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1.  Introduction
The increasing availability and accuracy of remote sensing data of the terrestrial water cycle holds great 
promise for calibration and validation of large-scale hydrological models. Several modeling studies have 
already taken advantage of these data for evaluating and constraining hydrological models, including 
water storage data from GRACE satellites (Bai et al., 2018; Scanlon, Zhang, Rateb, et al., 2019; Scanlon, 
Zhang, Save, et al., 2018; L. Zhang et al., 2017) and satellite-based evaporation data (Jiang et al., 2020; Lopez 
et al., 2017; Odusanya et al., 2019; Rientjes et al., 2013). A challenge with using remotely sensed data for 
model evaluation is that data errors need to be properly accounted for. Data errors are due to, for example, 
differences in scale, errors in the retrieval algorithms, and insensitivity of sensors to small changes in the 
variable being measured. However, without a reference “ground truth” data set, these errors are difficult to 
quantify, thereby undercutting the potential of remote sensing data for advancing large-scale hydrology. For 
example, ignoring or misrepresenting systematic data errors (bias) during calibration leads to biased pa-
rameter estimates and limits learning, especially when water balance data are hydrologically inconsistent, 
that is, they do not close the water balance. Furthermore, proper characterization of random errors (noise) 
and information content of the data is important: underestimating or even ignoring data noise may lead to 
overfitting, while overestimating data noise limits learning by not fully exploiting the information content 
of the data.

The processing and use of remotely sensed water balance data therefore requires (a) a methodology for esti-
mating systematic and random errors in the data and (b) a methodology that corrects bias, filters out noise, 
and yields a hydrologically consistent set of water balance data that closes the water balance. These are of 

Abstract  To fully benefit from remotely sensed observations of the terrestrial water cycle, bias and 
random errors in these data sets need to be quantified. This paper presents a Bayesian hierarchical model 
that fuses monthly water balance data and estimates the corresponding data errors and error-corrected 
water balance components (precipitation, evaporation, river discharge, and water storage). The model 
combines monthly basin-scale water balance constraints with probabilistic data error models for each 
water balance variable. Each data error model includes parameters that are in turn treated as unknown 
random variables to reflect uncertainty in the errors. Errors in precipitation and evaporation data are 
parameterized as a function of multiple data sources, while errors in GRACE storage observations are 
described by a noisy sine wave model with parameters controlling the phase, amplitude, and randomness 
of the sine wave. Error parameters and water balance variables are estimated using a combination of 
Markov Chain Monte Carlo sampling and iterative smoothing. Application to semiarid river basins in Iran 
yields (a) significant reductions in evaporation uncertainty during water-stressed summers, (b) basin-
specific timing and amplitude corrections of the GRACE water storage dynamics, and (c) posterior water 
balance estimates with average standard errors of 4–12 mm/month for water storage, 3.5–7 mm/month 
for precipitation, 2–6 mm/month for evaporation, and 0–2 mm/month for river discharge. The approach is 
readily extended to other data sets and other (gauged) basins around the world, possibly using customized 
data error models. The resulting error-filtered and bias-corrected water balance estimates can be used to 
evaluate hydrological models.
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course well-known challenges, and the following paragraphs review some of the approaches that have been 
proposed in the literature to tackle error estimation and correction of water balance data.

A common approach for estimating bias and random data errors of individual water balance variables is 
to compare the data to a reference ground truth data set (Moreira et al., 2019). For example, satellite-based 
precipitation estimates are often evaluated by using rain gauge data as ground truth (Beck et al., 2017; Mas-
sari & Maggioni, 2020), while errors in evaporation data products have been estimated by comparing to 
ground-based measurements from eddy covariance flux towers (M. Chen et al., 2016; Yang et al., 2017) and 
soil moisture sensors (Martens et al., 2017). Another approach to error estimation is to create a reference 
data set for the variable of interest by computing it as the residual of the water balance, with all other wa-
ter balance components assumed to be known. This approach has mainly been used for evaporation (Liu 
et al., 2016; Wan et al., 2015; Weerasinghe et al., 2019). Regardless of the approach used for creating the 
reference data set, a conceptual drawback of the “ground truth” approach is that the “true” values are never 
actually measured, since no data set or estimate is completely error-free. For example, traditional ground 
observations, such as rain gauges, are limited in capturing variability across large areas, whereas remote 
sensing data suffer from uncertainties in converting electromagnetic signals into water balance variable 
estimates. Nevertheless, in practice, the ground truth approach may be justified as long as errors in the ref-
erence data set are sufficiently small relative to the data errors being estimated (Massari & Maggioni, 2020).

Alternative error estimation techniques that do not assume a reference ground truth data set have also 
been developed. The main idea is to use an ensemble of (three or more) data sets of the same water balance 
variable and either estimate errors based on variability across the ensemble (Tian & Peters-Lidard, 2010; 
Y. Zhang, Pan, Sheffield, et al., 2018) or based on a triple collocation or three-cornered hat method, as has 
been applied to precipitation (Alemohammad et  al.,  2015; Massari et  al.,  2017) and evaporation (Khan 
et al., 2018; Long et al., 2014) error estimation.

A separate group of studies focuses on bringing together estimates of the different water balance varia-
bles and modifying the original estimates so as to close the water balance (Aires, 2014; Allam et al., 2016; 
Hobeichi, Abramowitz, Contractor, & Evans,  2020; Munier et  al.,  2014; Pan, Sahoo, et  al.,  2012; Pan & 
Wood, 2006; Pellet et al., 2019; Rodell et al., 2015; Sahoo et al., 2011; Simons et al., 2016; Wang et al., 2015; 
Y. Zhang, Pan, Sheffield, et al., 2018; Y. Zhang, Pan, & Wood, 2016). In closing the water balance, variables 
with large errors are adjusted more than variables with small errors, a process that can be formalized by 
what Pan and Wood (2006) called a constrained Kalman filter. A crucial input for these water balance fusion 
studies is therefore the specification of the magnitude of errors in each water balance variable. In existing 
water balance fusion studies, error estimates are typically fixed a priori based on expert judgment or on 
results from the error estimation techniques mentioned in the previous paragraphs. However, combining 
error estimates from different studies for water balance closure easily leads to inconsistencies, for example, 
when error estimates of the different variables are based on conflicting underlying ground truth assump-
tions or on data from different regions. Furthermore, by fixing the data errors in advance, existing water 
balance fusion studies forego the opportunity to improve data error estimates: as we show in this paper, 
the idea of estimating errors by bringing together multisource data, as used in triple collocation for a single 
variable, can also be applied to water balance fusion where data on the different water balance variables are 
combined.

The current paper builds on previous efforts and combines the error estimation and water balance fusion 
steps into a single methodology that removes the need for a reference ground truth data set. Instead, each 
water balance variable is assumed to be subject to unknown bias and random errors, and a single iterative 
approach is used to estimate an internally consistent set of data errors and water balance variables that 
close the water balance. The methodology relies on the formulation of a probabilistic model that combines 
monthly basin-scale water balance constraints with data error models for each water balance variable. The 
data error models relate the observations to the underlying unknown true values and contain the unknown 
parameters to account for uncertainty in the data errors. The overall probabilistic model takes the form of 
a Bayesian hierarchical model with two levels of uncertainty: unknown water balance variables are con-
strained by probability distributions with parameters that themselves are treated as unknown random var-
iables with specified prior distributions. After conditioning on available water balance data, posteriors of 
all unknowns, that is, error parameters and water balance variables, are computed using a combination of 
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Markov Chain Monte Carlo (MCMC) sampling and an iterative form of (Kalman) smoothing. The posteri-
ors automatically fuse all available information and yield the best estimates with uncertainty for all water 
balance variables and error parameters. We note that (Kalman) smoothing, that is, estimating water balance 
variables using data from the entire time series, has not been used in previous water balance fusion studies, 
which have sometimes used additional postprocessing steps to remove high-frequency artifacts in the esti-
mates (Munier et al., 2014).

