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Summary 
 

Forest fires are a major ecosystem disturbance at global scale, put pressure on agencies in 
charge of citizens and infrastructure security and cause unvaluable human losses. Fires are 
controlled by multiple static and dynamic drivers related to topography, land cover, climate, 
weather, and anthropic activity. Among these, weather is an active driver of live and dead 
fuel moisture, which has a direct effect on fire occurrence and behaviour. As a result, in 
areas experiencing prolonged droughts and heat waves, altered meteorological patterns 
lead to increased frequency and intensity of forest fires.  

The operational response of governments, local authorities, forest managers and civil 
protection agencies in charge of managing forest fires is informed by the assessment of 
factors controlling fire occurrence and behaviour, often synthesised in maps of fire danger. 
Danger is defined as the resultant of all factors affecting the inception, spread, and difficulty 
of control of fires, and it is typically expressed in the form of an index. 

Key contributors to fire danger are fuel type, amount, and conditions, notably with respect 
to moisture content. Remote sensing measurements in the shortwave infrared are sensitive 
to water content of live fuels, while measurements in the thermal infrared allow the 
detection of vegetation stress conditions due to vapour pressure deficit. In fact, several 
scholars proved that satellite estimates of vegetation water content and of land surface 
temperature could be effectively used to predict fire occurrence. Nevertheless, to the best 
of this author’s knowledge, no research was previously published connecting pre-fire 
remote sensing measurements to fire behaviour characteristics. This clearly identifies a 
knowledge gap which needs further investigation and that can be translated in the 
following research question: to what extent can remote sensing of forest condition be used 
to predict fire behaviour characteristics and assess the probability of extreme events? 

The research described in this dissertation aimed at developing methods based on pre-fire 
optical and thermal remote sensing observations of forests for the prediction of fire 
behaviour characteristics. The study was carried out in Campania, Italy (13595 km2), one of 
the most densely populated and fire affected regions in the Mediterranean. Data on all fire 
events recorded between 2002 and 2011 was provided by Carabinieri (Italian national 
gendarmerie) forest fire preparedness unit (Nucleo Informativo Antincendio Boschivo, 
NIAB). The study made use of MODIS land surface temperature (LST) and surface 
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reflectance collection 6 products, which are publicly available on the USGS Land Processes 
Distributed Active Archive Center (LP DAAC). Approach was probabilistic in nature, trying to 
relate pre-fire satellite observations of vegetation conditions to the probability distributions 
of burned area, fire duration and rate of spread. 

Efforts initially focussed on assessing LST anomaly and its effect on fire behaviour 
characteristics. LST anomaly is a measure of excess enthalpy stored in fuels. It controls the 
probability of flames extinction and thus fire duration. First, a climatology of LST was 
constructed from the longest available time series of daily MODIS LST by means of the 
Harmonic Analysis of Time Series (HANTS) algorithm. HANTS was then used to construct 
annual models of daily LST. Finally, the daily LST anomaly was evaluated as the difference 
between the annual model and the climatology. Fires in the database were then associated 
with LST anomaly values recorded at their corresponding location on the day prior to the 
event. Probability distribution functions of log-transformed burned area (normal), log-
transformed fire duration (generalised extreme value, GEV) and log-transformed rate of 
spread (Weibull) where then determined in ten decile bins of LST anomaly. The mean and 
the standard deviation of the normal distribution of log-transformed burned area showed 
a clear linear dependence on LST anomaly (r2=0.81, p<0.001 and r2=0.52, p<0.05 
respectively), indicating an increase in the probability of large fires with increasing LST 
anomaly. Similarly, a marked linear dependence on LST anomaly was found for the location 
(r2=0.78, p<0.001), scale (r2=0.79, p<0.001) and shape (r2=0.87, p<0.001) of the GEV 
distribution of log-transformed fire duration, favouring longer fire duration with increasing 
LST anomaly. Conversely, the LST anomaly had a limited effect on the Weibull distribution 
of log-transformed rate of spread, with scale and shape showing slightly decreasing trends 
(r2=0.50, p<0.05 and r2=0.54, p<0.05 respectively). A likelihood ratio test showed that the 
probability models of log-transformed burned area, fire duration and rate of spread 
conditional to LST anomaly (alternative models) allowed the rejection of the corresponding 
unconditional models fitting all data (null models), confirming that LST anomaly is a 
covariate of burned area, fire duration and, to a lesser extent, rate of spread. These results 
are in line with expectations from models of the combustion process. 

Following a similar line of reasoning, this study further focussed on remote sensing of live 
fuel moisture content (LFMC). This vegetation property controls ignition delay, and thus 
affects flames propagation. The first step was the construction of a novel spectral index, 
the perpendicular moisture index (PMI), specifically designed to be sensitive to LFMC. The 
PMI was developed from simulated vegetation spectral data convolved to MODIS bands by 
noting that in the spectral reflectance subspace of MODIS bands 2 (0.86 µm) and 5 (1.24 
µm) isolines of LFMC can be identified, and that these isolines are straight and parallel. By 
taking as a reference the line corresponding to LFMC=0 (completely dry vegetation), the 
PMI was calculated as the distance of measured reflectance from the reference line. The 
PMI is thus a measure of LFMC, and higher values of PMI correspond to higher moisture 
content. The index was found to be linearly related to LFMC, especially for dense vegetation 
cover (r2=0.70 when leaf area index is larger than 2, r2=0.87 when larger than 4). When 
vegetation cover is less dense, the contribution of soil background to the measured 
reflectance increases, and the PMI underestimates LFMC. 



Summary 

xvii 

PMI maps were produced from the MODIS 8-day composited reflectance product, and fires 
in the database were associated with the corresponding PMI value at the fire location in 
the pre-fire compositing period. Using the same approach adopted for LST anomaly, the 
probability distribution functions of log-transformed burned area, fire duration and rate of 
spread were determined in ten decile bins of PMI. The mean of the normal distribution of 
log-transformed burned area showed a clear linear dependence on PMI (r2=0.80, p<0.001), 
while no trend could be observed for standard deviation. A clear linear dependence on PMI 
was also found for scale and shape of the Weibull distribution of log-transformed rate of 
spread (r2=0.97, p<0.001 and r2=0.82, p<0.001 respectively). These results were further 
confirmed by a likelihood ratio test where the probability models of log-transformed 
burned area and rate of spread conditional to PMI allowed the rejection of the 
corresponding unconditional models fitting all data. Location and shape of the GEV 
distribution of log-transformed fire duration showed no significant linear trend with PMI, 
whereas scale showed a weak trend (r2=0.55, p<0.05). However, in the likelihood ratio test 
the probability model of log-transformed fire duration conditional to PMI failed to reject 
the corresponding unconditional model. These results showed that PMI is a covariate of 
burned area and rate of spread, as expected from flames propagation models, but not of 
fire duration. 

Predictions of fire characteristics based on concurrent observations of LST anomaly and PMI 
were compared with predictions based on the Fire Weather Index (FWI) System. This fire 
danger rating tool proved to be effective in several areas worldwide, including Europe. FWI 
values from weather reanalysis data were associated with fires in the database and were 
analysed with the same approach adopted for LST anomaly and PMI. It was found that 
parameters of the probability distribution function of log-transformed burned area and fire 
duration conditional to FWI System components followed clear linear trends, with 
increasing danger values leading to higher probabilities of large burned areas and long fire 
durations. Conversely, FWI System components were unrelated to the rate of spread. Trend 
analysis (coefficient of determination and p-value of the linear fit, Sen’s slope and Mann-
Kendall test) and likelihood ratio tests were used to compare the trends in the parameters 
of the probability distributions of fire characteristics. It was shown that remote sensing 
predictions of burned area and fire duration were comparable or better than those from 
FWI, and that PMI is a good predictor of the rate of spread whereas FWI System 
components are not. 

The identified linear trends in the dependence of the parameters of the probability 
distribution of log-transformed burned area, fire duration and rate of spread on LST 
anomaly and on PMI allow the prediction of the probability of extreme events, conditional 
to ignition, as a function of pre-fire remote sensing observations. As both LST anomaly and 
PMI are good covariates of burned area, these two remote sensing observations of 
vegetation conditions can be used jointly to improve the prediction of the probability of 
fires larger than say, the 95th percentile of all events recorded in the study area (30 ha). It 
was found that the probability of a fire resulting in a burned area larger than 30 ha increases 
from 0.9% to 9.2% with pre-fire LST anomaly increasing from -2.1 to 4.3 K and increases 
from 1.8% to 7.4% with pre-fire PMI decreasing from 0.052 to -0.032. When the probability 
of fires exceeding 30.0 ha is modelled as a function of both LST anomaly and PMI, the 
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probability increases from 0.5% to 12.7%. This confirms that the joint use of LST anomaly 
and PMI leads to improved predictions. 

The scientific community showed a consensus on the need to improve fire danger 
prediction through a more accurate assessment of live fuel condition. Existing fire danger 
rating systems estimate fuel moisture content from meteorological variables, which results 
in an undesired approximated solution due to underlying assumptions. Consequently, any 
direct observation of fuel moisture content has the potential to enable a better evaluation 
of fire occurrence and fire danger indices. From a remote sensing perspective, these 
considerations are translated in the research question on the need to understand to what 
extent can satellite measurements be used to predict forest fire behaviour characteristics. 
This research showed that remote sensing of vegetation in the optical and thermal domains 
allows the prediction of the probability distributions of fire behaviour characteristics such 
as burned area, duration, and rate of spread. These can be further used to evaluate the 
probability of extreme events, conditional to ignition, as a function of pre-fire remote 
sensing measurements, contributing to predict danger. It should be noted once more that 
this result was achieved by using pre-fire remote sensing observations, allowing the 
prediction of fire characteristics. In perspective, results showed in this dissertation can 
support the development of operational tools for forest managers and civil protection 
agencies in their fire preparedness activities. 
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Samenvatting 
 

Bosbranden zijn verantwoordelijk voor wereldwijde verstoringen van het ecosysteem, 
leggen druk op instanties die burgers en infrastructuur beveiligen en veroorzaken veel 
menselijk leed en hoge kosten. De ontwikkeling van bosbranden wordt bepaald door 
meerdere statische en dynamische factoren zoals topografie, bodembedekking, klimaat, 
weer en menselijke activiteiten. Het weer is een actieve aanjager van de hoeveelheid vocht 
in levende en dode brandstof, wat een direct effect heeft op het begin en de ontwikkeling 
van een brand. In het bijzonder leiden meteorologische veranderingen, zoals het vaker 
optreden van langdurige droogte en hittegolven tot een verhoogde frequentie en 
intensiteit van bosbranden. 

Mogelijke acties van landelijke en lokale autoriteiten, bosbeheerders en andere instanties 
verantwoordelijk voor bosbrand beheersing, worden gebaseerd op de beoordeling van 
factoren die het optreden en het gedrag van branden karakteriseren. Vaak worden zulke 
factoren samengevat in brandgevaar kaarten. Gevaar wordt gedefinieerd als de uitkomst 
van alle factoren die van invloed zijn op het ontstaan, de verspreiding en de 
moeilijkheidsgraad van het beheersen van branden, en wordt doorgaans uitgedrukt in de 
vorm van een index. 

De belangrijkste factoren die bijdragen aan brandgevaar zijn het brandstoftype, de 
hoeveelheid en de omstandigheden, met name met betrekking tot de hoeveelheid vocht. 
Remote sensing-metingen in het kortgolvig-infrarood zijn gevoelig voor het watergehalte 
van levende brandstoffen, terwijl metingen in het thermische infrarood de detectie van 
vegetatiestress mogelijk maken. Verschillende wetenschappers hebben zelfs bewezen dat 
satellietschattingen van het watergehalte van de vegetatie en van de temperatuur van het 
landoppervlak effectief kunnen worden gebruikt om het optreden van brand te 
voorspellen. Desalniettemin is er, voor zover deze auteur weet, nog geen onderzoek 
gepubliceerd dat remote sensing-metingen van voor een brand koppelt aan het gedrag van 
een brand. Deze kennislacune wordt vertaald in de volgende onderzoeksvraag: in hoeverre 
kunnen satellietmetingen van de conditie van bossen gebruikt worden om brandgedrag te 
voorspellen en de waarschijnlijkheid van extreme gebeurtenissen te beoordelen? 

Het onderzoek in dit proefschrift is gericht op het ontwikkelen van methoden gebruik 
makend van optische en thermische satellietwaarnemingen van onverbrande bossen voor 
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de karakterisatie van brandgedrag. Het onderzoek werd uitgevoerd in Campania, Italië een 
van de dichtstbevolkte en meest door brand getroffen regio's rond de Middellandse Zee. 
Gegevens over alle geregistreerde branden tussen 2002 en 2011 zijn verstrekt door de 
Carabinieri (Italiaanse nationale politie) afdeling voor bosbranden (Nucleo Informativo 
Antincendio Boschivo, NIAB). De studie maakte gebruik van openbare satelliet producten 
bestaande uit MODIS-landoppervlaktetemperatuur (LST) en gecorrigeerde spectrale 
reflecties in 6 golflengtes. De aanpak is probabilistisch van aard en relateert 
satellietwaarnemingen van de vegetatieomstandigheden vóór de brand aan verschillende 
waarschijnlijkheidsverdelingen met betrekking tot het verbrande gebied, de brandduur en 
de verspreidingssnelheid van de brand 

Het onderzoek was aanvankelijk gericht op het beoordelen van LST-afwijkingen en de 
relatie met brandgedrag. LST-afwijking is een maat voor overtollige enthalpie opgeslagen 
in brandstof. Kort gezegd, bepaalt enthalpie in grote mate de kans op het doven van 
vlammen en dus de brandduur. Eerst werd het langdurig verloop van LST geconstrueerd uit 
de langst beschikbare tijdreeksen van dagelijkse MODIS LST door middel van het Harmonic 
Analysis of Time Series (HANTS) algoritme. HANTS werd vervolgens gebruikt om jaarlijkse 
modellen van dagelijkse LST te construeren. Ten slotte werd de dagelijkse LST-afwijking 
geëvalueerd als het verschil tussen het jaarmodel en de klimatologie. Branden in de 
database werden vervolgens gerelateerd aan LST-afwijkingswaarden geregistreerd op de 
dag voorafgaand aan de brand. Vervolgens werden kansverdelingsfuncties van log-
getransformeerd verbrand gebied (normaal), log-getransformeerde brandduur 
(gegeneraliseerde extreme waarde, GEV) en log-getransformeerde verspreidingssnelheid 
(Weibull) bepaald. Het gemiddelde en de standaardafwijking van de normale verdeling van 
het log-getransformeerde verbrande gebied vertoonde een duidelijke lineair verband met 
de LST-afwijking wat wijst op een toename van de kans op grote branden met toenemende 
LST-afwijking. Evenzo werd een duidelijke lineaire afhankelijkheid van de LST-anomalie 
gevonden voor locatie, schaal en vorm van de GEV-verdeling van log-getransformeerde 
brandduur, wat een langere brandduur suggereert met toenemende LST-afwijking. 
Omgekeerd had de LST-afwijking een beperkt effect op de Weibull-verdeling van de log-
getransformeerde spreidingssnelheid, waarbij schaal en vorm licht afnemende trends 
vertoonden. Een waarschijnlijkheidsverhoudingstest toonde aan dat de LST-afwijking een 
zogenaamde covariabele is van verbrand gebied, brandduur en, in mindere mate, 
verspreidingssnelheid. Deze resultaten zijn in lijn met wat verwacht kan worden op grond 
van modellen van het verbrandingsproces. 

Op een vergelijkbare manier is ook satellietdata van het vochtgehalte van levende 
brandstof (LFMC) bestudeerd. Deze vegetatie-eigenschap regelt de ontstekingsvertraging 
en beïnvloedt dus de verspreiding van vlammen. De eerste stap was de constructie van een 
nieuwe spectrale index, de zogenaamde verticale vochtindex (PMI), speciaal ontworpen om 
gevoelig te zijn voor LFMC. PMI is ontwikkeld door gesimuleerde spectrale 
vegetatiegegevens te relateren aan de respons in 2 spectrale MODIS-banden. Door als 
referentie de lijn te nemen die overeenkomt met LFMC=0 (volledig droge vegetatie), werd 
de PMI berekend als de afstand van de gemeten reflectie tot de referentielijn. De PMI is 
dus een maat voor LFMC, en hogere PMI-waarden komen overeen met een hoger 
vochtgehalte. De index bleek lineair gerelateerd te zijn aan LFMC, vooral in het geval van 
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dichte vegetatiebedekking. Wanneer de vegetatiebedekking minder dicht is, neemt de 
bijdrage van de bodem onder de vegetatie aan de gemeten reflectie toe en onderschat de 
PMI de LFMC. 

PMI-kaarten werden geproduceerd op basis van het MODIS 8-daagse samengestelde 
reflectieproduct. Vervolgens werden branden in de database geassocieerd met de 
overeenkomstige PMI-waarde op de brandlocatie in de periode vóór de brand. Met 
dezelfde benadering als voor LST-afwijkingen, werden de kansverdelingsfuncties van log-
getransformeerd verbrand gebied, brandduur en verspreidingssnelheid bepaald. Het 
gemiddelde van de normale verdeling van het log-getransformeerde verbrande gebied 
vertoonde een duidelijke lineaire afhankelijkheid van, terwijl er geen trend kon worden 
waargenomen voor de standaardafwijking. Er werd ook een duidelijke lineaire 
afhankelijkheid van PMI gevonden voor schaal en vorm van de Weibull-verdeling van de 
log-getransformeerde spreidingssnelheid. Deze resultaten werden verder bevestigd door 
een waarschijnlijkheidsratio-test. Locatie en vorm van de GEV-verdeling van log-
getransformeerde brandduur vertoonden geen significante lineaire trend met PMI, terwijl 
schaal een zwakke trend vertoonde. Deze resultaten toonden aan dat PMI een covariabele 
is van het verbrande gebied en de verspreidingssnelheid, zoals verwacht van 
vlamvoortplantingsmodellen, maar niet van brandduur. 

Voorspellingen van brandkenmerken op basis van gelijktijdige waarnemingen van LST-
afwijkingen en PMI werden vergeleken met voorspellingen op basis van het Fire Weather 
Index (FWI)-systeem. Deze applicatie voor het beoordelen van brandgevaar bleek effectief 
te zijn in verschillende gebieden wereldwijd, waaronder Europa. FWI-waarden uit gegevens 
uit de weeranalyse werden geassocieerd met branden in de database en werden 
geanalyseerd met dezelfde benadering die werd gebruikt voor LST-afwijkingen en PMI. Er 
werd gevonden dat parameters van de kansverdelingsfunctie van log-getransformeerd 
verbrand gebied en brandduur afhankelijk van FWI-componenten duidelijke lineaire trends 
volgden, waarbij toenemende gevaarwaarden effectief leidden tot hogere kansen op grote 
verbrande gebieden en lange brandduur. Omgekeerd waren de FWI-componenten niet 
gerelateerd aan de verspreidingssnelheid. Statistische trendanalyse werd gebruikt om de 
trends in de parameters van de kansverdelingen van brandkenmerken te vergelijken. Er 
werd aangetoond dat satelliet gebaseerde voorspellingen van verbrande oppervlakte en 
brandduur vergelijkbaar of beter waren dan die van FWI, en dat PMI een goede voorspeller 
is van de verspreidingssnelheid, terwijl FWI-componenten dat niet zijn. 

De geïdentificeerde lineaire afhankelijkheden maken het mogelijk om de kans op extreme 
brand-gerelateerde gebeurtenissen, te voorpellen als functie van satellietwaarnemingen. 
Aangezien zowel de LST-afwijking als de PMI goede covariaten zijn van het verbrande 
gebied, kunnen deze twee satellietwaarnemingen van de vegetatieomstandigheden samen 
worden gebruikt om de voorspelling van de kans op branden te verbeteren die groter zijn 
dan bijvoorbeeld het 95e percentiel van alle gebeurtenissen in een studiegebied. De 
resultaten laten zien dat de kans op een brand met een verbrand gebied groter dan 30 ha 
toeneemt van 0,9% tot 9,2% wanneer de LST-afwijking toeneemt van -2,1 tot 4,3 K terwijl 
die kans toeneemt van 1,8% tot 7,4% wanneer PMI daalt van 0,052 naar -0,032. Wanneer 
de LST-afwijking als de PMI samen worden gebruikt, neemt de kans op zo’n grote brand toe 



Samenvatting 

xxii 

van 0,5% naar 12,7%. Dit bevestigt dat het gezamenlijke gebruik van LST-afwijking en PMI 
tot betere voorspellingen leidt. 

Er is consensus over de noodzaak om de voorspelling van brandgevaar te verbeteren door 
een nauwkeurigere beoordeling van de toestand van levende brandstof. Bestaande 
classificatiesystemen voor brandgevaar schatten het brandstofvochtgehalte op basis van 
alleen meteorologische metingen, wat vaak resulteert in minder goede schattingen. Elke 
directe waarneming van het brandstofvochtgehalte kan een betere evaluatie mogelijk 
maken van het optreden van brand en van de brandgevaarindices. Daarom was het doel 
van de onderzoeksvraag om te begrijpen in hoeverre satellietmetingen kunnen worden 
gebruikt om kenmerken van bosbrandgedrag te voorspellen. Dit onderzoek toonde aan dat 
remote sensing van vegetatie in het optische en thermische domein 
brandgedragskenmerken zoals verbrand oppervlak, duur en verspreidingssnelheid kan 
voorspellen. Deze voorspellingen kunnen worden gebruikt om de waarschijnlijkheid van 
extreme gebeurtenissen te evalueren, afhankelijk van ontsteking, als een functie van 
remote sensing-metingen vooraf, wat effectief bijdraagt aan het voorspellen van gevaar. 
Hierbij moet nogmaals worden opgemerkt dat dit resultaat is bereikt door gebruik te maken 
van remote sensing-waarnemingen voordat een band plaats vindt, en dat daarmee 
brandkarakteristieken kunnen worden voorspeld. De resultaten in dit proefschrift kunnen 
daarom bijdragen aan het verbeteren van operationele instrumenten voor bosbeheerders 
en beschermingsinstanties bij hun dagelijks werk om kwetsbare gebieden en hun bewoners 
te beschermen. 
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1. Introduction 
 

1.1. Background 
Forest fires (Figure 1.1) are a major driver of ecosystem disturbance at global scale (Bond 
et al., 2005; Krebs et al., 2010; Pyne et al., 1996), affect the biogeochemical cycle (Thonicke 
et al., 2008), are a source of atmospheric emissions (Lehsten et al., 2009; Parker et al., 2016; 
van der Werf et al., 2010), alter the net carbon balance (Lasslop et al., 2019; Seidl et al., 
2014), disturb forest structure (Harvey et al., 2016), and cause long-term changes in soil 
properties (Bowd et al., 2019; Certini, 2005). Fires also condition anthropic activities as they 
threaten human lives (Viegas, 2009), have a negative effect on quality of life (FAO, 2007; 
Reisen et al., 2015), and cause substantial economic loss (Montagné-Huck and Brunette, 
2018; Pellegrini et al., 2018). Several habitats are characterised by recurring fires, with 
vegetation communities depending on fires to maintain biodiversity and productivity 
(Morgan et al., 2001; Parra and Moreno, 2017; Pugh et al., 2019). Globally, a decline in 
burned areas in savannas and grasslands has been observed, essentially driven by change 
in land use, although patterns in reduction vary substantially across different regions 
(Andela et al., 2017; Turco et al., 2016). Reversely, increasing trends in burned area have 
been reported in forest ecosystems (Abatzoglou et al., 2019; Andela et al., 2017; Liu et al., 
2010), and evidence supports the hypothesis that climate change may be altering fire 
dynamics (Anderegg et al., 2020; Lozano et al., 2010; Stevens-Rumann et al., 2018) through 
the direct and indirect effects that weather variability exerts on fuel moisture and 
availability (Pausas and Ribeiro, 2013; Seidl et al., 2017; Williams and Abatzoglou, 2016) and 
ultimately on spatial and temporal patterns of fire occurrence and on fire behaviour 
(Flannigan et al., 2016; Podschwit et al., 2018; Syphard et al., 2018). 

Fires are controlled by multiple static and dynamic drivers related to topography, land 
cover, climate, weather and anthropic activity (Lasslop and Kloster, 2017; Littell et al., 2016; 
Mhawej et al., 2015). Among these, weather is an active driver of live and dead fuel 
moisture (Trenberth et al., 2014; Ustin et al., 2009; Williams and Abatzoglou, 2016). Fuel 
moisture has in turn a direct effect on fire occurrence and behaviour, as the proportion of 
water in live and dead fuels controls ignition delay, probability of extinction and rate of 
spread (Chuvieco et al., 2009; Finney et al., 2013; Rothermel, 1972; Wilson, 1985). As a 
result, in areas experiencing prolonged droughts and heat waves, such as the 
Mediterranean basin, altered meteorological patterns create the preconditions for 
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increased frequency and intensity of forest fires (Gudmundsson et al., 2014; Lindner et al., 
2010).  

Society is faced with the need to manage forest fires with preparedness and response 
efforts aimed at increasing the security of citizens and properties, and at preserving the 
services and the natural development of the biomes being affected. Such efforts encompass 
mitigation, preparedness, response and recovery (Gunes and Kovel, 2000; Mohamed 
Shaluf, 2008; Oliveira et al., 2017), and are summarized in the fire management cycle 
(Figure 1.2). 

Mitigation refers to prevention activities aimed at the reduction of the probability of a fire 
to spread and of the damage caused by those fires that actually occur (Brenkert–Smith et 
al., 2006; Burns and Cheng, 2007; Fernandes, 2013; Gunes and Kovel, 2000; McFarlane et 
al., 2011). Preparedness encompasses all initiatives aimed at developing operational 
response capabilities in case of a fire, including exercises and training (Gunes and Kovel, 
2000; Minas et al., 2012; Mohamed Shaluf, 2008). It is informed by the assessment, among 
the others, of factors contributing to the spatial and temporal variability of fire risk, e.g. 
through maps of fuel type, amount and condition, weather, vulnerability and value of 
natural resources and anthropic assets (Oliveira et al., 2017; Thompson et al., 2015). 
Response is the ensemble of actions undertaken at the moment a fire breakout is identified, 
towards the containment of flames and the minimisation of damages (Gunes and Kovel, 
2000; North et al., 2015). It mainly involves the activation of resources for the suppression 
of fires and the securing of population and infrastructures (Calkin et al., 2015). Recovery 

Figure 1.1. Forest fire in Maiella National Park, Italy, 20th August 2017. Photo © 2017 by Salvatore 
Mancini, CC BY-SA 4.0. 
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refers to strategies and interventions aimed at the short term recovery and long term 
restoration of areas affected by fires (Gunes and Kovel, 2000). This goes through the 
assessment of damage, the restoration/reconstruction of infrastructures and the forest 
management practices aimed at facilitating the return of forest functions to normality 
(Shive et al., 2013). Damage assessment is typically enabled by the production of maps of 
burnt scars, damage severity, soil erosion susceptibility and post-fire vegetation recovery 
(Hurteau and North, 2010; Oliveira et al., 2017; Parson et al., 2010). 

Each phase of the fire management cycle involves a different ensemble of stakeholders, 
each bearing its own set of responsibilities, interests, and ultimately needs. This is reflected 
in the requirements of support tools and services, which show a significant diversity even 
for the same type of information. Fuel condition, for example, is relevant to fire managers 
in the preparedness stage for the advance deployment of resources (Mhawej et al., 2015; 
Miller and Ager, 2013), to fire suppression teams in the response phase to run flames 
propagation models and decide attack strategies (Ager et al., 2011; Papadopoulos and 
Pavlidou, 2011), and to forest managers in the mitigation phase to sectorize forests by clear-
cutting to limit fire spread (Fernandes, 2015; Fernandes and Botelho, 2003). Information on 
fuel condition would be needed at two diverse spatial and temporal scales: for 
preparedness purposes, fortnightly or weekly regional scale assessments are sufficient, 
while the application of flames propagation models and the planning of fire breaks would 
need to rely on the most recent local scale information (Carlson and Burgan, 2003). 

The Remote Sensing scientific community has long been working on the development of 
assessment methods relevant to all phases of the fire management cycle (Chuvieco, 2009, 
2003; Chuvieco et al., 2016; Leblon, 2005; Leblon et al., 2016; Tansey et al., 2004), thus 
serving the needs of diverse stakeholders. With regards to preparedness, forest managers 
and civil protection agencies work with concepts like fire hazard, danger, and risk. Hazard 

Figure 1.2. The forest fire management cycle includes prevention and response. 
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refers to fuel available for burning, i.e. fuel type, amount, and condition. Risk is a measure 
of the probability of a fire to ignite and spread. Danger is a measure of the difficulty to 
control fires, and thus refers to fire occurrence and behaviour (FAO, 1986). Personal 
conversations with managers of Carabinieri (Italian national gendarmerie) Forest Fire 
Protection Information Unit (Nucleo Informativo Antincendio Boschivo, NIAB, previously a 
separate entity as Corpo Forestale dello Stato, National Forestry Corps), the Italian Civil 
Protection Department (Dipartimento della Protezione Civile), and the Entente Valabre (the 
coordinating organisation of several South France and Corsica departments and 
departmental fire services) highlighted a clear need for improved fire prevention support 
services allowing the prediction of fire occurrence and fire behaviour, or more specifically 
the prediction of emergency conditions (Mazzetti et al., 2009). 

Several fire danger rating systems exist worldwide, evaluating in a combined manner 
biophysical and environmental factors that control fire occurrence and behaviour by 
applying time-dependent indices, often represented as maps, to support the decision-
making process (Allgöwer et al., 2003; Sirca et al., 2018). Among these factors fuel 
condition, and specifically its moisture content, can be assessed by means of satellite Earth 
Observation (Ma et al., 2019; Yebra et al., 2013). Operationally, the prediction of emergency 
conditions is translated into the prediction of the probability of either exceptional fire 
occurrence or extreme fire events (Finney, 2005; Flannigan et al., 2016; Podschwit et al., 
2018; Syphard et al., 2018). In fact, several studies showed how optical and thermal remote 
sensing of forests can be used to predict fire occurrence (Abdollahi et al., 2018; Bajocco et 
al., 2015; Dasgupta et al., 2006). However, fire danger also refers to fire behaviour (Ruffault 
et al., 2018) and, to the best of author’s knowledge, no prior research was published that 
uses remote sensing measurements to predict fire behaviour characteristics. In broader 
terms, it is not yet known to what extent remote sensing of forest condition may be used 
to predict fire behaviour characteristics and to assess the probability of extreme events. 

To further specify this knowledge gap and identify clear and concise research questions, 
these considerations will be further developed in the following sections. First, relevant fire 
management terminology will be detailed, discussing the most used definitions of fire 
hazard, danger, and risk. Further, the biophysical observables determining fire danger will 
be highlighted, and it will be clarified how fuel moisture content controls fire occurrence 
and fire behaviour. The most widely used fire danger rating systems will be introduced, 
noting how they ingest meteorological inputs to evaluate moisture content of live and dead 
fuels and ultimately predict fire behaviour. A review of methods based on remote sensing 
for the estimation of live and dead fuel moisture content will be proposed, and these will 
be compared to corresponding methods based on meteorological inputs. This review will 
finally lead to the identification of the specific research questions that are the subject of 
this study. 

 

1.2. Fire management terminology 
In common language, the words risk, danger and hazard refer to the chance of negative 
events, the amount of loss deriving from an unexpected event, or to objects or situations 
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that might be harmful. In technical communities more objective definitions have been 
adopted that do not consider the negative perception of the event and relate to specific 
observable quantities. Nevertheless, definitions may vary across different communities, 
and even within the same technical group. This is notably the case in the wildfire 
management community, where some governmental and non-governmental agencies set 
out glossaries that are often not consistent with each other (Hardy, 2005; Miller and Ager, 
2013). To ensure a consistent language in this study and to clarify terms, the following 
paragraphs focus on the definitions of fire hazard, danger, and risk, while the next section 
highlights the key observable properties needed to characterise them. 

 

1.2.1. Fire hazard and fire danger 

The terms danger and hazard are prone to misinterpretation due to both the semantic 
meaning of these two words and the fact that in many languages these are translated with 
the same expression (for example in Italian, German and Portuguese). FAO reports two 
definitions of fire hazard, differentiated by geographical area (FAO, 1986). 

“North America: A fuel complex, defined by volume, type, condition, 
arrangement, and location, that determines the degree both of ease 

of ignition and of fire suppression difficulty”. 

“Non-U.S. English speaking world: A measure of that part of the fire 
danger contributed by fuels available for burning, worked out from 

their relative amount, type, and condition, particularly their moisture 
content”. 

Both highlight hazard as a precondition to fire, essentially determined by fuel presence and 
its condition. The non-U.S. English speaking world definition is more operational, as it 
clearly identifies hazard as a measurable component of fire danger and explains how it is 
evaluated, highlighting the specific role of moisture content. Fuels available for burning are 
further defined as (FAO, 1986): 

“The portion of the total fuel that would actually burn under various 
specified conditions”. 

The amount of fuel available for combustion is a proportion of all fuels in a given area, and 
it is determined by their moisture content. Fuels with high moisture content are difficult to 
ignite, inefficient in sustaining combustion, and slow in propagating flames. This clearly 
implies that fire hazard is fully quantified as long as fuel amount and type are mapped 
together with its moisture content. The latter is measured as a percentage of the oven dry 
fuel mass. Depending on specific conditions, dead fuels moisture content (DFMC) may 
range from a few percent to 300%, while live fuels moisture content (LFMC) may range from 
50% to more than 1000% (Pyne et al., 1996). 

FAO defines fire danger as (FAO, 1986): 
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“The resultant, often expressed as an index, of both constant and 
variable factors affecting the inception, spread, and difficulty of 

control of fires and the damage they cause”. 

There is clearly a level of subjectivity in defining the difficulty of control, and indeed the 
concept of danger is semantically related to a human perception (Bachmann and Allgöwer, 
2000). Nevertheless, this definition clarifies that fire danger is the resultant of several 
factors affecting fire behaviour, as opposed to fire hazard which only relates to fuel 
condition (Allgöwer et al., 2003). With an example limited to winds (a variable factor) and 
topography (a constant factor), danger in an area characterised by steep slopes in a windy 
day would be considered higher than in a flat area with no winds with the same level of 
hazard, as winds facilitate flames propagation while topographic constraints might limit 
ease of access by suppression crews. 

The FAO definition of danger includes a reference to fire damage, which is defined as (FAO, 
1986): 

“The detrimental effects of fires expressed in monetary or other 
units, including the unfavourable effects of fire-caused changes in the 

resource base on the attainment of organisational goals”. 

This definition suggests that several different measures of fire damage might be used. In 
fact, approaches to the evaluation of fire impact may vary significantly across different 
stakeholders. Nevertheless, from a preparedness point of view, focus is not on the 
evaluation of fire damage, but only on the prediction of fire occurrence and behaviour. This 
is widely reflected in the indices being produced by fire danger monitoring tools available 
to fire managers (Allgöwer et al., 2003; Sirca et al., 2018). 

 

1.2.2. Fire risk 

FAO introduced two definitions of fire risk (FAO, 1986): 

“The chance of fire starting, as affected by the nature and incidence 
of causative agencies; an element of the fire danger in any area”. 

“Any causative agency”. 

The latter definition refers to any possible ignition source of a fire (unintentional or 
intentional human action, or a natural event such as lightning). More relevant to this study 
is the first definition, essentially describing risk as a probability, whose value is dependent 
on the nature and the incidence of ignition sources. From an operational point of view, the 
risk would then be defined as the probability of a fire to spread in a specific location 
(expressed e.g. per square kilometre) within a specific period of time (e.g. in a week). 

The quantification of fire risk requires the evaluation of all possible ignition causes, taking 
into consideration their variation with space and time, along with the probability of ignition. 
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Indeed, for a fire to occur, the presence of a heat source is not sufficient, as fuels available 
for burning must be present. Fire risk is thus quantified as: 

𝑅 = 𝑃!"#!$!%# ∙ 𝑃&'()%#*!$!%# (1. 1) 

where Pignition is the probability of any fire cause to materialize, while Pprecondition is the 
probability that the fuel allows the ignition of a fire. This clearly implies that hazard is an 
inherent component of fire risk (Allgöwer et al., 2003). 

The most widespread natural heat source allowing the ignition of fires is lightning 
(Ganteaume et al., 2013; Latham and Williams, 2001). Its probability of occurrence is 
normally evaluated as an element of weather forecasts. The quantification of the anthropic 
component of fire risk requires an understanding of the way in which human activities are 
related to fire occurrence. Elements like road network and traffic circulation patterns, 
presence of settlements and production facilities, recreational activities and several others 
need to be mapped along with their seasonality, and their contribution to probability of 
ignition needs to be identified (Bachmann and Allgöwer, 2000). 

From a risk management perspective, the FAO definition of fire risk is not exhaustive, as it 
does not consider the exposure to loss, and thus the potential damage that a fire might 
produce. FAO considers potential damage as a component of fire danger instead but, as 
discussed, this use of the terminology is not reflected in the fire management community 
(Bachmann and Allgöwer, 2000). In this context, risk is better defined as the probability of 
a wildfire to occur at a specific location and under given circumstances, and its expected 
outcome as defined by the impact on the affected objects (Allgöwer et al., 2003). 
Quantitatively, this is expressed as: 

𝑅 = 𝑃!"#!$!%# ∙ 𝑃&'()%#*!$!%# ∙ 𝑉 (1. 2) 

where V is a measure for the expected loss due to the fire. A comprehensive approach for 
the evaluation of the potential damage deriving from a fire requires the analysis of the 
structure underlying risk and the integrated quantification of wildfire effects, behaviour and 
occurrence (Bachmann and Allgöwer, 2000). 

 

1.2.3. Fire terminology in the context of this study 

The rest of this thesis will make wide reference to the terms fire hazard and fire danger. 
The proposed summary of how these terms are defined in literature highlighted 
contradicting definitions across and within technical communities. To avoid confusion, it is 
worth clarifying the nomenclature adopted throughout this dissertation. 

