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SUMMARY

N
anotechnology enables the study of various quantum phenomena on
real hardware. For instance, semiconducting and superconducting
nanostructures can define single-electron transistors, quantum dots,
Josephson junctions, and many other examples of quantum devices. It’s
a wonderful sandbox.

In this thesis, we exploit such a technology to bring the Kitaev chain model to life.
The Kitaev Hamiltonian, discussed in the second chapter of this dissertation, describes
a chain of N fermionic sites coupled by a standard tunneling and a more exotic super-
conducting pairing. It is one of the simplest models able to bring the concept of topology
into condensed matter physics. Proposed more than twenty years ago, it attracted many
experimental groups around the world, due to the promise of realizing a topologically
protected qubit. This would be encoded into the Majorana bound states predicted to
appear at the ends of the chain. However, such a qubit was never made, due to the
difficulty of reproducing the Kitaev model with realistic, hence imperfect, materials.

Here, we demonstrate that engineering Kitaev chains with state-of-the-art materials
is possible, by compensating imperfections with fine tuning. As opposed to top-down
approaches, this requires building the chain site-by-site and tuning carefully each of
them. In this work, each site is represented by a semiconducting quantum dot, while
short semiconducting-superconducting hybrids mediate the inter-dot couplings. First,
we describe minimal arrays of two quantum dots, show how to control every term of
the Kitaev Hamiltonian, and detect the appearance of Majorana bound states. Then, we
generalize the tuning procedure to three-site Kitaev chain devices. We also study the
additional complications caused by multiple superconductors on the same device.

The main downside of a few-site Kitaev chain is the lack of topological protection.
Nevertheless, we demonstrate that its Majorana bound states already exhibit partial pro-
tection (against some parameter perturbations), which increases substantially from two-
to three-site chains. In the outlook, we propose to generalize the techniques described
here to realize a rudimentary Majorana qubit and scale up to even longer Kitaev chains,
whose partial protection evolves into topological as N grows.
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SAMENVATTING

N
anotechnologie maakt het mogelijk om verschillende kwantumfenome-
nen op echte hardware te bestuderen. Bijvoorbeeld, halfgeleider- en
supergeleider-nanostructuren kunnen enkel-elektrontransistoren, kwan-
tumstippen, Josephson-juncties en vele andere voorbeelden van kwan-
tumapparaten definiëren. Het is een fascinerende speelplaats.

In dit proefschrift maken we gebruik van deze technologie om het Kitaev-ketenmodel
tot leven te brengen. De Kitaev-Hamiltoniaan, besproken in het tweede hoofdstuk van
dit proefschrift, beschrijft een keten van N fermionische locaties die gekoppeld zijn door
een standaard tunnelkoppeling en een meer exotische supergeleidende koppeling. Het
is een van de eenvoudigste modellen die het concept van topologie in de vaste stof fy-
sica introduceren. Het model werd meer dan twintig jaar geleden voorgesteld en trok
sindsdien veel experimentele onderzoeksgroepen over de hele wereld aan, vanwege de
belofte om een topologisch-beschermde qubit te realiseren. Deze qubit zou worden ge-
codeerd in de Majorana toestanden die naar verwachting aan de uiteinden van de keten
verschijnen. Echter, een dergelijke qubit is nooit gerealiseerd vanwege de moeilijkheid
om het Kitaev-model met realistische, en dus onvolmaakte, materialen te reproduceren.

Hier tonen we aan dat het mogelijk is om Kitaev-ketens te construeren met state-
of-the-art materialen door imperfecties te compenseren met nauwkeurige kalibratie. In
tegenstelling tot top-down benaderingen vereist dit het opbouwen van de keten locatie-
voor-locatie en het zorgvuldig kalibreren van elke locatie. In dit werk wordt elke locatie
vertegenwoordigd door een halfgeleidende kwantumstip, terwijl korte halfgeleidende-
supergeleidende hybriden de koppelingen tussen de stippen mediëren. Eerst beschrij-
ven we minimale reeksen van twee kwantumstippen, laten we zien hoe elke term van de
Kitaev-Hamiltoniaan kan worden gecontroleerd en detecteren we het verschijnen van
Majorana-gebonde toestanden. Vervolgens generaliseren we de afstelprocedure naar
ketens met drie locaties. We bestuderen ook de extra complicaties die worden veroor-
zaakt door meerdere supergeleiders op hetzelfde apparaat.

Het belangrijkste nadeel van een Kitaev-keten met slechts enkele locaties is het ge-
brek aan topologische bescherming. Desondanks tonen we aan dat de Majorana toe-
standen al een gedeeltelijke bescherming vertonen (tegen sommige parameterperturba-
ties), die aanzienlijk toeneemt van ketens met twee naar drie locaties. In de vooruitblik
stellen we voor om de hier beschreven technieken te generaliseren om een rudimentaire
Majorana-qubit te realiseren en op te schalen naar nog langere Kitaev-ketens, waarvan
de gedeeltelijke bescherming evolueert naar topologische bescherming naarmate N toe-
neemt.

xii



RIASSUNTO

L
a nanotecnologia consente lo studio di vari fenomeni quantistici su hard-
ware reale. Ad esempio, nanostrutture semiconduttrici e superconduttri-
ci possono definire transistor a singolo elettrone, quantum dots, giunzio-
ni di Josephson e molti altri esempi di dispositivi quantistici. È un mera-
viglioso contesto per la sperimentazione.

In questa tesi, sfruttiamo la nanotecnologia per dare vita alla catena di Kitaev. La
Hamiltoniana da lui proposta, discussa nel secondo capitolo di questa tesi, descrive una
catena di N siti fermionici accoppiati attraverso un normale tunneling e un più esotico
accoppiamento superconduttivo. Si tratta di uno dei modelli più semplici in grado di in-
trodurre il concetto di topologia in fisica della materia. Proposto più di vent’anni fa, ha
attratto numerosi gruppi sperimentali in tutto il mondo grazie alla promessa di realizza-
re un qubit protetto topologicamente. Questo qubit sarebbe codificato nei fermioni di
Majorana previsti alle estremità della catena. Tuttavia, un tale qubit non è mai stato rea-
lizzato, a causa della difficoltà di riprodurre il modello di Kitaev con materiali realistici,
e quindi imperfetti.

In questa tesi dimostriamo che è possibile realizzare catene di Kitaev utilizzando i
materiali odierni, compensando le imperfezioni con una calibrazione precisa. Diversa-
mente dagli approcci top-down, ciò richiede la costruzione della catena sito per sito e la
calibrazione accurata di ciascuno di essi. In questo lavoro, ogni sito è rappresentato da
un quantum dot semiconduttore, mentre brevi ibridi semiconduttore-superconduttore
mediano l’accoppiamento tra siti vicini. Inizialmente descriviamo array minimi di due
quantum dots, mostriamo come controllare ogni termine dell’Hamiltoniana di Kitaev
e rileviamo la comparsa di fermioni di Majorana. Successivamente, generalizziamo la
procedura di calibrazione a catene di Kitaev composte da tre siti. Studiamo anche le
complicazioni aggiuntive causate dalla presenza di più superconduttori nello stesso di-
spositivo.

Il principale svantaggio di una catena di Kitaev con pochi siti è la mancanza di pro-
tezione topologica. Tuttavia, in questo lavoro dimostriamo che i suoi fermioni di Ma-
jorana mostrano già una protezione parziale (da alcune perturbazioni dei parametri),
che aumenta significativamente passando da catene a due siti a quelle a tre siti. Nelle
conclusioni, proponiamo di generalizzare le tecniche descritte qui per realizzare un ru-
dimentale Majorana qubit e scalare verso catene di Kitaev più lunghe, la cui protezione
parziale diventa topologica con l’aumentare di N .

xiii



RESUMEN

L
a nanotecnología permite el estudio de varios fenómenos cuánticos en
hardware real. Por ejemplo, las nanoestructuras semiconductoras y su-
perconductoras pueden definir transistores de electrón único, puntos
cuánticos, uniones de Josephson y muchos otros ejemplos de disposi-
tivos cuánticos. Es un maravilloso campo de experimentación.

En esta tesis, aprovechamos esta tecnología para dar vida al modelo de la cadena de
Kitaev. El hamiltoniano de Kitaev, discutido en el segundo capítulo de esta tesis, describe
una cadena de N sitios fermiónicos acoplados mediante un término de túnel estándar
y un acoplamiento superconductivo más exótico. Es uno de los modelos más simples
capaces de introducir el concepto de topología en la física de la materia condensada.
Propuesto hace más de veinte años, ha atraído a numerosos grupos experimentales de
todo el mundo debido a la promesa de realizar un cúbit protegido topológicamente. Este
cúbit estaría codificado en los estados ligados de Majorana que se supone que aparez-
can en los extremos de la cadena. Sin embargo, este cúbit nunca se ha logrado debido
a la dificultad de reproducir el modelo de Kitaev con materiales realistas, y por tanto
imperfectos.

Aquí, demostramos que es posible crear cadenas de Kitaev utilizando los materia-
les de última generación, compensando las imperfecciones mediante una calibración
precisa. A diferencia de los enfoques convencionales que buscan implementar el sis-
tema como un conjunto preensamblado, este método requiere montar la cadena si-
tio tras sitio y ajustar cuidadosamente cada elemento. En este trabajo, cada sitio es-
tá representado por un punto cuántico semiconductor, mientras que segmentos híbri-
dos semiconductor-superconductor median los acoplamientos entre los sitios. Primero,
describimos conjuntos mínimos de dos puntos cuánticos, mostramos cómo controlar
cada término del hamiltoniano de Kitaev y detectamos la aparición de los estados liga-
dos de Majorana. Luego, generalizamos el procedimiento de ajuste a dispositivos con
cadenas de Kitaev de tres sitios. También estudiamos las complicaciones adicionales
causadas por la presencia de múltiples superconductores en el mismo dispositivo.

La principal desventaja de una cadena de Kitaev con pocos sitios es la falta de pro-
tección topológica. No obstante, demostramos que sus estados ligados de Majorana ya
exhiben una protección parcial (frente a algunas perturbaciones de los parámetros), la
cual aumenta significativamente al pasar de cadenas de dos sitios a cadenas de tres si-
tios. En el último capítulo, proponemos generalizar las técnicas descritas aquí para rea-
lizar un cúbit de Majorana rudimentario y escalar hacia cadenas de Kitaev más largas,
cuya protección parcial evoluciona a una protección topológica a medida que N crece.
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1
INTRODUCTION

fatti non foste a viver come bruti,
ma per seguir virtute e canoscenza”.

Dante Alighieri, Inferno, XXVI, 119-120

[you were not made to live your lives as brutes,
but to be followers of worth and knowledge.]

1
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2 1. INTRODUCTION

A
cosa serve? [What’s the purpose of it?] – my father asks, every time I
attempt to explain to him a bit of my research. This short chapter be-
gins by trying to answer my father’s question, addressing the why un-
derneath the research presented in this dissertation, before introducing,
briefly, the how.

THE DREAM: COMBINING QUANTUM INFORMATION AND TOPOLOGY
The research presented in this dissertation is motivated by the fascinating idea of com-
bining quantum information with the concept of topology.

Quantum information is the use of objects that behave according to quantum me-
chanics to perform information tasks, such as computations, simulations, communica-
tions, and cryptography (Nielsen and Chuang, 2010). In its simplest form, it relies on
storing information into quantum bits (qubits), which are the quantum analog of clas-
sical bits. While bits are either 0 or 1, qubits can be in any superposition α |0〉 +β |1〉,
where |0〉 , |1〉 are quantum states and α, β are complex numbers (normalized such that
|α|2 +

∣∣β
∣∣2 = 1). The possibility of superposition is one of the key qubit features, but it

comes at the price of being delicate. Due to unavoidable couplings to the environment,
a qubit prepared in the state |1〉may decay into |0〉 over a characteristic lifetime indicated
as T1. Similarly, the imaginary components of the α and β coefficients may get lost over
a characteristic T2 coherence time. These T1 and T2 times are typically very short. For
instance, even the latest 105-qubit processor created by Google (Acharya et al., 2024),
arguably the best quantum processor to date, reports an average physical qubit lifetime
of just T1 = 68µs and a coherence time T2 = 89µs. To overcome this limitation, it is possi-
ble to use multiple physical qubits to encode one better-performing logical qubit, using
quantum error correction techniques (Shor, 1995; Steane, 1996; Gottesman, 1997; Ter-
hal, 2015). However, this comes with a significant overhead: for instance, the Google
team could encode a logical qubit with lifetime T1 = 291µs using 101 of their physical
qubits (Acharya et al., 2024).

An alternative to the large overhead given by quantum error correction is having bet-
ter qubits to start with. The mathematical concept of topology studies the objects that
are not affected by small perturbations. If it were possible to store quantum information
in a topological object, then this would be intrinsically protected from decay and deco-
herence. A first proposal of this kind was put forward by Kitaev (1997; 2003) and then
refined into a second, simpler, proposal: the Kitaev chain (2001). This model stores in-

Delicate  qubits
Robust topology

?

Figure 1.1: Image credits to Russ (2019) and Escher (1965).
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formation into exotic quasiparticles known as Majorana bound states (Majorana, 1937).
Eventually, if such Majoranas are spatially separated and an energy gap ensures protec-
tion from small perturbations, then the quantum information is topologically protected
and fault-tolerant by nature (Kitaev, 2001, 2003).

TWO DECADES OF OBSESSIVE RESEARCH

The pioneering ideas of Kitaev quickly developed into the concept of topological quan-
tum computation (Freedman et al., 2002; Nayak et al., 2008) and sparked particular in-
terest in the search for Majorana bound states (Alicea, 2012). Interestingly, even the sur-
face codes, arguably the most popular quantum correction architectures (Acharya et al.,
2024), have a topological origin (Dennis et al., 2002; Kitaev, 2003; Fowler et al., 2012) and
were eventually able to simulate topological systems using 2D arrays of either supercon-
ducting qubits (Satzinger et al., 2021) or Rydberg atoms (Semeghini et al., 2021). More
recently, even some of the characteristic properties of Majorana bound states, such as
the protection against local perturbations and the non-Abelian exchange statistics, were
simulated using superconducting quantum processors (Mi et al., 2022; Andersen et al.,
2023).

Here, rather than trying to simulate Majoranas with ordinary qubits, we are trying
to realize them directly at a hardware level. While simulated Majoranas are limited by
the quantum simulator lifetime (Mi et al., 2022), hardware Majoranas carry the hope of
building a topological quantum memory with longer life and coherence times than any
other qubit architecture on the market (Kitaev, 2001). This promise motivated an ob-
sessive search for Majorana bound states in condensed matter systems for more than
two decades (Kouwenhoven, 2024). The first decade was dominated by theoretical work
(Nayak et al., 2008; Alicea, 2012; Leijnse and Flensberg, 2012b; Beenakker, 2013), while
the second one brought tremendous advances in the material science (Chang et al., 2015;
Aseev et al., 2018; Badawy et al., 2019; Heedt et al., 2021). In between the two decades,
the theoretical realization that semiconductor-superconductor hybrid nanowires could
potentially implement an effective Kitaev chain model (Lutchyn et al., 2010; Oreg et al.,
2010) brought enormous attention to the field. The subsequent experimental obser-
vations (Mourik et al., 2012; Albrecht et al., 2016; Deng et al., 2016) gave the illusion
that the technology was ready to deliver. However, the community eventually recog-
nized that disorder in such systems is a profound limiting factor for the Lutchyn-Oreg
approach. This disorder includes inhomogeneities, charge impurities, and other imper-
fections (Prada et al., 2020; Pan and Das Sarma, 2020). For instance, careful estimation of
the impurity density in state-of-the-art semiconductors (Ahn et al., 2021) and of its im-
pact (Woods et al., 2021) shows that even the best materials have too many impurities –
by orders of magnitude – to realize the Lutchyn-Oreg proposal (Ahn et al., 2021). This un-
derstanding, together with the retraction of two high-impact papers (Zhang et al., 2021;
Gazibegovic et al., 2022), created an avalanche effect that destroyed the field at the end
of the second decade. For most of the community, the Lutchyn-Oreg approach is dead.
Worldwide, there are only two notable groups still pursuing it: one is Microsoft Quantum
(Aghaee et al., 2023, 2024) and the other is in Beijing (Jiang et al., 2022; Gao et al., 2024);
besides substantial investments by both groups in improving the materials, their recent
claims are not always free from controversy (Hess et al., 2023).
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A NEW PARADIGM: ENGINEERING THE KITAEV CHAIN SITE BY SITE
Ahn et al. (2021) are clear: state-of-the-art materials are too disordered to sustain any
topological phase. Then, the only possibilities to go forward are either improving the
current materials, changing materials, or changing strategy. Here, we opt for the latter.
Figure 1.2 compares the Lutchyn-Oreg strategy (panel a) with our new paradigm (panel
b), which is introduced in detail in the next chapter. In essence, the Lutchyn-Oreg recipe
is a top-down approach that requires a (quasi) one-dimensional nanowire in contact
with a superconductor and a few bottom gates to tune the electrochemical potential. If
there is a sufficiently large external magnetic field, the potential is appropriately tuned
and the disorder is low enough, then a topological phase with one Majorana bound state
at each end should appear. Our strategy, first proposed by Sau and Das Sarma (2012),
Leijnse and Flensberg (2012a), and Fulga et al. (2013), is instead a bottom-up approach
that consists of engineering the N -site Kitaev chain Hamiltonian site after site. Instead of
relying on the perfection of existing materials, we are creating a metamaterial, i.e. an ar-
tificial lattice, where every portion is tuned independently. The downside of this new ap-
proach is the more complicated nanofabrication it requires, the time-demanding tuning
of the devices, and the fact that few-sites Kitaev chains are not topologically protected.
However, the benefit of bottom-up Kitaev chains is, finally, overcoming the problem of
material disorder and demonstrating – unambiguously and reproducibly – the presence
of Majoranas. Besides requiring fine-tuning of the device, few-sites Kitaev chain Majo-
rana bound states are real Majoranas (Leijnse and Flensberg, 2012a) and, thus, they can
be used to create a qubit (Tsintzis et al., 2024). The more sites are added to the chain, the
more its Majoranas are protected from local perturbations (Sau and Das Sarma, 2012),
eventually reaching true topological protection in the long-chain limit.

a Lutchyn-Oreg

= Majorana bound stategates

superconductor
semiconducting nanowire

b Sau-Das Sarma

metamaterial

Figure 1.2: a. Effective Kitaev chain architecture proposed by Lutchyn et al. (2010) and Oreg et al. (2010).
b. Schematic of a (4-site) Kitaev chain engineered with a bottom-up approach, adapted from Sau and
Das Sarma (2012). Dashed lines illustrate the potential profile defined by the electrostatic gates.

This dissertation presents the results of this change of paradigm, following the key exper-
iments enabling and demonstrating the appearance of Majorana bound states in few-
site Kitaev chains.

• Chapter 2 contains a theoretical introduction to Kitaev chains, Majorana bound
states and Majorana qubits. It is followed by a more practical guide introducing
one-by-one all the ingredients we use to build a Kitaev chain in practice.

• Chapters 3 to 6 show the realization of elementary Kitaev chains with two or three
sites. They are arranged as a rhyme:
-Chapter 3 demonstrates the ingredients of a 2-site Kitaev Hamiltonian;
-Chapter 4 puts them together, realizing a 2-site Kitaev chain hosting Majoranas;
-Chapter 5 demonstrates the ingredients of a 3-site Kitaev Hamiltonian;
-Chapter 6 puts them together, realizing a 3-site Kitaev chain hosting Majoranas.
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• Chapter 7 is a bonus. It leverages the same 3-site chain device geometry used in
chapter 6 but for a different purpose: controlling, studying, and improving a su-
percurrent transistor.

• Chapter 8 concludes the dissertation. It shows ongoing progress and the next steps
towards Majorana qubits and topological protection.

Overall, this metamaterial approach to Kitaev chains may still seem foolish for what it
promises. It involves great patience and hard work and may never deliver a ground-
breaking technology. Among all the quantum platforms in development, it is hard to
predict if topological quantum computing will ever have any technological relevance. In
full disclosure, the scientific community is not even sure if quantum computing itself is
ever going to be of any use: the supremacy of quantum over classical computing is still
a conjecture (Bernstein and Vazirani, 1993; Aaronson and Chen, 2017). We should be
grateful if, at the end of the day, there will be any quantum speed-up at all. Eventually, it
may happen and it may be a significant leap forward for human technology.

Nevertheless, that is not the only reason for doing what we are doing. The initial
question – A cosa serve? – can be interpreted in two ways. If you are only concerned
about the potential use of our research, we might not have a satisfactory answer, but if
you are interested in the meaning of it, we can reveal that our reward is already here.
In truth, we are not doing what we are doing because it’s useful, but because it’s beauti-
ful. We do it for an urge to deepen our understanding, to create something new, to see
something no human has ever seen before, as Dante Alighieri suggests in the epigraph of
this chapter. Here, the Kitaev chain physics offers an unbelievable playground, combin-
ing many different aspects of materials, science, and technology: semiconductors and
superconductors, nanowires and thin films, cryogenics and nanofabrication, Josephson
Junctions, quantum dots and Andreev bound states, spin combinations and spin-orbit
coupling, just to name a few. The ensemble is so rich that new discoveries are almost
guaranteed.

If you only care about quantum technologies, we cannot promise that you will ever
benefit from any (topological) quantum computer. But it is very likely that, sooner or
later, some of the new phenomena we discover will turn useful as well. Maybe that is
the fate of chapter 7, in this dissertation almost by accident, which provides a new un-
derstanding and control of Josephson junctions. It is natural to deploy such knowledge
to develop better supercurrent transistors and superconducting diodes (Seoane Souto
et al., 2022). Could they enable viable dissipation-less electronics to suppress the
overwhelming energy consumption and environmental pollution of big data centers?
Who knows.
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Per correr miglior acque alza le vele
omai la navicella del mio ingegno,

che lascia dietro a sé mar sì crudele;

e canterò di quel secondo regno
dove l’umano spirito si purga

e di salire al ciel diventa degno.

Dante Alighieri, Purgatorio, I, 1-6

[To course across more kindly waters now
my talent’s little vessel lifts her sails,

leaving behind herself a sea so cruel;

and what I sing will be that second kingdom,
in which the human soul is cleansed of sin,

becoming worthy of ascent to Heaven.]

This chapter introduces the theoretical concepts underlying the experiments discussed in
the following chapters. Conceptually, it is divided into two parts. First, we introduce our
target Hamiltonian and discuss it from a purely abstract point of view. Secondly, we intro-
duce one by one all the elements that are necessary to realize such Hamiltonian in practice.

7
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2.1. THE KITAEV CHAIN

T
he main goal of this thesis is to engineer in a real system the following
toy model:

HN =
N∑

n=1
µnc†

ncn +
N−1∑
n=1

(
tnc†

ncn+1 +∆nc†
nc†

n+1 +h.c.
)

. (2.1)

This Hamiltonian was originally proposed by Alexei Kitaev (2001) and later adapted by
Sau and Das Sarma (2012); it models a one-dimensional chain of N sites, hence known
as the Kitaev chain. Every site can host one fermion, described by the creation and an-
nihilation operators c†

n and cn and with on-site energy µn . The terms tn and ∆n are
responsible for the coupling between neighboring sites: tn corresponds to the hopping
of a single fermion and ∆n corresponds to the creation of two fermions into a pair of
neighboring sites. While the energies µn are always real numbers – they are indeed in
the diagonal of the Hamiltonian matrix – the tn and ∆n are in general complex numbers
(their conjugates also appear in the Hamiltonian under h.c.). For instance, ∆n corre-
sponds to the creation while ∆∗

n corresponds to the annihilation of a pair of fermions.
Not all of the 2(N −1) complex phases φtn and φ∆n of tn = |tn |e iφtn and ∆n = |∆n |e iφ∆n

are observable; N of them can be absorbed with a gauge transformation such as

cn 7→ cn ·exp

(
iφ∆N−1 +

N−1∑
m=n

iφtm

)
(2.2)

but the remaining N −2 phases are not trivial. Therefore, complex phases are not a con-
cern for minimal Kitaev chains of just two sites, but become relevant for any longer ones,
as discussed in the experiment of chapter 6.

The Kitaev chain model is summarized in figure 2.1, highlighting the role of the µn ,
tn , and ∆n terms. Finally, it is important to stress that there is no summation over the
spin degree of freedom in the Kitaev Hamiltonian. So any spin degeneracy should be
removed in order to engineer equation 2.1 in a realistic system.

t3 ∆5
µ2

γ1 γ2

Figure 2.1: Schematic illustration of a Kitaev chain with seven sites. For every n between 1 and 7, µn rep-
resents the on-site energy, tn corresponds to the hopping of a single fermion between neighboring sites and
∆n to the creation (or annihilation) of a pair of fermions into neighboring sites. γ1 and γ2 represent Majorana
modes that might appear at each end of the chain.

The beauty and relevance of the Kitaev chain model lie in the possibility of hosting a pair
of exotic quasiparticles, known as Majorana fermions, Majorana bound states, Majorana
zero modes, or simply Majoranas. The next section shows what they are, why they are
useful, and how they can appear at the two ends of the Kitaev chain.
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2.1.1. MAJORANA STATES

HALF ELECTRONS

Majorana states were first introduced by Ettore Majorana nearly a century ago as a
change of basis for the electron and positron operators (Majorana, 1937). Here, we can
follow Majorana’s original idea, rewriting the fermionic creation and annihilation op-
erators as the sum of their real and imaginary parts, which we define as the Majorana
operators γ1 and γ2:

c† = 1

2

(
γ1 − iγ2

)

c = 1

2

(
γ1 + iγ2

) (2.3)

It follows from the definition that such Majorana states always come in pairs:

1 fermion −→ 2 Majorana states

c c†

γ2

γ1

Furthermore, inverting the equations 2.3 shows that Majorana operators are equal su-
perposition of electrons and holes

γ1 = c + c†

iγ2 = c − c†
(2.4)

which brings as a consequence the following properties:

(i) γk = γ†
k

(ii) γ2
k = 1

(iii)
{
γ1,γ2

}= 0

(2.5)

with k ∈ {1,2}. The (ii) property is what motivates the choice of the 1
2 coefficient in equa-

tions 2.3; other popular choices include 1 as in (Majorana, 1937) and 1p
2

. The (i) property,

instead, means that a Majorana particle is its own antiparticle. It also implies that Majo-
rana states have zero energy and zero charge. This has important consequences from a
practical point of view. First, we know exactly where to look for Majorana modes in the
energy spectrum. Secondly, the fact that Majorana states have zero charge makes them
immune to Coulomb interactions. This makes them interesting candidates for storing
quantum information into something that is decoupled from the charge noise in the en-
vironment. Finally, the (iii) property is actually very general: it holds for any pair of Ma-
jorana operators γa and γb (with a ̸= b), even if they originate from different fermions,
as it can be easily verified using the anticommutation rules of fermionic operators.

It follows that we can define a new fermion from any pair of Majorana states

c†
new ≡ 1

2

(
γa − iγb

)

cnew ≡ 1

2

(
γa + iγb

)
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where the anticommutation rules can be easily verified using the properties (ii) and (iii):
{

c†
new,c†

new

}
= {cnew,cnew} = 0,

{
c†

new,cnew

}
= 1.

From one fermion, we can define a pair of Majoranas, and from any pair of Majorana
states, we can define a fermion. The circle is closed.

2 Majorana states −→ 1 fermion

c c†

γb

γa new new

So far, it is unclear how this Majorana story can be useful at all. Majorana states are
chargeless, but the electrons they define are definitely not. So how can such electrons be
protected from charge noise? Indeed, if the two Majoranas defining one electron overlap,
then viewing them as two Majoranas or as one electron is just a matter of mathematical
taste, it has no physical consequence. So, what’s the point? The critical observation
is that Coulomb interactions are local interactions. If two Majoranas overlap, charge
noise can affect the electron they define. However, if the Majoranas are isolated and far
apart, the resulting non-local electron is protected from local charge noise. In general,
the system is safeguarded against local perturbations, as no reasonable addition to the
Hamiltonian can involve an isolated γa or γb ; such terms do not conserve charge parity
(Kitaev, 2001). Perturbations would instead require terms ∝γaγb , which are inherently
non-local.

In summary, the key is finding a way to spatially separate the two Majorana states. To
see how this is possible, let’s consider again the Kitaev chain model.

THE DOMINO GAME

Let’s compare the following two pictures where we view the Kitaev chain in the Majorana
basis. In figure 2.2 the Majoranas are paired site by site, while figure 2.3 couples Majorana
states from neighboring sites.

Figure 2.2: Trivial Kitaev chain. Majorana states are paired site by site.

γ1

γ2N

Figure 2.3: Non-trivial Kitaev chain. Pairing Majorana operators from neighboring sites would leave two un-
paired Majorana modes at each end of the chain. This situation is non-trivial and is referred to as the “topo-
logical” Kitaev chain (Lutchyn et al., 2010; Oreg et al., 2010; Alicea et al., 2011).

This second situation presents two isolated Majorana modes, γ1 and γ2N, one at each
end of the chain. Together, they define one protected non-local fermion.
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POOR MAN’S MAJORANA STATES

To see how to construct the situation of figure 2.3, let’s consider the minimal cell con-
sisting of just two sites. We can explicitly write the two-site Kitaev chain Hamiltonian in
terms of the Majorana operators, starting from the µ1-term:

c†
1c1 =

1

2

(
γ1 − iγ2

) 1

2

(
γ1 + iγ2

)= 1

2
+ i

2
γ1γ2 (2.6)

where we used the properties (ii) and (iii) to arrive at the final expression. Ignoring the
constants, the µ1-term is simply replaced by iγ1γ2. In a similar way, we can compute
the iγ2γ3 and iγ1γ4 pairing operators and see that they correspond to the t +∆ and t −∆
combinations:

µ2µ1 t–∆

t+∆
γ1

γ2

γ3

γ4

iγ1γ2 ∼ c†
1c2 −→µ1 (and analogously for µ2)

−iγ2γ3 = c†
1c2 + c†

2c1 + c†
1c†

2 + c2c1 −→ t +∆
iγ1γ4 = c†

1c2 + c†
2c1 − c†

1c†
2 − c2c1 −→ t −∆

(2.7)

Figure 2.4: Graph representation of Majorana couplings.

It is especially practical to visualize Majorana couplings as in figure 2.4. Since the two-
site Kitaev chain Hamiltonian is reduced to

H2 =
1

2

(
µ1 +µ2

)+ i

2

[
µ1γ1γ2 +µ2γ3γ4 − (t +∆)γ2γ3 + (t −∆)γ1γ4

]
, (2.8)

the graph representation of figure 2.4 is an equivalent description of the Hamiltonian.
The weight of every arc represents the strength of the corresponding coupling. If any of
the couplings is 0, then we don’t even draw the corresponding arc.

In this framework, it is easy to find out how to realize the desired scheme of figure 2.3:
we just need to set {

µ1 =µ2 = 0

t =∆ (2.9)

and we get two unpaired Majorana states (figure 2.5a). We stress that such Majoranas
are perfectly uncoupled and do not overlap, as long as equations 2.8 and 2.9 hold. Of
course, this is a delicate scenario and that is the reason why these two-site chain Majo-
rana modes are known as poor man’s Majoranas (Leijnse and Flensberg, 2012a). Equa-
tion 2.9 is regarded as the poor man’s Majorana sweet spot. Here, the non-local electron
defined by the Majoranas has indeed zero energy and zero charge. But as soon as we
detune from the sweet spot, this is no longer true. Nevertheless, poor man’s Majoranas
retain partial protection against detuning of the on-site energies µn , as can be seen in
figure 2.5. At the sweet spot (panel a), the γ1 and γ4 are uncoupled. When t ̸=∆ (panel c)
they are obviously coupled. But if only one µ is detuned from 0 (say µ1 without loss of
generality) then one of the two Majoranas is still isolated (panel b). Since Majorana states
always come in pairs, there must be another unpaired Majorana. This would be part of
the {γ1, γ2, γ3} cluster which forms one fermion plus one unpaired Majorana state γ̃.
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cba

{
µ1 =µ2 = 0

t =∆

{
µ1 ̸=µ2 = 0

t =∆

{
µ1 =µ2 = 0

t ̸=∆

Figure 2.5: Minimal Kitaev chain model with a. Two unpaired Majoranas. b. A cluster of three coupled Ma-
joranas, which is equivalent to one fermion plus one delocalized Majorana state, together with an isolated
Majorana state in site 2. c. No unpaired Majorana states.

Note that γ4 and γ̃ have a partial spatial overlap, yet they are uncoupled and therefore
retain zero energy and zero charge. If both µ1 and µ2 differ from zero then the graph
becomes fully connected, meaning that all Majoranas are paired up. As a consequence,
the corresponding electrons are no longer bound to zero energy. It turns out that their
energy split quadratically as a function of µ1 and µ2 (Leijnse and Flensberg, 2012a):

E± =±µ1µ2

2t

[
1+O

(µ1,2

t

)]
. (2.10)

In contrast, if t ̸=∆ the electron energies split linearly as a function of their difference:

E± =±(t −∆). (2.11)

Both statements can be easily verified by diagonalizing the two-site Kitaev chain Hamil-

tonian, which reads as follows in the Nambu basis
{

c1,c2,c†
1 ,c†

2

}
:

H2 =




µ1 t 0 ∆

t µ2 −∆ 0
0 −∆ −µ1 −t
∆ 0 −t −µ2


 (2.12)

In summary, two-site Kitaev chains are a great example of how to spatially separate two
Majorana states and, surprisingly, they retain partial protection at the sweet spot: no
single µ detuning can couple the two unpaired Majoranas (figure 2.5b) and even with
simultaneous detuning of both on-site energies there is protection to linear order fluctu-
ations (equation 2.10). The main issue is leaving the sweet spot via t ̸=∆ (equation 2.11):
the only way to overcome it is to build longer chains.

