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Checking structural stability of BDC-decomposable
systems via convex optimisation

Franco Blanchini a, Graziano Chesi b, Patrizio Colaneri c and Giulia Giordano d

Abstract—In this paper we show how the problem of assessing
structural local stability of BDC-decomposable systems, left open
in recent literature, can be solved via convex optimisation.
First we give a simple test, based on a sufficient condition,
that requires checking the strict co-positivity of a multivariate
polynomial. Then we provide a stronger test, based on a necessary
and sufficient condition, which can be numerically implemented
via LMI-based convex optimisation. The proposed approach
certifies the structural stability of non-trivial systems, including
a biological network discussed in the literature.

Index Terms—BDC-decomposition, Biomolecular systems,
Convex optimisation, Structural stability, Systems biology.

I. INTRODUCTION

CHECKING whether all the systems in a qualitative class
share a relevant property is fundamental to reveal the

robustness of peculiar behaviours in spite of uncertain or time-
varying parameters. A property is structural [7], [12], [21]
if it is enjoyed by all the systems with the same structure,
which we define as the topology of the system interaction
graph, independent of parameter values. Looking for structural
properties is particularly important to explain the incredibly
robust behaviour of biological systems [1], [23], which can
preserve their function despite the huge variability of envi-
ronmental conditions [7], [19], [23], [26], and also to design
robust biomolecular controllers in synthetic biology [13].

In particular, the structural stability of biochemical systems
[19] can be investigated by means of piecewise-linear [7], [8],
[9], [10], [11], piecewise-linear-in-rates [2], [3], [4], [5] and
piecewise-quadratic [25] Lyapunov functions. The existence
of a Lyapunov function ensures structural global stability of
a biochemical network, but it can be a very conservative
condition if we are interested in a local analysis based on
linearisation (and a suitable function is typically hard to find).

Here we perform a structural local stability analysis, as done
for chemical reaction networks in the pioneering work by
Clarke [17]. The parametric uncertainty approach to robust
stability analysis [6] relies on assuming that the uncertain
parameters lie within known bounds; if this is the case, then
the mapping theorem and value-set analysis are very powerful.
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However, we assume that the parameters are positive numbers
with no available finite bounds, which makes value-set analysis
impossible. When no quantitative bounds for the uncertain
parameters are known, interesting results are available in the
literature, under the name of qualitative stability [18, Chapter
6.5], for systems whose state matrix has the interval structure,
meaning that all its coefficients vary independently. We con-
sider here BDC-decomposable systems [21], [22], which admit
interval-structure systems as a special case; indeed, the BDC-
decomposition can capture generic system structures, taking
into account possible cross-constraints among coefficients.

The most effective techniques to solve robust stability
analysis of linear time-invariant systems affected by structured
time-invariant parameters are based on parametric quadratic
Lyapunov functions; in particular, pioneering methods pro-
posed sufficient conditions by exploiting quadratic Lyapunov
functions depending linearly on the parameters, see for in-
stance [17], [20]. In order to reduce the conservatism, methods
based on quadratic Lyapunov functions depending polynomi-
ally on the parameters were proposed, see for instance [15]
and references therein. However, to the best knowledge of
the authors, these methods generally consider that the set of
admissible parameters is compact and, hence, do not allow one
to address the problem considered in this paper, where the set
of admissible parameters is open.

Here, we first formulate the problem of structural local
stability analysis. We show that it boils down to checking
that a nonnegative multivariate polynomial of the unknown
parameters, which is a sum of squares of polynomials (in short,
SOS), is strictly co-positive (i.e., it is positive for all positive
values of its variables). This is a sufficient condition that can
be tested via computer-algebra.

Then we suggest a strategy based on convex optimisation
and quadratic Lyapunov functions depending polynomially
on the parameters, which leads to a necessary and sufficient
condition expressed in terms of the solution of semidefinite
programs (SDPs). We show that our approach can assess
structural stability in non-trivial cases, unsolved in previous
literature, including a biological system describing a signal
transduction network.