The paper starts by introducing the river basins used in this study. Water balance data for these basins are 
used to motivate the development of the probabilistic data error models in Section 3. Section 4 details how 
the probabilistic water balance model is solved, that is, how the posteriors of interest are computed. Sec-
tion 5 then presents the results of applying the methodology to river basins in Iran, followed by an evalua-
tion of different assumptions in the analysis (Section 6) and a summary of the main findings.

2.  Case Study: River Basins in Iran
Figure 1 shows the locations of the Iranian river basins investigated in this study. The basins were select-
ed for their availability of river discharge data, their relatively large size, and their geographical location 
across the country from west to east. Basin boundaries were identified by delineating the topographically 
upstream areas for each stream gauge providing river discharge data (Table 1). The endorheic Jazmoorian 
basin drains to an internal lake without natural outlet and hence does not have a stream gauge recording 
outflow. The basins range in size from 1,600 to 70,000 km2 and are generally semiarid or arid with potential 
evaporation equal to 1.4 to 5 times the average precipitation. Consequently, runoff ratios (Q/P in Table 1) 
are small, mostly 0.1 or less, with the exception of the relatively steep mountainous Karoon basin. Surface 
and groundwater withdrawals for irrigation are common and tend to further reduce runoff ratios. All basins 
have pronounced seasonality in precipitation and runoff, with relatively wet winters and dry summers, 
translating into seasonal wetting and drying cycles.
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Figure 1.  Topographic map of Iran with location of river basins and their outlets (red dots). The Jazmoorian basin is 
endorheic and drains to an internal lake.
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The generally water-stressed nature and complex topography of the selected river basins, coupled with sig-
nificant interventions in the natural water cycle in the form of dams, irrigation, and groundwater pumping, 
provide a good test bed for the proposed water balance methodology.

3.  Probabilistic Water Balance Model
Our interest is in estimating all the terms in the monthly basin-scale water balance:

   1t t t t tS S P E Q� (1)

where St−1 and St are the total water storage (surface and subsurface) in the basin at the start and end of 
month t, Pt, and Et are the basin average precipitation and evaporation (including transpiration), and Qt is 
the river discharge at the basin outlet for month t. Each term is normalized by the basin area and expressed 
in consistent water depth units (e.g., mm). Equation 1 assumes the negligible net lateral groundwater flow 
into or out of the basin. It also assumes that no significant surface water flows crossing the basin boundary, 
except for the river discharge at the basin outlet. Thus, upstream inflows and inter-basin water transfers are 
considered negligible, while intra-basin water transfers, for example, via water diversions and groundwater 
pumping for irrigation, are captured by Equation 1. Inter-basin water transfer is known to occur from the 
upstream part of Karoon basin (Figure  1) into the semiarid Zayanderood basin to the north; the trans-
ferred amount of water is however negligible compared to the total runoff in Karoon basin (Abrishamchi 
& Tajrishy, 2005).

In principle, each term in Equation 1 can be measured or estimated independently. However, bringing such 
independent estimates together does not typically lead to water balance closure because all measurements 
and estimates are subject to systematic and random errors. Conceptually, it is then useful to distinguish be-
tween “true” and “observed” versions of each water balance variable: by definition, the true water balance 
variables close the water balance, and the true and observed versions of each water balance variable are 
related via data error models that capture systematic and random deviations between observed and under-
lying true values.

Each data error model consists of parametric probabilistic relations between observed and true values, 
where parameters quantify the magnitude of systematic and random data errors. Since the magnitude of 
these errors is not known a priori, the parameters are themselves treated as random variables with specified 
prior distributions. The resulting model can hence be viewed as a Bayesian hierarchical model with two 
levels of uncertainty, that is, one for error parameters and the other for water balance variables.

The monthly water balance data used here are summarized in Table 2. We follow previous water balance 
fusion studies and focus as much as possible on observational data instead of hydrological model outputs as 
the source for the water balance data, thereby minimizing the impact of hydrological process assumptions. 
An exception is the GLEAM evaporation product, which internally relies on a soil water balance model. 
All data were spatially averaged across each basin to obtain monthly basin-scale data values. The following 
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ID Basin Stream gauge (°N, °E) Area (km2) Elevation (m)

*
pE

P

*Q
P

1 Sepidrood Gilvan (36.83, 49.02) 49,246 332–3,478 1.78 0.06

2 Karkheh Abdolkhan (31.83, 48.36) 45,497 36–3,528 1.61 0.11

3 Karoon Karoon-IV (32.25, 48.83) 32,840 66–4,199 1.36 0.38

4 Mond Ghantareh (28.25, 51.87) 35,397 68–3,105 2.54 0.04

5 Jazmoorian (Endorheic) 70,102 365–4,226 5.04 0.00

6 Gorganrood Bustan Dam (37.42, 55.41) 1,620 85–1,994 2.04 0.06

Note. *P, Q, and Ep are average precipitation, river discharge, and potential evaporation.

Table 1 
River Basin Characteristics
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sections describe data sources and probabilistic data error models for each water balance variable (P, E, Q, 
and S).

3.1.  Precipitation Error Model

The first data set used is GPM IMERG (Table 2), which provides monthly precipitation values and associ-
ated standard errors. The monthly IMERG precipitation merges satellite-based estimates with the GPCC 
rain gauge data set, while standard error estimates are based on the methodology of Huffman (1997). There 
is generally a good correspondence between IMERG and spatially interpolated rain gauge precipitation for 
the basins studied here (Figures 2, S1 and S2), with the exception of Gorganrood basin. A recent evaluation 
of IMERG across Iran (Maghsood et al., 2020) reported small but systematic overestimation of the monthly 
precipitation in dry regions and underestimation in the wettest parts of the country. To account for poten-
tial bias in IMERG, we included CHIRPS as a second precipitation data set. In the semiarid Mond basin for 
example (Figure 2), CHIRPS tends to give lower precipitation than IMERG during the wet winter months.
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Variable Symbol Data source Resolution Reference

Precipitation Pobs1 GPM IMERG Final V06B 0.1° Huffman et al. (2019)

Pobs2 CHIRPS v2.0 0.05° Funk et al. (2014)

Evaporation Eobs1 SSEBop v4 0.01° Senay et al. (2020)

Eobs2 GLEAM v3.3b 0.25° Martens et al. (2017)

River discharge Qobs Stream gauges Basin IWRMC (2020)

Storage Sobs GRACE JPL mascon RL06v02 3° Wiese, Yuan, et al. (2018)

Table 2 
Monthly Water Balance Data

Figure 2.  Monthly precipitation and evaporation data for Mond basin during 2006–2010. The IMERG data include 
standard errors and are plotted as 90% uncertainty bands. Spatially interpolated basin average rain gauge precipitation 
is included for comparison but was not used in the model. Potential evaporation from the GLEAM data set is  
shown as Ep.
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The following error model was then used to relate the observed and true precipitation:

  , 1, 2,(1 )P t P obs t P obs tm w P w P� (2)


 

  
 

, , 1, 2,
1max ,
2P t P t P obs t obs ts r P P� (3)

 2
, ,( , )t P t P tP m s� (4)

 0tP� (5)

The first equation models bias in the observations by describing the prior mean precipitation mP,t for month 
t as a weighted average of IMERG (Pobs1,t) and CHIRPS (Pobs2,t) monthly basin precipitation. Parameter wP 
represents the weight; since it is unknown a priori, it is given a quasi-uniform prior between 0 and 1 (spe-
cifically, a logit-normal prior with location parameter μ = 0 and scale parameter σ = 1.4) to reflect prior 
uncertainty about the bias.