The term fire hazard will be used to refer to fuel type, amount, and condition. Remote 
sensing observations of land surface temperature and of fuel moisture content are treated 
as being related to fire hazard when they refer to fuel condition with no reference to fire 
occurrence or behaviour. In this sense, fire hazard is a measure of the preconditions needed 
for a fire to start and spread. 
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The term fire danger will be used to refer to the resultant of all factors affecting the 
inception, spread, and difficulty of control of fires. Remote sensing observations of land 
surface temperature and of fuel moisture content will be considered contributors to fire 
danger when they are analysed along actual forest fire data to identify relationships with 
fire occurrence and fire behaviour characteristics. 

 

1.3. Biophysical observables related to forest fire danger 
Forest fires occur when all three fire fundamentals are present: fuel, heat and oxygen 
(Figure 1.3) (Pyne et al., 1996). Fuels are conveniently classified in live and dead, the former 
essentially being vegetation, and the latter composed by the organic elements of forest 
litter such as dry leaves, small twigs and compacted organic material in the topsoil. The 
combustion process starts off with the pre-ignition, when a heat source inducts the 
endothermic reaction leading to dehydration and pyrolysis, with release of volatiles. 
Through dehydration, fuel temperature of ignition lowers. If the presence of the heat 
source persists to the point when fuel temperature reaches the temperature of ignition, 
transition to combustion occurs. At this stage, volatiles produced during preignition form a 
visible flame. Extinction occurs when one of the fire fundamentals is removed. 

Granted the presence of fuels, both live and dead, and oxygen, time to ignition in the 
presence of a heat source substantially depends on the moisture content of fuels, otherwise 
referred to as fuel condition or state, which in turns determines the fuel available for 
burning. As the occurrence and duration of heat sources are stochastic processes 
determined by natural or anthropic activities, either unintentional or not, fuel moisture 

Figure 1.3. Fire fundamentals triangle. Forest fires only occur when all these three fundamentals are 
present. 
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content controls the probability of ignition, and thus fire occurrence (Finney, 2005; Finney 
et al., 2011; Hardy, 2005). 

Fire behaviour is the resultant of the environment in which the fire is burning (Rothermel, 
1972), and it is controlled by three elements (fire environment triangle): fuel, topography 
and weather (Figure 1.4) (Pyne et al., 1996). The presence of fuel, both live and dead, is 
widely determined by land use/land cover. Its spatial distribution, amount and condition 
directly affect combustion properties and flame propagation. Topography determines fire 
behaviour directly through the effect of slope steepness on flame length and rate of spread. 
Indeed, upslope fuels are exposed to more radiation from flames than downslope fuels, 
resulting in a quicker propagation in their direction. Topography also affects fire behaviour 
indirectly. Elevation controls fuel distribution and condition through the influence it exerts 
on fuel availability, rainfall patterns, temperature, relative humidity, green-up, and curing 
dates. Aspect determines the irradiance, the latter being higher on south and southwest 
facing slopes in the northern hemisphere (north and northwest facing slopes in the 
southern hemisphere), this resulting in lower relative humidity and higher air temperature. 
Finally, topography has a direct influence on the local wind field. Weather determines fire 
behaviour directly through the action of winds. These increase contact between flames and 
fuels and facilitate transport of heat through convection, creating the conditions for a 
quicker spread in the wind direction. Weather variability also affects fire behaviour 
indirectly, through the effect it has on fuel moisture. Temperature, relative humidity, 
rainfall and winds control the evaporation process of dead fuels, determining the variability 
of their moisture content (Aguado et al., 2007; Liu, 2017; Viney, 1991). The same 
meteorological variables affect, through their contribution to transpiration, the moisture 
content of live fuels (Arnold et al., 1998; Douglass, 1967; Swift et al., 1975). Fuel moisture 

Figure 1.4. Fire environment triangle. The three elements of the triangle drive fire behaviour, and thus 
control fire danger. 
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content then ultimately controls fire behaviour, as it can inhibit or promote the propagation 
of flames (Jolly, 2007; Rossa et al., 2016; Rossa and Fernandes, 2017; Ustin et al., 2009). 

Optical, thermal and microwave remote sensing can play a key role in mapping factors 
contributing to fire occurrence and behaviour, and thus to the quantification of fire danger. 
Researchers worldwide have developed approaches for mapping land cover (Wulder et al., 
2018), fuel amount (Lu et al., 2016), fuel condition (Ma et al., 2019; Yebra et al., 2013), and 
topography (van Zyl, 2001). A literature review of how this potential has been translated 
into the assessment of fire danger is proposed in §1.5. However, next section will first 
explore what tools are currently available to forest manager to predict fire danger. This will 
help contextualise the role of remote sensing in fire danger mapping and identify 
knowledge gaps. 

 

1.4. Fire danger rating systems 
Fire occurrence and behaviour are both controlled by fuel moisture content, which in turn 
is the result of fuel interaction with the environment, i.e. weather and topography 
(Andrews, 2007; Finney, 1998; Rothermel, 1991, 1972; Van Wagner, 1987; Yebra et al., 
2013). Theoretically, all factors contributing to the evolution of moisture content over time 
should be quantified, and all processes should be accurately modelled, to predict fire 
danger. In practice, fire danger modelling tools developed so far rely on simplified 
assumptions on the involved biophysical processes, to evaluate fuel moisture content and 
represent fire danger against a conventional scale. Weather is the most variable factor 
driving live and dead fuels moisture content, and all fire danger indices developed so far 
share their common dependence on meteorological inputs. The three most cited danger 
rating systems are discussed in the following subsections. 

 

1.4.1. The McArthur Forest Fire Danger Index (FFDI) 

The McArthur Forest Fire Danger Index (FFDI) is a measure of forest fire danger developed 
by the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and used by 
Australian fire authorities (Dowdy et al., 2009; McArthur, 1967). It was initially developed 
on an experimental basis and conceived as a card meter operated by hand to provide a 
forecast of expected fire occurrence and behaviour as expressed by a single indicator. Use 
of the card required an evaluation of air temperature, rainfall, relative humidity, wind speed 
and days since last rain. The meters were later translated into equations to allow numerical 
computation (Griffiths, 1999; McArthur, 1967; Noble et al., 1980). 

FFDI is partially based on the Keetch-Byram drought index (KBDI), a measure of drought 
conditions (Keetch and Byram, 1968). KBDI was developed through the modelling of the 
evaporation process for the evaluation of water deficit in deep duff and upper soil layers. 
As such, it is also a model of the moisture content of the largest size classes of dead fuels.  
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1.4.2. The National Fire Danger Rating System (NFDRS) of the United States 

The National Fire Danger Rating System (NFDRS) used in the United States is a collection of 
fuel condition and fire behaviour indices computed from weather station measurements, 
fuel models, climate class and slope (Burgan, 1988; Deeming et al., 1977). The system was 
conceived to support the planning of staffing level for the potential response to the fire 
behaviour that could be expected in case of a fire breakout (Bradshaw et al., 1984; Walding 
et al., 2018). NFDRS indices are further integrated with maps of vegetation relative 
greenness derived from time series of remote sensing data to produce the Fire Potential 
Index (FPI), a predictor of fire occurrence (Chowdhury and Hassan, 2015a; Preisler et al., 
2009). 

From an operational point of view, the NFDRS ingests daily observations of temperature, 
relative humidity, precipitation, and wind speed from automated weather stations, 
optionally the moisture content of a standardised fuel stick (measured from its weight), and 
information on slope, latitude, climate class and fuel model to compute the KBDI and the 
moisture content of four classes of dead fuels and two classes of live fuels (woody and 
herbaceous). In this computation, previous values of the moisture content of the two 
classes of largest dead fuels are carried over from the previous day. Input parameters and 
computed moisture values are further processed to produce four output indices 
(Schlobohm and Brain, 2002). The Spread Component (SC), computed from fuel model, 
slope, wind speed and dead fuel moisture content, is an estimate of the rate of spread of 
the frontline of a fire. The Ignition Component (IC) is the probability of a fire to spread, thus 
requiring suppression action. It is essentially computed from the moisture content of fine 
fuels and from SC. The Energy Release Component (ERC), an estimate of the energy release 
of the flaming zone of a fire, is contributed from the modelled moisture content of both live 
and dead fuels. The Burning Index (BI), computed from IC and ERC, is a measure of difficulty 
of control of a fire due to its expected behaviour. 

 

1.4.3. The Fire Weather Index (FWI) System 

The Fire Weather Index (FWI) System is a collection of six indicators, computed from daily 
readings of temperature, relative humidity, wind speed, and 24-hour cumulated 
precipitation to represent the effect of moisture content of three classes of forest fuel and 
of wind speed on fire behaviour in a standardised fuel type and in no slope conditions (Van 
Wagner, 1987). Their evaluation is progressive, in the sense that their current values do not 
only depend on current day values of the named meteorological variables, but also on the 
previous day value of the same indicators, so that their temporal evolution is characterised 
by a time lag with respect to meteorological events. The FWI System was initially developed 
to provide a fire danger rating in Canada. Nevertheless, it proved to be a robust mean to 
effectively map fire danger in several other areas worldwide, including Europe (de Groot 
and Flannigan, 2014; Dowdy et al., 2009; San-Miguel-Ayanz et al., 2012; Taylor and 
Alexander, 2006). 

In detail, the FWI System is composed of three moisture codes and three fire behaviour 
indices (Figure 1.5). The Fine Fuel Moisture Code (FFMC) is computed from precipitation, 
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relative humidity, wind speed and air temperature to represent a measure of moisture 
content of litter and dead fine fuels. The Duff Moisture Code (DMC) is computed from 
precipitation, relative humidity, and air temperature. It is related to the moisture content 
of loosely compacted, decomposing organic matter. The Drought Code (DC) represents 
water content of deeper layers of compact organic matter and heavy surface dead fuels 
and is computed from precipitation and air temperature only. The Initial Spread Index (ISI) 
is computed from FFMC and wind speed to provide a measure of the rate of spread, 
independently of the amount of fuel. The Build-Up Index (BUI) is a combination of DMC and 
DC representing the fuel available for combustion. The Fire Weather Index (FWI) combines 
ISI and BUI to provide a measure of the intensity of a spreading fire, i.e. the energy output 
rate per unit length of fire front. 

These indicators develop over different ranges of values, and danger thresholds are usually 
identified locally based on fire history (Van Wagner, 1987). Each component of the FWI 
System carries a different layer of information on fire danger. FFMC provides a measure of 
ease of fire inception and flammability of the top fuel layer, where initial ignition usually 
occurs. DMC and DC are rather related to fuel consumption of medium and large sized 
woody material. ISI is generally related to burned area, as it combines fine fuel moisture 
content and wind speed, both relevant to this fire characteristic. BUI is a good predictor of 

Figure 1.5. Schematic representation of the Fire Weather Index (FWI) System, that provides three 
moisture codes and three fire behaviour indices. 
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fire behaviour and fuel consumption. FWI, as a synthesis of the other five indices, is 
generally related to several descriptors of fire behaviour. 

 

1.5. Contribution of remote sensing to fire danger mapping 
At the core of all three fire danger rating systems above and of fire danger rating systems 
in general is the modelling of fuel moisture content from meteorological measurements. 
Fuel moisture content is then used to compute one or more danger indices that serve as 
descriptors of fire occurrence and behaviour. The level of sub-classification of fuels varies 
widely across models, with the examples previously discussed ranging from the single 
indicator provided by the FFDI to the four classes of dead fuels and two classes of live fuels 
of the NFDRS. Apart from the NFDRS, which optionally uses the hand-measured weight of 
a standardised fuel stick to measure moisture content of the 10-hour time lag dead fuel 
class, no direct evaluation of moisture content is used. This is common also to other fire 
danger models not discussed here (Chuvieco, 2003). 

Modelling fuel moisture content from meteorological variables results in a degree of 
approximation, as opposed to direct measurement, due to the simplifying assumptions this 
implies (Ruffault et al., 2018; Schunk et al., 2017). In fact, evaluations are computed either 
from point weather measurements, e.g. automated weather stations, and as such are only 
valid in a limited area around the point of data collection (Schlobohm and Brain, 2002; 
Walding et al., 2018), or from coarse resolution weather maps (~10 km resolution). This 
leads to a scale of representation that might or might not be suitable for management 
purposes depending on the extent of the area being monitored by the local firefighting 
services (San-Miguel-Ayanz et al., 2012). As a consequence, any direct observation of fuel 
moisture content has the potential to enable a better evaluation of fire occurrence and fire 
behaviour danger indices (Jolly, 2007; Rossa and Fernandes, 2017; Ruffault et al., 2018). As 
field measurements are not a viable option, this outlines a clear opportunity for Earth 
Observation technologies, as they provide repeated and frequent observations of land 
surface conditions and processes (Allgöwer et al., 2003; Ma et al., 2019; Yebra et al., 2013). 

 

1.5.1. Meteorological vs remote sensing estimation of DFMC 

The estimation of DFMC from meteorological measurements is broadly supported by 
literature. Reviews of empirical and process based models, including those adopted in the 
fire danger rating systems discussed in §1.4, confirm that a certain degree of accuracy can 
be achieved, especially for fine fuels (Matthews, 2014; Viney, 1991). The research focus on 
fine fuels is explained by their prominent role, as compared to classes of larger dead fuels, 
in determining ignition probability and flames propagation (Pyne et al., 1996; Schunk et al., 
2014). Indeed, the FFMC of the FWI System and its adaptations proved to be good 
predictors of the moisture content of fine fuels and dead grass in diverse conditions 
(Aguado et al., 2007; Bianchi and Defossé, 2014; Slijepcevic et al., 2015), albeit its poor 
capacity to predict rapid moisture content variations is acknowledged (Anderson and 
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Anderson, 2009). Similar observations are reported for the 10-hour time lag dead fuel class 
of the NFDRS (Aguado et al., 2007; Carlson et al., 2007; Nelson, 2000). 

Dead fuels are often covered by the overlaying canopy, and their direct observation with 
optical and thermal remote sensing instruments may be unfeasible. This led to the 
development of indirect estimation methods based either on empirical approaches or on 
process-based methods using satellite-derived proxies. Empirical methods rely on 
regression or on artificial neural networks to separate canopy and background components 
in optical satellite measurements and assess moisture content of litter (Adab et al., 2016; 
Yang et al., 2018) or the value of the corresponding weather-based dead fuel moisture 
indices (Merzouki and Leblon, 2011). These methods lack generality, as derived models are 
site-specific. Process based approaches model vapour pressure deficit and equilibrium 
moisture content from satellite estimates of air temperature and relative humidity (Nieto 
et al., 2010; Nolan et al., 2016b). However, results tend to be biased (Nieto et al., 2010), 
especially in areas with low vegetation density (Nolan et al., 2016b). 

Opportunities for the direct estimation of DFMC are allowed by the proven sensitivity of 
radar backscatter to litter moisture (Bourgeau-Chavez et al., 2007; Leblon et al., 2016). As 
opposed to optical and thermal sensors, radar sensors penetrate cloud cover and have the 
advantage of acquiring surface information in any weather condition. Experiments 
demonstrated that seasonal trends of radar backscatter in forests are correlated with DMC, 
DC, BUI and FWI of the Fire Weather Index System (Abbott et al., 2007; Leblon et al., 2002), 
which in turn are related to DFMC. However, other factors affect radar backscatter, 
including forest structure, biomass and vegetation water content (Leblon et al., 2016). 
Retrievals of soil moisture from passive microwave sensors were found to be linearly 
related to vegetation moisture spectral indices (Hunt et al., 2011). 

 

1.5.2. Meteorological vs remote sensing estimation of LFMC 

Estimation of the moisture content of live fuels from meteorological observations can be 
based on the modelling of the evapotranspiration process, as is the is the case for the two 
live fuel moisture codes of the NFDRS (Burgan, 1988; Deeming et al., 1977). More often, 
empirical correlations have been reported, linking meteorological drought indices, such as 
the KBDI and the FWI System moisture codes DMC and DC, to the moisture content of 
vegetation, at least for species most sensitive to meteorological conditions 
(Dimitrakopoulos and Bemmerzouk, 2003; Ganatsas et al., 2011; Pellizzaro et al., 2007a; 
Viegas et al., 2001). However, results are ambiguous and lack general applicability, as any 
link between LFMC and weather forcing is dependent on site-specific weather patterns and 
on structural and physiological characteristics of plants, which are species-specific (Jolly and 
Johnson, 2018; Nolan et al., 2018; Pellizzaro et al., 2007b; Ruffault et al., 2018). In fact, it 
was acknowledged that meteorological estimation of LFMC does not perform as well as 
with DFMC, and thus this parameter is not adequately represented by fire danger models 
(Ruffault et al., 2018), although it is essential in predicting fire behaviour (Jolly, 2007; Rossa 
et al., 2016; Rossa and Fernandes, 2017; Ustin et al., 2009). 
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As opposed to DFMC, there is a wide literature demonstrating remote sensing applications 
for either the direct or the indirect estimation of water amount in live fuels (Ma et al., 2019; 
Veraverbeke et al., 2018; Yebra et al., 2013; Yool, 2009). This is supported by biophysical 
processes determining the radiometric properties of leaves as a function of water content 
and water stress conditions (Leblon, 2005; Stow et al., 2006; Yebra et al., 2018, 2013). 
Indeed, leaves and small twigs are the parts of living plants that most contribute to fire 
behaviour of woody vegetation (Piñol et al., 1998; Viegas et al., 2001), and their moisture 
content are closely correlated (Castro et al., 2003; Piñol et al., 1998; Saura-Mas and Lloret, 
2007; Viegas et al., 2001). 

The evaluation of vegetation moisture from remote sensing measurements in the optical 
domain relies on detailed studies of the optical properties of leaves (Gates et al., 1965; 
Gausman and Allen, 1973; Tucker, 1980; Woolley, 1971). The concept of equivalent water 
thickness (EWT) was introduced in these studies, denoting the mass of water in leaf tissues 
per unit leaf area: 

𝐸𝑊𝑇 =
𝑀+ −𝑀*

𝐴
(1. 3) 

where Mf is the mass of the fresh leaf as measured in the field, Md is the corresponding 
mass of the same leaf that has been oven dried, and A is leaf area. The name of this measure 
of leaf water originates from the observation that in the shortwave infrared (SWIR) range 
of the electromagnetic spectrum (1.1-2.5 μm) the absorption of solar radiation from a 
compact leaf can be approximated by the absorption of an equivalent layer of water 
(Gausman and Allen, 1973). EWT is scaled to canopy level by simple multiplication by leaf 
area index (LAI) (Ceccato et al., 2002a): 

𝐸𝑊𝑇) = 𝐸𝑊𝑇 ∙ 𝐿𝐴𝐼 (1. 4) 

EWTc is thus the total amount of water in the canopy per unit ground area. Having a direct 
effect on the optical properties of vegetation, EWT is a parameter of leaf radiative transfer 
models such as PROSPECT (Feret et al., 2008; Jacquemoud and Baret, 1990), justifying its 
popularity in the remote sensing scientific community. However, this measure of water 
content differs substantially from LFMC, the latter being a measure of percentage water 
relative to the mass of leaf dry matter: 

𝐿𝐹𝑀𝐶 =
𝑀+ −𝑀*

𝑀*
∙ 100 (1. 5) 

Being a measure of water relative to dry mass, LFMC is not scaled to canopy level through 
LAI. Clearly, a single LFMC value can correspond to various EWT values, depending on leaf 
dry mass. 

The demonstrated sensitivity of leaf spectral signature to leaf structure and to dry matter 
content (DMC, Mf per leaf unit area) in the near infrared (NIR, 0.7-1.1 μm), and to leaf 
structure, EWT and DMC in the SWIR (Ceccato et al., 2001; Seelig et al., 2008) led to the 
development of several broadband spectral indices that used NIR reflectance as a 
normalising factor against leaf structure and DMC towards the estimation of EWT (Ceccato 
et al., 2002a; Gao, 1996; Hardisky et al., 1983; Hunt and Rock, 1989). It should be observed 
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that, when computed from satellite remote sensing measurements, spectral indices of 
vegetation moisture are actually sensitive to EWTc, and thus they are inherently responsive 
to LAI (Colombo et al., 2008; Dasgupta and Qu, 2009). The sensitivity to LAI is indeed a 
general characteristic of spectral indices based on SWIR wavelengths (Bowyer and Danson, 
2004; Dawson et al., 1999; Wang et al., 2008; Zarco-Tejada et al., 2003). 

Spectral indices for the estimation of EWT generally do not achieve the same accuracy in 
estimating LFMC (Caccamo et al., 2012; Carlson and Burgan, 2003; Danson and Bowyer, 
2004; Davidson et al., 2006; Maki et al., 2004; Yilmaz et al., 2008), although some exceptions 
are reported in literature, depending on species-specific conditions (Sow et al., 2013; 
Verbesselt et al., 2007, 2002). Indeed, LFMC does not cause spectral features in vegetation 
reflectance as is with EWT (Gao and Goetz, 1990; Peñuelas et al., 1993). This led to the 
development of alternative strategies based on the inversion of radiative transfer models 
exploiting the independent effect of EWT and DMC on vegetation reflectance (Jacquemoud 
et al., 2000; Zarco-Tejada et al., 2003) to retrieve them separately and compute LFMC 
directly. The applicability of this method is limited in scale and resolution by the fact that it 
relies on retrieval strategies where DMC values are constrained by prior knowledge of 
observed vegetation species (Quan et al., 2016, 2015; Riaño et al., 2005; Yebra et al., 2018; 
Yebra and Chuvieco, 2009a, 2009b). Approaches not based on prior information of the 
observed surface exploited the high dimensionality of hyperspectral measurements to 
retrieve LFMC with partial least squares regression (Li et al., 2007) and with wavelet analysis 
(Cheng et al., 2011). A computationally simpler approach is the Water Index (Peñuelas et 
al., 1997, 1993). It was proved to be generally more effective than broadband indices in 
retrieving LFMC (Danson and Bowyer, 2004), but its operational use is unfeasible as 
operational hyperspectral optical sensors providing global frequent revisits are currently 
not available. 

In ecosystems where prolonged droughts and heat waves are the preconditions for 
increases in frequency and intensity of forest fires, an indirect approach may be adopted to 
evaluate LFMC from remote sensing observations in the thermal infrared (TIR) domain. The 
underlaying biophysical mechanism is the vegetation transpiration regulation mechanism 
which reacts to water stress conditions by reducing stomatal conductance, thus leading to 
an increase of canopy temperature (Hsiao, 1973; Schulze et al., 1973; Zweifel et al., 2009). 
Indeed, this has been widely used to map vegetation stress conditions from satellite 
estimates of land surface temperature (LST) (Jackson et al., 1981; Kalma et al., 2008; Karnieli 
et al., 2010; Liu et al., 2016; Nemani and Running, 1989). 

In the microwave domain, the sensitivity of radar backscatter to vegetation moisture 
(Leblon et al., 2016) led to the identification of empirical methods for the evaluation of EWT 
(Konings et al., 2019). Several microwave indices were proved to be correlated with EWT 
and LFMC (Fan et al., 2018; Hunt et al., 2011; Tanase et al., 2015), but indices from 
measurements in the optical domain generally outperform microwave indices (Fan et al., 
2018). This is justified by the typically complex relationships linking LFMC to radar 
measurements (Abbott et al., 2007; Leblon et al., 2002; Saatchi and Moghaddam, 2000). 
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1.5.3. Earth Observation applications in fire danger mapping 

LFMC and DFMC are parameters in fire propagation models (Andrews et al., 2013; Finney, 
1998; Rothermel, 1991, 1972). In principle, this would open to the use of remote sensing in 
the simulation of flames propagation. Clearly, the significance of simulations produced by 
such models heavily relies on the quality of input data (Dasgupta et al., 2007), and in the 
case of biophysical quantities retrieved through remote sensing based methods accuracy 
may be typically assessed against field measurements (Gao et al., 2015; Ullah et al., 2014). 
Yet, the applicability of remote sensing observations of fuel condition in the simulation of 
flames propagation relies on the availability of measurements in useful wavelengths at a 
spatial and temporal resolution adequate for this application. Spatial resolution currently 
appears to be the most stringent requirement, as flame propagation models may only 
provide meaningful information when used at fine-scale (Finney, 2001, 2000, 1998). 

Approaches for the use of remote sensing data in fire danger mapping rather focussed on 
relating LST, broadband spectral indices of vegetation moisture content, such as the 
Normalised Difference Water Index (NDWI) (Gao, 1996) and the Global Vegetation 
Moisture Index (GVMI) (Ceccato et al., 2002a), radar backscatter or indirect measures of 
plant stress to forest fires. NDWI was used along with remotely sensed LST and atmospheric 
columnar water vapour to predict fire danger (Abdollahi et al., 2018), while time series of 
this index documented the seasonality of fire occurrence and demonstrated good 
forecasting capabilities (Huesca et al., 2014, 2009). GVMI was used in combination with LST, 
normalised difference vegetation index (NDVI), topography, land cover and maps of human 
settlements to predict fire occurrence (Pan et al., 2016), although in specific land cover 
types other spectral indices had a better performance (Cao et al., 2013). Radar backscatter 
was related to fire danger (Abbott et al., 2007; Leblon et al., 2002) and vegetation moisture 
(Hunt et al., 2011), although it is also affected by many other surface properties (Leblon et 
al., 2016). 

Other approaches related indirect estimates of plant water stress to fire occurrence, e.g. 
through the analysis of time series of optical vegetation spectral indices as a measure of 
greenness, either alone (Bajocco et al., 2015; Burgan et al., 1998; Maselli et al., 2003) or in 
conjunction with LTS (Abdollahi et al., 2018; Chowdhury and Hassan, 2015b). Some 
researchers used LST to model energy budgets (Leblon, 2005; Nolan et al., 2016b; Vidal et 
al., 1994) or to estimate heat energy of pre-ignition (Dasgupta et al., 2006), and predict fire 
occurrence. Fire occurrence was also related to LST anomalies, although no shared 
definition of such parameter exists (Manzo-Delgado et al., 2004; Matin et al., 2017; Pan et 
al., 2016). 

Cited approaches essentially focus on fire occurrence. However, fire danger models are 
meant not only to predict fire occurrence, but also to provide a measure of expected fire 
behaviour. In this sense, to respond to the identified need to improve fire danger models 
(Ruffault et al., 2018), it would be relevant to understand the potential of remote sensing 
in predicting fire behaviour characteristics either deterministically (Dasgupta et al., 2007) 
or probabilistically (Flannigan et al., 2016; Podschwit et al., 2018). The latter would be more 
suitable for fire managers, who are used to concepts like the probability of extreme events. 
As discussed, fire behaviour is controlled by fuel moisture content, and this in turn 
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determines radiometric properties of vegetation and soil. There are grounds to hypothesise 
that remote sensing observations of live fuel condition may be used to predict forest fire 
behaviour. Nevertheless, to the best of author’s knowledge, no research was previously 
published in literature connecting remote sensing measurements to fire characteristics. 
This clearly identifies a knowledge gap which needs further investigation. 

 

1.6. Research objectives and thesis outline 
Considerations so far lead to the following overall research question:  

To what extent can remote sensing of forest condition be used to predict fire behaviour 
characteristics and assess the probability of extreme events? 

Focussing on optical and thermal remote sensing, the response to this research question 
requires the following steps: identify appropriate remote sensing metrics of live fuel 
condition, relate these metrics to probability distributions of some fire behaviour 
characteristics, and compare the predictive performance of these remote sensing derived 
metrics against traditional fire danger rating systems. These steps and the relevant research 
sub-questions they raise are detailed as follows. 

Q1. Which characteristics of fire behaviour are probabilistically related to pre-fire LST 
anomalies? Remote sensing of LST allows the evaluation of vegetation water stress. As plant 
water stress is related to LFMC, both LST and LST anomalies have been successfully used to 
predict fire occurrence. However, no research has been reported so far linking pre-fire LST 
or LST anomaly to fire behaviour characteristics. 

Q2. To what extent can LFMC be retrieved by means of a broadband spectral index? 
Methods proposed so far for the estimation of LFMC rely on the inversion of radiative 
transfer models to retrieve water and dry mass content and the further computation of 
LFMC. In addition to the inherent uncertainty of model inversion, LFMC retrieval accuracy 
depends on constrained values of model parameters and thus on extensive field work. A 
simpler approach would be to use broadband spectral indices. Nonetheless, indices 
proposed so far are sensitive to EWT, not to LFMC. 

Q3. Which characteristics of fire behaviour are probabilistically related to pre-fire remote 
sensing estimates of LFMC? Remote sensing of vegetation moisture in the optical domain 
has been related to fire occurrence and to some fire danger indices. However, this does not 
meet fire managers’ need to predict the probability of extreme events. Indeed, fire danger 
is a measure of the difficulty of controlling a fire, which in turn is a consequence of fire 
behaviour. Further research is thus needed to link remote sensing estimates of LFMC to 
probability distribution of fire behaviour characteristics.  

Q4. To what extent may pre-fire remote sensing estimations of LST anomaly and LFMC be 
used synergistically to improve predictions of extreme events? Several studies 
demonstrated the joint use of optical and thermal remote sensing for the prediction of fire 
occurrence or the evaluation of fire danger. Once remote sensing of LFMC and of LST 
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anomalies have been proved to predict fire behaviour, it would be relevant to investigate 
opportunities for their joint use. 

Q5. How do remote sensing predictions of fire behaviour compare against predictions 
enabled by traditional, meteorological fire danger models such as the Fire Weather Index 
(FWI) System (Van Wagner, 1987)? Satellite remote sensing measurements of live fuel 
condition have been found to be related to fire danger indices based on meteorological 
input. To build towards an integration of existing fire danger models and remote sensing 
retrievals it would be relevant to compare the performance of these two in the prediction 
of fire behaviour characteristics. 

The specific objectives of the study to address these research questions are thus to: 

• Develop a method to evaluate remote sensing measurements of LST anomalies 
and demonstrate that these can be used to predict fire characteristics. 

• Improve the generality of existing remote sensing approaches for the assessment 
of LFMC through the definition of an appropriate optical broadband spectral index. 

• Demonstrate that remote sensing estimates of LFMC can be used to predict fire 
characteristics. 

• Develop a framework for the joint use of optical and thermal remote sensing 
observation of live fuel condition and the prediction of extreme events. 

• Assess remote sensing performance against the FWI System components. 

For this research, a dataset on forest fires occurred in Campania, Italy, was provided by the 
Natural Resources Unit of Carabinieri. This Italian law enforcement agency is in charge, 
among other responsibilities, of burned area inventorying. Available data is thus to be 
considered official. Fire data was combined with pre-fire remote sensing measurements by 
the MODIS instrument on board the Aqua satellite. The focus on this sensor was suggested 
by the availability on the same instrument of spectral bands covering the near infrared, 
shortwave infrared, and thermal infrared domains. It further allows, with its long time 
series, to cover the entire span of available fire data. Aqua-MODIS (MODIS FM1) was 
preferred to its Terra counterpart (MODIS PFM) as its daytime overpasses are in the early 
afternoon, a time of the day when vapour pressure deficit is at a maximum. This would 
allow capturing vegetation conditions in the moment of the day when maximum stress 
occurs. 

The thesis will develop along the following outline. Chapter 2 will describe the study area, 
introduce the available dataset of forest fires, and discuss the fire regime in the region. 
Chapter 3 will develop a methodology for the evaluation of land surface temperature 
anomaly and for its use in predicting the probability distribution of some fire behaviour 
characteristics (Maffei et al., 2018). Chapter 4 will introduce a new broadband spectral 
index for the evaluation of LFMC (Maffei and Menenti, 2014). Chapter 5 will evaluate the 
probability distribution functions of some fire behaviour characteristics and develop an 
approach to predict the probability of extreme events as a function of the spectral index 
introduced in chapter 4 (Maffei and Menenti, 2019). Chapter 6 will compare the 
performance of optical remote sensing of LFMC and of thermal remote sensing of LST 
anomaly in predicting fire behaviour characteristics against the six FWI System components. 
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It will further develop a framework for the joint use optical and thermal remote sensing for 
the prediction of the probability of extreme events. Chapter 7 will contextualise results 
proposed in chapters 3 to 6, discuss novelty and impact, propose an outlook of possible 
developments and future applications, and provide some recommendations. 
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2. Campania study area and its fire regime 
 

2.1. Introduction 
The characterisation of the fire regime, i.e. of the spatial and temporal patterns of fire 
events occurring in a specific region over a given period of time, is an essential step towards 
the knowledge to support informed management of forests (Bajocco et al., 2009; Carmo et 
al., 2011; Díaz-Delgado et al., 2004; Fiorucci et al., 2008; Morgan et al., 2001; Rodrigues et 
al., 2019). It is also needed to understand the resilience and sensitivity of vegetation 
communities to fires and how and to what extent the fire phenomenon controls forest 
functionality and land cover change at regional scale (Díaz-Delgado et al., 2004, 2002; Lloret 
et al., 2002; Morgan et al., 2001; Pausas et al., 2008). 

A wide array of landscape features affects fire regime. Climate drives spatial and seasonal 
variation of fire occurrence (Flatley et al., 2011). Weather patterns determine both fire 
occurrence and burned area (Oliveira et al., 2012; Salis et al., 2019). Topography controls 
both fire frequency (Cyr et al., 2007) and total burned area (Dickson et al., 2006), although 
its effect might be modulated by climate (Flatley et al., 2011). Population density and other 
socio-economic factors determine both burned area and fire frequency (Carlucci et al., 
2019; Catry et al., 2009; Ferrara et al., 2019; Moreira et al., 2010). Land cover is a strong 
predictor of variability in fire regime (Bajocco and Ricotta, 2008; Carmo et al., 2011; Wells 
et al., 2004), with shrublands, grasslands and forest areas influencing fire patterns, burned 
area and fire frequency (Moreira et al., 2010; Mouillot et al., 2003). 

The named landscape factors do not exhaust all possible drivers of spatial variability of fire 
events (Parisien and Moritz, 2009). Nevertheless, it would be relevant to develop an 
understanding of fire regime in the study area to support the interpretation of the results 
presented in this dissertation (Moreira et al., 2009; Nicholls and Lucas, 2007). In fact, 
generalisation from other areas and scales might be misleading (Telesca et al., 2007b), as 
the specific combinations of factors affecting fire regime tend to be quite unique to 
different regions and sub-regions (Wells et al., 2004; Zumbrunnen et al., 2008), and the role 
of some drivers are more evident when studied at regional scale (Rollins et al., 2002). 

The research outlined in this dissertation focussed on the study area of Campania, Italy. The 
interest in this area is given by its position in the middle of the Mediterranean, by the 
diversity of the landscape and land use/land cover it embraces, and by the high anthropic 
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pressure that leads to almost all fires being triggered by human activities (Lovreglio et al., 
2010; Michetti and Pinar, 2019). Campania is a NUTS2 region. In Italy, this administrative 
level bears responsibilities in terms of planning, prevention, and fight against forest fires 
(Italian Law no. 353/2000). 

While Italy is among the European Countries the most affected by fires (San-Miguel-Ayanz 
et al., 2019), the forest fire phenomenon has not been studied evenly across the Italian 
peninsula, and most scholarly papers report analyses at regional or local scale. Fire 
selectivity against land cover was verified in Sardinia (Bajocco et al., 2019; Bajocco and 
Ricotta, 2008). Further studies in Sardinia and Tuscany showed that a relationship exists 
between temporal variability of fire events, climate and phenology (Bajocco et al., 2010a, 
2010b, 2009; Cardil et al., 2014; Telesca and Lasaponara, 2006). Recurrent fire ignitions 
were related to distance to roads and land cover in Apulia (Elia et al., 2020). Fire zoning was 
produced at regional level in Piedmont and Veneto based on fire statistics in mountainous 
administrative sub-regions (Bovio and Camia, 1997). Fire occurrence in Aosta Valley were 
related to land cover, air temperature, precipitation and proximity to infrastructures 
(Vacchiano et al., 2018). A practical procedure to produce fire zoning based on the 
aggregation of small administrative units was proposed and tested in Liguria (Fiorucci et al., 
2008). Fire occurrence and burned area were evaluated against socio-economic factors in 
the whole of Italy (Carlucci et al., 2019). 

A few papers provided evidence of self-organised criticality of the fire phenomenon in Italy. 
Fire size appears to follow a power-law distribution in Liguria, Tuscany, Cilento (part of 
Campania), Molise and Simbruini Mountains (Ricotta et al., 2001, 1999; Telesca et al., 
2007a). Temporal clustering of fire events was verified at regional and national scale 
(Bajocco et al., 2017; Corral et al., 2008; Lasaponara et al., 2005; Ricotta et al., 2006; Telesca 
et al., 2005; Telesca and Lasaponara, 2010, 2006). Spatial clustering was confirmed in 
Liguria and Tuscany (Telesca et al., 2007b; Tuia et al., 2008, 2007). 

The cited literature provides an important contribution towards the understanding of 
spatial and temporal characteristics of fire occurrence and of its spatial drivers in some 
Italian regions. Yet a comprehensive analysis describing fire regime in the study area of this 
research is missing, despite its being among the most fire prone regions in the 
Mediterranean (Modugno et al., 2016; San-Miguel-Ayanz et al., 2019). More relevantly, 
while some studies focussed on burned area, no research has been performed in Italy to 
infer spatial drivers of other fire characteristics such as fire duration and rate of spread. 

Specific spatial drivers being investigated in this chapter are land cover and topography. 
This selection of factors is far from being comprehensive (Parisien and Moritz, 2009). 
Indeed, the objective is not the creation of models for the prediction of spatial patterns of 
fire occurrence or of fire behaviour, but rather the creation of a minimum knowledge base 
for the interpretation of research results proposed in chapters 3, 5 and 6 of this dissertation. 
In more detail, the objectives of this chapter are to provide a thorough description of the 
study area, describe in detail fire data being used in chapters 3, 5 and 6, understand 
seasonal and interannual variability of fire occurrence, total burned area, and of some fire 
behaviour characteristics such as burned area, duration and rate of spread, and review how 
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land cover and topography determine spatial patterns of fire occurrence, total burned area, 
and fire behaviour. 