II. STRUCTURAL STABILITY OF BDC-DECOMPOSABLE
SYSTEMS: PROBLEM FORMULATION

Consider a nonlinear system of the form

ẋ(t) = Sf(x(t)) + f0, (1)

where x ∈ D ⊆ Rn is the state, S ∈ Zn×r is the system
“stoichiometric” matrix, f : D ⊆ Rn → Rr is a vector
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of unknown continuously differentiable functions with sign-
definite partial derivatives, D is an open, convex domain, and
f0 ∈ Rn is a constant vector. At the equilibrium point x̄,
Sf(x̄) + f0 = 0.

This class of models includes chemical reaction networks
and all phenomenological biomolecular models (gene regula-
tory models, signalling networks, etc.) that can be written as
an equivalent chemical reaction network, as well as ecological
models and population dynamics. In these cases, D = Rn≥0.
Any system of the form (1) admits a BDC-decomposition,
where D is a diagonal matrix including the unknown positive
parameters |∂fj/∂xi|, while the known matrices B and C
representing the system structure can be built systematically,
based on matrix S and on qualitative information about f(·).

Proposition 1 ([21], [22]): Any system of the form (1)
admits a BDC-decomposition: its Jacobian at any point x ∈ D
can be written as the positive linear combination of rank-one
matrices

J(x) = BD(x)C =

q∑
i=1

di(x)B•iCi• ∈ Rn×n, (2)

where B = [B•1 . . . B•q] and C = [C1• . . . Cq•]
>, while

D(x) = diag{di(x)} is a positive definite diagonal matrix.

Matrices B and C can be computed as follows: in B, the
kth column Sk of S is repeated a number of times equal to
the number of arguments (hence of partial derivatives) of the
corresponding entry fk of the vector function f ; the same
number of rows is placed in C, where each row has a 1
corresponding to the argument index and is zero elsewhere.

1
2

3

Figure 1: The structure of the system in Example 1. Nodes represent chemical
species (associated with the system variables xi), arcs represent reactions
(associated with the system rates gk). The chemical reactions are ∅ u1−−⇀ X1,
X1

g1−−⇀ X2 +X3, X2 +X3
g23−−⇀ ∅, X1 +X3

g13−−⇀ ∅.

Example 1: The system structure represented in Fig. 1
(named Frescobaldi3 in [8]) is associated with equations

ẋ1 = −g1(x1)− g13(x1, x3) + u1 (3)
ẋ2 = g1(x1)− g23(x2, x3) (4)
ẋ3 = g1(x1)− g13(x1, x3)− g23(x2, x3) (5)

where all functions in f = [g1 g23 g13]> are increasing in all
arguments. For this system

S =

 −1 0 −1
1 −1 0
1 −1 −1

 , f0 =

 u1
0
0

 .

Then, the system Jacobian can be written as J(x) =
BD(x)C, with

D(x) = diag
{
∂g1

∂x1
,
∂g23

∂x2
,
∂g23

∂x3
,
∂g13

∂x1
,
∂g13

∂x3

}
,

B =

 −1 0 0 −1 −1
1 −1 −1 0 0
1 −1 −1 −1 −1

 , C =


1 0 0
0 1 0
0 0 1
1 0 0
0 0 1

 .

Note that nothing beyond the structure in Fig. 1 and
monotonicity of the functions in f(x) is specified. Since the
procedure to generate a polyhedral Lyapunov function [8] does
not converge for this system, not even in rate coordinates [5],
[10], its structural stability is an open question.

The BDC-decomposition captures the system structure,
equivalently described by the matrix pair (B,C) identifying
a whole class of systems, while matrix D includes all the
unknown parameters: any fixed choice of D � 0 identifies a
single element of the class. A structural property holds for all
systems belonging to the class identified by the given matrices
(B,C), for all possible values of the diagonal matrix D � 0.

We are now ready to formulate the considered problem.
Problem 1: Structural local stability. Assume that BDC

is Hurwitz (i.e., all its eigenvalues have negative real part) for
some diagonal D = diag{di} � 0 (nominal stability). Check
whether

BDC is Hurwitz for all diagonal D � 0. (6)

If BDC is Hurwitz for a choice of D � 0, a necessary
and sufficient condition for structural local stability is that, for
any D � 0, BDC has no eigenvalues on the imaginary axis
(see [6, Section 5.7.8]). We introduce the following working
assumption on the known matrices B and C.