The second equation models random errors in the observations by describing the prior standard deviation 
sP,t of precipitation for month t as the largest of either (a) the IMERG standard error σP,t or (b) the scaled 
absolute difference between the two precipitation data sets for each month, using rP as the scaling param-
eter. The reasoning behind this is that large differences between the two data sets may not only indicate 
systematic but also significant random errors. Parameter rP is given a quasi-uniform prior between 0 and 1 
to reflect prior uncertainty about the relation between bias and random errors. In the limit when rP = 1, the 
prior standard deviation is half the absolute difference between the two data sets. However, to avoid unre-
alistically small prior uncertainty in precipitation, for example, when rP is near 0 or the two data sets are in 
close agreement, the value of sP,t is not allowed to be less than the IMERG standard error σP,t. The latter is 
obtained by arithmetic averaging of the gridded “random error” variable in the IMERG data set. This im-
plicitly assumes that the IMERG random errors are spatially perfectly correlated across the basin. As such, 
it provides a conservative estimate of the magnitude of basin-scale random errors, since averaging partially 
uncorrelated grid-scale random errors would result in some error cancellation and therefore smaller values 
for σP,t at the basin-scale.

Finally, the last two equations in the precipitation error model treat the true precipitation Pt for month t 
as a random draw from a truncated normal distribution. Truncation at zero constrains precipitation to be 
nonnegative. Validity of the proposed precipitation error model will be evaluated a posteriori. Note that an 
alternative precipitation error model could treat the two data sets as independent random samples of the 
underlying true values. The proposed model does not assume such independence but instead, models ran-
dom errors as deviations from the weighted average of the two data sets.

3.2.  Evaporation Error Model

To capture the uncertainty and errors in evaporation, two different remote sensing evaporation products are 
used, that is, GLEAM and SSEBop (Table 2). These data sets use different methods for estimating the evap-
oration from remote sensing data. GLEAM uses Priestley-Taylor for potential evaporation and estimates the 
actual evaporation as a function of the microwave vegetation optical depth and soil moisture, in combina-
tion with a root-zone water balance. On the other hand, SSEBop uses Penman-Monteith for the potential 
evaporation and estimates the actual evaporation based on a surface energy balance and remotely sensed 
land surface temperature. For the basins studied in this paper, these two approaches translate into similar 
evaporation estimates under energy-limited conditions (wet winters) but significantly different evaporation 
estimates under water-limited conditions (dry summers). Figure 2 illustrates this for the Mond basin, with 
similar patterns observed in other basins (see Supporting Information): in the absence of significant rainfall 
during summer, GLEAM evaporation decreases to near-zero values, while SSEBop evaporation shows a 
peak in summer, suggesting that water remains available to natural vegetation or crops (irrigation). These 
differences result in significant prior uncertainty in evaporation during summers.

An error model similar to that of precipitation is adopted for evaporation:
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    , 1, 2,(1 )E t E E obs t E obs tm f w E w E� (6)

s m r E E
E t E t E obs t obs t, , , ,max . , 









0 1

1

2
1 2� (7)

 2
, ,( , )t E t E tE m s� (8)

 0tE� (9)

Bias is modeled with two time-invariant parameters: wE is a weight that interpolates between SSEBop Eobs1,t 
and GLEAM Eobs2,t evaporation, and fE is an additional scaling factor that provides an additional degree of 
freedom to, for example, account for bias outside the range of the two data sets. Random errors are modeled 
using the same approach used for precipitation, with parameter rE controlling to what extent prior uncer-
tainty scales with the absolute difference between the two evaporation data sets. If the difference between 
the two data sets is small, for example, during energy-limited conditions in winter, a minimum relative error 
of 10% is assumed by setting sE,t = 0.1mE,t. As with precipitation, true evaporation Et in month t is treated 
as a random draw from a truncated normal distribution. Truncation at zero constrains evaporation to be 
nonnegative.

Since the values of the error parameters are not known a priori, they are given vague prior distributions: 
quasi-uniform priors between 0 and 1 for wE and rE (specifically, flat logit-normal priors between 0 and 1 
with location parameter μ = 0 and scale parameter σ = 1.4) and a lognormal prior for fE, with mode at 1 (no 
bias) and a coefficient of variation CV of 50%.

3.3.  River Discharge Error Model

We assume that the basin is gauged and a possibly incomplete record of measured monthly river discharge 
data Qobs is available. A proportional error model is used to relate these data to the underlying true discharge 
values Q:

, , ,( , )Q t obs t Qobs tm Q v� (10)

 , ,Q t Q obs t Qs a Q b� (11)

 2
, ,( , )t Q t Q tQ m s� (12)

 0tQ� (13)

For months with observations, we set , 0Qobs tv  so that the first equation becomes equivalent to mQ,t = Qobs,t, 
that is, the mean of Qt is equal to the (unbiased) observation for that month. For months with missing ob-
servations, Qobs,t and ,Qobs tv  are set equal to the mean and variance of the river discharge observed for that 
month across the entire observation record. This procedure works as long as only a few observations are 
missing. For the basins studied in this paper, Gorganrood basin has 1 month with missing data and Mond 
basin has 3 months with missing observations.

The magnitude of random observation errors is controlled by the standard deviation sQ,t, which is modeled 
as a linear function of the observed discharge for that month (or, the mean historical discharge for that 
month in case of a missing observation). This model assumes that observation errors increase linearly with 
discharge and include two time-invariant parameters, aQ and bQ. Parameter aQ is given a log-normal prior 
with mode at 0.1 (i.e., a relative error of 10%) and a small CV of 1%, while bQ is given a log-normal prior with 
mode at 0.001 and also a CV of 1%. Hence, aQ and bQ are more or less kept fixed a priori. The sensitivity of 
the results to the assumed narrow prior of aQ will be evaluated in Section 6.

As with precipitation and evaporation, the monthly discharge Qt is constrained to be nonnegative.

SCHOUPS AND NASSERI

10.1029/2020WR029071

7 of 27



Water Resources Research

3.4.  Water Storage Error Model

The JPL mascon GRACE water storage data used here (see Table 2) consist of monthly total terrestrial water 
storage anomalies relative to the period 2004–2009 at a spatial resolution of 3°. The data come post-pro-
cessed with the Coastline Resolution Improvement (CRI) filter by Wiese, Landerer, and Watkins (2016) to 
reduce leakage errors across land-ocean boundaries. Figure 3 shows measurement errors of the GRACE 
data across Iran.

Wiese, Landerer, and Watkins (2016) used simulations with the Community Land Model to downscale the 
coarse 3° storage data to a 0.5° global grid. Here, we use an alternative approach and instead downscale the 
data directly to the river basin of interest without using a hydrological model: first, the 3° data are weighted 
area averaged over each river basin, and then an error model is specified to quantify systematic and random 
differences between the basin-averaged storage data and the true storage changes in the basin.

Both the monthly basin-scale data and the true storages typically have a seasonal cycle, but with possibly 
different amplitudes and phases because the coarse-scale data are polluted by storage dynamics outside of 
the basin (“leakage”). This motivates the following noisy sine wave error model for quantifying the differ-
ences between GRACE basin-scale water storages Sobs,t and underlying true storages St:

 
  

       
, sin

12S t t
tm S A� (14)

,S t Ss� (15)

 2
, , ,( , )obs t S t S tS m s� (16)
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Figure 3.  Time-averaged (2006–2015) measurement errors of the JPL GRACE data for each 3° mascon across Iran 
(based on the “uncertainty” variable in the JPL netCDF data set). Errors tend to be smaller in arid parts of the country 
(east and central).
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Here, A is amplitude (mm), ω is the frequency (radians per year), and δ is the phase (in years) of the errors. 
This model accounts for systematic differences in amplitude and phase between the observed and true 
values by means of time-invariant error parameters, A and δ. Furthermore, time-invariant parameter σS 
quantifies the magnitude of random errors in the basin-scale data, which may be caused by (a) inadequacies 
of the sine wave model and (b) noise in the GRACE mascon inversion (Wiese, Landerer, & Watkins, 2016) 
quantified by the measurement errors in Figure 3. We assume here that σS is unknown and, in Section 5, will 
compare its estimated value for each basin with the measurement errors in Figure 3.