SCALING UP THE CHAIN

Let’s consider figure 2.5c and add one more site to the chain to get figure 2.6a. Here there
are unpaired Majorana states even if t1 ̸=∆1. Indeed, if a three-site chain is tuned to the
following condition, there is no detuning of a single parameter that could couple the two
edge Majorana states: 




µ1 =µ2 =µ3 = 0

t1 =∆1

t2 =∆2

(2.13)
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a b

Figure 2.6: a. Three-site Kitaev chain with µ1 = µ2 = µ2 = 0 and t2 = ∆2, but t1 ̸= ∆1, having two unpaired
Majorana states. b. Three-site chain with µ1 = µ2 = µ2 = 0, t1 = ∆1 and t2 = −∆2, having four degenerate
Majorana states.

However, the price to pay is sensitivity to phase. For instance, if all phases are zero but
φ∆2 = π as in figure 2.6b, then we can get four unpaired Majorana states, which are too
many: since any pair could define one fermion, any perturbation could make the quan-
tum information stored into one Majorana pair to leak into the other one. At thisπ point,
there is no protection against perturbations.

As shown by the gauge transformation 2.2, all the tn and one of the∆n can be chosen
to be real, while the remaining N −2 parameters are in general complex.1 This also re-
duces the generality of the graph representation of Majorana pairings, which is accurate
only if all Hamiltonian terms are real. In that case, the N -site chain Hamiltonian can be
written as follows (Kitaev, 2001):

HN = 1

2

N∑
n=1

µn + i

2

N∑
n=1

µnγ2n−1γ2n + i

2

N−1∑
n=1

[− (tn −∆n)γ2nγ2n+1 + (tn +∆n)γ2n−1γ2n+2
]

,

but if any of the phases are complex, then the Hamiltonian form gets more complicated
in the Majorana basis. With complex phases, it’s more natural to go back to Nambu basis{

c1,c2,c3,c†
1 ,c†

2 ,c†
3

}
and study the three-site chain spectrum as a function of the phase,

here included in ∆2 without loss of generality:

H3 =




µ1 t1 0 0 ∆1 0
t1 µ2 t2 −∆1 0 ∆2

0 t2 µ2 0 −∆2 0
0 −∆1 0 −µ1 −t1 0
∆1 0 −∆∗

2 −t1 −µ2 −t2

0 −∆∗
2 0 0 −t2 −µ3




(2.14)

Figure 2.7a shows the phase dependence of the three-site chain spectrum. There is al-
ways a zero energy mode, but atφ∆2 =π the energy gap to the first excited state is closed:
here there are two degenerate zero energy fermions, exactly as predicted by figure 2.6b.
We note that having a fully real Hamiltonian doesn’t solve the phase issue: by varying
the absolute value of ∆2 down to negative values, the gap is closed when t2 = −∆2 (fig-
ure 2.7b). So, in any case, some sort of phase control is needed in order to safely store
quantum information in the zero energy modes, away from the π-phase points.

1It was shown that a truly one-dimensional chain with only Rashba-type spin-orbit coupling and magnetic
field along the chain is supposed to have real inter-dot couplings, meaning that the only allowed phases are
0 and π (Sau and Das Sarma, 2012). Unfortunately, real-life systems are not perfectly one-dimensional and
the field is never perfectly aligned. One should make sure to have a thin enough chain and small enough out-
of-axis field components to have negligible imaginary parts; we don’t know how feasible this is. Moreover,
not even having all the tn and ∆n real would remove the necessity of phase control since π phases are the
detrimental ones, as shown in the following. So, for maximum generality, we keep considering N −2 complex
phases, unless otherwise specified.
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a b

Figure 2.7: Three-site Kitaev chain spectrum with µ1 = µ2 = µ2 = 0, t1 = ∆1 = 10µeV and t2 = 20µeV as a
function of a. the phase φ∆2 (with |∆2| = 20µeV) or b. ∆2 itself as a real number. In both panels, the pink
arrow highlights the point where t2 = −∆2 as in figure 2.6b. At this point, the spectrum is gapless. To make
the degeneracies visible, we display the spectral lines with some transparency. We remind that in the Nambu
basis the spectrum is symmetrized with respect to zero energy and, therefore, it is artificially doubled (the
Hamiltonian is indeed 2N ×2N instead of N ×N ). The line at zero energy looks darker because it corresponds
to 2 degenerate eigenvalues, although it represents a single fermionic mode; when t2 = −∆2 (pink arrows) it
corresponds to 4 eigenvalues, i.e. 2 degenerate fermionic modes.

Provided some sort of phase control, the benefits of scaling up the chain are remark-
able. This is highlighted in figure 2.8 where the two-site chain spectrum as a function
of t is shown next to the three-site chain spectrum as a function of t1. For the two-
site chain, there is only one point – the poor man’s Majorana sweet spot – hosting zero-
energy modes. Instead, the three-site chain shows one persistent zero energy mode for
the full range. We note that this is true for all phases but π, where the zero energy modes
might be two (figure 2.9).

PMM

Figure 2.8: Comparison between two- and three-site Kitaev chains as a function of t1. The poor man’s Majorana
(PMM) sweet spot is highlighted in panel a with an orange arrow. µn = 0 ∀n, ∆=∆1 = t2 =∆2 = 10µeV.

Figure 2.9: Three-site chain spectrum as a function of t1 for various phases. µn = 0 ∀n, ∆1 = t2 = |∆2| = 10µeV.
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The protection of zero-energy modes is a direct consequence of the chain’s length and
energy gap. To appreciate the latter, let’s compare the following two scenarios. Panel a of

2

a b

2t1 2t

Figure 2.10: a. Three-site Kitaev chain withµn = tn =∆n = 0 ∀n: there is no protection of the three zero-energy
fermions. b. Here tn =∆n ̸= 0 ∀n. There is one protected fermion localized in sites 1 and 3.

figure 2.10 represents a three-site Kitaev chain Hamiltonian with all parameters set to 0.
Here there are six unpaired Majorana modes, defining three zero-energy fermions. The
system is gapless, so any perturbation would couple the degenerate fermions. Panel b,
instead, represents a Kitaev Hamiltonian tuned to satisfy equation 2.13 (tn =∆n ̸= 0 ∀n).
Here γ1 and γ6 can be coupled by small perturbations only through virtual excitations of
the intermediate states of energies 2t1 and 2t2. In general, the same reasoning applies to
chains of any length N . We list below the leading-order perturbation terms for few-site
Kitaev chains calculated with the time-independent perturbation theory (Sakurai and
Napolitano, 2020, chapter 5):

• [N = 2] (∆− t )+ µ1µ2
2t + . . .

• [N = 3] (∆1−t1)µ3
2t2

+ µ1(∆2−t2)
2t1

+ µ1µ2µ3
4t1t2

+ µ1(∆1−t1)(∆2−t2)
4t 2

1
+ (∆1−t1)(∆2−t2)µ3

4t 2
2

+ . . .

• [N = 4] (∆1−t1)(∆3−t3)
2t2

+·· ·+ µ1µ2µ3µ4
8t1t2t3

+ . . .

• [N = 5] (∆1−t1)(∆3−t3)µ5
4t2t4

+ (∆1−t1)µ3(∆4−t4)
4t2t3

+ µ1(∆2−t2)(∆4−t4)
4t1t3

+·· ·+ µ1µ2µ3µ4µ5
16t1t2t3t4

+ . . .

• [N = 6] (∆1−t1)(∆3−t3)(∆5−t5)
4t2t4

+·· ·+ µ1µ2µ3µ4µ5µ6
32t1t2t3t4t5

+ . . .

(for brevity, we omit terms that are not leading-order nor all-µ from N = 4 onwards).
Looking closely at the above expansions, we can appreciate several properties and trends.
First of all, the [N = 2] terms reproduce as expected the predictions of equations 2.11
and 2.10. Secondly, the (∆− t ) term of the two-site chain is the only one without the
denominator: any Kitaev chain with N > 2 is protected by an energy gap. Furthermore,
the all-µ terms suggest an exponential scaling proportional to (2t )−(N−1). And, finally,
the first terms of every line suggest a scaling proportional to (2t )−⌊(N−1)/2⌋ (where ⌊x⌋ de-
notes the smallest integer ≤ x) which predicts an even-odd effect: scaling up the chain
from even to odd N s should have a relatively bigger effect than the other way around
(Leumer et al., 2020; Ezawa, 2024). This is again due to the fact that Majoranas come in
pairs and odd-N chains must have unpaired Majoranas if all µn are exactly zero.

All the trends listed here are confirmed by the simulations shown in figure 2.11, where
µn ≈ 0 and tn ≈∆n ≈ t ∀n. Uncorrelated Gaussian noise with standard deviations δt and
δµ is included into every tn and µn respectively. Panel a, where δt = δµ= 1µeV, shows a
clear even-odd effect and a scaling roughly ∝ 10−N /2. While panel b, where δt = 0.1µeV
so that the noise on the on-site energies can dominate, shows a scaling roughly ∝ 10−N

and no appreciable even-odd effect. In both cases, the scaling is exponential.
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Figure 2.11: Exponential scaling of Majorana protection against small perturbations on µn and (tn −∆n ).
Both panels start from a configuration where µn = 0 and tn = ∆n = 10µeV ∀n. Every tn is independently
perturbed with a random Gaussian noise of sigma δt . Similarly, independent Gaussian noises with sigma δµ
are added to every µn . For every N , we plot the average energy of the smallest positive eigenvalue across 10000
random noise configurations (in other words, 2δE is the average energy splitting of the edge Majorana states
due to perturbations of the Hamiltonian). a. δt = δµ = 1µeV. Scaling the chain from even to odd N brings a
relatively larger benefit than the other way around. The energy is roughly ∝ 10−N /2 b. δt = 0.1µeV, δµ= 1µeV.
There is no clear-even odd effect and the energy is roughly ∝ 10−N

Finally, it is crucial to note that, thanks to this exponential scaling, the tn ≈ ∆n require-
ment can be relaxed completely for long chains. For instance, in the N →∞ limit, with
uniform parameters (µn =µ, tn = t , ∆n = 0 ∀n),

{ |µ| < 2t

∆ ̸= 0

is a sufficient condition for hosting unpaired Majoranas at the chain ends (Kitaev, 2001).
And, even with non-uniform parameters, matching the signs of real tn and∆n couplings
site by site {

sign(tn∆n) = sign(tn+1∆n+1)

|µn+1| < max(|tn |, |∆n |)
is also a sufficient condition for unpaired Majorana states at the chain ends (Sau and
Das Sarma, 2012). For finite N systems, the exponential scaling ensures the possibility
of getting nearly degenerate edge states, arbitrarily close to zero energy, already with
reasonably short chains.
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2.2. MAJORANA QUBITS
This section completes the abstract introduction to Kitaev chains, but is not essential
for the understanding of the rest of the thesis so that busy readers can skip it with no
harm. This section is written for the reader wondering how to actually store quantum
information into Majorana modes. We describe here how to define a Majorana qubit
and how to leverage the Majorana exchange statistics to engineer several qubit gates.

2.2.1. HOW TO STORE QUANTUM INFORMATION INTO MAJORANA MODES
To build a quantum computer, the very first requirement is to be able to hold informa-
tion in well-defined quantum states (DiVincenzo, 1997). Furthermore, the Hilbert space
describing such a system should have (at least) two dimensions, to allow for non-trivial
operations. Hence, the minimal quantum object supporting this ability is a two-level
system – a qubit (DiVincenzo, 2000). We refer to such two levels with the labels |0〉L and
|1〉L .

Having a Kitaev chain hosting Majorana bound states, a natural way to define two
levels is using the Fock states {|0〉 , |1〉} describing the occupation of the non-local fermion
defined by γ1 and γ2N :

|0〉L ≡ |0〉 zero fermions

|1〉L ≡ |1〉 one fermion

Notice that |0〉 and |1〉 have the same (zero) energy, therefore a |1〉 state cannot decay
into a |0〉 via, for instance, the spontaneous emission of a photon, as would happen in
most non-degenerate two-level systems. They are also protected from perturbations and
charge noise, so they look ideal for quantum information storage. The problem is that
such |0〉 and |1〉 do not form a proper qubit, because of two important issues:

1. In closed condensed matter systems, the number of fermions is conserved. So it
wouldn’t be possible to perform any operations on such two states.

2. Having many fermionic modes in a quantum processor would create ordering is-
sues since swapping any two fermions gives a minus sign.

Let’s see in the following how both concerns can be addressed. First of all, in condensed
matter systems coupled to superconductors, it’s not the fermion number to be conserved
but just its parity. This partially relaxes the first issue. This is true also for the Kitaev
chain Hamiltonian, which doesn’t conserve the total number of electrons, but it does
conserve the parity (the∆nc†

nc†
n+1 and∆∗

ncn+1cn terms can create and annihilate pairs of
electrons). To circumvent this parity constraint, it is sufficient to add one extra ancillary
Kitaev chain to account for the total parity conservation. For instance, having a system
with N Kitaev chains encoding |x1〉, |x2〉, ... |xN 〉 fermionic states, an additional Kitaev
chain storing |x1 ⊕x2 ⊕ . . . xN 〉 would keep the total parity constant (here each of the xn

is either 0 or 1 and ⊕ denotes the addition modulo 2, alias the XOR boolean operation).
The second issue is more subtle. To understand it, let’s consider in figure 2.12 a rep-

resentative quantum computation circuit from (Nielsen and Chuang, 2010, page 220).
Here, the swap gate used last to exchange the first and the last qubit would, for instance,
introduce a minus sign to the system wavefunction. Even the other two-qubit gates (“S”
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∣∣q1
〉

H S T

∣∣q2
〉

H S

∣∣q3
〉

H

Figure 2.12: Example of a quantum computing circuit including “H”(Hadamard), “S”, “T ’ and swap gates. This
specific circuit implements a quantum Fourier transform on the three input qubits

∣∣q1
〉

,
∣∣q2

〉
and

∣∣q3
〉

(Nielsen
and Chuang, 2010, page 220).

and “T ”) should be implemented taking possible fermion exchanges into account. In
general, the circuit model exemplified in figure 2.12 and heavily used in quantum com-
puting literature is not meant to take care of the qubit ordering.

Technically, fermionic modes and ordinary qubits are two different models of quan-
tum computation (Lloyd, 1998). Nevertheless, their computational power is equivalent:
every fermionic gate can be simulated with O

(
log N

)
qubit gates and N qubits can be

simulated with 2N fermions (Bravyi and Kitaev, 2002). The logarithmic slowdown of
fermion simulation might suggest that fermionic modes have slightly more computa-
tional power than qubits. However, for realistic systems where fermionic interactions
are local, it is even possible to simulate local fermionic gates with a constant rather than
a logarithmic slowdown (Bravyi and Kitaev, 2002). So, fermionic modes do not seem to
have any real computational advantage (or disadvantage) compared to ordinary qubits.

As a final remark, the attentive reader might have noticed that 2N fermions might be
unnecessarily too many to simulate N qubits. N +1 parity-preserving fermions define
a 2N -dimensional Hilbert space (for each parity sector), so, in principle, they should
suffice to simulate N qubits. However, having a single extra fermion to take care of the
total parity conservation requires the physical implementation of various gates to be
different for a different N (Nayak et al., 2008). It is more practical to take care of the
parity conservation qubit by qubit, encoding each of them as a pair of fermions (Leijnse
and Flensberg, 2012b):

|0〉L ≡ |00〉 zero fermions

|1〉L ≡ |11〉 two fermions
(2.15)

where we restricted ourselves to the even-parity sector without loss of generality (if the
parity is odd, |0〉L ≡ |10〉, |1〉L ≡ |01〉 works analogously). Finally, we note that this en-
coding trivially removes the ordering issue as well, since a pair of fermions is a boson.
The definition 2.15 is a valid qubit encoding.

2.2.2. HOW TO OPERATE MAJORANA QUBITS
Storing quantum information into Majorana modes is a remarkable achievement by it-
self. On top of that, coupling bare Kitaev chains with other quantum computing systems,
such as spin qubits or superconducting qubits, could already bring several benefits. For
example, spin-qubits can be very fast, due to strong qubit-qubit interactions (Stano and
Loss, 2022), but typical coherence times are short compared, for instance, to supercon-
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ducting qubits (Kjaergaard et al., 2020). Creating a hybrid spin-Kitaev quantum proces-
sor could combine the strengths of each platform, having both fast two-qubit operations
and long-lived memories.

On the other side, finding ways to implement single- and two-qubit gates with topo-
logically protected Majorana modes has the potential to realize fault-tolerant quantum
computation (Kitaev, 2003), which is an even bigger achievement. To see whether or not
this can be realized, let’s first study what happens when two Majoranas are exchanged, a
process known as braiding.

BRAIDING

Let’s first consider a two-dimensional system, where the Majorana exchange statistics is
easier to derive, and then extend the result to Kitaev chains. 1D and 2D Majorana sys-
tems are closely related and their connection is extensively discussed in Alicea’s review
(2012). For both dimensionalities, the essential Hamiltonian ingredient for the emer-
gence of Majorana modes is a superconducting-like term proportional to the momen-
tum. In Kitaev chains, this comes from the ∆c†

nc†
n+1 term, which is Fourier-transformed

into −i∆sink in momentum space. For 2D systems, a i∆
(
kx + i ky

)
term provides the

same result. This is why both systems are often referred to as p-wave superconductors.
For further details see (Alicea, 2012).

Let’s then consider a 2D p-wave superconductor inside a magnetic field perpendic-
ular to the plane, and follow Ivanov’s reasoning (2001) to derive the exchange statistics.
Here, four vortices can trap one Majorana each, as shown in figure 2.13. The supercon-
ducting phase φ is single-valued everywhere apart from the branch cuts illustrated in
red, where φ jumps by 2π. The key point is observing that if the electron phase jumps
by ∆φ, this is equivalent to rotating the electron creation and annihilation operators by
∆φ/2 (Ivanov, 2001), so that a 2π shift on the electron wavefunction translates into a π
shift on the Majorana operators. If we exchange the vortices hosting γ1 and γ2 clockwise

2DEG

γ1 γ2 γ3 γ4
B

Figure 2.13: 2D topological superconductor immersed in an external magnetic field perpendicular to the plane.
Each vortex hosts a single Majorana mode.

as in figure 2.13, then γ1 would cross a branch cut while γ2 would not. This implies the
following transformation:

γ1 7→ −γ2

γ2 7→ γ1

And it is easy to verify that the following braiding operator B12 realizes such a mapping,
acting on each Majorana via γi 7→ B12γi B †

12:

B12 =
1p
2

(
1+γ1γ2

)
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Notice that the braiding operator affects only γ1 and γ2, while leaving all other Majo-
rana modes unmodified [this property is what makes the choice of the operator unique
(Leijnse and Flensberg, 2012b)]. So we can extend the same reasoning to any pair of
neighboring Majorana operators and get analogous expressions for B23 and B34. With
these operators, we can finally calculate how the exchange of Majoranas affects the qubit
states |0〉L and |1〉L :

B12 |00〉 = 1+ ip
2

|00〉

B12 |11〉 = 1− ip
2

|11〉
(2.16)

Under the action of B12, both states get a phase factor that is neither +1 nor −1, which
means that Majorana modes are neither bosons nor fermions: they are anyons (Wilczek,
1982). The action of B23 is even more striking since it can create a superposition:

B23 |00〉 = 1p
2

(|00〉+ i |11〉)

B23 |11〉 = 1p
2

(|00〉− i |11〉)
(2.17)

Using these expressions, it’s immediate to verify such braiding operations do not com-
mute: B23B12 ̸= B12B23. Majorana modes are non-abelian anyons.

The anionic exchange statistics wouldn’t be possible in three dimensions. In 3D, a
double exchange of particles is topologically equivalent to the identity, so the only pos-
sible particles are either fermions or bosons. In one and two dimensions this doesn’t
need to be the case (Leinaas and Myrheim, 1977). Indeed, a double braid of Majoranas is
not the identity, but flips the sign of both Majorana operators since each of them would
need to cross exactly one of the branch cuts of figure 2.13. The identity is reached with a
quadruple braid:

B 2
12 = γ1γ2 B 4

12 = 1 (2.18)

Notice that the non-abelian nature wouldn’t be possible without a degenerate ground
state: all operations on a one-dimensional ground state are trivial.2 Here, instead, braid-
ing operations are rotating the two-dimensional ground state, i.e. they are implement-
ing single-qubit gates! Now that we have shown how Majorana braiding works in 2D
systems, we return to the Kitaev model and extend these results to such a platform. The
most natural proposal (Alicea et al., 2011) involves networks of Kitaev chains since they
are essentially 2D (see for instance figure 2.15). Here, the key ingredient is being able
to physically move the Majorana modes. This can be achieved by acting on the µn pa-
rameters: for instance, starting from a Kitaev chain with µn = 0 and tn = ∆n ∀n, setting
µ1 ≫ t1 would transfer γ1 from the first to the second site, as shown in figure 2.14. With
this principle, B12 and B23 can be implemented using T-junctions of Kitaev chains, as
shown in figures 2.15–2.16 and rigorously proven in the supplementary material of (Al-
icea et al., 2011). An experimental demonstration of the figure 2.14 principle is shown in
chapter 6.

2Formally: all one-dimensional representations of the braiding group (of any group, actually) are abelian.
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a

γ1 γ2

b

γ1 γ2 tµ1 1

Figure 2.14: Shuttling Majorana modes by acting on the onsite energies. Here, topological Kitaev chain sec-
tions with µn = 0 ∀n are depicted with a green background. Unpaired Majorana bound states are indicated
with full circles. Setting µ1 ≫ t1,∆1 transfers the leftmost unpaired Majorana from the first to the second site.
This is a consequence of the perturbation shown in figure 2.5b: as µ1 exceeds the inter-dot couplings, the un-
paired Majorana is left on the second site.

a b c d

γ1 γ2 γ1

γ2 γ2

γ1 γ1γ2

Figure 2.15: B12 braiding sequence using a Kitaev chain T-junction. γ2 is first transferred to the additional
leg, then γ1 is shuttled to the right and, finally, γ2 is transferred to the left. All transfers are performed by acting
solely on the on-site chemical potentials µn (Alicea et al., 2011).

a b c d

γ1 γ4γ2 γ3 γ1 γ4γ3 γ2γ1 γ4γ2

γ3

γ1 γ4γ2

γ3

Figure 2.16: B23 braiding sequence using a Kitaev chain T-junction. γ3 is first parked in the additional leg,
then γ2 is shuttled to the right and, finally, γ3 is transferred to the left. Again, all transfers are performed by
acting solely on the on-site chemical potentials µn .

Finally, we signal the existence of braiding protocols that do not require to physically
move the Majorana modes but rely instead on measuring the fermion parity of pairs of
Majoranas (Bonderson et al., 2008). This is known as measurement-based braiding.

UNIVERSAL QUANTUM COMPUTATION

Realistic quantum computers can suffer from either random errors or calibration errors.
Decoherence is an example of a random error, while a calibration error could be aiming
at rotating a qubit by 90◦ and instead rotating it by 90.01◦. Long Kitaev chains are pro-
tected from decoherence, and braiding gates implement perfect rotations, as long as the
unpaired Majorana modes are kept far apart during the exchanges. Braids are discrete:
a quasi-particle is either taken around another or is not, and this does not depend on
the details of the exchanging path (Nayak et al., 2008). We say that braiding gates are
topologically protected, a computational model based on them is known as topological
quantum computation and is fault-tolerant by nature (Freedman et al., 2002). So it is
crucial to understand which gates can be realized via braiding and whether or not they
suffice for universal quantum computation, i.e. whether they can implement any uni-
tary transformation on a set of qubits (up to an arbitrarily small precision and an overall
irrelevant phase).



2

22 2. THEORY

To find out which qubit rotations the braiding gates are implementing, we can calculate
the matrix elements of the γaγb products (where a ̸= b) and find out that they are equal
to the Pauli matrices in the {|0〉L , |1〉L} basis:

σz =−iγ1γ2 =−iγ3γ4

σx =−iγ2γ3

σy =+iγ1γ3

(2.19)

With these expressions, it is straightforward to identify the braiding gates with π
2 rota-

tions, also shown in figure 2.17.

B12 = e−i π4 σz = B34

B23 = e−i π4 σx
(2.20)

Consistently with equation 2.18, it is trivial to see here that a double braid is not the
identity and that a quadruple braid is.

=B

B23

z

y

1 L

0 L

B12

x34(       )

Figure 2.17: Bloch sphere rotations induced by braiding operations.

B12, B23 and their combinations generate all the π
2 rotations of the Bloch sphere around

the x̂, ŷ and ẑ axes, but this gate set is obviously not universal. To make matters worse,
such qubit rotations belong to the Clifford group, which is known to be efficiently sim-
ulable on a classical computer according to the Gottesman–Knill theorem (Gottesman,
1997). In summary, topological quantum computation with Majorana modes is not uni-
versal, and it can be simulated efficiently. Is braiding of any use at all?

It turns out that we are not missing many gates to get a universal set. The {H ,T,CNOT}
gate set is known to be universal (Nielsen and Chuang, 2010, page 189):

H = 1p
2

(
1 1
1 −1

)
T =

(
1 0
0 e i π4

)
CNOT =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 (2.21)

where H (“Hadamard”) and T are single-qubit gates, while CNOT is a two-qubit gate
in the {|00〉L , |01〉L , |10〉L , |11〉L} basis. The Hadamard gate can be realized with braiding
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via H = 1p
2

(
B 2

12 +B 2
23

)
. The T gate, instead, is a π

4 rotation around the ẑ axis (up to a

global phase), so it can’t be implemented with braiding operations: to realize it, non-
topological operations are certainly needed. The CNOT situation is slightly more deli-
cate. Within the natural qubit encoding of equation 2.15 (|0〉L = |00〉, |1〉L = |11〉), Bravyi
demonstrated a no-entanglement rule: it is impossible to create two-qubit entanglement
with topologically protected operations starting from |00〉L ≡ |0000〉 (Bravyi, 2006). Since
the CNOT is an entangling gate (for instance CNOT(|0〉L +|1〉L) ⊗ |0〉L = |00〉L + |11〉L)
then it can’t be realized within this encoding using braiding gates only. One approach
to circumvent this no-entanglement rule is choosing a different encoding: Georgiev was
indeed able to construct a CNOT gate using braiding operations only by encoding two
qubits into six Majoranas instead of eight, however, this construction might be hard to
extend to systems with more qubits (Georgiev, 2006). Another approach is to maintain
the natural encoding of equation 2.15 and rely on a combination of topological and non-
topological gates to implement both the T and the CNOT (Bravyi, 2006).

Even if not all the qubit gates can be implemented with braiding operations, a com-
bination of topological and non-topological gates can be beneficial compared to a fully
non-topological scheme. A reduced amount of non-protected operations can substan-
tially simplify the error correction process since it’s easier to protect from fewer error
sources (Bravyi and Kitaev, 2005). Typical quantum error correction schemes can con-
verge only if all the gate errors are below a small threshold, estimated to be between
∼10−6 and ∼10−2 depending on the qubit encoding architecture (Aharonov and Ben-Or,
1997; Knill et al., 1998; Raussendorf and Harrington, 2007). In comparison, Bravyi could
construct protocols allowing for an error threshold as high as 14% by combining Majo-
rana topological operations with a few noisy ones. He implemented a procedure known
as magic state distillation (Bravyi and Kitaev, 2005; Bravyi, 2006).

There are various ways to complement topological operations with noisy ones in or-
der to achieve universal quantum computation. One of the most natural ones involves
bringing two unpaired Majoranas temporarily close to each other, breaking the topologi-
cal protection on purpose. This splits the zero energy modes and, therefore, makes them
evolve freely; the right evolution time implements the T gate (Freedman et al., 2006).
Such scheme plus topological operations plus the ability to measure the joint fermion
parity of four Majoranas is sufficient to achieve universality (Bravyi, 2006). For other
proposals involving superconducting islands, we refer to Plugge et al. (2016, 2017) and
Karzig et al. (2017).

UNIVERSAL TOPOLOGICAL QUANTUM COMPUTATION

It is unfortunate that Majorana braiding is not universal by itself. Moreover, we remark
that all the Majorana braiding gates, including the CNOT (Georgiev, 2006), belong to the
Clifford group and, vice-versa, the whole Clifford group is generated by braiding gates
(Litinski and von Oppen, 2018). So any computation implemented with Majorana braid-
ing can be efficiently simulated on a classical computer (Gottesman, 1997). It is a sus-
picious coincidence: we are engineering topology – something described by a discrete
number of classes – into quantum objects, and we are getting what can be simulated
efficiently on a classical computer – something built with discrete units. Is this lack of
universality a limit of Majoranas or a more fundamental limitation of topology?
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We recall that the richness of the braiding gates originates from the ground-state degen-
eracy. A singly degenerate ground state leads to abelian exchange statistics. In the Majo-
rana case, doubly degenerate ground states are leading to non-abelian exchange statis-
tics able to engineer Clifford gates. Then it is no surprise that higher dimensional sys-
tems, such as theZ3 parafermions, can actually support universal topological quantum
computation (Alicea and Fendley, 2016). Majoranas are also known as Ising anyons, due
to the relation to theZ2 group (Chiu et al., 2016), while theZ3 parafermions are closely
related to the so-called Fibonacci anyons, which are the simplest known non-abelian
model capable of topological universal quantum computation (Nayak et al., 2008).

non-degenerate ground state → operations are trivial (hence abelian)

doubly-degenerate ground state → non-abelian anyons, but only Clifford operations

higher degeneracy → universal quantum computation (with anyons)

In summary, we started by reviewing the simple Kitaev chain toy model, discussed the
Poor Man’s Majoranas appearing in a minimal two-site chain, and showed the exponen-
tial benefits of scaling it up. We went on to discuss the possible storage of quantum
information and how to implement several topologically protected qubit gates via Majo-
rana braiding. With the addition of a few non-topological operations, it is even possible
to achieve universal quantum computation, yielding a record-high quantum error cor-
rection threshold. Finally, we concluded by mentioning that all of this might be just a
stepping stone towards even more exotic and more powerful non-abelian anyons such
as theZ3 parafermions.
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N
ow that we have introduced the Kitaev chain toy model from a purely ab-
stract point of view, we turn our attention to the proposal of a physical
realization. Following the Kitaev Hamiltonian terms one by one, we in-
troduce and discuss, from a theoretical point of view, all the ingredients
that can implement the Kitaev chain in practice.

2.3. QUANTUM DOTS
To realize an N -site chain, it is natural to think of an array of quantum dots (QDs). In
particular, semiconducting QDs can confine a few electrons into well-defined orbitals,
thereby acting as artificial atoms (Kouwenhoven et al., 2001). If the QD energy levels
are separated enough (∆E ≫ kB T ), then the low-energy spectrum is equivalent to µc†c
– the first term of the Kitaev Hamiltonian. The QD energy spectrum can be measured
with metallic leads and controlled by metallic gates (figure 2.18a,b). Gates are coupled
capacitively (CG), while the leads are weekly coupled to the QD via tunneling barriers,
modeled as a capacitor (CS/D) in parallel with a resistor (RS/D ∼ 1−1000kΩ).

Source Drain
Gate PGTG1 TG2

ca b QDVS VD
CS ,RS CD ,RDCG

VG

Figure 2.18: a, b. Schematic and circuit diagram of a quantum dot tunnel coupled to metallic contacts (source
and drain) and capacitively coupled to one gate. c. Illustration of a realistic quantum dot confined in a semi-
conducting nanowire by several gates (here TG1, PG, and TG2).

Within the constant-interaction model (Van Houten et al., 1992; Hanson et al., 2007), the
energy of a QD with N electrons amounts to

E(N ) =
[−e (N −N0)+∑

i Ci Vi
]2

2C
+

N∑
n=1

En (2.22)

where C =∑
i Ci and Ci and Vi are, respectively, the capacitances and the voltages of the

nearby metallic parts. In the simple case of figure 2.18b, C =CS+CD+CG, but more terms
might be needed in case of more gates, leads or other metallic parts (figure 2.18c). It is
meaningful to distinguish the first and the second terms of equation 2.22. The former
encompasses all the electrostatic contributions, while the latter comes from the solution
of Schrödinger’s equation for a particle in a box, yielding the atom-like energy levels En

(Kouwenhoven et al., 1997). The level spacing∆En ≡ En−En−1 has an order of magnitude

of ∼ h2

m∗L2 in the few-electrons regime, where h is the Planck constant, m∗ is the effective
mass and L is the characteristic length scale of the QD. It follows that semiconductors
with a low effective mass have less stringent confinement requirements for resolving the
level spacing. Popular III-V semiconductors such as GaAs, InAs, and InSb fall in this
category, yielding a level spacing of ∼ 10meV (∼ kB ·100K) for L ∼ 100nm, a spacial reso-
lution comfortably within state-of-the-art nanofabrication capabilities. Finally, we note
that the N -dependence of the level spacing strongly depends on the dimensionality: for
1D boxes ∆En ∝ N , for 2D ones is constant, while ∆En ∝ 1

3pN
in 3D. These simple cal-

culations do not consider degeneracies (En = 0) such as the spin-degeneracy or further
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ones due to possible additional symmetries (Tarucha et al., 1996). Due to degeneracies
and geometric imperfections, realistic QDs have a non-monotonic Eadd(N ); still, for QDs
with comparable width, height, and depth, the 1

3pN
trend is visible and stresses the im-

portance of achieving the few-electrons regime to resolve the level spacing.
Using equation 2.22, we can calculate the electrochemical potential µ(N ), i.e. the

energy cost of the N th electron,

µ(N ) ≡ E(N )−E(N −1) = e2

C

(
N −N0 −

1

2

)
− e

C

∑
i

Ci Vi +EN (2.23)

and the addition energy, i.e. the difference between adding two consecutive electrons,

Eadd(N ) ≡µ(N )−µ(N −1) = e2

C
+∆En (2.24)

Equation 2.23 highlights a key capability for our Kitaev chain purposes. By varying the
gate voltage VG, we can continuously control the electrochemical potential:

µ= CG

C
eVG +constant. (2.25)

The proportionality constant CG
C is denoted as the lever arm α. Finally, the last equa-

tion (2.24) pinpoints the distinction between the classical and quantum contributions:
besides the level spacing ∆En , adding each electron requires an additional charging en-

ergy Ec ≡ e2

C .3 The addition energy is never zero due to the finite Ec; in particular, this
energy cost may forbid the transport of electrons from source to drain for low voltage
bias ∆V ≡ VS −VD if |e∆V | < Ec. This transport blockade due to electrostatics is known
as Coulomb blockade, while the current peaks appearing whenever

∣∣µ(N )
∣∣ < e∆V are

known as Coulomb peaks.
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Figure 2.19: Illustration of Coulomb peaks for an odd N . Due to spin degeneracy, they appear in pairs separated
by Ec. The vertical axis might display either the measured source to drain current I (for a low bias ∆V ≪ Ec/e)

or its derivative at zero bias: the conductance G ≡ d I
d∆V

∣∣∣
∆V =0

.

