186 6.1688
𝐿ኼ-projection & 2.755 ⋅ 10ዅኽs 5 s 1.8889 3.2956

Cell average of tendency 25 s 3.9062 9.5786
WENO 2.114 ⋅ 10ዅኾs 5 s 0.0021 0.1167

25 s 0.0024 0.1565

Table 5.1: Each method with its average computational time per time step and numerical errors in ℓᎴ-norm for continuous and
discontinuous initial condition. Note that the WENO method is 10 times faster than the other two methods.





6
Conclusion and further

recommendations
This chapter concludes this thesis. First, each subject of the thesis is summarized and concluded. Be-
sides, some implemenation problems are addressed. Thereafter, the results of the thesis are discussed
and suggestions are made for further research.

6.1. Conclusion
The aim of this thesis was the development of a fast and accurate advection scheme for the large-
eddy simulation, DALES. Therefore, the discontinuous Galerkin (DG) method is proposed and the
corresponding research question of the thesis was:

Can DG be used as an advection solver in DALES such that:

• the computational time is less than the WENOmethod, and/or

• the numerical accuracy is better than theWENOmethod, while the computational time
is not doubled?

This section summarizes the results and concludes each subject this thesis encountered. Last but not
least, the research question is answered.

The problems of numerical weather prediction and climate models are mathematically modelling at-
mospheric processes and to evaluate the models as accurate and efficient as possible. One of these
atmospheric processes that could be solved more accurately and efficiently is the advection. Advection
is one of the most important processes that takes place in the atmosphere. The Dutch Atmospheric
Large-Eddy Simulation (DALES) that is used, among other things, for parametrization development,
still has problems with its advection schemes. Therefore, the DG method is suggested which is known
for its high scalability, geometric flexibility and allowance of discontinuous approximations.

In Chapter 3, the important numerical methods for the advection equation of DALES are discussed. The
grid spacing and time integration method with its corresponding time step constraints are mentioned.
Thereafter, the shortcomings of the implemented advection schemes of DALES are named. The most
accurate advection scheme is the WENO method, which is still too diffusive when steep gradients are
present. Moreover, it has the longest computation time.

The DG method is a combination of the finite element method and the finite volume method. This
method solves the weak form of the differential equations instead of solving the differential equations
like the finite difference method does. The idea of DG works well for smooth applications, DG shows
no problems like time lags or diffusion. However, at discontinuities there are non-physical oscillations
in the approximations. This holds for one-, two- and three-dimensional DG methods. The dispersion
can be resolved by using a limiter, for example the moment limiter. In this thesis, the moment limiter
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is extended to three-dimensional problems on tensor-product meshes. Like most limiters, the tested
moment limiter removes the dispersion errors, but adds too much artificial diffusion which reduces the
order of the method. Limiting is normally done after each time step, but can also be done multiple times
in every time step. In Chapter 4 tests are done in which the moment limiter is used after every RK3
step. The effect of limiting more often is very minimal. The numerical accuracy is slightly better, but
the computational time is also slightly longer.

In Chapter 5, the DG method is tested in a stripped version of DALES, the LES wrapper, such that only
the advection scheme is tested. When the DG method can be used in DALES, mappings are needed
from the cell average, like the finite volume (FVM) variable, to the DG variable and vice versa. Sev-
eral mappings are tested, however, none of the methods obtained accurate results like the numerical
results that were assessed outside the LES wrapper. Therefore, the DG advection scheme has not
been tested within DALES. Moreover, the DG method was, as expected, ten times more computational
expensive than the WENO method in a non-parallel environment.

All in all, from Chapter 4 it can be concluded that DG with moment limiter is a quite accurate numerical
method to solve the advection equation. Thus, DG can be used as an advection solver in DALES,
however, when mappings are needed from a FVM variable to a DG variable and vice versa, DG does
not havemanymore benefits thanWENO has. To answer the research question, DG can be used as an
advection solver in DALES. However, the numerical accuracy is not improved when these mappings
are used. Moreover, the computational time did not decrease compared to WENO in a non-parallel
environment, which we do expect in a parallel environment since DG method is known for its high
scalability. Nevertheless, we suspect that DG is the future for the numerical weather prediction models.
Nowadays we see more computers with a many-core architecture and shared memory which is perfect
for DG with its high scalability due to a compact stencil. Moreover, there are a lot of options, which are
not investigated in this thesis, to tune DG. In Section 6.3, several recommendations are given and one
in particular that works around the problem with the mappings from FVM to DG, which also reduces
the computational and memory cost.

