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Abstract
Counterfactual explanations are a useful tool to explain trained models. They are based on counterfac-
tual thoughts, which are a natural human thought process that helps us reason about the past. When
applied to trained models they show how to make minimal changes to a data point in order to obtain a
desired output.

Most methods find these counterfactuals by optimizing a set of objectives. Previously these objec-
tives were often combined into a loss function using an aggregation operator. This operator implicitly
decides the priority between the objectives, but this ordering is not always in line with the user’s pref-
erences.

To mitigate this the Multi-Objective Counterfactuals (MOC) method was introduced. MOC turns
counterfactual generation into a multi-objective optimization problem and presents the user with a di-
verse set of counterfactuals that have different trade-offs for the objectives. It optimizes the set of
objectives with an evolutionary algorithm called Nondominated Sorting Genetic Algorithm II.

In this thesis we optimize this problem using Multi-Objective Real-Valued Gene-Pool Optimal Mixing
Evolutionary Algorithm, which is a different evolutionary algorithm. We present a single-modal method
and two multi-modal methods. We compare the performance of our methods to a counterfactual gen-
eration method named Diverse Counterfactual Explanations (DiCE), which focusses on feasibility and
diversity within a set of generated counterfactuals. Additionally, we also present a visualization tool for
sets of counterfactuals.

The single-modal method generates counterfactuals that are realistic, but do not consistently per-
form well in other areas. The first multi-modal method generates diverse sets of counterfactuals, but
overall performs worse. The second multi-modal method generates counterfactuals that perform simi-
larly to the single-modal method, but are more diverse.
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1
Introduction

With the ever-increasing prevalence of Artificial Intelligence (AI) in our daily lives, for example in health-
care [1], the workplace [17], or the military [33], the global population has grown more nervous of prod-
ucts and services using AI [25]. The European Union has introduced the AI Act to try to increase the
trust in and transparency of decisions and predictions made by AI models [9]. Similarly, this need for
trustworthy AI is also visible in other governments, like in an Executive Order in the United States of
America [24]. The field that aims to make AI models more explainable is called eXplainable AI (XAI).
One such XAI technique consists of counterfactual explanations.

Counterfactual thoughts help us explain our own past actions and sequences of past events [7].
Imagine you made the new year’s resolution that you will cycle to work instead of driving. The first
and second day the weather is nice, and you commit to the resolution. However, on the third day it so
happens to be raining so you decide to drive instead. Later that day, when you ask yourself why you
already broke your new year’s resolution on day three, you tell yourself: ”If it had been sunny, I would
have cycled to work”. This is an example of a counterfactual thought.

When applied to XAI, counterfactuals take the form of changes to an original data point such that the
prediction of the model changes. To generate useful counterfactuals, we need to take many different
objectives into account. Each of these objectives tries to ensure a different element we would like to see
in a counterfactual. These objectives can include how similar the counterfactual is to the original data
point, or the number of feature values that are changed in the counterfactual with regard to the original
data point [21, 27, 28]. These objectives then have to be combined to generate counterfactuals. Many
methods do this by combining the chosen objectives into an aggregated cost function, but because the
aggregation operator implicitly chooses how the objectives are prioritized this can have a significant
impact on the returned counterfactuals [28]. It is often the case that methods provide the user with only
one counterfactual, like the methods introduced byWachter et al. [43], FACE [35], and DACE [26]. This
can be a problem, because this implicit priority can be different from the user’s preferences. Say we
have two different but equally plausible counterfactuals, one which changes all feature values a small
amount and one that changes only two feature values a large amount. It is impossible to decide which
counterfactual the user would prefer without knowledge about the user.

To mitigate both of these problems, multi-objective counterfactual generation was introduced in
the form of Multi-Objective Counterfactuals (MOC) [10]. Instead of aggregating the objectives, the
objectives are optimized with a multi-objective evolutionary algorithm. The algorithm returns a set of
solutions that each have different trade-offs for the optimized objectives. This allows the user to choose
which counterfactual is best for their use case.

We use a different multi-objective evolutionary algorithm called MO-RV-GOMEA [5] to generate
counterfactuals in a multi-objective way. Each generation it performs clustering within the population.
Within these clusters it exploits linkage information between variables to perform better variation and
keeps track of a set of individuals that is diverse in objective values within elitist archives. This allows
it to find a diverse set of solutions that is close to being optimal.

We define the following research question: Can we use MO-RV-GOMEA to present the user with a
set of diverse and relevant counterfactuals that are generated in a multi-objective way?

This research question can be divided into the following sub-questions:

1



2 1. Introduction

• Q1 - Is the standard MO-RV-GOMEA implementation combined with the objectives from MOC
enough to guarantee diversity within the generated counterfactuals while keeping them relevant
for the user?

• Q2 - Can we create a diversity objective for MO-RV-GOMEA to optimize in combination with the
other objectives?

• Q3 - How can we visualize the set of returned counterfactuals for the user?

In this thesis we present three differentmethods that generate counterfactuals usingMO-RV-GOMEA.
One of these methods is a single-modal method, the other two are multi-modal methods. The single-
modal method optimizes objectives based on MOC. Both multi-modal methods optimize (a subset of)
these same objectives, while additionally optimizing a new diversity objective. We also create a visu-
alization tool to visualize the generated counterfactuals.

The single-modal method is able to generate realistic counterfactuals but can lack diversity within
the generated set of counterfactuals. The first multi-modal method generates sets of counterfactuals
that are relatively diverse but under-performs on all other metrics. The second multi-modal method is
able to generate sets of counterfactuals that perform similar to the single-modal method on all metrics,
while also being more diverse.

This thesis is structured as follows. In Chapter 2 we discuss background and literature relevant
to this research. Then, Chapter 3 describes our methodology. This is followed by Chapter 4, which
explains our experimental setup and design. The results of these experiments are shown and discussed
in Chapter 5. We then present limits to this research in Chapter 6 and draw conclusions in Chapter 7.
Lastly, we present possible future work in Chapter 8.



2
Background and Literature Overview

In this chapter we provide the necessary background for this thesis and discuss some relevant literature.
Section 2.1 discusses the concept of counterfactuals, why they are necessary, and how they can be
generated. In Section 2.2 we describe what Evolutionary Algorithms are, and in Section 2.3 we describe
the family of Evolutionary Algorithms that we use in this thesis. The last Section, Section 2.4, touches
on symbolic regression.

2.1. Counterfactuals
In this Section we give the background and literature overview related to counterfactuals. First, we give
some background on what Explainable Artificial Intelligence (XAI) is and why it is necessary. Then we
explain what counterfactual thoughts are and how they can be applied to XAI. After this we talk about
how we can generate these counterfactuals and the common objectives that are optimized for. Then
we touch on some methods that generate counterfactuals in a multi-objective way, and last we give a
short overview of some methods that are used to visualize these counterfactuals.

2.1.1. Explainable Artificial Intelligence
Artificial Intelligence (AI) has made its way into large parts of our daily lives, often in the form of complex
models that are not understandable to humans. Some of these applications include healthcare [1], the
workplace [17], and the military [33]. While the reported understanding of AI amongst the global pop-
ulation has increased over the past years, this increased understanding also comes with an increased
nervousness of products and services using AI [25].

To try to increase the trust in AI, the European Union introduced the AI Act, which will become
fully applicable in the coming years [9]. They state that a reason that the legislation in the AI Act is
necessary is that ”it is often not possible to find out why an AI model has made a decision or prediction
and taken a particular action” [9]. This need for trustworthy AI is also reflected by the governments of
other countries, like in an Executive Order in the United States of America [24].

One of the key dimensions of responsibly developing and deploying AI is the explainability of said
models [32]. The field that is concerned with this explainability is called XAI. XAI aims to make AI
models more understandable using explanations for decisions made [22]. Thus, the aim of XAI tech-
niques is to explain how an AI model has made a certain decision and therefore hopefully increase the
trustworthiness of these models.

2.1.2. Counterfactual thoughts for XAI
Have you ever wondered what would have happened if you had taken a different action in a certain
situation? These thoughts, like ”If I had worked harder, I would have received a higher bonus” or ”If it
had been sunny, I would have cycled to work” are examples of counterfactual thoughts.

Counterfactual thoughts are thoughts about the past that provide alternatives to reality, where these
alternatives often evaluate outcomes that are either better or worse than what actually happened [13].
When we reason about alternatives to the past, these counterfactuals serve many purposes, including

3



4 2. Background and Literature Overview

explaining why events happened or why we took certain actions [7]. Our previous examples explain
why the person did not get a raise; and why the person decided not to cycle to work.

This type of thinking can also be applied to the future, resulting in thoughts like ”If I work hard this
month, I will receive a higher bonus” or ”If I plant an apple tree now, it will grow fruit a year earlier”.
These types of thoughts are called prefactual thoughts, which are used by people to plan for the future
[7]. Prefactuals were originally defined to be a variant of counterfactuals [14].

Applying the concept of counterfactual thoughts to explain AI models is part of XAI. These coun-
terfactuals capture the change in model output when an original data point changes. When the model
output sufficiently changes, e.g. the predicted class changes for classification tasks or the predicted
value is within a certain range for a regression task, that (changed) data point is a counterfactual for
the original data point. Because counterfactuals reflect a human thought process, they can be very
intuitive when used to explain AI models.

Counterfactuals are a form of post-hoc local explanations, meaning that they are used on trained
models and are meant to explain a single individual person or data point [21]. Therefore, counterfactual
explanations are able to explain any type of model and thus are a model-agnostic method. Note that
some people use the term contrastive explanation interchangeably with counterfactuals [39]. Others
define contrastive explanations to focus on the difference between possible outcomes, while they define
counterfactuals to focus on changes to past situations that then lead to a different outcome [39].

2.1.3. Counterfactual generation
There are many surveys that give an overview of recent developments in counterfactual generation.
Using some of these surveys we will first explain several visions on what the most important parts of
counterfactuals are, then we will discuss different objectives that are often mentioned in literature, and
last we will go through how these objectives are often optimized to generate counterfactuals.

In [21] Guidotti argues that a counterfactual should make the minimal changes possible to the orig-
inal data point in order to become a counterfactual, but they do not define what minimal means. Karimi
et al. [27] agree that a counterfactual needs to make the minimal changes possible to the original data
point. While counterfactual thoughts are generally applied to both positive and negative situations [13],
these authors, Epstude and Roese, focus on using counterfactuals to help users change their negative
situation for the better. They call this algorithmic recourse. They argue that counterfactuals consist
of two parts: a counterfactual explanation and a counterfactual recommendation. The counterfactual
explanations are the changes made to the original input point and the counterfactual recommendation
are the actions that the user has to take to get there. While Laugel et al. [28] state that minimal changes
are most commonly optimized when generating counterfactuals, they focus on diversity in counterfac-
tuals and argue that it is beneficial to present the user with multiple diverse counterfactuals because
needs are specific to that user.