In the following section the study area is introduced, and its landscape is described in terms 
of physical and environmental resources. Further, available fire data is presented along with 
methods used to interpret it. Section 2.3 reports results in terms of fire occurrence maps, 
synthesis statistics and graphs with the aim of describing the fire regime in Campania. 
Section 2.4 comments on reported results, interpreting them against physical and 
environmental characteristics of the region. A conclusive section summarises findings and 
contextualises them with respect to the wider content of this dissertation. 

 

2.2. Materials and methods 
In this section the study area is introduced and described in terms of its physical and 
environmental resources. Available fire data, land cover and topography maps are 
subsequently presented. Finally, methods used to interpret the interaction between fires 
and landscape characteristics of the study area are outlined. 

 

2.2.1. Study area 

Campania, Italy (40.83°N, 14.13°E, 13595 km2, Figure 2.1), is one of the most densely 
populated and fire affected regions in Mediterranean Europe (Modugno et al., 2016; San-
Miguel-Ayanz et al., 2018). Landscape is divided in two main geomorphological areas. 
Western Campania alternates rocky coasts and alluvial plains. The climate is typically 
Mediterranean, with average yearly rainfall between 800 and 1000 mm. Summers are hot 
and dry, while maximum rainfall is recorded in winter. The eastern part of the region 
comprises mountains and hills. Temperature patterns are determined by altitude, while 
yearly rainfall reaches 1500 mm, with a maximum in autumn and a minimum in summer 
(Amato and Valletta, 2017; Ducci and Tranfaglia, 2008; Fratianni and Acquaotta, 2017). Land 
cover (Figure 2.2) is dominated by agricultural lands (56% of the region), forests and semi-
natural areas (38%). Among agricultural lands, arable fields are prevalent, followed by fruit 
trees, olive groves and vineyards. Among forest and semi-natural areas, broad leaved forest 
largely dominates. 

A comprehensive approach to interpret the landscape traits that affect fire occurrence (see 
§1.3) is through the land systems map (Di Gennaro, 2002), an overall inventory of physical-
environmental resources in the region (Figure 2.3). This map was constructed using an 
integrated physiographic approach which identifies geographic areas, thereby named land 
systems, that can be considered homogeneous in terms of environmental factors 
influencing their land use and eventually their degradation processes (FAO, 1995). In this 
sense, land systems are environmental structures that are linked to the integrated action 
of climate, morphology, biotic communities and permanent anthropic modifications, and it 
is expected that the corresponding specificity of these factors affects fire distribution 
(Biermann et al., 2016; Dube, 2009; Harrison et al., 2010; Lavorel et al., 2006; Pausas and 
Paula, 2012). 
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Campanian landscape is classified into ten land systems: high mountain, calcareous 
mountain, marly-arenaceous and marly-calcareous mountain, inland hill, coastal hill, 
volcanic complex, footslope plain, alluvial terrace, alluvial plain, coastal plain. Within each 
land system, a few sub-systems can be identified. 

The most prevalent land systems in the region (about 30% of the surface) are the inland 
hills of Irpinia, Sannio, the upper basin of Sele, and Cilento (labels D1, D2 and D3 in Figure 
2.3). Lithology in these areas is dominated by sandstones and Campanian grey tuff. Climatic 
interference (i.e. the limitation to the potential crop production due to climatic conditions) 
is low to moderate, while the risk of summer water deficit is moderate to high. Agricultural 
lands cover about 80% of the total surface of this system, while the remaining part is 

Figure 2.1. Elevation map of Campania, the study area of this research. Landscape is divided along the 
longitudinal gradient in two main geomorphologically and climatically different areas. 
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occupied by natural and semi-natural vegetation. The infrastructural and urban density is 
low. 

Calcareous mountains represent 20% of the regional surface through the land systems of 
Montevergine and Sarno, Sorrento-Amalfi peninsula, and Mts. Massico and Tifatini (labels 
B1, B2, B3, B4 and B5 in Figure 2.3). These areas undergo moderate climatic interference 
and comprise about 40% of the areas covered by forests and natural vegetation in 
Campania. 

Figure 2.2. CORINE Land Cover (CLC) 2018 Level 1 map of Campania. Dominant land cover types are 
agricultural lands (56% of the region), forests and semi-natural areas (38%). 
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Figure 2.3. Land systems map of Campania (from Di Gennaro, 2002). 
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Alluvial plain is about 10% of regional landscape, and includes the land systems around 
Volturno, Sele and Garigliano rivers and several inland, morphologically depressed alluvial 
areas (labels I1, I2, I3 and I4 in Figure 2.3). Campanian alluvial plains are characterised by 
slight or negligible climatic interference (i.e. there is no climatic limitation to agricultural 
and forest production), with moderate to high summer water deficit. The land is mainly 
occupied by high value crops, with a relevant presence of infrastructural and urban areas. 

Coastal hills include the coastal reliefs of Cilento, Eboli and of the Sorrento-Amalfi 
peninsula, totalling 9% of regional surface (labels E1 and E2 in Figure 2.3). Climatic 
interference is low and summer water deficit risk is high. The land use is mainly comprised 
of natural vegetation (about 40% of the total area) and high value agricultural systems. 

Footslope plains (9% of the region) include the areas around the calcareous and volcanic 
reliefs and are essentially located in north-west Campania (labels G1 and G2 in Figure 2.3). 
These have no or slight climatic interference and moderate to high risk of summer water 
deficit. Infrastructures and urban areas cover about 21% of this land system, the remaining 
part being mainly occupied by orchards, vineyards, hazel groves, and horticultural crops. 

High mountain (8% of Campania) embraces the summit areas and the higher slopes of the 
calcareous, marly-arenaceous and marly-calcareous reliefs (labels A1, A2 and A3 in Figure 
2.3). It crosses the whole central portion of the region from north-west to south-east and 
is characterised by high to very high climatic interference. About 92% of this land system is 
covered by natural and semi-natural vegetation. 

The volcanic complex land system plays an important role in Campania, both in terms of 
landscape and high agricultural and forest productivity, while only being 5% of its surface. 
It includes the volcanic complex of Roccamonfina, the volcanic reliefs of the Phlegraean 
Fields, the volcanic island of Ischia and the volcanic complex of Somma-Vesuvius (labels F1, 
F2, F3 and F4 in Figure 2.3). The urban density of the latter is high to very high on the lower 
parts of slopes, while it is low to moderate at higher elevations, where forests, chestnut 
wood and coppice dominate the land use. 

Alluvial terraces (5% of regional surface) include the upper and medium Volturno and Sele 
rivers (labels H1, H2 and H3 in Figure 2.3). These areas are morphologically raised above 
the base of the alluvial plain, with no or slight climatic interference, and moderate to high 
risk of summer water deficit. The dominant land uses are high value agriculture (orchards, 
vineyards, and hazel groves), forage, cereals, and horticultural crops.  

The remaining land systems occupy altogether less than 4% of the Campania surface and 
are not discussed herein. 

 

2.2.2. Fire data 

The fire data used in this research was provided by the Forest Fire Protection Information 
Unit of Carabinieri. This law enforcement agency is in charge, among other responsibilities, 
of forest fires prevention, firefighting, arson investigations and prosecution, and burned 
area inventorying. Available data is thus to be considered official and correct.  
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The database reports details of all the 11731 fires occurred in Campania between 1998 and 
2011 (Figure 2.4). While Carabinieri record burnt scar perimeters on a fire-by-fire basis, 
according to conventional practices of field surveying with GPS receivers and desk digital 
cartography, these were not provided for this research. 

The dataset details for each event: cartographic coordinates of the centroid of burned area, 
date and time of initial spread and fire extinction, final burned area, and presumed causes. 
Further to burned area, additional fire behaviour attributes that can be retrieved from the 

Figure 2.4. Fires recorded in 1998-2011 in Campania and their burned area. 
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dataset are fire duration and rate of spread. Fire duration was evaluated as the difference, 
in hours, between fire inception and extinction. Rate of spread was calculated from burned 
area and fire duration in the simplified assumption of a circular fire growing at a constant 
rate in every direction throughout its duration on a flat and uniform surface. Fires in the 
dataset were further intersected with land cover and topography maps so that each event 
was associated with the corresponding land cover class, terrain slope and aspect. 

On average, 838 fires were recorded every year. Mean burned area was 6.5 ha, mean fire 
duration was 9.6 hours and mean rate of spread 22.1 m/h. 99.7% of fires had an anthropic 
cause: 73.9% were due to arson, 10.0% to unintentional anthropic activity, while 15.8% 
were reported as unclassified anthropic (either arson or unintentional). Personal 
communications with Carabinieri officials clarified that the latter classification substantially 
includes anthropic fires for which a proof confirming them as either arson or unintentional 
was not identified. 

 

2.2.3. Land cover and topography maps 

Fires in the database were intersected with land cover and topographic maps to understand 
how these factors drive fire occurrence. The Coordination of Information on the 
Environment (CORINE) land cover (CLC) map is an inventory of land cover in European 
countries initiated in 1985 (European Environment Agency, 2007). CLC maps are produced 
at a nominal scale of 1:100.000, with a minimum mapping unit of 25 ha and minimum width 
of linear elements of 100 m. The first CLC map was produced in 1990, and since 2000 is 
updated every six years. As fires in the database span a 14-year period, events were 
associated with the closest prior CLC version. The latest level 1 CLC map of Campania is 
plotted in Figure 2.2. The level 2 and level 3 descriptions of CLC classes affected by fires in 
the study area are reported in Table 2.1. 

Elevation for each fire data point was extracted from the Digital Elevation Model over 
Europe (EU-DEM) v1.0 (Bashfield and Keim, 2011). EU-EM is a digital surface model 
developed by the European Environment Agency (EEA) as part of the Copernicus Land 
Monitoring Service. This product is a fusion of ASTER Global Digital Elevation Model (GDEM) 
and Shuttle Radar Topographic Mission (SRTM) data by means of a weighted averaging 
approach. The EU-DEM v1.0 was produced at a resolution of 25 m, and its validation 
reported a relatively unbiased (-0.56 m) overall vertical accuracy of 2.9 m RMSE (Tøttrup, 
2014). Slope and aspect were computed from the EU-DEM using standard GIS tools 
(Hofierka et al., 2009). Slope was classified in seven bins of 5° between 0° and 35°, and in a 
further eighth bin including all values above 35°. Aspect was classified in the eight cardinal 
and intercardinal directions, plus a ninth class including all points with slope less than 5° 
and for which aspect was not computed. 

 

2.2.4. Bubble plots 

To identify spatial and temporal patterns of fire occurrence, bubble plots were used as an 
alternative to a series of maps. The objective was to join spatial and temporal information 
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in a single plot, at the expense of one of the spatial dimensions (for example latitude). The 
diagram was constructed as a scatterplot of fire events with longitude plotted along the x 
axis and date along the y axis; each fire was represented in the diagram with a circle, whose 
size is representative of burnt area (Bartlein et al., 2008). Burned area was reported in four 
classes: fires smaller than 1 ha, fires between 1 and 10 ha, fires between 10 and 100 ha, 
and fires larger than 100 ha. 

The study area extends for about 170 km in both the South-North and the West-East 
directions; latitude and longitude are not a strong surrogate for a specific set of landscape 
 
Table 2.1. CORINE Land Cover (CLC) classes affected by fires in the study area. 

Level 2 
code 

Description Level 3 
code 

Description 

21 Arable land 211 Non-irrigated arable land 

  212 Permanently irrigated land 

22 Permanent crops 221 Vineyards 

  222 Fruit trees and berry plantations 

  223 Olive groves 

23 Pastures 231 Pastures 

24 Heterogeneous 
agricultural areas 

241 Annual crops associated with 
permanent crops 

  242 Complex cultivation patterns 

  243 Land principally occupied by 
agriculture, with significant areas of 
natural vegetation 

31 Forest 311 Broad-leaved forest 

  312 Coniferous forest 

  313 Mixed forest 

32 Shrub and/or herbaceous 
vegetation associations 

321 Natural grassland 

  323 Sclerophyllous vegetation 

  324 Transitional woodland/shrub 

33 Open spaces with little or 
no vegetation 

333 Sparsely vegetated areas 

  334 Burnt areas 
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attributes, so it is here underlined that there is no reason to prefer one of them to produce 
the plot. Indeed, the advantage in using the bubble plot lies in its potential to show spatial 
and temporal continuities in fire regime, and to disclose relationships eventually existing 
between them. 

 

2.2.5. Bar charts and box plots 

Bar charts were used to provide a quantitative description of fire occurrence and total 
burned area versus land cover and topography. Box plots were produced to evaluate the 
dispersion of burned area, fire duration and rate of spread year to year and across land 
cover, slope, and aspect classes. 

An approach to the production of bar charts is to just report the counts of occurred fires 
and the sums of burned area for each class of land cover, slope, and aspect. This would 
merely report repartition of all fires across landscape features. However, in this study a 
different approach was adopted, reporting fire occurrence and burned area in terms of 
annual densities, i.e. number of fires and burned area per square kilometre per year (Kharuk 
et al., 2007). More specifically, relative number of fires nc in a landscape feature (land cover, 
slope, or aspect) class c was computed as: 

𝑛) =
𝑁)
𝐴) ∙ 𝑌

(2. 1) 

where Nc is the number of fires in the dataset falling within landscape feature class c, Ac is 
the area of landscape feature class c in the study area, and Y is the number of years covered 
by the dataset (14 in this study). Similarly, relative burned area bc was computed as: 

𝑏) =
𝐵)

𝐴) ∙ 𝑌
(2. 2) 

where Bc is the total burned area within landscape feature class c. Using relative values 
rather than total values has the advantage of providing a more objective mean to compare 
results within the study area and potentially across other regions and ecosystems. 

 

2.3. Results 
This section first reports an assessment of fire seasonality and inter-annual variability based 
on information retrieved from the fires database. It then reports findings derived by 
intersecting fire data with land systems, land cover and topography maps. 

 

2.3.1. Fire seasonality and inter-annual variations 

Fire occurrence shows a marked year to year variation in the number of fires, total burnt 
area, and average burned area of individual fires (Table 2.2). Years where the phenomenon 
appears to be severe alternate with those where it is more limited. Year 2007 stands out as 
exceptional in terms of total burnt area. This is further reflected in the dispersion of burned 
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area of individual fires (Figure 2.5a), which is the highest among the other years for its larger 
fires. A similar observation may be drawn for burned area in 2000, and indeed this year is 
characterised by the second largest total burned area in the dataset. The dispersion of fire 
duration (Figure 2.5b) shows an annual variability mimicking that of burned area. 
Conversely, rate of spread shows a more limited annual variability (Figure 2.5c). 

Fires exhibit a marked seasonality (Figure 2.6), peaking in the summer season, with 82% of 
fires and 89% of burned area recorded between June and September. A second peak, 
although less relevant, is observed in March. This double seasonality is also evident in the 
bubble plot in Figure 2.7, and it occurs every year. Summer fires spread throughout all 
longitudes in the region, while there is a lack of such spatial continuity in late winter/early 
spring fires. A notable exception is year 2002 where the lack of longitudinal and temporal 
continuity of summer fires is reflected by the small number of recorded events and a 
relatively low mean fire size (Table 2.2). The bubble plot also shows that the years exhibiting 
the largest number of events, i.e. 2000, 2001, 2003, 2007 and 2011 (Table 2.2), are 
characterised by a prolonged summer fire season (thicker summer bubble cluster). 

 

 

 
Table 2.2. Annual synthesis of all fires recorded in the study area between 1998 and 2011. 

Year Number of fires Total burned area (km2) Average fire size (ha) 

1998 497 35.7 7.2 

1999 280 18.2 6.5 

2000 843 86.7 10.3 

2001 984 51.0 5.2 

2002 310 11.7 3.8 

2003 1323 54.8 4.1 

2004 803 31.2 3.9 

2005 669 19.4 2.9 

2006 423 17.2 4.1 

2007 1757 257.4 14.7 

2008 776 34.3 4.4 

2009 895 51.4 5.8 

2010 537 19.6 3.7 

2011 1634 69.2 4.2 
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2.3.2. Understanding spatial patterns of fire occurrence 

An assessment of the spatial distribution of forest fires against the Campanian land systems 
map showed that annual patterns of fire occurrence are substantially consistent over time 
(Figure 2.8) and tend to be spatially distributed according to the characteristics of the 
landscape. The land systems most affected by fires are: 

• The calcareous mountains of Montevergine and Sarno, the calcareous reliefs of 
the Sorrento-Amalfi peninsula, the Apennine reliefs with pyroclastic cover of 
Massico and Tifatini, and the calcareous reliefs of Cilento; 

• Cilento coastal hills, and specifically its sub-systems of the marly-arenaceous hills 
and of the clayey hills; 

• All the main volcanic areas, and namely those corresponding to the land systems 
of Somma-Vesuvius, Phlegraean Fields and Roccamonfina; 

• The inland hills, limited to those areas dominated by broad-leaved forests. 

Fires had no impact on the remaining land systems, basically corresponding to the two main 
coastal plains of Campania (alluvial plains of Volturno and Sele rivers). 
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Figure 2.5. Box plots of annual burned area (a), fire duration (b), and rate of spread (c). Burned area 
and fire duration show a marked annual variability. 
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2.3.3. Effect of land cover 

The land cover class most affected by fires in terms of both total number of fires and total 
burnt area is broad-leaved forest (CLC class 311 in Table 2.3), with an average of 298 fires 
recorded, and 21.2 km2 burnt each year. Shrub and herbaceous vegetation associations 
(CLC classes 321, 323 and 324) report 166 events per year, and a total burned area of 15.2 
km2/year. Conversely, heterogeneous agricultural areas (CLC classes 241, 242 and 243) 
report a larger number of fires (193 per year), but a lower total burned area (8.6 km2/year). 
Olive groves (CLC class 223) are affected by 56 fires per year, resulting in a loss of 2.7 
km2/year. Significantly affected by fires is also non-irrigated arable land (CLC class 211) with 
65 fires reported each year and a burned area of 2.1 km2/year. 

Bar charts of the density of number of fires and total burned area per land cover class 
(Figure 2.9) show that areas reported under the CLC class of burned areas (code 334) exhibit 
the highest number of fires and burned area per km2 per year. However, it is worth noting 
that this land cover class has a limited extent in the study area. Sclerophyllous vegetation 
(CLC class 323) is the land cover type most affected by fires, both in terms of number of 
ignitions and total burnt area (about 1.6 ha per km2 burnt each year). Natural grassland 
(class 321) exhibits comparable levels of burned area (about 1.5 ha/km2/year), although a 
lower number of events is recorded. In more general terms, fire occurrence and total 
burned area is most relevant in shrub and herbaceous vegetation associations (classes 321, 
323, 324). 

Heterogeneous agricultural areas, represented in Campania by CLC classes 241, 242 and 
243 (Table 2.1) show a lower annual density of number of fires and total burned area, as 
compared to forests, shrubs, and herbaceous vegetation associations. Similar lower values 
are recorded also by pastures (CLC class 231). Among permanent crops, olive groves (CLC 
class 223) are considerably affected by fires. 
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Figure 2.6. Seasonality of fire occurrence in the observation period 1998-2011: (a) average number of 
fires; (b) average total burnt area. Most fires and the largest proportion of burned area are recorded 
between June and September. 
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Figure 2.7. Bubble plot reporting fire size vs date and longitude in the study area. 
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Box plots show considerable variability of burned area across CLC classes (Figure 2.10a). 
Burned area in shrub and herbaceous vegetation associations (CLC classes 321, 323 and 
324) tends to be larger than in forests (CLC classes 311, 312, 313). Similarly, non-irrigated 
arable land (CLC class 211) and pastures (CLC class 231) are characterised by larger fires as 
compared to other classes among agricultural areas. Within forests, fires in broad-leaved 
forest (class 311) are larger than in coniferous and mixed forests (classes 312 and 313 
respectively). 

Figure 2.8. Annual spatial patterns of fires and their burned area. Year 2007 stands out in terms of 
both number of fires and of burned area. 
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Dispersion of fire duration shows little variability across CLC classes (Figure 2.10b). A similar 
consideration can be drawn for rate of spread (Figure 2.10c), although coniferous forest 
and mixed forest (CLC classes 312 and 313) show slightly lower values against all other land 
cover classes. 

 

2.3.4. Effect of topography 

Bar charts of the density of number of fires and total burned area in bins of terrain slope 
show that topography is a strong driver of fire occurrence (Figure 2.11). A marked increase 
in the number of ignitions up to a slope of 20-30° is observed, then followed by a decrease, 
whereas total burned area steadily increases throughout the computed slope ranges. 
Likewise, slope appears to affect fire behaviour characteristics. The box plot of burned area 
(Figure 2.12a) shows increasing values with increasing slope. Similarly, fires tend to have a 
 
Table 2.3. Synthesis of fires by land cover class in the study area between 1998 and 2011. Keys for 
class codes are reported in Table 2.1. 

CLC class Number of fires Total burned area (km2) 

211 510 29.9 

212 2 0.1 

221 6 0.4 

222 273 10.8 

223 787 38.3 

231 98 9.9 

241 327 15.7 

242 1123 52.8 

243 1249 52.3 

311 4176 296.2 

312 148 4.7 

313 99 5.1 

321 861 102.7 

323 572 38.7 

324 894 70.7 

333 60 6.5 

334 22 1.6 
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longer duration with increasing slope (Figure 2.12b). Rate of spread shows a slight increase 
as slope increases up to 10-15°, then followed by a slight decrease with increasing slopes 
(Figure 2.12c). 

Aspect is a clear factor determining both fire occurrence and total burned area (Figure 
2.13). Southwest- to south- and east-facing slopes show a higher fire occurrence per year 
per square kilometre as compared to northeast- to north- and west-facing slopes. A much 
lower fire occurrence is recorded in substantially horizontal terrain. Slightly different results 
are observed when the total burnt area is considered instead, with a more marked 
prominence of southwest- south- and southeast-facing slopes as opposed to other aspect 
values. Like fire occurrence, total burned area shows significantly lower values on horizontal 
terrain. Fire behaviour characteristics do not vary with aspect, with burned area, fire 
duration and rate of spread all showing even dispersion across all aspect classes (Figure 
2.14). 
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Figure 2.9. Bar charts of fire occurrence in CORINE land cover class: a) number of fires per square 
kilometre per year; b) total burnt area in hectares per square kilometre per year. Keys for class codes 
are reported in Table 2.1. 
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2.4. Discussion 
In this section results on fires seasonality and annual variability are first discussed. Spatial 
patterns of fire occurrence are then reviewed against the biophysical and anthropic factors 
characterising land systems. A more quantitative assessment follows, discussing the effect 
of land cover and topography on both fire occurrence and fire behaviour characteristics. 
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Figure 2.10. Box plots of burned area (a), fire duration (b), and rate of spread (c) in CLC land cover 
classes. Keys for class codes are reported in Table 2.1. 
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2.4.1. Seasonality, inter-annual variation, and spatial consistency of fires 

Fire occurrence and total burned area show a marked seasonality, with most events being 
recorded between June and September (Figure 2.6). This seasonality is evident also in the 
bubble plot reporting fire size against longitude and date (Figure 2.7). Years characterised 
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Figure 2.12. Box plots of burned area (a), fire duration (b), and rate of spread (c) in slope classes. 
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Figure 2.11. Bar charts of fire occurrence in slope classes: a) number of fires per square kilometre per 
year; b) total burnt area in hectares per square kilometre per year. 
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by a peak in fire occurrences, i.e. 2000, 2001, 2003, 2007 and 2011 (Table 2.2), show a 
markedly longer fire season. Years 2000 and 2007 also stand out for the distribution of 
burned area and fire duration being dispersed towards larger values (Figure 2.5). The 
observed seasonality and annual variability are in line with the wider context of 
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Figure 2.13. Bar charts of fire occurrence in aspect classes: a) number of fires per square kilometre 
per year; b) total burnt area in hectares per square kilometre per year. Label P (plain) refers to fires 
occurring on areas with slope less than 5°, where aspect was not computed. 
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Figure 2.14. Box plots of burned area (a), fire duration (b), and rate of spread (c) in aspect classes. 
Label P (plain) refers to fires occurring on areas with slope less than 5°, where aspect was not 
computed. 
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Mediterranean European countries, where summers are characterised by low precipitation 
and high temperature leading to the build-up of preconditions favouring fire ignition and 
propagation (Ganteaume et al., 2013; San-Miguel-Ayanz et al., 2013). 

The fire phenomenon exhibits a clear interannual variability in terms of number of fires, 
total burned area, and average fire size (Table 2.2). This variability is common in the 
Mediterranean and it is determined by the corresponding interannual variability in weather 
conditions (Pausas and Paula, 2012; San-Miguel-Ayanz et al., 2013; Turco et al., 2013; 
Viegas and Viegas, 1994). Fires peaked in 2007, especially in terms of total burned area and 
average fire size. Indeed, summer 2007 in Italy is noted for being exceptional in terms of 
unusually large fires spreading throughout Central and Southern Italy and causing loss of 
lives (Milazzo and Capone, 2010). 

Annual spatial patterns of fire occurrence are substantially consistent over time (Figure 2.8), 
despite the observed interannual variability (Table 2.2). This is true also for year 2002, albeit 
the bubble plot in Figure 2.7 highlighted its lack of longitudinal and temporal continuity of 
summer fires, as compared to all other years in the dataset. This suggests that, beyond 
interannual variability in the number of fires and burned area controlled by variable factors 
such as weather (Ganteaume et al., 2013; Viegas and Viegas, 1994), the spatial patterns of 
fire occurrence in the study area are determined by landscape characteristics (Barbati et 
al., 2015; Duane et al., 2015; Lavorel et al., 2006; Ruffault and Mouillot, 2017). 

 

2.4.2. Understanding spatial patterns of fire occurrence 

The intersection of forest fires on the land systems map highlighted a clear relationship 
between the spatial patterns of fire occurrence and landscape characteristics. Land systems 
of the medium and low calcareous mountain of Montevergine and Sarno, the Sorrento-
Amalfi peninsula, and Mounts Massico and Tifatini (labels B1, B2, B3, B4 and B5 in Figure 
2.3) were affected by forest fires on an almost yearly basis. Indeed, these land systems are 
characterised by a moderate to high climatic interference (see §2.2.1). Moreover, natural 
vegetation (hereby comprising about 40% of the entire natural vegetation cover in the 
region) is dominated by fire sensitive species such as chestnut, mixed forests of mesophyte 
broad-leaved species, holm oak, xerophyte prairie and shrubs at different levels of 
degradation. 

Fire occurrence in Cilento coastal reliefs (label E2 in Figure 2.3), characterised by low 
climatic interference, is rather due the high risk of summer water deficit and to land use. 
The latter is dominated by olive groves, cereal crops, and natural vegetation, with 
prevalence of thermophile broad-leaved forests, holm oak, shrubs, garrigue and xerophyte 
prairies. Anthropic pressure might exert a role in driving fire occurrence, as it is particularly 
high in July and August due to summer tourism, matching the observed seasonality (Figure 
2.6). Similar considerations justify the high fire occurrence in the Roccamonfina, Campi 
Flegrei, Ischia Island and Somma-Vesuvio volcanic complexes (labels F1, F2, F3 and F4 in 
Figure 2.3). These land-systems are characterised by low to moderate climatic interference 
and moderate to high risk of summer water deficit. Agricultural and forest land uses are 
highly productive, thanks to the high fertility of the volcanic soils, and are dominated by 
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chestnut, hazel groves, fruit trees, scrubs, vineyards, and olive groves. Anthropic pressure 
is moderate to high. 

In internal areas, fires occur on the hill land-systems of Irpinia, Sannio, the upper basin of 
Sele, and Cilento (labels D1, D2 and D3 in Figure 2.3). While land use is mainly agricultural 
(80% of the total area of these land-systems), and the infrastructural and urban density is 
low, fires are recorded in the remaining natural surfaces, characterised by sparse and 
relatively small broad-leaved forests. Yet, soil fertility leads to a significant development of 
biomass which, associated with the moderate to high risk of summer water deficit, leads to 
high fuel availability (§1.2.1) during the dry season. 

Fires had no impact on the remaining land systems, basically corresponding to the two main 
coastal plains of Campania (alluvial plains of Volturno and Sele rivers), which are essentially 
devoted to orchards and horticulture under widespread irrigation. 

Across land systems a clear link between patterns of fire occurrence (or the lack thereof) 
and some landscape characteristics emerges. Indeed, climatic conditions, land cover and 
anthropic pressure appear consistently to be drivers of fire occurrence. In this sense, fire 
may be considered a landscape-shaping process in some of the land systems in the study 
area (Biermann et al., 2016; Dube, 2009; Harrison et al., 2010). 

 

2.4.3. Influence of land cover on fire occurrence and total burned area 

The considerations discussed in the previous section were further developed to 
quantitatively understand the effects of land cover and topography on fire regime and, in 
the following section, on fire behaviour characteristics. Indeed, fire occurrence and fire 
behaviour are determined by a large number of factors, essentially falling into five groups: 
topography, land cover, climate, weather, and anthropic activity (Barrett et al., 2016; 
Costafreda-Aumedes et al., 2016; Faivre et al., 2016, 2014; Falk et al., 2007; Fernandes et 
al., 2016; Fischer et al., 2015; Gustafson et al., 2011; Lasslop and Kloster, 2017; Littell et al., 
2016; Viegas and Viegas, 1994). Clearly, the considerations proposed in this chapter are far 
from being exhaustive. The intended objective is to have a grasp of how the proposed 
subset of static factors controlling the fire phenomenon in the region determines the spatial 
variability of fire occurrence, total burned area, and fire behaviour. In this sense, the 
proposed analysis serves as a background information supporting the interpretation of 
satellite observations of fuel condition (chapters 3, 5 and 6). 

The land cover class that most contributed to fire phenomenon in terms of total number of 
fires and total burnt area is broad-leaved forest (CLC class 311, Table 2.3). However annual 
densities, i.e. values normalised against land cover area and number of years covered by 
the dataset (Figure 2.9), show that forests are less affected by fires than shrubs and 
herbaceous vegetation (CLC classes 321, 323, 324). Grassland, sclerophyllous vegetation 
and other shrubs in the Mediterranean are generally characterised by higher level of 
flammability, as opposed to broad-leaved forests (Corona et al., 2014; Della Rocca et al., 
2018; Dimitrakopoulos, 2001; Dimitrakopoulos and Panov, 2001; Dimitrakopoulos and 
Papaioannou, 2001; Moreira et al., 2011). This result confirms the value of adopting annual 
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densities as a measure of fire occurrence, as it allows the evaluation of fire regime with the 
specific characteristics of land cover types. 

The highest annual densities of number of fires and burned area are reported under the 
CLC class of burned areas (code 334). This class refers to natural woody vegetation affected 
by recent fires (less than one year), and includes damaged natural woody plants, 
sclerophyllous vegetation, transitional forest-shrub formations and areas with sparse 
vegetation (Kosztra et al., 2019). 

Albeit to a lesser degree, heterogeneous agricultural areas (CLC classes 241, 242 and 243) 
appear to be widely affected by fires. In this land cover class, recorded events 
predominantly have an unintentional cause and are due to agricultural practices. In fact, 
inception occurs in agricultural land patches, where flames subsequently propagate to 
nearby natural and abandoned areas (Milazzo and Capone, 2010). Similar considerations 
apply to fires recorded in pastures (CLC class 231). Among permanent crops, olive groves 
(CLC class 223) are considerably affected by fires, due to their high flammability 
(Dimitrakopoulos and Papaioannou, 2001). 

As a general trend, number of fires and total burned area appear to increase from cultivated 
land to broad-leaved forests, to shrubs and to sclerophyllous vegetation. Similar patterns 
were found elsewhere (Díaz-Delgado et al., 2004; Moreira et al., 2011; Mouillot et al., 2003). 
These results, along with spatial patterns of observed fire occurrence versus land systems 
in the region, support the identification of land cover as a key driver of fire spatial 
distribution (Bajocco and Ricotta, 2008; Carmo et al., 2011; Wells et al., 2004). 

 

2.4.4. Influence of topography on fire occurrence and total burned area 

The density of number of fires shows a marked increase with slope up to 25-30° (Figure 
2.11a). The low number of fires recorded in plain areas is justified by the typical land cover 
in the coastal plains, dominated by orchards and horticulture, and reflects the observed 
densities of fire occurrence in the corresponding CLC classes (Figure 2.9). A decrease in fire 
occurrence is observed in slopes steeper than 30°. This may be explained by the fact that 
almost all fires are of anthropic origin (Lovreglio et al., 2010; Milazzo and Capone, 2010), 
and that the steepest slopes are less accessible (Oliveira et al., 2014). 

Density of total burned area steadily increases with slope up to 20-25°, in a way similar to 
the number of fires (Figure 2.11b). However, values stabilise for steeper slopes. This 
different observation may be justified by the fact that fire containment efforts at steeper 
slopes are more difficult (Liang et al., 2012; Rodríguez y Silva et al., 2014), thus resulting in 
larger fires, as also observed in Figure 2.12a. 

Aspect appears to control fire occurrence in the region, with South-West, South and South-
East facing slopes being characterised by a higher density of number of fires and burned 
area (Figure 2.13). This result is common in Mediterranean ecosystems (Mouillot et al., 
2003; Oliveira et al., 2014), where South-facing slopes are characterised by drier conditions 
due to a larger amount of solar radiation impinging on the surface, and where west facing 
slopes are exposed to the sun in the hours when maximum temperature is usually reached. 
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2.4.5. Influence of topography and land cover on fire behaviour characteristics 

The influence of topography and land cover on fire behaviour characteristics appears to be 
limited, as opposed to observed influence on fire occurrence and total burned area. The 
reported dispersion of burned area across CLC classes (Figure 2.10a) shows a prevalence of 
larger fires in shrub and herbaceous vegetation associations (CLC classes 321, 323 and 324). 
At the other end of the spectrum, burned area in coniferous and mixed forests (classes 312 
and 313) is more dispersed towards smaller fires. Similarly, in non-irrigated arable land (CLC 
class 211) and pastures (CLC class 231) burned area is dispersed towards larger values than 
in permanent crops (CLC classes 221, 222 and 223). Analogous patterns of burned area 
dispersion have been found elsewhere in the Mediterranean (Oliveira et al., 2014), and can 
be justified by the relatively larger patches with typically higher fuel loads characterising 
natural and seminatural land cover classes (Bajocco and Ricotta, 2008). 

Overall, the interquartile dispersion of burned area across all land cover classes spans two 
orders of magnitude. On the other side, the interquartile dispersion of fire duration and 
rate of spread values covers less of an order of magnitude (Figure 2.12 b and c). This flattens 
the variability due to land cover, complicating the interpretation of results. Nevertheless, it 
is evident that in coniferous forest and mixed forest (CLC classes 312 and 313) rate of spread 
appears to be dispersed towards slightly lower values as opposed to all other land cover 
classes. 

Fire behaviour appears to be independent of aspect (Figure 2.14). This means that aspect 
does not determine per se environmental conditions leading to observable differences in 
fire behaviour. On the other side, slope has a clear effect on burned area and fire duration, 
with increasing slopes leading to higher values (Figure 2.12 a and b). The fact that burned 
area and fire duration tends to increase with slope is likely due to the less efficient attack 
strategy in difficult terrain conditions (Rodríguez y Silva et al., 2014), leading to fires 
propagating freely and consuming larger patches of vegetation. Within its limited range of 
variability, rate of spread appears to increase up to slopes of 10-15° and to decrease for 
steeper slopes (Figure 2.12c). This ambiguous result can be justified by the fact that the 
measure of rate of spread proposed herein is the rate of advancement of fire perimeter. 
This quantity does not directly relate to the local rate of advancement of fire front, 
especially on steep slopes. The speed of advancement of fire front increases with slope only 
in the upslope direction, whereas in the downslope direction it decreases with increasing 
slope. 

 

2.5. Conclusions 
The first consideration that can be drawn from the observations described in this Chapter 
is on the annual variability of the geographic distribution of fire ignitions (Figure 2.8). Our 
findings are consistent with the widely acknowledged notion that spatial patterns of fire 
occurrence are controlled by anthropic and biophysical features of the landscape (Barbati 
et al., 2015; Duane et al., 2015; Lavorel et al., 2006; Ruffault and Mouillot, 2017). Indeed, it 
was found that land cover (Figure 2.9), slope (Figure 2.11) and aspect (Figure 2.13) are 
strong drivers of fire events in terms of both number of fires and total burned area. On the 
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other hand, interannual variability in the number of fires and total burned area is 
determined by variable factors such as weather (Ganteaume et al., 2013; Viegas and Viegas, 
1994). In fact, weather controls fuel condition (Trenberth et al., 2014; Ustin et al., 2009; 
Williams and Abatzoglou, 2016; Zhang et al., 2015) and ultimately the probability of ignition 
and flames propagation (Finney, 2005; Finney et al., 2011; Hardy, 2005). 