Assumption 1: Matrix BC is Hurwitz.
As a first step, we rule out eigenvalues at zero. Structural

non-singularity can be easily assessed with a vertex test.
Proposition 2 ([8], [22]): Given the known matrices B and

C, the function det(BDC) is non-zero for all possible di-
agonal matrices D = diag{di} � 0 if and only if (i)
det(BC) 6= 0, and (ii) det(BDC) has the same sign as
det(BC), or is zero, for all possible choices of di ∈ {0, 1},
corresponding to the vertices of the unit hypercube 0 ≤ di ≤ 1.

The procedure suggests a test that requires the computation
of 2q determinants (e.g., if q = 2, those corresponding to
(0, 0), (1, 0), (0, 1), (1, 1)); note that we can restrict the test
to the unit hypercube without loss of generality.

Assumption 1 implies that det(−BC) > 0 (in fact,
det(−BC) is the constant term of the characteristic polyno-
mial associated with matrix BC). Then, under Assumption 1,
assuming that the non-singularity test has been successfully
performed is equivalent to the following assumption.

Assumption 2: For all diagonal matrices D � 0, we have
det(−BDC) > 0.
Therefore, our structural local stability problem amounts to
ruling out imaginary eigenvalues.

Problem 2: Under Assumptions 1 and 2, check whether

det(ωI −BDC) 6= 0 (7)

for all real scalars ω > 0 and all diagonal matrices D � 0.
Remark 1: In [17], the stability analysis problem was re-

duced to a D-stability problem. A stable matrix M is D-
stable if MD is Hurwitz stable for all positive diagonal D.



Here, we could consider matrix CBD, which has the same
eigenvalues as BDC plus the 0 eigenvalue. As discussed in
[17], a sufficient D-stability condition is the existence of a
diagonal Lyapunov matrix Σ such that ΣCB+ (CB)>Σ � 0.
However, this sufficient condition is conservative and, as we
have verified adopting the CVX LMI software, it is not
satisfied by any of the examples considered in this paper –
apart from the illustrative Example 6, which is a particular
case since any 2×2 matrix with non-positive diagonal entries
is D-stable if it is Hurwitz stable. The approach we propose
in the following sections allows us to prove structural Hurwitz
stability of many examples to which the results in [17] cannot
be applied.

III. A SIMPLE TEST BASED ON STRICT CO-POSITIVITY

Problem 2 is equivalent to checking the strict co-positivity
of the polynomial

ψ(D)
.
= det(I + jBDC) det(I − jBDC) = ϕ(D)ϕ∗(D).

(8)
Indeed, dividing by ω > 0, (7) becomes det(I −
B(D/ω)C) = det(I − BD′C) 6= 0, because the diagonal
entries of D are arbitrary positive numbers. Moreover, for any
complex number z, z 6= 0 is equivalent to zz∗ > 0.

A polynomial is multi-affine if, when freezing all variables
but one, we get a first degree polynomial; an example is xyz+
xz − 2zy + z + y + 3. A polynomial is multi-quadratic if,
when freezing all variables but one, we get a second degree
polynomial; an example is x2yz + xy2z − 2zy + z2 + y2 + 3
(in any monomial, each variable has power at most two).

Proposition 3: The polynomial (8): (I) is SOS, hence non-
negative; (II) is multi-quadratic; (III) is even: ψ(−D) = ψ(D).

Proof: If we split real and imaginary part of ϕ(D),
det(I + jBDC) = ϕR(D) + jϕI(D), we have that ψ(D) =
ϕR(D)2 + ϕI(D)2, hence ψ(D) is SOS. Since ϕR(D) and
ϕI(D) are multi-affine polynomials, ψ(D) is multi-quadratic.
Since ψ(−D) = det(I + jB(−D)C) det(I − jB(−D)C) =
det(I − jB(D)C) det(I + jB(D)C) = ψ(D), we have that
ψ(D) is even.

Example 2: Consider the system structure (named Albi-
noni3 in [8]) associated with matrices

B =

 −1 −1 −1 1 0
0 −1 −1 0 1
1 0 0 −1 0

 , C =


1 0 0
1 0 0
0 1 0
0 0 1
1 −1 0

 .