Other than making as few changes as possible to the original data point, there are other objectives
that can be optimized when generating counterfactuals. In [21] Guidotti describes the following common
types of objectives:

• Validity - Whether the counterfactual results in a prediction within the desired range or class;

• Sparsity - The number of features with different values when comparing the counterfactual and
the original data point;

• Proximity - The distance between the counterfactual and the original input point;

• Plausibility - Whether the feature values for the counterfactual are coherent with the data set;

• Discriminative power - When comparing the counterfactual and the original data point humans
should be able to classify them differently;

• Actionability - The number of changed features of the counterfactual that are actionable. E.g. if
the counterfactual tells the user to change reduce their age, this is not actionable;

• Causality - Whether the counterfactual captures causal relationships between features;

• Diversity - How different the generated counterfactuals are.
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In this thesis we will use these definitions to refer to these types of objectives.
Karimi et al. [27] describe objectives and constraints that are similar to some of the ones in this list.

They state that the contrastive explanations are found using a proximity objective, while the minimal
consequential recommendations are found by minimizing a cost function. This cost function tries to
capture the effort it would take for the user to follow the recommendation. The other objectives that
they describe are plausibility, actionability, diversity, and sparsity.

In [28] Laugel et al. create different groups of types of objectives. In their general type they include
the proximity and sparsity objectives. Their data-contextualisation criteria group consists of objectives
that try to make sure counterfactuals are realistic and understandable to humans and include objectives
similar to plausibility which are aimed to keep the counterfactuals close to the original data set. The last
group of objectives they define is called user-centered contextualisation criteria, which are objectives
that capture how well suited a counterfactual is for the user it was generated for. This group includes
the actionability and causality objectives.

Laugel et al. also describe three different types of diversity. The first type is diversity in criteria,
which is diversity that is based on the different objectives that are optimized for. The second type is
diversity in the feature space, which is based on diversity of where the counterfactuals are located in
the feature space. The third type is diversity in actions, which is based on diversity in the actions it
takes for the user to get to the situation described by the counterfactual.

To generate counterfactuals, models have to somehow combine the objectives. Laugel et al. [28]
describe that it is often the case that (a subset of) these objectives are combined into an aggregated cost
function. Both Laugel et al. [28] and Guidotti [21] state that it is not possible to guarantee all objectives
at once. Therefore Laugel et al. [28] argue that the aggregation operator has a large impact on the
returned counterfactual(s), since that operator decides how the objectives are prioritised. They also
state that while many counterfactual generation methods return only one counterfactual, it is beneficial
to provide multiple counterfactuals to the user to give the user a choice in which counterfactual they
prefer based on what they find important in a counterfactual.

DiCE is a counterfactual generation method focused on the feasibility and diversity of a set of gen-
erated counterfactuals [34]. They focus on the trade-off between diversity and proximity and allow the
user to give domain knowledge, like feature weights and constraints, as inputs. In their paper they
provide metrics to evaluate their method. These are the metrics that we use to evaluate our method
as well.

The authors of DiCE filter the generated counterfactuals by creating causality constraints based
on user input to ensure that the generated counterfactuals are feasible. They optimize for diversity
by building on determinantal point processes and for proximity using the negative average distance to
the original data point for a set of counterfactuals. These are combined into one loss function, with a
separate multiplier for each. The values of these multipliers can be set by the user. While they do take
sparsity into account, they do not optimize for it, instead opting to modify generated counterfactuals.

We use DiCE as a baseline to compare our method against. However, unlike our method, DiCE
works for both classification and regression models. We also use the metrics used to evaluate DiCE
to evaluate our method.

2.1.4. Multi-objective counterfactual generation
Instead of optimizing for an aggregated objective, like a weighted sum of objectives, the authors of [10]
changed counterfactual generation into a multi-objective optimization problem and propose the Multi-
Objective Counterfactuals (MOC) methods. They optimize a multi-objective minimization task with the
following objectives:

1. Distance to becoming a counterfactual (similar to Validity);

2. Proximity;

3. Sparsity;

4. Distance to k nearest observed data points.

Whenever they are calculating the distance between two data points, they use the Gower distance
[20]. The algorithm they use to find counterfactuals is called Nondominated Sorting Genetic Algorithm
II (NSGA-II) [12]. NSGA-II is a multi-objective Evolutionary Algorithm (EA) that uses fitness based on
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non-dominated sorting to ensure elitism and then uses crowding-distance sorting to preserve diversity.
The authors of MOC modified NSGA-II to work for both discrete and continuous values using mixed
integer evolutionary strategies (MIES) [29]. Some of the modifications the authors made are used to
achievemore diversity in feature space and actionability. They use a different crowding-distance sorting
algorithm for the crowd-comparison. To improve diversity, they compute the crowding distance in both
objective space and feature space. They show that MOC outperforms other state-of-the-art methods
on all objectives and the number of non-dominated solutions returned. However, we do have to note
that these results could be skewed in favour of MOC, since MOC optimizes for these objectives and
the other methods might not.

The base set of objectives that we optimize are the same as the objectives presented in the MOC
method, including the way they are calculated, except for the first objective. We describe this difference
further in the Methodology chapter. Another difference is that instead of optimizing using NSGA-II, we
use MO-RV-GOMEA [5]. Where the creators of MOC have made quite a few changes specifically
for counterfactual search, we use the standard unchanged version of MO-RV-GOMEA. In our method
users are not able to set non-actionable features and we do not penalize counterfactuals that are above
a certain distance from the original data point. Another difference between our method and MOC is that
MOC works for classification and regression tasks, while our method is only designed for regression
tasks. However, unlike MOC, we do optimize for diversity in two of the versions of our method. More
on this in Chapter 3.

In [36] the authors present their state-of-the-art multi-objective counterfactual generation method,
named Coherent Actionable Recourse based on sound counterfactual Explanations (CARE). They fo-
cus on providing the user with a diverse list of counterfactuals that the user can actually act on, which
is called actionable recourse. The method also provides the user with a temporal action sequence for
a generated counterfactual, which is a list of steps the user has to take to achieve the result of the
counterfactual.

CARE optimizes for seven objectives, which are divided into four modules, using NSGA-III [11].
NSGA-III is a multi-objective EA which is similar to NSGA-II, but it keeps resulting solutions diverse
using predefined reference points. There is a hierarchy between the modules, which is VALIDITY,
SOUNDNESS, COHERENCY, and ACTIONABILITY. The generated counterfactuals are ranked based
on this hierarchy, making sure that they first adhere to the VALIDITY objectives before adhering to the
SOUNDNESS objectives, etc. This hierarchy also makes it possible to add or remove modules.

The objectives within the VALIDITY module are validity, proximity to the original data point, and
sparsity. Within the SOUNDNESS module the objectives are proximity to ground truth data points,
and connectedness to the data set using a continuous path. The COHERENCY and ACTIONABILITY
modules only have one objective each, which are coherency between correlated features within the
counterfactual and adherence to preferences set by the user respectively.

A point of note is that, like DiCE and MOC, CARE also works for both classification and regression
models.

2.1.5. Visualizing counterfactuals
To convey the meaning of generated counterfactuals to the user, we can use a visualization tool. These
tools can help the user understand the difference between the counterfactuals, and the difference
between the counterfactuals and the original data point. When we look at these visualization tools, we
can see that they are quite complex. This complexity only increases when we increase the number of
generated counterfactuals. While this does not have to be a problem, especially when these tools are
used by experts, it can be difficult for end-users to understand how these tools work and what it is that
they display.

Some examples of these complex visualization tools are the interactive visual analytics tool aimed
at end-users called ViCE [19] in Figure 2.1; the visualization tool aimed at developers of models called
AdViCE [18] shown in Figure 2.2; DECE [8], the interactive visualization tool aimed at both end-users
and developers in Figure 2.3; the tool aimed at exploring decision boundaries shown in Figure 2.4 called
CoFFi [38]; and COFVEE [23] in Figure 2.5, which is a visualization tool based on multiple others.
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Figure 2.1: ViCE [19].

Figure 2.2: AdViCE [18].
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Figure 2.3: DECE [8].

Figure 2.4: CoFFi [38].
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Figure 2.5: COFVEE [23].

2.2. Evolutionary Algorithms
Evolutionary algorithms (EAs) is a family of optimization algorithms that are based on Darwinian evolu-
tion. These algorithms work in iterations, where each iteration is a generation. In turn these generations
then consist of populations, which then consist of individuals. These individuals are what we are ulti-
mately looking for: (encodings of) solutions to the problem.

The population evolves over the generations. This is done by selecting individuals from the popula-
tion and combining them to create offspring, which are the individuals that make up the next generation.
By making sure that the best individuals have a higher chance of generating this offspring we ensure
that the population evolves to create better solutions over the generations. To compare how good each
individual is, we use the fitness of each individual. This fitness consists of one or more objectives.

2.2.1. Multi-Objective Evolutionary Algorithms
It is often the case that we need to optimize for more than one objective, which are likely conflicting.
An example of this is when we want to cycle somewhere. Two possible objectives for this would be the
time it takes to get to the location we want to go to, and the pleasantness of the route.

Imagine we have four possible routes. The first route only takes 20 minutes, but of those 20 minutes
we have to cycle 15 of them next to a highway. The second route takes 40 minutes, but it takes us
through meadows and along a nice river. The third route takes 30 minutes and while we also get to
cycle along the river, we do have to cycle next to the highway for 5 minutes. The fourth route takes 40
minutes, of which we have to cycle 10 of them next to a highway.

Each of these routes have their advantages and disadvantages. The first route is fastest, but cycling
next to a highway is unpleasant and causes us to take in a lot of air pollution. While route 2 is a very
pleasant cycling route and limits our air pollution intake, it takes us twice as long to get to our destination.
Route 3 sits perfectly between the other two routes with the time that it takes, and it also lets us cycle
a part of the more pleasant route. However, we still have to cycle next to the highway. The only route
that is worse than the others is route 4. This route takes longer than the others, and we have to cycle
next to the highway for longer as well. If we were choosing a route for ourselves, we can pick which
we find more important: speed or pleasantness. However, we cannot make this choice for every other
person. Except for route 4, none of these routes are objectively better than the other, and we are not
able to assign weights to both objectives to make an objective choice.

Therefore, we want to present a set of different routes, or more generally, a set of different solutions.
We do this in the form of an approximation front. The aim of an approximation front is to approximate
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the optimal Pareto front. This approximation front consists of all non-dominated solutions that were
found by the algorithm. A solution is non-dominated if there are no other solutions that have better
objective values for all objectives. So, in our earlier example, route 4 is dominated by the other routes.
Therefore, it would not be part of the approximation front.

2.3. The GOMEA family
Gene-Pool Optimal Mixing Evolutionary Algorithm (GOMEA) [40] is an EA that models how groups of
variables could be linked, which can be used during variation. This linkage information is captured
in a family of subsets (FOS). Because this linkage information is captured based on variable indices,
GOMEA only works with fixed length solutions. A FOS consists of a subset of the power set of the set
of all variables, where each variable is contained in at least one FOS element. This linkage information
can be provided a priori. If it is not provided it is learned during evolution. GOMEA evolves one
generation into the next using this FOS. Every individual in the population is evolved using Gene-pool
Optimal Mixing (GOM). GOM works as follows. For every set in the FOS, we pick a random donor and
copy the values of the variables in that set from the donor to our individual. If this increases the fitness,
we keep the changes. Otherwise, we revert the changes and move on to the next set in the FOS. This
is repeated for every individual in the population.