A second consideration can be drawn from noting that the interannual variability of fire 
behaviour, specifically of burned area, duration and rate of spread (Figure 2.5) is 
comparable or stronger than the variability induced by land cover (Figure 2.10) and terrain 
aspect (Figure 2.14). This points at weather forcing as a primary driver of fire characteristics. 
Indeed, weather variability through the year determines fuel condition, and thus fire 
behaviour (§1.3) and fire danger (§1.2.1). This consideration does not apply to variability in 
burned area and duration induced by terrain slope (Figure 2.12), where the observed 
marked increase of these characteristics with increasing slope can be justified by the 
difficulty in fire containment and suppression efforts in complex terrain conditions 
(Rodríguez y Silva et al., 2014). 
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3. Relating spatiotemporal patterns of forest fires burned 
area and duration to diurnal land surface temperature 
anomalies1 

 

Abstract 

Forest fires are a major source of ecosystem disturbance. Vegetation reacts to 
meteorological factors contributing to fire danger by reducing stomatal conductance, thus 
leading to an increase of canopy temperature. The latter can be detected by remote sensing 
measurements in the thermal infrared as a deviation of observed land surface temperature 
(LST) from climatological values, i.e. as an LST anomaly. A relationship is thus expected 
between LST anomaly and forest fires burned area and duration. These two characteristics 
are indeed controlled by a large variety of both static and dynamic factors related to 
topography, land cover, climate, weather (including those affecting LST), and anthropic 
activity. To investigate the predicting capability of remote sensing measurements, rather 
than constructing a comprehensive model, it would be relevant to determine whether 
anomalies of LST affect the probability distributions of burned area and fire duration. This 
research approached the outlined knowledge gap through the analysis of a dataset of forest 
fires in Campania (Italy) covering years 2003-2011 against remote sensing estimates of LST 
anomaly. An LST climatology was first computed from time series of daily Aqua-MODIS LST 
data (product MYD11A1, collection 6) over the longest available sequence of complete 
annual datasets (2003-2017), through the harmonic analysis of time series (HANTS) 
algorithm. HANTS was also used to create individual annual models of LST data, to minimize 
the effect of varying observation geometry and cloud contamination on LST estimates while 
retaining its seasonal variation. LST anomalies where thus quantified as the difference 
between LST annual models and LST climatology. Fire data were intersected with LST 
anomaly maps to associate each fire with the LST anomaly value observed at its position on 
the day before the event. Further to this step, the closest probability distribution function 
describing burned area and fire duration were identified against a selection of parametric 

 
1 Based on: Maffei, C., Alfieri, S.M., Menenti, M., 2018. Relating spatiotemporal patterns of forest fires 
burned area and duration to diurnal land surface temperature anomalies. Remote Sens. 10, 1777.  
https://doi.org/10.3390/rs10111777 
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models through the maximization of the Anderson-Darling goodness-of-fit. Parameters of 
the identified distributions conditional to LST anomaly where then determined along their 
confidence intervals. Results show that in the study area log-transformed burned area is 
described by a normal distribution, whereas log-transformed fire duration is closer to a 
generalized extreme value (GEV) distribution. The parameters of these distributions 
conditional to LST anomaly show clear trends with increasing LST anomaly; significance of 
this observation was verified by means of a likelihood ratio test. This confirmed that LST 
anomaly is a covariate of both burned area and fire duration. Therefore, it was observed 
that conditional probabilities of extreme events appear to increase with increasing positive 
deviations of LST from its climatology values. This confirms the stated hypothesis that LST 
anomaly affects forest fires burned area and duration, and highlights the informative 
content of time series of LST with respect to fire danger. 

 

3.1. Introduction 
Forest fires are a source of significant ecosystem damage at global scale, as they affect the 
biogeochemical cycle, are a source of atmospheric emissions, alter the net carbon balance, 
disturb forest structure, and cause long-term changes in soil properties (Certini, 2005; 
Harvey et al., 2016; Lehsten et al., 2009; Seidl et al., 2014; Thonicke et al., 2008; van der 
Werf et al., 2010). Fires also condition anthropic activities as they threaten human lives, 
have a negative effect on quality of life, and cause economic losses (Montagné-Huck and 
Brunette, 2018; Reisen et al., 2015; Viegas, 2009). Increasing concern derives from the 
observation that climate change is negatively affecting spatial and temporal patterns of fire 
disturbance (Frank et al., 2015; Liu et al., 2010; Seidl et al., 2017; Williams and Abatzoglou, 
2016). 

In Mediterranean ecosystems, prolonged droughts and heat waves create the 
preconditions for increases in frequency and intensity of forest fires (Gudmundsson et al., 
2014; Lindner et al., 2010), the underlying mechanism being the reduction of live and dead 
fuels moisture content as a response of the soil-plant system to increased vapor-pressure 
deficit (Trenberth et al., 2014; Williams and Abatzoglou, 2016; Zhang et al., 2015). 
Vegetation response varies with species as well as with forest structure and soil/terrain 
characteristics, and it is determined by transpiration (Arnold et al., 1998; Douglass, 1967; 
Swift et al., 1975). The moisture of dead fuels, which include the organic elements of forest 
litter such as senescent grasses, dry leaves, small twigs and compacted organic material in 
the topsoil, is affected by weather variations as well, and it is regulated through evaporation 
(Aguado et al., 2007; Liu, 2017; Viney, 1991). The moisture content of both alive and dead 
fuels are thus affected by weather forcing, and indeed vegetation stress status has been 
found to be related to some meteorological drought indices, which in turn are related to 
moisture content of the largest size classes of dead fuels (Arpaci et al., 2013; Gudmundsson 
et al., 2014; Keetch and Byram, 1968; Merzouki and Leblon, 2011; Pellizzaro et al., 2007a; 
Weber and Nkemdirim, 1998). 

The vegetation transpiration regulation mechanism reacts to water stress conditions by 
reducing stomatal conductance, thus leading to an increase of canopy temperature (Hsiao, 
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1973; Schulze et al., 1973; Zweifel et al., 2009). This phenomenon can be detected by 
satellite measurements in the thermal infrared, and has been widely used in the 
development of methodologies based on the satellite retrieval of land surface temperature 
(LST) to map vegetation stress conditions (Jackson et al., 1981; Kalma et al., 2008; Karnieli 
et al., 2010; Liu et al., 2016; Nemani and Running, 1989). As moisture content has a direct 
relationship with live fuels ignitability and flames propagation (Chuvieco et al., 2014; 
Dimitrakopoulos and Papaioannou, 2001; Pellizzaro et al., 2007b; Rossa et al., 2016), a 
relationship between LST and forest fires may be expected (Chowdhury and Hassan, 2015a; 
Leblon, 2005; Sobrino et al., 2016). Indeed, several approaches use LST in association with 
optical spectral indices of vegetation greenness or moisture content to construct physically 
based or empirical fire danger rating systems (Abdollahi et al., 2018; Chowdhury and 
Hassan, 2015b; Chuvieco et al., 2004; Jang et al., 2006; Tien Bui et al., 2016; Yu et al., 2017). 
Some researchers used LST to model energy budgets (Leblon, 2005; Nolan et al., 2016b; 
Vidal et al., 1994) or to estimate heat energy of pre-ignition (Dasgupta et al., 2006) and 
predict fire occurrence. 

Little research was conducted to relate LST to fire behaviour. Post-fire LST was used to 
quantify burnt severity either alone (Quintano et al., 2015; Veraverbeke et al., 2012; 
Vlassova et al., 2014) or in conjunction with optical data (Quintano et al., 2017; Zheng et 
al., 2016). Pre-event LST was used, along with other factors, to model burned area, but 
results were ambiguous (Chaparro et al., 2016). While evidence supports the hypothesis 
that higher surface temperature is associated with an increased fire occurrence (Manzo-
Delgado et al., 2004; Matin et al., 2017; Pan et al., 2016), no such relationship was 
previously investigated against burned area or fire duration.  

Burned area is indeed controlled by a large variety of both static and dynamic factors, 
essentially falling into five groups: topography, such as elevation, slope, south-westness (in 
the northern hemisphere) or north-westness (in the southern hemisphere); land cover, 
including vegetation type, composition, connectivity, fuel load, pyrodiversity; climate, e.g. 
annual average daily maximum and minimum temperature; weather (including active 
drivers of fuel moisture) such as cumulative antecedent precipitation, wind speed, relative 
humidity; anthropic activity, including land development, road density, distance to 
settlements, fire prevention strategies and efficiency of fire extinguishing actions (Barrett 
et al., 2016; Faivre et al., 2016, 2014; Falk et al., 2007; Fernandes et al., 2016; Littell et al., 
2016; Moreno et al., 2011; Viegas and Viegas, 1994). While less studied, fire duration 
appears to be related to similar factors (Costafreda-Aumedes et al., 2016; Fischer et al., 
2015; Gustafson et al., 2011; Lasslop and Kloster, 2017). Among these factors, only those 
affecting vegetation moisture are related to LST. To investigate the predicting capability of 
remote sensing measurements, rather than constructing a comprehensive model, it would 
be relevant to determine whether an increase in LST affects the probability distributions of 
burned area and fire duration. Since an increase of LST would be evaluated against an LST 
climatology, thus implicitly implying the evaluation of a delta or anomaly, the objective 
would in other terms be to assess if such an anomaly is a covariate of the two named fire 
characteristics. 
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The research described in this chapter followed from this line of reasoning and tried to 
verify if a relationship linking anomalies of LST to burned area and fire duration exists, thus 
exploring the identified knowledge gap. The analyses were performed on the study area of 
Campania, Italy, for which a dataset comprising more than 8800 fire events recorded 
between 2003 and 2011 was made available by local authorities. 

The accomplishment of the stated objective first required the definition of a method for 
the quantification of LST anomalies. Crucial to this step was the prior modelling of an LST 
climatology. Indeed, multitemporal analysis was suggested as a mean to determine 
seasonal minima against which to assess LST values triggering fire occurrence (Julien et al., 
2006; Khorchani et al., 2018; Manzo-Delgado et al., 2004; Stroppiana et al., 2014). To this 
purpose, the longest available time series of daily Aqua-MODIS LST data was processed with 
the Harmonic Analysis of Time Series (HANTS) algorithm (Roerink et al., 2000; Verhoef, 
1996) to construct a daily pixel-wise climatology of LST. HANTS was also used to process 
annual time series of LST and create cloud- and noise-free annual models of daily LST. LST 
anomaly was finally evaluated as the difference between the LST annual models and the 
LST climatology. 

Further steps required the analysis of the fire data towards the identification of the closest 
fitting probability density function describing burned area and fire duration. The fire 
database was then intersected with daily maps of LST anomaly, and each fire was associated 
with the corresponding LST anomaly value occurring at the same location on the day before 
the event. Parameters of the identified distributions conditional to LST anomaly were 
determined along their confidence intervals, and trends were identified (Hernandez et al., 
2015). Finally, probability of extreme events conditional to LST anomaly were evaluated. 

 

3.2. Materials and Methods 
3.2.1. Study Area 

A detailed description of the study area was provided in §2.2.1. 

 

3.2.2. Data 
MODIS LST data 

A dataset of daily gridded Aqua-MODIS LST data (product MYD11A1, collection 6) from 2003 
to 2017 retrieved from the Land Processes Distributed Active Archive Center (LP DAAC, 
https://e4ftl01.cr.usgs.gov/) was used for this research. MYD11 products are generated by 
an angle-dependent split-window algorithm exploiting the differential atmospheric 
absorption in MODIS bands 31 (11 µm) and 32 (12 µm) to determine LST values from 
radiance measurements of clear-sky pixels. The achieved mean LST error is typically within 
±0.6 K, and the standard deviation of validation errors is typically less than 0.5 K (Wan, 
2014).  

Product MYD11A1 contains both diurnal (13:30) and nocturnal (1:30) LST measurements, 
along with corresponding quality assurance information. Preference was given to diurnal 
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rather than nocturnal data, and to Aqua-MODIS rather than Terra-MODIS, to capture 
canopy temperature variations due to water stress occurring at the hour of the day when 
maximum air temperature is approximatively achieved. Retrieved LST estimates were 
further masked against MYD11A1 pixel-wise quality assurance (QA) metadata, and only 
data marked as good quality (QA bits 1,0 = 00), i.e. retrieved at nominal radiometric and 
clear-sky conditions, were retained (Van Nguyen et al., 2015; Xu and Shen, 2013). However, 
this approach does not ensure that all cloud contaminated pixels are excluded from further 
processing (Ackerman et al., 2008). 

 

Fire data 

A dataset of about 8800 fires officially recorded in Campania between 2003 and 20112 was 
provided by the Forest Fire Protection Information Unit of Carabinieri, a law enforcement 
agency in charge of forest fires prevention, firefighting, arson investigations and 
prosecution, and burned area inventorying. The database details the presumed date and 
time of fire ignition, recorded date and time of fire extinction, geographic coordinates of 
burned area centroid, total burned area, and presumed causes. While Carabinieri record 
burnt scar perimeters on a fire-by-fire basis, according to conventional practices of field 
surveying with GPS receivers and desk digital cartography, these were not provided for this 
research. However, for the purpose of this study, this is not a source of concern on the 
positional accuracy of the provided centroids, as only 53 fires (0.87% of the fires in the 
dataset) are larger than 1 km2, i.e. of a MODIS pixel in the thermal bands. 

The dataset covered a range of fire seasons that were considered safe to critical in both 
number of fires and total burnt area. Most fires (84%) occur between June and September. 
About 99.8% of fires are of human origin (negligent or arson). On average, 980 fires are 
recorded each year, leading to the loss of more than 6160 hectares of natural areas, 
including 4190 ha of forests. 

Fires in the database were intersected with the CORINE Land Cover (CLC) map (European 
Environment Agency, 2007) to select those occurred in natural areas only. CLC maps are 
produced at a nominal scale of 1:100.000, with a minimum mapping unit of 25 ha and 
minimum width of linear elements of 100 m, and are updated every six years. Fires occurred 
between 2003 and 2005 were intersected with CLC 2006, while fires between 2006 and 
2011 were intersected with CLC 2012. A total of more than 6100 events occurred in land 
cover classes reported in Table 3.1 were used in this research, thus excluding events 
recorded on agricultural land. 

Recorded burned area encompasses five orders of magnitude, while its average is 7.1 ha. 
The 95th percentile of burned area is 27.8 ha; this quantity was used as a reference for 
extreme events in the region. Analogously, mean fire duration is 9.4 hours, and the 95th 
percentile is 27.5 hours. 

 

 
2 This is a subset of the fire data used in Chapter 2 to characterise the fire regime in the study area. 
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3.2.3. Modelling temporal patterns of LST 

The modelling of the LST climatology and of LST annual models was performed by means of 
the Harmonic Analysis of Time Series (HANTS) algorithm (Roerink et al., 2000; Verhoef, 
1996). This method was initially proposed to fill in missing or cloudy observations and to 
remove outliers in time series of NDVI data by exploiting its periodic behaviour (Menenti et 
al., 1993; Verhoef et al., 1996). It was later successfully used on time series of LST (e.g. 
Alfieri et al., 2013; Menenti et al., 2016; Van Nguyen et al., 2015). 

A temporal sequence of N images I(x,y,ti), i = 1, 2, …, N, can be described as a Fourier series: 

𝐼(𝑥, 𝑦, 𝑡!) = 𝑎,(𝑥, 𝑦) +D𝑎-(𝑥, 𝑦)× cos I𝜔-𝑡! − 𝜑-(𝑥, 𝑦)L
.

-/0

(3. 1) 

where I(x,y,ti) is the LST retrieved from MODIS measurements at pixel longitude x, pixel 
latitude y, day ti when the ith image was taken, wj is the frequency of the jth harmonic term 
in the Fourier series, M is the number of frequencies of the Fourier series, aj(x,y) and jj(x,y) 
are the amplitude and phase of the jth harmonic term. The harmonic frequencies are integer 
multiples of the base frequency: 

𝜔- = (2𝜋 𝐿⁄ ) × 𝑗 (3. 2) 

where L is the length of the base period. Because the zero frequency has no phase, the 
amplitude related to the zero frequency a0(x,y) is equal to the average of all N observations 
of I(x,y,ti) (Menenti et al., 2016). 

 
Table 3.1. CORINE Land Cover (CLC) classes used to select fires used in subsequent analyses.  

CLC code Description 

231 Pastures 

243 Land principally occupied by agriculture, with significant areas of natural 
vegetation 

311 Broad-leaved forest 

312 Coniferous forest 

313 Mixed forest 

321 Natural grassland 

323 Sclerophyllous vegetation 

324 Transitional woodland shrub 

333 Sparsely vegetated areas 

334 Burnt areas 
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HANTS handles the Fourier analysis as a least squares curve fitting problem within an 
iterative approach. In the first step, the least squares curve fitting is performed using all 
valid data in the series. In the second step, observations that deviate from the curve 
determined in the first iteration more than a pre-defined threshold (the fit error tolerance, 
FET) in the specified direction of rejection (lower values or higher values) are removed, and 
the remaining data are used to compute the least square curve fitting again. The iterations 
are repeated until either all the remaining observations are within the FET or the number 
of remaining data points becomes less than the specified degree of over determinedness 
(DOD) (Roerink et al., 2003). 

 

3.2.4. Evaluation of land surface temperature anomaly 

HANTS was used to decompose the time series of MODIS LST retrievals into their descriptive 
significant periodic components. Series comprising the first three harmonics were fit to the 
data with two different methods: 

• HANTS was executed on yearly sequences 2003-2011 of daily LST data individually 
to construct annual models of daily LST (Xu and Shen, 2013). The objective of this 
approach was the removal of LST variability due to undetected cloud 
contamination and varying observation geometry while modelling LST annual 
variation. The result was a collection of new annual series of daily LST maps, one 
for each year being considered, computed from the identified harmonic 
components. These were used as representative of actual measurements. 

• The algorithm was executed on the whole 2003-2017 data set, with a base period 
of one year, to construct a pixel-wise daily climatology of LST (Alfieri et al., 2013). 
The need of using this climatology as a basis for the calculation of thermal 
anomalies suggested its evaluation from the longest available sequence of 
complete annual datasets of daily MODIS LST data. The output of this process is a 
new series of daily LST maps computed from the identified harmonic components, 
representative of daily climatological values of LST. 

A synthesis of the HANTS parameters adopted in the two approaches is reported in Table 
3.2. In both, the base period is one year, and the number of frequencies is set to three. The 
direction of outliers’ rejection was set as “Lo”, thus leading to the removal of all data points 
that are more than FET lower than the fitted harmonics, according to the fact that cloud 
contamination in pixels causes an underestimation of LST. The development of the LST 
climatology is based on a more relaxed FET value, as opposed to annual models, to 
compensate for its inter-annual variability. The degree of over determinedness was 
dynamically adjusted on a per-pixel basis as the half of LST estimates marked as good quality 
in the QA of MYD11A1 product. 

Figure 3.1 depicts one year of clear-sky Aqua-MODIS LST retrievals in a sample pixel within 
the study area, along with the corresponding LST annual model and the LST climatology. It 
can be observed that the annual model captures LST variation throughout the year, while 
filtering its variability. LST climatology, derived from the 2003-2017 series of daily LST data, 
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shows a distinct pattern. In this example, the annual model of LST is higher than the LST 
climatology for most of the year. 

A land surface temperature anomaly is hereby defined as the difference between LST 
annual models and the LST climatology. At a given day ti the anomaly is positive when the 
LST annual model is higher that the LST climatology. In this sense, LST anomaly quantifies 
the deviation of LST from the climatology value expected in that pixel (Figure 3.1). The 
approach of using the LST annual model rather than the actual measurements of LST 
hinders the detection of LST variations occurring over a short period of time. Nevertheless, 
it quantifies the build-up of the LST anomaly throughout the dry season while filtering the 
variability in LST estimates due to observation geometry, residual cloud contamination and 
retrieval accuracy. This in turns allows the appreciation of LST anomalies with values below 
the accuracy allowed by the MYD11A1 algorithm, and provides measurements in dates 
when complete cloud cover is present (Alfieri et al., 2013). 

Daily maps of LST anomaly were produced for the entire observation period between 2003 
and 2011. These maps were intersected with fire data, so that each fire was associated with 
the value of the LST anomaly in the same location on the day before the event. 
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Figure 3.1. Aqua-MODIS LST data, LST annual model and LST climatology observed in year 2007 at 
pixel 40°50’40”N, 14°8’56”E. 

 
Table 3.2. Parameters used in HANTS algorithm to pre-process LST data. Computation of the LST 
climatology is based on a more relaxed FET value to compensate for its inter-annual variability. 

HANTS parameters LST annual models LST climatology 

Length of the base period (L) 1 year 1 year 

Number of frequencies (M) 3 3 

Direction of outliers’ rejection Lo Lo 

Fit error tolerance (FET) 4 K 6 K 

Degree of over-determinedness (DOD) Half of valid points Half of valid points 
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3.2.5. Parametric distributions of burned area and fire duration 

Burned area and fire duration relate to the difficulty of control of fires and to the damage 
they cause, and thus to fire danger (FAO, 1986; Walding et al., 2018). Prior to any 
investigation on the relationship between these fire characteristics and LST anomaly, their 
probability distributions were identified. 

Several parametric distributions are reported in literature to fit burned area, including 
normal (Weber and Stocks, 1998), log-normal (Corral et al., 2008; Haydon et al., 2000), 
exponential (Baker, 1989; Cumming, 2001; Weber and Stocks, 1998), gamma (Cumming, 
2001), generalized extreme value (Moritz, 1997), and Weibull (Reed and McKelvey, 2002). 
A limited number of papers report on parametric distributions of fire duration (e.g. Palma 
et al., 2007). The diversity of these results highlights that no one single model can be 
identified to describe burned area and fire duration distribution globally, due to the 
diversity of encompassed terrain, climate, ecology, forest and fire management practices 
(Cui and Perera, 2008; Reed and McKelvey, 2002), and that the closest fitting model needs 
to be identified on a regional basis. 

In this study, both burned area and fire duration datasets were tested against the following 
parametric models: 

• Normal 

𝑓(𝑥|𝜇, 𝜎) =
1

√2𝜋𝜎
exp X−

(𝑥 − 𝜇)1

2𝜎1 Y (3. 3) 

• Log-normal 

𝑓(𝑥|𝜇, 𝜎) =
1

√2𝜋𝜎𝑥
exp X−

(ln 𝑥 − 𝜇)1

2𝜎1 Y (3. 4) 

• Exponential 

𝑓(𝑥|𝜆) = 𝜆 exp(−𝜆𝑥) (3. 5) 

• Gamma 

𝑓(𝑥|𝑎, 𝑠) =
1

𝑠2Γ(𝑎) 𝑥
230 exp(−𝑥 𝑠⁄ ) (3. 6) 

• Generalized extreme value (GEV) 

𝑓(𝑥|𝑎, 𝑏, 𝑠) =
1
𝑏 `1 + 𝑠 I

𝑥 − 𝑎
𝑏 La

30430 exp b− `1 + 𝑠 I
𝑥 − 𝑎
𝑏 La

304c (3. 7) 

• Weibull 

𝑓(𝑥|𝑎, 𝑏) =
𝑎
𝑏 I
𝑥
𝑏L

230
exp e− I

𝑥
𝑏L

32
f (3. 8) 

These models were fitted to burned area and fire duration data by minimizing the 
Anderson-Darling distance (Anderson and Darling, 1954): 
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𝐴𝐷 = 𝑛i
[𝐹#(𝑥) − 𝐹(𝑥)]1

𝐹(𝑥)[1 − 𝐹(𝑥)] 𝑑𝐹
(𝑥)

56

36
(3. 9) 

where F(x) is the model cumulative distribution function and Fn(x) is the empirical 
cumulative distribution of the sample. The maximum goodness-of-fit criterion with 
Anderson-Darling distance gives more weight to the tails of the distribution. The closest 
fitting model for each of the two variables was identified as the one providing the minimum 
Anderson-Darlin distance. 

 

3.2.6. Conditional distribution of fire characteristics 

The parameters of the closest fitting distributions identified for burned area and fire 
duration conditional to LST anomaly were evaluated by dividing the values attained by this 
covariate at fire locations the day previous to the event into ten bins each corresponding 
to a decile, following the approach proposed in (Hernandez et al., 2015). In accordance with 
the analyses performed under the previous section, conditional parameters were 
determined with the maximum goodness-of-fit criterion, while their corresponding 95% 
confidence intervals were determined by means of 1000 bootstrap parameter estimations. 
Significance of the variation of observed distribution parameters across the decile bins of 
LST anomaly were finally verified through a likelihood ratio test where the likelihood of the 
model describing the entire dataset was compared against the sum of the likelihoods of the 
ten models in each bin. 

 

3.3. Results 
3.3.1. Evaluation of land surface temperature anomaly 

LST in the study area exhibits significant inter-annual variability, as demonstrated by the 
two selected maps extracted from LST annual models of years 2007 and 2011 on the same 
date (Figure 3.2). However, LST maps are not indicative of deviations from a climatology. 
Indeed, maps of LST anomaly on the same dates show significantly different spatial patterns 
(Figure 3.3). 

In the proposed selected dates, Figure 3.3 also reports fires occurred in the following day, 
represented with circles proportional to burned area. Fires occurring where a higher LST 
anomaly is reported result in a larger burned area, albeit such a qualitative evaluation varies 
with the chosen dates. Similar considerations could be drawn for fire duration, but for the 
sake of brevity these are not shown. 

Maps of LST anomaly were sampled at each fire location on the day before the event. 
Average LST anomaly is 1.3 K, and 77% of fires occur when LST anomaly is positive, i.e. LST 
annual model value is higher than LST climatology value. On a monthly basis, this 
percentage varies between 69% and 88%, the only exception being December with 57%. A 
partial dependence of LST anomaly values from CLC classes can be noted, with coniferous 
forest and sclerophyllous vegetation showing a wider proportion of fires occurring when a 
negative LST anomaly is observed (Figure 3.4). 
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3.3.2. Statistical models of burned area and fire duration 

Burned area and fire duration range over several orders of magnitude and are strongly 
positively skewed. For this reason, they were preliminary scaled and converted to their base 
10 logarithm, to have log-transformed positive values only. An initial investigation 
highlighted that log-transformed burned area and log-transformed fire duration show a 
linear correlation with a Pearson’s correlation coefficient of 0.58 (Figure 3.5). While clearly 

Figure 3.2. Selected maps of LST as derived from HANTS processing of annual time series: 16/8/2007 
(top); 16/8/2011 (bottom). 
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related, the relative weakness of this correlation confirms that the two fire behaviour 
characteristics are not redundant. 

Figure 3.6 reports scatterplots of log-transformed burned area and log-transformed fire 
duration against corresponding LST anomaly. Pearson’s correlation coefficients are 0.15 
and 0.16 respectively, confirming that the observed large variability in these fire behaviour 
characteristics can’t be explained by the sole LST anomaly, and indeed no trends can be 
clearly identified. To facilitate interpretation, data were subdivided in ten decile bins of LST 
anomaly, and mean log-transformed burned area and log-transformed fire duration were 
calculated in each bin. Results plotted in Figure 3.7 show clearer trends, with mean log-

Figure 3.3. Selected maps of LST anomaly: 16/8/2007 with superimposed fires recorded on 17/8/2007 
(top); 16/8/2011 with superimposed fires recorded on 17/8/2011 (bottom). 
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transformed burned area increasing with increasing LST anomaly, confirming that the latter 
might be a covariate of this fire behaviour characteristic. A similar consideration may be 
drawn for log-transformed fire duration. 

The parametric probability distributions listed in section §3.2.5 were fitted to log-
transformed burned area and log-transformed fire duration using the maximum goodness-
of-fit method. The corresponding Anderson-Darling distance reported in Table 3.3 show 
that log-transformed burned area is more closely described by a normal distribution, 
whereas log-transformed fire duration is closer to a GEV distribution. The corresponding Q-
Q plots are reported in Figure 3.8. 

 

3.3.3. Conditional distribution of burned area and fire duration 

Parameters of the normal distribution of log-transformed burned area show a clear trend 
against LST anomaly (Figure 3.9). The sum of the likelihoods of the ten models fitted to 
burned area data in each bin was compared against the likelihood of the model describing 
the entire dataset by means of a likelihood ratio test. The null hypothesis in which the ten 
distributions are identical to the distribution describing all burned area data collectively was 

r = 0.58     p < 0.001
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Figure 3.5. Scatterplot of log-transformed fire duration against log-transformed burned area. 
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Figure 3.4. Boxplot of observed LST anomaly in each CLC class (Table 3.1). 
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rejected at a significance level of p<0.05. A similar result was observed with the GEV 
distribution of log-transformed fire duration, where location, scale and shape exhibit a clear 
trend with LST anomaly (Figure 3.10), and the null hypothesis is rejected with p<0.05. 

The retrieved conditional distributions (ten for each of the two fire characteristics, one in 
each of LST anomaly decile bins) were used to calculate the probability of fires larger than 
27.8 ha (95th percentile of burned area) and the probability of fires lasting more than 27.5 
hours (95th percentile of fire duration). Resulting plots (Figure 3.11) show that probability 
of large fires ranges from 1.8% in the first LST anomaly decile to 9.9% in the tenth decile, 
i.e. when LST anomaly increases from -1.6 to 3.9 K. Analogously, probability of fires lasting 
more than 27.5 hours ranges from 0.4% to 8.9%. 
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Figure 3.6. Scatterplot of log-transformed burned area (a) and log-transformed fire duration (b) 
against LST anomaly. 
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Figure 3.7. Mean burned area (a) and mean fire duration (b) in ten deciles of LST anomaly. 
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3.4. Discussion 
A clear relationship exists in several ecosystems between forest fires and meteorological 
forcing (Gudmundsson et al., 2014; Lindner et al., 2010; Seidl et al., 2017; Trenberth et al., 
2014; Williams and Abatzoglou, 2016; Zhang et al., 2015). Prolonged absence of rainfall and 
increased air temperatures, while creating the preconditions for forest fires, push 
vegetation towards water stress conditions to which it responds by reducing transpiration. 
This leads in turn to an increase of vegetation temperature, a phenomenon that can be 
detected by remote sensing measurements in the thermal infrared (Hsiao, 1973; Jackson et 
al., 1981; Kalma et al., 2008; Karnieli et al., 2010; Liu et al., 2016; Nemani and Running, 
1989; Schulze et al., 1973; Zweifel et al., 2009). Rather than modelling a direct dependence, 
this study hypothesized that remote observations of LST, and more specifically deviations 
of LST values from a climatology, could be a covariate of burned area and fire duration of 
 
Table 3.3. Anderson-Darling distance values for all tested distributions. 

Model Log-transformed 
burned area 

Log-transformed 
fire duration 

Normal 9.2 69.5 

Log-normal 20.2 28.8 

Exponential 1662 1711 

Gamma 13.5 39.7 

Generalized extreme value 13.5 15.1 

Weibull 32.6 245 
 

Figure 3.8. Q-Q plots of the normal distribution of log-transformed burned area (a) and of the 
generalized extreme value distribution of log-transformed fire duration (b). Red circles highlight the 
deciles of the distributions. 
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individual fires. Intuitively, prolonged events could eventually lead to larger burnt scars. 
Indeed, a correlation was found between log-transformed burned area and log-
transformed fire duration (Figure 3.5), albeit its relative weakness supports the idea that 
these two quantities could be studied separately. 

This research faced two substantial challenges. The first one was the identification of a 
suitable probability distribution model describing burned area and fire duration data in the 
study area. Several models are reported in cited literature (Baker, 1989; Corral et al., 2008; 
Cumming, 2001; Haydon et al., 2000; Moritz, 1997; Palma et al., 2007; Reed and McKelvey, 
2002; Weber and Stocks, 1998), and indeed the diversity of these results highlights that no 
one single model can be identified to describe burned area probability distribution globally, 
and that a model should be adopted on a per-study basis (Cui and Perera, 2008; Reed and 
McKelvey, 2002). Among those tested herein, normal appears to be the closest fitting 
model for log-transformed burned area, and GEV for log-transformed fire duration. In both 
circumstances, the fitting was not perfect towards the tails, as demonstrated by the 
relatively high Anderson-Darling distance (Table 3.3) and by the Q-Q plots (Figure 3.8). 
Indeed, the final extent of a fire and its duration are contributed by several factors related 
to topography, land cover, climate, weather, and anthropic action (including fire 
suppression activities). The complex and varied landscape in the study area, with significant 
variations of population density, topography, land use/land cover and land management 
practices across its extent (Chapter 2), along with the efficiency of the local fire prevention 
and management resources, created a unique combination of factors shaping the 
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Figure 3.10. Plot of location (a), scale (b) and shape (c) of the generalized extreme value distribution 
of log-transformed fire duration, and their 95% confidence intervals, conditional to LST anomaly in 10 
decile bins. 
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Figure 3.9. Plots of mean (a) and standard deviation (b) of normal distribution of log-transformed 
burned area, and their 95% confidence intervals, conditional to LST anomaly in 10 decile bins. 
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probability distributions of fire characteristics that is not properly captured by the tested 
models. 

The second challenge was the construction of a climatology of LST to use as a basis for the 
evaluation of the LST anomaly. The phenomenon to be indirectly detected as a deviation 
from the LST climatology is the reduction in stomatal conductance due to plant water stress. 
The need to acknowledge for its intra-annual variability excluded the opportunity to identify 
a seasonal mean on any base that is not over short periods of time. Indeed, the availability 
of daily diurnal Aqua-MODIS measurements over fifteen years allowed the calculation of an 
LST climatology on a daily basis. Rather than a daily average, the latter was the result of the 
modelling of the time series by means of the HANTS algorithm. This approach has the 
advantage to retain seasonal variability while filtering out disturbance sources such as 
undetected cloud contamination, which induces a bias by reducing the detected 
temperature, and the varying observation geometry (Menenti et al., 2016). 

HANTS algorithm was also used to model annual LST series individually. This led to the 
definition of the LST anomaly as a deviation of the LST annual model from the LST 
climatology. While the use of the LST annual model instead of current measurements might 
hinder the detection of LST variations occurring over a short period of time, this approach 
has the advantage of still detecting the build-up of the LST anomaly throughout the dry 
season while leveraging the named effects of observation geometry and residual cloud 
contamination (Alfieri et al., 2013). 

The LST climatology and the LST annual models were constructed using the same HANTS 
parameters, with the only exception of FET (Table 3.2). The need for a more relaxed FET in 
the LST climatology was justified by the need to account for the inter-annual variability of 
LST. While affecting the shape of the modelled curve, a lower FET in combination with the 
rejection of lower outliers would clearly determine a climatology characterized by generally 
higher LST values. The value of FET = 6 K was identified as a compromise between the need 
of constructing an LST climatology of general validity while still rejecting cloud-
contaminated data in both cooler and warmer years. 
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Figure 3.11. Estimated probability of burned area exceeding 27.8 ha, conditional to LST anomaly values 
in 10 decile bins (a); estimated probability of fire duration exceeding 27.5 hours, conditional to LST 
anomaly values in 10 decile bins (b). 
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Fire data were intersected with maps of LST anomaly, and each fire was associated with the 
LST anomaly value recorded at fire location on the day before the event. The underlying 
idea is that LST data is produced in near-real-time by ground receiving stations, allowing 
the mapping of fire danger forecast for the following day. The way LST anomaly was defined 
in this paper, i.e. as a deviation of LST annual model from LST climatology as opposed to the 
deviation of the actual MYD11A1 estimate, implies a slow day-to-day variation of LST 
anomaly. This in turn increases the temporal validity of produced LST anomaly maps up to 
a certain extent. Checking the effect of sampling in time at more days before the event was 
beyond the objectives of this research. However, it is here anticipated that tests performed 
on LST anomaly recorded five days before the event led to results similar to those reported 
herein. 

Observed average LST anomaly is 1.3 K, while 23% of fires occur with a negative LST 
anomaly. The distribution of LST anomaly appears to be partially dependent on land cover 
class as reported in Figure 3.4. Negative values are proportionally more prevalent in 
coniferous forest and sclerophyllous vegetation than in other land cover classes. The 
observation of this dependence was expected from literature review (e.g. Barrett et al., 
2016; Faivre et al., 2014) and does not affect the quality of further findings. Indeed, 
evaluations of burned area and fire duration were performed conditional to LST anomaly, 
i.e. leveraging out all other parameters. In effect, other factors such as accessibility of the 
zone, availability and effectiveness of the fire extinguishing means and the winds can 
heavily influence the occurrence of fires, the final burned area and event duration 
regardless of the previous LST anomaly, either positive or negative. 

This study demonstrated the informative content of time series of LST. Indeed, LST anomaly 
was found to be a covariate of burned area and fire duration. Fire data were grouped in ten 
decile bins of the associated LST anomaly values and the parameters of the identified 
distributions along with their 95% confidence interval were evaluated in each of them. The 
choice of the number of bins was initially tested with a trial-and-error approach, towards 
the identification of a compromise between the clarity of observed trends and the 
amplitude of the distribution parameters confidence interval. As similar results were 
observed across a range from five to twenty bins, for the sake of objectiveness in the 
approach the number of ten was chosen as the most appropriate. 

Mean and variance of the normal distribution describing log-transformed burned area both 
tend to increase with increasing LST anomaly values (Figure 3.9), likewise the location, scale, 
and shape parameters of the GEV distribution describing log-transformed fire duration 
(Figure 3.10). A likelihood ratio test confirmed that probability distribution models of 
burned area and fire duration conditional to LST anomaly are significantly different than the 
models describing the entire dataset. Along with the observed trends in parameters values, 
this result confirms the stated hypothesis that LST anomaly as defined in this chapter is a 
meaningful variable contributing to fire danger. It means that this quantity, along with its 
time-dependent nature, may be used pairwise other relevant parameters towards the 
statistical modelling of burned area and fire duration. 

As a consequence of the variation of burned area and fire duration probability distributions 
conditional to LST anomaly, it is possible to plot and interpret how the probability of 
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extreme events evolves with increasing LST anomaly values. Indeed, end users such as 
forest managers and civil protection agencies are particularly interested in these 
probabilities to drive their preparedness activities (Preisler et al., 2004). The models 
constructed in the ten decile bins of LST anomaly demonstrate that the probability of a 
forest fire to result in a total burned area exceeding a given threshold (in our example, the 
95th percentile of the dataset) significantly increases with increasing LST values (Figure 
3.11a). A similar result was found for fire duration (Figure 3.11b), supporting the idea that 
maps of LST anomaly such as those in Figure 3.3 are useful to depict the contribution of LST 
to fire danger. 