The value of ω is fixed at 2π radians per year, yielding a sine wave with a 12-month period, while A, σS, and 
δ are given vague priors to reflect prior uncertainty in the values of these parameters. Specifically, A is given 
a log-normal prior with mode at 30 mm and a CV of 200%, σS is given a log-normal prior with mode equal to 
10 mm and a CV of 200%, and δ is given a flat logit-normal prior between 0 and 1 year with location parame-
ter μ = 0 and scale parameter σ = 1.4. Note that parameter δ represents the phase of the errors; it should not 
be interpreted as the phase difference between the observed and true signals. For example, if the observed 
and true signals are in phase, then δ will be equal to the shared phase of these signals, not equal to zero.

Note that the sine wave error model does not include a trend correction: it assumes that any long-term 
increasing or decreasing trend in the GRACE data is representative of the water storage dynamics in the 
basin. If this assumption is invalid, then this may result in biased posterior estimates for precipitation and 
evaporation. However, this bias is likely to be relatively small because water storage trends are sensitive to 
small changes in precipitation and evaporation. For example, a bias of 1 mm in monthly precipitation adds 
or removes 120 mm of water over a period of 10 years.

While the precipitation and evaporation error models rely on multiple data sets, the use of multiple GRACE 
solutions (e.g., the CSR mascon solution (Save, 2020) in addition to the JPL solution) may not capture prior 
uncertainty caused by leakage or scaling errors, since the different solutions are generally limited by the 
same coarse spatial resolution of the GRACE observations. Therefore, the error model uses a single GRACE 
solution, that is, JPL mascon data for the results in Section 5 and CSR mascon data for comparison in Sec-
tion 6.3. Combining multiple GRACE solutions in a single model could still be useful but is not explored in 
this paper.

4.  Inference
The probabilistic water balance model described in the previous section defines a joint distribution over 
the data and all unknown variables, namely the 10 parameters (wP, rP, wE, fE, rE, aQ, bQ, σS, A, and δ) and 
the 4N + 1 monthly water balance variables (S0, Pt, Et, Qt, and St), where N is the number of months and 
S0 is the initial basin water storage at the start of the first month. This paper considers 10 years of data, so 
N = 120. Conceptually, we can write the joint distribution of the model as  , , obsp x θ S , where x represents 
all 4N + 1 water balance variables, θ is the vector of 10 parameters, and Sobs represents the entire time series 
of storage observations. Formally, this distribution depends on the input observations Pobs, Eobs, and Qobs, but 
for notational simplicity this dependence is omitted here.

The goal is now to estimate posterior distributions for x and θ. The posteriors merge all available informa-
tion and data, while accounting for all the uncertainties in the model. We first describe the general form of 
the posteriors and then discuss the specific inference algorithm used.

4.1.  Posterior Distributions

The posterior for parameter vector θ can be written as follows:

( | ) ( ) ( | )obs obsp p pθ S θ S θ� (17)

where p(θ) is the prior distribution for the parameters and p(Sobs|θ) is the likelihood. The prior is equal to 
the product of the individual parameter priors defined in the previous section. The likelihood on the other 
hand, is obtained by computing the normalizing constant of the conditional water balance posterior p(x-
|Sobs, θ), as will be shown below.
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The likelihood defines a scoring function for the parameters that quantifies how well the storage predicted 
from the water balance matches the storage observations Sobs. A good match can generally be achieved by 
picking bias parameters (fE, wP, etc) that move the storage predictions closer to the observations and by 
making the noise parameters (rE, σS, etc) as small as possible: this yields narrow predictive distributions 
centered on the observations, and thus a large likelihood p(Sobs|θ) for the parameters. However, since the er-
ror parameters are all time-invariant, such near-deterministic predictions generally cannot be achieved for 
all months simultaneously. A large likelihood is therefore achieved by setting the bias parameters to yield 
a good match on average across the entire time series and setting the noise parameters just large enough 
to “capture” all the observations. Clearly, many error parameter combinations may yield a large likelihood; 
this nonuniqueness is captured by characterizing the entire posterior distribution, rather than only deter-
mining the parameters with maximum likelihood or maximum posterior density. As described in the next 
section, the parameter posterior distribution is estimated using a MCMC algorithm.

The joint posterior for all water balance variables x can be written as follows:

 ( | ) ( | , ) ( | )obs obs obsp p p dx S x S θ θ S θ� (18)

where 
( , | )( | , )
( | )

obs
obs

obs

pp
p
x S θx S θ
S θ

 is the posterior distribution of x, conditioned on specific values for the 

parameters. Note that the normalizing constant of this posterior is equal to the parameter likelihood func-
tion p(Sobs|θ) in Equation 17.

Instead of the joint posterior in Equation  18, we are interested in the marginal posterior distributions 
p(x|Sobs) over individual water balance variables x, where x is a scalar variable equal to one of (S0, Pt, Et, Qt, 
and St). For example, if x corresponds to St, then we aim to compute the posterior distribution for St based 
on all observations before, on, and after time t. Such posterior distributions can be computed, as in Equa-
tion 18, by averaging conditional posterior distributions p(x|Sobs, θ) over the parameter posterior distribution 
p(θ|Sobs). An efficient way of computing all the conditional posteriors p(x|Sobs, θ) is to use a smoothing al-
gorithm, such as a Kalman smoother, as discussed next. Incidentally, a smoothing algorithm also computes 
the normalizing constant p(Sobs|θ) of p(x|Sobs, θ), which is used to compute the likelihood in Equation 17 
without explicitly constructing the (4N + 1)-dimensional joint water balance posterior.

4.2.  Algorithm

Following the discussion in the previous section, posterior distributions are computed using a double-loop 
algorithm that combines MCMC sampling for the parameter posteriors with Expectation Propagation (EP) 
(Minka, 2001), an iterative smoothing algorithm for the water balance posteriors. Essentially, the MCMC 
algorithm forms an outer loop that iteratively proposes and accepts/rejects new parameter values, while 
the EP algorithm forms an inner loop that iteratively computes (a) the (unnormalized) posterior density, 
Equation 17, of parameter values proposed by the MCMC algorithm and (b) the conditional water balance 
posteriors p(x|Sobs, θ) for specific parameter vectors sampled by the MCMC algorithm.

For linear-Gaussian models, the EP algorithm is equivalent to a Kalman smoother for St and computes the 
exact Gaussian water balance posteriors via a single forward-backward pass through the time series, with 
the backward pass also updating the Pt, Et, and Qt posteriors (see Appendix B). The forward-backward pass 
ensures that water balance posteriors are estimated using data from the entire time series. Given the values 
of the error parameters, the probabilistic water balance model in this paper consists of a linear transition 
model at each time step (i.e., water balance equation, Equation 1) with Gaussian storage observations. How-
ever, as discussed in the previous section, the model also uses physical nonnegativity constraints for each 
Pt, Et, and Qt. These constraints render the input distributions and water balance posteriors non-Gaussian. 
The EP algorithm used here approximates the exact non-Gaussian water balance posteriors with Gaussian 
distributions that have the same moments (mean and variance) as the exact posteriors. This strategy is 
called moment matching. Since the moment matching strategy is applied to the posterior, not the prior, 
approximations made in one month affect approximations in other months and the algorithm is iterative: 
instead of a single forward-backward pass, multiple forward-backward passes are used, where each pass 
further refines the approximations until convergence, that is, until there is no more change in the approx-
imate posteriors.
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We implement the probabilistic water balance model in C# using the open-source probabilistic program-
ming library Infer.NET (Minka et al., 2018). The resulting model code (see Figure A1) uses the Infer.NET 
modeling API to implement the model equations listed in the previous section. This code is then automat-
ically translated by the Infer.NET compiler into the code for running inference, that is, for computing the 
water balance posteriors with EP (Appendix A).