The FOS structure that we use in this thesis is the full linkage tree (LT). As described in [40], a LT is
constructed as follows. First, we add all sets of a single variable to the FOS. Then we start clustering
the sets. Each iteration we combine two sets and add the newly combined set to the FOS. Note that the
FOS will now contain both the combined sets and the two sets individually. Which sets are combined is
decided by maximizing the mutual information. However, the mutual information is costly to compute.
Therefore, it is approximated using the unweighted pair group method with arithmetic mean instead
for large sets of variables. This is repeated until there are only two sets left which together contain all
variables. The resulting FOS is then treated as a stack.

2.3.1. GP-GOMEA
The Genetic Programming variant of GOMEA is called GP-GOMEA [42]. It maps the nodes of the
trees to a fixed-length string, therefore allowing for the learning and usage of a FOS to take place.
GP-GOMEA was created for symbolic regression and generates perfect r-ary trees with a maximum
height h, where both r and h are set by the user. GP-GOMEA focuses on generating small solutions
to increase interpretability.

GP-GOMEA is the algorithm that we use to generate the models that we create counterfactuals for.

2.3.2. MM-GP-GOMEA
The Multi-Modal variant of GP-GOMEA is called MM-GP-GOMEA [37]. In MM-GP-GOMEA each in-
dividual represents multiple trees, instead of only one tree like in GP-GOMEA. It uses multi-objective
optimization with two objectives to provide the user with multiple diverse solutions to the problem. The
first objective is the sum of the trees Mean Squared Errors, and the second objective is the mean of
the minimum squared errors of the trees.

2.3.3. RV-GOMEA
The Real-Valued variant of GOMEA is called RV-GOMEA [4]. It builds on top of GOMEA by using
mechanisms from AMaLGaM [2].

Instead of choosing a random donor every time a set in the FOS is used, RV-GOMEA learns k-
variate normal distribution for every FOS element from the population, where k is the size of that set.
This normal distribution is then used to sample from evolution to replace the values of the variables
in that element of the FOS. RV-GOMEA also uses Adaptive Variance Scaling (AVS) according to the
Standard Deviation Ratio to increase variance that is decreased because of selection; AnticipatedMean
Shift (AMS) to speed up search; and Forced Improvements (FI) to escape local minima.

RV-GOMEA also uses an Interleaved Multistart Scheme (IMS) to automatically find a good popula-
tion size for the problem. IMS interleaves multiple instances of an EA, each with a different population
size, usually starting with a small base population size and working its way up.
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2.3.4. MO-GOMEA
The Multi-Objective variant of GOMEA is called MO-GOMEA [30]. It differs from GOMEA in that it uses
an elitist archive. Another difference is that it uses k-leader-means clustering, based on MAMaLGaM
[3]. The elitist archive stores the non-dominated solutions found up until that point, using a diversity
metric to make sure the elitist archive stays diverse. The clustering picks k well spread leaders based
on the objective values. These leaders are used to cluster the population into equal sized clusters.
Note that because the clusters are of equal size, it is possible that they overlap. This ensures that the
approximation front does not become disconnected.

After clustering, MO-GOMEA learns a FOS for and performs evolution on each of these clusters.
For each objective the cluster with the best mean value for that objective is chosen to optimize for
only that objective. The other clusters optimize for the combination of all objectives. This process of
clustering and then evolving repeats every generation. Because the evolution only takes place within
one cluster, different parts of the front can be handled differently, and it allows MO-GOMEA to find and
return a diverse approximation front that is in high proximity to the optimal front.

2.3.5. MO-RV-GOMEA
The Real-Valued variant of MO-GOMEA is called Multi-Objective Real-Valued Gene-Pool Optimal Mix-
ing Evolutionary Algorithm (MO-RV-GOMEA) [5]. It extends MO-GOMEA to the real-valued domain
using mechanisms from MAMaLGaM [3]. Like MO-GOMEA, MO-RV-GOMEA uses an elitist archive
and clustering, where each cluster has its own FOS and goes through evolution independently. Each
generation goes through the clustering process. It also uses AVS, AMS, and FI.

As described in Subsection 2.3.4, the multi-objectiveness is handled as follows. For each objective
the objective with the best mean objective value is optimized for that objective only. The other clusters
are optimized for all objectives. For each of the objectives the objective value is computed and kept
track of separately.

It is also possible to provide constraints within the computation of the objectives. These constraints
tell the algorithm that a solution is infeasible. This means that if x has a better total objective value than
solution y, but x has a constraint value above 0, y still dominates x.

MO-RV-GOMEA is the algorithm that we use to generate the counterfactuals.

2.4. Symbolic regression
We test our method on Symbolic Regression (SR) models generated using GP-GOMEA. The goal of
SR is to fit a model to data using a set of symbols.

Generally speaking, symbolic models are easier to interpret than sub-symbolic models like neural
networks. SR models are often represented as mathematical equations. Models are inherently more
interpretable if they are represented by mathematical equations [31], but this interpretability reduces as
the equation grows. Small symbolic models are indeed relatively interpretable, and when the models
become larger it is no longer possible to interpret them [42].





3
Methodology

In this chapter we describe our method. In Section 3.1 we describe what objectives we optimize for,
and how we use MO-RV-GOMEA to optimize for these. After that we describe our visualization tool in
Section 3.2.

3.1. Counterfactual Generation
In this Section we describe our counterfactual generation method. First, we talk about a single-modal
variant in Section 3.1.1, followed by a multi-modal variant described in Section 3.1.2. In the last section,
Section 3.1.3, we explain how we select a final set of k counterfactuals from the counterfactuals that
were generated by our method.

3.1.1. Single-Modal MO-RV-GOMEA
We implement our method by implementing objectives and optimizing for them using MO-RV-GOMEA.
In the definitions of our objectives we use x to denote the original data point, m to denote a model,
and 𝑐 = {𝑐1, 𝑐2, ..., 𝑐𝑑} to denote a (potential) counterfactual, with d being the number of features in
the dataset. So, 𝑐1 then is the value of the first feature in the counterfactual. Following the same
notation we can then define x as 𝑥 = {𝑥1, 𝑥2, ..., 𝑥𝑑}. The desired range of output to be considered
a counterfactual is S, where s is the lowest threshold of this range. We also define T to be the train
dataset.

The objectives that we implemented are based on MOC [10]. Similar to MOC the following is our
multi-objective minimization task:

min
𝑐
𝑜(𝑐,𝑚, 𝑠, 𝑥, 𝑇) =min

𝑐
(𝑜1(𝑚(𝑐), 𝑠), 𝑜2(𝑥, 𝑐), 𝑜3(𝑥, 𝑐), 𝑜4(𝑐, 𝑇)),

where 𝑜 is four dimensional and real-valued. So, 𝑜 contains the objectives we optimize for.
Our first objectivemeasures the distance to being a counterfactual. This is the objective that ensures

that our method actually generates counterfactuals that lead to predictions within our desired range
instead of returning random data points. The objective measures the difference between the predicted
value resulting from that data point and the threshold we need to reach to cross into the desired range.
When the predicted value is within the desired range, we set the objective value to 0. We can formalize
this as follows:

𝑜1(𝑚(𝑐), 𝑠) = {
|𝑠 − 𝑚(𝑐)|, if 𝑚(𝑐) < 𝑠
0, otherwise

If the threshold has not been reached, we add a constraint to ensure that the method prioritizes
finding valid counterfactuals over the other objectives.

Our second objective measures the distance between the original data point x and our (potential)
counterfactual c. This objective tries to ensure that the counterfactual is as relevant to the original data
point as possible. Therefore, it is defined as:

13
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𝑜2(𝑥, 𝑐) = 𝑑𝑖𝑠𝑡(𝑥, 𝑐)
As our distance metric dist we use the Gower distance for mixed features [20], which is defined as

follows:

𝑑𝑖𝑠𝑡(𝑝1, 𝑝2) =
1
𝑑

𝑑

∑
𝑗=1
{
1
𝑅𝑗 |𝑝

𝑗
1 − 𝑝𝑗2| if feature j is numerical

𝕀𝑝𝑗1≠𝑝𝑗2 if feature j is categorical

where 𝑅𝑗 is the value range of feature j based on the dataset and 𝑝1 and 𝑝2 are two data points.
Our third objective measures the similarity between the original data point x and the (potential)

counterfactual c. This means that we measure the number of features that have different values and
normalize this count, which results in the following definition:

𝑜3(𝑥, 𝑐) =
1
𝑑

𝑑

∑
𝑗=0
𝑐𝑗 ≠ 𝑥𝑗 ,

where d is the number of features in that dataset.
Our fourth and last objective measures the distance between a (potential) counterfactual c and the

closest data point in the dataset. We use this objective to make sure that the counterfactual is similar to
the existing data points. When a counterfactual is close to the dataset it is more likely that it is realistic.
We define this as follows:

𝑜4(𝑐, 𝑇) =min{dist(𝑐, 𝑇)}
Since MO-RV-GOMEA is designed for real-valued problems, it does not inherently work for integers

and categorical features. To ensure that it does work for these values, we modified the algorithm.
The modification rounds numbers to the nearest integer for non-real-valued feature values. This

rounding happens any time a feature value is initialized or changed. While this allows the method to run
for non-real-valued features, this does mean that it is likely we lose a lot of nuance during our evolution
process.

Imagine we have an integer-valued feature for which the optimal value is 3 and we have an individual
that has value 2 for that feature. If MO-RV-GOMEA then changes the value of that feature to 2.4 this
is a step in the right direction, but because we round it to the nearest integer this is then rounded back
down to 2. This means we immediately lose this step in the right direction. It is possible that this has a
significant impact on the performance of the method, especially when we have many non-real-valued
features.

3.1.2. Multi-Modal MO-RV-GOMEA
Our single-modal implementation of the method does not optimize for diversity in the feature space.
While MOC [10] does not optimize for diversity directly either, the authors have made a modification
to NSGA-II to improve feature diversity within the returned counterfactuals by computing the crowding
distance in both objective space and feature space instead of just the objective space. Instead of
making such a fundamental change to MO-RV-GOMEA we want to be able to optimize for diversity. To
do this, we create a multi-modal version of MO-RV-GOMEA, inspired by MM-GP-GOMEA [37].

In the Multi-Modal implementation of our method each individual in the population represents mul-
tiple counterfactuals. The number of counterfactuals within one individual depends on the number of
counterfactuals we ask the method to generate. So, if we ask the method to generate k counterfac-
tuals, each individual will consist of k counterfactuals. Because of this we can guarantee that as long
as the method is able to find an approximation front of at least one individual, we can return k diverse
counterfactuals to the user.

When the method finishes evolution we take all individuals in the approximation front, remove the
ones that have non-counterfactuals in them, and split all other individuals into separate counterfactuals
to create a final list of generated counterfactuals. This list can then be used the same way as the
approximation front generated by the single-modal method.