 

3.5. Conclusions 
Vegetation response to meteorological factors contributing to fire danger – prolonged 
absence of rainfall and high air temperature – results in an increase of LST that can be 
detected by remote sensing measurements in the thermal infrared as a deviation from 
climatological values. This chapter demonstrates that such LST anomalies are a covariate of 
forest fires burned area and duration. While several studies demonstrated how a wide 
number of both static and dynamic factors related to topography, land cover, climate, 
weather, anthropic activity, and fire extinguishing strategies affect the probability 
distribution of these two fire behaviour characteristics, to the best of authors’ knowledge 
no previous research was conducted to investigate the role of satellite measurements of 
LST. 

The initial hypothesis was addressed by first identifying probability distributions functions 
describing available fire data. Among those tested, log-transformed burned area is closer 
to a normal distribution, while log-transformed fire duration is closer to a generalized 
extreme value distribution. The HANTS algorithm was then used to process time series of 
diurnal Aqua-MODIS LST measurements and construct a climatology against which 
anomalies of LST were quantified. Finally, parameters of the identified distributions 
conditional to LST anomaly where then evaluated, showing clear trends. 

The observed variation of burned area and fire duration distributions conditional to LST 
anomaly demonstrate that increasing positive deviations of LST from the expected seasonal 
value correspond to an increasing probability of extreme events, i.e. of the final fire extent 
and duration exceeding a given threshold. This finding clearly identifies a practical mean to 
interpret maps of LST anomaly. As opposed to typical fire danger rating systems based on 
meteorological data, this remote sensing quantity has the advantage of claiming a higher 
spatial resolution. It is here highlighted that the identified relationships are preconditioning 
in nature, and do not predict actual fire occurrence. The latter is related to a different array 
of determinants relating to probability of a heat source leading to an ignition. 

This study was performed ex post trough the evaluation of LST annual models against an 
LST climatology. This approach is observational in nature and not predictive. While the 
achievement of more generality of the proposed research would require investigations in a 
wider and diverse array of regions, strategies for the assessment of the LST anomaly up to 
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the current date need to be developed. However, this was beyond the objectives of this 
research. 
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4. A MODIS-based perpendicular moisture index to 
retrieve leaf moisture content of forest canopies3 

 

Abstract 

Moisture dictates vegetation susceptibility to fire ignition and propagation. Various spectral 
indices have been proposed for the estimation of equivalent water thickness (EWT), which 
is defined as the mass of liquid water per unit of leaf surface. However, fire models use live 
fuel moisture content (LFMC) as a measure of vegetation moisture. LFMC is defined as the 
ratio of the mass of the liquid water in a leaf over the mass of dry matter, and traditional 
spectral indices are not as effective as with EWT in capturing LFMC variability. The aim of 
this study was to explore the potential of the Moderate Resolution Imaging 
Spectroradiometer (MODIS) on board Terra and Aqua satellites in retrieving LFMC from top 
of the canopy reflectance, and to develop a new spectral index sensitive to this parameter. 
All the analyses were based on synthetic canopy spectra constructed by coupling the 
PROSPECT (leaf optical properties model) and SAIL (Scattering by Arbitrarily Inclined Leaves) 
radiative transfer models. Simulated top of the canopy spectra were then convolved to 
MODIS land bands 1-7 spectral response functions. All band pairs were evaluated to 
determine the subspace of MODIS measurements where the separability of points based 
on their value of LFMC was the highest. This led to the identification of isolines of LFMC in 
the plane defined by MODIS reflectance retrievals in bands 2 and 5; the isolines are straight 
and parallel, and ordered from lower to higher values of LFMC. This finding allowed the 
construction of a novel spectral index that is directly related to LFMC – the perpendicular 
moisture index (PMI). This index measures the distance of a point in the plane spanned by 
reflectance in MODIS bands 2 (0.86 µm) and 5 (1.24 µm) from a reference line, that of 
completely dry vegetation. Validation against simulated data showed that PMI exhibits a 
linear relationship with LFMC. When the vegetation cover is dense, the LFMC explains most 
of the variability in the PMI (r2=0.70 when LAI>2; r2=0.87 when LAI>4). When LAI is lower, 
the contribution of soil background to the measured reflectance increases, and the index 
underestimates LFMC. The PMI was also validated against the LOPEX93 (Leaf Optical 

 
3 Based on the “accepted manuscript” of the article published by Taylor & Francis Group: Maffei, C., 
Menenti, M., 2014. A MODIS-based perpendicular moisture index to retrieve leaf moisture content of 
forest canopies. Int. J. Remote Sens. 35, 1829–1845.  https://doi.org/10.1080/01431161.2013.879348 
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Properties Experiment 1993) dataset of leaf optical and biophysical measurements, scaled 
to canopy reflectance with SAIL, showing acceptable results (r2=0.56 when LAI>2; r2=0.63 
when LAI>4). 

 

4.1. Introduction 
Forest fires are a major threat to human life, economic development and the environment 
(FAO, 2007). Fire managers need timely and reliable danger maps to support them in the 
preventive allocation of resources (Carlson and Burgan, 2003; Chuvieco et al., 2010). 
Several factors contribute to fire danger, including the relative amount of fuels available for 
burning, their type and condition, specifically moisture content (FAO, 1986). Among these, 
fuel moisture is the most dynamic; it is also the most relevant, since it determines the 
forests’ susceptibility to fire ignition and propagation (Rothermel, 1972). A higher moisture 
means a higher amount of heat needed to ignite a fuel, as more energy is necessary to 
evaporate water (Chuvieco et al., 2002). It also implies slower fire propagation, since part 
of the heat released by the flames is used to evaporate the water from the adjacent fuels 
(Verbesselt et al., 2002). 

Field measurements are a reliable method for the estimation of vegetation moisture. 
However, these are impractical when the need is for cheap, fast and repeated monitoring 
of vast areas, as it would be required by decision makers at regional, national and 
international scale (San-Miguel-Ayanz et al., 2002). In this sense, remote sensing appears 
to be a promising technology, potentially providing daily updated maps of vegetation 
moisture to be used both for the evaluation of fire danger, to inform preparedness practices 
for the allocation of means and resources (Miller and Ager, 2013; Vakalis et al., 2004), and 
during the management of the emergency, for example to predict fire propagation 
scenarios and drive intervention activities (Ager et al., 2011; Papadopoulos and Pavlidou, 
2011; Vakalis et al., 2004).  

The evaluation of vegetation moisture from remote sensing measurements of reflected 
radiance in the solar spectrum relies on detailed studies of the optical properties of leaves 
(Gates et al., 1965; Gausman and Allen, 1973; Tucker, 1980; Woolley, 1971). A first measure 
of vegetation moisture is the equivalent water thickness (EWT), which denotes the content 
of water in leaf tissues. EWT is defined as the mass of water per unit area of leaf: 

𝐸𝑇𝑊 =
𝑀+ −𝑀*

𝐴
(4. 1) 

where Mf is the mass of the fresh leaf as measured in the field, Md is the corresponding 
mass of the same leaf that has been oven dried, and A is leaf area. EWT is scaled to canopy 
level (EWTc) by simple multiplication by leaf area index (LAI) (Ceccato et al., 2002b): 

𝐸𝑊𝑇) = 𝐸𝑊𝑇 ∙ 𝐿𝐴𝐼 (4. 2) 

EWTc is thus the total amount of water in the canopy per unit area. A different measure of 
vegetation moisture is live fuel moisture content (LFMC), which expresses the percentage 
of mass of water in leaf tissues over the dry leaf mass: 
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𝐿𝐹𝑀𝐶 =
𝑀+ −𝑀*

𝑀*
∙ 100 (4. 3) 

Considering that dry matter content (DMC) is defined as: 

𝐷𝑀𝐶 =
𝑀*

𝐴
(4. 4) 

it is clear that: 

𝐿𝐹𝑀𝐶 =
𝐸𝑊𝑇
𝐷𝑀𝐶 ∙ 100

(4. 5) 

LFMC is thus a measure of water relative to DMC, and as such it is not scaled to canopy level 
through LAI. In many vegetation types, the mass of water exceeds that of the other leaf 
components, this meaning that LFMC values may be higher than 100%. 

Both EWT and LFMC are valid measures of vegetation moisture, but they are not 
exchangeable, since a unique LFMC value can correspond to multiple EWT values, 
depending on leaf DMC. They are not even equivalent from a practical point of view, and 
the forest fire research community is specifically interested in LFMC maps (Carlson and 
Burgan, 2003; Hunt et al., 2013), since fire danger prediction tools and fire models depend 
on this measure of vegetation moisture (Andrews, 2007; Finney, 1998; Rothermel, 1991, 
1972; Van Wagner, 1977; Yebra et al., 2013). 

Analyses of leaf spectral signature sensitivity to EWT and DMC have shown that leaf 
reflectance is sensitive to leaf structure and to dry matter content in the near infrared (NIR, 
0.7-1.1 μm), and to leaf structure, EWT and DMC in the SWIR (Ceccato et al., 2001; Seelig 
et al., 2008). Since SWIR reflectance doesn’t provide an absolute measure of EWT, 
vegetation moisture spectral indices take into account NIR reflectance as a normalising 
factor against leaf structure and DMC (Ceccato et al., 2002b; Gao, 1996; Hardisky et al., 
1983; Hunt and Rock, 1989). When calculated from remote sensing measurements of 
canopy reflectance, these spectral indices are actually sensitive to EWTc, and thus they are 
inherently responsive to LAI (Colombo et al., 2008; Dasgupta and Qu, 2009). The sensitivity 
to LAI is indeed a general characteristic of spectral indices based on SWIR wavelengths 
(Bowyer and Danson, 2004; Dawson et al., 1999; Mousivand et al., 2014), negatively 
affecting the estimation of vegetation moisture (Wang et al., 2008; Zarco-Tejada et al., 
2003). 

Spectral indices for the estimation of EWT (or EWTc) generally do not provide the same level 
of accuracy in estimating LFMC (Caccamo et al., 2012; Carlson and Burgan, 2003; Danson 
and Bowyer, 2004; Davidson et al., 2006; Maki et al., 2004; Yilmaz et al., 2008), although 
some exceptions are reported in literature, due to species-specific conditions (Sow et al., 
2013; Verbesselt et al., 2007, 2002). Indeed, LFMC does not cause unambiguous spectral 
features in vegetation reflectance (Gao and Goetz, 1990; Peñuelas et al., 1993), while EWT 
and DMC affect vegetation spectra independently (Ceccato et al., 2002b; Verbesselt et al., 
2007). Although this complicates any effort to retrieve LFMC from radiance measurements 
in the optical domain (Cohen, 1991; Lee et al., 2007), some successful experiments are 
reported in literature. Methods based on the inversion of a radiative transfer model (RTM), 



A MODIS-based perpendicular moisture index to retrieve leaf moisture content 

70 

i.e. on the inversion of the equation linking leaf biochemical and canopy biophysical 
characteristics to vegetation optical properties (Jacquemoud et al., 2000; Zarco-Tejada et 
al., 2003), address the estimation of LFMC by first exploiting the independent effect of EWT 
and DMC on vegetation reflectance to retrieve them separately, and then by calculating 
LFMC accordingly. The applicability of this method is limited by the fact that water 
absorption masks the effect of DMC, this leading to computation strategies where species 
specific values of DMC were used to constrain the inversion algorithm (Riaño et al., 2005) 
or where extensive field work on specific land covers was used to parameterise the look-up 
table used in the retrieval process (Yebra and Chuvieco, 2009c, 2009b). More practical 
approaches, i.e. not based on prior information of the observed surface, exploited the high 
dimensionality of hyperspectral measurements to retrieve LFMC with partial least squares 
regression (Li et al., 2007) and with wavelet analysis (Cheng et al., 2011). A computationally 
simpler approach is the Water Index (Peñuelas et al., 1997, 1993), which is based on the 
ratio of narrowband reflectance measurements around the leaf liquid water absorption 
feature at 970 nm; this index proved to be generally more effective than broadband indices 
in retrieving LFMC (Danson and Bowyer, 2004). 

The objective of this work was to understand to what extent spectral measurements from 
the Moderate Resolution Imaging Spectroradiometer (MODIS) on board Terra and Aqua 
satellites are able to capture the effect of LFMC variability on vegetation reflectance and 
whether this can be translated into a simple spectral index. Spectral indices have a clear 
advantage over RTM inversion methods (Dasgupta et al., 2007), since their simplicity allows 
for the near-real time processing of remote sensing data at ground stations and the fast 
delivery of produced maps to the users (Chen et al., 2005). To achieve the stated objective, 
methodologies introduced by other authors (Ceccato et al., 2002b; Dasgupta and Qu, 2009; 
Huete, 1988) for the development of spectral indices may be followed. Basically, a dataset 
of reflectance measurements from MODIS is first simulated. The effect of LFMC variability 
on simulated reflectance is then characterised. When clear patterns of spectral variation 
emerge, a spectral index can be constructed maximising its sensitivity to LFMC and, where 
possible, minimising the effect of other disturbing factors. Accuracy in LFMC retrieval is then 
evaluated against a validation dataset. 

 

4.2. Materials and methods 
4.2.1. Simulation of canopy reflectance spectra with PROSPECT and SAIL 

Simulated top of the canopy (TOC) reflectance data were produced coupling PROSPECT (leaf 
optical properties model) and SAIL (Scattering by Arbitrarily Inclined Leaves) models 
(Jacquemoud et al., 2009). PROSPECT (Feret et al., 2008; Jacquemoud and Baret, 1990) is a 
radiative transfer model (RTM) that simulates spectral reflectance and transmittance of 
plant leaves. Four parameters are required: chlorophyll a+b concentration Cab (in μg/cm2), 
EWT (in g/cm2), DMC (in g/cm2), and a leaf structural parameter N. With this model a wide 
range of leaf spectra can be simulated, corresponding to a variety of physiological 
conditions. Leaf reflectance and transmittance were scaled to TOC reflectance by using SAIL 
model (Verhoef, 1984; Verhoef et al., 2007), which requires information on leaf area index, 
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leaf angle distribution, hot-spot size, background spectrum, view geometry, and 
illumination geometry. 

To evaluate our approach against independent data, a validation dataset based on LOPEX93 
(Leaf Optical Properties Experiment 1993) database was used (Hosgood et al., 1995). The 
database includes leaf reflectance, leaf transmittance, EWT and DMC measurements for 
335 samples from 67 plant species. Leaf spectral measurements were scaled to TOC 
reflectance using the SAIL model. 

 

4.2.2. Simulation of MODIS reflectance data 

This research focused on the Moderate Resolution Imaging Spectroradiometer (MODIS) on 
board Terra (EOS AM-1) and Aqua (EOS PM-1) NASA satellites. Although other instruments 
perform measurements in the NIR and SWIR spectral ranges, MODIS exhibits a unique 
compromise among spatial resolution, radiometric characteristics, and revisit time, 
allowing the frequent mapping of surface properties at regional scale. Moreover, MODIS 
data are open access, and can be downlinked and processed at ground stations for the near 
real-time delivery of derived products. 

Each MODIS system views the entire Earth's surface almost on a daily basis, acquiring data 
in 36 spectral bands ranging from the optical to the thermal domains. The 20 spectral bands 
in the reflective range have been designed for various land, ocean, and atmosphere 
applications, with ground resolution of 250 m for bands 1 and 2, 500 m for bands 3-7, and 
1000 m for the other bands. This study focussed on land bands 1-7, providing radiance 
measurements in the visible, the near infrared, and in three spectral bands in the shortwave 
infrared (Barnes et al., 2003). 

All spectra produced by PROSPECT + SAIL were converted to MODIS reflectance using the 
instrument’s spectral sampling specifications of bands 1-7 (Xiong et al., 2006). Simulated 
datasets were finally perturbed with gaussian noise (Zarco-Tejada et al., 2003) to account 
for signal-to-noise ratio (SNR) of MODIS bands (Barnes et al., 1998). 

 

4.2.3. Development and validation of a spectral index 

The identification and characterisation of the effect of LFMC variability on MODIS 
measurements, and the development of a spectral index sensitive to this vegetation 
parameter, were based on the following steps (Figure 4.1). 

 

 

 

 

 



A MODIS-based perpendicular moisture index to retrieve leaf moisture content 

72 

 

Simulation of reflectance measurements 

An initial dataset (here referred to as dataset 1) consisting of 1000 spectra, 100 for each of 
the LFMC values between 50 and 500% in increments of 50%, was constructed. Input 
parameters to PROSPECT and SAIL models were chosen from random uniform distributions, 
limited sets of values or fixed values, as specified in Table 4.1 and Table 4.2. The adopted 
ranges were chosen to be wide enough to embrace a number of vegetation types and 
physiological conditions (Bowyer and Danson, 2004; Ceccato et al., 2002b, 2001; Cheng et 
al., 2006; Colombo et al., 2008; Danson and Bowyer, 2004; Dasgupta et al., 2007; Hao and 
Qu, 2007; Riaño et al., 2005; Yebra et al., 2008; Yebra and Chuvieco, 2009c; Zarco-Tejada et 
al., 2003). 

To simulate the values of LFMC in the specified increments, for each value of LFMC, EWT 
was first randomly chosen according to ranges in Table 4.1; the corresponding DMC value 
was then computed accordingly. The pair of values EWT + DMC was retained only if the 
calculated DMC was within the ranges in Table 4.1, otherwise a new couple of values was 
iteratively generated until the given constraints were met. 

 

Figure 4.1. Flow chart showing how the various data sets are used towards the definition and 
validation of a spectral index sensitive to LFMC. 
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Exploration of simulated data 

The points of dataset 1 were projected on all the possible spectral planes whose axes are 
couples of MODIS bands 1-7, to identify the planes where clusters of points with the same 
value of LFMC exhibit the highest separability. The separability of clusters was assessed by 
means of the Jeffries-Matusita (JM) distance (Richards, 2013). The JM distance is a statistical 
separability index whose value is asymptotic to √2, this meaning that two clusters with 
𝐽𝑀 = √2 can be discriminated with an accuracy of 100%. The plane allowing the best 
average pairwise JM distance among groups of points with the same value of LFMC was 
selected. Vegetation parameters other than LFMC causing the observed variability were 
 
Table 4.1. Values of the parameters adopted to run PROSPECT model. Cab denotes chlorophyll a+b 
concentration, EWT is the equivalent water thickness, DMC is the dry matter content, and N is a leaf 
structural parameter. U(a, b) denotes that the value of the parameter was randomly chosen from a 
continuous uniform distribution with parameters a and b. 

 N Cab (μg/cm2) EWT (g/cm2) DMC (g/cm2) 

Dataset 1 U(1, 3) U(20, 60) U(0.01, 0.07) U(0.004, 0.04) 

Dataset 2 1.5 40 U(0.01, 0.07) 
0.004 to 0.04 in 

increments of 0.006 

Dataset 3 1.5 40 
0.01 to 0.07 in 

increments of 0.01 U(0.004, 0.04) 

Dataset 4 U(1, 3) U(20, 60) 0 U(0.004, 0.04) 

 

Table 4.2. Values of the parameters adopted to run SAIL model. LAI denotes the leaf area index, and 
ALA the average leaf inclination angle. U(a, b) denotes that the value of the parameter was randomly 
chosen from a continuous uniform distribution with parameters a and b. Observation geometry is set 
accordingly to MODIS specifications with random view angle along the scan line. 

 LAI ALA 
Hot-spot 

size 
Soil 

spectrum 
Sun zenith 
angle (°) 

Dataset 1 U(0.5, 7) U(45, 75) 0.001 
Dark to 
medium U(40, 60) 

Dataset 2 4 60 0.001 Medium 45 

Dataset 3 4 60 0.001 Medium 45 

Dataset 4 U(0.5, 7) U(45, 75) 0.001 Dark to 
medium U(40, 60) 

Validation 
dataset U(0.5, 7) U(45, 75) 0.001 

Dark to 
medium U(40, 60) 
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recognised, and their effect on reflectance measurements was explored. It was expected 
that LAI might have a relevant role in this sense, where lower LAI values mean more 
exposed soil contributing to observed reflectance. 

 

Identification of LFMC isolines 

Isolines of LFMC were identified, and the effect of LAI variability on the displacement, in the 
selected plane, of points representing reflectance measurements was evaluated. 

 

Understand LFMC trajectories 

The direction of displacement of reflectance measurements when LFMC varies was 
analysed: since LFMC may vary as a consequence of variations in EWT and DMC, the 
displacements due to variations of these two parameters were explored by means of 
simulated datasets 2 and 3 (Table 4.1 and Table 4.2). In dataset 2 all parameters of the RTM 
models were fixed to a single value, except for DMC that was fixed to values between 0.004 
and 0.04 g/cm2 in increments of 0.006, while EWT was randomly chosen between 0.01 and 
0.07 g/cm2. This dataset consists of 25 spectra for each value of DMC, totalling 175 spectra. 
In dataset 3 the same fixed values of dataset 2 were chosen, with EWT varying in increments 
of 0.01 g/cm2 between 0.01 and 0.07 and DMC randomly chosen between 0.004 and 0.04 
g/cm2. This dataset consists of 175 spectra, 25 for each value of EWT. 

 

Definition of a reference line 

Once isolines of LFMC are identified, and direction of displacement of points as an effect of 
LFMC variations are understood, a reference line against which to construct the index is 
needed. Dataset 4 was used to identify the line corresponding to the spectral 
measurements of completely dry vegetation. To simulate this dataset (Table 4.1 and Table 
4.2), all PROSPECT and SAIL parameters were randomly chosen, except for EWT, which was 
fixed to 0 g/cm2 (LFMC=0%). 

 

Development of the spectral index 

A spectral index for the quantification of LFMC was defined so that in the selected spectral 
plane its variation corresponded to a displacement perpendicular to isolines of LFMC 
(Verstraete and Pinty, 1996). 

 

Validation of the spectral index 

The validation of the proposed index was performed against both the simulated dataset 
and the validation dataset based on LOPEX93. To construct the latter, leaf spectral 
measurements were scaled to TOC reflectance using the SAIL model: for each LOPEX93 



Chapter 4 

75 

sample three different TOC spectra were generated, adopting random parameters of the 
radiative transfer model as for dataset 1 (Table 4.2). A total of 1005 TOC spectral 
measurements based on LOPEX93 data were generated. 

 

4.3. Results 
4.3.1. Exploration of simulated MODIS reflectance data 

Simulated points from dataset 1 were projected in all possible spectral planes obtained 
from couples of MODIS land bands. In each plane, separability of clusters of points with the 
same value of LFMC was evaluated by calculating the average pairwise JM distance. 

Some pairs of bands show that groups of points with the same LFMC value can be identified, 
and namely band 2 (0.86 µm, further indicated as B2) – band 5 (1.24 µm, B5) and band 2 – 
band 6 (1.64 µm, B6). The dispersion of each group causes clusters to overlap with its 
neighbours; nevertheless, in these couple of bands, clusters separability is maximum among 
all possible band couples (average pairwise JM distance is 0.57 and 0.50 for B2-B5 and B2-
B6 respectively). No similar consideration could be drawn from all the other possible band 
combinations. 

Bands 2, 5 and 6 correspond to NIR and SWIR wavelengths that are used in the cited spectral 
indices of vegetation moisture. Since variations in LFMC lead to observable variations of 
vegetation reflectance, there is evidence supporting further analyses towards the definition 
of a spectral index. Besides the better separability of groups of points with the same LFMC 
value in band combination B2-B5 as compared to B2-B6, the following considerations will 
be based solely on the B2-B5 plane as most detectors of Aqua-MODIS band 6 were damaged 
at launch (Barnes et al., 2003; Wang et al., 2006; Xiong et al., 2009), thus limiting the 
applicability of any result based on measurements in this band. Nevertheless, although not 
shown, most of the results reported in this study could be repeated for the B2-B6 band 
combination. 

The observed average pairwise JM distance (0.57 in the B2-B5 spectral plane) implies a 
considerable overlapping of clusters of points with the same value of LFMC. When the 
average pairwise JM distance is calculated by considering only points characterised by 
higher values of LAI, clusters separability increases considerably, and specifically JM=0.90 
when LAI>2, JM=1.13 when LAI>4. 

The calculation of linear regressions for each cluster (Table 4.3) shows that points with the 
same value of LFMC cluster along straight lines. When a subset of points with higher LAI is 
used, regressions are stronger (Table 4.4). With decreasing values of LAI, more background 
soil is exposed, and points shift towards the soil line, i.e. towards lower reflectance values 
in band 2 and higher in band 5. This results in the larger dispersion of all points, as compared 
to those with LAI>2 and LAI>4. 

Higher values of LAI imply both a closer alignment of points with the same value of LFMC 
to a straight line, and a better separability of these clusters. Such lines shift towards lower 
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NIR and higher SWIR reflectance values with decreasing LFMC (Table 4.3 and Table 4.4). 
These considerations clearly hint at the existence of isolines of LFMC. 

 

4.3.2. Sensitivity of MODIS spectral reflectance to vegetation moisture 

By noting the slopes and 95% confidence intervals of regression lines in Table 4.3 and Table 
4.4, it can be concluded that LFMC isolines are parallel. This observation is always true when 
LFMC<200% and stays valid for higher values of LFMC only for increasing values of LAI. 
However, before a spectral index can be defined, trajectories of LFMC variations must be 
understood. To this end, datasets 2 and 3 were produced, where all PROSPECT and SAIL 
parameters were kept constant, with the only exception of EWT and DMC. In dataset 2 DMC 
assumes a few fixed values while EWT varies freely; in dataset 3 EWT assumes a few fixed 
values while DMC varies freely. These datasets were designed to show trajectories of LFMC 
when only one of the two parameters EWT and DMC varies. 

Figure 4.2 shows the regression lines (continuous) of points with constant value of DMC 
(trajectories of LFMC when only EWT varies) and regression lines (dashed) of points with 
constant value of EWT (trajectories of LFMC when only DMC varies). The variations in LFMC 
only due to a change in EWT mainly affect SWIR reflectance: an increase of EWT 
corresponds to a decrease in the reflectance in band 5 and to a limited variation in the NIR 
reflectance. When EWT is fixed and LFMC varies because of a variation in DMC, both NIR 
and SWIR reflectance change, and decrease with increasing dry matter content. 

 
Table 4.3. Coefficient of determination, slope, intercept and corresponding 95% confidence intervals 
of regression lines of simulated reflectance measurements in the B2-B5 plane, in dependence of LFMC 
values. All regressions are significant with p<0.001. 

LFMC r2 Slope Intercept 

50 0.85 0.88±0.07 0.011±0.018 

100 0.81 0.83±0.08 0.011±0.022 

150 0.79 0.90±0.09 -0.024±0.026 

200 0.82 0.86±0.08 -0.023±0.026 

250 0.73 0.78±0.09 -0.001±0.031 

300 0.76 0.72±0.08 0.018±0.029 

350 0.61 0.65±0.10 0.027±0.037 

400 0.56 0.62±0.11 0.033±0.040 

450 0.72 0.67±0.08 0.011±0.032 

500 0.52 0.51±0.10 0.071±0.038 
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Provided that in the real-world variations in LFMC might occur due to variations in both 
EWT and in DMC, these findings lead to the consideration that no predictable trajectories 
of LFMC exist in the B2-B5 plane. In turn, this implies that in the construction of a spectral 
index any direction of the displacement vector is equivalent to the others, as long as it 
crosses LFMC isolines. Maximum sensitivity is achieved when measuring LFMC variation 
perpendicularly to its isolines (Verstraete and Pinty, 1996). Since LFMC isolines are parallel 
straight lines, the desired spectral index must measure the displacement of points along a 
straight direction. 

 

4.3.3. Development and validation of a spectral index sensitive to LFMC 

A new spectral index was developed, based on the findings in the previous sections, to 
measure LFMC. Since the isolines are parallel, there is no preference among them, and it is 
correct to evaluate LFMC variations perpendicularly to them as the distance of the 
measured reflectance from an a priori identified reference line (Figure 4.3). With the 
obvious need to construct an index that is a measure of LFMC, such line can be assumed to 
be that of completely dry vegetation, i.e. LFMC=0% and EWT=0 as derived from dataset 4 
for values of LAI>4. This distance is called Perpendicular Moisture Index (PMI), and it is 
calculated as: 

𝑃𝑀𝐼 = −0.73 ∙ (𝑅7 − 0.94 ∙ 𝑅1 − 0.0028) (4. 6) 

 
Table 4.4. Coefficient of determination, slope, intercept and corresponding 95% confidence intervals 
of regression lines of subsets of simulated reflectance measurements in the B2-B5 plane characterised 
by LAI>2 and LAI>4, in dependence of LFMC values. All regressions are significant with p<0.001. 

 LAI > 2  LAI > 4 

LFMC r2 Slope Intercept  r2 Slope Intercept 

50 0.95 0.94±0.05 -0.011±0.012  0.99 0.95±0.02 -0.019±0.006 

100 0.97 0.92±0.04 -0.027±0.011  0.99 0.94±0.03 -0.038±0.008 

150 0.97 0.96±0.04 -0.054±0.012  0.99 0.92±0.03 -0.040±0.009 

200 0.96 0.96±0.04 -0.070±0.014  0.99 0.95±0.03 -0.072±0.011 

250 0.95 0.94±0.05 -0.073±0.017  0.97 0.96±0.05 -0.085±0.018 

300 0.90 0.93±0.07 -0.070±0.027  0.97 0.98±0.06 -0.110±0.023 

350 0.85 0.84±0.08 -0.059±0.030  0.96 0.94±0.05 -0.107±0.021 

400 0.83 0.83±0.09 -0.058±0.033  0.96 0.96±0.06 -0.122±0.022 

450 0.90 0.83±0.06 -0.067±0.025  0.96 0.91±0.05 -0.110±0.023 

500 0.81 0.83±0.09 -0.073±0.039  0.96 0.94±0.06 -0.131±0.027 
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where R2 and R5 are reflectance values measured in bands 2 and 5 respectively. 

The PMI is larger for larger values of LFMC. However, from the results in the previous 
sections it can be anticipated that its predictive power is dependent on the density of 
vegetation cover. The exposure of the soil background shifts points towards the soil line, 
i.e. towards isolines with lower LFMC. Thus, it can be expected that with a reduction in LAI 
the index underestimates LFMC. 

The PMI was initially validated against simulated values of LFMC (dataset 1), separately 
considering all data, data with LAI>2, and data with LAI>4. All regressions laws are linear, 
and the PMI can explain increasing percentages of LFMC variability with increasing values 
of LAI, being the coefficient of determination 0.32, 0.70 and 0.87 respectively for all data, 
data with LAI>2, and data with LAI>4. 

Subsequent independent validation was performed against LOPEX93 data scaled to canopy 
reflectance with SAIL model. In this dataset, the regression laws are logarithmic, and lower 
performance is observed as compared with validation against dataset 1; coefficients of 
determination are 0.39, 0.56 and 0.63 respectively for all data, data with LAI>2, and data 
with LAI>4. 

 

4.4. Discussion 
Vegetation moisture is the main source of variability in the SWIR (Gates et al., 1965; 
Gausman and Allen, 1973; Tucker, 1980; Woolley, 1971). In its contribution to vegetation 
reflectance, the EWT plays the role of state variable of the radiative transfer equations 
(Feret et al., 2008; Jacquemoud et al., 2009; Jacquemoud and Baret, 1990). This justifies the 
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Figure 4.2. Trajectories of LFMC variations when only one of the two parameters EWT and DMC is 
allowed to vary freely. 
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success of some spectral indices in retrieving this measure of vegetation moisture (Ceccato 
et al., 2002b; Gao, 1996; Hardisky et al., 1983; Hunt and Rock, 1989). However, the forest 
fires research community is interested in estimates of LFMC (Andrews, 2007; Carlson and 
Burgan, 2003; Finney, 1998; Hunt et al., 2013; Rothermel, 1991, 1972; Van Wagner, 1977; 
Yebra et al., 2013), which actually is the ratio of EWT and DMC, two independent state 
variables of the same equations. This has been seen as a complication in the retrieval of 
LFMC from spectral indices based on broadband remote sensing measurements in the 
optical domain (Ceccato et al., 2002b; Cohen, 1991; Gao and Goetz, 1990; Lee et al., 2007; 
Peñuelas et al., 1993; Verbesselt et al., 2007). Nevertheless, the value of an environmental 
variable can indeed be estimated if it results in an observable variation in vegetation 
reflectance that can be distinguished from other factors (Verstraete and Pinty, 1996). 

The research reported herein tried to solve the problem of LFMC estimation from MODIS 
measurements by first identifying how LFMC variations affect the reflectance in the spectral 
space of the seven land bands, and then deriving an index formula so that its isolines are 
intersected by displacement of points that occur when this property changes. Evidence is 
shown that the planes obtained by combining band 2 (0.86 µm) with bands 5 (1.24 µm) and 
6 (1.64 µm) provide clear separability for groups of points characterised by the same LFMC 
value. 

These observations are in line with previous analyses of reflectance sensitivity to vegetation 
parameters (Bowyer and Danson, 2004; Dawson et al., 1999; Mousivand et al., 2014). DMC 
and EWT largely affect vegetation reflectance in the NIR and SWIR wavelengths (Ceccato et 
al., 2002b, 2001). The more evident effect of LFMC variation in band combinations 2-5 and 
2-6, as compared to those based on band 7, is due to the fact that reflectance sensitivity to 
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Figure 4.3. Graphical representation of the measurement performed by the perpendicular moisture 
index (PMI). 
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EWT and DMC is weaker at longer SWIR wavelengths (Bowyer and Danson, 2004; 
Mousivand et al., 2014). 

Focussing on MODIS bands 2 and 5, points representative of vegetation whose LFMC is 
constant lie on straight and parallel lines, at least for high LAI values (Table 4.3 and Table 
4.4). Lines of decreasing values of LFMC are shifted towards lower reflectance values in 
band 2 and higher in band 5. This means that a point in this spectral space is displaced when 
LFMC changes. To detect and quantify such displacement, the PMI measures the distance 
of reflectance points from a reference line, that of completely dry vegetation (LFMC = 0%). 

The PMI is a measure of LFMC. The LAI appears to be the main factor influencing the quality 
of the relationship between the PMI and LFMC. Good results are achievable on a wide range 
of LFMC values when LAI>2, which is a typical condition in a large variety of vegetation 
associations prone to fires (Asner et al., 2003). With decreasing values of LAI, the accuracy 
in the PMI vs LFMC relationship decreases. This is explained by the fact that reflectance in 
the SWIR is largely affected by this factor (Bowyer and Danson, 2004; Mousivand et al., 
2014), and indeed the sensitivity to LAI is a characteristic that the PMI shares with the 
existing vegetation moisture spectral indices (Wang et al., 2008; Zarco-Tejada et al., 2003). 

Dispersion of points away from the observed isolines for lower LAI values is towards lower 
reflectance in band 2 and higher reflectance in band 5. This is due to the fact that most soils 
show reflectance values in MODIS band 5 higher than in band 2 (Gao, 1996), while dense 
green vegetation exhibits the opposite behaviour. When LAI diminishes, more soil is 
exposed to sensor view and contributes to TOC reflectance, thus causing the displacement 
of points toward lower NIR and higher SWIR reflectance. 

Table 4.3 and Table 4.4 show that the coefficient of determination of the regression lines 
of reflectance measurements in the B2-B5 plane for each simulated LFMC value (isolines of 
LFMC) decreases with increasing values of LFMC, and that this effect is more evident with 
lower values of LAI. Recalling that an increase in LFMC can be due to either an increase in 
leaf EWT or a reduction in DMC can explain this result. Indeed, the first cause implies a 
reduction in SWIR reflectance (Mousivand et al., 2014), and thus an increase of reflectance 
contrast between the leaves and the background soil, while the second increases both NIR 
and SWIR reflectance (Mousivand et al., 2014), increasing reflectance contrast in the NIR. 
Clearly, greater contrast results in a larger displacement of points towards the soil line when 
LAI diminishes. 

The soil line and the dry vegetation line appear to be parallel in our experiments. This means 
that it is not possible to introduce modifications to the index in order to make it robust to 
LAI variations; nevertheless, this finding can be taken into account within the framework of 
the specific application (Seelig et al., 2008). Both the reduction of LAI and the reduction of 
LFMC have the same effect in the B2-B5 plane, i.e. points are shifted towards the dry 
vegetation reference line. This means that when LAI is lower, the PMI underestimates 
vegetation moisture. This can be considered safe when the application of the PMI is in the 
field of fire prevention (Gunes and Kovel, 2000; Minas et al., 2012; Mohamed Shaluf, 2008), 
where a missed alarm may have worse consequences than a false alarm. 
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All the analyses leading to the development of the PMI were based on simulated data. For 
the validation of the PMI, an independent TOC reflectance dataset was constructed based 
on LOPEX93 optical measurements scaled to canopy using SAIL radiative transfer model. 
The scaling did not consider species-specific values of canopy parameters. Indeed, any 
consideration on the dependence of vegetation spectral properties on LFMC variability that 
individual species exhibit was beyond the scope of our research. The coarse resolution of 
MODIS instruments (250-500 m in the land reflective bands) does not capture the 
horizontal and vertical distribution of species within a pixel. LFMC is a property beard at 
leaf level, and the scaling of LOPEX93 data to canopy level was a mean to evaluate the 
performance of PMI against real leaf data in a variety of simulated canopy structures. 

 

4.5. Conclusions 
Broadband spectral indices of vegetation moisture developed so far are sensitive to EWT. 
These spectral indices cannot be used to produce fire danger maps and the execution of 
fire propagation models, since these require the quantification of LFMC. 

Specific patterns of points emerge in the plane of MODIS reflectance measurements in 
bands 2 and 5 when LFMC is kept constant and all other leaf, soil and canopy factors 
contributing to the observed reflectance vary freely. Points characterised by the same value 
of LFMC lay along straight parallel lines, i.e. isolines of LFMC exist in the B2-B5 plane. 
Dispersion of points away from these lines occurs at lower values of LAI. 

Isolines of LFMC are parallel lines, ordered so that a reduction of LFMC results in an increase 
in SWIR reflectance and a reduction in NIR reflectance. This led to the construction of the 
perpendicular moisture index (PMI). In a way similar to that of the perpendicular vegetation 
index (Richardson and Wiegand, 1977) in the red-NIR plane, the PMI measures the distance 
of a reflectance point in the plane spanned by MODIS bands 2 and 5 from a reference line, 
that of completely dry vegetation. In this sense, the PMI is an explicit measure of LFMC. 