The MCMC algorithm used in this paper is a single-chain version of the differential evolution MCMC algo-
rithm by ter Braak and Vrugt (2008), which uses a nonparametric proposal (or jumping) distribution based 
on differential evolution. The algorithm iteratively proposes new parameter vectors and evaluates their 
posterior density, Equation 17, by calling the EP inference code. The latter computation is done in Infer.NET 
by placing the entire model inside a stochastic if block and using EP to compute the posterior odds of being 
inside versus outside the block, that is, of the model being “true.”

Finally, since the EP algorithm only computes conditional water balance posteriors (conditioned on specific 
parameter values), a postprocessing step is used that averages computed water balance posteriors over the 
MCMC sampled parameter sets, as in Equation 18. That way, the final water balance posteriors account for 
the posterior uncertainty in the data error parameters. For example, if p(x|Sobs, θ) represents the (Gaussian) 
posterior for variable x (e.g., Et), conditioned on data Sobs and on parameter vector θ, then the final marginal 
posterior p(x|Sobs) is computed from n posterior parameter samples θi as follows:


   

1

1( | ) ( | , ) ( | ) ( | , )
n

obs obs obs obs i
i

p x p x p d p x
n

S S θ θ S θ S θ� (19)

As such, each marginal water balance posterior is strictly speaking a (Gaussian) mixture distribution, al-
though empirically it turns out to be well approximated by a single Gaussian distribution using moment 
matching. While this last approximation is not strictly necessary, it avoids storing the entire Monte Carlo 
mixture (for each water balance variable and each month).

5.  Results
First, detailed results are presented for one of the basins (Mond), followed by a summary of the results for 
all the basins. Detailed results for all the basins are available in the supporting information.

5.1.  Mond Basin

Mond basin is one of the drier basins in this study (Table 1) with significant prior uncertainty in evaporation 
(Figure 2). Water balance posteriors for Mond basin are shown in Figure 4 and error parameter posteriors 
are shown in Figure 5. In Figure 4, the estimated precipitation tends to more closely follow the CHIRPS data 
than the IMERG data, especially during the wet winter months, with IMERG apparently overestimating the 
precipitation. This is reflected in the inferred value for parameter wP (last row in Figure 4), which is shifted 
toward 1, indicating greater weight on CHIRPS than on IMERG for this basin. The wide posterior for noise 
scaling parameter rP indicates that this parameter does not play an important role here, and the posterior 
uncertainty in precipitation is not markedly different from the prior uncertainty shown in Figure 2.

In contrast, the posterior uncertainty in evaporation is significantly smaller than its prior uncertainty, as 
shown by the posterior uncertainty bands in Figure 4 (second row) and posterior values of rE < 0.5, indi-
cating that random errors in evaporation are smaller than the absolute difference between the SSEBop and 
GLEAM data. The estimated evaporation lies more or less right between the two data sets, with an estimated 
wE value around 0.5 (equal weights) and no additional bias (fE around 1). Posterior uncertainty increases 
during dry summers when the differences between the two data sets are largest.

River discharge in this basin is an order of magnitude smaller than the other water balance variables. With 
the assumed 10% relative error, this results in small posterior uncertainty that closely follows prior uncer-
tainty (third row in Figure 4). Note, however, the significant increase in discharge uncertainty at the end of 
the time series: no river discharge observations are available in the basin for the last 3 months of 2015, and 
the historical discharge variability is instead used as the prior for these months, as discussed in Section 4. 
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Figure 4.  Monthly water balance estimates for Mond basin, shown as 90% posterior uncertainty bands. Each year label indicates the start of the year (January). 
All values are in mm/month.
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The larger posterior uncertainty in discharge for these months does not appear to affect the uncertainty in 
the other water balance components. This will be further explored in Section 6.

The last row of Figure 4 shows that the inferred water storage dynamics largely follow the GRACE observa-
tions, with a small increase in seasonal amplitude in the posteriors compared to the data. The corresponding 
inferred storage error parameters are shown in the second row of Figure 5. All three parameters (A, δ, and 
σS) have well defined posterior distributions compared to their vague priors. Residual noise in the data, 
after making amplitude (A) and phase adjustments (δ), is relatively small as indicated by an inferred value 
for σS of around 10 mm. Note that inferred posteriors for months with missing GRACE observations (e.g., 
May–June 2015, October–November 2015) do not markedly differ from months with observations. This is 
because error parameter values learned from months with data are shared across all months and because 
smoothing infers posteriors using data from all months. A more dramatic example of this effect will be seen 
in Section 6.

5.2.  Other Basins

The Supporting Information contains posterior plots for all other basins, similar to the ones for Mond basin 
shown above. Here, we highlight the main findings from these results. All basins exhibit long-term declin-
ing trends in water storage, as found in other regions across Iran (Khaki et al., 2018). In terms of water 
storage posteriors, the basins can roughly be divided into basins without a significant change in amplitude 
or phase between the estimated posteriors and the GRACE data (Mond, Karoon, and Karkheh), basins with 
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Figure 5.  Normalized prior and posterior densities of error parameters for Mond basin.
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only a change in phase (Sepidrood), basins with only a change in amplitude (Jazmoorian), and basins with 
both a change in amplitude and phase (Gorganrood).

Figure 6 illustrates this for the Sepidrood and Gorganrood basins. In both basins the inferred storage dy-
namics (posteriors shown in green) are shifted earlier in time than the corresponding GRACE observations. 
Apparently, the observed GRACE dynamics do not fit with the other water balance observations in terms 
of water balance closure. Interestingly, both basins are in the north of the country where the large footprint 
of the GRACE observations (Figure 3) is possibly affected by the Caspian Sea to the north, which is not 
included in the CRI filter of the JPL GRACE data set and whose seasonal water level dynamics are shifted 
in time compared to Sepidrood and Gorganrood basins (Forootan et al., 2014); see also Figure S18. J. Chen 
et al. (2017) observed leakage of GRACE signals from the Caspian Sea into surrounding land areas, and this 
may explain the bias in the phase and amplitude of the GRACE water storage dynamics seen in Figure 6. 
For the basins investigated here, the sine wave error model appears to restore the underlying water storage 
dynamics (Figure 6), including an increase in amplitude for the relatively small Gorganrood basin. The 
increase in amplitude can be explained by the strong spatial smoothing inherent in the coarse-scale GRACE 
data, which tends to be more severe in smaller basins.

Figure 6 also shows posterior predictive distributions for the GRACE observations (Sobs) conditioned on the 
posterior mean of the true water storage (S). These plots illustrate the validity of the proposed sine wave 
model, since the original GRACE observations fall within the posterior predictive distributions obtained by 
taking the inferred posterior mean of St in each month and applying the noisy sine wave model to generate a 
predictive distribution for the corresponding observation Sobs,t. This however does not mean that the proba-
bilistic water balance model is generally suitable for making water balance predictions, as will be illustrated 
in Section 6.

Error parameter posterior distributions for all basins are shown in Figure 7. The third row in this figure 
shows that for most basins IMERG fits better with the other water balance data than CHIRPS, since inferred 
values for wP are mostly less than 0.5 (more weight on IMERG). Mond basin is the exception, with wP > 0.5, 
as discussed above. The insensitivity of parameter rP that was already observed in Mond basin, also occurs 
in two other basins (Sepidrood and Karkheh), while in the three other basins rP does matter and tends to-
ward a value of 1.