Replacing dk by letters (d1 = a, d2 = b, . . . ), we get

ψ = a2c2 + 2a2ce+ a2e2 + a2 + 2abcd+ 2abce+ 2abe2

+ 2ab+ 2ac2d+ 2ac2e+ 2acde+ 2ace2 + 2ade2

+ 2ad+ b2d2e2 + b2d2 + b2e2 + b2 + 2bcd2e2 + 2bcd2

+ 2bce2 + 2bc+ c2d2e2 + c2d2 + c2e2 + c2 + d2e2

+ d2 + e2 + 1 = (a+ b+ c+ d+ e− bde− cde)2

+ (1− ac− ae− bd− be− cd− ce− de)2.

Since in the expanded expression of ψ there are no negative
terms, BDC cannot have purely imaginary eigenvalues.

Example 3: The fact that ψ is a SOS does not imply
stability. As an example, consider the nominally stable system

with
B =

(
1 −1
3 −2

)
, C =

(
1 0
0 1

)
.

Setting d1 = a and d2 = b, we get the SOS polynomial

ψ(D) = a2b2 + a2 − 6ab+ 4b2 + 1 = (ab− 1)2 + (a− 2b)2,

which is not strictly co-positive: it is 0 for a = 1/b =
√

2.
The peculiar properties of the polynomial ψ(D) allow us to

prove the following result.
Proposition 4: For any index k, the polynomial (8) can be

written by collecting dk as

ψ(D) = d2kψ
(k)
2 (D) + dkψ

(k)
1 (D) + ψ

(k)
0 (D), (9)

where ψ
(k)
2 , ψ(k)

1 and ψ
(k)
0 do not depend on dk and are

multi-quadratic polynomials. Moreover ψ
(k)
2 and ψ

(k)
0 are

nonnegative and even, while ψ(k)
1 is odd.

Proof: The first claim is a consequence of ψ(D) being
multi-quadratic. To prove nonnegativity of ψ(k)

2 , assume by
contradiction ψ(k)

2 < 0 for fixed d̄1, d̄2, . . . d̄k−1, d̄k+1, . . . d̄q .
For dk → ∞, ψ → −∞; then, by continuity, ψ would be
negative for some D, which is impossible since ψ is a sum
of squares. Nonnegativity of ψ(k)

0 can be proved similarly by
considering dk → 0. Since ψ is even (see Proposition 3), it
must be a sum of even terms; ψ(k)

2 and ψ(k)
0 are multiplied by

an even power of dk, hence they must be even, while ψ(k)
1 is

multiplied by dk, an odd power, hence it must be odd.
This result yields a sufficient condition to solve Problem 2.

Proposition 5: If, for some variable dk, the polynomial
ψ
(k)
1 in (9) is co-positive, namely

ψ
(k)
1 > 0 for all di > 0, i 6= k,

then det(ωI − BDC) 6= 0 for all ω > 0 and all diagonal
matrices D � 0.

Example 4: Consider the structure (named Gounod in [8])
corresponding to the matrices

B =

 −1 −1 0 0 0 0
−1 −1 0 −1 −1 0
1 1 −1 0 0 0
0 0 1 −1 −1 −1

 , C =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 0 0
0 0 0 1

 .

Replacing dk by letters (d1 = a, d2 = b, . . . ), we can write
ψ = a2ψ

(a)
2 + aψ

(a)
1 + ψ

(a)
0 , where

ψ
(a)
1 = (4bc2d2 + 6bc2df + 4bec2d+ 2bc2f2 + 2becdf

[+2bc2 − 2bcd+ 2bd2] + 4bdf + 2bed+ 2bf2 + 2b) > 0,

because the only negative term −2bcd in ψ(a)
1 is compensated

by 2bc2 and 2bd2. Hence, the system passes the test.
By means of computer algebra, we can compute the coeffi-

cients of the polynomial and get rid of possible negative terms
by means of square completion, as in the next example.

Example 5: For the structure Frescobaldi3 in Example 1,

ψ(a,b,c,d,e) = a2b2d2 + a2b2 + 2a2bc+ 2a2bd+ a2c2 + 4a2cd+

+[4a2d2] + a2 + 2ab2e+ 4abce+ 2abd2 + 2abde+ 2ac2e+ 4acde

[−2ad] + 2ae+ b2d2 + 2b2de+ b2e2 + b2 + 2bcde+ 2bce2 + 2bc

+c2e2 + c2 + 2cd+ d2 + 2de+ e2 + [1]

The only negative term in ψ is −2ad, which is compensated



by the terms 4a2d2 and 1, hence the polynomial is strictly
co-positive and the system passes the test.