In this work, the PMI was developed from a simulated dataset of vegetation reflectance, 
scaling leaf reflectance data to canopy level in the first place with an approach similar to 
that followed by Ceccato et al. (2002) for the definition of the global vegetation moisture 
index (GVMI). However, as compared to traditional vegetation moisture spectral indices, 
the PMI is specifically designed to be sensitive to LFMC. 

The PMI shows linear correlation with LFMC in the simulated ranges, and logarithmic 
correlation with real leaf measurements scaled to canopy with the SAIL radiative transfer 
model. The strength of the correlation is dependent on the density of the vegetation cover, 
as expressed in terms of LAI. This characteristic is in common with all spectral indices based 
on measurements in the SWIR. Nevertheless, good results are achievable when LAI>2. 
When LAI<2, the exposure of soil background to sensor view results in an underestimate of 
LFMC by the PMI. When interpreted with consideration to fire danger mapping, this 
limitation might result in false alarms, but not in missed alarms. 
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5. Predicting forest fires burned area and rate of spread 
from pre-fire multispectral satellite measurements4 

 

Abstract 

Operational forest fire danger rating systems rely on the recent evolution of meteorological 
variables to estimate dead fuel condition. Further combining the latter with meteorological 
and environmental variables, they predict fire occurrence and spread. In this study, live fuel 
condition was retrieved from MODIS multispectral measurements in the near infrared and 
shortwave infrared. Next, these retrievals were combined with an extensive dataset on 
forest fires in Campania (13595 km2), Italy, to determine how live fuel condition affects the 
probability distribution functions of fire behaviour characteristics. Accordingly, the specific 
objective of this study was to develop and evaluate a new approach to estimate the 
probability distribution functions of fire burned area, duration, and rate of spread as a 
function of the Perpendicular Moisture Index (PMI), whose value decreases with decreasing 
live fuel moisture content (LFMC). To this purpose, available fire data was intersected with 
MODIS 8-day composited reflectance data and, for comparison purposes, with Fire 
Weather Index (FWI) System components maps from global meteorological reanalyses, so 
to associate each fire event with the corresponding pre-fire PMI observation and current 
FWI System values. Fires were then grouped in ten decile bins of PMI and of the FWI System 
components, and the conditional probability distribution functions of burned area, fire 
duration and rate of spread were determined in each bin. Distributions of burned area and 
rate of spread vary across PMI decile bins, while no significant difference was observed for 
fire duration. Further testing this result with a likelihood ratio test confirmed that PMI is a 
covariate of burned area and rate of spread, but not of fire duration. By comparison, all FWI 
System components are a covariate of burned area and fire duration, but not of rate of 
spread. However, for burned area, the alternative model conditional to PMI retains a higher 
likelihood. An extreme event was defined as a fire whose burned area (respectively rate of 
spread) exceeds the 95th percentile of the frequency distribution of recorded fires. The 
probability distribution functions in the ten decile bins of PMI were combined to obtain a 

 
4 Based on: Maffei, C., Menenti, M., 2019. Predicting forest fires burned area and rate of spread from 
pre-fire multispectral satellite measurements. ISPRS J. Photogramm. Remote Sens. 158, 263–278.  
https://doi.org/10.1016/j.isprsjprs.2019.10.013 
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conditional probability distribution function, which was then used to predict the probability 
of extreme fires, as defined. It was found that the probability of extreme events steadily 
increases with decreasing PMI. Overall, at the end of the dry season the probability of 
extreme events is about the double than at the beginning. These results may be used to 
produce frequently updated maps of the probability of extreme events given a PMI map 
retrieved from e.g. MODIS reflectance data. 

 

5.1. Introduction 
Wildfires are a widespread factor of ecosystem disturbance (Bond et al., 2005), causing 
invaluable human casualties, negative effects on carbon sequestration and substantial 
economic loss (FAO, 2007; Montagné-Huck and Brunette, 2018; Pellegrini et al., 2018). 
Scientific evidence supports the hypothesis that climate change may alter fire dynamics 
through the direct and indirect effects it exerts on fuel moisture and availability (Pausas and 
Ribeiro, 2013; Seidl et al., 2017; Williams and Abatzoglou, 2016) and ultimately on the 
probability distribution of dependent variables such as fire occurrence, burned area and 
rate of spread (Flannigan et al., 2016; Podschwit et al., 2018; Syphard et al., 2018). 

Fire behaviour is determined by a diverse array of static and dynamic factors (Barrett et al., 
2016; Faivre et al., 2016; Falk et al., 2007; Lasslop and Kloster, 2017; Littell et al., 2016; 
Viegas and Viegas, 1994). Among these, weather is an active driver of fuel moisture (Ustin 
et al., 2009), which in turn affects ignition delay (and thus ease of inception) and flames 
propagation (Chuvieco et al., 2009; Rothermel, 1972). Indeed, fire danger models rely on 
meteorological input to process indicators of fuel water content and assess fire behaviour. 

The National Fire Danger Rating System used in the United States is a collection of fuel 
condition and fire behaviour indicators computed from meteorological measurements, fuel 
models, climate class and slope (Burgan, 1988; Deeming et al., 1977). Fuel condition 
components are a collection of descriptors of the water content of two classes of live fuels 
and four classes of dead fuels. The McArthur Forest Fire Danger Index used in Australia 
works along similar principles, but only contains one drought index related to dead fuels 
moisture (Griffiths, 1999; Keetch and Byram, 1968; McArthur, 1967). The Fire Weather 
Index (FWI) System is based on the progressive processing of meteorological measurements 
for the production of three dead fuels moisture codes and three fire behaviour indices, and 
does not include any model of live fuels moisture (Van Wagner, 1987). 

The role of live fuels moisture is indeed crucial in predicting fire behaviour, as it can inhibit 
or promote the spread of fires (Rossa et al., 2016; Rossa and Fernandes, 2017; Ustin et al., 
2009). Nevertheless, its value is not adequately represented by fire danger models as it 
depends, further to the variability of meteorological conditions, also on plant response to 
it, which is species and landscape specific (Ruffault et al., 2018). This opens to the adoption 
of Earth observation technologies in fire danger mapping (Leblon, 2005; Stow et al., 2006; 
Yebra et al., 2018, 2013), as water in leaf tissues affects the radiometric properties of live 
fuels in a distinguishable way, that can be captured by optical sensors (Bowyer and Danson, 
2004; Buitrago Acevedo et al., 2018, 2017; Hunt and Rock, 1989; Mousivand et al., 2014). 
Pixel-based mapping of fire danger would then be made possible by the wide availability of 
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instruments providing daily global coverage, such as MODIS on board Terra and Aqua 
satellites, VIIRS on Suomi NPP and NOAA-20, and SLSTR on Sentinel-3A and -3B. 

Several approaches were proposed for the use of remote sensing to evaluate fire danger. A 
few authors related indirect estimates of plant water stress to forest fires, e.g. through the 
analysis of time series of optical spectral indices (Bajocco et al., 2015; Burgan et al., 1998; 
Maselli et al., 2003), land surface temperature (LST) (Maffei et al., 2018; Menenti et al., 
2016), or an integration of both (Jang et al., 2006; Pan et al., 2016). A more direct method 
is the inversion of radiative transfer models for the estimation of water content in 
vegetation (Cheng et al., 2014; Verrelst et al., 2015; Zarco-Tejada et al., 2003), but it needs 
extensive ground measurements to constrain the solutions space (Quan et al., 2015; Riaño 
et al., 2005; Yebra et al., 2018; Yebra and Chuvieco, 2009a). A different approach is the use 
of spectral indices for the estimation of moisture content, such as the Normalised 
Difference Water Index (NDWI) (Gao, 1996), the Global Vegetation Moisture Index (GVMI) 
(Ceccato et al., 2002b), and the Perpendicular Moisture Index (PMI) (Maffei and Menenti, 
2014). 

NDWI and GVMI have been reported in literature as predictors of fire occurrence. NDWI 
was used along with remotely sensed LST and atmospheric columnar water vapour to 
predict fire danger (Abdollahi et al., 2018), while time series of this index documented the 
seasonality of fire occurrence and demonstrated good forecasting capabilities (Huesca et 
al., 2014, 2009). GVMI was used along with LST, normalised difference vegetation index 
(NDVI), topography, land cover and human settlements to predict fire occurrence (Pan et 
al., 2016), although in specific land cover types other spectral indices had a better 
performance (Cao et al., 2013). 

Both NDWI and GVMI were designed to evaluate canopy water content measured as 
equivalent water thickness (EWT, see §§ 1.5.2 and 4.1). EWT has a direct effect on the 
optical properties of vegetation, and indeed it is a parameter of leaf radiative transfer 
models such as PROSPECT (Feret et al., 2008; Jacquemoud and Baret, 1990). The more 
recently introduced PMI (Maffei and Menenti, 2014) was specifically constructed as 
sensitive to live fuel moisture content (LFMC, see §§ 1.5.2 and 4.1). This quantity expresses 
water content as a percentage of dry leaf mass. LFMC, along with the corresponding dead 
fuel moisture content, is a parameter in fire propagation models (Andrews et al., 2013; 
Finney, 1998; Rothermel, 1991, 1972), and affects probability distribution of burned area 
and rate of spread (Flannigan et al., 2016; Podschwit et al., 2018). The accuracy of a spectral 
index in retrieving biophysical quantities is typically assessed against field measurements 
(Gao et al., 2015; Ullah et al., 2014). However, in the context of the identified need to 
improve fire danger models through the estimation of LFMC (Ruffault et al., 2018), it would 
be relevant to investigate the effectiveness of PMI based estimation of LFMC in predicting 
fire behaviour characteristics that contribute to fire danger such as burned area, duration 
and spread (Dasgupta et al., 2007), and to evaluate its performance against traditional and 
trusted fire weather danger rating systems.  

The objective of this study was to develop and evaluate a new approach to estimate the 
probability distribution functions of fire burned area, duration, and rate of spread as a 
function of pre-fire PMI. To this aim, a dataset of ten years of forest fires recorded in the 
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study area of Campania, Italy, was used along PMI maps computed from MODIS reflectance 
data. The effectiveness of PMI as a covariate of fire behaviour characteristics was then 
compared against FWI System components retrieved from global meteorological reanalysis 
data. Finally, probability of extreme events conditional to ignition as a function of PMI was 
evaluated. 

 

5.2. Materials and methods 
5.2.1. Study area 

A detailed description of the study area was provided in §2.2.1. 

 

5.2.2. Data 
MODIS reflectance data 

Satellite reflectance data used in this study is the 8-day composited Aqua-MODIS product 
(MYD09A1) collection 6 at 500 m resolution (Vermote et al., 1997; Vermote and Vermeulen, 
1999). Granules covering months June to September of years 2002-2011 were downloaded 
from NASA’s Land Processes Distributed Active Archive Centre, resulting in a dataset of 163 
granules. Retrieved reflectance data were masked against MYD09A1 quality assurance 
layer, to ensure only the highest quality retrievals are retained. These correspond to band 
quality assurance bits = 0000 (highest reflectance band quality) and state quality assurance 
bits 0,1 = 00 (cloud state is clear) (Vermote et al., 2015). 

 

Fire data 

The Forest Fire Protection Information Unit of Carabinieri provided a database of 9127 fires 
that occurred in Campania between 2002 and 20115. The dataset details for each event, 
among other information, cartographic coordinates, date and time of initial spread and fire 
extinction, and final burned area. 913 fires are recorded on average each year, with a mean 
burned area of 6.2 ha (Table 5.1). Year 2007 appears to be exceptional in terms of mean 
burned area (14.7 ha), as this is more than the triple of the mean burned area of all other 
years (4.2 ha). In this sense year 2011 is representative of baseline mean burned area, 
although characterised by a high fire occurrence. 99.8% of fires are of anthropic source, 
either arson or unintentional. The phenomenon peaks in the summer season, with 82% of 
fires recorded between June and September. 

Fires in the dataset were selected for further analyses based on land cover and month of 
the year. To this purpose, data points were first intersected with a CORINE Land Cover (CLC) 
map (European Environment Agency, 2007) to select fires that occurred in natural areas 
only (Table 5.2). CLC maps are updated every six years since 2000, so fires were intersected 
with the closest prior land cover map. Finally, only fires occurring between June and 

 
5 This is a subset of the fire data used in Chapter 2 to characterise the fire regime in the study area. 
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September were selected, leading to a final number of 5005 fires retained for subsequent 
analyses. 

This research focussed on burned area, fire duration and rate of spread as fire behaviour 
characteristics potentially related to remote sensing observations of vegetation moisture 
and meteorological fire danger indices. While burned area is explicitly available as a field in 
the provided database, the latter two variables were computed from data. Fire duration 
was evaluated as the difference, in hours, between fire inception and extinction. Rate of 
spread was calculated from burned area and fire duration in the simplified assumption of a 
circular fire growing at a constant rate in every direction throughout its duration on a flat 
and uniform surface. 

Burned area, fire duration and rate of spread span over several orders of magnitude, and 
their distributions appear to be extremely skewed. Prior to any further analysis and to 
facilitate model fitting, their observations were log-transformed base 10 and shifted, so to 
have positive values only. 

The Fire Weather Index (FWI) System 

The Fire Weather Index (FWI) System is a collection of six indicators, computed from daily 
measurements of 24-hour cumulated precipitation, wind speed, relative humidity and air 
temperature to represent the effect of dead fuels moisture content and of wind on fire 
behaviour in a standardised fuel type and in no slope conditions (Van Wagner, 1987). It is 
composed of: Fine Fuel Moisture Code (FFMC), Duff Moisture Code (DMC) and Drought 
Code (DC), which are representative of the moisture content of three different classes of 
dead fuels; Initial Spread Index (ISI), providing a measure of rate of spread, independently 
 
Table 5.1. Summary statistics of fires recorded in the study area between 2002 and 2011. 

Year Number of 
fires 

Mean burned area 
(ha) 

Proportion of fires exceeding 95th percentile 
of burned area 

2002 310 3.8 1.9 % 

2003 1323 4.1 2.3 % 

2004 803 3.9 2.5 % 

2005 669 2.9 1.2 % 

2006 423 4.1 3.5 % 

2007 1757 14.7 13.4 % 

2008 776 4.4 3.6 % 

2009 895 5.8 5.6 % 

2010 537 3.7 1.9 % 

2011 1634 4.2 3.0 % 
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of the variable quantity of fuels; Build-Up Index (BUI), a descriptor of the fuels available for 
combustion; Fire Weather Index (FWI), a comprehensive indicator related to fire intensity. 
Further details on the FWI System were provided in §1.4.3.  

In this research, FWI layers were retrieved from the Global Fire Weather Database (Field et 
al., 2015). These layers are computed from NASA Modern Era Retrospective Analysis for 
Research and Applications version 2 global meteorological reanalyses of air temperature, 
relative humidity, wind speed and precipitation (Molod et al., 2015), and distributed at a 
resolution of 0.25° ´ 0.25° (about 21´28 km2 at the latitude of the study area). 

 

5.2.3. The Perpendicular Moisture Index 

The Perpendicular Moisture Index (PMI) was developed from the observation that in a 
plane reporting MODIS reflectance at 0.86 µm (band 2) and 1.24 µm (band 5), isolines of 
LFMC are straight and parallel (Maffei and Menenti, 2014). The PMI is thus evaluated as the 
distance of reflectance points from a reference line: 

𝑃𝑀𝐼 = −0.73 ∙ o𝑅0.19:; − 0.94 ∙ 𝑅,.<=:; − 0.028p (5. 1) 

In this sense, PMI is a direct measure of LFMC, with higher values corresponding to higher 
moisture content. 

 

 
Table 5.2. CORINE Land Cover (CLC) classes associated with fires for subsequent analyses. 

CLC code Description 

231 Pastures 

243 Land principally occupied by agriculture, with significant areas of natural 
vegetation 

311 Broad-leaved forest 

312 Coniferous forest 

313 Mixed forest 

321 Natural grassland 

323 Sclerophyllous vegetation 

324 Transitional woodland shrub 

333 Sparsely vegetated areas 

334 Burnt areas 
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5.2.4. Parametric distributions of fire characteristics 

To evaluate the distribution of fire behaviour characteristics conditional to PMI and FWI 
System components, parametric distributions describing burned area, fire duration and 
rate of spread in the study area were first identified. Tested distributions were selected 
from existing literature (Baker, 1989; Corral et al., 2008; Cumming, 2001; Haydon et al., 
2000; Moritz, 1997; Reed and McKelvey, 2002; Weber and Stocks, 1998), and included 
normal, log-normal, exponential, gamma, generalised extreme value (GEV) and Weibull. 
Available fire data were fitted to the named distribution through the minimisation of the 
Anderson-Darling distance (Anderson and Darling, 1954), and the closest fitting model for 
each fire characteristic was retained as a basis for further analyses (Hernandez et al., 2015; 
Maffei et al., 2018). 

 

5.2.5. Conditional distributions of fire characteristics 

PMI maps were produced from available MYD09A1 data and sampled at fire locations on 
the compositing period prior to the event. Similarly, maps of the six FWI System 
components were sampled on the day of the event. This resulted in each fire in the 
database being associated with the corresponding PMI recorded in the raster cell where it 
occurred in the antecedent 8-day MODIS compositing period as well with the corresponding 
daily value of the six FWI System components in the respective raster cell. 

To understand whether PMI and the six FWI System components may be considered a 
covariate of fire characteristics, their observations were divided in ten decile bins. The 
parameters of the corresponding distributions were then retrieved in each bin with the 
Anderson-Darling maximum goodness of fit criterion, and their 95% confidence intervals 
were determined by means of 1000 bootstrap estimations (Hernandez et al., 2015; Maffei 
et al., 2018).  

To assess the significance of observed distribution parameters across the decile bins, a 
likelihood ratio test was performed comparing, for PMI and for each of the FWI System 
components, the sum of the likelihoods of the ten models fitted in the individual bins 
(alternative models) to the likelihood of the unconditional model fitting all log-transformed 
burned area, fire duration and rate of spread data (null models). Test significance was set 
at 0.05. 

 

5.2.6. Probability of extreme events conditional to ignition 

The identified conditional probability distribution functions were further used to evaluate 
the probability of extreme events conditional to ignition as a function of PMI. Probabilities 
were computed by modelling the dependence of the corresponding distribution 
parameters on PMI. In this study, an event was considered extreme if it exceeded the 95th 
percentile of burned area, fire duration and rate of spread values observed in the study 
area. The 95th percentile of burned area of summer fires in natural areas is 30.0 ha, of fire 
duration is 28.2 h, of rate of spread is 48.4 m/h. 
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5.3. Results 
5.3.1. Temporal and spatial variability of PMI 

Maps of PMI exhibit significant inter- and intra-annual variability, as for example the four 
PMI maps representing compositing periods 4-11 July and 5-12 August of years 2007 and 
2011 (Figure 5.1). Spatial patterns of PMI in the 5-12 August period show lower values as 
compared to 4-11 July in both years, corresponding to lower LFMC. Moreover, both 
compositing periods show in 2007 lower values than the corresponding periods in 2011. 

To synthetically visualise seasonal evolution, median PMI was computed in each of the 
selected land cover classes (Table 5.2) across the dry season of years 2002 to 2011. While 
maps are characterised by a continuity of values, discretised in raster cells, this synthesis 
approach has the advantage of highlighting differences across land cover classes in 
observed PMI values (and indirectly LFMC). A consistent reduction of PMI, corresponding 
to a reduction in LFMC, is observed throughout the dry season for all classes in all years, as 
for example in 2007 and 2011 (Figure 5.2). The dynamic of such reduction shows inter-
annual variability, as it can be here noticed with the higher medians (higher LFMC) recorded 
in 2011. 

The observed diverse median values recorded in each CLC class are reflected in the PMI 
values recorded at fire locations (Figure 5.3). Indeed, lower PMI observations (and thus 
lower LFMC) are recorded at fires occurring in pastures and natural grasslands. Conversely, 
fires tend to be recorded with higher PMI values (higher LFMC) in broad leaved, coniferous, 
and mixed forests. 

 

5.3.2. Probability models of fire characteristics 

Log-transformed burned area, fire duration and rate of spread were fitted to normal, log-
normal, exponential, gamma, GEV and Weibull distributions, and the corresponding 
Anderson-Darling statistics are reported in Table 5.3. Normal is the closest fitting 
distribution of log-transformed burned area, while GEV is the closest model for log-
transformed fire duration and Weibull for log-transformed rate of spread. The 
corresponding Q-Q plots are reported in Figure 5.4. 

 

5.3.3. Conditional distributions of fire characteristics 

The mean of the normal distribution of log-transformed burned area conditional to PMI in 
ten decile bins shows a significant (p<0.001) decreasing (r2=0.80) trend with increasing PMI 
(Figure 5.5a). The variation of standard deviation appears non-significant when evaluated 
against a linear model, and the confidence intervals of this parameter are consistent with a 
constant value across most PMI bins (Figure 5.5b). For log-transformed fire duration, no 
significant trend was observed in location and shape of GEV distribution conditional to PMI, 
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and a weak increasing trend (r2=0.53, p<0.05) in scale (Figure 5.6). Both scale and shape of 
the Weibull distribution of log-transformed rate of spread show significant (p<0.001) 
decreasing trends (r2=0.96 and r2=0.84 respectively) with increasing PMI (Figure 5.7). These 
observations support the idea that PMI is a covariate of burned area and rate of spread, 
while its contribution to fire duration probability distribution is weak or not significant. 

Figure 5.1. Selected PMI maps derived from Aqua-MODIS 8-day reflectance composites showing intra- 
and inter-annual variability: 4-11 July 2007 (a), 5-12 August 2007 (b), 4-11 July 2011 (c), 5-12 August 
2011 (d). 



Predicting burned area and rate of spread from pre-fire multispectral measurements 

92 

The variability of the parameters of the normal distribution of burned area in ten decile bins 
of FWI System components support the idea that all six components are a covariate of 
burned area (Figure 5.8). Mean increases linearly with all components with p<0.001 and r2 
ranging between 0.84 and 0.96, substantially covering the same range of values covered 
against PMI. A significant linear variation of the standard deviation is observed only with 
DMC and BUI (p<0.001 and p<0.01 respectively). Similar observations can be drawn for fire 
duration, with location, scale, and shape of GEV distribution varying linearly with the 
respective FWI System components with significance at least p<0.001 for location and at 
least p<0.05 for scale and shape (Figure 5.9). The contribution of FWI System components 
to the variability of the Weibull distribution of log-transformed rate of spread is less evident 

Figure 5.1. (continued) 
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as compared against the other fire behaviour characteristics (Figure 5.10). Scale shows 
significant trends only conditional to DC (r2=0.59, p<0.01) and BUI (r2=0.67, p<0.01), while 
shape shows significant trends conditional to DMC (r2=0.50, p<0.05), DC (r2=0.66, p<0.01) 
and BUI (r2=0.46, p<0.05) only. Moreover, the observed trends show limited sensitivity as 
compared to PMI (Figure 5.7). 

The likelihood ratio test (Table 5.4) confirms that all models conditional to PMI and to the 
six FWI System components (alternative models) allow the rejection of the null model fitting 
all log-transformed burned area data. Among the alternative models, PMI ensures the 
highest summed likelihood. The test confirms that the alternative fire duration model 
conditional to PMI fails to reject the null model, while DMC shows the highest summed 
likelihood among the FWI System components. FFMC, DMC and DC fail to reject the null 
model of rate of spread, while PMI ensures the alternative model with the highest 
likelihood. These results confirm PMI is a covariate of burned area and rate of spread, but 
not of fire duration. 
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Figure 5.2.Evolution of the median PMI value in CLC classes (Table 5.2) during the dry season in two 
selected years: 2007 (a), 2011 (b). 
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Figure 5.3. Boxplot of PMI observed at fire location in each CLC class (Table 5.2). 
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5.3.4. Probability of extreme events conditional to ignition 

From the observations above, a linear relationship was adopted to model the dependence 
of the mean of the normal distribution of log-transformed burned area on PMI, while for 
the standard deviation the constant value of the general model was adopted (Figure 5.5). 
For log-transformed rate of spread, a linear model was adopted for both scale and shape of 
the Weibull distribution (Figure 5.7). The resulting conditional probabilities over a range of 
PMI values are plotted in Figure 5.11. With decreasing PMI (and thus decreasing LFMC) the 
probability of a fire larger than 30 ha conditional to ignition increases from 1.8% to 7.4%. 
Similarly, the probability of a rate of spread higher than 48.4 m/h conditional to ignition 
raises from 1.2% to 10.5%. 

 

 

 
Table 5.3. Anderson-Darling statistic values for tested distributions. Lower values indicate a closer fit. 

Model Log-transformed 
burned area 

Log-transformed 
fire duration 

Log-transformed 
rate of spread 

Normal 7.2 52.3 20.3 

Log-normal 16.7 20.4 40.8 

Exponential 1347 1387 1559 

Gamma 11.0 28.7 33.1 

Generalised Extreme 
Value (GEV) 

10.5 10.5 39.6 

Weibull 25.2 134 8.2 
 

2

4

6

2 4 6
Theoretical quantiles

Em
pi

ric
al

 q
ua

nt
ile

s
(a)

2

3

4

2 3 4
Theoretical quantiles

Em
pi

ric
al

 q
ua

nt
ile

s

(b)

2

3

4

2 3 4
Theoretical quantiles

Em
pi

ric
al

 q
ua

nt
ile

s

(c)

Figure 5.4 Q-Q plots of the normal distribution of log-transformed burned area (a), of the GEV 
distribution of log-transformed fire duration (b) and of the Weibull distribution of log-transformed rate 
of spread (c). Red circles indicate the deciles of the distributions. 



Chapter 5 

95 

 

5.4. Discussion 
This study had the stated objective of developing and evaluating a new approach to 
estimate the probability distribution functions of fire behaviour characteristics as a function 
of PMI. Those investigated in this study, as allowed by the available fire data, included rate 
of spread, burned area and duration. With climate change altering weather patterns 
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Figure 5.5. Plots of mean (a) and standard deviation (b) of normal distribution of log-transformed 
burned area, and their 95% confidence intervals, in ten decile bins of PMI. Regression lines refer to the 
estimated parameters. 
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Figure 5.6. Plots of location (a), scale (b) and shape (c) of GEV distribution of log-transformed fire 
duration, and their 95% confidence intervals, in ten decile bins of PMI. Regression lines refer to the 
estimated parameters. 
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Figure 5.7. Plots of scale (a) and shape (b) of Weibull distribution of log-transformed rate of spread, 
and their 95% confidence intervals, in ten decile bins of PMI. Regression lines refer to the estimated 
parameters. 
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worldwide, and ultimately affecting fire regimes (Seidl et al., 2017), there is an increasing 
need to improve fire danger rating models and use synergistically the information they 
deliver (Chowdhury and Hassan, 2015a; Ruffault et al., 2018; Yebra et al., 2013). To support 
their preparedness activities, fire managers are interested in predicting fire occurrence and 
behaviour. Our approach, as based on probabilities of event properties rather than on their 
deterministic modelling, suits the need to predict fire danger. 

Precondition for fire occurrence is the ease of ignition, which is determined by dead fuel 
moisture content (Aguado et al., 2007; Bianchi and Defossé, 2014; de Groot et al., 2005). 
Operational fire danger rating systems estimate this parameter from meteorological 
measurements (Burgan, 1988; Deeming et al., 1977; Keetch and Byram, 1968; McArthur, 
1967; Van Wagner, 1987). Fire behaviour depends on a diverse array of factors, among 
which the moisture content of both dead and live fuels plays a significant role as it directly 
affects flame propagation (Rothermel, 1972). Vegetation moisture content is determined 
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Figure 5.8. Plots of mean and standard deviation of normal distribution of log-transformed burned 
area, and their 95% confidence intervals, in ten decile bins of the Fire Weather Index (FWI) System 
components: FFMC (a, b), DMC (c, d), DC (e, f), ISI (g, h), BUI (i, j), FWI (k, l). Regression lines refer to 
the estimated parameters. 
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by plant active response to weather conditions as regulated by transpiration, and by dry 
mass changes associated with phenology, both processes being species specific. For this 
reason, the simplified approach for the estimation of LFMC in fire danger models results in 
lack of generality (Jolly and Johnson, 2018; Nolan et al., 2018; Pellizzaro et al., 2007b; 
Ruffault et al., 2018). 

In this research the Perpendicular Moisture Index (PMI) was used as a measure of LFMC. 
Indeed, remote sensing measurements in the near infrared and in the shortwave infrared 
allow for the quantification of water content in leaf tissues (Gates et al., 1965; Gausman 
and Allen, 1973; Tucker, 1980; Woolley, 1971). Among the various broadband spectral 
indices of vegetation moisture, the focus on the PMI is motivated by its initial development 
with respect to general spectral index development methods (Ceccato et al., 2002b; 
Dasgupta and Qu, 2009; Huete, 1988; Verstraete and Pinty, 1996) maximising its sensitivity 
to LFMC variations (Maffei and Menenti, 2014). This feature allows for its use along with 
existing fire danger models. Our approach is opposed to that of the Wildland Fire 
Assessment System services of the US Forest Service, which is based on the processing of 
time series of the NDVI for the evaluation of relative greenness (Preisler et al., 2009). 
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Figure 5.8. (continued) 
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Indeed, the Fire Potential Index produced by the Wildland Fire Assessment System is a 
predictor of fire occurrence, and is not integrated in fire behaviour components of the 
National Fire Danger Rating System (Chowdhury and Hassan, 2015a). 

The analyses were conducted in the study area of Campania (13595 km2), an Italian region 
characterised by the diversity of its landscape and listed as one of the most fire prone in 
the Mediterranean (Chapter 2). Fire data was provided by Carabinieri, a law enforcement 
agency, and as such it can be considered official and correct. Provided data points 
correspond to the centroid of the burned area, but the exact burnt scar perimeters were 
not part of the dataset. While in general this might arise concerns on positional accuracy of 
the available coordinates against gridded MODIS reflectance composites, it must be 
observed that fire regime is dominated by many small fires, and indeed only 4.5% of fires 
in the database resulted in a burned area larger of a 500 ´ 500 m2 MODIS pixel, and 0.7% 
larger than 1 km2. This means that positional accuracy of fire data is substantially of the 
same order of magnitude of positional accuracy of MODIS data (Wolfe et al., 2002). Adding 
to this, because of the coarse MODIS resolution, the PMI value associated with each fire 
does not correspond to the PMI value of the specific vegetation patch where fire was 
ignited. This is not relevant for the purpose of this study, as the retrieved PMI was hereby 
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Figure 5.9. Plots of location, scale, and shape of GEV distribution of log-transformed fire duration, and 
their 95% confidence intervals, in ten decile bins of the Fire Weather Index (FWI) System components: 
FFMC (a, b, c), DMC (d, e, f), DC (g, h, i), ISI (j, k, l), BUI (m, n, o), FWI (p, q, r). Regression lines refer to 
the estimated parameters. 
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regarded as a measure of the environmental conditions in the cell including the centroid of 
the burned area (Pyne et al., 1996). This is consistent with our use of PMI values to estimate 
the parameters of the probability distribution functions of fire characteristics applying to a 
cell, rather than for the construction of deterministic models linking satellite observations 
of LFMC to burned area and rate of advancement of flames. 

For its nature, the fires dataset does not contain information on fire behaviour. However, 
it reports burned area and duration, while rate of spread was computed from these factors 
under the simplified assumption of a circular fire growing at a constant rate in every 
direction throughout its duration on a flat and uniform surface. Rate of spread is generally 
defined as “the relative activity of a fire in extending its horizontal dimensions”, and the 
way it is expressed depends on the intended use of this information (FAO, 1986). As used 
in this research, rate of spread is the rate of advancement of fire perimeter, in metres per 
hour. This quantity does not directly relate to the local rate of advancement of flames. 
Indeed, the latter is affected by several factors including land cover, topography, and winds. 
As defined in this study, rate of spread is rather a measure of the average growth rate of a 
fire and, in this sense, it is considered for its contribution to the difficulty to control fires, 
and ultimately fire danger. In fact, fire danger models are aimed at segmenting landscape 
in fire danger classes and not at modelling the propagation of flames. 
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Figure 5.9. (continued) 
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Fires in the database were associated with the PMI values recorded in the pre-fire 8-day 
MODIS compositing period. The choice of sampling PMI from the antecedent compositing 
period was dictated by the need to ensure reflectance data is not contaminated by burnt 
scar, while simulating a typical operational scenario where this MODIS product would be 
used in the period building towards the availability of the following composite. The length 
of the compositing period and the use of the pre-fire composited granule do not pose a 
problem with regards to variations in LFMC. Indeed, vegetation moisture is not subject to 
abrupt changes over short periods of time (Leblon et al., 2001; Vicente-Serrano et al., 2013). 
With operational scenarios in mind, FWI maps were sampled on the day of the event, as 
this type of product is typically available on a daily basis and produced from weather 
forecasts. 

Spatial patterns of PMI show clear seasonal and interannual variability, as for the example 
shown in Figure 5.1. Moreover, the temporal evolution of the median PMI per land cover 
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Figure 5.10. Plots of scale and shape of Weibull distribution of log-transformed rate of spread, and 
their 95% confidence intervals, in ten decile bins of the Fire Weather Index (FWI) System components: 
FFMC (a, b), DMC (c, d), DC (e, f), ISI (g, h), BUI (i, j), FWI (k, l). Regression lines refer to the estimated 
parameters. 
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class shows a steady decreasing trend throughout the dry season in each observation year, 
although at a different rate, with Figure 5.2 reporting the examples of years 2007 and 2011. 
This observation corresponds to a reduction of LFMC throughout the dry season, and is in 
line with findings on the seasonal evolution of LFMC in Mediterranean ecosystems (Nolan 
et al., 2018; Pellizzaro et al., 2007a, 2007b; Ruffault et al., 2018). The increase in PMI, and 
thus in LFMC, observed in September 2011 is likely due to abundant rainfall registered in 
the region (data from http://agricoltura.regione.campania.it/meteo/agrometeo.htm, last 
accessed 9th September 2021). 

Fire events are recorded at PMI values that appear to depend on land cover classes (Figure 
5.3). The highest PMI values, corresponding to higher LFMC, are observed in coniferous 
forests whereas the lowest values are observed in pastures. This result was expected 
(Barrett et al., 2016; Faivre et al., 2014) and it is due to the varying effect of species 
composition and structure on their flammability (Dimitrakopoulos, 2001; Dimitrakopoulos 
and Panov, 2001; Dimitrakopoulos and Papaioannou, 2001). 
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Figure 5.10. (continued) 
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This study is based on the initial identification of the probability distribution functions fitting 
available data on burned area, fire duration and rate of spread (Hernandez et al., 2015; 
Maffei et al., 2018). Several probability models fitting fire data are reported in literature 
(Baker, 1989; Corral et al., 2008; Cumming, 2001; Haydon et al., 2000; Moritz, 1997; Reed 
and McKelvey, 2002; Weber and Stocks, 1998). Indeed, fire behaviour is determined by a 
wide array of factors, most of which are related to the specific physical and environmental 
conditions of the area under investigation. This suggested the ad hoc identification of the 
probability distributions that best adapted to describe fire characteristics as shaped by the 
unique combination of landscape and environmental factors in Campania (Cui and Perera, 
2008; Reed and McKelvey, 2002). It was found that log-transformed burned area is 
described by a normal distribution, log-transformed fire duration by a GEV distribution, and 
log-transformed rate of spread by a Weibull distribution. 

The mean of the normal distribution of log-transformed burned area conditional to PMI 
shows a significant decreasing linear trend, whereas the standard deviation can safely be 
assumed to be constant (Figure 5.5). This would be expected, as a lower moisture content 
leads to a quicker propagation of flames and ultimately to a larger burned area (Rothermel, 
1972). Likelihood ratio test (Table 5.4) confirms that the summed likelihood of the ten 
models constructed in decile bins of PMI (alternative model) allows the rejection with 
significance 0.05 of the null model where PMI is not a covariate of burned area. In other 
terms, the alternative model is a better probability model for observed burned area. 
Overall, these findings confirm that PMI is a covariate of burned area. Rate of spread shows 
similar results, with both parameters of the Weibull distribution conditional to PMI 
reporting decreasing trends (Figure 5.7) and the likelihood ratio test confirming rejection of 
the unconditional model (Table 5.4). 

Scale is the only parameter of the GEV distribution of log-transformed fire duration 
exhibiting a significant trend across the ten decile bins of PMI, yet over a limited range of 
values (Figure 5.6). Indeed, confidence intervals of this parameter are consistent with a 
constant value across most PMI bins. In fact, the alternative (conditional) model fails to 
reject the null model (Table 5.4), and PMI can’t be considered a covariate of fire duration. 

These comments support the potential role of remote sensing measurements in 
contributing to fire danger mapping, as probability distributions of burned area and rate of 
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Figure 5.11. Modelled probability of extreme events, conditional to ignition, as a function of PMI: 
probability of fires larger than 30 ha (a); probability of rate of spread higher than 48.4 m/h (b). 
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spread are clearly affected by PMI variability. This is the same effect that would be expected 
from the variability of fuel moisture content (Flannigan et al., 2016; Podschwit et al., 2018; 
Syphard et al., 2018). This potential was further assessed through comparison with FWI. 
The reanalysis data adopted in this study has a resolution of 0.25° ́  0.25° (about 21´28 km2 
at the latitude of the study area), while operational services are available at a resolution of 
10 km (San-Miguel-Ayanz et al., 2018). This results in a substantial lack of detail, as opposed 
to MODIS reflectance data available at 500 m resolution. However, resolution of this FWI 
data is still capable of capturing broad weather differences typically occurring in the study 
area, especially across its geomorphologic and climatic East-West gradient (Amato and 
Valletta, 2017; Fratianni and Acquaotta, 2017). 