As shown in figure 2.19, the Coulomb peaks appear in pairs separated by Eadd = Ec due
to the spin degeneracy. Each pair corresponds to one atom-like orbital. In principle, it is
also possible to observe Coulomb peaks grouped in quartets, sextets, and so on, in case
of orbital degeneracies, either due to coincidences or further symmetries (Tarucha et al.,
1996).

3We note that other authors define the charging energy as Ec ≡ e2

2C .
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Figure 2.20: Coulomb diamonds. The source to drain current is measured as a function of VG and the voltage
bias ∆V . The Coulomb peaks correspond to the current peaks at |e∆V |≪ Ec. The schematic on the left shows
that at a bias higher than the level spacing ∆En , transport can occur via multiple energy levels, resulting in a
higher current.

At higher bias∆V , the electron transport looks like figure 2.20, where the Coulomb peaks
evolve into Coulomb diamonds as a function of VG and ∆V . Here, the unit of the hori-
zontal axis depends on the lever arm α, but the unit of the vertical axis doesn’t: a voltage
bias ∆V provides an electron energy e∆V , with no need of additional proportionality
constants. This observation permits the extraction of the lever arm from a Coulomb
diamond measurement. For instance, setting VD = 0 (and thus ∆V = VS), makes the
Coulomb diamond slopes equal to CG

CS
and −CG

C−CS
, with which is easy to verify the follow-

ing equation for the lever arm:

1

α
=

∣∣∣∣
1

positive slope

∣∣∣∣+
∣∣∣∣

1

negative slope

∣∣∣∣ (2.26)

Finally, note that when the energy bias e∆V is higher than the level spacing ∆En , it is
possible to transport electrons also via the higher energy levels without paying the Ec

energy cost, as shown in the schematic on the left of figure 2.20. As a result, the ∆En

show up at the edges of even diamonds in the form of current steps.

2.3.1. ZEEMAN SPLITTING
Degeneracies are detrimental for Kitaev chain purposes. We remind that the Hamilto-
nian of equation 2.1 considers a spinless chain, with no summation over the spin degree
of freedom. This is essential: if we doubled the Kitaev Hamiltonian, any unpaired Majo-
rana would get a counterpart and thus recombine into a trivial local fermion.

The spin degeneracy can be lifted with an external magnetic field B . This creates a
Zeeman splitting EZ = gµB B , where µB is the Bohr magneton and the proportionality
constant g is called g -factor.4 To lift the spin degeneracy in practice, it is sufficient to
achieve EZ ≫ kB T (∼ 4µeV in a standard dilution refrigerator with T ∼ 50mK). This re-
quirement is not so stringent: with a g -factor of 2 it demands B ≫ 40mT; with the high
g -factor of InSb (≈ 50) it requires B ≫ 1.5mT.

The g -factor can be extracted experimentally by monitoring the Coulomb peaks as a
function of B , as shown in figure 2.21. Here, it looks like a few lines “bounce” against each

4We note that many authors indicate with EZ the Zeeman energy acquired by a single spin EZ = g
2 µB Bσ, where

σ=+1 for spin up andσ=−1 for spin down. Here, for consistency with most references, we chose to indicate
with EZ the energy splitting between the two spins, hence gaining a factor of 2.
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Figure 2.21: Representative illustration of Coulomb peak dependence on the external magnetic field. Non-
degenerate levels are highlighted in green (spin-down) and blue (spin-up). The red contour shows that the
elbows are curved.

other. This happens whenever EZ = ∆En , as it becomes more favorable to first fill the
spin-down of the next orbital. When Eadd−Ec ≫ kB T , the degeneracy is lifted, the spin is
well-defined and highlighted in figure 2.21 in green (spin-down) and blue (spin-up). The
degeneracy is not lifted for the lines of the rightmost quartet due to an additional orbital
degeneracy. This example shows that accidental degeneracies can be spotted from the
measurement illustrated in figure 2.21 by the presence of consecutive parallel lines.

Finally, the red contour highlights that the lines are curved whenever the spin polar-
ization changes. It is due to spin-mixing caused by spin-orbit coupling (SOC).

2.3.2. SPIN-ORBIT COUPLING

The spin-orbit interaction couples the spin degree of freedom with the momentum k⃗.
It is naturally present in all atoms, where it produces a (small) shift to the energy levels,
and it is also present in bare semiconductors in the Rashba form

HSO =αRσ⃗× k⃗ (2.27)

or Dresselhaus form

HSO =αD

[
σx kx (k2

y −k2
z )+σy ky (k2

z −k2
x )+σz kz (k2

x −k2
y )

]
(2.28)

where σ⃗ = (σx ,σy ,σz ) is the vector of Pauli matrices acting on the spinor
(
ψ↑ (⃗r )
ψ↓ (⃗r )

)
and αR

and αD are proportionality constants.
In semiconducting QDs, the SOC can couple opposite spins from different orbitals.

The elbow curvature highlighted in red in figure 2.21 comes from the avoided crossing
of such levels, which can be used to estimate the SOC strength (Nadj-Perge et al., 2012).
Indeed, the second and third resonances of figure 2.21 are separated by the sum of the
charging energy and the repulsion due to SOC: Ec +2ESO.
Since 2ESO can be much smaller than the charging energy, it is
practical to measure it directly, from the high bias transport as a
function of B shown in figure 2.22. We note that, in general, the
amplitude of the avoided crossings might vary from level to level,
due to the orbital component of SOC. In particular, this level-
dependent ESO might differ from the Rashba or Dresselhaus SOC
strength in the bulk of the semiconductor, nevertheless, it gives
the correct ballpark number (Nadj-Perge et al., 2012).
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Figure 2.22: ESO estima-
tion from the high-bias
transport.
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2.3.3. DOUBLE QDS
So far, we reviewed how one QD can confine electrons into isolated energy levels, real-
izing µnc†

ncn and controlling the electrochemical potential µ via equation 2.25. We also
showed how the spin-degeneracy can be lifted with a finite magnetic field. It remains to
show how to combine multiple quantum dots to create a chain.

PG1TG1 TG2 PG2 TG3

Figure 2.23: Schematic of a double quantum dot defined on a semiconducting nanowire by three tunnel-
barrier (“T”) gates and controlled by two plunger (“P”) gates.

Figure 2.23 illustrates a chain of two QDs defined on a semiconducting nanowire de-
posited on a gate array. Here, the “T” gates create tunneling barriers, while the “P” gates
are dedicated to the control of the chemical potential of both QDs: µ1 andµ2. Figure 2.24
shows a few examples of charge stability diagrams, which report the Coulomb peaks of
both QDs as a function of VPG1 and VPG2. The charge occupations define a checkerboard
pattern, which might turn into a honeycomb pattern (panel c) in case of a finite capaci-
tive cross-coupling (van der Wiel et al., 2002).

Figure 2.24: Charge stability diagrams of double quantum dots. a. The vertical and horizontal grey lines
depict the Coulomb peaks of the first and second QD respectively. The numbers in parenthesis indicate the
charge occupations of the two dots (N1, N2). b. A small tunneling rate t couples the regions with the same total
charge, turning the crossing points into avoided crossings of amplitude

p
8t . c. In the case of a finite cross-

coupling, where VPG1 affects µ2 and vice-versa, the charge degeneracy lines appear skewed and the amplitude
of the avoided crossings is augmented by the mutual charging energy Ecm (times

p
2) that each dot acquires

when one charge is added to the other.

The architecture of figure 2.23 can be scaled to more than two QDs. It was demon-
strated using either nanowires (Mu et al., 2021), carbon nanotubes (Grove-Rasmussen
et al., 2008) or two-dimensional electron gases (Zajac et al., 2016), proving the feasibil-
ity of the

∑
n µnc†

ncn term for a Kitaev chain of several sites. On top of that, an array of
QDs can also implement the second term of the Kitaev Hamiltonian,

∑
n tnc†

ncn+1 +h.c.,
since the tunnel-coupling of neighboring QDs can be modeled by a hopping amplitude
tn (van der Vaart et al., 1995). Such a hopping term also manifests in the charge stability
diagrams of figure 2.24b,c in the form of avoided crossings of amplitude

p
8t , where 2t

is the energy difference between the bonding and anti-bonding of the two hybridized
charge occupations (see for instance the blue arrow in panel b) and the additional

p
2

comes from the 45◦ tilt in the charge stability diagram.
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At this stage, there is only one remaining term to complete the Kitaev Hamiltonian:∑
n∆nc†

nc†
n+1 +h.c. However, this cannot be found in QDs. Even considering semicon-

ductors in general, it is hard to imagine any c†
i c†

j mechanism able to pair electrons, since

they naturally repel each other due to Coulomb interactions. There is a need for some-
thing else.

2.4. SUPERCONDUCTIVITY
In superconductors, there is an effective attractive interaction between electrons.
In conventional superconductors, this is provided by electron-phonon scattering
(Fröhlich, 1950), but it can have a different origin for more exotic superconducting states.
In any case, such attractive interaction can condense the free electrons into a sea of
Cooper pairs (Cooper, 1956). In the following, we don’t discuss in detail all the wonder-
ful properties of superconductivity, which include zero resistance and perfect diamag-
netism (Tinkham, 2004), but rather focus on how this attractive pairing provides the c†

i c†
j

coupling needed for the Kitaev chain.
Most of the common superconductors available in the laboratory, such as Al, In, Nb,

Pb, Sn, Ti, and many others, are well described by the Bardeen-Cooper-Schrieffer (BCS)
microscopic theory of superconductivity (1957) with the following Hamiltonian:

HBCS =
∑

k⃗,σ

εk⃗ c†

k⃗σ
ck⃗σ+

∑

k⃗,k⃗ ′
Uk⃗k⃗ ′c

†

k⃗↑c†

−k⃗↓c−k⃗ ′↓ck⃗ ′↑ (2.29)

where k⃗ and k⃗ ′ are electron momenta, σ ∈ {↑,↓} is the spin, εk⃗ = ħ2k⃗2

2m∗ −µF is the electron
energy with respect to the Fermi energy

(
µF

)
and Uk⃗k⃗ ′ < 0 is the attractive interaction

between electrons. Using a mean-field approximation (Bogoljubov, 1958; Valatin, 1958),
the BCS Hamiltonian can be simplified to

HB =
∑

k⃗,σ

εk⃗ c†

k⃗σ
ck⃗σ−

∑

k⃗

(
∆k⃗ c†

k⃗↑c†

−k⃗↓+h.c.
)
+constant (2.30)

Here, the ∆k⃗ pairing comes from the average of the attractive coupling U times the ex-

pectation value of the c†

k⃗ ′↑c†

−k⃗ ′↓ factor:

∆k⃗ ≡−
∑

k⃗ ′
Uk⃗k⃗ ′

〈
c†

k⃗ ′↑c†

−k⃗ ′↓

〉
(2.31)

Since U is negative, ∆k⃗ is positive. The Hamiltonian 2.30 has the advantage of being
block-diagonal, and can be fully diagonalized as follows:

HB =
∑

k⃗

Ek⃗

(
b†

k⃗↑bk⃗↑+b†

−k⃗↓b−k⃗↓
)
+constant (2.32)

where Ek⃗ ≡
√
ε2

k⃗
+∆2

k⃗
and

{
bk⃗↑ = uk⃗ ck⃗↑− vk⃗ c†

−k⃗↓
b−k⃗↓ = uk⃗ c−k⃗↓+ vk⃗ c†

k⃗↑

(2.33)
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with
∣∣uk⃗

∣∣2 = 1

2

(
1+

εk⃗

Ek⃗

)
and

∣∣uk⃗

∣∣2 +
∣∣vk⃗

∣∣2 = 1 (2.34)

The b operators correspond to a new kind of quasiparticles – the bogoliubons – which
are a mixture of electrons and holes. The coefficients uk⃗ and vk⃗ are, respectively, their
electron-like and hole-like components.5 They are shown in figure 2.25a as a function of
the momentum. In the same figure, panels b and c show the energy spectrum of elec-
trons, holes, and bogoliubons. Whereas panel d shows the bogoliubon density of states,
which is gapped and diverges at ±∆. We remind that, in order to appreciate such energy
gap and the so-called coherence peaks of the density of states experimentally, kB T ≪∆ is
required. Common BCS superconductors, including the already mentioned ones, have
∆/kB ∼ 1K .

Figure 2.25: Numerical calculations of the u and v components (panel a), the energy spectrum with respect to
the Fermi energy (panels b and c), and the bogoliubon density of states (panel d). Calculations are performed
with a momentum-independent energy gap ∆k⃗ ≡ ∆ ∼ 0.1µF . The 3D density of states shown in panel d is
calculated using the numerical derivative of the bogoliubon spectrum. The Fermi momentum kF is defined

by
ħ2k2

F
2m∗ =µF .

The target
∑

n∆nc†
nc†

n+1 term of the Kitaev Hamiltonian and the
∑

k⃗ ∆k⃗ c†

k⃗↑c†

−k⃗↓ electron-

hole coupling term of equation 2.30 are very similar. It remains to figure out how to
match the summation indices while combining superconductivity with the semicon-
ducting quantum dots described earlier. This is the focus of the following sections.

2.4.1. JOSEPHSON JUNCTIONS
A prime example showing how superconducting properties can be exported into other
materials is represented by Josephson junctions. They are formed by connecting two
superconductors S1 and S2 via a weak link: like an insulating layer (SIS junction), a
constriction (ScS), or a normal conductor (SNS). We are particularly interested in the

5In general, uk⃗ and vk⃗ are complex numbers, although there is a gauge arbitrariness in this case, which is the
rationale for plotting their squares here. There is a sole constraint on the phase difference between uk⃗ and
vk⃗ : it must match the ∆k⃗ phase. If ∆k⃗ is real then both uk⃗ and vk⃗ can be chosen to be real, as was done in
Bogoliubov’s original work (1958). For more details on the phase see (Tinkham, 2004, page 61).
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latter since it can be formed by semiconducting-superconducting heterostructures (fig-
ure 2.26c). Here, Cooper pairs from the superconductors may diffuse into the semi-
conductor via the so-called proximity effect, making it (weakly) superconducting as well
(Tinkham, 2004, page 197).

S1 S2 S1 S2S1 S2
ca b

N
∆1e

-i 1φ ∆2 e
-i 2φ ∆1e

-i 1φ ∆2 e
-i 2φ∆ e-i 1φ ∆ e-i 2φ

Figure 2.26: Illustrations of SIS, ScS, and SNS Josephson junctions.

Without going into the details of Josephson junction theory, for which we refer to Tin-
kham (2004, chapter 6), here we only mention the two Josephson relations (Josephson,
1962), which are essential for the understanding of chapters 6 and 7:

Is = Ic sin∆φ (2.35)

d(∆φ)

d t
= 2eV

ħ (2.36)

where ∆φ≡φ2 −φ1 is the phase difference between the two superconductors.
The first relation predicts that the weak link can sustain a finite supercurrent Is, which

may be as large as the critical current Ic. Supercurrent means current with zero resis-
tance, while, if a current I > Ic is forced through the weak link, the junction returns to
the normal-conductor state and becomes resistive. Equation 2.35 holds precisely only
for ideal SIS junctions at zero temperature. Finite temperature fluctuations can cause
the junction to switch prematurely to the normal state (Tinkham, 2004, page 207) at a
switching current Isw < Ic. And realistic SNS junctions might deviate from the ideal si-
nusoidal behavior of the current-phase relationship (CPR) of equation 2.35.

The second Josephson relation (equation 2.36) matters when a finite voltage bias V
is applied across the junction. It predicts a precession of the phase ∆φ which is rather

fast: V = 1µV yields d(∆φ)
d t = 3GHz.

2.4.2. ANDREEV BOUND STATES
The supercurrent through a Josephson junction might be carried by Andreev bound
states (ABSs) as illustrated in figure 2.27a. ABSs can be seen in a simple toy model as
arising from resonant Andreev reflection, which is the reflection of an electron into a hole
at the interface between a normal conductor and a superconductor (Andreev, 1964).
Andreev reflection is made possible by the creation (or annihilation) of a Cooper pair

e–

h+
Cooper
pair

a bS1 S2

Figure 2.27: Illustrations of a. Supercurrent carried by an ABS via resonant Andreev reflection b. An ABS formed
in a (semi-)conductor coupled to a single superconductor.
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into the superconductor. This enables the supercurrent flow by continuously destroying
Cooper pairs from S1 and creating them into S2 (figure 2.27a). The resonant condition
mandates that the sum of the phases acquired during the reflections and the electron (or
hole) traveling in the normal conductor equals zero (mod 2π). A bound state is formed
when the resonant condition is met and the quasi-particles are confined (we come back
to the importance of such confinement later on). This can also happen with one super-
conductor only, as shown in figure 2.27b where normal reflections replace the Andreev
reflection with the second superconductor. Here, Cooper pairs are continuously formed
and destroyed at the interface, yielding an effective pairing Γ between the electrons in
the normal conductor. To formalize this intuition, we consider the following model.

A SIMPLE MODEL: THE ATOMIC LIMIT

If a single spin-degenerate level of energy ξ is weakly coupled to a superconductor, the
ABS Hamiltonian can be written as follows

HABS =
∑
σ
ξc†

σcσ+Γ
(
c†
↑c†

↓ +h.c.
)

(2.37)

with further additions in the case of a finite charging energy and Zeeman field. It takes
the following form in the {|0〉 , |↑↓〉 , |↓〉 , |↑〉} basis with the |↑↓〉 ≡ c†

↑c†
↓ |0〉 ordering conven-

tion:

HABS =




0 Γ 0 0
Γ 2ξ+Ec 0 0

0 0 ξ− EZ
2 0

0 0 0 ξ+ EZ
2


 (2.38)

The Hamiltonian 2.38 – already diagonal for the odd {|↓〉 , |↑〉} subspace – can be diago-
nalized in the even {|0〉 , |↑↓〉} subspace with a Bogoliubov transformation. This yields the
even eigenstates

{|S−〉= u |0〉− v |↑↓〉
|S+〉= v |0〉+u |↑↓〉 of energies ES± = ξ+ Ec

2
±

√(
ξ+ Ec

2

)2

+Γ2 (2.39)

where |u|2 = 1

2


1+

ξ+ Ec
2(

ξ+ Ec
2

)2
+Γ2


 and |u|2 +|v |2 = 1 (2.40)

which resemble the BCS bogoliubons (equations 2.33 and 2.34), with the substitutions
ϵk⃗ 7→ ξ+ Ec

2 and ∆k⃗ 7→ Γ. However, as opposed to the BCS bogoliubons, the eigenstates
of equation 2.39 do not correspond to single-particle excitations, since the Hamilto-
nian 2.38 is written for a many-body basis. Adding a single particle to the ABS implies
switching the eigenstate parity from even to odd (or vice-versa) and requires a supply
of the corresponding energy difference (Lee et al., 2013). Therefore, to get the single-
particle ABS spectrum it is sufficient to calculate the difference between the ES± even
eigenvalues and the ξ± EZ

2 odd ones, yielding

EABS =±

Ec

2
± EZ

2
−

√(
ξ+ Ec

2

)2

+Γ2


 (2.41)
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This is calculated in figure 2.28b-d for three values of Γ (at EZ = 0, for simplicity). In
particular, panel b sets Γ = 0, losing all superconducting properties and recovering the
Coulomb diamond of a standard QD. Note that there are two charge degeneracy points
at ξ+ Ec

2 = ±Ec
2 . Here, the ground state parity switches from even to odd and back to

even, as shown in section 2.3. As Γ is increased, ES− is lowered, and for Γ≥ Ec
2 the parity

switches disappear (panel d): here, |S−〉 is the many-body ground state for any ξ. The Γ
dependence of the ground state parity is summarized in panel a, for the EZ dependence
we refer to (Lee et al., 2013).
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Figure 2.28: Comparison between the atomic limit (first row) and the zero-bandwidth approximation (sec-
ond row) of the Anderson impurity model. The first column shows the many-body ground-state parity, and
the others show the single-particle excitation spectra for Γ ∈ {0,0.25,0.55}, t ∈ {0,0.15,0.28}, EZ = 0, Ec = 1,
∆= 0.25.

THE ANDERSON IMPURITY MODEL

The Hamiltonian 2.38 can be formally derived – see for instance (Bauer et al., 2007) or
(Meng et al., 2009) – from the Anderson impurity model (Anderson, 1961), which consid-
ers an impurity tunnel-coupled to a metallic lead. In our case, the lead is a supercon-
ductor described by the BCS Hamiltonian of equation 2.30. The Anderson model of an
impurity coupled to a BCS superconductor reads as follows:

HAnderson = HI +Ht +HB

HI =
∑
σ

(
ξ+ EZ

2
σz

)
c†
σcσ+Ecc†

↑c↑c†
↓c↓

Ht =
∑
σ

td †
σcσ+h.c.

HB =
∑

k⃗,σ

εk⃗ d †

k⃗σ
dk⃗σ−

∑

k⃗

(
∆k⃗ d †

k⃗↑d †

−k⃗↓+h.c.
)

(2.42)

where we used d † and d for the creation and annihilation operators in the superconduc-
tor in order to distinguish them from the impurity ones (c† and c). The d and c opera-
tors come together only in the tunnel-coupling Ht proportional to the parameter t . The
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impurity Hamiltonian HI comprises a single-level energy ξ, a Zeeman splitting EZ and
possibly a finite charging energy Ec. Thus, it can model either a magnetic impurity (like
transition-metal adatoms on a superconducting surface), a defect in the crystal lattice or
a quantum dot.

The crucial feature is having some sort of confinement, yielding a localized orbital
of energy ξ. Looking at the naive picture of figure 2.27b, we stress the importance of
confinement in all directions, also the ones parallel to the S-N interface. Otherwise, in-
stead of the Andreev bound states discussed here, we would get Andreev bands, with
an energy dispersion depending on the momentum parallel to the S-N interface. For
this reason, it is natural to picture ABSs as quantum dot orbitals coupled to a supercon-
ductor. This motivates the usage of EZ and Ec as the ABS Zeeman energy and charging
energy, respectively (in the same spirit, µ is sometimes used in place of ξ, for instance,
in chapter 3). Nevertheless, we stress that the ABS Zeeman and charging energies might
be significantly different compared to an uncoupled QD due to, respectively, g -factor
renormalization (Antipov et al., 2018) and an increase of the capacitance. For instance,
chapters 4 and 6 report gQD ∼ 45 and gABS ∼ 20; chapters 3 and 7 report E QD

c ∼ 2−4meV
while considering E ABS

c to be negligible (≪ 1meV).
The numbers matter, and with them also the validity of the Hamiltonian 2.38. Such

a simple effective Hamiltonian is known as the atomic limit of the Anderson model and
is a good approximation as long as Γ,Ec,EABS ≪ ∆ (Meng et al., 2009). The two models
are connected by Γ = πt 2ρ0, where ρ0 is the normal-state density of states at the Fermi
energy. However, realistic devices could have Ec ∼ ∆ or even larger, which would make
the atomic limit completely ungrounded for most of the parameter space shown, for in-
stance, in figure 2.28a, especially whereΓ∼ Ec. To address such a broad parameter space,
we can utilize a different approximation of the Anderson model: the zero-bandwidth
one.

ZERO-BANDWIDTH APPROXIMATION

The raw Anderson impurity model of equation 2.42 is hard to solve. The spectrum can be
calculated numerically with advanced techniques such as the Numerical Renormaliza-
tion Group (NRG) (Bauer et al., 2007) or quantum Monte Carlo simulations (Siano and
Egger, 2004), but these techniques are computationally heavy and out of the scope of
this manuscript. A simpler approach involves approximating the BCS superconductor
with a single pair of energy levels, dropping the summation over k⃗. This corresponds to
approximating the BCS density of states (figure 2.25d) as a pair of coherence peaks with
zero bandwidth (ZBW): the density of states is set to zero both inside and outside the
gap. Within this approximation, the Anderson model is greatly simplified:

HAnderson ≈ HI +Ht +HZBW

HZBW =−∆d †
↑d †

↓ +h.c.
(2.43)

It consists of a 16×16 matrix which can be separated into even and odd subspaces and
diagonalized. Again, the single-particle ABS spectrum is the difference between the even
and odd eigenvalues. It is shown in figure 2.28f-h for different selections of the tunnel
amplitude t . As opposed to the atomic limit case, here we can appreciate that the ABS
spectrum is bound to the parent gap ∆, as shown in experimental data (Lee et al., 2013).
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In conclusion, the ZBW approximation is a good compromise between computational
speed and accuracy for a wide parameter range, as proven by the qualitative comparison
with experimental data and the quantitative comparison with NRG calculations (Žitko
and Pavešić, 2022). For Γ,Ec ≪ ∆, where the atomic limit is valid and preferable due to
its simple analytical solution, the spectrum calculated with the two approximations is
identical, with the following simple correspondence:

Γ= t 2

∆
(2.44)

.2.4.3. CROSSED ANDREEV REFLECTION
Now that ABSs have been introduced, we show how they can mediate the ∆n pairing
between neighboring QDs. Figure 2.29 shows an ABS connecting two quantum dots. If

QD1 QD2ABS

VQD1 VABS VQD2

Figure 2.29: Illustration of an ABS (∞ symbol) tunnel-coupled to two QDs.

the ABS is in the even ground state |S−〉= u |0〉−v |↑↓〉, then, with amplitude proportional
to v , it can donate one of the two electrons to either of the neighboring QDs and then,
with u, it can return to the even ground state by donating the remaining electron to the
other QD. Creating an electron into both QDs is exactly what the ∆nc†

nc†
n+1 term does.

Note that since the first electron can be donated to either the left or the right QD, this
process is proportional to 2uv . Both sequences are shown on the left of figure 2.30.

The reversed process, instead, can fill the u |0〉 component of the ABS, taking one
electron from either QD and, eventually, going back to the |S−〉 ground state into the
v |↑↓〉 component. This process is also proportional to 2uv and realizes ∆∗cn+1cn . Both
the direct and the reversed process are denoted here as crossed Andreev reflection (CAR),
since cn destroys an electron from the nth site and cn+1 can be viewed as creating a hole
in the (n +1)th one. Analogously, c†

n and c†
n+1 destroy a hole and create an electron.

v2

|↑〉 |↑〉|↓〉

v|↑↓〉

v|↑↓〉|↑〉|0〉

|↑〉|0〉

u|0〉|↑〉

|↑〉 |↓〉|0〉

u2

1

Crossed Andreev re�ection Elastic co-tunneling

|0〉

|↓〉

u|0〉|↑〉

v|↑↓〉

uv

QD1 ABS QD2

|0〉

|↑〉 |0〉

|↓〉

|0〉

u|0〉|↑〉

v|↑↓〉
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QD1 ABS QD2

|0〉

|↓〉

|0〉

u|0〉

QD1 ABS QD2

|0〉2

3 |↑〉|0〉

|↑〉 |0〉

QD1 ABS QD2

−

Figure 2.30: Schematic illustration of the two CAR paths and two ECT ones mediate by one ABS.
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2.4.4. ELASTIC CO-TUNNELING

Besides the ∆n terms, ABSs can also realize tunneling tnc†
ncn+1 between neighboring

QDs. Strikingly, the dependence on the u and v components is completely different
from the CAR case. As the right side of figure 2.29 shows, one electron can be transferred
from QD1 to QD2 in two ways: it can either directly tunnel from QD1 to the ABS and
then to QD2 or it can involve a second electron tunneling first from the ABS to QD2 and
then fill the void from QD1 to the ABS. The first option involves, twice, the u component
of the ABS, while the second path involves only the v one. It turns out that the two paths
interfere destructively so that the total tn amplitude mediated by the ABS is proportional
to u2 − v2 (Liu et al., 2022; Bordin et al., 2023). The origin of the destructive interference
is the fermionic exchange statistics involving the two electrons used by the v path. A
simple proof is reported in appendix A.

In synthesis, following the results of figure 2.30 and the calculation reported in chap-
ter 6, the∆n and tn amplitudes have the following dependence on the ABS components:

∆n ∝
(

uv

E↑
+ uv

E↓

)
exp

(
iφn

)
tn ∝ u2

E↑
− v2

E↓
(2.45)

where E↑ and E↓ are the ABS excitation energies for the two different spin components.
Such denominators are due to the intermediate states used in step 2 of figure 2.30.
One path excites the ABS from the |S−〉 to the |↑〉 state, while the other relies on the |↓〉
one. Since the ABS excitation requires the corresponding energy cost, these are second-
order processes involving a virtual occupation of the ABS. Hence, we refer to the effective
tn processes as elastic co-tunneling (ECT). The “co-” reminds us of the second order,
while the “elastic” reminds us of the energy conservation requirement: the QD1 and QD2
energy levels must be aligned.

CAR is also a second-order process, but the QD energy
levels must be anti-aligned to create or destroy Cooper
pairs at zero energy. Hence, both QDs must be at zero
energy for CAR and ECT to coexist.

Finally, we note that the radically different depen-
dence of CAR and ECT on the ABS chemical potential ξ
is crucial for Kitaev chain purposes. Figure 2.31 super-
imposes the CAR and ECT signals for the simple situa-
tion where Ec = EZ = 0, so that E↑ = E↓ ≡ EABS (the finite-
field case is discussed further on and in chapter 3). At
ξ = 0, ECT is suppressed by the destructive interference,
whereas for large |ξ|, is CAR to be suppressed faster than
ECT: this ensures the existence of crossing points (brown)
where |tn | = |∆n |, as prescribed in section 2.1.1. In addi-
tion, we note that the left crossing point realizes tn = |∆n |
while the right one produces tn =−|∆n |. Such sign free-
dom can be used to tune the relative phase between tn

and ∆n for long Kitaev chains (Liu et al., 2024b).

Figure 2.31: ξ dependence of a.
the ABS energy, u2 and v2, b. the
CAR- and ECT-induced currents.
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2.5. THE KITAEV CHAIN IN PRACTICE
Figure 2.32 summarizes how all the ingredients introduced in this chapter come together
to realize the Kitaev chain Hamiltonian. The µn , tn , and ∆n terms are implemented, re-
spectively, by an array of QDs coupled by ECT and CAR. As shown in the previous section,
CAR and ECT are balanced by tuning the ABSs residing in the hybrid regions of the de-
vice. Finally, the Zeeman splitting EZ must be larger than the temperature broadening
and the inter-dot couplings tn and ∆n to ensure an effectively spinless Hamiltonian, as
prescribed by Kitaev (2001).

However, a potential issue arises when the QDs are spin-polarized: can CAR and
ECT coexist simultaneously? ECT preserves the spin, while CAR couples opposite spins
via the v |↑↓〉 component of the ABS. They are seemingly incompatible. The issue can be
solved using non-collinear quantization axes for neighboring QDs (Leijnse and Flens-
berg, 2012a), enabling finite 〈↑|tnc†

ncn+1|↓〉 and 〈↑|∆nc†
nc†

n+1|↑〉 amplitudes. This could be
achieved using micromagnets to locally polarize every QD (Bordoloi et al., 2022) along
different directions (Jardine et al., 2021). A practical alternative is relying on the spin-
orbit coupling to possibly flip the spins as the electrons travel from one QD to the next.
SOC is naturally present in our devices, as discussed in section 2.3.2, and is strong enough
to enable a substantial spin precession so that the spin-fliping probability is of the same
order of magnitude as the spin-preserving one (G. Wang et al., 2022a; Q. Wang et al., 2023).
With SOC, CAR and ECT can coexist for any QD spin selection: the Kitaev chain Hamil-
tonian implementation is complete.
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aaa

HN =
N∑

n=1
µnc†

ncn +
N−1∑
n=1

(
tnc†

ncn+1 + ∆nc†
nc†

n+1 +h.c.
)

QDs ECT CAR

SOC

ABSEZ � tn,∆n

Figure 2.32: Summary of the Kitaev chain recipe.

More details are reported in the appendices:

• Appendix B reports the nanofabrication recipes used for the Kitaev chain devices
of the following chapters.

• Appendix C presents a sequence of measurements illustrating how to tune a Kitaev
chain from scratch: from the basic device characterization to the full implementa-
tion of figure 2.32’s concept.
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FURTHER READING

This pedagogical introduction to Kitaev chains was inspired by Kitaev’s seminal work
(2001) and the subsequent realistic proposals (Sau and Das Sarma, 2012; Leijnse and
Flensberg, 2012a; Fulga et al., 2013). To complete the picture, we list here the main works
that contributed to the first realizations of Kitaev chains in recent years, to their under-
standing, and proposed further developments towards the first Majorana qubits.

The pioneering experimental work in Delft (Wang et al., 2022a; chapters 3 and 4)
triggered a booming theoretical effort in many places around the globe, including Lund
(Tsintzis et al., 2022, 2024; Seoane Souto et al., 2023, 2024; Samuelson et al., 2024; Svens-
son and Leijnse, 2024; Benestad et al., 2024; Nitsch et al., 2024), Delft (Liu et al., 2022,
2023, 2024a,b; Torres Luna et al., 2024; Miles et al., 2024; Bozkurt et al., 2024; Pan et al.,
2024), Budapest (Boross et al., 2019; Széchenyi and Pályi, 2020; Boross and Pályi, 2024;
Kocsis et al., 2024), Madrid (Pino et al., 2024; Cayao and Aguado, 2024; Alvarado et al.,
2024), Beijing (Liu et al., 2024c), Paris (Gómez-León et al., 2024) and Basel (Luethi et al.,
2024a,b).