6.2. Implementation problems
During this project, complications arose during the implementation of DG in the LES wrapper.

First of all, we had chosen to not assemble a global matrix, but to solve a linear system of equations
per element. The global matrices are more sparse than the element matrices. However, we chose not
to use global matrices, because we thought that parallelization can be done without extra changes.

As the boundary conditions are solved outside the advection scheme by using ghost cells, all element
matrices are stored by every 𝑥።-, 𝑦፣- and 𝑧፤-coordinate. The program worked, however, it was ex-
tremely slow, more than 100 times slower than the DG method outside the LES wrapper. With the use
of profiling, we found out that more time was spent in the sparse library than outside the LES wrapper.
Since the DG method outside the LES wrapper was implemented and stored for an element number
instead needing the three numbers 𝑖, 𝑗, 𝑘, we adjusted the DG method in the LES wrapper such that
the element number was used. This decreased the computational time by 10%, nonetheless, outside
the LES wrapper, the method was much faster. With the advice of Fredrik Jansson, we have chosen
to drop the sparse matrices and implemented the element stiffness matrices with full matrices. As a
result, the method was much faster and even faster than the DG method outside the LES wrapper
which still used the sparse matrix library of Fortran.

Secondly, when we checked whether the advection scheme was compliant with DALES, we remem-
bered that for the boundary conditions 𝑖, 𝑗, 𝑘 are needed instead of the element number. Consequently,
the method had again to be adjusted to take care of this.

6.3. Further remarks and recommendations
In this section, some obtained results are criticized and suggestions for further research are given.
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6.3.1. Remarks
First of all, the obtained time shifts mentioned in Section 3.3, are questionable since the time shift did
not occur in DALES, see Chapter 5. One would think that in the one-dimensional test case the time
simulation was not stopped at the exact end time. However, this has been checked multiple times and
the time integration method was exactly the same as DG had been tested with, which did not have
any time shift. In other words, the time integration method is not the cause of the time shifts. Further
research is needed to establish the source of the time lags.

In Chapter 4.3, we have chosen to use inexact integration for two reasons. First of all, one can easily
change the polynomial degrees of the basis functions. Second of all, the element matrices can easily
be derived and the element mass matrix becomes a diagonal matrix. The numerical results of DG with
moment limiter show better results for inexact integration after a longer time simulation, but without
moment limiter, exact integration gives less dispersion than when inexact integration is used. Never-
theless, there has not been done further research on the effects of exact and inexact integration.

In addition, the test cases of this thesis were done with constant velocity. In this case, there are no
differences between the upwind flux and Lax-Friedrichs flux, nonetheless, this can be the case when
a space-dependent velocity 𝑢𝑢𝑢(𝑥𝑥𝑥) is used. Therefore, more research should be done on this topic.

Moreover, by accident some results are made with a wrongly implemented limiting order of the three-
dimensional moment limiter (see Appendix B.2). These results showed that the limiting order is very
important. It would be interesting to see whether the numerical results can be improved by adjusting
the limiting order.

On top of that, the moment limiter does not make the DG method flawless. Even in smooth regions,
peak clipping takes place, since the moment limiter limits while it is not needed. This can be solved
by using a shock detection method. For example, by using the troubled-cell indicator of Vuik [34]. The
method can detect discontinuous regions where limiting is needed, which reduces the computational
cost. However, for three-dimensional non-uniform tensor meshes, which can be used within DALES,
more research is needed on this topic before the indicator can be used in DALES.

The computation time is another important property for the advection scheme of DALES. The DG
method in the LES wrapper was ten times slower than the WENO method, however, the DG method
could be faster when a global sparse matrix is assembled instead of solving the equations per element.
Recall that this had not been chosen to allow parallelization without changing the code. Moreover, tests
should be done with parallelization before it can be concluded that DG is slower than WENO.

6.3.2. Recommendations for future work
As one can notice, when DG is implemented in DALES, many extra information is created and is later
on reduced to one value (See Figure 5.3). Consequently, the computational cost becomes higher with-
out the advantage of being able to use the extra nodal values in other subroutines which then need to
be interpolated. An other drawback is the extra time integration step that has to be made before the
limiter can be applied, while the time integration is done later on in the program. Consequently, it can
be looked at to limit the tendency instead 𝜑 itself.