The major difference compared with the single-modal version is in the objectives. We define an
individual as 𝑖 = {𝑖1, 𝑖2, ..., 𝑖𝑘}, which means that 𝑖1 denotes the first counterfactual within the individual.
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Similar to the single-modal method we can then define these counterfactuals as 𝑖𝑗 = {𝑖1𝑗 , 𝑖2𝑗 , ..., 𝑖𝑑𝑗 }, where
d is the number of features in the dataset. So, 𝑖1𝑗 is the value of the first feature for the 𝑗𝑡ℎ counterfactual
within the individual.

We added a new objective specifically to optimize for diversity within the multi-modal individuals.
This objective measures the sum of the distances between each pair of counterfactuals within the
individual and is defined as follows:

𝑜5(𝑖) =
𝑘−1

∑
𝑎=1

𝑘

∑
𝑏=𝑎+1

𝑑𝑖𝑠𝑡(𝑖𝑎 , 𝑖𝑏),

with i being the individual we are evaluating, which then consists of k counterfactuals.
So, when using this objective our multi-objective optimization task now changes to:

min
𝑖
𝑜(𝑖) =min

𝑖
(

𝑘

∑
𝑗=1
𝑜1(𝑚(𝑖𝑗), 𝑠),

𝑘

∑
𝑗=1
𝑜2(𝑥, 𝑖𝑗),

𝑘

∑
𝑗=1
𝑜3(𝑥, 𝑖𝑗),

𝑘

∑
𝑗=1
𝑜4(𝑖𝑗 , 𝑇), 𝑜5(𝑖)) ,

where 𝑜 is five dimensional and real-valued.
However, this way of optimizing for diversity could lead to a potential problem. By adding an objec-

tive targeting diversity, it could be the case that the diversity will come at the cost of the other objectives.
It could also be the case that the counterfactuals will just become diverse for diversity’s sake, without
actually adding value for the end user. This could happen if the method starts changing features that
do not impact the final predicted value. If this feature changes between counterfactuals it does add
diversity, but it is not meaningful or of importance for explaining decisions made by the model. It could
even negatively impact the final result, since it then no longer is clear that this feature does not impact
the model’s prediction.

To prevent this, we introduce another objective and multi-objective optimization task for the multi-
modal method, which looks like this:

min
𝑖
𝑜(𝑖) =min

𝑖
(

𝑘

∑
𝑗=1
𝑜1(𝑚(𝑖𝑗), 𝑠),

𝑘

∑
𝑗=1
𝑜2(𝑥, 𝑖𝑗),

𝑘

∑
𝑗=1
𝑜3(𝑥, 𝑖𝑗), 𝑜6(𝑖𝑗 , 𝑇)) ,

where 𝑜 is four dimensional and real-valued.
Our new objective combines objective 4 and objective 5, which are the distance to the dataset and

diversity objectives respectively. The new objective captures the distance from the counterfactuals
within the individual to distinct data points within the dataset. We calculate this by considering the
counterfactuals from front to back. For the first counterfactual we calculate the distance to the nearest
data point within the dataset and keep track of which data point this is. Then, for the next counterfactual
we find the closest data point in the dataset. However, if at any point during this search the closest
point would be the same as the one for the first counterfactual, we ignore that data point. We repeat
this for every counterfactual within the individual and sum these values. This results in the following
definition:

𝑜6(𝑖, 𝑇) =
𝑘

∑
𝑗=1

𝑡𝑎≠𝑡𝑏 if 𝑎≠𝑏

min{dist(𝑖𝑗 , 𝑇)},

with 𝑡𝑎 and 𝑡𝑏 being the data point closest to counterfactual a and counterfactual b within the indi-
vidual.

By only measuring the distance to distinct data points within the data set, we aim to create mean-
ingful diversity. Instead of counterfactuals being diverse for diversity’s sake, they need to stay close to
the data points within the dataset while also moving towards distinct data points to introduce diversity.

As shown in the multi-objective optimization tasks for the multi-modal methods, we change the
existing objectives for both multi-modal methods compared to the single-modal method. Instead of
calculating the objectives for the individual, we sum the objective values calculated for each counter-
factual separately. So, if we have an individual that consists of four counterfactuals, and their separate
objective values are 0.2, 0.1, 0.5, and 0.7, the objective value for that individual would be 1.5. We
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Figure 3.1: Our visualization tool for sets of counterfactuals. Top left: Feature Densities view. Top right: t-SNE Plot view. Bottom:
Counterfactual view.

do this for every objective. Note that because of this the maximum possible objective value for each
objective now is k times larger than the maximum possible objective value for each objective in the
single-modal version of the method, since we sum the objective values for k individuals.

3.1.3. Selecting Diverse Counterfactuals
The number of counterfactuals that both the single-modal and multi-modal methods return can be
anywhere between zero to over a thousand. This means we have so many counterfactuals that it is
no longer reasonable to look at them all, especially for an end user that wants an explanation for their
own situation. Therefore, we want to select a few counterfactuals from this list of counterfactuals that
are diverse enough to give different options. To return the best possible results we want to select a set
of counterfactuals that best describes the spread of the approximation front.

To select counterfactuals from the approximation front we use a method based on greedy scattered
subset selection. It works as follows. First, remove all points that are not counterfactuals. Then, if the
number of counterfactuals that we are selecting, defined as k, is larger than or equal to the number
of features, pick the counterfactual where the difference in feature value is the largest between that
counterfactual and the original data point. If k is smaller than the number of features, pick the point that
has the largest feature value for a random feature. After this iteratively select counterfactuals, based
on largest Gower distance in feature values with the already selected set, until we have selected k
counterfactuals.

By using this method to pick counterfactuals we try to select counterfactuals that describe the ap-
proximation front well and give the user a diverse list of counterfactuals to choose from.

3.2. Visualization
Because of the complexity of the several existing visualization methods, we implemented our own
simple visualization tool based on the aforementioned more complex tools. By reducing the complexity,
we give a clearer and easier to understand overview of generated counterfactuals.

However, this means that our visualization has two drawbacks compared to other existing tools.
The first drawback is that we provide less information. The second drawback is that we do not provide
customization settings that can be used by the user to tailor the counterfactuals to their preferences.

Figure 3.1 shows this new tool. It consists of three different views. At the bottom we have the
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Figure 3.2: Feature Density view in our visualization tool.

Counterfactual view, at the top left we have the Feature Densities view, and at the top right we have
the t-SNE Plot view.

Counterfactual view. The Counterfactual view consists of the original data point for which we
generated counterfactuals and a list of selected counterfactuals. Each counterfactual is assigned a
distinct colour. For the original data point we list all feature values, and for the counterfactuals we list
all feature and objective values. The colours shown in this view correspond to the colours shown in the
other views. So, the red counterfactual in this view is the same counterfactual as the red counterfactual
in the Feature Densities view and the t-SNE Plot view.

This view contains a ”Toggle counterfactuals” button. This button allows us to toggle which coun-
terfactuals we want to see in the other views. This allows a user to focus on the counterfactuals they
are interested in and provides clarity in case counterfactuals overlap.

We include this overview to provide the exact values of both the features and the objectives for each
counterfactual.

Feature Densities view. The Feature Densities view, shown in Figure 3.2, shows the densities
of the generated counterfactuals per feature. For each feature we take the lowest and highest values
in the training set and divide the space between these into 30 bins. Then we count how many gen-
erated counterfactuals fall in each bin. Each bin that does not contain any counterfactuals is white,
each bin that does contain counterfactuals is shaded grey. The darker the shade of grey, the more
counterfactuals are in that bin.

These bins are overlaid with the selected counterfactuals shown in the Counterfactual view. This
means that if a coloured counterfactual is shown on a shaded bin, this counterfactual is in said bin.

We include this view to provide a clear overview of where the counterfactuals are in the feature
space. The shaded bins provide insight into what is important for most counterfactuals and allow the
user to see whether there is a certain value, which might or might not differ from the original data
point, that all counterfactuals have for a certain feature; or whether there is a broad spectrum of values
that can still provide counterfactuals. The coloured overlays allow for insight into how different features
might depend on each other. For example, it shows that if the value of one feature is low (Chord length)
the value for another feature will likely also be low (Free-stream velocity).

t-SNE Plot view. The t-SNE Plot view, shown in Figure 3.3, shows t-SNE plots for both the feature
and objective values. All generated counterfactuals are shown in light grey, and again are overlaid
with the selected counterfactual in their corresponding colours. It uses the t-SNE implementation from
scikit-learn.

We include this view to provide an overview of how diverse the selected counterfactuals are.
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Figure 3.3: t-SNE Plot view in our visualization tool.



4
Experimental Setup and Design

In this chapter we describe the experimental setup and the experiment design. First, we describe the
experimental setup, including the metrics, datasets, models, and baselines we use, as well as the
actual parameters used in these experiments. Second, we describe the different experiments we do.

4.1. Experimental setup
4.1.1. Baselines
We use DiCE [34] as a baseline to compare our method to. DiCE is implemented in Python and has
support for Sklearn models, which makes it simple to run it for the same instances we use to evaluate
our method. For this comparison we use the same models and random seeds as for our own method.
To set the random seed for DiCE we use the random method. We set the proximity weight and diversity
weight to 0.5 and 1.0 respectively, as the authors describe in the paper.

To gain a better understanding of the performance of this method we also tried to use other base-
lines. However, we were not able to get either of these to work with our chosen models.

The first method we tried to use as a baseline is Multi-Objective Counterfactual Explanations (MOC)
[10], because this is the original multi-objective counterfactual generation method. We were unable to
use this method, because their method is implemented in R. The models that we use are only available
in Python and C++. The authors of MOC do compare their method to DiCE. This is possible because
they train their models in R, and then use the models in Python.

The second method we tried to use as a baseline is CARE [36], because it is a state-of-the-art coun-
terfactual generationmethod. However, we were not able to do this, because the CARE implementation
is incompatible with the models we use. The predictions made by the models we use differ too much
from the target values, which then in turn causes CARE to not be able to generate counterfactuals.

4.1.2. Metrics
The quantitative metrics are based on the ones used to evaluate DiCE [34]. We define k as the number
of counterfactuals the method was asked to generate. To generate k counterfactuals from DiCE we set
it as a hyperparameter. For MO-RV-GOMEA we select k counterfactuals from the approximation front.

Then we define 𝐶 = {𝑐1, 𝑐2, ..., 𝑐𝑛} to be the set of generated counterfactuals, where n is the number
of generated counterfactuals. Depending on the model and difficulty of finding counterfactuals k and
n can be equal, and we can define their relationship as 𝑛 <= 𝑘. If we ask a model to generate 10
counterfactuals it could be the case that it only returns 6 counterfactuals. In that case 𝑘 = 10 and
𝑛 = 6.

A single counterfactual consists of a set of feature values. We define this as 𝑐 = {𝑐1, 𝑐2, ..., 𝑐𝑑},
where d is defined as the number of dataset features. So, the first feature value for the first generated
counterfactual is then denoted as 𝑐11 . Following this same notation, we can define the original data
point x as 𝑥 = {𝑥1, 𝑥2, ..., 𝑥𝑑} and the first feature value of that data point as 𝑥1.