New experiments are mostly from Delft, but already on two different platforms:
InSb-Al hybrid nanowires (chapters 5 and 6; Koch et al., 2023; Zatelli et al., 2024; van
Driel et al., 2024b) and InSbAs-Al 2DEGs (Wang et al., 2023; ten Haaf et al., 2024a,b; van
Driel et al., 2024a). New efforts are being developed in Budapest (Kürtössy et al., 2022)
and Wien.
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IN HYBRID NANOWIRES

A short superconducting segment can couple attached quantum dots via elastic co-
tunneling (ECT) and crossed Andreev reflection (CAR). Such coupled quantum dots can
host Majorana bound states provided that the ratio between CAR and ECT can be con-
trolled. Metallic superconductors have so far been shown to mediate such tunneling phe-
nomena, albeit with limited tunability. Here we show that Andreev bound states formed
in semiconductor–superconductor heterostructures can mediate CAR and ECT over meso-
scopic length scales. Andreev bound states possess both an electron and a hole component,
giving rise to an intricate interference phenomenon that allows us to tune the ratio be-
tween CAR and ECT deterministically. We further show that the combination of intrinsic
spin-orbit coupling in InSb nanowires and an applied magnetic field provides another ef-
ficient knob to tune the ratio between ECT and CAR and optimize the amount of coupling
between neighboring quantum dots.

This chapter has been published as: Tunable Crossed Andreev Reflection and Elastic Cotunneling in Hybrid
Nanowires, Alberto Bordin∗, Guanzhong Wang∗, Chun-Xiao Liu∗, Sebastiaan L. D. ten Haaf, Nick van Loo,
Grzegorz P. Mazur, Di Xu, David van Driel, Francesco Zatelli, Sasa Gazibegovic, Ghada Badawy, Erik P. A. M.
Bakkers, Michael Wimmer, Leo P. Kouwenhoven, Tom Dvir, Physical Review X, 13.3: 031031. (2023).
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T
he Kitaev chain is a prime example of condensed-matter toy models ex-
hibiting a topological superconducting phase (Kitaev, 2001). Practical
proposals to construct an artificial Kitaev chain require a set of quan-
tum dots (QDs) separated by narrow superconducting segments (Sau
and Das Sarma, 2012; Leijnse and Flensberg, 2012a; Fulga et al., 2013).

Such QDs interact via two mechanisms: crossed Andreev reflection (CAR) and elastic
co-tunneling (ECT). In CAR, electrons from two separate QDs tunnel into the supercon-
ductor forming a Cooper pair; or in its reversed process, a Cooper pair is split into two
electrons, tunneling to different QDs (see schematic in Fig. 3.1a) (Recher et al., 2001;
Beckmann et al., 2004; Russo et al., 2005). ECT occurs when a single electron tunnels be-
tween the two QDs via the superconductor (see schematic in Fig. 3.1b). The balance
between CAR- and ECT-induced couplings is crucial for observing poor man’s Majo-
rana zero modes at the boundaries of a two-site Kitaev chain (Leijnse and Flensberg,
2012a), recently observed by Dvir et al. (2023). Furthermore, precise control over the
interplay between CAR and ECT is crucial for achieving high-fidelity entanglement gen-
eration through Cooper-pair splitting (Choi et al., 2000; Recher et al., 2001). Moreover,
this control can serve as an efficient mechanism for coupling spin-qubits over longer
length scales beyond those achievable through exchange coupling (Leijnse and Flens-
berg, 2013; Hassler et al., 2015; González Rosado et al., 2021; Spethmann et al., 2022,
2024).

Semiconductor-superconductor hybrids are the primary platform to study CAR and
ECT (Hofstetter et al., 2009, 2011; Das et al., 2012; Schindele et al., 2012) due to their
unique ability to form quantum dots (QDs) in semiconductors and effectively couple
them to superconductors. These hybrids enable the formation of Andreev-bound states
(ABS), where a confined semiconducting level is tunnel-coupled to a superconductor.
An important characteristic of ABSs is their ability to transition smoothly from electron-
like to hole-like excitations through electrostatic gating (Schindele et al., 2014; Danon
et al., 2020; Ménard et al., 2020). ABSs can further replace metallic superconductors in
facilitating CAR and ECT processes between adjacent quantum dots (QDs) (Fülöp et al.,
2015). It is predicted that the interplay between the electron and hole components of an
ABS plays a crucial role in controlling CAR and ECT phenomena (Liu et al., 2022). Fur-
thermore, the presence of an external magnetic field impacts the energy of ABSs through
Zeeman splitting (Lee et al., 2013), thereby influencing the amplitudes of CAR and ECT.
Notably, in the presence of spin-orbit coupling, the dependence of these amplitudes
on the magnetic field direction becomes anisotropic (G. Wang et al., 2022a; Q. Wang
et al., 2023).

Scaling the Kitaev chain from the two-QD system discussed by Dvir et al. (2023) to
many QD, requires a deterministic control of the CAR and ECT coupling between neigh-
boring QD. The interplay of CAR and ECT and the ABS mediating them provides the
means to achieve such control. To this date, this interplay has never been demonstrated.

In this work, we report on the gate tunability of CAR and ECT in hybrid semiconductor-
superconductor heterostructures. In particular, both processes are correlated with the
presence of ABSs in the hybrid. By comparing experimental data and our theoretical
model, we further show that the observed CAR and ECT amplitudes, respectively, result
from constructive and destructive interference of tunneling paths. The interference pat-
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tern is linked to the charge of the mediating Andreev bound state and can be controlled
via tuning the hybrid’s chemical potential. Finally, we report on the magnetic field de-
pendence of CAR and ECT. We show how the CAR and ECT interference patterns are
modified through the interplay of the orientation of the magnetic field, the direction of
the spin-orbit coupling, the energy of the ABS and its spin-splitting.

3.1. CORRELATION BETWEEN ABSS AND CAR/ECT
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Figure 3.1: Correlation between ABSs and CAR/ECT processes. a.,b. Illustration of the ECT (a) and CAR (b)
processes. c. Scanning electron micrograph of device A. d. Schematic illustration of our devices and experi-
mental setup. An InSb nanowire (green) is coated by a thin Al shell (blue, Al+Pt for device A), on top of seven
finger gates (red). Two Cr/Au leads (yellow) are attached to both sides of the wire. e. Spectroscopy configura-
tion: yellow bars depict voltage bias in normal (N) contacts while blue rectangles represent the superconduc-
tor (S). Blue curves sketch the desired voltage profile defined with the gates; voltage barriers are not to scale. f.
Configuration with QDs: applying low voltages on VLO,VLI and VRI,VRO forms a QD on the left and right side of
the superconducting segment. g., h. Measurement of the ECT-induced current (g) and the CAR-induced cur-
rent (h), as in Wang et al. (2022a), around a charge degeneracy point. i. GLL as a function of VL and VPG when
setting the gates in the tunneling spectroscopy configuration. j. GRL as a function of VL and VPG in the same
settings of panel (b). GLL and GRL are calculated by taking the numerical derivative after applying a Savitzky-
Golay filter of window length 11 and polynomial order 1 to the measured IL and IR currents, respectively. k.
CAR- and ECT-induced currents as a function of VPG measured using the N ↔ N +1 transition in both QDs.
The values of VLI and VRI were kept constant during measurements of panels (b-c) and (e).



3

44 3. TUNABLE CROSSED ANDREEV REFLECTION AND ELASTIC CO-TUNNELING

Fig. 3.1c shows a scanning electron microscope image of device A, while in Fig. 3.1d
we show a schematic illustration of the device and the measurement circuit. An InSb
nanowire is deposited on pre-fabricated metallic gates (separated from the nanowire by
a thin dielectric layer). Using the shadow lithography technique (Heedt et al., 2021; Bor-
soi et al., 2021), a thin superconducting layer is deposited on top of the middle segment
of the nanowire. Normal contacts are then fabricated on each side of the device. Details
of the fabrication are described in Supplementary Information. The chemical potential
of the semiconducting-superconducting hybrid is controlled by the plunger gate under-
neath (VPG). The bare nanowire segments on both sides of the hybrid are regulated by
three finger gates each. To measure the spectrum of the hybrid segment using tunnel
spectroscopy, we create a single tunnel barrier on each side, as depicted in Fig. 3.1e. In
contrast, to establish QDs on either side of the hybrid segment, we further reduce the
voltage applied to the gates adjacent to the normal leads. This is done while maintain-
ing the voltages applied to the gates neighboring the hybrid segment at fixed levels, as
illustrated in Fig. 3.1f. The chemical potential of the QDs is controlled by the middle
finger gates on the left and right bare nanowire segments (VLD and VRD).

Transport measurements are carried out by applying DC voltage biases on the left
and the right contacts (VL,VR) and measuring the resulting DC currents on both sides
(IL, IR). Local (GLL = d IL/dVL, GRR = d IR/dVR) and nonlocal (GRL = d IR/dVL,GLR =
d IL/dVR) conductances were obtained as numerical derivatives of the DC currents un-
less otherwise specified. All measurements are conducted in a dilution refrigerator with
a measured electron temperature of ∼ 50mK. We characterize the QDs by measuring the
gate-dependent and magnetic-field-dependent transport through them and focus in the
remainder of this paper on two charge transitions of each QD: from N to N +1 electrons
and N +1 to N +2 electron where N is a small even integer (see Fig. 3.5).

The experiments described in Wang et al. (2022a) and Dvir et al. (2023) were primarily
conducted using the device displayed in Fig. 3.1c. In Wang et al. (2022a), the focus was on
investigating spin precession in CAR and ECT for a fixed value of the plunger gate (VPG).
The values for the tunnel gates were consistent with the settings used in this research. In
contrast, Dvir et al. (2023) utilized barrier gates set to a more transparent configuration
to boost effective coupling between the formed QDs. The phenomena reported here
were measured using four devices, three of them discussed in this manuscript and in
the supplementary information (see Fig. 3.6 for scanning electron imaging of the three
devices).

We begin by describing our measurement method for CAR and ECT, the focus of this
manuscript. Since the hybrid segment supports both processes, we turn to the applied
bias to distinguish between them (Hofstetter et al., 2011). The CAR- and ECT-induced
currents (ICAR and IECT) are measured using a method introduced in our previous work
(Wang et al., 2022a). In CAR, electrons exhibit a correlated flow, moving either inwards
toward the hybrid segment to form a Cooper pair or outwards when a Cooper pair is
broken. This correlation is facilitated by applying the same bias to both the right and left
leads. To measure the CAR-induced currents at a specific value of VPG, we apply a fixed
bias of VL = VR = 70µV to both leads and scan VLD and VRD within a range of approxi-
mately 1mV around the charge degeneracy point of each dot. In Fig. 3.1g, we present the
measured IL and IR currents alongside the correlated current Icorr ≡ sgn(ILIR)

p|ILIR|.
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We observe a current feature that maximizes along a diagonal with a negative slope, indi-
cating opposite chemical potentials of the two QDs. CAR-induced currents occur when
VLD and VRD satisfy the condition that the chemical potentials of both QDs have equal
magnitudes but opposite signs with respect to the Fermi energy (shown schematically in
Fig. 3.1f), consistent with the observation.

In ECT electrons enter the device through one lead and exit through the other, re-
quiring an anti-symmetric bias configuration. To measure the amount of ECT-induced
currents, we thus repeat the procedure described above when applying anti-symmetric
bias on both leads: VL =−VR = 70µV. Fig. 3.1h shows the ECT-induced current, display-
ing a current feature with a positive diagonal, consistent with both QDs being resonant
with each other.

We emphasize that we only measure current when both QDs are within the bias win-
dow. The absence of a subgap current through a single QD indicates that the charging
energy of the QDs is sufficient to suppress electron-hole correlation on the QDs.

In this manuscript, as in Wang et al. (2022a), the maximum of Icorr is taken as a proxy
of the CAR strength ICAR ≡ max(Icorr), and minus the minimum of Icorr is taken as a proxy
of the ECT strength IECT ≡−min(Icorr). For every CAR and ECT measurement, we make
sure that the bias voltages VL and VR are smaller than the ABS energy.

We now turn our attention to the spectrum of the hybrid semiconducting-super-
conducting segment. To measure tunnel spectroscopy, we form a single tunnel bar-
rier on each side of this segment, as shown schematically in Fig. 3.1e. Fig. 3.1i shows
that at low values of VPG, the spectrum features a hard superconducting gap. Increas-
ing VPG leads to the formation of discrete ABSs under the superconducting film appear-
ing as electron-hole symmetric sub-gap peaks. These peaks also appear in the nonlocal
conductance (Fig. 3.1j), indicating that the ABSs extend throughout the hybrid segment
(Rosdahl et al., 2018).

Next, to measure currents induced by CAR and ECT (ICAR and IECT), we form a QD on
each side of the hybrid segment as explained above. Fig. 3.1k shows the dependence of
ICAR and IECT on VPG when both QDs are tuned to the N ↔ N +1 transition (see Fig. 3.7
for data involving N +1 ↔ N +2 transitions and the discussion of the effect of Pauli spin
blockade). Both currents respond strongly to changes in VPG, suggesting that they orig-
inate from processes that involve the hybrid segment. ICAR, in particular, reaches peak
currents at VPG values where ABSs in the hybrid segment reach a minimal energy. In re-
gions of VPG far from ABSs, ICAR and IECT are suppressed. These observations hold for
all devices we measured (see Fig. 3.8 for another example).

3.2. GATE DEPENDENCE OF CAR AND ECT AT ZERO FIELD
To understand the role of ABSs in mediating CAR- and ECT-induced currents, we con-
sider a model with two QDs on each side of a single ABS confined in the central hybrid
segment, as shown in Fig. 3.2a,b. Considering only one orbital state in each QD, this re-
duces to a simple three-site model (Domínguez and Yeyati, 2016; Liu et al., 2022; Tsintzis
et al., 2022). For simplicity, we treat the ABS as one pair of semiconducting states tunnel-
coupled to the superconductor in the atomic limit (Bauer et al., 2007), simplifying the
general expressions derived in by Liu et al. (2022) (see Supplementary Information for
details). Andreev reflection at the semiconductor-superconductor interface hybridizes
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Figure 3.2: Detailed study of CAR and ECT through an ABS. a. Two possible paths for ECT: an electron hops
from the left QD to the center ABS, followed by an escape from the ABS to the right QD (solid gray arrow),
and the processes in the opposite order (dashed green arrow). b. Two possible paths for CAR: an electron
from the left QD enters the ABS followed by another electron arriving from the right QD (solid gray arrow) and
the same processes in reversed order (dashed green arrow). c. EABS, and u, v as a function of µ calculated

in the atomic limit, where EABS =
√
Γ2 +µ2 with Γ = 160µeV (Bauer et al., 2007). µ and VPG are related via

µ = −eα(VPG −V0) where α is the gate lever arm and V0 = 35mV is an offset. Comparing data to theory, we
estimate α∼ 0.01. d. GLL as a function of VL and VPG showing a single ABS. e. A toy-model calculation of the
transmission probability as a function of µ. f. A high-resolution measurement of CAR and ECT amplitudes
while tuning VPG. The background noise level is ∼30 pA (see Supplementary methods).

the two electronic states with even charge occupation, |0〉 and |2〉, with hybridization
rate Γ. The ground state of the ABS is a spin singlet of the form |S〉 = u |0〉− v |2〉, where
u, v > 0 are the normalized superposition coefficients determined by Γ and µ, the chem-
ical potential of the electronic level before hybridization. Positive µ results in u > v and
negativeµ leads to u < v (Bauer et al., 2007). The excited states of the ABS form a doublet
|D↑〉 , |D↓〉 where ↑ / ↓ indicates, in the absence of spin-orbit coupling, the spin state of
the single electron occupying the ABS (see the Supplementary Information for general
spin-orbit-coupled scenarios).

Under zero external magnetic field, the doublet states are degenerate and the energy
difference between |S〉 and |D〉 is EABS, which reaches a minimum aroundµ= 0 (Fig. 3.2c)
(Bauer et al., 2007). An excitation from the ground state of the ABS to an excited state is
said to be a Bogoliubov quasiparticle, having an electron-like part u and a hole-like part
v in superposition. The effective charge of the ABS is defined as the net charge character
of this excitation, −e(u2−v2), where e > 0 is the elementary charge (Schindele et al., 2014;
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Danon et al., 2020; Ménard et al., 2020). This quantity ranges from −e (electron-like) to
+e (hole-like).

We consider both CAR and ECT as coherent second-order processes that involve the
virtual occupation of an ABS doublet as the intermediate state. ECT can take place
through two paths. The first, marked in grey in Fig. 3.2a, involves the occupation of
the ABS by adding an electron from one lead with a hopping amplitude proportional to
u, followed by emptying of the ABS via ejection of the electron to the other lead, with
an amplitude also proportional to u. The second, marked by the dashed green arrow
in Fig. 3.2a, occurs in the opposite order: an ABS is excited to |D〉 by accepting a hole
from one lead, with an amplitude proportional to v , and then relaxes to |S〉 by ejecting
a hole to the other lead, also with an amplitude proportional to v . As presented in Liu
et al. (2022) and briefly here in Supplementary Information, these two paths interfere
destructively due to fermion exchange statistics and the ECT-induced current, IECT, is:

IECT = I0

∣∣∣∣
u2 − v2

EABS/Γ

∣∣∣∣
2

(3.1)

where I0 is a proportionality constant given by I0 = e
ħ ·

t 2
L t 2

R
Γ2γDL

and depends on the coupling

between the QDs and the ABS (tL and tR) as well as the lifetime of QDs due to coupling to
the leads (γDL) in the limit of electron temperature and tunnel couplings much smaller
than bias voltage. Strikingly, the destructive interference results in a suppression of IECT

near µ= 0 where u2 = v2 = 1
2 (Fig. 3.2e).

The process of CAR, depicted in Fig. 3.2b, can take place via two paths as well. In
the first path (marked by the dashed green arrow), an electron from the left lead popu-
lates the ABS with an amplitude proportional to u, followed by emptying of the ABS via
accepting an electron from the right lead, with an amplitude proportional to v . In the
second path, the roles of the left and right QDs are reversed. The two paths interfere
constructively, yielding

ICAR = I0

∣∣∣∣
2uv

EABS/Γ

∣∣∣∣
2

(3.2)

where ICAR is the CAR-induced current, shown in Fig. 3.2e. The term uv is significant
only when

∣∣µ
∣∣ is small, leading to the peak in ICAR around µ = 0 (Fig. 3.2e). This is also

where ECT is diminished, allowing CAR to dominate over ECT. Far away from ABS charge
neutrality, ECT decays slower than CAR and becomes the dominant coupling mecha-
nism, as it does not require electron-hole conversion to take place. The distinct depen-
dencies of CAR/ECT on µ thus enable us to tune the relative strengths between them via
electrostatic gating.

To study our model experimentally, we focus on the range of VPG values between
0 and 70 mV where a single ABS dominates the subgap spectrum (Fig. 3.2d). The ABS
reaches a minimum around VPG = 35mV and merges with the superconducting gap be-
low VPG = 10mV and above VPG = 60mV. Fig. 3.2f shows ICAR and IECT measured in
the same VPG range with higher resolution in VPG than Fig. 3.1k. As predicted, ICAR fea-
tures a narrow peak centered around the ABS energy minimum. IECT is non-zero in a
wider range of VPG values and, as predicted, shows a dip when the ABS energy is mini-
mal. We interpret this suppression as resulting from the destructive interference of the
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two ECT paths. We emphasize that this quantum mechanical interference is distinct
from the cancellation between electron and hole currents as observed in three-terminal
spectroscopy of hybrid nanowires (Ménard et al., 2020; Pöschl et al., 2022). Note that,
contrary to our theoretical model, IECT is not fully suppressed when v > u. This could be
due to other ABSs at higher VPG that contribute to IECT or higher VPG increasing tunnel-
ing rates via gate cross-coupling. Similar observations of the VPG dependence reported
here are reproduced in two more devices (Fig. 3.8 and Fig. 3.9).

3.3. GATE DEPENDENCE OF CAR AND ECT AT FINITE FIELD

1 2

2 1

1

2
2

1

ExperimentTheory
a

b

c d

Figure 3.3: CAR and ECT mediated by spin-polarized ABS. a. ECT process mediated by a spin-polarized ABS
between QDs in the ↑↑ spin configuration. b. CAR process mediated by spin-polarized ABS between QDs in
the ↑↓ spin configuration. c. Calculation of the transmission probability of ECT and CAR via an atomic-limit
ABS as a function µ at the four possible spin configurations of the QDs. Spin-orbit coupling is included in the
calculation as a small spin-flipping factor (σ = 0.2) to allow for opposite-spin ECT and same-spin CAR (see
Supplementary Information for model details). Other model parameters are Γ = 160µeV and EZ = 100µeV
d. A high-resolution CAR and ECT amplitudes while tuning VPG with B⃗ = 80mT (applied along the nanowire
direction) at the four possible spin configurations of the QDs.

Application of a Zeeman field lifts the Kramers’ degeneracy of the ABS and the QDs. The
spin splitting of the QDs makes their charge transitions spin-polarized: the addition en-
ergy from N to N+1 electrons becomes lower (spin-down, ↓), and that from N+1 to N+2
becomes higher (spin-up, ↑) (Hanson et al., 2007). We thus control the spins of the elec-
trons participating in CAR and ECT by selecting the corresponding charge transitions
(Wang et al., 2022a). The odd states of the ABS split in energy, leading to two possible
excitations from the ground state |S〉: either to |D↓〉 with an energy E↓ = EABS −EZ/2, or
to |D↑〉 with an energy E↑ = EABS+EZ/2, where EZ is the Zeeman splitting of the ABS (Lee
et al., 2013).

Fig. 3.3a shows schematically the process of ECT in the presence of a Zeeman field
when both QDs are tuned to the ↑ transition. Again, this process can take place via two
paths. In the first path (marked in grey), an ↑ electron from one lead populates the |D↑〉
state of the ABS. Then the ABS is emptied by emitting an ↑ electron to the other lead
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through the QD. In the second process (marked by the dashed green arrow), a hole from
one lead hops into the ABS, exciting it into the |D↓〉 state. The ABS then relaxes by emit-
ting a hole to the other lead. The energies of the intermediate states in the two paths,
|D↑〉 and |D↓〉, are split and the interference pattern is thus modified. The ECT-induced
current is now of the form:

I ↑↑ECT ∝
∣∣∣∣

u2

E↑
− v2

E↓

∣∣∣∣
2

(3.3)

Since E↓ < E↑, ECT is stronger when the ABS is hole-like (large v) as seen in the ↑↑ panel
of Fig. 3.3c. Analogously, the ECT is higher when the ABS is electron-like (u > v) and
both QDs are tuned to the ↓ transition.

CAR-induced currents are also modified by the Zeeman splitting of the ABS dou-
blet state. CAR takes place in two paths involving both levels (shown schematically in
Fig. 3.3b). In one path (marked by the dashed green arrow), the ABS occupies the |D↓〉
state by receiving a ↓ electron from one lead and is emptied by receiving an ↑ electron
from the other lead. In the second path (marked in grey), the order is reversed and the
ABS passes through the |D↑〉 state. The probability for the CAR process is now:

I ↑↓CAR ∝
∣∣∣∣

uv

E↓
+ uv

E↑

∣∣∣∣
2

(3.4)

This probability peaks at the ABS energy minimum, as seen in the relevant panel of
Fig. 3.3c. Note that the expected CAR peak remains symmetric in µ, in contrast to ECT.
Fig. 3.3d shows the measured ICAR and IECT under the application of

∣∣B⃗
∣∣ = 80mT along

the nanowire direction, sufficient to fully spin-polarize the QDs (E QD
Zeeman ≈ 200µeV) and

split the energy of the ABS (EZ ≈ 100µeV, see Refs. (Mazur et al., 2022; Wang et al.,
2022a)). Spin-orbit coupling in the nanowire allows for spin-flipping processes — equal-
spin CAR and opposite-spin ECT — to take place (Wang et al., 2022a), allowing us to
measure ECT and CAR in all possible spin configurations. ICAR is symmetric around the
ABS energy minimum and is generally larger for opposite-spin than equal-spin configu-
rations. IECT in the ↑↑ spin configuration is large when the ABS is hole-like (v > u) and is
suppressed when it is electron-like (large u). The destructive interference dip is shifted
from the ABS minimum towards lower VPG. The opposite trend is observed in the ↓↓ spin
configuration: IECT is slightly larger when the ABS is electron-like, and the interference
dip is shifted towards higher values of VPG. IECT in the opposite-spins configuration is
nearly symmetric around the ABS minimum and is generally suppressed with respect to
IECT in the equal-spin configuration. Thus, all of the qualitative predictions of the model
(Liu et al., 2022) are verified in the measurements.

3.4. CAR AND ECT DEPENDENCE ON FIELD DIRECTION
So far, we have discussed the dependence of CAR and ECT magnitudes as a function
of the ABS charge at zero and finite Zeeman field. In the following, we report on the
dependence of CAR and ECT on the direction of the applied magnetic field B⃗ , at fixed
VPG. We measure a second device, B, with a longer superconducting segment (≈ 350nm,
much larger than the superconducting coherence length in the Al film) and no Pt layer
on top of the Al. The schematic in Fig. 3.4h indicates the angles θ and ϕ defining the
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Figure 3.4: Tuning CAR and ECT with magnetic field orientation. a-d. Spherical plots: the center of every
colored tile corresponds to a specific magnetic field orientation. Each panel is taken at fixed VPG and

∣∣B⃗
∣∣ =

80mT. VPG = 475mV in panel c, while VPG = 480mV in a, b and d. The QD spin configuration is ↓↑ for all
panels. See Fig. 3.10 for data corresponding to other spin configurations. a. CAR-induced current as a function
of magnetic field direction, extracted with the same method detailed in Fig. 3.1g,h and used in the rest of the
paper. b. ECT-induced current as a function of magnetic field orientation. c. Energy of the lowest-energy ABS
extracted from local tunneling spectroscopy as a function of magnetic field orientation. d. Ratio of the ECT and
CAR currents from panels b and a. Continuous lines highlight the locus of points where ICAR = IECT; among
them, the points with maximum current are marked with crosses. e. Interpolation of data shown in panels
a–c along the ϕ = −50◦ meridian. f. Interpolation of data shown in panels a–c along the ϕ = +40◦ meridian.
g. ICAR along the ICAR = IECT curves shown in panel d. Negative-ϕ points are parameterized and plotted on
the left, positive-ϕ points on the right. h. Schematic defining θ and ϕ: θ =±90◦ is the direction parallel to the
nanowire. θ =ϕ= 0◦ is the direction perpendicular to the substrate.

field direction of B⃗ . The QDs are set to the ↓↑ spin configuration and VPG is selected such
that ECT is stronger than CAR when the field is parallel to the nanowire (see Fig. 3.10
for the other spin configurations). In Fig. 3.4, panels a and b show ICAR and IECT when
the angle of B⃗ is varied over a sphere. Panel c shows the energy of the lowest ABS at
a similar VPG (see Supplementary methods and Fig. 3.11 for analysis details). All three
quantities are anisotropic and CAR and ECT amplitudes are overall negatively correlated
to E↓ across the plotted globes, as expected for virtual tunneling processes. Below, we
examine the rotational dependence of CAR and ECT along two exemplary meridians of
the globe (dashed and dotted lines in panels a to c) in order to separate anisotropy due
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to ABS energy from that caused by spin.
As discussed above, CAR and ECT amplitudes are inversely proportional to the ABS

energy. This effect is highly visible in Fig. 3.4e, where we plot E↓, ICAR and IECT along
the meridian with ϕ = −50◦ (dashed line in Fig. 3.4a-c). Here, E↓ is significantly mod-
ulated between ∼ 170µeV and ∼ 50µeV and, accordingly, both ICAR and IECT increase
drastically at the energy minimum. In contrast, very different pattern can be obtained
when we rotate the magnetic field along the meridian ofϕ= 40◦ (dotted line in Fig. 3.4a-
c). Fig. 3.4f shows that, along this meridian, E↓ changes by a small amount. As before,
ICAR is enhanced where E↓ is minimal. However, IECT varies in the opposite way and be-
comes completely suppressed around θ = 0 (perpendicular to the nanowire axis). This
suppression is generic across various VPG values and, therefore, not explained by either
the energy or the charge of the ABS. We attribute the reduction of opposite-spin ECT
along this specific direction to spin blockade (Wang et al., 2022a). When the QDs select
opposite spins, spin precession due to spin-orbit coupling enables the presence of some
IECT (Liu et al., 2022). However, if the applied B⃗ is parallel to the effective spin-orbit field
B⃗SO, no spin precession occurs and, therefore, ECT is suppressed between QDs with op-
posite spins (Hofmann et al., 2017; Wang et al., 2018). The observation of this type of spin
blockade reveals the orientation of the spin-orbit field. Compared to prior works mea-
suring the spin-orbit field direction in hybrid nanowires via superconducting gap size
anisotropy, the method presented here using spin conservation to detect B⃗SO direction
is less prone to other effects such as orbital depairing and g -factor anisotropy (Fig. 3.12).

With these two effects in mind, we summarize the angle dependence of CAR and ECT
over the entire sphere as follows. First, there exists one special B⃗ direction along which
equal-spin CAR and opposite-spin ECT are strongly suppressed (see Fig. 3.10 for other
spin combinations). We interpret this as a spin-blockade effect and its direction as that
of the spin-orbit field. Away from this blockaded direction, multiple factors compete to
influence the amplitudes of CAR and ECT, such as the angle between B⃗ and B⃗SO and the
energy of the mediating ABS.

This combination of anisotropic ABS energy and spin-orbit coupling makes the B⃗ di-
rection dependence of CAR and ECT very rich, enabling further tuning of their relative
amplitudes. Fig. 3.4d shows the ratio between IECT and ICAR as a function of B⃗ orienta-
tion. Here, due to the aforementioned influence of the ABS charge, IECT is larger than
ICAR on most of the sphere. However, since ECT is suppressed along a specific direction,
the ratio between IECT and ICAR can be inverted. Such tunability allows for ICAR = IECT,
the sweet spot essential for the realization of Poor Man’s Majoranas in a minimal Kitaev
chain (Leijnse and Flensberg, 2012a; Dvir et al., 2023). Fig. 3.4d shows with continuous
lines the locus of points where IECT

ICAR
= 1 and Fig. 3.4g reports the corresponding current

values, highlighting with crosses the points where ICAR(= IECT) is maximal. It is there-
fore evident that the B⃗ dependence of CAR and ECT not only enables the tuning to the
ICAR = IECT sweet spot, but also allows optimization of their strengths.
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3.5. CONCLUSION
In summary, we have measured ECT- and CAR-induced currents mediated by ABSs
formed in a proximitized InSb nanowire. We show that the amplitudes of both processes
depend on the charge of the ABSs, and are thus highly tunable via electrostatic gating.
Particularly, we show that ECT is significantly suppressed when the ABS is charge-neutral
due to destructive interference originating from fermionic exchange statistics. Further-
more, we examine how the interference pattern and the balance between ECT and CAR
are shifted when the applied magnetic field spin-polarizes the QDs and splits the en-
ergy of the ABS. Finally, we measure how the magnetic field orientation modifies both
the energy of the ABS and the effect of spin-orbit coupling, adding another independent
knob to tune CAR and ECT. These results demonstrate deterministic control of the rela-
tive amplitudes of CAR and ECT, forming the foundation of realizing an artificial Kitaev
chain (Dvir et al., 2023).
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3.6. SUPPLEMENTARY INFORMATION

3.6.1. THEORETICAL MODEL
In this section, we show analytically how to obtain the CAR/ECT couplings/currents
based on our theoretical model. The calculation is based on Liu et al. (2022), but spe-
cialized to the atomic limit.

The model Hamiltonian for the dot-hybrid-dot system is

H = Hdot +Hhybrid +Htunnel (3.5)

We first introduce the Hamiltonian for two quantum dots, Hdot:

Hdot = εLd †
LηdLη+εR d †

RσdRσ (3.6)

Here, εL/R are the dot energies relative to the Fermi energy, and dLη,dRσ denote the spin-
polarized dot levels in the presence of a large magnetic field. Note that no summation is
taken over the spin indices η and σ.

Next, Hhybrid describes the hybrid segment with two Andreev bound states. In gen-
eral, we can write down its Hamiltonian in diagonalized form using Bogoliubov quasi-
particle operators γ+ and γ−:

Hhybrid = E+γ†
+γ++E−γ†

−γ− (3.7)

More concretely, we consider a superconducting-atomic-limit model (Bauer et al., 2007)
under weak spin-orbit coupling compared to the Zeeman field. This means we use the
pseudospin labels +,− instead of ↑,↓ but treat the spin-splitting between the two as ap-
proximately EZ. We also set the charging energy of the ABS to zero, as it is strongly
screened by the grounded Al film in the experiment. Using electron annihilation op-
erators a+, a−, the atomic-limit Hamiltonian is

Hhybrid ≈µ
(
a†
+a++a†

−a−
)
+ EZ

2

(
a†
+a+−a†

−a−
)
+Γa†

+a†
−+H.c. (3.8)

This model can be solved exactly. The ABS energies are

E± ≈
√
µ2 +Γ2 ± EZ

2
, (3.9)

where µ is the chemical potential in the hybrid segment, which is controlled by the
plunger gate voltage VPG in the experimental device, Γ is the superconducting coupling
strength and EZ is the Zeeman spin splitting. The corresponding wavefunctions of the
ABSs are

γ+ = ua++ va†
−, γ− = va+−ua−, (3.10)

where u2 = 1−v2 = 1
2

(
1+ µp

µ2+Γ2

)
are the BCS coherence factors characterizing the elec-

tron and hole components of the ABSs.
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Finally, Htunnel is the tunnel Hamiltonian between the dots and the hybrid segment:

Htunnel =
∑

a=L,R
ta

[(
cosθa a†

+− sinθa a†
−
)

da↑+
(
sinθa a†

++cosθa a†
−
)

da↓
]

+H.c. (3.11)

Here we only consider the scenario where the spin-orbit field (∝σy ) is perpendicular to
the globally applied magnetic field (∝σz ). In particular, θR =−θL = ksoL/2 describes the
spin precession in the hybrid region due to spin-orbit interaction, where kso = mαR /ħ2 is
the spin-orbit wave-vector and L is the length of the hybrid segment. In the weak spin-
orbit interaction regime (ksoL/2 ≪ 1), the ABS of γ+ is mainly spin-up, but it can also
accommodate spin-down QD electrons with amplitude ∼ sin(ksoL/2). Similar pictures
hold for γ− as well. Note that although we include both ↑ and ↓ in Htunnel for dots, in
the calculation, we only include one spin species depending on the choice of η and σ in
Hdot, as the experimental measurements are spin-polarized.