IV. SDP-BASED STABILITY TEST

Here we derive a numerical test based on convex optimi-
sation to solve Problem 1. Let d ∈ Rq , and let V (d) =
V (d)′ ∈ Rn×n be a matrix polynomial to be determined of
degree not greater than δ, where δ is a nonnegative integer.
Let ζ, ξ ∈ R be scalars to be determined, and let us define the
matrix polynomials

X1(d) = V (d)

X2(d) = −V (d)Ĵ(d)− Ĵ(d)′V (d)− ζI
+ξI(1 +

∑q
i=1 di)

δ+1

(10)

where
Ĵ(d) = B (diag(d) + I)C. (11)

Let us introduce the following definition, see for instance
[14] and references therein.

Definition 1: A matrix polynomial P (d) = P (d)′ ∈ Rn×n,
d ∈ Rq , is a sum of squares of matrix polynomials (in short,
SOS) if there exist matrix polynomials Pi(d) ∈ Rn×n, i =
1, . . . , k, such that P (d) =

∑k
i=1 Pi(d)′Pi(d).

Let us define the function

sq(d) = (d21, . . . , d
2
q)
′ (12)

and the SOS programs

ξ∗ = inf
ξ,V (d)

ξ

s.t.

 Xi(sq(d)) is SOS for all i = 1, 2
deg(V (d)) ≤ δ
ξ ≥ 0, ζ = 1

(13)

and

ζ∗ = sup
ζ,V (d)

ζ

s.t.

 Xi(sq(d)) is SOS for all i = 1, 2
deg(V (d)) ≤ δ
ξ = 0.

(14)

Let us observe that the SOS programs (13)–(14) are SDPs. In-
deed, the matrix polynomials Xi(sq(d)) depend affine linearly
on the decision variables, and the conditions that such matrix
polynomials are SOS can be equivalently expressed through
linear matrix inequalities (LMIs) by exploiting the Gram
matrix method (also known as square matrix representation),
see for instance [14] and references therein.

The following result provides a necessary and sufficient
condition for establishing whether (6) holds based on the
indexes ξ∗ and ζ∗.

Theorem 1: The condition (6) holds if and only if there ex-
ists a nonnegative integer δ such that ξ∗ = 0 (or, equivalently,
ζ∗ = +∞).

Proof: First of all, let us observe that ξ∗ = 0 is equivalent
to ζ∗ = +∞. Indeed, suppose ξ∗ = 0. Let V ∗(d) be V (d)
evaluated for the found optimal values of the decision variables
in the SDP (13). This means that V ∗(d) and −V ∗(d)Ĵ(d) −
Ĵ(d)′V ∗(d)−I are SOS. Hence, ζV ∗(d) and −ζV ∗(d)Ĵ(d)−
ζĴ(d)′V ∗(d) − ζI are SOS for all ζ > 0, and, therefore,

ζ∗ = +∞. Also, suppose ζ∗ = +∞. Let V ∗(d) be V (d)
evaluated for the found optimal values of the decision variables
in the SDP (14). This means that V ∗(d) and −V ∗(d)Ĵ(d) −
Ĵ(d)′V ∗(d)−ζI are SOS for all ζ > 0, in particular for ζ = 1,
and, therefore, ξ∗ = 0.

Sufficiency. Suppose that ξ∗ = 0 for some δ. Let V ∗(d) be
V (d) evaluated for the found optimal values of the decision
variables in the SDP (13). It follows that Xi(sq(d)) � 0 for
all d for all i = 1, 2. Hence, V ∗(d) � 0 and −V ∗(d)Ĵ(d) −
Ĵ(d)′V ∗(d)−I � 0 for all d ∈ Rq+, where Rq+ is the subset of
vectors in Rq with nonnegative entries. The latter inequality
implies that V ∗(d) is nonsingular for all d ∈ Rq+. Therefore,
x′V ∗(d)x is a Lyapunov function for the system ẋ = Ĵ(d)x
for all d ∈ Rq+, and, consequently, Ĵ(d) is Hurwitz for all
d ∈ Rq+. This means that BDC is Hurwitz for all diagonal D
such that λmin(D) ≥ 1. From the linearity of BDC on D, it
follows that (6) holds.