Another option is to recreate the DALES model with the DG method as a basis. As a result, no unnec-
essary extra information is created. Obviously, this would cost a lot of time to do since a lot of different
processes are added on top of the four conservation laws discussed in Chapter 2.

Nevertheless, Chapter 5 describes that a DALES cell is chosen as one DG cell. However, multiple
DALES grid boxes can be used as one DG cell as was discussed in Chapter 5 of the literature study
prior to this work [5]. Consequently, the computational and memory cost can be reduced. An example
of a DG cell in two-dimensions can be seen in Figure 6.1. This subject will be picked up in the near
future.
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Figure 6.1: Nine DALES cells as one DG cell in two-dimensions. The red points are the DG nodal points and the black points
are the centres of the DALES cells. Note that the centre point is both a DG and DALES nodal point.



A
Element matrices

In this appendix, some more information is given on the derivation of element matrices. First, the
derivation of the fluxes in one-dimension is shown when the Lax-Friedrichs flux is used instead of
the upwind flux. Second, the complete derivation of the element stiffness matrix for DALES in two-
dimensions is given.

A.1. Lax-Friedrich’s flux for one-dimensional advection equation
The element fluxes are derived from the following:

[𝑓(𝜑)𝜂]፱ᑜᎼᎳ/Ꮄ፱ᑜᎽᎳ/Ꮄ = �̂�፤ዄኻ/ኼℓ።(𝑥ዅ፤ዄኻ/ኼ) − �̂�፤ዅኻ/ኼℓ።(𝑥ዄ፤ዅኻ/ኼ), ∀𝑖 ∈ {0, … , 𝑁}, (A.1)

where the numerical flux �̂�፤±ኻ/ኼ is given by the local Lax-Friedrich’s flux.

The local Lax-Friedrich’s flux is calculated by:

�̂�፤ዅኻ/ኼ =
1
2 (𝑓(𝜑

ዅ
፡,፤ዅኻ/ኼ) + 𝑓(𝜑ዄ፡,፤ዅኻ/ኼ) − 𝛼 [𝜑ዄ፡,፣ዅኻ/ኼ − 𝜑ዅ፡,፣ዅኻ/ኼ]) , (A.2)

where
𝛼፤ዅኻ/ኼ =max(|𝑓ᖣ(𝜑ዅ፤ዅኻ/ኼ)|, |𝑓ᖣ(𝜑ዄ፤ዅኻ/ኼ)|) =max(|𝑢፤ዅኻ/ኼ|, |𝑢፤ዅኻ/ኼ|) = |𝑢፤ዅኻ/ኼ|, (A.3)

because the definition of our flux function is 𝑓(𝜑) = 𝑢𝜑.

The numerical flux contributes only at the element boundaries, in other words, for 𝑖 = 0 and 𝑖 = 𝑁. For
the left boundary, 𝑥 = 𝑥፤ዅኻ/ኼ, the corresponding numerical flux is:

�̂�፤ዅኻ/ኼ =
1
2 (𝑢፤ዅኻ/ኼ𝑎

፤ዅኻ
ፍ + 𝑢፤ዅኻ/ኼ𝑎፤ኺ − |𝑢፤ዅኻ/ኼ| [𝑎፤ኺ − 𝑎፤ዅኻፍ ]) , (A.4)

and for the right boundary, 𝑥 = 𝑥፤ዄኻ/ኼ:

�̂�፤ዄኻ/ኼ =
1
2 (𝑢፤ዄኻ/ኼ𝑎

፤
ፍ + 𝑢፤ዄኻ/ኼ𝑎፤ዄኻኺ − |𝑢፤ዄኻ/ኼ| [𝑎፤ዄኻኺ − 𝑎፤ፍ]) . (A.5)

Thus, also (A.1) is only non-zero when 𝑖 = 0 and 𝑖 = 𝑁:

0 − �̂�፤ዅኻ/ኼ ⋅ 1 = −
1
2𝑢፤ዅኻ/ኼ𝑎

፤ዅኻ
ፍ − 12𝑢፤ዅኻ/ኼ𝑎

፤
ኺ +

1
2|𝑢፤ዅኻ/ኼ|𝑎

፤
ኺ −

1
2|𝑢፤ዅኻ/ኼ|𝑎

፤ዅኻ
ፍ , (A.6)