In the tunneling regime tL/R ≪ Γ, the effective Hamiltonian of the coupled quantum
dots can be obtained using the perturbation theory as below

Heff = Hdot −Htunnel
1

Hhybrid
Htunnel +O(H 3

tunnel)

≈ Hdot −ΓECT
ησ d †

LηdRσ−ΓCAR
ησ dLηdRσ+h.c., (3.12)

where ΓCAR
ησ and ΓECT

ησ are the spin-selective CAR and ECT couplings between quantum
dots. Interestingly, as shown in Liu et al. (2022) and explained in the main text of this
work, the strengths of the effective couplings can be extracted from the resonant current
measured in a three-terminal setup, that is

I max
CAR/ECT ∝

∣∣∣ΓCAR/ECT
ησ

∣∣∣
2

. (3.13)

In the ↑↑ channel, from Eq. (3.12), the CAR coupling is

ΓCAR
↑↑ /tL tR =−

(
−sinθL cosθR

uv

E+
− sinθR cosθL

(−u)v

E−

)

+
(
−sinθR cosθL

uv

E+
− sinθL cosθR

(−u)v

E−

)

=−sin(θR −θL)

(
uv

E+
+ uv

E−

)

=−sin(ksoL)

(
uv

E+
+ uv

E−

)
, (3.14)

which gives

I CAR
↑↑ = I0 ·σ ·

∣∣∣∣
uv

E+
+ uv

E−

∣∣∣∣
2

, (3.15)
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whereσ= sin2(ksoL) is the flipping rate due to spin-orbit interaction, and I0 = et 2
L t 2

R /(ħΓ2γDL).
Similarly,

ΓECT
↑↑ /tL tR =

(
cosθL cosθR

u2

E+
+ sinθL sinθR

(−u)2

E−

)

−
(
cosθL cosθR

v2

E−
+ sinθL sinθR

v2

E+

)

= cos(ksoL)

(
u2

E+
− v2

E−

)
− sin2(ksoL/2)

2EZ

E+E−
(3.16)

giving

I ECT
↑↑ ≈ I0 · (1−σ) ·

∣∣∣∣
u2

E+
− v2

E−

∣∣∣∣
2

. (3.17)

Here, the ECT current in Eq. (3.17) shows a destructive interference between two virtual
paths. In the first path, an electron first hops from the right dot into the hybrid before
it hops out to the left (∝ u2). In the second path, an electron first escapes from the
hybrid segment to the left dot, leaving behind a hole-like ABS excitation, which is later
annihilated when a second electron jumps in from the right dot (∝ −v2). The minus
sign responsible for the destructive interference stems from fermionic statistics when
switching the order of two hopping events. In contrast, the CAR current in Eq. (3.15)
shows a constructive interference pattern. Because the CAR process is proportional to
uv instead of u2 or v2, an additional minus sign in the ABS wavefunctions (see Eq. (3.10))
cancels the minus sign from fermionic statistics, yielding a constructive interference be-
tween the two virtual paths. A similar analysis and calculation gives the current in the ↑↓
channel:

I CAR
↑↓ = I0 · (1−σ) ·

∣∣∣∣
uv

E+
+ uv

E−

∣∣∣∣
2

,

I ECT
↑↓ = I0 ·σ ·

∣∣∣∣
µ

E+E−

∣∣∣∣
2

. (3.18)

The currents in the remaining channels are readily obtained using the following symme-
try relation (Liu et al., 2022):

I CAR
↓↑ (EZ) = I CAR

↑↓ (EZ),

I ECT
↓↑ (EZ) = I ECT

↑↓ (EZ),

I CAR
↓↓ (EZ) = I CAR

↑↑ (EZ),

I ECT
↓↓ (EZ) = I ECT

↑↑ (−EZ). (3.19)
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In the absence of Zeeman field and when the dot occupancy is tuned at the transition of
N to N +1, currents from all four spin channels are allowed, yielding the total current

I CAR =
∑

η,σ=↑,↓
I CAR
ησ (EZ = 0) = 2 · I0 ·

∣∣∣∣
2uv

E

∣∣∣∣
2

,

I ECT =
∑

η,σ=↑,↓
I ECT
ησ (EZ = 0) = 2 · I0 ·

∣∣∣∣
u2 − v2

E

∣∣∣∣
2

, (3.20)

where E =
√
µ2 +Γ2.

3.6.2. METHODS

DEVICE FABRICATION

Fig. 3.1d shows a device schematic and the electrical circuit used to measure it. Scanning
electron microscope images of reported devices are shown in Fig. 3.6. For device A, InSb
nanowires were deposited on pre-fabricated metallic gates, separated from the nanowire
by a 20nm layer of HfO2 dielectric. Using the shadow lithography technique (Heedt et al.,
2021; Borsoi et al., 2021), an 8nm layer of Al was deposited on top of the middle segment
of the nanowire, followed by a 2Å layer of Pt and an additional 20nm of AlOx capping
layer. Normal Cr/Au contacts were later fabricated using standard e-beam lithography.
Full details of the fabrication can be found in the Supplementary Information of Mazur
et al. (2022). For devices B and C, no additional Pt layer was used. For device C only, a
double dielectric layer was used: 10nm of Al2O3 followed by 10nm of HfO2.

DATA PROCESSING

Transport was measured by applying DC voltage biases on the left and the right leads
(VL,VR) and measuring the resulting DC currents on both sides (IL, IR). Local (GLL =
d IL/dVL, GRR = d IR/dVR) and nonlocal (GRL = d IR/dVL,GLR = d IL/dVR) conductances
were obtained as numerical derivatives of the DC currents after applying a Savitzky-
Golay filter, unless otherwise specified. The E↓ energy of Fig. 3.4c and Egap values of
Fig. 3.12 are extracted from IR(VR) tunnel spectroscopy measurements by detecting where
|IR| exceeds a 5% threshold of its value far outside the superconducting gap (see data
repository for details and Fig. 3.11 for comparison between conductance spectroscopy
and E↓ thus extracted). All measurements were conducted in a dilution refrigerator with
a measured electron temperature of ∼ 50mK.

EXTRACTION OF CAR AND ECT AMPLITUDES

ECT-induced currents are measured with fixed voltage biases such that VL ̸= VR. Due
to energy conservation, ECT-induced currents arise when VLD and VRD fulfill the condi-
tion that the chemical potentials of both QDs are aligned and within the bias window.
The ECT-induced current is detected as correlated current flowing from one lead to the
other. Similarly, CAR-induced currents are measured with fixed voltage biases such that
VL ̸= −VR. CAR-induced current arises when the QD chemical potentials are equal in
magnitude with an opposite sign with respect to the Fermi energy (shown schematically
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in Fig. 3.1f). CAR currents flow jointly from the leads to the superconductor or vice-
versa. For each CAR and ECT measurement, VLD and VRD are swept around a charge
degeneracy point of each dot. We measure IL and IR and calculate the correlated current
Icorr ≡ sign(ILIR)

p|ILIR|. In this manuscript, as in Wang et al. (2022a), the maximum of
Icorr is taken as a proxy of the CAR strength ICAR ≡ max(Icorr), and minus the minimum of
Icorr is taken as a proxy of the ECT strength IECT ≡−min(Icorr). Notice that in the absence
of CAR or ECT signal, max(Icorr) and −min(Icorr) give the background noise. Background
noise level is ∼ 30pA for device A and ∼ 1pA for devices B and C. We note that, instead of
taking the bare maximum and minimum of Icorr, averaging procedures can improve the
signal-to-noise ratio (Wang et al., 2023), although come at the price of having to set an
arbitrary threshold. Every CAR data point in Fig. 3.2f and 3.3d is taken from a VLD-VRD

sweep with symmetric biases, while every ECT data point is taken from a subsequent
VLD-VRD sweep with anti-symmetric biases. Every data point of Fig. 3.4a-b comes from a
single VLD-VRD sweep with finite VL > 0 while VR = 0; in this case, positive µLD allows for
CAR and negative µLD allows for ECT. For every CAR and ECT measurement, we make
sure that the bias voltages VL and VR are smaller than the ABS energy. ICAR, IECT and E↓
values along specific lines shown in Fig. 3.4e-f are extracted from a spherical interpola-
tion of Fig. 3.4a-c data. The interpolation is performed using the scipy implementation
of a smooth bivariate spline approximation in spherical coordinates. Code generating
all plots is available in the linked repository.
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Figure 3.5: QD characterization in device A. a. Coulomb blockade diamonds of the left QD, from which we
estimate the charging energy to be Ec = 2.15meV and lever armα= 0.4. b. Coulomb blockade diamonds of the
right QD. We estimate Ec = 2.3meV and α = 0.35. In both QDs, no sub-gap current is visible, indicating QDs
are weakly coupled to S and retain their charge eigenstates. Dashed lines highlight a 600µV voltage bias set for
panels c and d. c. Current through the left QD at VL = 600µV measured against gate voltage and magnetic field
along the nanowire, Bx . Spin-degenerate orbitals Zeeman-split in opposite directions. We estimate a g -factor
of g = 40. d. Current through the right QD at VR = 600µV. g = 46.

Device A Device B Device C

Figure 3.6: False-colored SEM images of measured devices. Green is nanowire, blue is Al (Al+Pt for device A),
red are bottom gates, and yellow are Au contacts. Devices A and B were imaged prior to Au contact deposition.
Scale bars are 200nm. The hybrid segments are respectively 220, 350 and 200nm long. The short devices A and
C host isolated ABSs with visible destructive interference of ECT (Fig. 3.2 and 3.9). The long device B was used
for the dependence of CAR and ECT on magnetic field direction (Fig. 3.4), since more spin precession due to
spin-orbit coupling is expected for longer devices.
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a b c

Figure 3.7: Pauli spin blockade at B⃗ = 0. a. VPG dependence of CAR and ECT using four charge degeneracy
points corresponding to one pair of spin-degenerate levels in each QD. Bias voltages are the same as described
in the main text. Since there is no magnetic field, they are here denoted ‘00’, ‘01’, ‘10’, ‘11’, instead of ‘↓↓’,
‘↓↑’, ‘↑↓’, ‘↑↑’ to avoid confusion. The ‘00’ data displayed in the bottom left plot is the same as Fig. 3.2f. All
four charge degeneracy points show the same, characteristic curve shapes: single-peaked for CAR and double-
peaked for ECT. For the bias polarities used here, Pauli spin blockade reduces the overall magnitude of CAR
in the ‘11’ charge degeneracy and that of ECT in the ‘01’ charge degeneracy (Wang et al., 2022a). b. CAR
magnitudes divided by that of the ‘00’ charge degeneracy point. CAR-induced currents smaller than 50 pA
are excluded from the plot to avoid division by small numbers. c. ECT magnitudes divided by that of the ‘10’
charge degeneracy point. ECT-induced currents smaller than 50 pA are excluded from the plot to avoid division
by small numbers. Panels b and c show that the ratios of CAR and ECT magnitudes relative to the non-spin-
blockaded process are roughly constant as a function of VPG. Thus, although Pauli spin blockade is not part of
the theoretical model, its effect is mainly an overall scaling of the CAR amplitude relative to ECT and does not
alter the VPG dependence of them each.
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a

b

c

d

Figure 3.8: Correlation between ABS and CAR/ECT processes in device B. a. Local spectroscopy of device B,
measured with standard lock-in techniques. The voltage bias VR is corrected for a series resistance of 105 kΩ
to take into account a fridge line resistance of 2.9 kΩ and a current meter resistance of 102 kΩ. Data is taken
at B = Bx = 100mT. b. CAR and ECT magnitudes as a function of VPG. As opposed to what is presented for
device A in Fig. 3.1, the values of VLI and VRI are not the same for the measurements shown in panels a and
b. This results in a shift of ∼ 40mV of the ABS positions with respect to VPG, due to cross-coupling between
neighboring gates. Data is taken at B = 0. c. Zoom in of panel a around the first ABS. To compensate for the
gate shift mentioned above, the plotted VPG ranges differ by 40mV for easier comparison. d. High-resolution
measurement of CAR and ECT magnitudes for the first ABS. The effect of a gate jump can be seen at VPG ≈ 260
mV. An ECT dip, signature of destructive interference, is visible at VPG = 250mV, although it is less pronounced
than what is observed for device A in Fig. 3.2. A weaker interference might be due to the presence of multiple
ABSs (a second ABS is visible in panel c with a minimum energy at VPG ≈ 245mV). The smaller semiconducting
level spacing likely results from device B being longer than device A: the hybrid sections are 350 nm and 200 nm
long, respectively.



3.7. EXTENDED DATA

3

61

d e

c

a

b

Figure 3.9: ECT interference in another device (device C). a. Local spectroscopy of device C, measured as in
Fig. 3.2d. b–e. CAR and ECT magnitudes as a function of VPG for four charge degeneracy points. Destruc-
tive interference of ECT is visible at VPG = 595mV. The discontinuity visible in all plots at VPG = 582mV is
attributed to a gate jump.
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Figure 3.10: CAR and ECT dependence on field direction for other spin selections in device B. Spherical
plots as in Fig. 3.4a-b when the QDs select other spin configurations (the ↓↑ configuration is reported here
again in panels a and b as in the main text for easier comparison). When opposite spins are selected, ECT is
suppressed along a single direction. While, when the QDs select ↑↑ or ↓↓ spins, it is the CAR-induced current to
be suppressed along a single magnetic field direction. We interpret the suppression direction as the orientation
of the spin-orbit field B⃗SO and highlight it with star marks. We remark that the suppression direction, as well
as the enhancement direction, is slightly different among plots. The origin of this discrepancy is not yet fully
understood. Following the discussion regarding the ABS charge, we speculate that it could be caused by more
than one ABS mediating ECT and CAR. Concretely, the ABS most responsible for ECT could have a slightly
different spin-orbit direction than the one mediating CAR.
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Figure 3.11: Comparison between tunnel spectroscopy and extracted E↓. a. Local tunnel spectroscopy of

device B as a function of VPG around the values used in Fig. 3.4a-c, measured using a lock-in.
∣∣B⃗

∣∣ = 80mT,
applied perpendicular to the nanowire (θ = 0◦) and with ϕ = −180◦. Green: extracted E↓ values using the
same method as in Fig. 3.4c. As in that panel, the calculation is done using measured currents, in this case
simultaneously acquired as the lock-in conductance. The white bar marks the VPG value at which panel b data
is taken. b. Idem, as a function of field angle ϕ.

Figure 3.12: Superconducting gap dependence on magnetic field direction. Local tunneling spectroscopy as
in Fig. 3.4c but at a negative superconducting gate: VPG = −500mV. Since no ABSs are present at this VPG
value, this is a direct measurement of the hybrid superconducting gap as a function of magnetic field orienta-
tion.

∣∣B⃗
∣∣= 150mT. Notably, the direction along which the gap is reduced the most is different from that along

which the ABS of Fig. 3.4c reaches its energy minimum. The gap-suppression direction in this strongly coupled
regime (Mazur et al., 2022) is likely where orbital depairing in the Al film is the strongest, considering the size
of

∣∣B⃗
∣∣ and that it is the angle that maximizes the flux incident on the Al-covered facets. Superficially, previous

work on hybrid nanowires has also observed maximal gap suppression along similar angles and interpreted it
as the measured spin-orbit direction (Bommer et al., 2019). However, the analysis there relied on the super-
conducting film made of NbTiN experiencing almost no orbital depairing along all magnetic field directions.
The same interpretation is not valid in the case of Al here and, thus, gap spectroscopy cannot be used to mea-
sure the effect of spin-orbit coupling. Therefore, using CAR and ECT to measure the spin-orbit direction is less
prone to complications by orbital effects compared to gap-size spectroscopy.
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REALIZATION OF

A MINIMAL KITAEV CHAIN

IN COUPLED QUANTUM DOTS

Majorana bound states constitute one of the simplest examples of emergent non-Abelian
excitations in condensed matter physics. A toy model proposed by Kitaev shows that such
states can arise at the ends of a spinless p-wave superconducting chain (Kitaev, 2001).
Practical proposals for its realization (Sau and Das Sarma, 2012; Leijnse and Flensberg,
2012a) require coupling neighboring quantum dots in a chain via both electron tunneling
and crossed Andreev reflection (Recher et al., 2001). While both processes have been ob-
served in semiconducting nanowires and carbon nanotubes (Hofstetter et al., 2009; Her-
rmann et al., 2010; Das et al., 2012; Schindele et al., 2012), crossed-Andreev interaction
was neither easily tunable nor strong enough to induce coherent hybridization of dot
states. Here, we demonstrate the simultaneous presence of all necessary ingredients for
an artificial Kitaev chain: two spin-polarized quantum dots in an InSb nanowire strongly
coupled by both elastic co-tunneling and crossed Andreev reflection. We fine-tune this sys-
tem to a sweet spot where a pair of Poor Man’s Majorana states is predicted to appear. At
this sweet spot, the transport characteristics satisfy the theoretical predictions for such a
system, including pairwise correlation, zero charge, and stability against local perturba-
tions. While the simple system presented here can be scaled to simulate a full Kitaev chain
with an emergent topological order, it can also be used imminently to explore relevant
physics related to non-Abelian anyons.

This chapter has been published as: Realization of a minimal Kitaev chain in coupled quantum dots, Tom
Dvir∗, Guanzhong Wang∗, Nick van Loo∗, Chun-Xiao Liu, Grzegorz P. Mazur, Alberto Bordin, Sebastiaan L.
D. ten Haaf, Ji-Yin Wang, David van Driel, Francesco Zatelli, Xiang Li, Filip K. Malinowski, Sasa Gazibegovic,
Ghada Badawy, Erik P. A. M. Bakkers, Michael Wimmer, Leo P. Kouwenhoven, Nature, 614.7948: 445-450.
(2023).
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E
ngineering Majorana bound states in condensed matter systems is an in-
tensively pursued goal, both for their exotic non-Abelian exchange statis-
tics and for potential applications in building topologically protected
qubits (Kitaev, 2001, 2003; Nayak et al., 2008). The most investigated ex-
perimental approach looks for Majorana states at the boundaries of topo-

logical superconducting materials, made of hybrid semiconducting-superconducting
heterostructures (Mourik et al., 2012; Deng et al., 2016; Fornieri et al., 2019; Ren et al.,
2019; Vaitiekėnas et al., 2020). However, the widely-relied-upon signature of Majorana
states, zero-bias conductance peaks, is by itself unable to distinguish topological Majo-
rana states from other trivial zero-energy states induced by disorder and smooth gate
potentials (Kells et al., 2012; Prada et al., 2012; Pikulin et al., 2012; Liu et al., 2017; Vuik
et al., 2019; Pan and Das Sarma, 2020). Both problems disrupting the formation or detec-
tion of a topological phase originate from a lack of control over the microscopic details
of the electron potential landscape in these heterostructure devices.

In this work, we realize a minimal Kitaev chain (Kitaev, 2001) using two quantum dots
(QDs) coupled via a short superconducting-semiconducting hybrid (Sau and Das Sarma,
2012). By controlling the electrostatic potential on each of these three elements, we over-
come the challenge imposed by random disorder potentials. At a fine-tuned sweet spot
where Majorana states are predicted to appear, we observe end-to-end correlated con-
ductance that signals emergent Majorana properties such as zero charge and robust-
ness against local perturbations. We note that these Majorana states in a minimal Ki-
taev chain are not topologically protected and have been dubbed “Poor Man’s Majorana"
(PMM) states (Leijnse and Flensberg, 2012a).

4.1. REALIZATION OF A MINIMAL KITAEV CHAIN
The elementary building block of the Kitaev chain is a pair of spinless electronic sites
coupled simultaneously by two mechanisms: elastic co-tunneling (ECT) and crossed
Andreev reflection (CAR). Both processes are depicted in Fig. 4.1a. ECT involves a single
electron hopping between two sites with an amplitude t . CAR refers to two electrons
from both sites tunneling back and forth into a common superconductor with an am-
plitude ∆ (not to be confused with the superconducting gap size), forming and splitting
Cooper-pairs (Recher et al., 2001). To create the two-site Kitaev chain, we utilize two
spin-polarized QDs where only one orbital level in each dot is available for transport. In
the absence of tunneling between the QDs, the system is characterized by a well-defined
charge state on each QD: |nLD nRD〉, where nLD,nRD ∈ {0,1} are occupations of the left
and right QD levels. The charge on each QD depends only on its electrochemical poten-
tial µLD or µRD, schematically shown in Fig. 4.1b.

In the presence of inter-dot coupling, the eigenstates of the combined system be-
come superpositions of the charge states. ECT couples |10〉 and |01〉, resulting in two
eigenstates of the form α |10〉 +β |01〉 (Fig. 4.1c), both with odd combined charge par-
ity. These two bonding and anti-bonding states differ in energy by 2t when both QDs
are at their charge degeneracy, i.e., µLD = µRD = 0. Analogously, CAR couples the two
even states |00〉 and |11〉 to produce bonding and anti-bonding eigenstates of the form
u |00〉+ v |11〉, preserving the even parity of the original states. These states differ in en-
ergy by 2∆ when µLD = µRD = 0 (Fig. 4.1d). If the amplitude of ECT is stronger than CAR
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Figure 4.1: Coupling quantum dots through elastic co-tunneling (ECT) and crossed Andreev reflection
(CAR). a. Illustration of the basic ingredients of a Kitaev chain: two QDs simultaneously coupled via ECT
with amplitude t and via CAR with amplitude ∆ through the superconductor in between. b. Energy dia-
gram of a minimal Kitaev chain. Two QDs with gate-controlled chemical potentials are coupled via both ECT
and CAR. The two ohmic leads enable transport measurements from both sides. c. Energy diagram showing
that coupling the |01〉 and |10〉 states via ECT leads to a bonding state (|10〉− |01〉)/

p
2 and anti-bonding state

(|10〉+ |01〉)/
p

2. d. Same showing how CAR couples |00〉 and |11〉 to form the bonding state (|00〉− |11〉)/
p

2
and anti-bonding state (|00〉 + |11〉)/

p
2 . e. Illustration of the N-QD-S-QD-N device and the measurement

circuit. Dashed potentials indicate QDs defined in the nanowire by finger gates. f. Charge stability diagram of
the coupled-QD system, in the cases of t >∆ (i), t =∆ (ii), and t <∆ (iii). Blue marks regions in the (µLD,µRD)
plane where the ground state is even and orange where the ground state is odd. g. False-colored scanning
electron microscopy image of the device, prior to the fabrication of the normal leads. InSb nanowire is colored
green. QDs are defined by bottom finger gates (in red) and their locations are circled. The gates controlling the
two QD chemical potentials are labeled by their voltages, VLD and VRD. The central thin Al/Pt film, in blue, is
grounded. The proximitized nanowire underneath is gated by VPG. Two Cr/Au contacts are marked by yellow
boxes. The scale bar is 300 nm. h. Right-side zero-bias local conductance GRR in the (VLD,VRD) plane when
the system is tuned to t >∆ (1) and t <∆ (2). The arrows mark the spin polarization of the QD levels. The DC
bias voltages are kept at zero, VL =VR = 0, and an AC excitation of 6µV RMS is applied on the right side.

(t > ∆), the odd bonding state has lower energy than the even bonding state near the
joint charge degeneracy µLD = µRD = 0 (see Methods for details). The system thus fea-
tures an odd ground state in a wider range of QD potentials, leading to a charge stability
diagram shown in Fig. 4.1f(i) (van der Wiel et al., 2002). The opposite case of CAR dom-
inating over ECT, i.e., t < ∆, leads to a charge stability diagram shown in Fig. 4.1f(iii),
where the even ground state is more prominent. Fine-tuning the system such that t =∆
equalizes the two avoided crossings, inducing an even-odd degenerate ground state at
µLD =µRD = 0 (Fig. 4.1f(ii)). This degeneracy gives rise to two spatially separated PMMs,



4

68 4. REALIZATION OF A MINIMAL KITAEV CHAIN IN COUPLED QUANTUM DOTS

each localized at one QD (Leijnse and Flensberg, 2012a).
Fig. 4.1e illustrates our coupled QD system and the electronic measurement circuit.

An InSb nanowire is contacted on two sides by two Cr/Au normal leads (N). A 200 nm-
wide superconducting lead (S) made of a thin Al/Pt film covering the nanowire is
grounded and proximitizes the central semiconducting segment. The chemical poten-
tial of the proximitized semiconductor can be tuned by gate voltage VPG. This hybrid
segment shows a hard superconducting gap accompanied by discrete, gate-tunable An-
dreev bound states (Fig. 4.5). Two QDs are defined by finger gates underneath the nano-
wire. Their chemical potentials µLD,µRD are linearly tuned by voltages on the corre-
sponding gates VLD,VRD. Bias voltages on the two N leads, VL,VR, are applied indepen-
dently and currents through them, IL, IR, are measured separately. Transport charac-
terization shows charging energies of 1.8 meV on the left QD and 2.3 meV on the right
(Fig. 4.5). Standard DC+AC lock-in technique allows measurement of the full conduc-
tance matrix:

G =
(
GLL GLR

GRL GRR

)
=

(
dIL
dVL

dIL
dVR

dIR
dVL

dIR
dVR

)
. (4.1)

Measurements were conducted in a dilution refrigerator in the presence of a magnetic
field B = 200mT applied approximately along the nanowire axis. The combination of
Zeeman splitting EZ and orbital level spacing allows single-electron QD transitions to
be spin-polarized. Two neighboring Coulomb resonances correspond to opposite spin
orientations, enabling the QD spins to be either parallel (↑↑ and ↓↓) or anti-parallel (↑↓
and ↓↑). We report on two devices, A in the main text and B in Extended Data (Fig. 4.11
and Fig. 4.12). A scanning electron microscope image of Device A is shown in Fig. 4.1g.

Transport measurements are used to characterize the charge stability diagram of the
system. In Fig. 4.1h(1), we show GRR as a function of QD voltages VLD,VRD when both
QDs are set to spin-down (↓↓). The measured charge stability diagram shows avoided
crossing which indicates the dominance of ECT. In Fig. 4.1h(2), we change the spin con-
figuration to ↓↑. The charge stability diagram now develops the avoided crossing of the
opposite orientation, indicating the dominance of CAR for QDs with anti-parallel spins.
This is, to our knowledge, the first verification of the prediction that spatially separated
QDs can coherently hybridize via CAR coupling to a superconductor (Choi et al., 2000).
Thus, we have introduced all the necessary ingredients for a two-site Kitaev chain.

4.2. TUNING THE RELATIVE STRENGTH OF CAR AND ECT
Majorana states in long Kitaev chains are present under a wide range of parameters due
to topological protection (Kitaev, 2001). Strikingly, even a chain consisting of only two
sites can host a pair of PMMs despite a lack of topological protection, if the fine-tuned
sweet spot t = ∆ and µLD = µRD = 0 can be achieved (Leijnse and Flensberg, 2012a).
This, however, is made challenging by the above-mentioned requirement to have both
QDs spin-polarized. If spin is conserved, ECT can only take place between QDs with ↓↓
or ↑↑ spins, while CAR is only allowed for ↑↓ and ↓↑. Rashba spin-orbit coupling in InSb
nanowires solves this dilemma (Sau and Das Sarma, 2012; Liu et al., 2022; Wang et al.,
2022a), allowing finite ECT even in anti-parallel spin configurations and CAR between
QDs with equal spins.
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A further challenge is to make the two coupling strengths equal for a given spin combi-
nation. Refs. (Liu et al., 2022; Wang et al., 2022a; Bordin et al., 2023) show that both CAR
and ECT in our device are virtual transitions through intermediate Andreev bound states
residing in the short InSb segment underneath the superconducting film. Thus, vary-
ing VPG changes the energy and wavefunction of said Andreev bound states and thereby
t ,∆. We search for the VPG range over which ∆ changes differently than t and look for a
crossover in the type of charge stability diagrams.
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Figure 4.2: Tuning the relative strength of CAR and ECT for the ↓↑ spin configuration. a-c. Conductance
matrices measured with VPG = (198,210,218) mV, respectively. d-f. GLR and GRR as functions of VR when
VLD,VRD are set to the center of each charge stability diagram in panels a to c, indicated by the black dots in
the corresponding panels above them. g. Local (GRR) and nonlocal (GLR) conductance as a function of VR
and VPG while keeping µLD ≈ µRD ≈ 0, showing the continuous crossover from t > ∆ to t < ∆. h. Green dots:
peak-to-peak distance (VPP) between the positive- and negative-bias segments of GRR, showing the closing
and re-opening of QD avoided crossings. Purple dots: average GLR (〈GLR〉) as a function of VPG, showing a
change in the sign of the nonlocal conductance.

Fig. 4.2a-c shows the resulting charge stability diagrams for the ↓↑ spin configuration at
different values of VPG. The conductance matrix G(VL = 0,VR = 0) at VPG = 198mV is
shown in Fig. 4.2a. The local conductance on both sides, GLL and GRR, exhibit level re-
pulsion indicative of t >∆. We emphasize that ECT can become stronger than CAR even
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though the spins of the two QD transitions are anti-parallel due to the electric gating
mentioned above. The dominance of ECT over CAR can also be seen in the negative sign
of the nonlocal conductance, GLR and GRL. During ECT, an electron enters the system
through one dot and exits through the other, resulting in negative nonlocal conductance.
CAR, in contrast, causes two electrons to enter or leave both dots simultaneously, pro-
ducing positive nonlocal conductance (Beckmann and Löhneysen, 2006). The residual
finite conductance in the center of the charge stability diagram can be attributed to level
broadening due to finite temperature and dot-lead coupling (see Fig. 4.14). In Fig. 4.2d,
we show the conductance spectrum measured as a function of VR, with VLD and VRD

tuned to µLD ≈ µRD ≈ 0 (black dots in panels c(ii, iv)). A pair of conductance peaks or
dips is visible on either side of zero energy.

Fig. 4.2c shows G at VPG = 218mV (the GRR component is also used for Fig. 4.1h(2)).
Here, all the elements of G exhibit CAR-type avoided crossings. The spectrum shown
in panel f, obtained at the joint charge degeneracy point (black dots in panels c(ii, iv)),
similarly has two conductance peaks surrounding zero energy. The measured nonlocal
conductance is positive as predicted for CAR. The existence of both t > ∆ and t < ∆
regimes, together with continuous gate tunability, allows us to approach the t ≈∆ sweet
spot. This is shown in panel b, taken with VPG = 210mV. Here, GRR and GLL exhibit
no avoided crossing while GLR and GRL fluctuate around zero, confirming that CAR and
ECT are in balance. Accordingly, the spectrum in panel e confirms the even and odd
ground states are degenerate and transport can occur at zero excitation energy via the
appearance of a zero-bias conductance peak. The crossover from the t >∆ regime to the
t <∆ regime can be seen across multiple QD resonances (Fig. 4.13).

To show that gate-tuning of the t/∆ ratio is indeed continuous, we repeat charge sta-
bility diagram measurements (Fig. 4.7) and bias spectroscopy at more VPG values. As
before, each bias sweep is conducted while keeping both QDs at charge degeneracy.
Fig. 4.2g shows the resulting composite plot of GRR (i) and GLR (ii) vs bias voltage and
VPG. The X-shaped conductance feature indicates a continuous evolution of the excita-
tion energy, with a linear zero-energy crossing agreeing with predictions in Leijnse and
Flensberg (2012a). Following the analysis described in Methods, we extract the peak
spacing and average nonlocal conductance in Fig. 4.2h in order to visualize the continu-
ous crossover from t >∆ to t <∆.

4.3. POOR MAN’S MAJORANA SWEET SPOT
Next, we study the excitation spectrum in the vicinity of the t = ∆ sweet spot. The pre-
dicted zero-temperature experimental signature of the PMMs is a pair of quantized zero-
bias conductance peaks on both sides of the devices. These zero-bias peaks are per-
sistent even when one of the QD levels deviates from charge degeneracy (Leijnse and
Flensberg, 2012a). We focus on the ↑↑ spin configuration since it exhibits higher t ,∆ val-
ues when they are equal (see Fig. 4.8). Fig. 4.3a shows the charge stability diagram mea-
sured via IR under fixed VL = 0,VR = 10µV. No level repulsion is visible, indicating t ≈∆.
Panel b(i) shows the excitation spectrum when both dots are at charge degeneracy. The
spectra on both sides show zero-bias peaks accompanied by two side peaks. The values
of t ,∆ can be read directly from the position of the side peaks, which correspond to the
anti-bonding excited states at energy 2t = 2∆≈ 25µeV. The height of the observed zero-
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Figure 4.3: Conductance spectroscopy at the t =∆ sweet spot for the ↑↑ spin configuration. a. IR vs VLD,VRD
under VL = 0,VR = 10µV. The spectra in panel b are taken at values of VLD,VRD marked by corresponding
symbols. The gate vs bias sweeps are taken along the dashed, dotted, dash-dot lines in panels c,d,e respectively.
Data are taken with fixed VPG = 215.1mV. b. Spectra taken under the values of VLD,VRD marked in panel a.
The dashed lines are theoretical curves calculated with t = ∆ = 12µeV, ΓL = ΓR = 4µeV, T = 45mK and at QD
energies converted from VLD,VRD using measured lever arms (see Methods for details). c, d. G as a function of
the applied bias and VRD (c) or VLD (d), taken along the paths indicated by the dashed blue line and the dotted
green line in panel a, respectively. e. G as a function of the applied bias and along the diagonal indicated by
the dashed-dotted pink line in panel a. This diagonal represents 500µV of change in VLD and 250µV of change
in VRD.

bias peaks is 0.3 to 0.4×2e2/h, likely owing to a combination of tunnel broadening and
finite electron temperature (Fig. 4.6). Fig. 4.3b(ii) shows the spectrum when the right
QD is moved away from charge degeneracy while µLD is kept at 0. The zero-bias peaks
persist on both sides of the device, as expected for a PMM state. In contrast, tuning both
dots away from charge degeneracy, shown in Fig. 4.3b(iii), splits the zero-bias peaks.