As the distance measure we once more use the Gower distance [20], which is defined as follows:
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𝑑𝑖𝑠𝑡(𝑝1, 𝑝2) =
1
𝑑

𝑑

∑
𝑗=1
{
1
𝑅𝑗 |𝑝

𝑗
1 − 𝑝𝑗2| if feature j is numerical

𝕀𝑝𝑗1≠𝑝𝑗2 if feature j is categorical (4.1)

for data points 𝑝1 and 𝑝2.
Validity Validity measures how many actual counterfactuals the method returned versus how many

we ask it to generate. If we define v as the number of unique counterfactuals in C that lead to a predicted
value within the desired range, then we define the validity as follows:

%Valid-CFs = v
𝑘

When n == v all counterfactuals in C are unique and lead to predictions within the desired range.
In this case it holds that:

%Valid-CFs = n
𝑘

If not all counterfactuals in C are unique or lead to predictions within the desired range this does
not hold.

Proximity Proximity measures the distance between the original data point x and each counter-
factual within C. We therefore aim to measure how similar the counterfactuals are to the original data
point. This is calculated as the average distance between the counterfactuals and the original data
point. Therefore, proximity is defined as:

Proximity = −1𝑛

𝑛

∑
𝑗=1

dist(𝑐𝑗 , 𝑥)

Wemultiply the actual proximity by -1 to create more intuitive graphs. By doing this it holds for every
metric that a higher value is better.

Sparsity Sparsity measures the number of features that differ between a counterfactual and the
original data point.

Sparsity = 1 − 1
𝑛𝑑

𝑛

∑
𝑎=1

𝑑

∑
𝑏=1

1[𝑐𝑏𝑎≠𝑥𝑏]

By subtracting the actual value from 1 we once again make sure that a higher value means better
sparsity.

Diversity Diversity is measured in the average pair-wise distance between all counterfactuals in C.
It is similar to proximity, but instead of using the original data point we use another counterfactual from
C.

Diversity = 1
(𝑛2)

𝑛−1

∑
𝑎=1

𝑛

∑
𝑏=𝑎+1

dist(𝑐𝑎 , 𝑐𝑏)

We also measure count-diversity, which is similar to the sparsity. It measures the number of feature
values that are different between each pair of counterfactuals in C.

Count-Diversity = 1
(𝑛2) ∗ 𝑑

𝑛−1

∑
𝑎=1

𝑛

∑
𝑏=𝑎+1

𝑑

∑
𝑙=1
1[𝑐𝑙𝑎𝑙≠𝑐𝑙𝑏]

Distance to dataset This metric was not used in the evaluation of DiCE [34]. It measures the
distance between a counterfactual and the closest data point in the train dataset. We include it, because
we want a way to measure how realistic a counterfactual is. Since the data points in the dataset are
real measurements, these data points are realistic. If we then measure the distance to these realistic
data points, we can use that as a proxy for this realism.

We can define this distance as:
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Functions +, -, *, and aq
Generations limit 75
Evaluations limit -
Time limit -
Initial tree height 4
Maximum of tries
for solutions in the
initial population to
be syntactically unique

1000

FOS Linkage tree
Ephemeral random constants true
Interleaved multi-start scheme 5 sub-generations and early stopping criterion 1
Parallel 1

Table 4.1: Parameter values for GP-GOMEA.

Distance to dataset = −1𝑛

𝑛

∑
𝑗=1
𝑚𝑖𝑛{dist(𝑐𝑗 , 𝑇)}

where T is the train set. Because all data points in the train dataset are examples of real data points,
measuring the distance to the dataset can be seen as a proxy for how realistic the counterfactuals are.

Of these metrics, we optimize for all of them except Diversity and Count-Diversity using the single-
modal method, and for all of them using the multi-modal methods. When calculating these metrics for
multiple runs we can simply average the measurements over the total number of runs.

4.1.3. Datasets
We evaluate our method using the following four datasets. Because MO-RV-GOMEA is a real-valued
method, we only use regression datasets.

Airfoil Self-Noise This dataset contains measurements of many different NACA 0012 airfoils in a
wind tunnel [6]. It consists of 8 different features, and the model’s task is to predict the scaled sound
pressure.

Yacht Hydrodynamics This dataset contains measurements of 22 different types of yacht hulls
[16]. It consists of 6 features, and the model’s task is to predict the residuary resistance per unit weight
of displacement.

Concrete Compressive Strength This dataset contains 8 features consisting of different ingredi-
ents used to mix concrete and the age in days [44]. The model’s task is to predict the compressive
strength of the concrete.

Bike Sharing This dataset contains information about bike rentals for the years 2011 and 2012 [15].
There are two versions of this dataset, one that contains hourly measurements and one that contains
daily measurements. We only use the day part of the dataset and remove 2 variables, namely the
count of casual users and the count of registered users. This leaves us with 12 features describing
measurements like weather, day of year, and whether it is a working day. The model’s task is to predict
the total count of bike rentals.

Each of these datasets contain a number of continuous features. Both the Airfoil Self-noise dataset
and the Yacht Hydrodynamics dataset consist entirely of continuous features. The Concrete Compres-
sive Strength dataset contains one integer feature, namely age. The only dataset that contains majority
non-continuous features is the Bike Sharing dataset, in which only 4 features are continuous.

To run the experiments we use two data points per dataset. These data points are the first line of
the train set and the first line of the test set.

4.1.4. Models
We generate themodels to explain using Genetic Programming Gene-pool Optimal Mixing Evolutionary
Algorithm (GP-GOMEA) [42]. The models we use are Symbolic Regression models. To create these
models we use 80% of each dataset as a train set and 20% as test set.
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Forced improvements True
Boundary repair True
FOS Full linkage tree
Value-to-reach True
User range [-1000000,1000000]
Maximum number of generations 3,000,000
Time limit 120 seconds

Table 4.2: MO-RV-GOMEA parameters we set to run our experiments.

Rotation angle 0
Tau 0.35
Base population size 30
Maximum number of populations 25
Base number of mixing components 5
Distribution multiplier decrease 0.9
Standard deviation ratio threshold 1.0
Elitist archive size target 100
Value to reach 0.001
maximum no improvement stretch 100

Table 4.3: MO-RV-GOMEA parameters we did not change.

GP-GOMEA has quite a few parameters to set. The values for these are shown in Table 4.1, where
aq is a protected form of division. All other parameters are set to their default values.

Using these parameters we create 5 models with seeds 1-5. For each experiment we use these
same 5 models and average over them.

Besides the implementation in C++, GP-GOMEA is also available as a python package. The pack-
age allows it to be used as a Sklearn model. This makes it easier to use for multiple different methods
implemented in different programming languages.

4.1.5. Parameters
Like GP-GOMEA, MO-RV-GOMEA also has many different parameters. To run our experiments we
use the parameters shown in Table 4.2.

While it might seem that setting a time limit would hamper experiment reproducibility, practice shows
that if a run exceeded this time it, would not find any counterfactuals within the maximum number of
evaluations. When this was the case the runtime was too long to be able to run all experiments.
However, it is still possible that this influences the results.

Other parameters that we did not experiment with are set as shown in Table 4.3.

4.1.6. Definition of a counterfactual
Because we deal only with regression tasks, it is difficult to define when a data point is considered to be
a counterfactual. Each of these datasets are significantly different and we have no domain knowledge
in any of them. For the purposes of this thesis, we therefore define a counterfactual as follows.

A data point c is a counterfactual if 𝑚(𝑥) ≤ 𝑡 ∗ 𝑚(𝑐), where m is the model, x is the original data
point we want to generate counterfactuals for, and t is a constant. In this thesis t is set to 1.025, unless
stated otherwise. This means that for the purposes of this thesis an data point is a counterfactual if the
its predicted value by the model is 2.5% larger than the predicted value for the original data point.

4.2. Experimental Design
We have done four experiments. In this section we describe these experiments and why we have done
them. To run these experiments we use the same five models. These models are created with GP-
GOMEA, using the parameters described above and the seeds set to 1-5. For each point in experiment
one and two we also run five runs. So, when combining the number of models and extra runs, each
point in the graph is averaged over twenty-five runs.



4.2. Experimental Design 23

4.2.1. Single Instance
The first type uses only the Bike Sharing dataset. We compare the results from a single run from both
our single-modal method and DiCE, using our new visualization without any of the quantitative metrics
described above. By walking through a single example for one dataset it allows us to get a more intuitive
feel for the method’s performance before we look at metrics averaged over multiple runs. To achieve
this, we evaluate the performance of the methods on the day in the dataset that contains data for all
hours in the day and has the lowest target value. We use the model with seed 1 for this experiment
and set the threshold for being a counterfactual to 4.0 to allow for more drastic changes.

4.2.2. Single-Modal Performance
After this the second type of experiment uses all datasets. We compare how the methods perform when
asking for an increasing number of counterfactuals using the quantitative metrics. This experiment
allows us to gain an understanding of how our method performs in a typical setting where people use
it to explain their personal circumstances. For this experiment we ask the methods to generate 1, 2, 4,
6, 8, and 10 counterfactuals.

We perform this experiment to see how our single-modal method performs compared to the baseline
DiCE.

4.2.3. Objectives Effects
Our third type of experiment evaluates how each objective influences the performance of our method.
We use all datasets and quantitative metrics. Once again we ask our method to generate 1, 2, 4, 6,
8, and 10 counterfactuals. For this experiment we only evaluate the performance of MO-RV-GOMEA
using the data point from the test set to prevent using a data point that is the model has been trained
on and that is contained in the dataset we use for the Distance to the dataset objective. To evaluate
the effect of each objective we compare a version of MO-RV-GOMEA using all objectives to versions
that are missing one objective. The only objective that is not evaluated this way is objective 0, because
that objective is necessary to guarantee that the method will return any counterfactuals if possible.

We perform this experiment to see how the different objectives interact with each other, and to see
how they influence diversity within the generated counterfactuals.

4.2.4. Multi-Modal Performance
Our fourth and last experiment measures the performance of our multi-modal methods compared to
our single-modal method and DiCE. We use all quantitative metrics and all datasets except for the bike
sharing dataset, and also ask the methods to generate 1, 2, 4, 6, 8, and 10 counterfactuals. The bike
sharing dataset is excluded because of its number of features. Since it has 12 features this causes
the multi-modal individuals to become very large very quickly. By excluding this dataset we limit the
runtime. To decrease runtime more we make a few changes to our parameter settings. We set the
maximum number of generations to 30,000 and the time limit to 240 seconds. The experiment only
uses the individual from the test set.

The aim of this experiment is to compare the performance of our multi-modal methods to both the
basline DiCE and our single-modal method.





5
Results and Discussion

In this Chapter we present the results of our experiments described in 4.2 and discuss them.

5.1. Single Instance
In this experiment we generate counterfactuals for a single day of bike rentals in Washington, D.C.,
USA. The day we evaluate is December 26th, 2012. It was a Wednesday and since it was not a
holiday it was a working day. The weather was partly cloudy, quite cold at a temperature of 3.44°C with
a feeling temperature of 2.36 °C, and humid with 82% humidity. With a wind speed of 21.2 mph, it was
windy enough for small trees to begin to sway [41].