�̂�፤ዄኻ/ኼ ⋅ 1 − 0 =
1
2𝑢፤ዄኻ/ኼ𝑎

፤
ፍ +

1
2𝑢፤ዄኻ/ኼ𝑎

፤ዄኻ
ኺ − 12|𝑢፤ዄኻ/ኼ|𝑎

፤ዄኻ
ኺ + 12|𝑢፤ዄኻ/ኼ|𝑎

፤
ፍ . (A.7)

All in all, the matrix-vector equation of Equation (A.1) is:

(
0 … 0 𝐹፤፦,ኺፍ
⋮ ⋱ 0
⋮ ⋱ ⋮
0 … … 0

)⎛

⎝

𝑎፤ዅኻኺ
𝑎፤ዅኻኻ
⋮

𝑎፤ዅኻፍ

⎞

⎠

+(
𝐹፤,ኺኺ 0 … 0
0 ⋱ ⋮
⋮ ⋱ 0
0 … 0 𝐹፤,ፍፍ

)⎛

⎝

𝑎፤ኺ
𝑎፤ኻ
⋮
𝑎፤ፍ

⎞

⎠

+(
0 … … 0
⋮ ⋱ ⋮
0 ⋱ ⋮

𝐹፤፩,ፍኺ … … 0
)⎛

⎝

𝑎፤ዄኻኺ
𝑎፤ዄኻኻ
⋮

𝑎፤ዄኻፍ

⎞

⎠

, (A.8)
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where the elements are given by:

𝐹፤፦,ኺፍ = −
1
2𝑢፤ዅኻ/ኼ −

1
2|𝑢፤ዅኻ/ኼ|, (A.9)

𝐹፤,ኺኺ = −
1
2𝑢፤ዅኻ/ኼ +

1
2|𝑢፤ዅኻ/ኼ|, (A.10)

𝐹፤,ፍፍ =
1
2𝑢፤ዄኻ/ኼ +

1
2|𝑢፤ዄኻ/ኼ|, (A.11)

𝐹፤፩,ፍኺ =
1
2𝑢፤ዄኻ/ኼ −

1
2|𝑢፤ዄኻ/ኼ|. (A.12)

A.2. Derivation of the element stiffness matrix for DALES in two-
dimensions

The element stiffness matrix of Equation (4.26) is defined by:

𝑆፤።፣ = ∫
ᑜ
𝜙፣(𝜉𝜉𝜉(𝑥𝑥𝑥))(𝑢(𝑥𝑥𝑥, 𝑡)

𝜕𝜙።(𝜉𝜉𝜉(𝑥𝑥𝑥))
𝜕𝜉፱

2
Δ𝑥፤

+ 𝑤(𝑥
𝑥𝑥, 𝑡)
𝜌(𝑧) (𝜌(𝑧)

𝜕𝜙።(𝜉𝜉𝜉(𝑥𝑥𝑥))
𝜕𝜉፳

2
Δ𝑧፤

− 𝜙።(𝜉𝜉𝜉(𝑥𝑥𝑥))
𝜕𝜌(𝑧)
𝜕𝑧 )) 𝑑Ω, (A.13)

= ∫
ኻ

ዅኻ
∫
ኻ

ዅኻ
𝜙፣(𝜉𝜉𝜉)(𝑢(𝑥𝑥𝑥(𝜉𝜉𝜉), 𝑡)

𝜕𝜙።(𝜉𝜉𝜉)
𝜕𝜉፱

2
Δ𝑥፤

+ 𝑤(𝑥
𝑥𝑥(𝜉𝜉𝜉), 𝑡)

𝜌(𝑧(𝜉፳))
(𝜌(𝑧(𝜉፳))

𝜕𝜙።(𝜉𝜉𝜉)
𝜕𝜉፳

2
Δ𝑧፤

− 𝜙።(𝜉𝜉𝜉)
𝜕𝜌(𝑧(𝜉፳))
𝜕𝜉፳

))14Δ𝑥፤Δ𝑧፤ 𝑑𝜉፱ 𝑑𝜉፳ , (A.14)

≈
ፍᑩ
∑
፩ኺ

ፍᑫ
∑
፪ኺ

1
4Δ𝑥፤Δ𝑧፤𝜔፱,፩𝜔፳,፪𝜙፣(𝜉፱,፩, 𝜉፳,፪)[𝑢(𝑥𝑥𝑥(𝜉፱,፩, 𝜉፳,፪), 𝑡)