The mean of the normal distribution of log-transformed burned area conditional to the six 
FWI System components increases with all of them, while standard deviation can be 
assumed constant, as justified by most confidence intervals for all indices (Figure 5.8). All 
FWI System components were designed on individual scales, but with the clear meaning of 
higher values corresponding to higher danger. This finding implies that at increasing danger 
values the mean burned area of occurred fires was higher. The closer fit with fire behaviour 
indices can be explained by the fact that ISI, BUI and ultimately FWI combine information 
from drought indices and weather inputs, and thus tend to be better indicators of several 
aspects of forest fires (Van Wagner, 1987). 

A similar observation can be drawn for log-transformed fire duration (Figure 5.9), where 
the variability of the parameters of the GEV distribution conditional to FWI System 
components justify increasing probability of longer fire duration with increasing danger, 
and where BUI and FWI show the closest fits. This is reflected in the corresponding 
likelihood ratio tests, with all conditional distributions (alternative models) rejecting the 

 
Table 5.4. Results of the likelihood ratio test. Null model is the one fitting all data. Alternative model 
is the collection of ten models in decile bins of the candidate covariate. Significance level is 0.05. In 
bold the alternative models showing the highest likelihood for each fire characteristic. 

 Burned area Duration Rate of spread 

PMI Rejection Non-rejection Rejection 

FFMC Rejection Rejection Non-rejection 

DMC Rejection Rejection Non-rejection 

DC Rejection Rejection Non-rejection 

ISI Rejection Rejection Rejection 

BUI Rejection Rejection Rejection 

FWI Rejection Rejection Rejection 
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null model, and the FWI System components showing to be a covariate of fire duration 
where PMI is not (Table 5.4). 

The relationship between FWI System components and the parameters of the Weibull 
distribution of log-transformed rate of spread shows some ambiguities, with no trends 
against FFMC, ISI and FWI, and slightly decreasing trends against DMC, DC, and BUI (Figure 
5.10). The latter result is counterintuitive, as is corresponds to a substantial decrease in rate 
of spread with increasing fire danger. Moreover, it contrasts with findings against PMI, 
where rate of spread increases with decreasing PMI (Figure 5.5). In fact, BUI is an indicator 
of fire behaviour and its value, along with its contributing factors DMC and DC, slowly 
increases throughout the dry season. This means that other seasonal dependent factors 
relevant to rate of spread, such as winds, might be having a predominant effect with BUI 
and the two moisture codes here acting as a proxy for them (Van Wagner, 1987). 

The likelihood ratio tests on the probability models of rate of spread show that the 
alternative models conditional to FFMC, DMC and DC fail to reject the null model, as 
opposed to those conditional to ISI, BUI and FWI (Table 5.4). The most problematic are the 
alternative models conditional to ISI and FWI, which allow the rejection of the 
corresponding null models although conditional model parameters do not exhibit any 
significant trend. The result of the likelihood ratio test may be explained by an overfitting 
caused by the wide variability observed in the values of the conditional shape across the 
bins (Figure 5.10 h and l). Indeed, rejection of the null model does not directly imply that 
the alternative model is to be preferred. On the other side, the alternative model 
conditional to DC fails to reject null model, despite the significant trends observed in both 
shape and scale (Figure 5.10 e and f). In this case, it can be observed that a constant value 
fits most of the confidence intervals in both parameters. The latter comment also applies 
to BUI (Figure 5.10 i and j), although the corresponding alternative model allows for the 
rejection of the null model. Overall, these notes contrast with the net trend of parameters 
conditional to PMI and with their narrower confidence intervals (Figure 5.7). In fact, the 
alternative model conditional to PMI shows a likelihood higher than any FWI component 
(Table 5.4). 

These results allow the computation of actionable information (Preisler et al., 2004) in the 
form of probability of extreme events conditional to ignition as a function of PMI (Figure 
5.11). Clearly, forest fires in the study area are relatively small as compared to other areas 
worldwide. Yet defining as extreme events those that are above the 95th percentile in terms 
of burned area or rate of spread is appropriate in this specific context, as it refers to the 
most demanding events the local authorities are faced with in terms of deployed resources 
for their containment in a highly anthropized and fragmented landscape. Bearing in mind 
that several other factors contribute to fire behaviour, and thus to the probability 
distribution functions of burned area and rate of spread, it is here observed an increasing 
probability of extreme events conditional to ignition with a reduction in PMI, and thus in 
LFMC. This is in line with expectations, and indirectly confirms the role of LFMC in driving 
fire behaviour (Nolan et al., 2016a; Pimont et al., 2019; Ruffault et al., 2018). When 
compared against the observed evolution of median PMI across the fire season (Figure 5.2), 
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the probability of extreme events at the end of the fire season is about the double than at 
the beginning. 

 

5.5. Conclusions 
This study demonstrated that satellite observations of LFMC by means of the PMI 
contribute to the prediction of the probability distributions of forest fires burned area and 
rate of spread, and that probability distribution functions conditional to PMI describe 
observations with a higher likelihood than the unconditional models. In other terms, it was 
demonstrated that PMI is a covariate of both burned area and rate of spread. Remote 
sensing measurements in the solar spectrum are thus a viable mean to complement existing 
fire danger mapping tools, contributing to the prediction of the probability of extreme 
events conditional to ignition. 

Analyses described herein were performed on MODIS data. However, any sensor collecting 
measurements in the near infrared and shortwave infrared can be used to compute the 
PMI. Adding to MODIS, daily global observations are available from the two pairs of VIIRS 
and SLSTR sensors. This enables the daily availability of PMI maps at a resolution that is one 
order of magnitude higher than existing operational fire danger services based on 
meteorological data (Burgan, 1988; San-Miguel-Ayanz et al., 2012). Similar bands are also 
available in higher resolution sensors such as OLI on board Landsat 8 and MSI on Sentinel-
2A and -2B, with resolutions of 30 and 10-20 m respectively. The development of an 
harmonised Landsat and Sentinel-2 reflectance product (Claverie et al., 2018) is indeed 
supporting the synergistic use of these platforms, towards a global mapping of vegetation 
properties contributing to fire danger at a spatial resolution that is three orders of 
magnitude higher than operational services, although with longer revisit times as compared 
to coarser resolution optical sensors. 

The study was conducted on a specific study area, for which ad hoc probability distribution 
functions fitting fire data were identified. The need to determine site-specific statistical 
models is acknowledged in the scientific literature (Cui and Perera, 2008; Reed and 
McKelvey, 2002), suggesting that the applicability of a single global statistical model is 
unlikely. Nevertheless, the method developed in our study can be implemented elsewhere, 
as long as similar fire data is available to identify the local probability distribution functions. 
This is the case of several regional or national fire inventories that are either publicly 
available on the web, e.g. the Prométhée database in Mediterranean France, the Instituto 
da Conservação da Natureza e das Florestas (ICNF) fire inventory in Portugal, and the United 
States Geological Survey (USGS) fire occurrence data in the USA, or are provided upon 
request by relevant authorities, e.g. the Forest Fire Protection Information Unit of 
Carabinieri in Italy and the National Statistical Service in Greece. Such data, along satellite 
retrievals of PMI, would then serve as a basis for the construction of the local probability 
distribution functions of burned area and rate of spread conditional to PMI. This in turn 
would allow the mapping of the probability of events exceeding any given threshold, as 
deemed relevant by fire managers. From an application point of view, fire management and 
preparedness activities are conducted at regional scales, suggesting that the 
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implementation of regional models for the integration of satellite retrievals in fire danger 
mapping systems is a viable option. 
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6. Combining multi-spectral and thermal remote sensing 
to predict forest fire characteristics6 

 

Abstract 

Forest fires preparedness strategies require the assessment of spatial and temporal 
variability of fire danger. While several tools have been developed to predict fire occurrence 
and behaviour from weather data, it is acknowledged that fire danger models may benefit 
from direct assessment of live fuel condition, as allowed by Earth Observation technologies. 
In this study, the performance of pre-fire observations of land surface temperature (LST) 
anomaly and of the Perpendicular Moisture Index (PMI) in predicting fire characteristics 
was evaluated against the Fire Weather Index (FWI) System, a fire danger model adopted 
in several areas worldwide. To this purpose, a database of forest fires recorded in Campania 
(13,595 km2), Italy, was combined with MODIS retrievals of LST anomaly and PMI, and with 
FWI maps from NASA’s Global Fire Weather Database. Fires were grouped in decile bins of 
LST anomaly, PMI and FWI System components, and probability distribution functions of 
burned area, fire duration and rate of spread were fitted in each bin. The dependence of 
probability model parameters on LST anomaly, PMI and FWI System components was 
assessed by means of trend analysis (coefficient of determination and p-value of the linear 
fit, Sen’s slope and Mann-Kendall test) and likelihood ratio test versus the corresponding 
unconditional probability model. Finally, the probability of an extreme event, conditional 
to ignition, was modelled as a function of LST anomaly and PMI. Results show that the 
probability distribution function of burned area has a strong dependence on both LST 
anomaly and PMI, that the probability distribution function of fire duration has a strong 
dependence on LST anomaly but not on PMI, and that the probability distribution function 
of rate of spread has a weak dependence on LST anomaly and a strong dependence on PMI. 
These results are in line with expectations from models of the combustion and flames 
propagation processes. Trend analyses and likelihood ratio tests showed that the FWI 
System components are good predictors of burned area and fire duration, but not of rate 
of spread. They also confirmed that, where LST anomaly and PMI are covariates of the 

 
6 Based on: Maffei, C., Lindenbergh, R., Menenti, M., 2021. Combining multi-spectral and thermal 
remote sensing to predict forest fire characteristics. ISPRS J. Photogramm. Remote Sens. 181, 400-
412.  https://doi.org/10.1016/j.isprsjprs.2021.09.016 
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considered fire characteristic, their performance is similar or better than the FWI System 
components. Finally, the probability of an extreme event in terms of burned area as a joint 
function of LST anomaly and PMI shows a wider dynamic range than the same probability 
modelled as a function of these remote sensing variables individually. 

 

6.1. Introduction 
Governments, local authorities, forestry corps and civil protection agencies are faced with 
the need to manage forest fires and to implement preparedness strategies aimed at 
safeguarding the security of citizens and at preserving the services of the biomes being 
affected (Carlson and Burgan, 2003; Fernández-Guisuraga et al., 2021; Mohamed Shaluf, 
2008; Oliveira et al., 2017). Preparedness encompasses all initiatives aimed at developing 
operational response in case of a fire (Gunes and Kovel, 2000; Minas et al., 2012; Mohamed 
Shaluf, 2008). It requires the assessment of spatial and temporal variability of fire risk, e.g. 
through maps of fuel type and amount, fire hazard and danger, vulnerability and value of 
natural resources and of anthropic assets (Mhawej et al., 2015; Miller and Ager, 2013; 
Oliveira et al., 2017; Thompson et al., 2015). 

Several fire danger rating systems have been developed worldwide to support decision 
making (Allgöwer et al., 2003; Sirca et al., 2018). These are typically based on the evaluation 
of biophysical and environmental variables that control fire occurrence and behaviour, and 
on the provision of one or more time-dependent indices in the form of maps. Among them 
are the McArthur Forest Fire Danger Index (McArthur, 1967; Noble et al., 1980), the 
National Fire Danger Rating System of the US (Deeming et al., 1977) and the Fire Weather 
Index (FWI) System (Van Wagner, 1987). The latter has been effectively used to map fire 
danger in several areas worldwide, including Europe (de Groot and Flannigan, 2014; San-
Miguel-Ayanz et al., 2012). 

A common trait of fire danger indices is their dependence on meteorological input 
(Chuvieco, 2003). This is based on the fact that fire occurrence and behaviour are both 
controlled by live and dead fuel moisture content, which in turn are determined by the 
interaction of vegetation, litter and dead woody material in the topsoil with weather and 
topography (Andrews, 2007; Finney, 1998; Rothermel, 1991, 1972; Van Wagner, 1987; 
Yebra et al., 2013). Indeed, fire danger rating systems model fuel moisture content from 
meteorological measurements and then use computed values to produce one or more 
indices that serve as predictors of fire occurrence and behaviour. However, the use of 
modelled rather than measured fuel moisture content results in a certain degree of 
approximation due to the simplifying assumptions this implies, especially with respect to 
live fuels (Ruffault et al., 2018; Schunk et al., 2017). In fact, the link between live fuel 
moisture content (LFMC) and weather forcing is dependent on structural and physiological 
characteristics of plants which are species specific (Jolly and Johnson, 2018; Pellizzaro et al., 
2007b). Nevertheless, LFMC is essential in predicting fire behaviour (Jolly, 2007; Rossa and 
Fernandes, 2017). From a source data perspective, most fire danger rating services are 
based either on values from point weather measurements, e.g. automated weather 
stations, and as such computed indices are only valid in a limited area around the point of 
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data collection (Chowdhury and Hassan, 2015a; Schlobohm and Brain, 2002; Walding et al., 
2018), or from coarse resolution weather forecasts from meteorological services, leading 
to produced maps being at a scale that might not be suitable for fire management purposes 
at local level (Martell, 2007; North et al., 2015; San-Miguel-Ayanz et al., 2012). 

Direct observation of LFMC has the potential to enable a better evaluation of fire 
occurrence and fire behaviour danger indices (Jolly, 2007; Rossa and Fernandes, 2017; 
Ruffault et al., 2018; Ustin et al., 2009). This outlines a clear opportunity for Earth 
Observation technologies, as they provide repeated and frequent observations of land 
surface conditions (Allgöwer et al., 2003; Ma et al., 2019; Yebra et al., 2013). Most 
approaches for the use of remote sensing data in fire danger mapping focussed on relating 
land surface temperature (LST), spectral indices of vegetation moisture content, radar 
backscatter or indirect measures of plant stress to danger indices and fire occurrence. Time 
series of the Normalised Difference Water Index (Gao, 1996) were found to be related to 
the seasonality of fire occurrence (Huesca et al., 2014, 2009). The Normalised Difference 
Water Index was also used in conjunction with satellite estimates of LST to predict fire 
danger (Abdollahi et al., 2018). The Global Vegetation Moisture Index (Ceccato et al., 2002a) 
was used in combination with LST and a few landscape factors to predict fire occurrence 
(Pan et al., 2016). Radar backscatter was related to vegetation moisture and fire danger 
(Abbott et al., 2007; Hunt et al., 2011; Leblon et al., 2002), although it is acknowledged that 
it is also affected by many other surface properties (Leblon et al., 2016). 

Several studies have shown that time series of optical vegetation spectral indices and of 
LST, as proxies of plant water stress, are related to fire occurrence (Bajocco et al., 2015; 
Burgan et al., 1998; Chowdhury and Hassan, 2015b; Chuvieco et al., 2004; Maselli et al., 
2003; Slingsby et al., 2020; Yu et al., 2017). LST was also used to model energy budgets 
(Leblon, 2005; Nolan et al., 2016b; Vidal et al., 1994) and to estimate heat energy of pre-
ignition (Dasgupta et al., 2006) and predict fire occurrence. Fire occurrence was also related 
to LST anomaly (Manzo-Delgado et al., 2004; Matin et al., 2017; Pan et al., 2016), although 
there is no shared definition of this parameter. 

Cited approaches for forest fire danger mapping from remote sensing measurements 
essentially focus on fire occurrence. However, fire danger models are meant not only to 
predict fire occurrence, but also to provide a measure of expected fire behaviour 
characteristics. In this sense, any attempt to respond to the identified need to improve fire 
danger models (Ruffault et al., 2018) would need an understanding of remote sensing 
potential in predicting fire characteristics either deterministically (Dasgupta et al., 2007) or 
probabilistically (Flannigan et al., 2016). The latter would be more suited to fulfil the need 
of fire managers, as their interest is in the prediction of the probability of extreme events 
(Finney, 2005; Flannigan et al., 2016; Mazzetti et al., 2009; Podschwit et al., 2018; Syphard 
et al., 2018).  

Supporting this approach, recent studies found that the probability distribution functions 
of burned area and fire duration are related to pre-fire satellite observations of LST anomaly 
(Maffei et al., 2018), and that probability distribution functions of burned area and rate of 
spread are related to pre-fire satellite observations of the Perpendicular Moisture Index 
(PMI) (Maffei and Menenti, 2019, 2014). These initial results potentially enable the 
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prediction of the probability of an extreme event, conditional to ignition, as a function of 
remote sensing measurements. However, it was not documented whether LST anomaly is 
related to the probability distribution function of rate of spread, how LST anomaly and PMI 
compare to each other and against traditional fire danger tools such as the FWI System in 
predicting forest fire characteristics, whether LST anomaly and PMI can be considered 
independent and how they can be jointly used to improve the pre-fire prediction of the 
probability of extreme events. To consolidate initial results, further research was needed 
to: 

• Understand how LST anomaly and PMI compare in predicting burned area, fire 
duration and rate of spread of fire events and assess whether they are 
independent. 

• Quantitatively assess their performance against predictions arising from the FWI 
System. 

• Establish an approach for their joint use in the prediction of the probability of 
extreme events. 

To achieve these objectives, LST anomaly was compared against PMI trying to explain the 
biophysical nature of the predictive differences between these two remote sensing 
quantities. Their performance as predictors of burned area, fire duration and rate of spread 
was evaluated against the components of the FWI System by means of trend analysis and 
likelihood ratio tests. Finally, it was developed a model jointly using LST anomaly and PMI 
to predict those fire characteristics for which both are proved to be a strong covariate. 

 

6.2. Materials and methods 
6.2.1. Study area 

A detailed description of the study area was provided in §2.2.1. 

 

6.2.2. Data 
MODIS land surface temperature and reflectance data 

Remote sensing datasets used in this research were the Aqua-MODIS Level 3 collection 6 
land surface temperature (MYD11A1) and surface reflectance (MYD09A1) products. Level 
3 products are standardised science-ready geophysical variables mapped on a fixed global 
grid (Masuoka et al., 1998). 

MYD11A1 contains daily gridded diurnal and nocturnal LST estimates at a conventional 
resolution of 1 km, along with quality assurance (QA) metadata. A complete time series of 
MYD11A1 granules covering years 2003 till 2017 was used in this research, only retaining 
pixel data marked as good quality (Maffei et al., 2018; Van Nguyen et al., 2015; Xu and Shen, 
2013).  

MYD09A1 is a product containing 8-day composited reflectance at 500m resolution 
(Vermote et al., 1997). Tiles between June to September of years 2003-2011 were retrieved 
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and, likewise LST, masked against QA to ensure only good quality reflectance estimates are 
retained (Maffei and Menenti, 2019; Vermote et al., 2015). 

 

Fire event data 

For this study, a database of fires recorded in Campania between 2003 and 20117 was 
provided by the Forest Fire Protection Information Unit of Carabinieri (Italian national 
gendarmerie). This law enforcement agency is in charge, among other responsibilities, of 
burned area inventorying. Available data is thus to be considered official. For each event it 
reports the coordinates of the centroid of burned area, fire start and end date and time, 
and final burned area. A distinct fire season can be noted in summer, as 82% of fires and 
89% of burned area are recorded between June and September. 

A subset of 4949 events was extracted from the database, consisting of all fires occurred in 
natural areas only from June to September 2003-2011. Burned area and fire duration were 
the only fire characteristic explicitly reported in the database. These allowed the calculation 
of rate of spread, hereby defined as the constant radial growth rate of an equivalent circular 
fire resulting in the given burned area and duration. 

 

Fire Weather Index 

The FWI System is based on the processing of daily readings of temperature, relative 
humidity, wind speed, and precipitation for the production of six fire danger indicators (Van 
Wagner, 1987). The Fine Fuel Moisture Code (FFMC), the Duff Moisture Code (DMC) and 
the Drought Code (DC) model the moisture content of dead forest fuels. The Initial Spread 
Index (ISI) is calculated from FFMC and wind speed. ISI is generally related to burned area. 
The Build-Up Index (BUI) is computed from DMC and DC to represent fuel consumption. 
The FWI is a comprehensive indicator calculated by combining ISI and BUI to synthesise all 
the fire danger indicators of the FWI System. FWI is related to the energy output rate of a 
fire. Further details on the FWI System were provided in §1.4.3.Daily layers of the FWI 
System components used in this study are those from NASA’s Global Fire Weather Database 
(Field et al., 2015; Molod et al., 2015), available at a resolution of 0.25° × 0.25°. 

 

6.2.3. Retrieval of land surface temperature anomaly 

In this study, LST anomaly was evaluated against a reference climatology constructed from 
the time series of daily diurnal Aqua-MODIS LST (Alfieri et al., 2013) through the harmonic 
analysis of time series (HANTS) algorithm (Menenti et al., 2016, 1993). Through the 
modelling of LST periodic behaviour, HANTS is robust with respect to missing observations 
and allows the removal of outliers in time series due to cloud cover or active fires. In a 
similar way, HANTS was applied to individual yearly series of daily LST data 2003-2011 to 

 
7 This is a subset of the fire data used in Chapter 2 to characterise the fire regime in the study area. 
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model annual variability (Xu and Shen, 2013). Daily LST anomaly was then evaluated as the 
LST value in the annual models minus the value in the climatology (Maffei et al., 2018). 

 

6.2.4. The Perpendicular Moisture Index (PMI) 

LFMC is the percentage mass of water in leaf tissues over dry leaf mass. This key variable in 
fire danger assessment directly controls flames propagation (Andrews, 2007; Carlson and 
Burgan, 2003; Chuvieco et al., 2009; Finney, 1998; Hunt et al., 2013; Rothermel, 1991, 1972; 
Van Wagner, 1977; Yebra et al., 2013). The remote sensing proxy for LFMC used in this study 
is the Perpendicular Moisture Index (PMI) (Maffei and Menenti, 2014), a spectral index 
specifically designed to maximise its sensitivity to LFMC variability. Details on how the PMI 
was constructed were provided in Chapter 4.Note that higher values of PMI correspond to 
higher LFMC. PMI maps of the study area were produced from the retrieved Aqua-MODIS 
8-day composited surface reflectance. 

 

6.2.5. Conditional distributions of fire characteristics 

The dispersion of burned area, fire duration and rate of spread is extremely skewed. Prior 
to analyses, these variables were scaled and log-transformed, so to have positive values 
only. This study is essentially based on the evaluation of the parameters of the probability 
distribution functions of fire characteristics. From the given dataset it was found that log-
transformed burned area, fire duration and rate of spread follow normal, generalised 
extreme value (GEV) and Weibull distributions respectively (Maffei and Menenti, 2019). 

Prior to further analyses, fires in the dataset were intersected with maps of LST anomaly, 
PMI and FWI System components in a GIS environment, so that each event was associated 
with the corresponding LST anomaly value recorded in the day previous to the event, the 
PMI value recorded in the previous 8-day compositing period, and the values of the FWI 
System components recorded on the day of the event (Maffei et al., 2018; Maffei and 
Menenti, 2019). Observations of PMI, LST anomaly and FWI System components associated 
with fires were grouped in their respective ten decile bins. The parameters of the normal 
distribution of log-transformed burned area, of the GEV distribution of log-transformed fire 
duration and of the Weibull distribution of log-transformed rate of spread were assessed in 
each bin through the minimisation of the Anderson-Darling statistic (Anderson and Darling, 
1954). The corresponding 95% confidence intervals were then evaluated by means of 1000 
bootstrap estimations.  

Trends in the values of the parameters of the probability distributions with respect to LST 
anomaly, PMI and the FWI System components were assessed and compared by means of 
linear regressions (coefficient of determination and p-value), Sen’s slope magnitude (Sen, 
1968) and Mann-Kendall test (Kendall, 1975; Mann, 1945). A likelihood ratio test was 
adopted to evaluate the probability distribution functions conditional to LST anomaly, PMI 
and the FWI System components (alternative models) against the corresponding 
unconditional models fitting all data (null models). Significance was set at 0.05 for linear 
regressions, the Mann-Kendall test, and the likelihood ratio test. 
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6.2.6. Probability of extreme events conditional to ignition 

An extreme event is hereby defined as a fire whose fire characteristic is larger than the 95th 
percentile of the values recoded in the database. The evaluation of the probability of 
extreme events conditional to ignition as a function of LST anomaly (alternatively PMI) 
builds on the conditional probability distribution functions identified in the previous 
section. The dependence of distribution parameters on LST anomaly (alternatively PMI) 
were modelled by means of linear regressions. 

A similar approach was adopted to model the probability of extreme events as a function 
of both LST anomaly and PMI. The bidimensional space spanned by LST anomaly and PMI 
was partitioned into 100 bins determined by the previously defined decile intervals. The 
parameters of the probability distribution functions were evaluated in each bidimensional 
bin through the minimisation of the Anderson-Darling statistic. Their dependence on LST 
anomaly and PMI was then modelled by means of a multiple linear regression. The 
performance of the derived linear models was then assessed by using the leave-one-out 
cross-validation (LOOCV). 

 

6.3. Results 
6.3.1. Comparing LST anomaly and PMI performance in predicting fire 

characteristics 

The scatterplot of LST anomaly and PMI values associated with fire events shows that these 
two remote sensing observations are substantially unrelated (Figure 6.1). This is reflected 
in the dispersion of burned area, fire duration and rate of spread in decile bins of LST 
anomaly and PMI (Figure 6.2). Burned area appears to be dispersed towards higher values 
with increasing LST anomaly and with decreasing PMI (lower LFMC). Dispersion of fire 
duration is towards higher values with increasing LST anomaly, whereas no trend is 
observed against PMI. Conversely, rate of spread appears to be dispersed towards lower 
values with increasing PMI (higher LFMC), while only a weak decreasing trend can be noted 
against LST anomaly. 

The analysis of the probability distribution functions of burned area, fire duration and rate 
of spread in decile bins of LST anomaly and PMI (conditional distributions) further 
demonstrated that these two satellite observables are differently related to fire 
characteristics. The mean of the normal distribution of log-transformed burned area varies 
with both LST anomaly (r2=0.81, p<0.001) and PMI (r2=0.80, p<0.001), showing comparable 
Sen’s slope magnitude (Figure 6.3, Table 6.1). Standard deviation follows a significant trend 
only against LST anomaly (r2=0.52, p<0.05), whereas a constant value fits most confidence 
intervals of this parameter in decile bins of PMI. The latter is confirmed by trend analysis, 
as Mann-Kendall test fails to reject the null hypothesis. 

Location, scale, and shape of the GEV distribution of log-transformed fire duration 
conditional to LST anomaly follow strong and significant increasing trends (r2=0.78, 0.79 and 
0.87 respectively, p<0.001) with increasing LST anomaly (Figure 6.4, Table 6.2). The 
parameter of the GEV distribution of log-transformed fire duration conditional to PMI 



Combining multi-spectral and thermal remote sensing to predict forest fire characteristics 

114 

showing a trend is scale (r2=0.55, p<0.05). However, a constant value of scale would fit most 
confidence intervals, and indeed Mann-Kendall test fails to reject the null hypothesis for all 
three GEV parameters conditional to PMI, confirming the absence of a trend with 
significance 0.05. 

Distribution of log-transformed rate of spread conditional to LST anomaly and PMI shows 
the opposite behaviour as compared to fire duration (Figure 6.5, Table 6.3). The scale and 
shape parameters of the Weibull distribution conditional to LST anomaly only show a weak 
decreasing trend (r2=0.54 and 0.50 respectively), albeit significant (p<0.05). Sen’s slope 
magnitude is low, yet the Mann-Kendall test allows the rejection of the null hypothesis, and 
the existence of a trend can be accepted with significance 0.05. Conversely, the scale and 
shape conditional to PMI show strong and significant decreasing trends (r2=0.97 and 0.82 
respectively, p<0.001) with increasing PMI (corresponding to increasing LFMC) and high 
Sen’s slope magnitude. 

The probability distribution functions of the three log-transformed fire characteristics 
conditional to LST anomaly and PMI allow the rejection of the null (unconditional) model in 
the likelihood ratio test (Table 6.4), confirming that LST anomaly is a covariate of all three 
fire characteristics. Similarly, probability models of log-transformed burned area and log-
transformed rate of spread conditional to PMI allow the rejection of the unconditional 
model, whereas the corresponding conditional model of log-transformed fire duration does 
not. Comparing these findings against trends outlined in Figure 6.4 and in Table 6.2 leads 
to the conclusion that PMI is a covariate of burned area and rate of spread, but not of fire 
duration. 

 

6.3.2. Assessing the performance of LST anomaly and PMI against the FWI System 
components 

Trend analysis of the parameters of the probability distribution of log-transformed burned 
area, fire duration and rate of spread in decile bins of the FWI System components allows 
a comparison of the performance of pre-fire remote sensing retrievals of vegetation 
condition in predicting fire danger against a consolidated fire danger mapping tool based 

Figure 6.1. Scatterplot of PMI vs LST anomaly values associated with fire events. 
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on meteorological data. The mean of the normal distribution of log-transformed burned 
area shows strong and significant (p<0.001) trends against all FWI System components, with 
Sen’s slope magnitude values mostly comparable with those achieved by LST anomaly and 
PMI (Table 6.1). Conditional standard deviation is characterised by significant trends against 
FFMC, DMC and BUI, but only DMC’s Mann-Kendall test allows the rejection of the null 
hypothesis, i.e. confirms that the alternative hypothesis of the existence of a trend can be 
accepted. These results are reflected in the likelihood ratio test (Table 6.4), as all alternative 

Figure 6.2. Boxplots of burned area, fire duration and rate of spread in decile bins of LST anomaly and 
PMI. 
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models conditional to FWI System components allow the rejection of the unconditional 
model. 

Similar results were found with the parameters of the GEV distribution of log-transformed 
fire duration (Table 6.2). Location, scale, and shape show significant trends against all FWI 
System components with strength and Sen’s slope magnitude substantially comparable 
with those against LST anomaly. Further, all conditional models allow the rejection of the 
unconditional model (Table 6.4). 

The FWI System components do not appear to be good covariates of rate of spread. Scale 
of the Weibull distribution of log-transformed rate of spread shows significant (p<0.01) 
trends only against DC and BUI, although with lower strength and Sen’s slope magnitude 
than PMI (Table 6.3). Shape shows significant (p<0.05) trends against DMC, DC, and BUI, 
but only DC’s Mann-Kendall test rejects the null hypothesis of the absence of a trend. For 
both parameters, this contrasts with the strength and Sen’s slope of the trends against PMI. 
While DC might still be considered a covariate of rate of spread, the corresponding 
conditional probability model does not allow the rejection of the unconditional model 
(Table 6.4). 
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Figure 6.3. Mean and standard deviation of normal distribution of log-transformed burned area in 
decile bins of LST anomaly and PMI. 
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6.3.3. Predicting the probability of extreme events conditional to ignition 

As both LST anomaly and PMI are strong covariates of burned area and are not correlated, 
it was interesting to compare how the probability of extreme events conditional to ignition 
varies as a function of LST anomaly and PMI, both individually and jointly. The mean and 
the standard deviation of the normal distribution of log-transformed burned area were 
modelled as linear functions of LST anomaly according to regression lines identified in 
Figure 6.3. Similarly, the mean of the normal distribution of log-transformed burned area 
was modelled as a linear function of PMI, while standard deviation was kept constant. 
According to the available fire data, the 95th percentile of burned area is 30.0 ha. Plots of 
the probability of fires larger than 30.0 ha show a marked increase with increasing LST 
anomaly and decreasing PMI (Figure 6.6). 

A similar approach was used to evaluate the probability of large fires as a joint function of 
LST anomaly and PMI. The derived linear model fitting the mean of the normal distribution 
of log-transformed burned area in the 100 bins determined by the decile intervals of LST 
anomaly and PMI has r2=0.49 (p<0.001), whereas the corresponding linear model of the 
standard deviation has r2=0.28 (p<0.001). The leave-one-out cross-validation coefficient of 
determination is 0.45 and 0.23 for the mean and the standard deviation respectively, 
showing relative robustness of their linear models as a function of LST anomaly and PMI. 

Using as a reference the 2.5% - 97.5% percentile range of recorded LST anomaly and PMI 
values, probability of large fires conditional to ignition increased from 0.9% to 9.2% with 
LST anomaly ranging from -2.1 to 4.3 K and increases from 1.8% to 7.4% with PMI decreasing 
from 0.052 to -0.032. When the probability of fires exceeding 30.0 ha is modelled as a 

 
Table 6.1. Trend analysis of the parameters of the normal distribution of log-transformed burned area 
across decile bins of LST anomaly, PMI and of the FWI System components, reporting coefficient of 
determination and p-value of the linear fit, Sen’s slope, and Mann-Kendall test’s result. Significance 
level of Mann-Kendall test is 0.05. 

 Mean Standard deviation 

 r2 p Sen’s slope M-K test r2 p Sen’s slope M-K test 

LST anomaly 0.81 *** 0.033 Rejects 0.52 * 0.0124 Rejects 

PMI 0.80 *** -0.038 Rejects 0.10 ns 0.0048 Fails 

FFMC 0.82 *** 0.036 Rejects 0.43 * 0.0050 Fails 

DMC 0.89 *** 0.028 Rejects 0.78 *** 0.0093 Rejects 

DC 0.81 *** 0.017 Rejects 0.21 ns 0.0095 Fails 

ISI 0.92 *** 0.036 Rejects 0.21 ns 0.0043 Fails 

BUI 0.91 *** 0.025 Rejects 0.72 ** 0.0075 Fails 

FWI 0.96 *** 0.034 Rejects 0.31 ns 0.0081 Fails 
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function of both LST anomaly and PMI, modelled probabilities cover the wider range from 
0.5% to 12.7% (Figure 6.7). 
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Figure 6.4. Location, scale, and shape of the GEV distribution of log-transformed fire duration in decile 
bins of LST anomaly and PMI. 
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6.4. Discussion 
This study stemmed from previous investigations on multi-spectral and thermal remote 
sensing of forest conditions for the prediction of some fire characteristics (Maffei et al., 
2018; Maffei and Menenti, 2019). Its main objective was to compare LST anomaly and PMI 
capability to predict burned area, fire duration and rate of spread of actual fires such as 
those provided by the Forest Fire Protection Information Unit of Carabinieri, assess their 
performance against the FWI System components, evaluate and understand the 
independence of these two remote sensing observations of live fuel condition and establish 
an approach for their joint use in the prediction of extreme events. The PMI was designed 
to be a measure of LFMC (Maffei and Menenti, 2014), and as such it is related to the 
condition of green vegetation. LST anomaly was initially conceived as a measure of 
vegetation response to water stress (Alfieri et al., 2013; Maffei et al., 2018), and for this 
reason it was interpreted with reference to a physiological condition (Buitrago Acevedo et 
al., 2017; Chowdhury and Hassan, 2015a; Dasgupta et al., 2006; Leblon, 2005; Manzo-
Delgado et al., 2004; Matin et al., 2017; Nolan et al., 2016b; Pan et al., 2016; Sobrino et al., 
2016; Vidal et al., 1994). Indeed, when water stress attains certain levels it triggers plants 
transpiration regulation mechanism, and this results in a detectable increase of canopy 
temperature (Buitrago Acevedo et al., 2017; Hsiao, 1973; Jackson et al., 1981; Kalma et al., 
2008; Karnieli et al., 2010; Liu et al., 2016; Nemani and Running, 1989; Schulze et al., 1973; 
Zweifel et al., 2009). 

 

 
Table 6.2. Trend analysis of the parameters of the GEV distribution of log-transformed fire duration 
across decile bins of LST anomaly, PMI and of the FWI System components, reporting coefficient of 
determination and p-value of the linear fit, Sen’s slope, and Mann-Kendall test’s result. Significance 
level of Mann-Kendall test is 0.05. 

 Location Scale Shape 

 r2 p 
Sen’s 
slope 

M-K 
test r2 p 

Sen’s 
slope 

M-K 
test r2 p 

Sen’s 
slope 

M-K 
test 

LST an. 0.78 *** 0.015 Rejects 0.79 *** 0.0081 Rejects 0.87 *** 0.027 Rejects 

PMI 0.26 ns 0.006 Fails 0.55 * 0.0028 Fails 0.32 ns 0.006 Fails 

FFMC 0.76 ** 0.013 Rejects 0.85 *** 0.0083 Rejects 0.70 ** 0.012 Rejects 

DMC 0.90 *** 0.016 Rejects 0.83 *** 0.0051 Rejects 0.44 * 0.014 Fails 

DC 0.93 *** 0.014 Rejects 0.53 * 0.0047 Fails 0.63 ** 0.020 Rejects 

ISI 0.83 *** 0.012 Rejects 0.68 ** 0.0086 Rejects 0.41 * 0.012 Fails 

BUI 0.95 *** 0.016 Rejects 0.80 *** 0.0052 Rejects 0.57 * 0.012 Fails 

FWI 0.93 *** 0.012 Rejects 0.96 *** 0.0087 Rejects 0.64 ** 0.012 Fails 
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6.4.1. Considerations on spatial and temporal granularity of satellite data 

Satellite imagery used in this research was at two different resolutions. MODIS optical 
bands to retrieve the PMI are available at a resolution of 500 m whereas thermal bands, 
from which LST anomaly is derived, are available at 1000 m. While the operational 
production of maps of probability of extreme events as a bivariate function of LST anomaly 
and PMI might require some consideration on the most suitable approach to combine data 
at different resolutions, from the point of view of the analyses herein this is not relevant. 
Indeed, each fire was associated with the pre-fire environmental condition (LST anomaly, 
alternatively PMI) of the cell in which it was located (1 and 0.25 km2 respectively), 
independently of the resolution of the source dataset (Pyne et al., 1996). As it will be shortly 
discussed that these two variables are independent, there is no effect of the differing 
resolution on the characterisation of the pre-fire environmental conditions of the specific 
cell containing the fire. 