Figure 5.1 shows the counterfactuals that were generated by the methods for this specific day.
Instead of showing the feature values we have translated the values into their real world meaning. This
allows for a more intuitive way to interpret the results.

When we look at the counterfactuals there are a few things that stand out. The first is that MO-RV-
GOMEA makes more changes than DiCE. Where DiCE only makes changes to three features, MO-
RV-GOMEA makes changes to all of them. The changes made by MO-RV-GOMEA are more realistic.
Whenever it changes the date, it also changes the season, year, month, weekday, etc. accordingly.
While this is interesting to see, we do have to note that our counterfactual selection method could play
a large role in this. It is likely that there are counterfactuals within the approximation front that are
closer to the ones produced by DiCE. However, since this counterfactual selection method is part of
our counterfactual generation method as a whole, it is important to compare these produced sets.

If we compare the counterfactuals that were generated by MO-RV-GOMEA to the instances in the
dataset with the same date, we can see why these examples look more realistic. For all date changes
the non-continuous features change to the exact values of those days as well. The difference in the
continuous features varies per counterfactual. For counterfactual 5 all continuous features are sig-
nificantly different, but counterfactual 3 is the exact same as the instance in the dataset. The other
counterfactuals are anywhere in between.

Figure 5.2 shows the densities per feature for the generated counterfactuals from these methods.
We can see that the counterfactuals generated by MO-RV-GOMEA indeed seem to be more diverse
than the ones generated by DiCE, which in turn seem to be closer to the original data point than the
ones generated by MO-RV-GOMEA. However, when we look at the grey shaded densities for MO-RV-
GOMEA, we can see that there are counterfactuals within the approximation front that are closer to the
original data point.

This is confirmed by Table 5.1, which shows the values for each of the metrics calculated over the
returned sets of counterfactuals. MO-RV-GOMEA performs equal to or better than DiCE on all metrics

%-Valid counterfactuals Proximity Sparsity Diversity Count-Diversity Distance to dataset
MO-RV-GOMEA 100% -0.40 0.32 0.39 0.67 -0.02
DiCE 100% -0.13 0.83 0.16 0.22 -0.12

Table 5.1: Metrics for a single run of the methods on the Bike Sharing dataset. All values are rounded to two decimals.
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Figure 5.1: The counterfactuals from a single run on the Bike Sharing dataset, with the values translated to readable values. For
the counterfactuals only values that differ from the original data point are shown. All values are rounded. Some values are the
same as the value in the original data point after rounding.

Figure 5.2: Densities per feature for a single run on the Bike Sharing dataset shown for both methods.
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except for Proximity and Sparsity. The similarity between the counterfactuals and actual instances in
the dataset is also visible in Table 5.1. With an average distance of 0.02 to the closest point in the
dataset for MO-RV-GOMEA it is clear that they are incredibly similar.

The changes made by DiCE make some sense, when the weather is clear or the temperature is
higher it is likely that more people will rent a bike. However, the temperature and feeling temperature
do not correspond. To a lesser extent this is also the case for MO-RV-GOMEA.

The second point of note has to do with the output of the different methods. For the counterfactuals
generated by DiCE, the model output is much closer to the counterfactual threshold than for the ones
generated by MO-RV-GOMEA. Where the output values for DiCE counterfactuals varies between 4639
and 4899, the output values for MO-RV-GOMEA vary between 4631 and 6218. Again, this is partially
the result from our counterfactual selection method, because there are some grey shaded feature
density areas closer to the predicted value of the original data point.

The third point of note is that the changes made by MO-RV-GOMEA are much smaller than the
ones made by DiCE. These changes can even be so small that they no longer show up after rounding
for our translated values. An example of this is the humidity for counterfactual 1, which is the same
after rounding as the humidity of the original data point. This could be caused by the way in which
both methods search for counterfactuals. Both methods start with randomly initialized data points.
MO-RV-GOMEA is an evolutionary algorithm and performs evolution on a relatively large population
of these data points by making (small) changes to the feature values. DiCE only looks for as many
counterfactuals as it needs by optimizing both diversity and proximity using gradient descent [34]. This
could lead to MO-RV-GOMEA not finding the exact feature values of the original data point and other
data points in the population, which then in turn shows up in the returned set of counterfactuals.

Because this experiment is based on only one run for one data point and one model, we cannot
draw any conclusions yet. However, this experiment does show that when compared to DiCE, MO-RV-
GOMEA seems to generate counterfactuals that make smaller changes to more features, the changes
made are more realistic, and the generated counterfactuals are further away from the original data
point.

5.2. Single-Modal Performance
Figure 5.3 shows the results for the increasing number of counterfactuals experiments for all datasets.
For each method we show the results for both the train data point and the test data point. In this section
we will discuss the results in order of the metrics.

5.2.1. %-Valid counterfactuals
The percentage of valid counterfactuals that are returned varies per dataset but stays the same even
if the methods have to return an increasing amount of counterfactuals. For the yacht and concrete
dataset both methods are able to return all requested counterfactuals. However, this is not the case
for the bike dataset or the airfoil dataset. DiCE did not return any counterfactuals for the test data point
from the bike dataset. For the airfoil dataset the methods were able to find at least some counterfactuals
for each data point. These percentages are higher for the train data point than for the test data point.
For the test data point we can see that DiCE only returns 40% of the counterfactuals compared to the
60% returned by MO-RV-GOMEA. When looking at the runs themselves, we see that this is caused by
the methods only being able to find counterfactuals for that percentage of the models. For the models
that the methods are able to generate counterfactuals for, they generate the number of counterfactuals
that we ask to generate.

The methods struggle to find counterfactuals because of the data points that we are evaluating.
When we look at Table 5.2 we can see why this is. For both the train instance and the test instance, the
value to reach to become a counterfactual is very close to the maximum prediction on the entire train
set. This is even more so the case for the test instance than for the train instance. For model 2 and 4
the value to reach is higher than the maximum value predicted on the train set. This means that it is
possible that the value we need to reach to become a counterfactual is unreachable for that model.

So, MO-RV-GOMEA is able to find an equal number of or more counterfactuals than DiCE.
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Figure 5.3: The results for the increasing number of counterfactuals experiments for all datasets using our single-modal method.
Note that for the bike sharing dataset only the %-Valid counterfactuals graph shows the red line, because DiCE was not able to
generate any counterfactuals for that data point. The other lines are all at the 100% value.

Predicted value
train instance

Value to reach
train instance

Predicted value
test instance

Value to reach
test instance Maximum on train set

Model 1 123.52 126.61 127.92 131.12 128.57
Model 2 123.62 126.71 126.76 129.93 127.32
Model 3 123.75 126.85 125.74 128.88 131.88
Model 4 125.83 128.98 127.30 130.478 130.43
Model 5 124.53 127.64 123.50 126.59 128.65

Table 5.2: Predicted value, value to reach to become a counterfactual, and maximum possible value on the train set for all 5
models used on the Airfoil dataset.
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5.2.2. Proximity
The same divide that we saw for the %-valid counterfactuals, we also see for the proximity. On the
yacht and concrete dataset the counterfactuals generated by MO-RV-GOMEA have a higher proximity
than the ones generated by DiCE. This divide is also the case for the train data point from the airfoil
dataset, but not for the test data point from that same data set. MO-RV-GOMEA has a lower proximity
than DiCE on the bike dataset. However, when we look at the metric values this divide is not as large
as it looks in the graph.

Because DiCE returns fewer counterfactuals for the airfoil dataset we cannot say with certainty that
it is actually higher in proximity than MO-RV-GOMEA. It is possible that MO-RV-GOMEA contains a
subset of counterfactuals that are similar to DiCE. If the other counterfactuals that were not found by
DiCE are much farther away from the input point, this could mean that the results are skewed.

When we look at the proximity scores for the increasing number of counterfactuals we cannot see
an overall trend in the performance of our single-modal method. On the airfoil and concrete dataset the
proximity seems to increase slightly for higher numbers of counterfactuals, while it decreases slightly
for the yacht dataset. On the bike dataset we can see that it increases for the test data point while
it decreases for the train data point. When looking at the actual values this increase and decrease is
not as large as it looks, with the differences being around 0.05 and -0.07 respectively. The increase is
similar to the increase shown in the airfoil dataset.

5.2.3. Sparsity
The results in terms of sparsity are not as clear as the other metrics. While DiCE performs similarly
on both the train and test data points from all datasets, this is not the case for MO-RV-GOMEA. Dice
scores significantly better for the airfoil and bike datasets, hovering around 0.65 and 0.85 respectively.
MO-RV-GOMEA hasmuch lower metric values, with around 0.45 and 0.15 for the train and test instance
on the airfoil dataset and between 0.55 and 0.65 for both instances on the bike sharing dataset. The
performance of MO-RV-GOMEA on the airfoil dataset is much lower than on the yacht and concrete
datasets, where the proximity does not drop under 0.66. DiCE generally outperforms MO-RV-GOMEA
on the concrete dataset, while the reverse is generally true for the yacht dataset. On the yacht dataset
and the concrete dataset MO-RV-GOMEA looks like it behaves much erratically, with high peaks and
low valleys in the lines. However, this behavior is similar to the performance on the airfoil dataset. It is
exaggerated because the scale of the graphs is different between the different datasets. As stated, the
metric values for MO-RV-GOMEA on the airfoil dataset are very low. However, like for the proximity
metric, we cannot conclude that DiCE actually outperforms MO-RV-GOMEA for the airfoil dataset,
because we are evaluating a smaller set of counterfactuals.

Generally, there seems to be a slight upward trend when increasing the number of counterfactuals
that the single-modal method has to generate. The performance of MO-RV-GOMEA is similar to or
worse than DiCE for the sparsity metric.

5.2.4. Diversity and Count diversity
For the diversity metric the diversity is 0 when we ask to generate 1 counterfactual, because there are
no pairs of counterfactuals to calculate the diversity between. For each dataset we do see a slight
decline in diversity as the number of counterfactuals increases. This makes sense, because if we have
an approximation front that spans a certain feature space, and then we select two counterfactuals from
this approximation front, the diversity is high. However, depending on how the first two counterfactuals
were picked, this pair-wise distance will now decrease for each counterfactual that we select. This is
because there will be more counterfactuals located in the same feature space, thus making the pair-
wise distances smaller.

The performance on the yacht and concrete datasets are similar. The diversity within the sets
of counterfactuals generated by DiCE is higher than the diversity for the ones generated by MO-RV-
GOMEA, with the diversity of DiCE being between 0.150 and 0.200 and the diversity of MO-RV-GOMEA
being between 0 and 0.025. This is not the case for the airfoil and bike datasets, where the diversity
is much higher within sets of size two generated by MO-RV-GOMEA. After this the diversity becomes
similar to the ones generated by DiCE. For these datasets MO-RV-GOMEA’s diversity is much higher
than for the other datasets, namely between around 0.05 and 0.25.

There also is a difference in count diversity of MO-RV-GOMEA between the datasets. On the airfoil
and bike dataset the count diversity is higher than DiCE, while the opposite is the case for the yacht
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and concrete dataset. This high count diversity, and the sparsity performance, is because of how MO-
RV-GOMEA generates the counterfactuals. As we can see in Figure 5.1 it can make both big and small
changes. While small changes do not increase the distance between the counterfactual and the input
individual or the dataset significantly, they do count for both the Sparsity and Count diversity.