The three evaporation error parameters are mostly well identified (first row in Figure 7). In most basins, 
more weight is given to the GLEAM data set (wE > 0.5), with the exception of the wettest basin (Karoon) 
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Figure 6.  Ninety percent uncertainty bands of storage posteriors (S) and GRACE posterior predictive distributions 
(Sobs), along with GRACE data for Sepidrood and Gorganrood basins.
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where SSEBop provides a better fit. However, in all basins a weighted average of the two data sets is pre-
ferred over using either data set alone. Inferred values for bias parameter fE range between 0.5 and 1.5, 
with the largest values for Karkheh and Sepidrood basins. While a multiplicative bias of 1.5 may seems 
excessive, the inferred evaporation posteriors remain at or below the potential evaporation (see supporting 
information), even though potential evaporation was not used in the model. Finally, the reduction in prior 
evaporation uncertainty found in Mond basin also occurs in other basins, as evidenced by inferred values 
for rE below 0.5, with the exception of Karkheh and Sepidrood basins where prior evaporation uncertainty 
is less pronounced than in the other basins.

The storage error parameters (second row in Figure 7) are also well identified in all basins. Standard devia-
tion σS of random errors in the GRACE observations, after amplitude and phase corrections, is 10 mm or less 
for the drier basins in the east (Mond, Jazmoorian, and Gorganrood) and 15–20 mm for the wetter basins 
in the west (Sepidrood, Karkheh, and Karoon). As shown in Figure 8, the estimated posterior mean values 
for σS closely follow a similar west to east decreasing trend as the JPL-mascon GRACE measurement errors, 
with an increase in estimated noise for the smaller Gorganrood basin. These results suggest that the sine 
wave model adequately captured and corrected the systematic errors in the GRACE data due to a mismatch 
in scale, yielding random errors similar to and even smaller than the reported GRACE measurement errors.

Finally, Table 3 summarizes and compares the posterior standard deviations for the different water balance 
variables. The table includes results for a second scenario with vague prior on aQ, which is further discussed 
in Section 6. Results in this table show that posterior uncertainty, in terms of posterior standard devia-
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Figure 7.  Posterior error parameter distributions for all basins.
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tion, decreases from water storage (4–12 mm/month), to precipitation (3.5–7 mm/month), to evaporation 
(2–6 mm/month), and to discharge (0–2 mm/month). The small posterior uncertainty in river discharge is 
a direct consequence of the assumed 10% error and the generally small discharge values in the semi-arid 
basins studied here. At the extreme end, the endorheic Jazmoorian basin has no outflow, and thus zero 
discharge and error.

The reported posterior standard deviations result from the fusion of all water balance data. For example, 
the posterior of St in a particular month t results from the fusion of three noisy information streams: the 
GRACE observation for that month (if not missing), the water balance constraint for month t, and the 
water balance constraint for month t + 1, for which St provides the initial storage. A combination of these 
three information streams results in a posterior that is narrower (less uncertainty) than any of the individ-
ual streams, with each stream or distribution more or less constraining the final posterior estimate of St. 
A similar process happens when inferring the other water balance variables (Pt, Et, and Qt), although for 
those variables only two information streams are involved (one from the prior and the other from the water 
balance for month t).

6.  Discussion
This section evaluates how the results are affected when changing some 
of the data and assumptions of the probabilistic water balance model.

6.1.  Sensitivity to Assumed River Discharge Errors

Results in the previous section were based on a narrow prior for the rel-
ative error aQ of monthly river discharge data centered on 0.1 (10%). To 
test the sensitivity of the results to this choice, an alternative vague log-
normal prior for aQ was used, that is, one with mode at 0.1 and with a 
coefficient of variation of 0.9. Table 3 shows that this change increases 
the estimated posterior standard deviation of the monthly river discharge 
but has otherwise little effect on posterior uncertainty and the estimates 
of the other water balance variables. The largest absolute increase in the 
estimated standard deviation of Q is observed for Karoon basin, which is 
the wettest basin included in the analysis. In fact, for Karoon basin, the 
posterior standard deviation of river discharge becomes larger than that 
of evaporation (Table 3).
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Figure 8.  Posterior mean of σS compared to mascon-scale standard error of the JPL GRACE observations.

Basin

aQ = 0.1 Vague prior on aQ

P E Q S P E Q S

Sepidrood 6.0 5.1 0.2 10.1 6.0 5.1 0.4 10.1

Karkheh 6.1 6.1 0.4 11.2 6.2 6.1 1.0 11.1

Karoon 6.9 4.8 1.7 11.3 6.8 4.6 5.6 11.7

Mond 4.7 3.5 0.1 6.7 4.7 3.6 0.3 6.8

Jazmoorian 3.5 1.9 0.0 4.1 3.5 1.9 0.0 4.0

Gorganrood 6.7 4.9 0.2 8.3 6.8 5.0 0.4 8.3

Table 3 
Average Posterior Standard Deviation (mm/month) of Each Water 
Balance Variable for Two Cases: (a) Relative River Discharge Error aQ 
Fixed at 0.1 (10%) and (b) a Vague Lognormal Prior for aQ With Mode at 
0.1 and CV Equal to 0.9
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When using a vague prior, posterior distributions for relative error aQ in Figure 9 show that the posteriors 
are generally close to the prior. Most basins show a slight contraction of the posterior relative to the prior 
toward smaller relative errors, with the exception of Karoon basin where the posterior moves to larger, like-
ly unrealistic, values for aQ around 0.3–0.4. These large values suggest that uncertainty in river discharge 
increases to compensate for errors somewhere else in the water balance. Due to the small magnitude of river 
discharge relative to the other water balance terms, a large relative error is needed to get a sizable effect.

These results indicate that for the semiarid basins studied here, the value of aQ cannot be estimated relia-
bly from the water balance data and instead, river discharge errors should be estimated independently, for 
example, using a formal rating curve error analysis (Horner et al., 2018; Kiang et al., 2018). The value of aQ 
can then be fixed a priori or given a narrow prior, based on the independent estimate. On the other hand, 
accurate estimates of aQ are only relevant for estimating uncertainty of the river discharge data. For the 
goal of estimating the other water balance variables, approximate estimates of aQ suffice, at least when river 
discharge is the smallest term in the water balance.

6.2.  Effect of Missing GRACE Observations

Results in Section 5 already showed that missing GRACE observations do not significantly affect the in-
ferred posteriors. Sharing of error parameters across the entire time series, combined with the fusion of all 
data via smoothing, allows the model to fill in occasional gaps in the data record. It is however instructive 
to evaluate a few more drastic scenarios of missing GRACE observations to gain additional insight into the 
predictive capabilities and limitations of the probabilistic water balance model.

Two fictitious scenarios are evaluated. The first scenario assumes that all GRACE observations after 2010 
are missing; the first 5 years provide a complete data record to learn the model error parameters, which are 
then applied to infer and predict storage posteriors in the next 5 years. Figure 10 shows that in the absence 
of constraining GRACE observations in the second part of the period, posterior uncertainty grows over 
time and an increasing trend in storage is (wrongly) predicted. In the second scenario, which assumes a 
single annual observation is available after 2010, this trend is removed and posterior uncertainty is smaller, 
although it remains larger than when the full GRACE observation record is used.