Necessity. Suppose that (6) holds. From the linearity of
BDC on D, this implies that BDC is Hurwitz for all diagonal
D such that λmin(D) ≥ 1, and, hence, that Ĵ(d) is Hurwitz
for all diagonal d ∈ Rq+. From this, one has that the Lyapunov
equation V̂ (d)Ĵ(d)+ Ĵ(d)′V̂ (d)+I = 0 has a unique positive
definite solution V̂ (d) = V̂ (d)′ ∈ Rn×n for all d ∈ Rq+. This
solution V̂ (d) is a matrix rational function that can be obtained
by rewriting the Lyapunov equation as A(d)v(d)+b = 0 where
the vectors v(d) and b contain the independent entries (associ-
ated with the upper triangle) of V̂ (d) and I , respectively, and
A(d) is a square matrix that depends linearly on Ĵ(d). Let
us observe that A(d) is nonsingular for all d ∈ Rq+ since the
solution of the Lyapunov equation is unique in such cases. Let
us define Ṽ (d) = βsgn(det(A(d0))) det(A(d))V̂(d), where
β is a positive scalar, d0 is any chosen vector in Rq+ and
sgn(·) is the sign function. It follows that Ṽ (d) is a positive
definite matrix polynomial for all d ∈ Rq+. Moreover, β can
be chosen to satisfy −Ṽ (d)Ĵ(d) − Ĵ(d)′Ṽ (d) − I � 0 for
all d ∈ Rq+. Next, since Ṽ (sq(d)) � 0 for all d, there
exists a nonzero polynomial s1(d) such that 1+s1(sq(d)) and
(1+s1(sq(d)))Ṽ (sq(d)) are SOS, see for instance Section III-
B in [14] and references therein. Let s2(d) be a polynomial to
be determined such that 1 + s2(sq(d)) is SOS. Let us define
the matrix polynomial V (d) = (1 + s1(d))(1 + s2(d))Ṽ (d). It
follows that X1(sq(d)) is SOS. Moreover, let δ be the degree
of V (d). One has:

X2(sq(d))

= −V (sq(d))Ĵ(sq(d))− Ĵ(sq(d))′V(sq(d))− I

+ξI(1 + d′d)δ+1

= (1 + s1(sq(d)))(1 + s2(sq(d)))(−Ṽ (sq(d))Ĵ(sq(d))

−Ĵ(sq(d))′Ṽ(sq(d)))− I + ξI(1 + d′d)δ+1

= (1 + s2(sq(d)))X3(sq(d)) + (s1(sq(d)) + s2(sq(d))

+s1(sq(d))s2(sq(d)))I + ξI(1 + d′d)δ+1

where X3(d) = (1 + s1(d))(−Ṽ (d)Ĵ(d) − Ĵ(d)′Ṽ (d) − I).
Since X3(sq(d)) � 0 for all d, the polynomial s2(d) can be
chosen such that 1 + s2(sq(d)) and (1 + s2(sq(d)))X3(sq(d))
are SOS, see again Section III-B in [14] and references therein.
This implies that X2(sq(d)) is SOS for all ξ ≥ 0.



Theorem 1 provides a strategy for testing whether (6) holds
through convex optimisation, in particular, the SDPs (13)–
(14). Let us observe that, although either one of these SDPs
can be used to prove (6), the theorem considers both of them
for two main reasons. The first reason is to provide a more
reliable answer since SDPs are solved with finite precision.
Indeed, checking both indexes rather than one only may help
in some situations. Also, the SDP (14) is unbounded when
it recognises that (6) holds, and several SDP solvers like the
one used for the examples in this paper [27] are capable of
detecting that the solution is unbounded. The second reason
is that the SDP (13) may be useful to establish also whether
(6) does not hold. Indeed, by analyzing the null space of the
found Gram matrices in this SDP, one may get candidates for
instability, as showcased by the examples in the sequel.