5.2.5. Distance to dataset
MO-RV-GOMEA outperforms DiCE on the distance to the dataset for every dataset. For MO-RV-
GOMEA the distance to the dataset is smaller than -0.01 for the train instance and and smaller than
-0.05 for the test instance on all datasets. Because these distances are so small, it is likely that, as for
the single instance experiment, the generated counterfactuals are probably more realistic. Given that
the distance is just below zero for all datasets except the airfoil dataset, it is also likely that many of
these are exact, or near exact, replicas of existing data points in the data sets.

However, we do have to note that DiCE does not optimize for the distance to the dataset and
our method does. While we use the distance to the dataset as a metric to capture how realistic the
counterfactuals are, it makes sense that MO-RV-GOMEA outperforms DiCE on this metric.

5.2.6. General remarks
We do want to note that the performance of MO-RV-GOMEA on the bike dataset is similar to the
performance on the airfoil dataset. As described earlier, the performance of MO-RV-GOMEA on the
airfoil dataset is influenced by the difficulty of generating counterfactuals for the data points from that
data set. This is not the case for the data points from the bike dataset. It could be that this difference in
performance compared to the yacht and concrete datasets comes from a different difficulty in generating
counterfactuals. The bike dataset is the dataset that has the most non-real-valued features. While we
cannot conclude that this is the cause of the lowered performance, it is possible.

Overall, we see that our single-modal method outperforms DiCE on proximity for most datasets
and on the distance to the dataset for all datasets. On sparsity and (count) diversity the single-modal
method performs similar or worse to DiCE.

5.3. Counterfactual Selection Method Effects
While this is not part of our experiments in and of itself, we do want to touch on the effect of the
counterfactuals selection method.

Figure 5.4 shows what the metrics look like if we take the runs from our previous experiment, but
treat the set of all generated counterfactuals as if that is the returned set of counterfactuals. Comparing
the performance of this set to the selected set of counterfactuals gives us an indication of general
performance of the selection method. Note that the %-valid counterfactuals metric increases drastically
because we are now dividing the size of the set of all counterfactuals by the number of counterfactuals
we wanted to generate. As described in 5.2.4 the diversity also becomes smaller, because we are
evaluating larger sets of counterfactuals.

When we compare the results of the entire list of counterfactuals to the results of the single-modal
method, we can see that for the performance of the set of selected counterfactuals and the average
performance of all generated counterfactuals are relatively similar. There are some minor differences,
but these are so minor that they are not worth pointing out specifically. This means that our selection
method seems to capture the average of all of the counterfactuals.

Although the impact of the selection method looks to be negligible on these instances, more evalu-
ation is needed to be able to conclude this.

5.4. Objectives Effects
We evaluate the influence of the optimized objectives by removing one and comparing the performance
to a version of MO-RV-GOMEA that optimizes for all objectives. The only objective we do not evaluate
is validity, because this is the objective that makes sure that the returned counterfactuals are actually
counterfactuals.

Figure 5.5 shows the results of running single-modal MO-RV-GOMEA optimizing the different ob-
jectives for only the test data point. Comparing the performance of the method optimizing all objectives
to the ones that optimize three out of the four objectives allows us to evaluate how the objectives influ-
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Figure 5.4: The results for the increasing number of counterfactuals experiments for all datasets using our single-modal method
when calculating over all generated counterfactuals instead of the returned set.
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Figure 5.5: The performance of single-modal MO-RV-GOMEA on the datasets for the first instance of the test dataset. We
evaluate the influence of the different objectives we optimize for.
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ence each other. It also allows us to evaluate how they influence the diversity within the set of returned
counterfactuals.

First we look at the influence of the proximity objective. In Figure 5.5 we can see that it influences
the proximity metric. For the airfoil, yacht, and concrete dataset the proximity plummets without this
objective. The largest difference is on the airfoil dataset, where it drops from between -0.20 and -0.25
to around -0.40. It also has some influence on the sparsity metric. Without optimizing for proximity,
the sparsity is similar to or worse than the sparsity of optimizing for all objectives. This same change
is visible in the diversity metric. What is interesting is the fact that for these datasets the distance to
the dataset becomes incredibly small, showing as just below 0 in the graphs. This means that there
is a trade-off between these two objectives. Another point of note is that when we do not optimize
for proximity, the diversity within the generated counterfactuals reduces for all datasets except for the
yacht dataset.

The trade-off makes sense given that this evaluation is on an instance of the test set. When the
method has to optimize for both proximity and distance to the dataset for an individual that is not in the
train set, it is likely that there is at least some-what of a distance between the individual and the train
set. If we optimize to be close to both instances, there is an inherent trade-off. When one of these
objectives is taken away, it becomes much easier to optimize for the other.

Second we look at the influence of the sparsity objective. As expected, the performance on the
sparsity metric becomes worse when we do not optimize for sparsity. However, the performance on
the other metrics stays very similar to when we optimize for all objectives. There is a slight difference
on the count diversity for the yacht and concrete datasets. When the counterfactuals are less sparse,
they have fewer feature values in common with the original data point, and therefore also fewer feature
values in common with each other; and thus have a higher count-diversity.

Third we look at the influence of the distance to the dataset objective. When we do not optimize
for distance to dataset the proximity metric is much better than for any of the other combinations of
objectives. On the airfoil dataset it is just above -0.15, and on all other datasets it is just below 0.
Sparsity is also higher than most others, since it performs similar to or better than when we optimize
for all objectives. We also see the opposite effect of not optimizing for proximity. Now the proximity is
better while the distance to the dataset is consistently much worse. With one of the objectives gone,
the method is free to optimize for the other objective.

The trade-off between proximity and distance to dataset is also expressed in the diversity metric.
When optimizing for both proximity and distance to dataset the diversity is generally higher than when
optimizing for only one of these. Again this makes sense, because when optimizing for both, themethod
is not able to hone in and get as close as possible to only one of these. This effect is not as large when
we do not optimize for proximity, and thus still optimize for the distance to the dataset. It is likely that
this is because the train set consists of many different individuals that the counterfactual can get close
to instead of just one input individual. This allows for more diversity in the set of counterfactuals while
still being very close to a single instance in the train dataset.

One point of note is visible in the %-valid counterfactuals metric. Leaving out objectives can have
an influence on the number of counterfactuals that the method was able to generate. For the airfoil
dataset the method is only able to generate 56.5% of the asked counterfactuals when not optimizing for
proximity and asking for eight counterfactuals. The percentage of valid returned counterfactuals drops
from 100% down to 80% and finally around 50% when not optimizing for the distance to the dataset
on the concrete dataset. With fewer objectives it is easier for one solution to be dominated by another,
because we remove an entire dimension which could have a different value. This means that we can
lose solutions that would otherwise be kept.

From this experiment we can conclude that the proximity, sparsity, and distance to dataset objectives
each greatly influence the performance of the method on their respective metrics. We can also see
that there is a trade-off between proximity and distance to dataset. It shows that the sparsity objective
only has a big impact on the sparsity metric and a minor impact on the count diversity. The proximity
and especially the distance to the dataset objectives greatly influence the diversity within the returned
set of counterfactuals.
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Figure 5.6: The performance of single-modal and both versions of multi-modal MO-RV-GOMEA on the datasets for the first
instance of the test dataset.

5.5. Multi-Modal Performance
Figure 5.6 shows the results that compare our single-modal method, our multi-modal methods, and
DiCE. In this experiment we only use the test data point.

First, we consider our base multi-modal method that uses the same objectives as our single-modal
method but adds the diversity objective. In Figure 5.6 we can see that with values of 0.3 and up this
method has much higher diversity, but performs far worse than the other methods in all other metrics.
Therefore, it is likely that this method creates diverse counterfactuals for diversity’s sake, instead of
creating meaningfully diverse counterfactuals.

This is not the case for our second multi-modal method, which is the method that combines the
distance to the dataset objective with the diversity objective. Figure 5.6 shows that this combined
multi-modal method creates counterfactuals that are more diverse than our single-modal method, while
performing much better on the other metrics than our other multi-modal method. The one objective that
it performs significantly worse in is the sparsity. Overall, it seems to be a happy medium between our
single-modal and other multi-modal method, and it outperforms DiCE on the proximity and distance to
dataset metrics while also coming close on the diversity metric.

However, there is a discrepancy in the performance of this method, and the others, on the Airfoil
dataset. This is because the combination of the data point and the tested models makes the airfoil
dataset difficult to generate counterfactuals for, as described in Section 5.2. Given that this is the only
dataset on which this method performs this way, it is likely that the difference in performance is caused
by this.

So, this experiment shows that our first multi-modal method produces very diverse sets of counter-
factuals, but at the cost of all other metrics. Our second multi-modal method generates counterfactuals
that perform better in diversity than our single-modal method, while also performing similarly or slightly
worse in the other metrics. When we compare both multi-modal methods the first method performs
best in the diversity metric and the second method performs best in the other metrics.



6
Limitations

In this Chapter we discuss the limitations to our research. We can divide these limitations into three
different groups. In Section 6.1 we describe general limitations to our method. Following that we
describe a limitation that is specific to the single-modal method specifically in Section 6.2. The last
Section, Section 6.3, talks about limitations specific to the multi-modal method.

6.1. General Limitations
6.1.1. Counterfactual selection procedure
When generating counterfactuals, MO-RV-GOMEA creates an entire approximation front of counter-
factuals. However, the size of these approximation fronts is usually larger than the number of coun-
terfactuals we are looking for. Therefore, we have to choose which of the counterfactuals within the
approximation front we return as a final set of counterfactuals.

The way we choose the final set of counterfactuals can greatly influence the values for our metrics.
Section 5.3 shows that our method seems to capture the average of the set of all generated counter-
factuals within the returned set. However, it is possible that somewhere within that set there exists a
set that has both a higher proximity and a higher diversity than the one we returned. This would mean
that that set of counterfactuals is closer to the original data point while also offering the user with more
variety to choose from.

Finding this hypothetical better set is a combinatorial optimization problem. For a small set of gen-
erated counterfactuals or a small number of counterfactuals that need to be selected this is doable.
However, the number of generated counterfactuals is usually within the hundreds and sometimes even
within the thousands. When we then ask for more than a few counterfactuals, the number of possible
subsets becomes too large to evaluate within a reasonable time. Therefore, we have to use a different
method to choose a set, like the greedy method we use now.

Instead of choosing a set using our current algorithm, we could let the user choose the type of
counterfactuals we select from the approximation set. This can be used as a constraint on our search
space. The types of counterfactuals could be in terms of objectives or feature values.

6.1.2. Time limit on experiments
To limit the runtime we use a time limit on our experiments. While practice showed that runs that
exceeded this runtime only find data points that were not counterfactuals, it is possible that the timelimit
influenced the results. This would be the case if runs that did generate counterfactuals were actually
cut short by this timelimit. Depending on the machine this could mean that some runs would be able
to run for less or more evaluations, thus producing slightly different results. Therefore it can have an
impact on the reproducability of the experiments. While this impact would not be big, we do find it
important to note.