These results illustrate that the model is less suitable for long-range predictions without storage observa-
tions: uncertainties quickly accumulate and small imbalances between precipitation and evaporation easily 
lead to erroneous trend predictions. On the other hand, the model works well for interpolating and filling 
in gaps when observations are occasionally missing.
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Figure 9.  Posterior distributions (CDF) for aQ when using a vague prior (dashed) for aQ.
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6.3.  Using a Different GRACE Solution

The results in this paper are based on the JPL-mascon GRACE data. The model can also use other GRACE 
solutions by simply replacing Sobs in the model by another data set. Figure 11 compares inferred posterior 
distributions for σS when using the CSR mascon solution instead of the JPL mascon solution. For the basins 
studied in this paper, the JPL data consistently yield smaller noise, that is, smaller posterior values for σS. 
This indicates that the JPL data provide a better fit with the other monthly water balance data used in this 
study, at least after bias correction. The larger estimated noise in the CSR data is also apparent in the time 
series plots shown in Figure S15.

6.4.  Effect of Positivity Constraints

As described in Section 4, the model includes positivity constraints on water balance variables P, E, and Q, 
since these variables cannot physically be negative. To what extent do these constraints affect the inferred pos-
teriors? This can be assessed by removing the positivity constraints from the model, which is achieved by com-
menting out the three Variable.ConstrainPositive statements in Figure A1 and recomputing the posteriors. 
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Figure 10.  Storage posteriors for Karoon basin for three scenarios of missing GRACE observations: (a) no GRACE observations in the last 5 years, (b) one 
GRACE observation per year in the last 5 years, and (c) using all available observations.
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Conditional on the model parameters, the model now only contains Gaussian and linear relations. As such, in-
ference does not require any iteration and a single forward-backward pass over the monthly time series is suf-
ficient to compute all water balance posteriors. The Infer.NET compiler, in fact, automatically detects this and, 
in the absence of positivity constraints, generates an inference code that is equivalent to a Kalman smoother.

Figure 12 shows that constraining the water balance variables to be positive results in smaller posterior un-
certainty when the unconstrained posterior extends into the negative domain. In this case (Karkheh basin), 
the unconstrained evaporation posterior has a negative tail whenever there is a large difference between the 
two evaporation data sets (e.g., summer 2009) because then, the (prior) uncertainty is large. However, overall, 
for the basins analyzed here, the effect of the positivity constraints is fairly limited and does not significantly 
change the results. This is also why the number of EP iterations to achieve convergence is small (we used 
three iterations); the studied problems are only mildly non-Gaussian. However, the positivity constraints do 
maintain physically realistic posteriors and thus are useful for the general applicability of the model.

6.5.  Alternative Data Error Models

The methodology presented in this paper relies on explicit assumptions about the data errors in the form of 
parametric error models. Section 3 presents a possible, but certainly not unique, set of models and assump-
tions. The validity of the data error assumptions can be checked by (a) evaluating whether the estimated 
water balance variables and parameters are reasonable and consistent with the prior assumptions and (b) 
how well the model fits the data.

For example, for precipitation, this means that the estimates should lie in between the two precipitation 
data sets, since the model in Equation 2 interpolates between the two data sets. Time series plots of esti-
mated precipitation (Figure 4 and supporting information) show that this is indeed generally the case for 
the basins studied here. For basins where posterior estimates deviate from this assumption or where it is 
difficult to close the water balance, it may be necessary to either use different precipitation data sets or to 
use a precipitation error model that includes an additional bias parameter (e.g., similar to what is used in 
the paper for the evaporation error model).

Another set of assumptions adopted in this paper is that, due to spatial and temporal scale differences, 
basin-scale water storage data based on GRACE may have both phase and amplitude errors, in addition to 
random errors. These assumptions led to the noisy sine wave error model proposed in Section 3.4. Figure 6 
showed two basins (Sepidrood and Gorganrood) with such phase and amplitude errors. We then evaluate 
two alternative data error models for these basins and compare them to the noisy sine wave error model 
proposed in this paper.
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Figure 11.  Posterior distributions (CDF) of σS for two different GRACE mascon solutions: JPL (left) and CSR (right).
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Figure 13 shows water storage estimates for Sepidrood basin using three different GRACE data error mod-
els. The bottom plot is the same as in Figure 6 and is based on the noisy sine wave error model. The top 
and middle plots use GRACE data scaling factors from the JPL mascon data set to account for amplitude 
errors but assume no phase errors (no lags or shifts). The scaling factors are based on simulations with the 
Community Land Model to downscale the data to a half-degree grid (Wiese, Landerer, & Watkins, 2016). 
The top plot fixes the standard deviation σS of the random errors to the value in the JPL mascon data set 
(as in Figure 3), while the middle plot estimates σS from the water balance data. Results in Figure 13 show 
that assuming no phase errors (top, middle) leads to posterior predictions of storage observations (Sobs) that 
either do not overlap with the data (top) or lead to wide prediction bands (middle). Consequently, the two 
models without phase errors have significantly lower likelihood (−669 and −593) than the noisy sine wave 
error model (bottom) that includes phase errors (likelihood −514).

Similar results are obtained for Gorganrood basin (Figures S16 and S17), where the noisy sine wave model 
again gives the best match with the data (highest likelihood of −466 vs. −559 and −595 for the two other 
models). The first model without phase error and fixed σS leads to a good match with the GRACE observa-
tions due to the small value for σS (Figure S16) but a worse match for the precipitation and especially the 
evaporation data, whose estimates now have to be adjusted to close the water balance. Estimating σS from 
the data in the second model without phase error leads to an increase in σS and a phase shift in the estimated 
storage values (Figure S17), which is in conflict with the assumptions of this model (no phase error).

These results suggest that the estimated amplitude and phase errors in Figure 6 may be real, although the 
estimates in principle still depend on the chosen precipitation and evaporation data and error models. Phase 
errors (time lags) of 1–2 months have also been observed in studies comparing GRACE data to terrestrial 
water storage simulated with hydrological models (Biancamaria et  al.,  2019; Döll et  al.,  2014; Scanlon, 
Zhang, Rateb, et al., 2019; Schmidt et al., 2008; L. Zhang et al., 2017). Whereas some of these studies have 
attributed the lag between observed and simulated water storage to model errors, our results suggest that 
data errors also play a role. Since the methodology in this paper does not rely on a hydrological model, it can 
help pinpoint the source of data-model mismatches. For this to work correctly, however, the methodology 
requires appropriate data and error models for precipitation and evaporation (and discharge). While the 
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Figure 12.  Posterior 90% uncertainty bands for monthly evaporation in Karkheh basin with (top) and without (bottom) positivity constraints in the model.
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data error models in Section 3 generally work well for the basins studied in this paper, it is important to 
evaluate and possibly modify these models for other basins. The model implementation used in this paper 
makes it straightforward to compare different error models and data sets and to extend the approach, for 
example, by including additional data sets for precipitation and evaporation.

7.  Conclusions
The paper presents a probabilistic model to estimate monthly basin-scale precipitation, evaporation, ter-
restrial water storage, and river discharge based on independent observations of each water balance term 
and monthly water balance constraints. The main contribution compared to previous water balance fusion 
studies is that data errors are not fixed a priori but are treated as unknown random variables that are es-
timated from the data. This results in a data fusion approach that combines data error and water balance 
estimation into a single coherent methodology.
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Figure 13.  Posterior water storage estimates for Sepidrood basin using three different data error models. The top and middle plots are for a model that assumes 
no phase errors and with the standard deviation of the random errors either fixed (top) or estimated from the data (middle). The bottom plot uses the noisy sine 
wave error model in Section 3.4 (same plot as in Figure 6).
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The approach is based on formulating a Bayesian hierarchical model that ties together all data, water bal-
ance variables and data error parameters, followed by computing the posteriors of all unknown parameters 
and water balance variables in the model. The model combines monthly basin-scale water balance con-
straints with data error models for each water balance variable (precipitation, evaporation, river discharge, 
and water storage) that account for random and systematic data errors.