In Fig. 4.3c,d, we show the evolution of the spectrum when varying VRD and VLD,
respectively. The vertical feature appearing in both GLL and GRR shows correlated zero-
bias peaks in both QDs, which persist when one QD potential departs from zero. This
crucial observation demonstrates the robustness of PMMs against local perturbations.
The excited states disperse in agreement with the theoretical predictions (Leijnse and
Flensberg, 2012a). Nonlocal conductance, on the other hand, reflects the local charge
character of a bound state on the side where current is measured (Gramich et al., 2017;
Danon et al., 2020; Ménard et al., 2020). Near-zero values of GLR in panel c and GRL in
panel d are consistent with the prediction that the PMM mode on the unperturbed side
remains an equal superposition of an electron and a hole and, therefore, chargeless.

Finally, when varying the chemical potential of both dots simultaneously (panel e),
we see that the zero-bias peaks split away from zero energy. This splitting is not lin-
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ear, in contrast to the case when ∆ ̸= t (see Fig. 4.9). The profile of the peak splitting
is consistent with the predicted quadratic protection of PMMs against chemical poten-
tial fluctuations (Leijnse and Flensberg, 2012a). This quadratic protection is expected to
develop into topological protection in a long-enough Kitaev chain (Sau and Das Sarma,
2012).

4.4. DISCUSSION
To facilitate comparison with data, we develop a transport model (see Methods) and plot
in Fig. 4.4a-c the calculated conductance matrices as functions of excitation energy,ω, vs
µRD (panel a), µLD (panel b), and µ≡µLD =µRD (panel c). These conditions are an ideal-
ization of those in Fig. 4.3 (a more realistic simulation of the experimental conditions is
presented in Fig. 4.10). The numerical simulations capture the main features appearing
in the experiments discussed above.
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Figure 4.4: Calculated conductance and Majorana localization. a. Numerically calculated G as a function of
energy ω and µRD at the t =∆ sweet spot. b. Numerically calculated G as a function of ω and µLD at the t =∆
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µRD = 0 (sub-panel i), t =∆, µRD = 0, µLD > 0 (sub-panel ii), t <∆, µLD =−µRD =

√
∆2 − t 2 (sub-panel iii).

Particle-hole symmetry ensures that zero-energy excitations in this system always come
in pairs. These excitations can extend over both QDs or be confined to one of them. In
Fig. 4.4d we show the calculated spatial extent of the zero-energy excitations for three
scenarios. The first, in Fig. 4.4d(i), illustrates Fig. 4.3b(i) and shows that the sweet-spot
zero-energy solutions are two PMMs, each localized on a different QD. The second sce-
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nario in Fig. 4.4d(ii), illustrating Fig. 4.3b(ii), is varying µLD while keeping µRD = 0. This
causes some of the wavefunction localized on the perturbed left side, γ1, to leak into the
right QD. Since the right-side γ2 excitation has no weight on the left, it does not respond
to this perturbation and remains fully localized on the right QD. As the theory confirms
(Leijnse and Flensberg, 2012a), it stays a zero-energy PMM state. Since Majorana excita-
tions always come in pairs, the excitation on the left QD must also remain at zero energy.
This provides an intuitive understanding of the remarkable stability of the zero-energy
modes at the sweet spot in Fig. 4.3c,d when moving one of the QDs’ chemical poten-
tials away from zero. Finally, zero-energy solutions can be found away from the sweet
spot, t ̸= ∆, as illustrated in Fig. 4.4d(iii). These zero-energy states are only found when
both QDs are off-resonance and none of them are localized Majorana states, extending
over both QDs and exhibiting no gate stability. Measurements under these conditions
are shown in Fig. 4.9, where zero-energy states can be found in a variety of gate settings
(panels a, c therein).

4.5. CONCLUSION
In summary, we realize a minimal Kitaev chain where two QDs in an InSb nanowire are
separated by a hybrid semiconducting-superconducting segment. Compared to past
works, our approach solves three challenges: strong hybridization of QDs via CAR, si-
multaneous coupling of two single spins via both ECT and CAR, and continuous tuning
of the coupling amplitudes. This is made possible by the two QDs as well as the middle
Andreev bound state mediating their couplings all being discrete, gate-tunable quantum
states. The result is the creation of a new type of nonlocal states that host Majorana-type
excitations at a fine-tuned sweet spot. The zero-bias peaks at this spot are robust against
variations of the chemical potential of one QD and quadratically protected against si-
multaneous perturbations of both. This discrete and tunable way of assembling Kitaev
chains shows good agreement between theory and experiment by avoiding the most
concerning problems affecting the continuous nanowire experiments: disorder, smooth
gate potentials, and multi-subband occupation (Pan and Das Sarma, 2021). The QD-S-
QD platform discussed here opens up a new frontier to the study of Majorana physics.
In the long term, this approach can generate topologically protected Majorana states in
longer chains (Sau and Das Sarma, 2012). A shorter term approach is to use PMMs as
an immediate playground to study fundamental non-Abelian statistics, e.g., by fusing
neighboring PMMs in a device with two such copies.
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4.6. METHODS

4.6.1. DEVICE FABRICATION
The nanowire hybrid devices presented in this work were fabricated on pre-patterned
substrates, using the shadow-wall lithography technique described in Heedt et al. (2021)
and Borsoi et al. (2021). Nanowires were deposited onto the substrates using an optical
micro-manipulator setup. 8 nm of Al was grown at a mix of 15◦ and 45◦ angles with re-
spect to the substrate. Subsequently, Device A was coated with 2 Å of Pt grown at 30◦. No
Pt was deposited for Device B. Finally, all devices were capped with 20 nm of evaporated
AlOx . Details of the substrate fabrication, the surface treatment of the nanowires, the
growth conditions of the superconductor, the thickness calibration of the Pt coating and
the ex-situ fabrication of the ohmic contacts can be found in Mazur et al. (2022). Devices
A and B also slightly differ in the length of the hybrid segment: 180 nm for A and 150 nm
for B.

4.6.2. TRANSPORT MEASUREMENT AND DATA PROCESSING
We have fabricated and measured six devices with similar geometry. Two of them showed
strong hybridization of the QD states by means of CAR and ECT. We report on the de-
tailed measurements of Device A in the main text and show qualitatively similar mea-
surements from Device B in Fig. 4.11 and Fig. 4.12. All measurements on Device A were
done in a dilution refrigerator with base temperature 7 mK at the cold plate and electron
temperature of 40∼50 mK at the sample, measured in a similar setup using an NIS metal-
lic tunnel junction. Unless otherwise mentioned, the measurements on Device A were
conducted in the presence of a magnetic field of 200 mT approximately oriented along
the nanowire axis with a 3◦ offset. Device B was measured similarly in another dilution
refrigerator under B = 100mT along the nanowire with 4◦ offset.

Fig. 4.1e shows a schematic depiction of the electrical setup used to measure the
devices. The middle segment of the InSb nanowire is covered by a thin Al shell, kept
grounded throughout the experiment. On each side of the hybrid segment, we connect
the normal leads to a current-to-voltage converter. The amplifiers on the left and right
sides of the device are each biased through a digital-to-analog converter that applies DC
and AC biases. The total series resistance of the voltage source and the current meter
is less than 100Ω for Device A and 1.11 kΩ for Device B. Voltage outputs of the current
meter are read by digital multimeters and lock-in amplifiers. When DC voltage VL is ap-
plied, VR is kept grounded and vice versa. AC excitations are applied on each side of the
device with different frequencies (17 Hz on the left and 29 Hz on the right for Device A,
19 Hz on the left and 29 Hz on the right for Device B) and with amplitudes between 2
and 6µV RMS. In this manner, we measure the DC currents IL, IR and the conductance
matrix G in response to applied voltages VL,VR on the left and right N leads, respectively.
The conductance matrix is corrected for voltage divider effects (see Martinez et al. (2021)
for details) taking into account the series resistance of sources and meters and in each
fridge line (1.85 kΩ for Device A and 2.5 kΩ for Device B), except for the right panel of
Fig. 4.1h and Fig. 4.2d. There, the left half of the conductance matrix was not measured
and correction is not possible. We verify that the series resistance is much smaller than
the device resistance and the voltage divider effect is never more than∼10% of the signal.
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4.6.3. CHARACTERIZATION OF QDS AND THE HYBRID SEGMENT
To form the QDs described in the main text, we pinch off the finger gates next to the three
ohmic leads, forming two tunnel barriers in each N-S junction. VLD and VRD applied on
the middle finger gates on each side accumulate electrons in the QDs. We refer to the
associated data repository for the raw gate voltage values used in each measurement.
See Fig. 4.5a-f for results of the dot characterizations.

Characterization of the spectrum in the hybrid segment is done using conventional
tunnel spectroscopy. In each uncovered InSb segment, we open up the two finger gates
next to the N lead and only lower the gate next to the hybrid to define a tunnel barrier.
The results of the tunnel spectroscopy are shown in Fig. 4.5g,h and the raw gate voltages
are available in the data repository.

4.6.4. DETERMINATION OF QD SPIN POLARIZATION
Control of the spin orientation of QD levels is done via selecting from the even vs odd
charge degeneracy points following the method detailed in Hanson et al. (2007). At the
charge transition between occupancy 2n and 2n + 1 (n being an integer), the electron
added to or removed from the QD is polarized to spin-down (↓, lower in energy). The next
level available for occupation, at the transition between 2n +1 and 2n +2 electrons, has
the opposite polarization of spin-up (↑, higher in energy). To ensure the spin polarization
is complete, the experiment was conducted with EZ ≈ 400µeV > |eVL|, |eVR| (see Fig. 4.5
for determination of the spin configuration). In the experiment data, a change in the QD
spin orientation is visible as a change in the range of VLD or VRD.

4.6.5. CONTROLLING ECT AND CAR VIA ELECTRIC GATING
Liu et al. (2022) describe a theory of mediating CAR and ECT transitions between QDs via
virtual hopping through an intermediate Andreev bound state. Our manuscript Bordin
et al. (2023) experimentally verifies the applicability of this theory to our device. To sum-
marize the findings here, we consider two QDs both tunnel-coupled to a central Andreev
bound state in the hybrid segment of the device. The QDs have excitation energies lower
than that of the Andreev bound state and thus transition between them is second-order.
The wavefunction of an Andreev bound state consists of a superposition of an electron
part, u, and a hole part, v . Both theory and experiment conclude that the values of t and
∆ depend strongly and differently on u, v . Specifically, CAR involves converting an in-
coming electron to an outgoing hole and thus depends on the values of u and v jointly as
|uv |2. ECT, however, occurs over two parallel channels (electron-to-electron and hole-

to-hole) and its coupling strength depends on u, v independently as
∣∣u2 − v2

∣∣2
. As the

composition of u, v is a function of the chemical potential of the middle Andreev bound
state, the CAR to ECT ratio is strongly tunable by VPG. We thus look for a range of VPG

where Andreev bound states reside in the hybrid segment, making sure that the energies
of these states are high enough so as not to hybridize with the QDs directly (Fig. 4.5).
Next, we sweep VPG to find the crossover point between t and∆ as described in the main
text.
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4.6.6. ADDITIONAL DETAILS ON THE MEASUREMENT OF THE COUPLED QD
SPECTRUM

The measurement of the local and nonlocal conductance shown in Fig. 4.2g was con-
ducted in a series of steps. First, the value of VPG was set, and a charge stability diagram
was measured as a function of VLD and VRD. Representative examples of such diagrams
are shown in Fig. 4.7. Second, each charge stability diagram was inspected and the joint
charge degeneracy point (µLD = µRD = 0) was selected manually (V 0

LD,V 0
RD). Lastly, the

values of VLD and VRD were set to those of the joint degeneracy point and the local and
nonlocal conductance were measured as a function of VR.

The continuous transition from t >∆ to t <∆ is visible in Fig. 4.2g via both local and
nonlocal conductance. GRR shows that level repulsion splits the zero-energy resonance
peaks both when t >∆ (lower values of VPG) and when t <∆ (higher values of VPG). The
zero-bias peak is restored in the vicinity of t = ∆, in agreement with theoretical predic-
tions (Leijnse and Flensberg, 2012a). The crossover is also apparent in the sign of GLR,
which changes from negative (t >∆) to positive (t <∆).

To better visualize the transition between the ECT- and CAR-dominated regimes, we
extract VPP, the separation between the conductance peaks under positive and negative
bias voltages, and plot them as a function of VPG in Fig. 4.2h. When tuning VPG, the peak
spacing decreases until the two peaks merge at VPG ≈ 210mV. Further increase of VPG

leads to increasing VPP. In addition, to observe the change in sign of the nonlocal con-
ductance, we follow 〈GLR〉, the value of GLR averaged over the bias voltage VR between
−100 and 100µV at a given VPG. We see that 〈GLR〉 turns from negative to positive at
VPG ≈ 210mV, in correspondence to a change in the dominant coupling mechanism.

Fig. 4.3c-e presents measurements where the conductance was measured against ap-
plied biases along some paths within the charge stability diagram (panel a). Prior to each
of these measurements, a charge stability diagram was measured and inspected, based
on which the relevant path in the (VLD,VRD) plane was chosen. Following each bias spec-
troscopy measurement, another charge stability diagram was measured and compared
to the one taken before to check for potential gate instability. In case of noticeable gate
drifts between the two, the measurement was discarded and the process was repeated.
The values of µLD and µRD required for theoretical curves appearing in panel b were cal-
culated byµi =αi (Vi −V 0

i ) where i = LD,RD andαi is the lever arm of the corresponding
QD. The discrepancy between the spectra measured with GLL and GRR likely results from
gate instability, since they were not measured simultaneously. Finite remaining GLR in
panel c and GRL in panel d most likely result from small deviations of µLD,µRD from zero
during these measurements.
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4.6.7. MODEL OF THE PHASE DIAGRAMS IN FIG. 4.1F
To calculate the ground state phase diagram in Fig. 4.1f, we write the Hamiltonian in the
many-body picture, with the four basis states being |00〉 , |11〉 , |10〉 , |01〉:

Hmb =




0 ∆ 0 0
∆ εL +εR 0 0
0 0 εL t
0 0 t εR


 (4.2)

in block-diagonalized form. The two 2× 2 matrices yield the energy eigenvalues sepa-
rately for the even and odd subspaces:

Eo,± = εL +εR

2
±

√(εL −εR

2

)2
+ t 2 (4.3)

Ee,± = εL +εR

2
±

√(εL +εR

2

)2
+∆2 (4.4)

The ground state phase transition occurs at the boundary Eo,− = Ee,−. This is equivalent
to

εLεR = t 2 −∆2 (4.5)

4.6.8. TRANSPORT MODEL IN FIG. 4.3 AND FIG. 4.4
We describe in this section the model Hamiltonian of the minimal Kitaev chain and the
method we use for calculating the differential conductance matrices when the Kitaev
chain is tunnel-coupled to two external N leads.

The effective Bogoliubov-de-Gennes Hamiltonian of the double-QD system is

H = εLc†
LcL +εR c†

R cR + tc†
LcR + tc†

R cL +∆cLcR +∆c†
R c†

L

= 1

2
Ψ†




εL t 0 −∆
t εR ∆ 0
0 ∆ −εL −t
−∆ 0 −t −εR


Ψ, (4.6)

whereΨ= (cL ,cR ,c†
L ,c†

R )⊺ is the Nambu spinor, εL/R is the level energy in dot-L/R relative
to the superconducting Fermi surface, t and∆ are the ECT and CAR amplitudes. Here we
assume t and ∆ to be real without loss of generality (Leijnse and Flensberg, 2012a). The
presence of both t and ∆ in this Hamiltonian implies breaking spin conservation during
QD-QD tunneling via either spin-orbit coupling (as done in the present experiment) or
non-collinear magnetization between the two QDs (as proposed in Leijnse and Flens-
berg (2012a)). Without one of them, equal-spin QDs cannot recombine into a Cooper
pair, leading to vanishing ∆, while opposite-spin QDs cannot support finite t . The exact
values of t and ∆ depend on the spin-orbit coupling strength and we refer to Liu et al.
(2022) for a detailed discussion.

To calculate the differential conductance for the double-QD system, we use the S-
matrix method (Datta, 2005). In the wide-band limit, the S matrix is

S(ω) =
(

see seh

she shh

)
= 1− iW †

(
ω−H + 1

2
iW W †

)−1

W, (4.7)
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where W = diag{
p
ΓL ,

p
ΓR ,−pΓL ,−pΓR } is the tunnel matrix, with Γα being the tunnel

coupling strength between dot-α and lead-α. The zero-temperature differential conduc-
tance is given by

G0
αβ(ω) = dIα/dVβ =

e2

h

(
δαβ−|sαβee (ω)|2 +|sαβhe (ω)|2

)
, (4.8)

where α,β = L/R. Finite-temperature effect is included by a convolution between the
zero-temperature conductance and the derivative of Fermi-Dirac distribution, i.e.,

GT (ω) =
∫

dE
G0(E)

4kB T cosh2[(E −ω)/2kB T ]
. (4.9)

The theoretical model presented above uses five input parameters to calculate the
conductance matrix under givenµLD,µRD,VL,VR. The input parameters are: t ,∆,ΓL ,ΓR ,T .
To choose the parameters in Fig. 4.3b(i), we fix the temperature to the measured value
T = 45mK and make the simplification t = ∆, Γ ≡ ΓL = ΓR . This results in only two free
parameters t ,Γ, which we manually choose and compare with data. While oversimpli-
fied, this approach allows us to obtain a reasonable match between theory and data
taken at µLD = µRD = 0 without the risk of overfitting. To obtain the other numerical
curves shown in Fig. 4.3, we keep the same choice of t ,Γ and vary µLD,µRD,VL,VR along
various paths in the parameter space. Similarly, to model the data shown in Fig. 4.9, we
keep T = 45mK and Γ the same as in Fig. 4.3. The free parameters to be chosen are thus
t and ∆. The theory panels are obtained with the same t ,∆, and only µLD,µRD,VL,VR are
varied in accordance with the experimental conditions.

Finally, we comment on the physical meaning of the theory predictions in Fig. 4.4a-c.
Tuning µRD leads to symmetric GLL and asymmetric GRR, as well as zero GLR and finite
GRL with an alternating pattern of positive and negative values. As discussed in the main
text, these features, also seen in the measurements, stem from the local charge of the
system: keeping µLD = 0 maintains zero local charge on the left dot, while varying µRD

creates finite local charge on the right dot. The complementary picture appears when
varying µLD in panel b. The asymmetry in both GLL and GRR and the negative nonlocal
conductance when tuning simultaneously µLD =µRD are also captured in the numerical
simulation in panel c. We note that while there is a qualitative agreement between the
features in Fig. 4.4c and Fig. 4.3e, they were obtained under nominally different condi-
tions. As mentioned, the theoretical curve follows µLD = µRD, while the experimental
curve was taken through a path along which VLD changed twice as much as VRD, al-
though the lever arms of both QDs are similar. In Fig. 4.4c, we calculate the conductance
along a path reproducing the experimental conditions. We speculate that the discrep-
ancy between Fig. 4.3e and Fig. 4.4c could arise from some hybridization between the
left QD and the superconducting segment as seen in Fig. 4.5.
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Figure 4.5: Characterization of the QDs. a. Coulomb blockade diamonds of the left QD when the right QD is
off-resonance. IL is measured as a function of VL,VLD. The data is overlaid with a constant interaction model
(Kouwenhoven et al., 2001) with 1.8 meV charging energy and gate lever arm of 0.32. b. A high-resolution
scan of a with a symmetric-logarithmic color scale to show the presence of a small amount of Andreev cur-
rent at sub-gap energies. This is due to the left QD being weakly proximitized by local Andreev coupling to
Al. c. Field dependence of the Coulomb resonances. IL is measured as a function of VLD and B with a con-
stant VL = 600µV. The resonances of opposite spin polarization evolve in opposite directions with a g -factor
of ∼ 35, translating to Zeeman energy of 400µeV at B = 200mT. d-f. Characterization of the right QD, as de-
scribed in the captions of panels a-c. The overlaid model in d has charging energy 2.3 meV and gate lever
arm of 0.33. No sub-gap transport is detectable in e. B dispersion in f corresponds to g = 40. g, h. Bias
spectroscopy results of the proximitized InSb segment under the thin Al/Pt film. IL, IR are measured as a
function of VL,VPG. GLL,GRL are obtained by taking the numerical derivative of IL, IR along the bias direc-
tion after applying a Savitzky-Golay filter of window length 15 and order 1. The sub-gap spectrum reveals
discrete, gate-dispersing Andreev bound states. The presence of nonlocal conductance correlated with the
sub-gap states shows that these Andreev bound states extend throughout the entire hybrid segment, coupling
to both left and right N leads (Ménard et al., 2020). Parts of this dataset are also presented in Mazur et al.
(2022) (Reproduced under the terms of the CC-BY Creative Commons Attribution 4.0 International license
(https://creativecommons.org/licenses/by/4.0). Copyright 2022, The Authors, published by Wiley-VCH).

https://creativecommons.org/licenses/by/4.0
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Figure 4.6: Theoretical temperature dependence of the height of Majorana zero-bias conductance peaks.
The height of the Majorana zero-bias peaks is only quantized to 2e2/h at zero temperature. At finite electron
temperature T , the peak height is generally lower, with the exact value depending on T and tunnel broaden-
ing ΓL,ΓR due to coupling between QDs and N leads. The local zero-bias conductance GLL at the sweet spot
(t =∆,µLD = µRD = 0) is calculated and shown in this plot as a function of T , using the parameters presented
in Fig. 4.3: t = ∆ = 12µeV. Three curves are calculated assuming three different values of tunnel coupling
Γ= ΓL = ΓR. The orange curve assumes a Γ value that matches the experimentally observed peak width (both
of the zero-bias peaks and of generic QD resonant peaks at other conductance features), showing that con-
ductance approaching quantization would only be realized at electron temperatures < 5mK, unattainable in
our dilution refrigerator. The blue curve, calculated with lower Γ = 2µeV, shows even lower conductance. In-
creasing Γ would not lead to conductance quantization either, since the zero-bias peaks would merge with
the conductance peaks arising from the excited states (pink curve). The green dot marks the experimentally
measured electron temperature and peak height (averaged between the values obtained on the left and right
leads).
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Figure 4.7: Evolution of the charge stability diagram for the ↓↑ spin configuration. Each panel shows IL
(nonlocal) and IR (local) as functions of VLD,VRD measured under fixed biases VL = 0,VR = 10µV. VPG is tuned
from 196.5 mV, showing signatures of the t > ∆ in both local and nonlocal currents, to 220 mV, featuring the
opposite t <∆ regime.
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Figure 4.8: Evolution of the charge stability diagram for the ↑↑ spin configuration. Each panel shows IL
(nonlocal) and IR (local) as functions of VLD,VRD measured under fixed biases VL = 0,VR = 10µV. VPG is tuned
from 210 mV, showing signatures of the t > ∆ in both local and nonlocal currents, to 219 mV, featuring the
opposite t <∆ regime.
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Figure 4.9: Conductance spectroscopy when t < ∆. a. IR vs µLD,µRD with VR = 10µV. The evolution of
the spectrum with the chemical potential is taken along the dashed, dashed-dotted and dotted lines in panels
b,c,d, respectively. Data taken at the ↓↑ spin configuration with fixed VPG = 218mV. b. Local conductance
spectroscopy taken at gate setpoints marked by corresponding symbols in panel a. Insets mark schematically
the spectrum of the QDs in the absence (brown dots) and the presence (grey lines) of hybridization via CAR
and ECT. c. Conductance matrix as a function of bias and VLD, taken along the dashed blue line in panel a,
i.e., varying the detuning between the QDs δ = (µLD −µRD)/2 while keeping the average chemical potential
µ̄ = (µLD +µRD)/2 close to 0. d. Conductance matrix as a function of bias and VLD, taken along the dotted
green line in panel a, keeping the detuning between the QDs around 0. e. Conductance matrix as a function of
bias and VLD, taken along the dashed-dotted pink line in panel a, keeping roughly constant non-zero detuning
between the QDs. f, g, h. Numerically calculated G as a function of energy ω and µLD,µRD along the paths
shown in panel a. All of the numerical curves assume the same parameters as those in Fig. 4.3, except with
∆= 23µeV and t = 6µeV.
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Figure 4.10: Calculated conductance matrices at the t =∆ sweet spot a. Numerically calculated G as a func-
tion of energy ω and µLD,µRD along the path shown in Fig. 4.3c. The presence of finite GLR and asymmetric
GRL result from a slight deviation from the µLD = 0 condition which is depicted in Fig. 4.4a. These features
appear in the experimental data shown in Fig. 4.3c. b. Numerically calculated G as a function of energy ω and
µLD,µRD along the path shown in Fig. 4.3d. The presence of finite GRL and asymmetric GLR result from a slight
deviation from the µRD = 0 condition which is depicted in Fig. 4.4b. These features appear in the experimental
data shown in Fig. 4.3d. c. Numerically calculated G as a function of energy ω and µLD,µRD along the path
shown in Fig. 4.3e. Since the path does not obey µLD =µRD, the calculated spectral lines do not follow parallel
trajectories, in slight disagreement with the experimental data. The conversion from VLD,VRD to µLD,µRD is
done as explained in the Methods section with the measured lever-arms of both QDs.
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Figure 4.11: Reproduction of the main results with Device B. a-c. Conductance matrices measured at VPG =
(976,979.6,990) mV, respectively. d. Conductance matrix as a function of VL,VR and VPG while keeping µLD ≈
µRD ≈ 0. This device shows two continuous crossovers from t >∆ to t <∆ and again to t >∆.
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Figure 4.12: Device B spectrum vs gates. a. Charge stability diagram measured via GRR of another t =∆ sweet
spot of Device B, at VPG = 993mV. Dashed lines mark the gate voltage paths the corresponding panels are
taken along. b-d. Conductance matrices when varying VRD (b), VLD (c), and the two gates simultaneously
(d), similar to Fig. 4.3 in the main text. The sticking zero-bias conductance peak feature when only one QD
potential is varied around the sweet spot is clearly reproduced in GRR of panel b. The quadratic peak splitting
profile when both QD potentials are varied by the same amount is also reproduced in panel d. The left N
contact of this device was broken and a distant lead belonging to another device on the same nanowire was
used instead. This and gate jumps in VRD complicate interpretation of other panels.
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Figure 4.13: CAR- and ECT-induced interactions across multiple QD resonances. a-b. local (IL) and nonlocal
(IR) currents as a function of VLD and VRD measured with VPG = 200mV and fixed VL. All resonances show
an ECT-dominated structure and a negative correlation between the local and the nonlocal currents. c-d.
local (IL) and nonlocal (IR) currents as a function of VLD and VRD measured with VPG = 218mV and fixed VL.
Some resonances show the structure associated with the t =∆ sweet spot, showing both positive and negative
correlations between the local and nonlocal currents. e-f. local (IL) and nonlocal (IR) currents as a function
of VLD and VRD measured with VPG = 200mV and fixed VL. All orbitals show a CAR-dominated structure and
a positive correlation between the local and the nonlocal currents. All measurements were conducted with
VL = 10µV, VR = 0 and B = 100mT.
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Figure 4.14: Theoretical effect of tunnel broadening on the charge stability diagrams. In some charge stabil-
ity diagrams where level-repulsion is weak, e.g., Fig. 4.2a and Fig. 4.8, some residual conductance is visible even
when µLD = µRD = 0. This creates the visual feature of the two conductance curves appearing to “touch” each
other at the center. In the main text, we argued this is due to level broadening. Here, we plot the numerically
simulated charge stability diagrams at zero temperature under various dot-lead tunnel coupling strengths. We
use coupling strengths t = 20µV,∆ = 10µV as an example. From panel a to c, increasing the tunnel coupling
and, thereby, level broadening reproduces this observed feature. When the level broadening is comparable
to the excitation energy, |t −∆|, finite conductance can take place at zero bias. This feature is absent in, e.g.,
Fig. 4.2c, where |t −∆| is greater than the level broadening.





5
CROSSED ANDREEV REFLECTION

AND ELASTIC CO-TUNNELING

IN THREE QUANTUM DOTS

COUPLED BY SUPERCONDUCTORS

The formation of a topological superconducting phase in a quantum-dot-based Kitaev
chain requires nearest neighbor crossed Andreev reflection and elastic co-tunneling. Here
we report on a hybrid InSb nanowire in a three-site Kitaev chain geometry — the small-
est system with well-defined bulk and edge — where two superconductor-semiconductor
hybrids separate three quantum dots. We demonstrate pairwise crossed Andreev reflection
and elastic co-tunneling between both pairs of neighboring dots and show sequential tun-
neling processes involving all three quantum dots. These results are the next step towards
the realization of topological superconductivity in long Kitaev chain devices with many
coupled quantum dots.

This chapter has been published as: Crossed Andreev Reflection and Elastic Cotunneling in Three Quantum
Dots Coupled by Superconductors, Alberto Bordin, Xiang Li, David Van Driel, Jan Cornelis Wolff, Qingzhen
Wang, Sebastiaan L. D. Ten Haaf, Guanzhong Wang, Nick Van Loo, Leo P. Kouwenhoven, Tom Dvir, Physical
Review Letters, 132.5: 056602. (2024).
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5.1. INTRODUCTION

T
he Kitaev chain was proposed over two decades ago as a platform that
supports unique non-local excitations known as Majorana bound states
(Kitaev, 2001). Proposals (Sau and Das Sarma, 2012; Leijnse and Flens-
berg, 2012a; Fulga et al., 2013) for the realization of such a Kitaev chain
rely on creating an array of spin-polarized quantum dots (QDs) where

neighboring QDs are coupled via two mechanisms: elastic co-tunneling (ECT) and
crossed Andreev reflection (CAR). ECT involves the hopping of a single electron between
two QDs. In CAR, two electrons from neighboring QDs simultaneously enter a supercon-
ductor to form a Cooper pair, or, in reversed order, two electrons forming a Cooper pair
are split into two QDs (Recher et al., 2001; Lesovik et al., 2001; Sauret et al., 2004). Ex-
periments have so far focused on chains consisting of two QDs, showing both CAR and
ECT in such systems (Hofstetter et al., 2009, 2011; Herrmann et al., 2010; Wei and Chan-
drasekhar, 2010; Das et al., 2012; Schindele et al., 2012, 2014; Tan et al., 2015; Gramich
et al., 2017; Baba et al., 2018; Scherübl et al., 2020; Ranni et al., 2021; G. Wang et al., 2022a;
Q. Wang et al., 2023) and even strongly coupling the QDs to form a minimal Kitaev chain
(Dvir et al., 2023). Longer QD chains, necessary for the formation of a topological phase,
have so far not been realized.

In this work, we report on the fabrication of a three-site device and its characteriza-
tion at zero magnetic field, where no isolated Majorana states are expected, but all the
elements of a Kitaev chain Hamiltonian can already be tested. We show CAR and ECT
between each pair of neighboring QDs and show that transport across the entire device
is possible through sequential events of CAR and ECT. By measuring the currents on all
of the terminals of our device, we identify all the possible CAR and ECT combinations.

5.2. DEVICE STRUCTURE
In Fig. 5.1a we show a scanning electron micrograph of device A. This device consists
of an InSb nanowire placed on top of an array of 11 finger gates separated by a thin di-
electric. Two superconducting Al contacts (marked S1 and S2) are evaporated on top of
the nanowire using the shadow-wall lithography technique (Heedt et al., 2021; Mazur
et al., 2022). Both sides of the device are further contacted by two normal Cr/Au probes
(marked NL and NR). Every contact is connected to an independent voltage source (VL,
VS1, VS2, VR) and current meter (IL, IS1, IS2, IR). The two finger gates underneath the
semiconductor-superconductor hybrid segments control their chemical potential, while
the other 9 gates form QDs on each of the three bare InSb sections. The QD chemical
potentials µ1, µ2 and µ3, are controlled by the gate voltages VQD1, VQD2 and VQD3 respec-
tively (Fig. 5.1b). See Supplementary Information for further nanofabrication details and
gate settings.

5.3. RESULTS

5.3.1. DEVICE CHARACTERIZATION
Discrete Andreev bound states (ABSs) in a hybrid semiconductor-superconductor seg-
ment, separating two QDs, can efficiently mediate CAR and ECT between them (Fülöp
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Figure 5.1: a. False-colored scanning electron micrograph of the device. An InSb nanowire (green) is deposited
on top of 11 finger gates (red) and it is contacted with two superconducting leads S1 and S2 (blue) and two
normal leads NL and NR (yellow). Every contact is connected to a corresponding voltage bias source and
current meter. b. Illustrative energy diagram. Brown symbols represent QD energy levels when occupied by

an electron. c., d. Spectroscopy of the hybrid segments. gL ≡ d IL
dVL

and gR ≡ d IR
dVR

are obtained by numerical

differentiation of the DC currents measured from the left and the right normal leads respectively. Gate settings
are reported in Supplementary Information (Fig. 5.7, 5.8 and 5.9). e., f., g. Coulomb diamond characterization
of QD1 (panel e), QD2 (panel f), QD3 (panel g). Fitting to a constant interaction model (Hanson et al., 2007)
yields charging energies of 4, 3.5, 3.3mV and lever arms of 0.32, 0.33, 0.31 for QD1, QD2, and QD3 respectively.

et al., 2015; Liu et al., 2022; Bordin et al., 2023). We find such discrete states by controlling
the two finger gates underneath contacts S1 and S2. Figs. 5.1c and 5.1d show the spectra
measured on the first and the second hybrid respectively, by using the finger gates sep-
arating the superconducting and normal contacts as tunneling barriers (van Driel et al.,
2023). In the absence of an external magnetic field, both hybrid segments show a hard
superconducting gap. A closer inspection of the gate dependence (see Fig. 5.8) shows
that ABSs are present at energies close to the energy gap. At 150 mT, the ABSs are more
visible in the spectrum. The remainder of the experiment was conducted at zero mag-
netic field and at fixed values of the hybrid gates.