6.1.3. Distance to dataset
Another issue that arises when looking at the single instance experiment is the fact that the method
was able to reproduce an instance from the dataset. While this is not necessarily a problem within the
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scope of this research, it does become a problem when working with more sensitive or confidential
data. For example, if we were to use a method like this to explain model predictions on patient data,
we would not want the method to return other patient’s data as a counterfactual, even if the records are
anonymized.

6.1.4. Non-Real-Valued Features
When we look at the performance of our method on the different datasets, we can see that it performs
differently on the bike sharing dataset. It is possible that this is because of the fact that that dataset
consists of mostly non-real-valued features. MO-RV-GOMEA is not designed to be used on non-real-
valued values. While our changes allow it to work with them, it is likely that performance on these
features is nowhere near optimal. As described in 3.1.1, the reason for this is that we lose a lot of nuance
due to the rounding of feature values. This could have influenced the generated counterfactuals.

6.1.5. Model quality
Model quality can have a big influence on the set of generated counterfactuals. The fact that we were
unable to generate counterfactuals using CARE because the model output differs too much from the
data points’ labels. This points to the fact that our model quality could be too low. It is possible that
our method performs worse on other models. This is not a problem for this particular research. We do
however still want to note this, because this method theoretically should be able to generalize to other
models.

6.1.6. Only Regression Tasks
The last general limitation we want to note is the fact that our method has only been implemented and
tested for regression tasks. Like for the previous limitation this is not a problem for research itself since
we only test on symbolic regression models, but we do want to note this as a potential problem. Many
other methods, like DiCE, MOC, and CARE, are capable of handling both regression and classification
tasks. This makes them more general and thus applicable in more situations. With some changes to
the implementation, it should be possible to apply this method to classification tasks as well. However,
because we have not tested this we do not know how it would perform compared to other methods like
DiCE.

6.2. Single-Modal Method
6.2.1. No optimization for diversity
The limitation for the single-modal method is the fact that we do not optimize for diversity. While some
results show that this there sometimes is diversity within the set of returned counterfactuals, there are
also many cases where this is not the case. The method could therefore return a set of counterfactuals
that are all so similar that they are of no use to the user.

6.3. Multi-Modal Method
6.3.1. Memory
When the number of counterfactuals that we want to generate increases, i.e. when k increases, the
number of counterfactuals within the individuals increases with it. These individuals can become very
large very quickly. This is especially the case for datasets that have a large number of features. Take
the bike sharing dataset for example. This dataset has 12 features, so if we want to generate 10
counterfactuals this results in individuals consisting of 120 real-valued numbers. Depending on hard-
ware and population size this can cause memory issues. These problems arise sooner than for the
single-modal method.

6.3.2. Runtime
The number of counterfactuals we want to generate can also greatly influence the runtime. This is
because each objective is calculated for each counterfactual separately. So, if our individual consists
of 10 counterfactuals, we calculate the objective value for 10 times the population.

It can also potentially cause problems after evolution, when we are trying to choose k counterfac-
tuals from the final approximation set. Since each individual consists of k counterfactuals we have to
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multiply the final approximation set by k to get the total number of generated counterfactuals. This
number can also become very large very quickly, thus increasing computation time. While this process
does not take as long as the generating of the counterfactuals, it does impact in the total computation
time. This is especially the case if we were to use a different selection algorithm.

6.3.3. Points in Dataset
In one of the datasets we used, the Concrete dataset, there are multiple instances that have the same
feature values but different target values. This is a problem for our objective that optimizes for the dis-
tance to distinct points in the dataset. The purpose of this objective is to introduce diversity by pushing
the counterfactuals to distinct data points, but when these data points can still be equal the diversity
within the individual can decrease. While this is an easy problem to remedy with pre-processing, this
is another step that has to be taken.





7
Conclusion

To conclude, we presented one single-modal and two multi-modal methods to generate counterfactuals
using MO-RV-GOMEA. We also present a visualization tool to visualize our generated counterfactuals.
This tool is less complex than existing tools. For both types of counterfactual generation methods we
have modified MO-RV-GOMEA to work for non-real-valued features by rounding feature values to the
nearest integer whenever it can be changed to a non-integer. We evaluate these methods using the
following metrics: %-valid counterfactuals, proximity, sparsity, diversity, count diversity, and distance to
dataset.

The single-modal method optimizes the objectives fromMOC using the standard version of MO-RV-
GOMEA. Our objectives therefore are: validity, proximity, sparsity, and distance to the dataset. While
examining a single instance shows that the single-modal method is able to generate counterfactuals that
are realistic, further experimentation shows that we cannot guarantee that there is much diversity within
the generated counterfactuals. The counterfactuals are generally higher in proximity to the original data
point, but lower in sparsity when compared to the original data point.

We also present two multi-modal methods. These methods optimize (a subset of) the objectives
fromMOC, and one new diversity objective each. In both multi-modal methods the individuals represent
a set of counterfactuals. The existing objectives are then calculated for this entire set of counterfactuals
and summed to find the total objective values for that individual.

The first multi-modal method optimizes all objectives that are optimized by the single-modal method.
In addition to this it also optimizes the diversity in the form of the total distance between all counter-
factuals within the individual. While this multi-modal method generates sets of counterfactuals that are
high in diversity, it performs much worse on the other metrics.

The second multi-modal method optimizes all objectives that are optimized by the single-modal
method, except for the distance to the dataset objective. To introduce more relevant diversity instead
of diversity for diversity’s sake, this method optimizes a different diversity objective. This diversity
objective is similar to the distance to the dataset objective. Instead of all counterfactuals within an
objective being allowed to move towards the same data point, this objective pushes the counterfactuals
to different data points. It does this by summing the distance to distinct data points within the dataset.
This method is able to generate sets of counterfactuals that are more diverse than our single-modal
method, while also keeping similar performance on other metrics.

So, we have created a method that is able to present the user with a set of diverse and relevant
counterfactuals that are generated in a multi-objective way for regression datasets.
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8
Future Work

In this Chapter we discuss possible future work for this research.

8.1. Other Objectives
As described in Section 2.1.3 there are many different types of objectives that are used for counter-
factual generation. In this research we only used a few different options and do not cover all types of
objectives. Some types of objectives that we do not optimize for include discriminative power, action-
ability, and causality. These different types of objectives could greatly influence the performance of the
method. Evaluating more and different types of objectives could improve the methods’ performance
on the metrics and the relevance and usability to the user.

8.2. Counterfactual Selection from Approximation Front
The way we choose our counterfactuals from the generated approximation front can influence the
performance of our method. Our current method works and seems to capture the average of the entire
approximation front. However, Figure 5.2 shows that it does not compare the spread of the feature
values as well as it could. While for each feature the outer grey bins have selected counterfactuals in
them, we can see that between these grey bins the selected counterfactuals are not spread evenly. If
we can improve this, it is possible that the method will have a high diversity while also performing better
on the other metrics.

This is especially an open question with respect to the multi-modal methods. Currently we split all
individuals into a list of counterfactuals, after which we use the same method to select the k counter-
factuals for the single-modal method. However, this means that we are not taking advantage of the
fact that each individual consists of k counterfactuals.

Instead of using the current method we could select one individual to split up and return as output,
divide all generated counterfactuals into groups based on the closest data point in the dataset, or any
other methods.

To compare our current method and other potential methods it would be good to evaluate all possible
sets of k counterfactuals within a returned approximation front. This would allow us to see the metrics
for the best possible set, the average set, and the worst possible set. These can then be compared to
the results of the used methods. However, since the approximation fronts can become very large this
is already incredibly computationally intense for even small numbers of k like k = 4.

8.3. Interactivity Within Visualization Tool
Our current visualization tool is only interactive in the sense that the user can choose which of the k
counterfactuals to show within the tool. However, this interactivity can be extended to make more use
of the sheer size of the returned approximation fronts. Examples of this are that we could allow the user
to pick a region within the feature space that they want to explore by selecting regions for each feature,
set values for certain features, or let them explore counterfactuals that are very similar or dissimilar to
a certain counterfactual.
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8.4. Other Models
While we know how our methods perform on symbolic regression models generated by GP-GOMEA,
we do not know how they would perform on other types of models. However, our method is not specific
to these models. With some conversion of the code the method should be able to generalize to other
models as well, and therefore it would be interesting to see how the methods perform on other models.

8.5. Feature and Task Type
With the current implementation the methods are able to run with non-real-valued features, but they
are not designed for these. This leads to worse performance for datasets with many non-real-valued
features. Since most datasets and real-world applications will likely have a mixture of real-valued and
non-real valued features, it is interesting to see if there are modifications that can be made to the
method to better support these types of features.

As mentioned before, it is also the case that many methods work for both classification and regres-
sion models, while our methods are only implemented and tested for regression models. While this is
not nearly as much of a wide-spread problem for our methods, there are many more regression tasks
than there are real-valued feature only datasets, it could still be interesting to see how our methods
perform on classification tasks as well.

8.6. Multi-Modal Individual Size
In our current multi-modal implementation, the size of the individual is dependent on k. This number of
counterfactuals within the individual could have a large effect on the diversity of the final list of generated
counterfactuals, because the diversity objectives are optimizedwithin these individuals. However, when
k becomes larger, this increases the size of the individual. This can become a problem for both the
space and time taken to run the method. So, it might be beneficial to experiment with the number of
counterfactuals within an individual, to find out what the optimal size of the individuals is. This could
include using a minimum and/or a maximum on the number of counterfactuals within an individual,
multiplying k with a constant to get the number of counterfactuals within an individual, or always setting
it to a certain number independent of k.

8.7. Elitist Archive
MOC changes the crowding distance computation to, in addition to taking the objective space into
account, also take the feature space into account [10]. They say that this allows the method to keep
individuals even if they do not vary greatly in objective values but do vary in feature values.

It could be beneficial to make a similar change for MO-RV-GOMEA. This could be done in the
elitist archive. Currently the elitist archive is created by checking domination between individuals on
objective and constraint values, but this could potentially be changed to also take the feature space
into account. Like with MOC, counterfactuals could be kept in the elitist archive if they differ enough
from the other counterfactuals while also being dominated. By doing this it could lead to better diversity
for the single-modal implementation of our method.

8.8. Expert Evaluation
The metrics that we use to evaluate the methods capture objective data, but they cannot necessarily
tell us how realistic and achievable the generated counterfactuals are. While we can personally look at
an instance for the bike sharing dataset and judge these factors ourselves, we are not able to do that
for the other datasets. It could be very informative to do a user study with experts within these fields,
or other fields for other datasets, that can better judge the quality of the generated counterfactuals.

8.9. Real-World Data
As described in the previous section, our evaluation metrics do not capture user preferences. We also
only evaluate our method using existing datasets. While the bike share dataset consists of real-world
data, the others were all captured in experimental settings. This means that we have mainly evaluated
our methods using non-real-world data.
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It would be beneficial to evaluate the methods on real-world applications. Not only would this allow
us to further investigate how the methods perform on real-world data, but it also allows us to take a
human-in-the-loop approach to evaluation. This also allows us to take expert evaluation into account
and non-expert user evaluation.
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