The optical and thermal datasets were different also in terms of temporal structure. LST 
anomaly was derived from a daily climatology and an annual model of LST, both constructed 
by means of the HANTS algorithm (Alfieri et al., 2013; Menenti et al., 1993; Roerink et al., 
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Figure 6.5. Scale and shape of the Weibull distribution of log-transformed rate of spread in decile bins 
of LST anomaly and PMI. 
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2000; Verhoef, 1996). In this sense, the daily temporal granularity of LST anomaly is 
inherent in the approach adopted to model it. On the other side, PMI was computed from 
the 8-day composited MODIS reflectance product. Composited products have the 
advantage of providing the best cloud free estimate of the pixel in a standardised grid while 
compensating for cloud cover and view angle. The coarser temporal granularity was not 
perceived as an obstacle as during the dry season LFMC only changes abruptly in 
correspondence of rainfalls (Ruffault et al., 2018) and the use of the prior compositing 
period in a predictive approach renders temporal sampling less critical. An alternative 
approach could have been to model PMI variability by means of the HANTS algorithm to 
gap-fill cloudy pixels and compensate for noise, while retaining a daily coverage, as reported 
in literature for LST and NDVI (Alfieri et al., 2013; Menenti et al., 2016, 1993; Verhoef, 1996). 
However, it is not known whether harmonic analysis is able to capture PMI variability with 
a reasonable number of harmonics with respect to the available number of observations 
(Zhou et al., 2015), and investigating this was beyond the objectives of this study.  

Analyses reported herein are based on pre-fire satellite observations of LST anomaly and of 
PMI. Indeed, each fire was associated to the LST anomaly data from the previous day and 
to the PMI map of the previous 8-day compositing period. This ensures that results can be 
adopted in an operational scenario where current observations are used to predict fire 
characteristics in the following days. This is not inconsistent with the choice of associating 
fires with the same day value of the FWI System components. Indeed, FWI maps are 
available in advance as being produced from forecasts of weather conditions (San-Miguel-
Ayanz et al., 2012). 

 
Table 6.3. Trend analysis of the parameters of the Weibull distribution of log-transformed rate of 
spread across decile bins of LST anomaly, PMI and of the FWI System components, reporting coefficient 
of determination and p-value of the linear fit, Sen’s slope, and Mann-Kendall test’s result. Significance 
level of Mann-Kendall test is 0.05. 

 Scale Shape 

 r2 p Sen’s slope M-K test r2 p Sen’s slope M-K test 

LST anomaly 0.50 * -0.0077 Rejects 0.54 * -0.129 Rejects 

PMI 0.97 *** -0.0254 Rejects 0.82 *** -0.419 Rejects 

FFMC 0.18 ns -0.0017 Fails 0.03 ns  0.032 Fails 

DMC 0.38 ns -0.0064 Rejects 0.41 * -0.137 Fails 

DC 0.66 ** -0.0098 Rejects 0.57 * -0.173 Rejects 

ISI 0.05 ns -0.0009 Fails 0.01 ns  0.027 Fails 

BUI 0.65 ** -0.0066 Rejects 0.52 * -0.102 Fails 

FWI 0.30 ns -0.0026 Fails 0.01 ns -0.025 Fails 
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6.4.2. LST anomaly and PMI as predictors of fire characteristics 

LST anomaly appears to capture part of the variability in burned area and fire duration 
(Figure 6.2), with increasing values leading to larger fires and longer durations. This is 
reflected in the parameters of the corresponding conditional probability distribution 
functions. Both mean and standard deviation of normal distribution of log-transformed 
burned area conditional to LST anomaly show significant (p<0.001 and p<0.05 respectively) 
increasing trends (Figure 6.3) with a high Sen’s slope magnitude (Table 6.1). Similarly, 
location, scale, and shape of the GEV distribution of log-transformed fire duration 
conditional to LST anomaly are characterised by strong (r2=0.78, 0.79 and 0.87) and 
significant (p<0.001) trends with a high Sen’s slope (Table 6.2). These results are further 
confirmed by the likelihood ratio test, with the conditional (alternative) models allowing 
the rejection of the unconditional (null) models for both fire characteristics (Table 6.4). 

The dispersion of rate of spread in decile bins of the LST anomaly shows a weakly decreasing 
trend (Figure 6.2). This is reflected in both scale and shape of the corresponding Weibull 
distribution. Both parameters exhibit a significant (p<0.05) decreasing trend (Figure 6.5), 
albeit less significant and with a much lower Sen’s slope magnitude as opposed to PMI 
(Table 6.3). The Mann-Kendall test confirms that the null hypothesis of absence of trend 
can be rejected, and the likelihood ratio test further confirms that the alternative model 
allows the rejection of the null model (Table 6.4). Nevertheless, the weakness of the trend 
and the relatively low Sen’s slope magnitude implies that LST anomaly might not be 
considered a strong covariate for rate of spread. 

Along the same line of reasoning, it can be noted that the dispersion of burned area and 
rate of spread varies across decile bins of PMI (Figure 6.2). Increasing values of PMI, 
corresponding to increasing LFMC, lead to a dispersion of burned area and rate of spread 

 
Table 6.4. Results of the likelihood ratio test. Null model is the one fitting all data. Alternative model 
is the collection of ten models in decile bins of the candidate covariate. Significance level is 0.05. In 
bold the alternative models showing the highest likelihood for each fire characteristic. 

 Burned area Duration Rate of spread 

LST anomaly Rejects Rejects Rejects 

PMI Rejects Fails Rejects 

FFMC Rejects Rejects Fails 

DMC Rejects Rejects Fails 

DC Rejects Rejects Fails 

ISI Rejects Rejects Rejects 

BUI Rejects Rejects Rejects 

FWI Rejects Rejects Rejects 
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towards lower values. This is further confirmed in the trends of the parameters of the 
corresponding probability distribution models. The mean of the normal distribution of log-
transformed burned area has a strong (r2=0.80) and significant (p<0.001) decreasing trend 
with PMI (Figure 6.3) with high Sen’s slope magnitude (Table 6.1). As opposed to LST 
anomaly, standard deviation shows no trend, the Mann-Kendall test fails to reject the null 
hypothesis and a constant value would be appropriate to describe its variability. The 
likelihood ratio test confirms that this probability model conditional to PMI allows the 
rejection of the unconditional model. Both scale and shape of the Weibull distribution of 
log-transformed rate of spread show strong (r2=0.97 and 0.82) and significant (p<0.001) 
trends against PMI (Figure 6.5), both characterised by a high Sen’s slope magnitude (Table 
6.3). The likelihood ratio test confirms the rejection of the corresponding null model (Table 
6.4). 

PMI doesn’t appear to control fire duration. The dispersion of fire duration values doesn’t 
vary across decile bins of PMI (Figure 6.2), and the only parameter of the GEV distribution 
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Figure 6.6. Modelled probability of fires larger than 30.0 ha (95th percentile of the values recorded in 
the study area), conditional to ignition, as a function of LST anomaly and PMI. 

Figure 6.7. Modelled probability of fires larger than 30.0 ha (95th percentile of the values recorded in 
the study area), conditional to ignition, as a function of both LST anomaly and PMI. Solid lines indicate 
probability values. 
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of log-transformed fire duration that shows a significant (p<0.05), yet weak trend is scale 
(Figure 6.4). Nevertheless, the Mann-Kendall test fails to reject the null hypothesis, and the 
absence of a trend can’t be rejected (Table 6.2). Indeed, constant values would fit most 
confidence intervals across PMI bins (Figure 6.4) and the likelihood ratio test confirms that 
the conditional model fails to reject the null model (Table 6.4). 

These results do not come unexpected. PMI was already demonstrated to be a good 
predictor of summer fires burned area and rate of spread in the region (Maffei and Menenti, 
2019). Results based on LST anomaly were less obvious, as previous analyses focussed on 
burned area and fire duration only, and the evaluation was performed on events occurring 
all the year round (Maffei et al., 2018). That said, analyses herein confirm that LST anomaly 
is a predictor of burned area and fire duration of summer fires. It was also found that LST 
anomaly is not a strong covariate of rate of spread, albeit the existence of a relationship 
linking it to the corresponding probability distribution model cannot be ruled out. 

 

6.4.3. Comparing the predictive performance of LST anomaly and PMI against the 
FWI System components 

Trend analysis and likelihood ratio test were used to compare LST anomaly and PMI versus 
the FWI System components. This fire danger model was chosen as it proved to be 
adaptable to various biomes worldwide (de Groot and Flannigan, 2014; Dowdy et al., 2009; 
San-Miguel-Ayanz et al., 2012; Taylor and Alexander, 2006). LST anomaly and PMI perform 
as well as FWI in predicting burned area, with the mean of the normal distribution of log-
transformed burned area showing strong and significant (p<0.001) trends and comparable 
Sen’s slope magnitude (Table 6.1). While trends in the standard deviation are quite varying 
and not present in some covariates, all conditional models of log-transformed burned area 
allow the rejection of the null model (Table 6.4). Similar considerations lead to note that 
LST anomaly performs similarly to the FWI System components in predicting fire duration 
(Table 6.2). With respect to rate of spread, none of the FWI System components shows 
convincing trends of the conditional parameters of the Weibull distribution (Table 6.3). 
While an exception could be raised for DC, it must be noted that the corresponding 
conditional model fails to reject the unconditional (null) model (Table 6.4). It can thus be 
stated that, in the study area, multi-spectral remote sensing of LFMC (via the PMI) is a good 
predictor of rate of spread whereas the FWI System components are not. 

 

6.4.4. Interpreting results against combustion and propagation processes 

LST anomaly and PMI proved to be independent, as noted in Figure 6.1 and because of their 
different prediction capability with respect to fire duration and rate of spread. PMI is a 
spectral index exploiting the different effect of water content on the spectral properties of 
vegetation in the near infrared and in the shortwave infrared to provide a direct measure 
of LFMC (Maffei and Menenti, 2014). The clear relationship reported between PMI and the 
rate of spread has a direct physical interpretation, as LFMC controls flames propagation 
(Andrews et al., 2013; Finney, 1998; Rothermel, 1991, 1972; Wilson, 1990). The fact that 
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LST anomaly is not as good as a covariate of rate of spread suggests that the initial 
hypothesis of interpreting it as a measure of vegetation water stress, and indirectly of 
moisture content, is not able to explain results reported in this study. 

LST anomaly is a measure of the deviation of the observed LST from its climatological value. 
While vegetation responds to water stress through a decrease in stomatal conductance 
which leads to an increase of its temperature, in Mediterranean environments 
characterised by prolonged dry summers this plant protection mechanism is actually 
triggered on a seasonal basis (Pellizzaro et al., 2007a, 2007b). This means that LST increase 
because of increased water stress might have already been accounted for into the LST 
climatology. LST anomaly may thus be unrelated to vegetation water stress condition and 
may be rather interpreted as a measure of excess enthalpy stored in fuels. This opens to a 
physically based interpretation of LST anomaly as a covariate of fire duration, a fire 
characteristic substantially unrelated to PMI. Several environment and anthropic factors 
have been found to affect fire duration (Costafreda-Aumedes et al., 2016; Fischer et al., 
2015; Gustafson et al., 2011; Lasslop and Kloster, 2017), but from a fire behaviour point of 
view, duration is rather a measure of the probability of extinction, which is the resultant of 
heat fluxes between the flaming zone, the surrounding fuels and the atmosphere (Finney 
et al., 2013). Higher heat content in the fuels imply that less endothermic enthalpy is 
needed to sustain fire spread, this resulting in a lower probability of extinction (Albini, 1986, 
1985; Wilson, 1990, 1985). The interpretation of LST anomaly as a measure of excess 
enthalpy thus justifies its effect on fire duration. 

The weak decreasing trend observed between LST anomaly and rate of spread may be 
susceptible of a similar physical interpretation. Heat fluxes between burning material and 
the surrounding fuels are at the basis of flames propagation, and rate of spread is 
determined by the ratio between the heat flux received by the fuels from the heat source 
and the heat required to achieve ignition (Rothermel, 1972; Weber, 1991). While the latter 
is dependent on fuel moisture content, the former is determined by convective and 
radiative heat exchange (Albini, 1985; Baines, 1990). Convective heat exchange is 
dependent on temperature difference and on a heat exchange coefficient weakly 
dependent on the same temperature difference. A higher fuel temperature might thus lead 
to slower flames propagation. Clearly, LST anomaly values observed in this study can not be 
considered as a driver of the rate of spread as LFMC (as measured by PMI). Yet this 
interpretation may explain the observed weakly decreasing trends in rate of spread with 
increasing LST anomaly. 

 

6.4.5. Joint use of LST anomaly and PMI for the prediction of extreme events 

It was discussed that LST anomaly and PMI are good predictors of fire duration and rate of 
spread respectively, and this was justified through the outlined physical interpretation. 
Their independence was also noted. As these two remote sensing observations of fuel 
condition are both strong predictors of burned area, this opened an opportunity for their 
joint use for the evaluation of the probability of extreme events. Indeed, if burned area is 
considered as a resultant, among the other factors, of rate of spread and fire duration, it is 
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reasonable to expect that the joint use of LST anomaly and PMI may lead to better 
predictions. The adopted approach was to model the parameters of the probability 
distribution of log-transformed burned area as a function of these two remote sensing 
observables. Findings discussed herein reasonably allowed the use of linear models. From 
these, the probability of extreme events, conditional to ignition could be evaluated as a 
function of LST anomaly and PMI. Extreme events were here defined as those exceeding 
the 95th percentile of all burned area values recorded in the study area, that is 30 ha. The 
probability of fires larger than 30.0 ha conditional to ignition shows a ten-fold increase from 
0.9% to 9.2% when LST anomaly increases from -2.1 to 4.3 K, and a four-fold increase from 
1.8% to 7.4% when PMI decreases from 0.052 to -0.032 (Figure 6.6). Extending this line of 
reasoning, bivariate linear models were constructed for the mean and the standard 
deviation of the normal distribution of log-transformed burned area, leading to a model 
predicting the probability of extreme events, conditional to ignition, as a function of both 
LST anomaly and PMI. The joint model, when evaluated over the same range of LST anomaly 
and PMI values (-2.1 to 4.3 K and 0.052 to -0.032 respectively), shows that the probability 
of fires larger than 30.0 ha conditional to ignition varies between 0.5% and 12.7% (Figure 
6.7), that is a 25-fold increase. The wider dynamic range attained confirms the stated 
hypothesis that the joint use of LST anomaly and PMI can lead to improved predictions. 

 

6.5. Conclusion 
Fire danger is defined as “the resultant, often expressed as an index, of both constant and 
variable factors affecting the inception, spread, and difficulty of control of fires and the 
damage they cause” (FAO, 1986). The concept of danger is semantically related to a human 
perception (Bachmann and Allgöwer, 2000). FAO definition, through the reference to 
difficulty of control, acknowledges fire behaviour and its resultants (such as burned area 
and fire duration) as components of fire danger (Allgöwer et al., 2003). Fire danger indices 
available to decision makers and fire managers reflect this and mainly focus on the 
prediction of fire occurrence – the inception and spread in FAO’s definition – and behaviour 
(Allgöwer et al., 2003; Sirca et al., 2018). 

This study sits on the fire behaviour side of fire danger, in this being a novelty as a remote 
sensing application, and contributes to the identified need to improve fire danger models 
(Jolly, 2007; Jolly and Johnson, 2018; Nolan et al., 2018; Pellizzaro et al., 2007b; Rossa et al., 
2016; Rossa and Fernandes, 2017; Ruffault et al., 2018; Schunk et al., 2017; Ustin et al., 
2009) through an understanding of how pre-fire satellite observations of live fuel condition 
are related to fire characteristics such as burned area, fire duration and rate of spread. 
More specifically it was shown that LST anomaly is a strong covariate of fire duration and 
weak covariate of rate of spread, whereas PMI is a strong covariate of rate of spread. Both 
remote sensing quantities are strong predictors of burned area. Complementarity with the 
well consolidated FWI System, especially in terms of the prediction of rate of spread, was 
also shown. These findings are relevant as they allow the prediction of the probability of 
extreme events, conditional to ignition, as a function of pre-fire satellite observations of 
fuel condition. This has an immediate operational application, whereas fire managers are 
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interested in understanding whether emergency conditions are likely to arise, putting a 
pressure on response resources. 

While LST anomaly and PMI can be used individually to predict the fire characteristics that 
they control, this study tested the advantage of their synergistic use in the prediction of 
burned area. This approach was supported by the demonstrated independence of LST 
anomaly and PMI. The probability of large fires conditional to ignition as a function of both 
LST anomaly and PMI covers a broader range of values as compared to the same probability 
evaluated as a function of these two remote sensing quantities individually. The outlined 
approach is clearly open to further integration with traditional fire danger indices such as 
the FWI, but this was outside the scope of this study. 

A final consideration is on the wide availability of open access satellite remote sensing 
datasets whose increased accessibility allows the creation of operational services. This 
study was performed on MODIS data to cover the range of dates of available fire records. 
Nevertheless, it may be repeated with any satellite remote sensing data acquired in the 
near, shortwave, and thermal infrared domains. Among the others it is worth naming 
instruments such as VIIRS on board Suomi NPP and NOAA-20, and SLSTR on board the 
Sentinel-3 series. All named systems provide daily global coverage, and their data is in the 
open access domain. 

 

 

 





 

129 

7. Conclusions and recommendations 
This chapter summarises research results presented in previous chapters and 
contextualises them against the research questions identified at the beginning of this thesis. 
It further discusses novelty of the proposed approach and potential impact in terms of user 
needs. Finally, recommendations for further research are given. 

 

7.1. From research questions to results 
The overarching objective of this study was to translate pre-fire optical and thermal remote 
sensing observations of forests into actionable information supporting fire preparedness. 
The research was developed in response to an identified need to improve existing fire 
danger models, mostly based on weather forecasts, and compensate for their lack of 
quantitative information on live fuel condition (Ruffault et al., 2018). Fire danger is a 
measure of constant and variable factors affecting the inception and spread of fires, and 
the difficulty to control fires, expressed in the form of an index (FAO, 1986). Fire danger 
models are used to predict the probability of extreme events, both in terms of fire 
occurrence and fire behaviour. 

The most relevant biophysical property controlling fire inception and flame spread is live 
fuel moisture content (LFMC) (Pyne et al., 1996). LFMC also determines the radiometric 
properties of vegetation (Gates et al., 1965; Hsiao, 1973), which can be observed by 
spaceborne imaging spectroradiometers (Yebra et al., 2013). The use of remote sensing for 
the prediction of fire occurrence has already been documented (Cao et al., 2013; Huesca et 
al., 2014, 2009; Pan et al., 2016). However, no research was found in literature relating pre-
fire remote sensing measurements to fire behaviour characteristics. These considerations 
raised the following research question: to what extent can remote sensing of forest 
condition be used to predict fire behaviour characteristics and assess the probability of 
extreme events? 

To address the arising research question, an extensive dataset of actual fires recorded in 
Campania, Italy, by the Forest Fire Protection Information Unit of Carabinieri (Italian 
National Gendarmerie, §2.2.2) was combined with pre-fire optical and thermal Aqua-
MODIS Level 3 land surface temperature and surface reflectance products to construct 
predictive models of burned area, fire duration and rate of spread. Defining the problem 
and structuring the approach identified five research sub-questions as outlined in §1.6. 
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Responses to these sub-questions are discussed below. In response to the main research 
question, results showed that pre-fire remote sensing observations of live fuel condition in 
the optical and thermal infrared domains are covariates of burned area, fire duration and 
rate of spread, i.e. they control the probability distribution functions of these fire 
characteristics. This allowed the modelling of the probability of extreme events, conditional 
to ignition, as a function of pre-fire remote sensing measurements, demonstrating the use 
of Earth Observation to generate actionable information useful for fire danger 
management. 

 

Q1. Which characteristics of fire behaviour are probabilistically related to pre-fire land 
surface temperature (LST) anomalies? 

This research question was addressed in Chapters 3 and 6. The daily land surface 
temperature (LST) anomaly was evaluated against a reference climatology (Alfieri et al., 
2013) modelled through the harmonic analysis of time series (HANTS) algorithm (Menenti 
et al., 2016, 1993) of the longest series of daily diurnal Aqua-MODIS LST. Further, HANTS 
was used to model the annual variability of yearly series of daily LST data. This enabled to 
evaluate the LST anomaly as the difference between the LST value in the annual model and 
LST value in the climatology (Maffei et al., 2018). 

Crucial to the probabilistic approach used in this study was the identification of the best 
fitting probability models describing burned area, fire duration and rate of spread. The 
probability distribution of fire characteristics is shaped by the unique combination of 
topography, land use/land cover, land management practices and human settlements 
characterising each region, and the adoption of models fitting data in other areas 
worldwide is not appropriate (Cui and Perera, 2008; Reed and McKelvey, 2002). Once the 
distributions of burned area, fire duration and rate of spread have been modelled, the study 
focussed on the evaluation of the corresponding probability models conditional to LST 
anomaly. In other words, the parameters of the distribution functions of these fire 
characteristics were modelled as a function of the LST anomaly. It was found that the LST 
anomaly is a covariate of burned area and fire duration, and that a higher LST anomaly shifts 
their corresponding distribution towards higher values. The trend of the parameters of the 
probability distribution of rate of spread as a function of LST anomaly is weak and 
decreasing, i.e. rate of spread tends to be distributed towards lower values with increasing 
LST anomaly. LST anomaly is thus strongly related to burned area and fire duration, and 
weakly related to rate of spread. 

These results raise an important opportunity to map probability of extreme events, 
conditional to ignition, with pre-fire estimations of LST anomaly. In this study, an event is 
considered extreme if, say, its burned area exceeds the 95th percentile of historical values 
in the region. Once the dependence of the parameters of the probability distribution of 
burned area and fire duration are modelled against LST anomaly, the probability of extreme 
events, conditional to ignition, is a function of LST anomaly. As expected, it was found that 
an increasing LST anomaly leads to increased probability of extreme events in terms of both 
burned area and fire duration. 
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The fact that the LST anomaly is a strong covariate of burned area and fire duration, and a 
weak covariate of rate of spread, and that against the latter it shows a decreasing trend, is 
susceptible of a physical interpretation. From a fire behaviour point of view, duration is 
related to the probability of flame extinction. The probability of extinction is determined by 
heat fluxes between the flaming zone, the surrounding fuels and the atmosphere, and 
higher heat content in the fuels results in a lower probability of extinction (Albini, 1986, 
1985; Wilson, 1990, 1985). An interpretation of LST anomaly as a measure of excess 
enthalpy, i.e. heat content in fuels, would justify its observed effect on fire duration. 

Similar reasoning may explain the weak decreasing trend observed between LST anomaly 
and rate of spread. Indeed, rate of spread is determined by the ratio between the heat 
fluxes towards the fuel and the heat of ignition (Rothermel, 1972; Weber, 1991). Heat of 
ignition is determined by fuel moisture content, whereas heat fluxes are due to convective 
and radiative heat exchange (Albini, 1985; Baines, 1990). As convective heat exchange 
between burning material and the surrounding fuels is dependent on temperature 
difference and on a heat exchange coefficient weakly dependent on the same temperature 
difference, a higher fuel heat content implies a slower heat exchange and might well explain 
the slower propagation of flames. 

 

Q2. To what extent can LFMC be retrieved by means of a broadband spectral index? 

This research question emerged from an assessment of, (i) existing remote sensing methods 
for the evaluation of vegetation water content and, (ii) the requirements of fire models. 
Remote sensing practitioners mostly focussed on water content measured in terms of 
equivalent water thickness (EWT), which is defined as the mass of water per unit leaf area. 
The interest in EWT was mainly driven by the fact that this measure of water content is a 
parameter of vegetation radiative transfer models (Jacquemoud et al., 2009). Fire 
propagation models are rather based on fuel moisture content, which is defined as the 
percentage ratio of the mass of water in fuel tissues over oven dried fuel mass (Finney, 
1998). Remote sensing methods proposed so far for the evaluation of LFMC use the ratio 
of EWT and dry matter content, the latter being a further parameter of vegetation radiative 
transfer models. Model inversion for the assessment of EWT and dry matter content would 
thus allow for the quantification of LFMC (Zarco-Tejada et al., 2003). Satisfactory results can 
only be achieved, however, if the inversion is constrained through the prior 
parameterisation of the lookup table used in the retrieval process, and this requires 
extensive fieldwork (Yebra et al., 2018; Yebra and Chuvieco, 2009a, 2009b). 

In Chapter 4, in a different approach, the objective was to construct a spectral index based 
on existing broadband optical sensors allowing for wider generality and computational 
simplicity. By means of simulated spectral data (Jacquemoud et al., 2009) convolved to 
MODIS bands (Xiong et al., 2006) it was found that isolines of LFMC could be identified in 
the spectral reflectance subspace of near infrared (0.86 µm) and shortwave infrared (1.24 
µm) bands, and that these isolines are straight and parallel. This led to the construction of 
the Perpendicular Moisture Index (PMI), defined as the distance of reflectance points from 
a reference dry vegetation line. The PMI was validated by means a publicly available dataset 
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of vegetation reflectance and moisture content measurements (Hosgood et al., 1995), and 
it was found that PMI and LFMC are linked by a logarithmic relationship. 

 

Q3. Which characteristics of fire behaviour are probabilistically related to pre-fire remote 
sensing estimates of LFMC? 

This research question was addressed in Chapter 5, relying on the Perpendicular Moisture 
Index (PMI) developed in Chapter 4 as a remote sensing estimate of LFMC. Following the 
same approach adopted for LST anomaly, probability models of burned area, fire duration 
and rate of spread conditional to PMI were constructed to identify trends linking their 
corresponding parameters to pre-fire values of PMI. It was thus found that PMI is a 
covariate of burned area and rate of spread, but not of fire duration. More specifically, it 
was found that decreasing values of PMI, i.e. decreasing values of LFMC, lead to burned 
area and rate of spread being distributed towards higher values. From a fire management 
point of view, it means that the probability of extreme events in terms of burned area or 
rate of spread, conditional to ignition, increases with decreasing PMI. PMI is thus strongly 
related to burned area and rate of spread, and unrelated to fire duration. 

These results have an immediate physical interpretation, as fire propagation is controlled 
by fuel moisture content. Indeed, heat transported by radiation and convection to the fuels 
close to the flaming area induces dehydration and pyrolysis, with release of volatiles. 
Dehydration further causes a reduction in fuels temperature of ignition that, in conjunction 
with increased fuel temperature, eventually leads to combustion and thus to the 
advancement of the fire front. Clearly, a lower moisture content facilitates this process, 
leading to a quicker propagation of flames. Indeed, the dependence of the rate of spread 
on fuel moisture content has been widely reported in literature (Andrews et al., 2013; 
Finney, 1998; Rothermel, 1991, 1972; Wilson, 1990). 

  

Q4. To what extent may pre-fire remote sensing estimations of LST anomaly and LFMC be 
used synergistically to improve predictions of extreme events? 

A sufficient condition for the construction of a model dependent on both LST anomaly and 
LFMC, the latter estimated by retrieving the perpendicular moisture index (PMI), is that 
these two quantities are independent. In chapter 6 it was found that LST anomaly and PMI 
are unrelated. The independence of these two measures of vegetation conditions is 
consistent with the nature of the biophysical features being observed. It was discussed how 
LST anomaly can be interpreted as a measure of excess enthalpy stored in fuels, and how 
this explains the clear relationship between LST anomaly and fire duration. On the other 
side, PMI was specifically designed to maximise the sensitivity to LFMC variability, and this 
is reflected in this spectral index being a predictor of the rate of spread. The assumption of 
burned area being the resultant of the rate of spread and fire duration may then justify how 
both LST anomaly and PMI are covariates of burned area. 

These considerations opened an opportunity to jointly use pre-fire LST anomaly and PMI 
for the prediction of the probability of extreme events, conditional to ignition, in terms of 
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burned area. The approach was based on the identification of a correlation of the 
parameters of the probability distribution of burned area with LST anomaly and PMI both 
individually (univariate models) and jointly (bivariate model). The sensitivity of the 
corresponding probability of extreme events, conditional to ignition, to LST anomaly and 
PMI was then reviewed across the three models in terms of sensitivity, i.e. estimated range 
of variation. It was found that the bivariate model is more sensitive to the probability of 
extreme events, conditional to ignition, than either univariate model, over the same range 
of values of LST anomaly and PMI. This result is relevant from an operational perspective, 
as fire managers are interested in predicting when and where emergency conditions may 
arise, i.e. what are the odds that a possible fire might be difficult to control. 

 

Q5. How do remote sensing predictions of fire behaviour compare against predictions 
enabled by traditional fire danger models such as the Fire Weather Index (FWI) System (Van 
Wagner, 1987)? 

This research question was addressed in Chapters 5 and 6. Traditional fire danger indices 
are essentially based on the processing of meteorological input to produce a few indicators 
related to fire occurrence and behaviour. Among them, the Fire Weather Index (FWI) 
System proved to be flexible enough to be satisfactorily used in several areas worldwide, 
including Europe. The FWI System is a collection of three moisture codes and three indices 
representing the effect of moisture content of three classes of dead forest fuel and of wind 
on fire behaviour (Van Wagner, 1987). As it only models dead fuel, whereas remote sensing 
in both the optical and the thermal domain is rather sensitive to live fuel status, some 
complementarity is envisaged. Yet it is interesting to understand how FWI System 
components compare against LST anomaly and PMI in the prediction of burned area, fire 
duration and rate of spread. 

The approach for this evaluation followed the same line of reasoning adopted for remote 
sensing observations of live fuel status, i.e. the parameters of the probability distribution 
functions of burned area, fire duration and rate of spread conditional to FWI System 
components were analysed to identify trends. It was found that all FWI System components 
control burned area, albeit to a different extent, and that similar results apply to fire 
duration. It was also found that the parameters of the probability distribution of rate of 
spread are insensitive to FWI System components. 

Relative performance of the probability distribution models conditional to LST anomaly, 
PMI and the six FWI System components was assessed, and it was shown that models 
conditional to remote sensing observations are characterised by a higher likelihood. This 
result is not final, considering the stated complementarity of the remote sensing and 
meteorological approaches with fuel condition being observed by the former and modelled 
by the latter. Yet it must be remarked how, in the study area, remote sensing in the optical 
domain was a predictor of rate of spread, whereas FWI System components were not. 
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7.2. Novelty and impact 
To the best of this author’s knowledge, research outlined in this dissertation delivered a 
few major innovations in the landscape of remote sensing of forest fire danger. Novelty lays 
both in the metrics being developed for the assessment of live fuel condition and in the 
approach aiming at quantifying probabilities of extreme events, conditional to ignition, as 
a function of remote sensing measurements. By focussing on fire behaviour characteristics, 
it further marked a distance from existing studies on remote sensing for fire danger 
mapping, where the main interest was fire occurrence. In detail: 

• This is the first time a study related pre-fire remote sensing observations of live 
fuel excess heat content and of LFMC to fire behaviour characteristics such as 
burned area, duration, and rate of spread. 

• The choice of a novel probabilistic approach rather than a deterministic one 
allowed the construction of models for the prediction of the probability of extreme 
events, conditional to ignition. 

• In the study area, optical and thermal remote sensing measurements were a 
predictor of rate of spread, whereas none of the FWI System components was. 
This shows the potential for using Earth Observation to improve existing fire 
danger mapping tools. 

• All newly identified relationships are based on pre-fire remote sensing 
observations of vegetation condition, hence demonstrating predicting capability. 

• The perpendicular moisture index (PMI) is the first broadband spectral index 
designed to be sensitive to live fuel moisture content (LFMC). PMI was found to 
control the rate of spread, as it would be expected for LFMC by fire propagation 
models. 

• The LST anomaly, as defined herein, was a predictor of fire duration. It is thus 
related to probability of flames extinction, as it would be expected for a measure 
of fuel heat content. 

These accomplishments have an immediate impact as they allow the production of 
actionable information useful to fire preparedness and the pre-emptive management of 
fire suppression resources. The probabilistic approach proposed in this study is closer to 
the fire management needs, where the main concern is about the odds of facing complex 
operational scenarios associated with extreme events (Gunes and Kovel, 2000; North et al., 
2015; Oliveira et al., 2017; Thompson et al., 2015). The fact that all results reported herein 
refer to pre-fire remote sensing observations of live fuel condition may allow the 
production of predictive maps. The complementarity of remote sensing and traditional 
meteorological fire danger indices with regards to both fuel condition and fire behaviour 
characteristic carries added value to fire managers. Once the local best fitting probability 
distribution function of forest fire characteristics has been identified, the relatively simple 
processing needed to produce maps of the probability of extreme events would allow an 
easy operationalisation of the proposed approach. Finally, the methodology may be 
replicated with other open Earth Observation data such as those provided by e.g. Sentinel-
2 MSI and Sentinel-3 SLSTR, taking advantage of the long-term continuity of the Copernicus 
programme. 
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7.3. Outlook and recommendations 
Like any endeavour aiming and expanding the knowledge base and at creating new tools, 
answers to research questions widen the horizon and open further questions. The first and 
most immediate would be: would the developed methodology work elsewhere? This 
research was performed in a relatively wide and diverse region in the middle of the 
Mediterranean. Extrapolation to other areas worldwide is not immediate for two main 
reasons. The first refers to the need to identify the probability model fitting burned area, 
fire duration and rate of spread. It was already discussed how transferring models from 
other areas would not be correct. Further, local environmental conditions and vegetation 
communities shape fuel composition and may alter the relationship between fire behaviour 
and remote sensing of fuel condition. It can be expected that separate regional predictive 
models may be created within the same methodological framework at the basis of this 
research. This is feasible as fire inventories in some of the most fire prone areas worldwide 
are either publicly available on the web, e.g. the Prométhée database in Mediterranean 
France, the Instituto da Conservação da Natureza e das Florestas (ICNF) fire inventory in 
Portugal, and the United States Geological Survey (USGS) fire occurrence data in the USA, 
or are provided upon request by relevant authorities, e.g. the Forest Fire Protection 
Information Unit of Carabinieri in Italy and the National Statistical Service in Greece. 
Nevertheless, the effectiveness of our approach would still need to be verified across 
different ecosystems/environment conditions and region extent. 

The need to operationally implement the developed approach raises a further question: 
what would be a sensible strategy to evaluate the LST anomaly in near real time, with 
satellite observations being available till the date when the retrieval is required? In this 
study, LST anomaly was defined as the deviation of the LST annual model from the LST 
climatology. The use of an annual model based on the calendar year was observational in 
nature and not predictive. Strategies for the near real time assessment of the LST anomaly 
may be based on the evaluation of the LST annual model from one year of data up to the 
current day. An alternative could be using a shorter temporal sample of observations prior 
to the target date for each pixel, after filtering noise out, to estimate current LST. Both 
strategies would still make use of the LST climatology as defined in this thesis. However, 
understanding how such alternative metrics of LST anomaly are linked to fire characteristics 
would require further investigations. 

The third question arising from this research is whether the same approach may be 
implemented using data from other sensor systems. This study focussed on MODIS on 
board of Aqua satellite for the purpose of ensuring the largest availability of satellite 
measurements covering the historical dataset of forest fires. Other space-borne imaging 
spectro-radiometers can provide similar radiometric data as those used in this work (near 
infrared, shortwave infrared, and thermal infrared), including VIIRS on board Suomi NPP 
and NOAA-20, and SLSTR on board the Sentinel-3 series.  

A fourth research question immediately arising is whether the proposed approach would 
work for the prediction of fire behaviour characteristics other than burned area, duration, 
and rate of spread. Indeed, these were indirectly derived from the data available for this 
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research that did not contain further information on fire behaviour. Among several fire 
behaviour characteristics, it would be interesting to investigate fire intensity, as this is 
controlled by fuel amount and condition (De Luis et al., 2004; Vilà et al., 2001) and has been 
found to be related to FWI System components (Camia and Amatulli, 2009). A proxy for fire 
intensity is fire radiative power (Smith and Wooster, 2005; Wooster, 2003), which is a 
measure of the rate of radiant heat emitted from a fire and has the advantage of being 
widely available as part of the standard fire products retrieved from e.g. MODIS, VIIRS and 
SLSTR (Justice et al., 2002; Schroeder et al., 2014; Wooster et al., 2012). 

A final area of development is on the integration of fire danger predictions based on 
Remote Sensing measurements with existing fire danger systems based on meteorological 
data. The complementarity of these two approaches has already been discussed in this 
chapter. Integration of optical and thermal observations of forest condition by means of a 
probabilistic framework led to improved predictions of burned area. It can thus be expected 
that further integration with the FWI System may be beneficial. More generally, it would be 
relevant to study other approaches to integrate meteorological and remote sensing 
measurements of the fire environment, specifically model based methodologies. The 
successful interpretation of the results of this dissertation in the light of the combustion 
and propagation processes would encourage further research in this direction. 

The discussed reproducibility of the approach introduced by this study gives way to some 
recommendations beyond the developments prospected above, towards operational use 
of satellite remote sensing in fire danger mapping. The first and more relevant is to ensure 
that models linking remote sensing of forest condition to the probability of extreme events 
are adapted to the operational scenarios where they would be used. In addition to the 
discussed adaptation to the regional landscape characteristics, it would be specifically 
important to define with fire managers what is, from their point of view, the magnitude of 
an extreme event. In this study a conventional threshold was used, corresponding to the 
95th percentile of the historical values of fire behaviour characteristic of interest (e.g., 
burned area), but fire managers might want to advise otherwise. 

Indeed, it is essential to work closely with end users to ensure data potential and limitations 
are properly understood. This study measured danger as the probability, conditional to 
ignition, of a fire characteristic of interest exceeding a threshold value. Other mechanisms 
of representation could be considered, such as a multiplier against a baseline probability, 
thus giving an immediate measure of increasing danger during the dry season. In fact, any 
remote sensing fire danger monitoring service should be meant to support an informed and 
sound decision-making process, and attention should be paid to the point of view of the 
user on data usage and interpretation, which might not necessarily coincide with that of 
the scientist or of the service provider. 

Finally, the author firmly believes in the key role of open-source software and open-access 
data as innovation enablers. They ensure savings on licensing costs, reproducibility, and 
support from a wide community of programmers worldwide. This entire study was based 
on open data and software, and its operationalisation has no implied need to use 
commercial solutions. 
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