In Figs. 5.1e-g we characterize QDs 1-3 respectively. QD1 is characterized by applying
a voltage bias to NL and measuring the corresponding current while keeping all other
contacts grounded. For QD2 the voltage bias is applied to S1 and for QD3 to NR. During
the characterization of a given QD, the other QDs are kept off-resonance. The observed
Coulomb diamond structure allows us to estimate the charging energy of all QDs to be
between 3 and 4 mV and the lever arm of the underlying gates to be ≈ 0.3. We note the
presence of a superconducting gap in the spectrum.



5

94 5. CAR AND ECT IN THREE QUANTUM DOTS COUPLED BY SUPERCONDUCTORS

5.3.2. PAIRWISE CAR AND ECT BETWEEN NEIGHBORING QDS

CAR

ECT

IS2 IRIL IS1

-eVb
-eVb-∆

-eVb

eVb+∆

(a) (b)

(c)

(d)

Figure 5.2: a., b. Schematic diagrams of CAR and ECT processes between QD1 and QD2. CAR is measured by
applying Vb on NL and Vb +∆/e on S2 (panel a). ECT is measured by applying Vb on NL and −Vb −∆/e on S2
(panel b). c. CAR and ECT between QD1 and QD2. The currents IL, IS1, IS2, and IR are measured as a function
of VQD1 and VQD2. VL = Vb = 150µV, while VS2 = Vb +∆/e = 380µV (top row) or VS2 =−380µV (bottom row).
d. CAR and ECT between QD2 and QD3. The currents through the leads as a function of VQD2 and VQD3 are
measured with VS1 = 380µV in the top row and VS1 =−380µV in the bottom row, while VR = 150µV.

We begin by demonstrating CAR and ECT processes between pairs of neighboring QDs.
Fig. 5.2a shows schematically how CAR between QD1 and QD2 is measured while QD3
is kept off-resonance such that it does not participate in the transport. CAR involves
current flowing from a superconductor into the neighboring leads (or vice-versa). In
recent works, CAR was measured setting symmetric voltage biases, Vb, on two normal
leads on both sides of the hybrid segment (Wang et al., 2022a; Bordin et al., 2023; Wang
et al., 2023). Here, to account for the presence of the superconducting gap in S2 (∆ ≈
230µeV), we apply a bias of Vb+∆/e to the superconducting leads. In this configuration,
CAR can be sustained as long as µ1 =−µ2 and the two chemical potentials are in the bias
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window −|eVb| < µ1,µ2 < |eVb| (Wang et al., 2022a). ECT can be measured in an anti-
symmetric bias configuration. Due to the presence of the superconducting gap, such a
configuration similarly requires adding ∆ to the bias on S2, as shown schematically in
Fig. 5.2b.

Fig. 5.2c shows the currents through all leads measured in the bias configuration that
allows for CAR (top row) and ECT (bottom row) as a function of VQD1 and VQD2. In the
top row, we find that the currents IL, IS1, and IS2 are largest along a diagonal line consis-
tent with µ1 = −µ2. Moreover, IL and IS2 are positive and nearly equal, draining to the
ground only through S1. These observations signal the presence of CAR between QD1
and QD2. The bottom row is measured in a bias configuration that supports ECT. The
measurements show finite IL and IS2 currents with maxima along a diagonal compatible
with µ1 = µ2. In this case, IL and IS2 have opposite signs, and almost no current flows
through S1, signaling the presence of ECT.

Analogously, we measure CAR (and ECT) signatures between QD2 and QD3 by ap-
plying effectively symmetric (and antisymmetric) biases VS1 and VR (Fig. 5.2d). We also
notice finite currents < 10pA that depend only on the value of VQD3. We interpret this as
a sign of local Andreev reflection (LAR) not being completely suppressed by the charging
energy of QD3 (see also Fig. 5.9).

The results shown in Fig. 5.2 demonstrate both CAR and ECT — the crucial ingredi-
ents of a Kitaev chain — between every pair of QDs. We exploited here the freedom to
bias each superconductor independently. This freedom might not always be accessible,
e.g., in a Kitaev chain design with the superconductors connected in a loop. In the fol-
lowing, we discuss the signatures of CAR and ECT when both superconducting leads are
grounded.

5.3.3. TWO-TERMINAL CAR AND ECT PROCESSES
We set VS1 = VS2 = 0, and begin by discussing CAR and ECT processes between QD2
and QD3 while keeping QD1 off-resonance. We observe three transport mechanisms
involving only leads S2 and NR.

CAR

ECT SPT

(a) (b)

(c)

Figure 5.3: a. Schematic illustration of the resonant CAR and ECT tunneling. When µ2 = µ3 = 0 both CAR and
ECT are allowed between QD2 and QD3, allowing a complete transport cycle to transfer a Cooper pair between
NR and S2. b. Schematic illustration of the Shiba-assisted local pair tunneling (SPT). c. Current through the
device as a function of VQD2 and VQD3, with VQD1 = 414.1mV, equivalent to µ1 ≈ 230µeV.
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The first transport mechanism, already mentioned above, is LAR, which gives rise to a
signal that depends only on the chemical potential of QD3.

The second transport mechanism takes place when µ2 = µ3 = eVS2 = 0, as depicted
in Fig. 5.3a. In this alignment, both CAR and ECT are allowed. A Cooper pair can be
transmitted from S2 to NR by sequential CAR and ECT processes. First, a Cooper pair is
split from S2 to QD2 and QD3. Then, the electron in QD3 is drained to NR, allowing ECT
to shuttle the other electron from QD2 to QD3, which is finally drained as well. Because
of the resonant condition on the chemical potentials, this process appears as a single
spot in the measurements shown in Fig. 5.3c (black arrow).

Whenµ2 ̸= 0, the resonant CAR-ECT process is not allowed anymore; however, a third
transport mechanism can be observed. The grey arrow in Fig. 5.3c highlights a faint line
showing local transport from S2 to NR that is enhanced by QD2 alignment. We observe
current flow when µ3 is between 0 and −eVR and the chemical potentials of QD2 and
QD3 are either aligned or anti-aligned. Following literature, this process may be inter-
preted as “Shiba-assisted local pair tunneling” (SPT) (Scherübl et al., 2020, 2022), which
is depicted schematically in Fig. 5.3b. Further details of such process and additional data
are discussed in Supplementary Information (Fig. 5.11).

5.3.4. THREE-DOT SEQUENTIAL CAR AND ECT

ECTECT

CAR CAR

ECT

CAR
CAR

ECT

(a) (b)

(c)

(d)

Figure 5.4: a. Schematic illustration of sequential ECT processes (withµ1 =µ2 =µ3, green) and sequential CAR
processes (with µ1 = −µ2 = µ3, pink). b. Schematic illustration of CAR followed by ECT (with −µ1 = µ2 = µ3,
orange) and ECT followed by CAR (with µ1 = µ2 = −µ3, blue). c. Current through the device as a function
of VQD2 and VQD3, with VR = −VL = 150µV and VQD1 = 413.8mV, equivalent to µ1 ≈ 130µeV. d. Current
through the device as a function of VQD2 and VQD3, with VR = VL = 150µV and VQD1 = 413mV, equivalent to
µ1 ≈−100µeV. Note that the arrow colors in panels c and d correspond to the process colors in panels a and b,
while the black arrow corresponds to the resonant CAR and ECT process shown in Fig. 5.3a,c.

When setting
∣∣µ1

∣∣ < |eVL|, QD1 can participate in transport, enabling sequential CAR
and ECT processes involving all three QDs. Fig. 5.4a shows schematically such processes
with antisymmetric bias settings (VL = −VR). In this configuration, electrons incoming
from NL can be transferred all the way to NR, in two ways. Sequential ECT events (green
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arrows) can first transfer an electron from QD1 to QD2 and then from QD2 to QD3, pro-
vided that the QD chemical potentials are all aligned (µ1 = µ2 = µ3). Alternatively, if the
QD chemical potentials are anti-aligned (µ1 =−µ2 =µ3), sequential CAR events can first
form a Cooper pair into S1 and then split a Cooper pair from S2, resulting in a net trans-
fer of one electron from QD1 to QD3 (pink arrows). Equivalently, this sequential CAR
process can be seen as an electron from QD1 being converted into a hole in QD2 and
converted back to an electron into QD3.

Fig. 5.4c shows measured currents as a function of VQD2 and VQD3 for fixed VR =−VL.
We observe both the two-QD processes discussed above (see black arrows) and the three-
QD processes discussed here. Sequential ECT processes appear as a single spot in only IL

and IR, when µ2 and µ3 are aligned with µ1 (marked by the green arrow). The sequence
involving two CAR processes (marked by the pink arrow) appears as a spot in the currents
measured on all leads when µ3 = µ1 and µ2 = −µ1. The currents alter in sign at every
lead, corresponding to Cooper pair formation in S1 followed by Cooper pair splitting in
S2. We note that also the amount of measured current is consistent with CAR, showing
in the superconducting leads twice the amount of current registered in the normal leads.

Under symmetric bias conditions, current is sustained when both leads NL and NR

drain electrons (see Fig. 5.4b). The two sequences involving all QDs in agreement with
this condition are CAR followed by ECT and the opposite, ECT followed by CAR. The
first, marked by the orange arrow in Fig. 5.4d, it is seen in the current appearing when
µ3 ≈ µ2 ≈ −µ1 in IL and IR. This feature further appears in IS1 but not in IS2, since CAR
between QD1 and QD2 drains current to the ground through S1, whereas ECT between
QD2 and QD3 drains no such current to ground via S2. The opposite sequence, marked
by the blue arrow, takes place with µ3 ≈ −µ2 ≈ −µ1 and shows similar behavior. We
emphasize that this coupling between all three sites gives rise to a non-local transport
feature. For example, we observe in Fig. 5.4c,d that IL is strongly modulated by QD3, two
sites away.

(a)

(b)

Figure 5.5: a. Current through the device as a function of µ2 and jointly µ1 and µ3, which are set to equal
values, measured with antisymmetric bias configuration. b. Current through the device as a function of µ2
and jointly µ1 and µ3, which are set to opposite values, measured with symmetric bias configuration. Note
that the color of the arrows corresponds to the color of the processes in Fig. 5.4 (and 5.3 for the grey arrow).
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These observations are consistent with CAR and ECT in the energy alignment of the QDs,
in the signs, and in the amounts of the measured currents, for every voltage bias com-
bination (see additional data in the linked repository). So far, we have shown CAR and
ECT signatures from two different points of view: pairwise in Fig. 5.2 and sequential
at fixed QD1 in Fig. 5.4. In Fig. 5.5, we add a third one, noticing that both sequential
ECT processes and sequential CAR processes always require µ1 = µ3, whereas CAR fol-
lowed by ECT and ECT followed by CAR require µ1 = −µ3. In Fig. 5.5, we measure the
currents through the devices while tuning the QDs to follow these constraints. Fig. 5.5a
was measured by setting VR = −VL = 150µV. VQD1 and VQD3 were swept together, im-
posing µ1 = µ3 for the full measurement (see Fig. 5.10 in Supplementary Information
for details regarding the tuning of chemical potential). Fig. 5.5a features two diagonal
lines. The positive-slope diagonal, compatible with µ1 =µ2 =µ3, is prominent in panels
IL and IR only, allowing us to attribute it to sequential ECT processes. The negative-
slope diagonal, compatible with µ1 = −µ2 = µ3, appears in all panels and is associated
with sequential CAR processes. The measurements in Fig. 5.5b were conducted with
VR = VL = 150µV. Here, VQD1 and VQD3 are varied together, while imposing µ1 = −µ3.
Similarly to the previous scenario, measured currents feature a positive-slope diagonal
alongside a negative-slope one. Here, the positive-slope diagonal involves IS2 as ex-
pected for ECT followed by CAR. The negative-slope diagonal involves IS1 instead, as
required by CAR followed by ECT.

In summary, the results of Fig. 5.4 and 5.5 show how all four possible compositions
of CAR and ECT mediate transport through the entire device.

5.4. CONCLUSION
We have fabricated and measured an InSb-Al device with three QDs separated by
semiconductor-superconductor hybrids, showing the signatures of CAR and ECT be-
tween all pairs of neighboring QDs. We have further demonstrated control over sequen-
tial CAR and ECT processes involving all QDs by tuning the biases applied to the nor-
mal leads and the chemical potential of the QDs. Our measurements demonstrate the
operation of all the known requirements to extend the Kitaev chain physics to longer
multi-site chains. To enable the formation of a three-site Kitaev chain in such devices,
future work will focus on fine-tuning the interdot couplings at a finite magnetic field to
balance the pairwise CAR and ECT ratios to observe the emergence of Majorana Bound
States at the chain ends. Finally, we note that the scope of the experiments presented
here further demonstrates a general platform enabling long-range entanglement in con-
densed matter systems (Choi et al., 2000; Recher et al., 2001). For instance, we note that
three sequential CAR events involving four QDs realize a simple entanglement swapping
scheme (Bennett et al., 1993; Żukowski et al., 1993).
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5.5. SUPPLEMENTARY INFORMATION

5.5.1. NANOFABRICATION DETAILS
The device is fabricated by depositing an InSb nanowire with a micromanipulator on
top of a keyboard of 11 pre-patterned Ti/Pd gates. Nanowire and gates are separated by
a double-layer dielectric deposited with ALD: 10 nm of Al2O3 followed by 10 nm of HfO2.
Two superconducting Al contacts S1 and S2 are deposited with the shadow-wall lithog-
raphy technique (Heedt et al., 2021). The Al is deposited at a temperature of 140K and a
rate of 0.05 Å/s, alternating the deposition angle between 45◦ and 15◦ with respect to the
substrate. This produces a uniform Al coating, 9 nm thick, on three over six facets of the
nanowire, which has a hexagonal cross-section (Badawy et al., 2019). Without breaking
the vacuum, the Al is covered by 7 nm of Al2O3. Finally, two normal Cr/Au contacts NL

and NR are deposited at the two edges of the nanowire. Prior to Al deposition, the native
nanowire oxide is removed with a gentle H cleaning (Heedt et al., 2021); prior to Cr/Au
deposition, the oxide is removed with Ar milling.

5.5.2. SETUP DISCUSSION

VL

IL
VS1

IS1

VS2

IS2

VR

IR

NL NRS1 S2
Device

20 mK
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820 Ω
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Figure 5.6: Illustrative diagram of the measurement circuit. The total series resistance (Rs ≈ 4kΩ for the nor-
mal lead lines and Rs ≈ 3kΩ for the superconducting ones) is small compared to the typical device resistance
(RQD ∼ 1MΩ, see Fig. 5.9).

Electrical transport measurements are carried out in a dry dilution refrigerator with a
base temperature of 20mK, and electron temperature of≈ 25mK measured with a metal-
lic N-S tunnel junction thermometer. Electrical lines are filtered at the mixing cham-
ber plate with low-pass RC-filters (< 40kHz, see Fig. 5.6), low-pass π-filters (< 100MHz
to < 1GHz) and low-pass Cu-powder-filters (< 1GHz). More details can be found in
de Moor (2019, chapter 3)

As pointed out in the main text, every contact of the four-terminal device is con-
nected to an independent voltage source (VL, VS1, VS2, VR) and current meter (IL, IS1,
IS2, IR). Due to Kirchoff’s law, a minimal setup requires only 3 voltage differences and 3
current meters. We choose to set up 4 for symmetry reasons. Moreover, such a redun-
dant setup allows checking that the sum of all currents is compatible with the noise floor,
ruling out potential leakage currents to the gates.
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Through the main text, the voltage biases on the normal leads are set to ±Vb =±150µV.
This value is smaller than the energy of the lowest ABS and large enough to have an
appreciable bias window |eVb| for the QD chemical potentials.

FINGER GATE SETTINGS

We denote the voltages applied to the 11 finger gates with V1L, VQD1, V1R, VH1, V2L, VQD2,
V2R, VH2, V3L, VQD3, V3R from left to right. We set the hybrid gates VH1 and VH2 such
that both hybrids hold Andreev bound states (ABSs). Fig. 5.7 shows bias spectroscopy of
the two hybrids at Bx = 0.2T (x is the direction along the length of the nanowire), where
ABSs are easier to see due to their high g -factor ∼ 20 (Wang et al., 2022a). ABSs appear
for VH1 > 0.3V and for VH2 > 0.2V.
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Figure 5.7: a. Tunneling spectroscopy of the first hybrid as a function of VH1. b. Tunneling spectroscopy
of the second hybrid as a function of VH2. For both panels, Bx = 0.2T, V1L = VQD1 = 0.5V, V1R = −0.15V,

V2L = VQD2 = V2R = 0, V3L ≈ −0.1V, VQD3 = V3R = 0.5V. gL ≡ d IL
dVL

and gR ≡ d IR
dVR

are calculated by taking

the numerical derivative after applying a Savitzky-Golay filter of window length 3 and polynomial order 1.
VL,VR, gL, gR take into account a series resistance Rs = 7kΩ due to the dilution refrigerator lines and measure-
ment electronics.

.
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Figure 5.8: a., b., c. Tunneling spectroscopy of the first hybrid. We fix VH1 = 0.79V for all other figures (with
small changes within 0.05V, see the linked repository for further details). d., e., f. Tunneling spectroscopy of
the second hybrid. VH2 = 1.05V for all other figures. In all panels, V1L = 0.5V, VQD1 = 0.4V, V1R = −0.14V,
V2L = −0.02V, VQD2 = 0.472V, V2R = −0.015V, V3L = −0.055V, VQD3 = 0.49V, V3R = 0.5V. gL and gR are
calculated by taking the numerical derivative after applying a Savitzky-Golay filter of window length 3 and
polynomial order 1. VL,VR, gL, gR take into account a series resistance Rs = 7kΩ. Panels c. and f. report the
same data of Fig. 5.1c,d.

Since ECT followed by local Andreev reflection can mimic CAR (Schindele et al., 2014),
we set the gates in order to minimize local Andreev reflection while keeping a detectable
CAR signal. In order to do so, the hybrid gates are fine-tuned to the values of Fig. 5.8,
where both ECT and CAR signals are strong (see Fig. 5.2 in the main text), while the
tunneling barriers defining the quantum dots are kept as high as possible in order to
suppress local Andreev reflection. Typical barrier gate voltages are reported in Fig. 5.9.
Numbers might vary a little from Fig. to Fig. (within 0.01V), all values are available in the
linked repository.
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Figure 5.9: a., b., c. Coulomb diamonds for QDs 1-3. It is the same data reported in the main text in Fig. 5.1e-
g but with a logarithmic colorbar scale in order to visualize small currents inside the Coulomb-blockaded
regions. A linear interpolation between −0.03 and +0.03 avoids the logarithm divergence for small values.
All Coulomb diamonds are very sharp, a signature of high tunneling barriers. Only QD3, the QD where we
measured the strongest local Andreev reflection current, shows some current leaking inside the Coulomb
blockade diamond. Tunneling gates are set to V1L = −0.123V, V1R = −0.14V, V2L = −0.02V, V2R = −0.015V,
V3L =−0.053V, V3R =−0.395V.
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µ1 =µ3 AND µ1 =−µ3 TUNING

In Fig. 5.5 of the main text, the chemical potentials of QD1 and QD3 are set to be ei-
ther equal (Fig. 5.5a) or opposite (Fig. 5.5b). Both situations require careful calibra-
tion. Fig. 5.10 shows how VQD1 and VQD3 can be finely tuned in order to set µ1 = −µ3

(the µ1 = µ3 case is analogous). The chemical potentials are related to the gate volt-
ages via µ1 = α1(VQD1 −V1) and µ3 = α3(VQD3 −V3), where α1 = 0.32 and α3 = 0.31
are the lever arms and V1 ≈ 412mV and V3 ≈ 497mV are offsets. These values are ex-
tracted from the Coulomb diamonds of Fig. 5.1. Assuming equal lever arms, µ1 =−µ3 if
(VQD1−V1) =−(VQD3−V3), which means VQD1+VQD3 = constant ≡V+. Fig. 5.10 shows the
measured currents as the value of V+ is varied in small steps until the condition µ1 =−µ3

is reached.

c

b

a

d

Figure 5.10: µ1 = −µ3 tuning example. a., b., c., d. Sequence of current measurements as a function of VQD1
and VQD2 with VQD1 = −VQD3 +V+. V+ is varied in steps of 0.2mV from V+ = 909.4mV (panel a) to V+ =
910.0mV (panel d). Grey arrows highlight local pair tunneling (see Fig. 5.3) while black arrows highlight the
resonant CAR and ECT processes happening on the left when µ1 = µ2 = 0 (panels IL and IS1) and on the right
when µ2 = µ3 = 0 (panels IS2 and IR). As V+ increases, the left and right resonant CAR and ECT current spots
get closer and closer until they align in panel d, where µ1 =µ2 =µ3 = 0 at the center of the cross.
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5.6. EXTENDED DATA

5.6.1. SHIBA-ASSISTED LOCAL PAIR TUNNELING
A small but finite LAR in QD2 can lead to the formation of a Yu-Shiba-Rusinov state (Yu,
1965; Shiba, 1968; Rusinov, 1969; Bauer et al., 2007; Meng et al., 2009; Lee et al., 2013),
which has an electron and a hole part. Shiba-assisted local pair tunneling can occur
when QD3 is resonant with either the electron or the hole part of the Yu-Shiba-Rusinov
state on QD2. This process should then appear as two current features observing |µ2| =
|µ3|, one with a positive slope and the other with a negative slope in the measurement.
Contrary to the LAR taking place in QD3, for the SPT the electron-hole conversion occurs
in QD2. As a result, the current flows only when µ3 is between 0 and −eVR.

To better appreciate this feature, we report here the same measurement of Fig. 5.3
next to another measurement with opposite bias on NR and with QD2 slightly more cou-
pled to the right superconductor. Fig. 5.11a reports the same data of Fig. 5.3c, where
VR is positive, while Fig. 5.11b shows a similar measurement but with negative VR. For
better contrast, we repeat below both panels the same data after subtraction of the LAR
current (Fig. 5.11c,d). We observe a V-shaped signal, compatible with the |µ2| = |µ3| con-
dition. The orientation of the V-shape depends on the bias sign, it extends from µ3 ≈ 0
to µ3 ≈−eVR.

b

d

I      (pA)     LAR–I  

a

c

I      (pA)     LAR–I  

Positive  VR Negative  VR

Figure 5.11: a. Same data of Fig. 5.3c. VR = 150µV and V2R = −0.02V. b. Current through the device as a
function of VQD2 and VQD3, with VQD1 = 423.95mV, equivalent to µ1 ≈ 230µeV. The other gates are set to
V1L =−0.13V, V1R =−0.14V, VH1 = 0.7V, V2L =−0.01V, V2R = 0.01V, VH2 = 0.8V, V3L =−0.08V, V3R =−0.4V.
VR = −150µV. Here, QD2 is slightly more coupled to the right superconductor than in panel a. Consistently
with the SPT interpretation, the V-shaped current signature of the process is more visible. c, d. Same data of
panels a and b but with subtracted LAR, which is extracted from the average of the top and bottom linecuts at
fixed VQD2. Grey dashed lines highlight the V-shaped signature of SPT. Grey lines are intentionally offset from
resonance condition to not obscure data visibility.
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5.6.2. SECOND DEVICE
In Fig. 5.12 we report signatures of sequential CAR and ECT measured in a second device.
Additional data is shared in the linked repository, including three-dimensional current
measurements as a function of VQD1,VQD2 and VQD3 with VL and VR set in all possible
symmetric and anti-symmetric configurations (with Vb = 100µV). We include GIF im-
ages for data visualization.
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Figure 5.12: Signatures of sequential CAR and ECT processes in a second device. a. Schematic illustration of
resonant CAR and ECT tunneling. b. Current through the device as a function of VQD2 and VQD3, with µ1
out of the bias window (VQD1 = 294.65mV). c. Schematic illustration of sequential ECT and sequential CAR
processes. d. Current through the device as a function of VQD2 and VQD3, with µ1 within the bias window
(VQD1 = 295.15mV), measured with an antisymmetric bias configuration e. Schematic illustration of ECT fol-
lowed by CAR. f. Current through the device as a function of VQD2 and VQD3, with µ1 within the bias window
(VQD1 = 295.15mV), measured with a symmetric bias configuration. The arrow colors are chosen as in the
main text. In panels b, d, f, a constant background current is subtracted in every I panel for better visibility;
see the code in the linked repository for further details.





6
SIGNATURES OF MAJORANA

PROTECTION IN A THREE-SITE

KITAEV CHAIN

Majorana zero modes (MZMs) are non-Abelian excitations predicted to emerge at the edges
of topological superconductors. One proposal for realizing a topological superconduc-
tor in one dimension involves a chain of spinless fermions, coupled through p-wave su-
perconducting pairing and electron hopping. This concept is also known as the Kitaev
chain. A minimal two-site Kitaev chain has recently been experimentally realized using
quantum dots (QDs) coupled through a superconductor. In such a minimal chain, MZMs
are quadratically protected against global perturbations of the QD electrochemical poten-
tials. However, they are not protected from perturbations of the inter-QD couplings. In
this work, we demonstrate that extending the chain to three sites offers greater protection
than the two-site configuration. The enhanced protection is evidenced by the stability of
the zero-energy modes, which is robust against variations in both the coupling amplitudes
and the electrochemical potential variations in the constituent QDs. While our device of-
fers all the desired control of the couplings it does not allow for superconducting phase
control. The experimental observations are in good agreement with numerical simulated
conductances with phase averaging. This work pioneers the development of longer Kitaev
chains, a milestone towards topological protection in QD-based chains.

This chapter has been submitted to peer review as: Signatures of Majorana protection in a three-site Kitaev
chain, Alberto Bordin∗, Chun-Xiao Liu∗, Tom Dvir, Francesco Zatelli, Sebastiaan L. D. ten Haaf, David van
Driel, Guanzhong Wang, Nick van Loo, Thomas van Caekenberghe, Jan Cornelis Wolff, Yining Zhang, Ghada
Badawy, Sasa Gazibegovic, Erik P. A. M. Bakkers, Michael Wimmer, Leo P. Kouwenhoven, Grzegorz P. Mazur,
arXiv preprint arXiv:2402.19382. (2024).
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6.1. INTRODUCTION

T
he pursuit of topological superconductivity is driven by its potential for
decoherence-free quantum computing (Kitaev, 2003; Nayak et al., 2008)
and high fidelity quantum gates. Topological superconductor hosts zero-
energy subgap states, called Majorana zero-modes (MZMs). Majorana
zero modes stand apart from bosons and fermions as they are predicted

to exhibit non-Abelian exchange statistics. The act of braiding, or exchanging the order
of these particles, alters their wavefunction properties. Braiding is a bedrock of topo-
logical quantum computation. Topological superconductors, however, are difficult to
find in nature and, thus, it is appealing to engineer such systems in the laboratory. For
more than a decade the field of topological superconductivity has seen many systems
emerging as potential realizations of this new state of matter. These include proximi-
tized Rashba nanowires (Lutchyn et al., 2010; Oreg et al., 2010; Prada et al., 2020), chains
of magnetic atoms on superconductors (Nadj-Perge et al., 2014), 2D van der Waals based
stacks (Kezilebieke et al., 2020), phase-biased Josephson junctions (Pientka et al., 2017;
Fornieri et al., 2019; Ren et al., 2019), iron based superconductors (Zhang et al., 2018)
and more (Vaitiekėnas et al., 2020; Banerjee et al., 2023). Recently, a compelling alterna-
tive has been pioneered, using two quantum dots coupled through superconductors to
form a minimal Kitaev chain (Kitaev, 2001; Sau and Das Sarma, 2012; Dvir et al., 2023;
ten Haaf et al., 2024a). Even shortest, two-site Kitaev chain hosts a pair of MZMs (Lei-
jnse and Flensberg, 2012a). These MZMs, however, lack topological protection and have
been referred to as Poor Man’s Majoranas (PMMs). In this work, we show an experimen-
tal realization of a three-site chain, where emerging Majorana zero-modes are protected
against perturbations of their couplings as well as improved stability against chemical
potential variations. This achievement also demonstrates the ability of these systems to
scale up to longer chains and shows the onset of topological protection.

6.2. COUPLING QUANTUM DOTS
In order to engineer a three-site Kitaev chain Hamiltonian Kitaev (2001); Sau and Das Sarma
(2012)

H =
3∑

n=1
µnc†

ncn +
2∑

n=1

(
tnc†

ncn+1 +∆nc†
nc†

n+1 +h.c.
)

, (6.1)

where c†
n and cn are the fermionic creation and annihilation operators, we need con-

trol over the onsite energies µn , the hopping terms tn and the pairing terms ∆n . In our
semiconducting nanowire device, shown in Fig. 6.1a-b, three quantum dots are defined
by an array of bottom gates, with VQD1, VQD2 and VQD3 controlling the electrochemical
potentials µn of every QD. The hopping term tn is realized by elastic co-tunneling (ECT)
between the dots, whereas ∆n is achieved through the crossed Andreev reflection (CAR)
(Sau and Das Sarma, 2012), which splits Cooper pairs into two adjacent quantum dots
(Hofstetter et al., 2009, 2011; Herrmann et al., 2010; Ranni et al., 2021). Schematics of
these two processes are depicted in Fig. 6.1b-c. To lift the spin degeneracy, as prescribed
by the Hamiltonian of Eq. 6.1, we apply a magnetic field parallel to the nanowire axis
(Bx = 200mT). This leads to spin-polarization of the quantum dots (Fig. 6.6). Neverthe-
less, CAR and ECT are allowed for all spin configurations, due to spin-orbit interaction
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(Wang et al., 2022a, 2023). Tunneling spectroscopy of our semiconductor–superconductor
hybrid segments (referred to as hybrids further in the text) is also performed at a finite
field and is presented in the Supplementary Information (Fig. 6.7). In our previous work
(Bordin et al., 2024b), we confirmed the presence of t1,2 and ∆1,2 by detecting ECT and
CAR across two hybrid segments with weakly coupled quantum dots. Here, we target
strong couplings: tn ,∆n ≫ kB T , where kB is the Boltzmann constant and T the temper-
ature.

a

b

InSb AuAl

VH1 VH2

I R
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I L

VQD1 VQD2 VQD3 VR

t1

∆1

t2

∆2
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∆2

Elastic co-
tunneling (ECT)

tn

c Crossed Andreev
re�ection (CAR)

∆n
QDn QDn+1

Figure 6.1: a. Illustrative diagram of the device. A semiconducting InSb nanowire (green) is placed on an array
of eleven gates (pink), and contacted by two Al (blue) and two Cr/Au (yellow) leads. The gates, separated from
each other and from the nanowire by a thin dielectric, form a potential landscape defining three QDs, con-
trolled by the plunger gate voltages VQD1, VQD2, VQD3. The QDs are connected by two hybrid semiconducting-
superconducting sections controlled by VH1 and VH2. The superconductors are separately grounded through
room temperature electronics, while the left and right normal probes are connected to corresponding voltage

sources (VL, VR) and current meters (IL, IR). Differential conductances
(
gL ≡ d IL

dVL
, gR ≡ d IR

dVR

)
are measured

with standard lockin techniques. A scanning electron micrograph of the device is shown in Fig. 6.13. b-c.
Schematic illustrations of ECT and CAR processes. d-f. QD–QD charge stability diagrams (where |n1,n2,n3〉
indicate the effective charge occupations). Zero-bias conductance is measured across two charge degeneracy
points for every pair of QDs. (We attribute the finite background conductance of ≈ 15mG0 on the left and
≈ 8mG0 on the right to finite capacitive response to lockin excitations of the dilution refrigerator lines, such
background remains constant throughout the manuscript). Avoided crossings indicate strong coupling be-
tween each pair; while crossings signal that couplings between the dots are equalized (Dvir et al., 2023). In
panel c, QD3 is kept off-resonance, in panel d, QD1 is kept off-resonance, while, in panel e, QD2 is set close to
resonance, as the schematics above indicate.

Indeed, the minimum value among tn and ∆n determines the amplitude of the topolog-
ical gap in a long Kitaev chain (Sau and Das Sarma, 2012; Fulga et al., 2013). To couple
the QDs we rely on the Andreev Bound States (ABSs) populating the hybrids (Liu et al.,
2022; Bordin et al., 2023; Zatelli et al., 2024). Measuring the zero-bias conductance on

the left and the right of the device
(
gL ≡ d IL

dVL
, gR ≡ d IR

dVR

)
, we optimize the coupling site by

site, as shown in the Supplementary Information (Fig. 6.8), until we see the appearance
of several avoided crossings in the charge stability diagrams of Fig. 6.1c-e. Panels c and d
show avoided crossings between QD1 and QD2 and between QD2 and QD3 respectively.