𝜕𝜙።(𝜉፱,፩, 𝜉፳,፪)
𝜕𝜉፱

2
Δ𝑥፤

+
𝑤(𝑥𝑥𝑥(𝜉፱,፩, 𝜉፳,፪), 𝑡)

𝜌(𝑧(𝜉፳,፪))
(𝜌(𝑧(𝜉፳,፪))

𝜕𝜙።(𝜉፱,፩, 𝜉፳,፪)
𝜕𝜉፳

2
Δ𝑧፤

− 𝜙።(𝜉፱,፩, 𝜉፳,፪)
𝜕𝜌(𝑧(𝜉፳,፪))

𝜕𝜉፳
)]. (A.15)

Since for the basis functions holds 𝜙፣(𝜉፱,፩, 𝜉፳,፪) = 1 if 𝑝 = 𝑗፱ and 𝑞 = 𝑗፳, the element matrix can be
written as:

𝑆፤።፣ ≈
1
4Δ𝑥፤Δ𝑧፤𝜔፱,፣ᑩ𝜔፳,፣ᑫ(𝑢(𝑥𝑥𝑥(𝜉፱,፣ᑩ , 𝜉፳,፣ᑫ), 𝑡)

𝜕𝜙።(𝜉፣ᑩ , 𝜉፣ᑫ)
𝜕𝜉፱

2
Δ𝑥፤

+
𝑤(𝑥𝑥𝑥(𝜉፱,፣ᑩ , 𝜉፳,፣ᑫ), 𝑡)

𝜌(𝑧(𝜉፳,፣ᑫ))
[𝜌(𝑧(𝜉፣ᑫ))

𝜕𝜙።(𝜉፱,፣ᑩ , 𝜉፳,፣ᑫ)
𝜕𝜉፳

2
Δ𝑧፤

− 𝜙።(𝜉፱,፣ᑩ , 𝜉፳,፣ᑫ)
𝜕𝜌(𝑧(𝜉፳,፣ᑫ))

𝜕𝑧 ]). (A.16)

Recall that we have defined the basis function 𝜙፣ by the tensor-product of the one-dimensional La-
grange polynomials:

𝜙፣(𝑥, 𝑧, 𝑡) = ℓ፱,፣(𝑥)ℓ፳,፣(𝑧). (A.17)
As a result, Equation (A.16) can be reduced to:

𝑆፤።፣ ≈
1
4Δ𝑥፤Δ𝑧፤𝜔፱,፣ᑩ𝜔፳,፣ᑫ(𝑢(𝑥𝑥𝑥(𝜉፱,፣ᑩ , 𝜉፳,፣ᑫ), 𝑡)

𝜕ℓ፱,።(𝜉፣ᑩ)
𝜕𝜉፱

ℓ፳,።(𝜉፣ᑫ)
2
Δ𝑥፤

+
𝑤(𝑥𝑥𝑥(𝜉፱,፣ᑩ , 𝜉፳,፣ᑫ), 𝑡)

𝜌(𝑧(𝜉፳,፣ᑫ))
[𝜌(𝑧(𝜉፣ᑫ))

𝜕ℓ፳,።(𝜉፣ᑫ)
𝜕𝜉፳

ℓ፱,።(𝜉፣ᑩ)
2
Δ𝑧፤

− 𝜙።(𝜉፣ᑩ , 𝜉፣ᑫ)
𝜕𝜌(𝑧(𝜉፣ᑫ))

𝜕𝑧 ]), (A.18)

= 1
4Δ𝑥፤Δ𝑧፤𝜔፱,፣ᑩ𝜔፳,፣ᑫ(

2
Δ𝑥፤

𝑢(𝑥𝑥𝑥(𝜉፱,፣ᑩ , 𝜉፳,፣ᑫ), 𝑡)
𝜕ℓ፱,።(𝜉፣ᑩ)
𝜕𝜉፱

𝛿።ᑫ ,፣ᑫ

+
𝑤(𝑥𝑥𝑥(𝜉፱,፣ᑩ , 𝜉፳,፣ᑫ), 𝑡)

𝜌(𝑧(𝜉፳,፣ᑫ))
[ 2Δ𝑧፤

𝜌(𝑧(𝜉፣ᑫ))
𝜕ℓ፳,።(𝜉፣ᑫ)
𝜕𝜉፳

𝛿፱።,፣ᑩ − 𝛿።,፣
𝜕𝜌(𝑧(𝜉፣ᑫ))

𝜕𝑧 ]). (A.19)



B
Extra figures

In this appendix, extra figures are shown which could be interesting for the reader.