Specifically, bias in precipitation and evaporation data is modeled as a weighted average of two different 
data sets (IMERG and CHIRPS for precipitation and SSEBop and GLEAM for evaporation), where the 
weight is treated as an unknown parameter. For evaporation, a second unknown bias parameter is included 
for additional flexibility in modeling bias. Random errors in precipitation and evaporation are modeled as 
a function of differences between the two respective data sets, with unknown parameters controlling the 
magnitude of the random errors. The JPL-mascon GRACE data are used as basin-scale water storage obser-
vations. Measurement and scaling errors in the GRACE data are described by a noisy sine wave error model, 
with amplitude, phase, and noise of the sine wave controlled by unknown parameters. Finally, monthly 
river discharge data are taken from river gauging stations, with random errors described by a relative error 
parameter.

The resulting probabilistic model is solved for the unknown water balance variables and data error param-
eters using MCMC sampling (for the parameters) in combination with an iterative smoothing algorithm 
(for the water balance variables) that maintains the nonnegativity of the water balance variables. Computed 
posteriors provide (a) hydrologically consistent, error-filtered and bias-corrected water balance estimates 
and (b) statistically consistent, basin-specific error estimates of the water balance data.

Application to semiarid river basins in Iran illustrates the usefulness of the approach. First, computed evap-
oration posteriors achieve significant reductions in prior evaporation uncertainty during water-stressed 
summers. Other studies have also reported reductions in errors by combining multiple evaporation prod-
ucts (Hobeichi, Abramowitz, Evans, & Ukkola, 2018; Mueller et al., 2011). Second, the approach leads to ba-
sin-specific phase and amplitude corrections of the GRACE data and is able to extract the underlying water 
storage dynamics. Third, by fusing all water balance data, posterior water balance estimates are obtained 
with time-averaged standard errors of 4–12 mm/month for water storage, 3.5–7 mm/month for precipita-
tion, 2–6 mm/month for evaporation, and 0–2 mm/month for river discharge. Data error parameters are 
generally well identified, with the exception of the relative error in the river discharge data, which is best 
estimated using an independent rating curve analysis. This lack of sensitivity, however, also means that the 
other water balance estimates are not strongly affected by the assumed discharge errors, and an approxi-
mate estimate suffices as long as river discharge is the smallest term in the water balance, as is the case for 
the semiarid basins studied here.

The proposed methodology is data-driven in that no hydrological process assumptions are made beyond 
the monthly water balance constraints. As such, the water balance posteriors can be used for independent 
evaluation and calibration of monthly water balance models. Nevertheless, an interesting extension could 
be to embed the data errors models used here into a monthly water balance model, and to perform joint 
estimation of all error and hydrological parameters. Another modification would be to consider spatially 
distributed error models, for example, using land cover specific error models for evaporation and elevation 
or temperature specific error models for precipitation, and sharing these parameters across multiple basins 
to ensure identifiability.

The approach can also be extended to other data sets and other (gauged) basins around the world, possibly 
using tailor-made data error models. Modifications may be warranted to describe data errors in different 
climates and landscapes, for example, in snow-dominated basins, where satellite data may underestimate 
snow accumulation. A benefit in this respect is that the model is implemented in a general-purpose and 
extensible probabilistic programming tool (Infer.NET) that separates model assumptions from inference 
(model solving): when the individual data error models are modified, the inference code is automatically 
generated to compute posteriors for the new model.
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Appendix A:  Implementation of the Probabilistic Water Balance Model in 
Infer.NET
Figure A1 shows how the probabilistic water balance model in Section 3 translates directly into a probabil-
istic program implemented with the Infer.NET modeling API. The Infer.NET compiler automatically trans-
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Figure A1.  Implementation of the probabilistic water balance model using the Infer.NET probabilistic programming API in C#.

http://Infer.NET
http://Infer.NET
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lates the model code into an iterative smoothing algorithm for computing water balance posteriors using 
Expectation Propagation (EP). The complete code is at http://doi.org/10.5281/zenodo.4116451.

Appendix B:  Details of EP
Here, we give details of how EP computes conditional water balance posteriors. EP uses “messages,” that 
is, Gaussian distributions in this case, to propagate the uncertainty through the model. If we write the wa-
ter balance at each time as S = S0 + P − E − Q (omitting the time index for simplicity), then the forward 
message (Gaussian distribution) to S is computed by propagating Gaussian distributions for the inputs (S0, 
P, E, Q) through the water balance:

forward message to S S m m m m v v v v
S P E Q S P E Q

       ( | , )
0 0� (B1)

where mx and vx represent the mean and variance of input x. The mean and variance of P, E, and Q are 
given by the model priors described in Section 3, modified for truncation at zero, see below. The mean and 
variance of previous storage S0 is given by multiplying two Gaussian distributions: the forward message 
that was sent to S0 in the previous time step and the Gaussian likelihood of a GRACE observation, if any. 
The mean and variance of the resulting Gaussian message (distribution) is given by the general Gaussian 
multiplication formula:

  ( | , ) ( | , ) ( | , )x m v x m v x m v1 1 2 2 � (B2)

 2 1 1 2m w m w m� (B3)

 2 1 1 2v w v w v� (B4)

where 

1

1
1 2

vw
v v , 


2

2
1 2

vw
v v , and x in this case would be S0. This formula is the scalar version of the 

Kalman filter update equation. Forward messages are computed by a forward pass through the entire time 
series.

Likewise, backward messages represent (Gaussian) distributions that propagate uncertainty through the 
model in a backward direction. They are computed by a backward pass through the entire time series, 
analogous to a Kalman smoother. The backward message (Gaussian distribution) to S0 is computed by prop-
agating Gaussian distributions for the inputs (P, E, and Q) and for S through the water balance back to S0:

backward message to S S m m m m v v v v
S P E Q S P E Q0 0       ( | , )� (B5)

where the mean mS and variance vS of the backward message from S are obtained by multiplying the back-
ward message to S (computed in previous step of backward pass) with the Gaussian likelihood of a GRACE 
observation, if any, using the same Gaussian multiplication formula given above. The posterior for each S 
(or S0) is obtained by multiplying the forward and backward message it receives as well as a GRACE likeli-
hood message, if any.

Backward messages to the inputs are computed in a similar way:

backward message to P P m m m m v v v v
S S E Q S S E Q

       ( | , )
0 0� (B6)

backward message to E E m m m m v v v v
S S P Q S S P Q

       ( | , )
0 0� (B7)

backward message to Q Q m m m m v v v v
S S P E S S P E

       ( | , )
0 0� (B8)

These backward messages correspond to what Pan and Wood  (2006) call a “constrained Kalman filter.” 
The product of these backward messages and the corresponding priors gives the posterior for each input. 
However, since P, E, and Q are constrained to be positive, the actual posteriors are truncated Gaussians. 
Moments of each truncated posterior are given by
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
 1

0
[ ] ( ) ( )n nx Z x p x b x dx� (B9)

where x is P, E, or Q, n = 1, 2, p(x) is the unconstrained Gaussian prior of x, b(x) is the backward message 
to x (Equations  B6–B8), and  0 ( ) ( )Z p x b x dx. The posterior is then approximated by a Gaussian with 
the mean equal to [ ]x  and the variance equal to 2 2[ ] [ ]x x  . Finally, using a Gaussian division formula 
analogous to the Gaussian multiplication formula given earlier, the input messages used in Equations B1 
and B5 are computed by dividing the approximate Gaussian posterior by the corresponding backward mes-
sage b(x). This creates a mutual dependence that is solved by iteration: repeat forward and backward passes 
over the entire time series until the approximate posteriors do not change anymore.

Data Availability Statement
Data and code used in this study are available at http://doi.org/10.5281/zenodo.4116451.
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