The numerical complexity of the SDPs (13)–(14) mainly
depends on the number of LMI scalar variables. In this regard,
the reader is referred to [16], where formulas for determining
the number of LMI scalar variables required to establish if
a matrix polynomial is SOS are reported for the general case
and for the case of matrix polynomials that are symmetric with
respect to all axes, i.e., that depend on the variable sq(d).

In the following examples, the degree δ used is the smallest
nonnegative integer that allows us to conclude whether (6)
holds or not.

Example 6: Let us consider a simple system for which
stability is trivially guaranteed for all positive D:

B =

(
0 1
−2 −1

)
, C =

(
1 0
0 1

)
.

With δ = 1, we find ξ∗ = 4.6 · 10−9 and ζ∗ = +∞. Hence,
from Theorem 1, we conclude that (6) holds. The number of
LMI scalar variables in each SDP is 22.

Example 7: Let us take B and C as in Example 3. With
δ = 0, we find ξ∗ = 0.606 and ζ∗ = −1.743 · 10−12, which
do not allow us to conclude whether (6) holds or not through
Theorem 1. Hence, we consider X2(sq(d)) evaluated for the
found optimal values of the decision variables in the SDP
(13), and we denote this matrix polynomial as X∗2 (sq(d)).
We find that X∗2 (sq(d)) is asymptotically singular along the
direction d̄ = (1, 0)′. Hence, we test the spectrum of BDC
for D = diag(d̄) + εI, where ε = 10−3 is introduced to
avoid considering a singular D. We find that the spectrum
is {0.001, 0.998}, which means that (6) does not hold. The
number of LMI scalar variables in each SDP is 4.

Example 8: Let us consider the structure named Chopin4
in [8], associated with the matrices

B =

 −1 0 0 1 0 0
1 −1 0 0 −1 −1
0 1 −1 0 0 0
0 0 1 −1 −1 −1

 , C =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 0 0
0 0 0 1

 .

As shown in [8], the system admits a structural polyhedral
Lyapunov function; hence it is considered here to “check”
the procedure, whose outcome is expected, being the system
(globally) structurally stable. With δ = 2, we find that ξ∗ =
3.002 · 10−10 and ζ∗ = +∞. Hence, from Theorem 1, we
conclude that (6) holds. The number of LMI scalar variables

in each SDP is 2969.
Example 9: For the structure named Gershwin4 in [21],

B =

 −1 −1 1 0 0 0 1 0
1 0 −1 −1 0 0 0 0
1 0 0 0 −1 −1 0 −1
0 1 0 0 0 −1 −1 −1

 ,

C =

 1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1


>

,

With δ = 2, we find ξ∗ = 1.358·10−5 and ζ∗ = 7.043·10−10,
which do not allow us to conclude whether (6) holds or not
through Theorem 1. Hence, we consider X2(sq(d)) evaluated
for the found optimal values of the decision variables in the
SDP (13), and we denote this matrix polynomial as X∗2 (sq(d)).
We find that X∗2 (sq(d)) is asymptotically singular along the
direction d̄ = (0.755, 0, 0.657, 0, 0, 0, 0, 0)′. Hence, we test the
spectrum of BDC for D = diag(d̄) + εI, where ε = 10−3 is
introduced to avoid considering a singular D. We find that the
spectrum is {−1.414,−0.009, 0.002± j0.006}, which means
that (6) does not hold. The number of LMI scalar variables in
each SDP is 6211.

V. CASE STUDY: A SIGNAL TRANSDUCTION NETWORK

We consider here a biological example of a signal transduc-
tion network, for which [2, Section 8.3.8] reports that assessing
stability remains an open problem. The biochemical reactions

X1 +X2
g12−−⇀↽−−
g4

X4, X4 +X3
g34−−⇀↽−−
g5

X5
g∗5−−⇀ X4 +X6, X6

g6−−⇀ X3

describe a two-component signalling pathway where X1 is
the receptor, X2 is the ligand, X4 is the active receptor-ligand
complex, X3 is the active response regulator protein and X6 is
its inactive (dephosphorylated) version, while X5 is a receptor-
ligand-regulator intermediate complex. This type of pathway,
identified in several bacterial species, enables a transmembrane
receptor protein (X1) to transmit information across the cell
membrane and into the cell, beyond the intracellular membrane
surface where it is lodged, by activating via phosphorylation a
cytosolic messenger protein (X3) able to diffuse through the
cytosol and convey the information, typically resulting in a
change in gene expression [24].