B.1. Wrong limiting order
In this section, the limiting order was not correctly implemented. Here coefficient �̂�፤ኻ,ኻ,ኻ was limited
before the coefficients �̂�፤ኼ,ኺ,ኺ, �̂�፤ኺ,ኼ,ኺ and �̂�፤ኺ,ኺ,ኼ instead the other way around, which was the only difference
with the correct limiting order. We suspect that the limiter has been stopped after limiting �̂�፤ኻ,ኻ,ኻ meaning
that the coefficients �̂�፤ኼ,ኺ,ኺ were not limited, leading to more peak clipping than with the correct limiting
order (see Figures B.1).

(a) ፭ 10 s. (b) ፭ 50 s.

Figure B.1: Ꭳ(፱,ዅ, ኺ, ፭) with ፊᑩ  ኻኺኺ, ፊᑪ  ፊᑫ  ኼ when limiter with the wrong limiting order is used, ጂ፭  ኼ.ኺዂዃ ⋅ ኻኺᎽᎴ.

B.2. DG in DALES
In Figures B.2 and B.3, the numerical results are shown when the DG method with limiter is used with
the combination cell average 𝑎 and cell average of tendency as mappings 𝑎 and 𝑏. These figures are
shown to confirm that limiting has indeed no effect.
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(a) Ꭳ(፱, ፲, ኺ.ኻ, ) (b) Ꭳ(፱, ፲, ኺ.ኻ, )

(c) Ꭳ(፱, ኺ.ኻ, ኺ.ኻ, ) (d) Ꭳ(፱, ኺ.ኻ, ኺ.ኻ, )

Figure B.2: Continuous and discontinuous Ꭳ(፱, ፲, ፳, ) with ፊᑩ  ኻኺኺ, ፊᑪ  ፊᑫ  ኼ, ጂ፭  ኼ ⋅ ኻኺᎽᎴ, using cell average ፚ, cell
average of tendency and the moment limiter.

(a) Ꭳ(፱, ፲, ኺ.ኻ, ኼ) (b) Ꭳ(፱, ፲, ኺ.ኻ, ኼ)

(c) Ꭳ(፱, ኺ.ኻ, ኺ.ኻ, ኼ) (d) Ꭳ(፱, ኺ.ኻ, ኺ.ኻ, ኼ)

Figure B.3: Continuous and discontinuous Ꭳ(፱, ፲, ፳, ኼ) with ፊᑩ  ኻኺ, ፊᑪ  ፊᑫ  ኼ, ጂ፭  ኼ ⋅ ኻኺᎽᎴ, using cell average ፚ, cell
average of tendency and the moment limiter.
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B.3. DG versus WENO
For the comparison of DG and WENO, we wanted to compare the numerical results of DG, see Figures
4.20 and 4.21, with WENO. In Figure B.4, these results of WENO are shown. Figure B.5 shows the
difference 𝜑ኺ − 𝜑(𝑡) where 𝜑(𝑡) is approximated by the two methods. From these figures, we can
clearly see that the WENO method can approximate continuous functions better than the DG method.
Nevertheless, for discontinuous functions the DG method is slightly better especially for longer time-
simulations. Note that at the discontinuous part, the error of DG does not seem to to evolve in time.
In other words, for longer time periods discontinuous functions are approximated better by the DG
method.

(a) ፭ 25 s (b) ፭ 50 s

Figure B.4: Ꭳ(፱, ኺ, ኺ, ፭) with ፊᑩ  ኻኺኺ, ፊᑪ  ፊᑫ  ኼ, ጂ፭  ኼ ⋅ ኻኺᎽᎴ using WENO.
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(a) DG at ፭ 25 s, using the moment limiter every RK3
step.

(b) DG at ፭ 50 s, using the moment limiter every RK3
step.

(c) WENO at ፭ 25 s. (d) WENO at ፭ 50 s.

Figure B.5: The differences in initial ᎣᎲ with the approximated Ꭳ at time ፭ for DG and WENO.
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