Denoting species concentrations with the corresponding
lowercase letter, we can write the corresponding system

ẋ1 = −g12(x1, x2) + g4(x4) = ẋ2

ẋ3 = −g34(x3, x4) + g5(x5) + g6(x6)

ẋ4 = g12(x1, x2)− g4(x4)− g34(x3, x4) + g5(x5) + g∗5(x5)

ẋ5 = g34(x3, x4)− g5(x5)− g∗5(x5)
ẋ6 = g∗5(x5)− g6(x6)

Enforcing the conservation laws x1 = k1 + x2, x2 = k2 −
x4 − x5 and x3 = k3 − x5 − x6, where ki (i = 1, 2, 3) are
positive constants, leads to the reduced order model

ẋ4 = g12(k1 + k2 − x4 − x5, k2 − x4 − x5)− g4(x4)

−g34(k3 − x5 − x6, x4) + g5(x5) + g∗5(x5)

ẋ5 = g34(k3 − x5 − x6, x4)− g5(x5)− g∗5(x5)

ẋ6 = g∗5(x5)− g6(x6)



whose structure is described by the matrices

B =

 1 1 −1 −1 −1 1 1 0
0 0 0 1 1 −1 −1 0
0 0 0 0 0 0 1 −1

 ,

C =

 −1 −1 1 0 1 0 0 0
−1 −1 0 −1 0 1 1 0
0 0 0 −1 0 0 0 1

> .
For this system, the procedure in [8], as well as its dual [10],

does not converge, hence no polyhedral Lyapunov function
can be computed. Also, no piecewise-linear-in-rate Lyapunov
function can be constructed, even though the system is re-
ported to exhibit a stable behaviour in many simulations [2,
Section 8.3.8].

Structural local stability can be proven with the approach in
Section III, exploiting the sufficient condition in Proposition 5.
Replacing dk by letters (a, b, . . . ), the polynomial ψ(D) in
(8) can be written as ψ = a2ψ

(a)
2 + aψ

(a)
1 +ψ

(a)
0 , where ψ(a)

1

has only positive terms, hence it is positive for all di > 0.
We can also adopt the approach in Section IV. With δ =

2, we find ξ∗ = 1.063 · 10−9 and ζ∗ = +∞. Hence, from
Theorem 1, we conclude that (6) holds. The number of LMI
scalar variables in each SDP is 3511.

VI. CONCLUSIONS AND FUTURE WORK

We have tackled the problem of structurally assessing local
stability of systems admitting a BDC-decomposition, for all
possible values of the positive parameters di. On the one
hand, we have shown that – under structural non-singularity
assumptions, which can be easily checked by means of a vertex
algorithm – the problem boils down to checking the strict
co-positivity of a SOS polynomial, which is multi-quadratic
and even, and we have provided a simple sufficient condition
that can be checked by means of computer algebra. On the
other hand, we have addressed the problem directly by means
of an LMI-based convex optimisation approach aimed at
finding quadratic Lyapunov functions depending polynomially
on the parameters, which provides a necessary and sufficient
condition. The proposed approach has enabled us to certify
the structural local stability of non-trivial systems, including
the case study of a relevant biological network that represents
a bacterial two-component signalling pathway, whose stability
analysis was left in previous literature as an open problem.

The proposed convex optimisation algorithms can analyse
stability of BDC for any matrix pair (B,C). An interesting
direction for future work is to tailor the approach more
specifically to chemical reaction networks, and exploit the fact
that the corresponding B and C always have integer entries,
which often take values in the set {−1, 0, 1}.

Another interesting direction is to investigate the possible
reduction of the computational burden of the SDPs, which
quickly grows with the size of the matrices and with the num-
ber of parameters, as shown in the examples by the number of
LMI scalar variables. Although the examples presented in this
paper can be solved in a reasonable time (from less than one
second in Example 6 to less than twenty minutes in Example 9
on a standard personal computer), researchers often need to
test examples with much bigger dimensions. Such possible

reduction could be realised by further exploiting the properties
of the matrices B and C.
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