Remarkably, the coupling between neighboring QDs is strong enough to mediate in-
teraction even between the outer QDs (panel e). We note that the coupling between QD1
and QD3 is mediated by the middle QD as it is suppressed if QD2 is moved off-resonance
(see Fig. 6.10).
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6.3. TUNING 2-SITE KITAEV CHAINS
After demonstrating strong coupling between the quantum dots, the next goal is to
demonstrate the tunability of the chain. Ideally, ECT and CAR amplitudes should be
balanced pairwise, setting: {

t1 =∆1

t2 =∆2
(6.2)

We begin by illustrating in Fig. 6.2 how each condition of Eq. 6.2 can be individually
met, with the constraint of keeping constant voltages on the three central gates forming
QD2. In the measurements of the left column of Fig. 6.2, QD3 is kept off-resonance,
such that the low-energy behavior of the chain is effectively two sites. When t1 =∆1, we
observe level crossing instead of repulsion in Fig. 6.2a (Dvir et al., 2023). The spectrum
at the center, shown in Fig. 6.2c, shows a zero-bias conductance peak corresponding to
a Poor Man’s Majorana mode (PMM) (Leijnse and Flensberg, 2012a), with excitation gap

γ γ γ γ

Left 2-site chain Right 2-site chain

PMM

ABS
2t1

Figure 6.2: Two-site Kitaev chains tuned on both ends of the device. In the left column QD1 and QD2
are on resonance while QD3 is being kept off-resonance as depicted in the schematic (δVQD3 = −5mV).
With δVQD1/2/3 we indicate the deviations from the crossing points, here happening at VQD1 = 0.3995V,
VQD2 = 0.2445V and VQD3 = 0.2275V a. QD1–QD2 charge stability diagram at a sweet spot where t1 = ∆1.
b. Conductance spectroscopy as a function of simultaneous detuning of QD1 and QD2. c. Line-cut depicting
spectrum at δVQD1 = δVQD2 = 0V illustrating a zero-bias peak (red arrow) and a gap of ∼ 20µeV (green arrows).
An ABS is visible at a higher bias (grey arrows). Right column: QD2 and QD3 are kept on resonance, while QD1
is kept off-resonance as depicted in the schematic (δVQD1 =−4mV). d. QD2–QD3 charge stability diagram at
a t2 = ∆2 sweet spot. e. Conductance spectroscopy as a function of simultaneous detuning of QD2 and QD3.
f. Line-cut depicting spectrum at δVQD2 = δVQD3 = 0V, illustrating a zero-bias peak and a gap of ∼ 40µeV.
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being 2t1 = 2∆1 ≈ 20µeV. As pointed out in Leijnse and Flensberg (2012a), if µ1 and µ2

are detuned from 0, then the PMMs split quadratically from zero energy, as shown in
Fig. 6.2b. Similarly, the right column of Fig. 6.2 studies the case where QD1 is kept off-
resonance and the PMM pair appears on the right side of the device when t2 = ∆2. We
note that the gap of the right PMM pair is ≈ 40µeV, twice as much compared to the left
PMM pair. This is achieved with a higher degree of hybridization between the ABSs of the
right hybrid and the neighboring quantum dots (Fig. 6.9), resulting in higher coupling
strengths as well as lower QD lever arms (Zatelli et al., 2024). Although it is possible to
tune the amplitudes of tn and ∆n to be all equal, we choose to focus on the scenario
where they are equal only pairwise. This approach allows us to identify spectral features
arising from different coupling values in the chain.

6.4. THE THREE-SITE CHAIN
Having satisfied the pairwise condition of Eq. 6.2, we tune into the three-site Kitaev chain
regime by setting all QDs on resonance. Fig. 6.3 shows the spectrum of such a system,
tunnel-probed from the left and the right (first and second row, respectively), as a func-
tion of the detuning of every QD (first, second, and third column).

The first observation is zero-bias conductance peaks manifesting on both ends of
the device, remaining stable against the detuning of any constituent QD. Furthermore,
spectroscopies from the left and the right reveal identical gate dispersions of the excited
states, albeit with different intensities. Excited states originating from the left two sites
are expected to couple more strongly to the left lead, while excited states originating
from the right pair are expected to couple more strongly to the right one. Indeed, we
identify excited states corresponding to 2t1 = 2∆1 ≈ 20µeV, marked by blue arrows in
Fig. 6.3(a,c). Such states disperse only as a function of VQD1 and VQD2 and have higher
gL, signaling a higher local density of states. For the right side of the device, similar
reasoning applies to the states marked by green arrows in Fig. 6.3(d,f), from which we
estimate 2t2 = 2∆2 ≈ 60µeV.

Experiment Theory

Figure 6.3: a-c. Conductance spectroscopy from the left lead, as a function of the detuning of individual quan-
tum dots δVQDn constituting the chain. By looking at the excited states when QD3 is off-resonance, we can
estimate the left couplings to be 2t1 = 2∆1 ≈ 20µeV (blue arrows in panel c). d-f. Analogously, this section
illustrates conductance spectroscopy from the right lead. When QD1 is off-resonance we can estimate the left
couplings to be 2t2 = 2∆2 ≈ 60µeV (green arrows in panel d). g-l. Each panel depicted here presents the results
of numerical simulations corresponding to measurements presented in panels a to f.
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Importantly, we observe a finite conductance between the first excited state and the
zero-bias peak (grey arrow in Fig. 6.3b). While we have successfully equalized the am-
plitudes of the coupling parameters, another significant parameter to consider is the
phase difference between them. In the Kitaev chain Hamiltonian (Eq. 6.1), the terms tn

and ∆n are complex numbers, each with a distinct, non-trivial phase: tn = |tn |e iφn,t and
∆n = |∆n |e iφn,∆ .

In the context of a two-site Kitaev chain, the consideration of these phases is redun-
dant as they can be absorbed into the quantum dot modes via a gauge transformation
(Sau and Das Sarma, 2012). The scenario changes, however, with a three-site Kitaev
chain, where only three out of the four phases can be similarly absorbed, leaving one
phase as an independent parameter. In our system, the phase difference originates from
the superconducting leads, which then translates into the phase difference between ∆1

and ∆2, as explained in the Supplementary Information. To understand the spectro-
scopic results presented in Fig. 6.3, we offer the following interpretation. Conceptually,
the device’s central part is a Josephson junction, which doesn’t exhibit any measurable
supercurrent when the device is tuned in a three-site chain configuration (see Fig. 6.11).
As a result, the junction behaves ohmically and can support an infinitesimal voltage dif-
ference. According to the second Josephson relation (Tinkham, 2004), finite voltage bias

in Josephson junctions induces phase precession: dφ
d t = 2eV

ħ . In our experiment, the
voltage bias between the two superconducting leads cannot be set to zero with arbitrary
precision due to voltage divider effects, thermal fluctuations, finite equipment resolu-
tion, and noise levels. We estimate the voltage difference to be on the order of δV ∼ 1µV
(see Supplementary Information). The corresponding phase difference precesses with
periods of Tφ = h

2eδV ∼ 2 ns. This is a very small time scale relative to the DC measure-
ment time (∼ 1s). We thus assume that the spectra obtained for a three-site chain are
uniformly averaged over possible phase differences. Fig. 6.3g-i shows the average simu-
lated conductance of 50 phase selections uniformly distributed from 0 to 2π. Here, the
system of Eq. (6.1)is coupled to external normal leads and the differential conductances
are calculated using the scattering matrix method (see Supplementary Information for
more details). Within our interpretation, the zero-bias conductance peaks are still in-
duced by Majorana zero modes. In particular, the Majoranas that should appear in a
three-site Kitaev chain with zero phase difference would remain at zero energy regard-
less of the phase uncertainty. However, a major effect of the superconducting phase
deviation is the change in the size of the energy gap, ranging from its maximum value
2t at 0-phase to 0 at π-phase. Our theoretical model reproduces the features observed
in the experiment accurately, despite having only a few parameters. As opposed to a
spinful model treating the ABSs in the hybrids explicitly (Tsintzis et al., 2024; Liu et al.,
2023), the effective spinless model we are considering here only requires the fitting of
the coupling to the leads ΓL/R ; all other model parameters are estimated from indepen-
dent measurements (see Supplementary Information). We note that these observations
have been replicated also on another nanowire device with similar values of tn and ∆n ,
as presented in Fig. 6.12.
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6.5. INCREASED PROTECTION

2-site chain 3-site chain

Figure 6.4: Stability of a zero-energy state against electrochemical potential variations. Left conductance
spectroscopy of the device in a 2-site chain configuration (panel a) and three-site chain configuration (panels
b and c). Theory simulations are reported in Fig. 6.14. a. Spectrum of a two-site chain at the left of the device
(as Fig. 6.2c) showing the splitting of Poor Man’s Majorana modes as a function of simultaneous detuning of
QD1 and QD2. QD3 is off-resonance at δVQD3 =−5mV. b. A three site chain configuration where δVQD3 = 0V
. The zero-bias conductance peak persists over the full scanned range. See Fig. 6.16 for similar measurements
as a function of the detuning of any pair of QDs. c. Three site chain spectrum as a function of simultaneous
detuning δV of QD1,2,3. A visible splitting is observed once all the dots are detuned by δV = 1mV. d. Line-cuts
of previous panels taken at δV = 1mV for a 2-site chain (blue) and a three-site one (green and red). The arrows
highlight the splitting of the zero-bias peak.

Fig. 6.4 compares the robustness of two- and three-site chains against electrochemical
potential variations. As shown in Fig. 6.2, detuning both QDs of two-site chains leads
to the splitting of the Majorana modes. In panels a and b of Fig. 6.4 we compare such a
scenario with the detuning of the same two QDs in a three-site chain. Apart from VQD3,
all the gate settings are identical, but the spectrum measured from the left probe shows
for the three-site chain a stable zero-bias peak.

To split the zero energy modes of three-site chains, all QDs need to be detuned, as
shown in panel c, and even in this case they disperse slower compared to the two-site
scenario. As we demonstrate in the Supplementary Information (Eq. 6.14), if all elec-
trochemical potentials of a three-site chain are detuned, the zero modes should split
cubically. See Fig. 6.14 in the Supplementary Information for theoretical simulations,
Fig. 6.15 for a comparison with the right two-site chain and Fig. 6.16 showing the stabil-
ity of three-site chain Majorana modes against the detuning of any pair of QDs.

Finally, Fig. 6.5 compares the robustness of two- and three-site chains when leaving
the pairwise sweet-spot condition of Eq. 6.2. As opposed to electrochemical potential
detuning, two-site chains have no protection against tunnel coupling deviations: per-
turbing either t or∆ results in a linear splitting of the zero modes (Leijnse and Flensberg,
2012a; Dvir et al., 2023; Zatelli et al., 2024). Here we reproduce such a result in panel a of
Fig. 6.5. When QD3 is off-resonance, the zero bias peak of the left two-site chain is split as
soon as the VH1 controlling the t1 and∆1 ratio is detuned from the sweet-spot value (pink
arrow). However, if we repeat the same measurement for the three-site Kitaev chain af-
ter bringing QD3 back on resonance, the zero-bias conductance peak persists over the
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entire VH1 range (Fig. 6.5b), indicating tolerance to tunnel coupling deviations. We note
that the VH1 range of Fig. 6.5 is large enough to pass through a gate jump (blue arrow),
which we find reproducible across multiple scans. While gate jumps can greatly affect
the spectrum of 2-site chains, we find that a 3-site one is robust against them. Since the
zero-bias peak persists, the gate jump clearly visible in panel a becomes barely notice-
able in Fig. 6.5b. Finally, we stress that the stability of a zero-bias peak in a two-site chain
can be larger than presented in Fig. 6.5a. For instance, when the dispersion of t and∆ as
a function of VH are similar (Bordin et al., 2023), the region with t ≈∆ will be extended.
An example of such a scenario is presented in the Fig. 6.18.

t1

∆1

2-site chain 3-site chain
t1

∆1
t2 ∆2=
µ3 0≠{ t2 ∆2=

µ3 0={

Figure 6.5: Comparison of stability against variation of t and ∆ in a two- and three-site Kitaev chain. a.
Conductance spectroscopy of a two-site chain as a function of VH1, which controls the magnitude of t1 and
∆1. QD3 is kept off-resonance. b. QD3 is brought into resonance with the other two quantum dots in order
to measure the spectrum of a three-site chain. Here, the zero-bias conductance peak persists over the entire
VH1 range > 40mV. A blue arrow indicates a reproducible gate jump observed in this parameter region. See
also Figs. 6.17, 6.18 and 6.20 for a higher resolution scan, a symmetric study of the right side and theoretical
simulations.

The results presented in Figures 6.4 and 6.5 demonstrate the enhanced protection of
three-site chain Majorana zero modes compared to two-site chain ones. In particular,
MZMs in three site chains are resilient against perturbations in the couplings tn and ∆n

(Fig. 6.5), which is expected to be the main limiting factor of coherence of Poor Man’s
Majorana-based qubits. The coherence time of a qubit made of 2-site Kitaev chains was
previously predicted to be∼ 10ns (Zatelli et al., 2024). Based on the parameters extracted
from the current experiment, in the Supplementary Information we estimate a qubit co-
herence time for a three-site Kitaev chain atφ= 0 to be around ∼ 1µs (we remark that the
coherence time of three-site Kitaev chains without phase control is limited by the time
scale of phase evolution Tφ due to Landau-Zener (Knapp et al., 2016) transitions near
gap closing). This two orders of magnitude improvement provides further motivation
for developing devices with phase control. By increasing the number of sites, the protec-
tion of MZMs against perturbations of µn , tn , and∆n is expected to increase further (Sau
and Das Sarma, 2012). In particular, we estimate that a 5-site chain would be enough
for a target qubit lifetime of ∼ 1ms (Fig. 6.21). Here we stress that while extending the
chain length always leads to a quantitative enhancement in protection, the transition
from two to three sites introduces also two qualitative differences, which become ev-
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ident by looking at the leading perturbation terms of the Kitaev Hamiltonian (6.1) for
φ= 0, (tn −∆n) ≈ 0 and µn ≈ 0 for all n:

[2-site chain] (t −∆)+ µ1µ2

2t
(6.3)

[3-site chain]
(t1 −∆1)µ3

2t2
+ µ1(t2 −∆2)

2t1
+ µ1µ2µ3

(2t1)(2t2)
+ (t1 −∆1)µ2(t2 −∆2)

(2t1)(2t2)
(6.4)

First, looking at the numerators of equations 6.3 and 6.4, 2-site chain Majoranas can split
with a single perturbation (t −∆), while three-site chains are the smallest ones where no
single-parameter perturbation, by itself, can couple the two edge Majorana modes: all
terms are a product of at least two factors. Secondly, looking at the denominators, two-
site chains are not protected by the 2t gap. With three sites, instead, all perturbation
terms have the 2t1/2 gap at the denominator.

This onset of topology, given by the additional QD acting as the “bulk” gap of the
chain, motivates new research directions, including longer chains, qubit experiments
(Pino et al., 2024; Tsintzis et al., 2024; Spethmann et al., 2022) and the pursuit of new
material combinations which could provide larger gap (Kanne et al., 2021; Pendharkar
et al., 2021; Mazur et al., 2022).

6.6. CONCLUSION
In this study, we have realized a strongly coupled three-quantum-dot chain engineered
via coherent coupling of the constituent dots through CAR and ECT processes. Our de-
vices have demonstrated the capability to host two adjacent two-site Kitaev chains. Ad-
ditionally, we illustrate that when the three dots are on resonance, the system exhibits
the spectrum expected for a three-site Kitaev chain, averaged across all possible phase
differences. The setup permits the investigation of the MZM stability to variations in
the electrochemical potential, as well as influences from CAR and ECT. This achieve-
ment addresses a key limitation of two-site Kitaev chains, where the finite overlap of
MZM wavefunctions is considered a primary decoherence In conclusion, extending Ki-
taev chains improves stability against µn , tn and∆n , appreciated even without the phase
control, the next step towards qubit experiments.
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6.7. SUPPLEMENTARY INFORMATION

6.7.1. THEORETICAL MODEL AND SIMULATION
The Hamiltonian of a three-site Kitaev chain is

HK 3 =µ1n1 +µ2n2 +µ3n3 + t1(c†
2c1 + c†

1c2)+ t2(c†
3c2 + c†

2c3)

+∆1(c†
2c†

1 + c1c2)+∆2(e iφc†
3c†

2 +e−iφc2c3). (6.5)

Here ci is the annihilation operator of the orbital in dot i , ni = c†
i ci is the occupancy, µi is

the orbital energy relative to the superconductor Fermi energy. ti and ∆i are the normal
and superconducting tunnelings between dots i and i +1, and φ is the phase difference
between the two superconducting leads. Physically, t ’s and ∆’s are the ECT and CAR
amplitudes mediated by the subgap Andreev bound states in the hybrid segments. In
the Nambu basis, the above Hamiltonian can be written as

H = 1

2
Ψ† ·hBdG ·Ψ,

Ψ= (c1,c2,c3,c†
1 ,c†

2 ,c†
3)T ,

hBdG =




µ1 t1 0 0 −∆1 0
t1 µ2 t2 ∆1 0 −∆2e iφ

0 t2 µ3 0 ∆2e iφ 0
0 ∆1 0 −µ1 −t1 0

−∆1 0 ∆2e−iφ −t1 −µ2 −t2

0 −∆2e−iφ 0 0 −t2 −µ3




. (6.6)

When the system is coupled to normal leads, the scattering matrix describing the trans-
mission and reflection amplitudes between modes in the leads can be expressed by the
Weidenmuller formula

S(ω) = 1− iW †
(
ω−hBdG + i

2
W W †

)−1

W (6.7)

where the tunnel matrix W is defined as

W = diag
(√
ΓL ,0,

√
ΓR ,−

√
ΓL ,0,−

√
ΓR

)
, (6.8)

with ΓL/R being the dot-lead coupling strength on the left and right ends respectively. At
zero temperature, the differential conductance is expressed as

G (0)
i j (ω) ≡ d Ii /dV j = δi j −

∣∣∣See
i j (ω)

∣∣∣
2
+

∣∣∣She
i j (ω)

∣∣∣
2

(6.9)

in unit of e2/h. Here i , j = 1,2,3, and ω denotes the bias energy in the leads. The finite-
temperature conductance is obtained by a convolution between the zero-temperature
one and the derivative of the Fermi distribution

GT
i j (ω) =

∫ +∞

−∞
dE

G (0)
i j (E)

4kB T cosh2[(E −ω)/2kB T ]
. (6.10)
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In performing the numerical simulations, we choose the coupling strengths to be t1 =
∆1 = 10 µeV , t2 = ∆2 = 30 µeV based on the positions of the excited states shown in
Fig. 6.3. The electron temperature in the normal leads, T ∼ 35mK, corresponds to a
broadening kBT ∼ 3µeV. The strengths of the lead-dot couplings are chosen to be ΓL =
1.5µeV, ΓR = 0.3µeV, such that the conductance values obtained in the numerical sim-
ulations are close to those in the experimental measurements. Moreover, to capture the
effects of lever arms strength differences in the three dots, we choose δµ1 = δµ,δµ2 =
δµ,δµ3 = 0.3 δµ. Crucially, we notice that in the particular experimental devices stud-
ied in this work, since the voltage bias between the two superconducting leads cannot
be set to zero precisely, 0.1µV ≲ δV ≲ 1µV, the phase difference precesses with periods
of 2ns ≲ Tφ ∼ h

2eδV ≲ 20ns. On the other hand, the lifetime of an electron spent in a
quantum dot is at the order of τe ∼ ħ/Γ ∼ 1ns. This is the time scale of a single event
of electron tunneling giving electric current, which would take a random value of phase
difference φ since τe is smaller than or of similar order as the period of the phase wind-
ing Tφ. On the other hand, both τe and Tφ are a very small time scale relative to the DC
current measurement time (∼ 1s). Therefore, any particular data point collected in the
conductance measurement is an average over ∼ 109 tunneling events with different pos-
sible phases. Theoretically, we capture this effect by performing a phase average on the
differential conductance as follows

〈GT
i j (ω)〉φ ≡

∫ 2π

0

dφ

2π
GT

i j (ω,φ). (6.11)

The numerically calculated conductances shown in the main text are obtained by aver-
aging over 50 values of phases evenly distributed between 0 and 2π.

ENHANCED PROTECTION

For the Majorana zero modes at the sweet spot of an N -site Kitaev chain (ti =∆i ,µi = 0),
its energy deviation against onsite chemical potential fluctuation can be expressed as

δEKN ≡ Eodd ,g s −Eeven,g s =µN

N−1∏
i=1

µi

2ti
, (6.12)

where ti = ∆i are the strengths of the normal and superconducting couplings between
sites i and i +1. In particular, for a two-site Kitaev chain, the energy deviation is

δEK2 =
µ1µ2

2t
=CK2 · µ̃2, (6.13)

whereµi =µ and µ̃=µ/(µeV ) is dimensionless. Note that for a two-site Kitaev chain, the
protection is quadratic. Here, the unit of CK2 isµeV , the physical meaning of which is the
energy deviation when both dot orbitals are away from the fermi energy by 1 µeV. Using
the values obtained in the measurements, i.e., t1 = 15 µeV and t2 = 30 µeV, we estimate
that C2 = 3.33×10−2 and 1.66×10−2 for the left and right pairs of PMM, respectively. For
an extended three-site Kitaev chain, the energy deviation becomes

δEK3 =
µ1µ2µ3

4t1t2
=CK3 · µ̃3, (6.14)
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which is a cubic protection. Now CK3 = 5.55× 10−4, which is smaller than CK2 by two
orders of magnitudes, indicating a significantly enhanced degree of protection in the
three-site Kitaev chain than its two-site version. Moreover, we illustrate the physical
meaning of “exponential protection” in scaling up a Kitaev chain. Without loss of gener-
ality, assuming homogeneity of the model parameters (ti =∆i = t ≡ Eg /2 with Eg being
the energy gap), we have

δEKN =µN

N−1∏
i=1

µi

2ti
= µN

E N−1
g

= Eg

(
µ

Eg

)N

= Eg exp{−N log
(
Eg /µ

)
}. (6.15)

Physically, it means that when the onsite energies of all the N dots are detuned from
zero by the same amount µ≪ Eg , the energy splitting of the Majorana zero modes will
decrease exponentially fast with the increasing number of sites at a rate of log

(
Eg /µ

)
.

DERIVATION OF THE EFFECTIVE THREE-SITE KITAEV CHAIN MODEL

In this section, we derive the effective Hamiltonian of a three-site Kitaev chain from a
more microscopic level. For the three quantum dots, in the presence of large Zeeman
spin splitting and Coulomb interaction, we can approximate it to a single spin-polarized
orbital as below:

HDi =µi (ni↑+ni↓)+2EZni↑+UD ni↑ni↓ ≈µi ni↓, (6.16)

for i = 1,2,3 and µi ≈ 0. Here in the derivation, we focus on the spin-down orbitals in all
dots, but the analysis holds for other spin polarizations as well. On the other hand, the
hybrid segment hosts subgap Andreev Bound States, of which the Hamiltonian is

HA j =µ j (n j↑+n j↓)+|∆ind
j |(e iφ j c†

j↑c†
j↓+e−iφ j c j↓c j↑) (6.17)

where j = L,R, and |∆ind
j | is the magnitude of the induced gap, and φ j is the supercon-

ducting phase. The coupling between the dot and the hybrid is described by the follow-
ing tunnel Hamiltonian

Htunn =
∑

i=1,2

∑
σ=↑,↓

(
wc†

iσdiσ+σwsoc†
iσ

diσ+wd †
i+1σciσ+σwsod †

i+1σ
ciσ

)
+h.c., (6.18)

where w and wso are the tunneling amplitudes for spin-conserving and spin-flipping
processes. As shown in Ref. (Liu et al., 2022), in the tunneling regime, i.e., w, wso ≪
|∆ind|, the Andreev bound states in the hybrid will mediate normal and superconduct-
ing couplings of quantum dots via elastic cotunneling and crossed Andreev reflection
processes, giving

t1 = (w2 −w2
so)

u2
L − v2

L

E AL
,

∆1 = w wso
2uL vL

E AL
e iφL ,

t2 = (w2 −w2
so)

u2
R − v2

R

E AR
,

∆2 = w wso
2uR vR

E AR
e iφR , (6.19)
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where u j , v j are the BCS coherence factors of the ABS, and E A j =
√
µ2

j + (∆ind
j )2 is the

excitation energy. Thereby, by varying the chemical potential of the ABS, we can obtain
the sweet spot by balancing the normal and superconducting coupling strengths (|ti | =
|∆i |). Furthermore, by performing a gauge transformation on the dot orbitals, we can
remove the possible phases in three couplings in Eq. (6.19), and obtain

t1 →|t1|, ∆1 →|∆1|,
t2 →|t2|, ∆2 →|∆2|e iφ,

φ=φR −φL +arg(t1)+arg(t2). (6.20)

That is, the effect of the phase difference between the two superconducting leads is now
completely absorbed in a single parameter φ. We therefore justify the use of the effec-
tive Hamiltonian in Eq. (6.5) as the low-energy description of the dot-hybrid array. We
emphasize that in performing numerical simulations of dot energy detuning, as shown
in Figs. 6.3 and 6.4, the couplings between dots are just denoted by t j ,∆ j , while when
considering the effect of voltage change in the hybrid segment for Fig. 6.20e-f, we rein-
troduce the effect of ABS using Eq. (6.19) for the couplings in order to capture the µA

dependence features.

ESTIMATION OF DEPHASING RATE FOR THE KITAEV CHAIN QUBIT

In this subsection, we perform a numerical estimation of the dephasing time of different
types of Kitaev chain qubits, similar to Zatelli et al. (2024) in spirit. In particular, we
consider three different types of Kitaev chain qubits: two-site Kitaev chain with weak
and strong dot-hybrid coupling, and three-site Kitaev chain with a fixed phase difference
φ= 0. A qubit consists of two copies of Kitaev chains, H A

K and H B
K , respectively. Without

loss of generality, we focus on the subspace of total parity even, and therefore the two
qubit states are defined as |0〉 = |e A ,eB 〉 and |1〉 = |oA ,oB 〉, where |o〉 and |e〉 denote the
odd- and even-parity ground states in each chain and |e A ,eB 〉 ≡ |e〉A ⊗|e〉B is the tensor
state. Note that here we do not consider inter-chain coupling, which depends on the
device details that have not been implemented so far, thus going beyond the scope of
this work. Therefore our estimation only provides an upper limit of the dephasing time
in a Majorana qubit. Furthermore, we assume that charge noise within a Kitaev chain
is the main source of decoherence in the device we consider here. As such, the energy
difference between the two qubit states would fluctuate, giving rise to a dephasing rate
1/T ∗

2 ∼ δE/ħ where δE is the characteristic energy splitting of Eoo −Eee .
Generally, charge noise is dominated by fluctuations of charge impurities in the en-

vironment. However, as shown in Scarlino et al. (2022), the charge impurity fluctuations
can be equivalently described by fluctuations in the gate voltages. Theoretically, the volt-
age fluctuations enter the Kitaev-chain Hamiltonian as follows:

δµi =αi ·δVi ,

δt j =
∂t j

∂VH j

·δV j , (6.21)

with αi being the lever arm of the i -th quantum dot. In the second formula, the deriva-
tive is extracted from a single pair of PMM (Fig. 6.5a). We emphasize that the fluctuations
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Device parameters QD-PMM YSR-PMM Kitaev-3 (φ= 0)
αQD [e] 0.3 0.04 0.04

∂t/∂VH [e] 5×10−3 5×10−3 5×10−3

t ,∆ [µeV] 10 40 10(left), 30(right)
1/T ∗

2 [MHz] (µ noises) ∼ 900 ∼ 4 ∼ 0.1
1/T ∗

2 [MHz] (t noises) ∼ 100 ∼ 100 0
1/T ∗

2 [MHz] (all noises) ∼ 900 ∼ 100 ∼ 2

Table 6.1: Estimation of dephasing rate for different types of Kitaev chain qubits, assuming charge noise to be
the only source of noises.

of t j and ∆ j are correlated because both of them are induced by the ABS in the hybrid,
which is controlled by a single electrostatic gate.

Here as a first-order approximation, we assume that the fluctuations are on t j while
∆ j remains constant. Charge noise is also known as slow-varying in time, and thus can
be well described quasi-static disorder approximation [Phys. Rev. B 109, 125410 (2024)].
We generate 5000 different disorder realizations of the set of gate voltages. Moreover,
we assume two chains in a qubit are subject to independent sources of charge noises
and thus we can calculate their energy splitting individually and the energy splitting of
the qubit states is just the sum as Eoo −Eee = (E A

o −E A
e )+ (E B

o −E B
e ). Finally, we take the

standard deviation of 〈Eoo −Eee〉std , which eventually gives the dephasing rate.
The voltage fluctuations obey Gaussian distribution with mean zero and standard

deviation δV ∼ 10µeV, as discussed in a similar experimental device (Zatelli et al., 2024).
In our models of Kitaev chains, we consider independent fluctuation sources in dots,
and in the hybrid segment. Our analysis considers three distinct scenarios: dephasing
due to dot energies only, hybrid coupling only, and both of them. The device parameters
used in our numerical simulations and the results of the estimations are summarized in
Table 6.1. In Fig. 6.21, we show how dephasing time T ∗

2 scales with the number of chain
sites. For a fair comparison, we now choose the model parameters (e.g. ti =∆i = 20µeV
and lever arms αD = 0.04e) to be identical for all N .
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6.7.2. NANOFABRICATION AND SETUP
Our hybrid nanowire devices have been fabricated by means of the shadow-wall lithog-
raphy technique thoroughly described in Heedt et al. (2021). Specific details are de-
scribed in the Device structure paragraph of (Bordin et al., 2024b) and its Supplementary
Information, which reports a detailed description of the dilution refrigerator setup as
well.

6.7.3. TUNING PROCEDURES

STRONG COUPLING

We report here the tuning protocol we follow to achieve strong coupling between all QD
pairs. First, we form QDs that are weakly coupled as in Bordin et al. (2024b). Weakly cou-
pled QDs have high tunneling barriers and sharp Coulomb diamonds since the broaden-
ing due to a finite lifetime is smaller than the broadening due to temperature. Secondly,
we start to couple the QDs more and more by progressively lowering the tunneling barri-
ers between them. Since, in our system, the coupling between QDs is mediated by ABSs
(Liu et al., 2022; Bordin et al., 2023), to optimize the barrier height we look at QD-ABS
charge stability diagrams (Zatelli et al., 2024). To optimize, for instance, the right tun-
neling barrier of QD1, we measure the zero-bias conductance gL as a function of VQD1

and VH1. As long as QD1 resonances are not affected by VH1, the tunneling barrier is too
high. So we lower the tunneling barrier by increasing the corresponding bottom gate
voltage and measure the QD1-ABS charge stability diagram again. When the QD reso-
nance lines start to bend as a function of VH1, then QD1 and the ABS start to hybridize,
indicating the onset of strong coupling. We repeat this procedure four times, once for
every tunneling barrier in between the QDs, as Fig. 6.8 shows. Finally, we check that QD-
QD charge stability diagrams show avoided crossings as in Fig. 6.1, indicating a strong
coupling between each pair of QDs.

We note that our device doesn’t have a normal-metal probe directly connected to
QD2. Therefore, we start by tuning the middle QD while the outer ones are not yet
formed. When there is a single tunneling barrier separating, for instance, the right hybrid
and the right probe, it is possible to perform tunneling spectroscopy of the right hybrid
as Fig. 6.7b shows; and it is also possible to probe QD2 as long as the right bias VR is kept
below the ABS energies. A possible electron transport mechanism from the right probe
to QD2 is co-tunneling via the ABS, or even direct tunneling if the QD2 is hybridized with
the ABS (Bennebroek Evertsz’, 2023). Regardless of the specific mechanism, QD2 can be
probed from the right normal-metal lead, as panels b and c of Fig. 6.8 demonstrate. After
tuning the tunneling barriers of QD2 with the procedure described above, we form QD1
and QD3 and tune their inner barriers in the same way, as can be seen in panels a and d
of Fig. 6.8. The outer tunneling barriers, i.e. the left barrier of QD1 and the right barrier
of QD3, are kept high to ensure a low coupling to the normal leads.

POOR MAN’S MAJORANA SWEET-SPOTS

After achieving strong coupling between the QDs, the system needs to be tuned to the
pairwise sweet-spot condition of Eq. 6.2. The procedure is similar to what is presented
in Dvir et al. (2023). The balance between CAR and ECT is found by looking at the di-
rection of the avoided crossings in the QD-QD charge stability diagrams. We note that
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if the QDs are strongly coupled to the ABSs as in Zatelli et al. (2024), CAR and ECT are
not well-defined anymore but need to be generalized to even-like and odd-like pairings.
Here we stick to the CAR/ECT nomenclature for clarity and reference further readings
for the generalized concepts (Zatelli et al., 2024; Liu et al., 2023). An avoided crossing
along the positive diagonal indicates CAR dominance and an avoided crossing along the
negative diagonal indicates ECT dominance. We select a QD1-QD2 charge degeneracy
point where it is possible to range from CAR dominance to ECT dominance by varying
VH1 (Bordin et al., 2023). Similarly, we select a QD2-QD3 charge degeneracy point where
it is possible to range from CAR dominance to ECT dominance by varying VH2, with the
added constraint that the QD2 resonance must be the same for both choices. This is an
important point: to be able to combine the tuning of the left and right QD pairs into a
three-site chain, the gate settings of QD2 must be exactly the same for both pairs. To
achieve this, we tune the left pair and the right pair iteratively, converging to a pairwise
sweet-spot condition that shares the gate settings of QD2. For this reason, Fig. 6.2 and
Fig. 6.3 share the same settings for all 11 bottom gates, apart, obviously, from QD1,2,3 de-
pending on the panel. We note a discrepancy between the estimation of t2 = ∆2, which
is ∼ 40µeV for Fig. 6.2 and ∼ 60µeV for Fig. 6.3. We attribute such discrepancy to a small
charge jump for the right tunneling gate of QD2 between the two measurements.

When CAR and ECT are balanced for both pairs, the charge stability diagrams show
crossings instead of avoided crossings and the spectrum measured at the charge degen-
eracy points show zero-bias peaks (Fig. 6.2). Away from such sweet spots, the zero-bias
peaks are split, as Fig. 6.5a, Fig. 6.17a and Fig. 6.18a show.

CALIBRATION OF THE VOLTAGE DIFFERENCE BETWEEN THE SUPERCONDUCTING LEADS

The superconducting leads of our device are separately grounded via room-temperature
electronics. This facilitates the tuning and characterization of QD2 as shown in ref. (Bor-
din et al., 2024b). For a precise calibration of the voltage offset between the two super-
conducting leads, we tune the device to sustain a finite supercurrent (see Fig. 6.11b for an
example). With zero voltage drop across the device, a small voltage offset Voffset between
the room-temperature grounds drops entirely through the resistances of the source and
drain DC lines in the dilution refrigerator, ≈ 3kΩ each, yielding of total series resistance
Rs ≈ 6kΩ. Connecting a voltage source VS1 and a current meter IS1 to the first supercon-
ducting lead, we can calibrate the offset between the grounds using VS1−Voffset = Rs · IS1.
As long as there is a measurable IS1, this procedure is insensitive to the actual Rs value
and is limited only by the resolution of the voltage source. Of course, even if this proce-
dure can be very precise (see also the vertical axis of Fig. 6.11b to appreciate our voltage
resolution), we can expect our calibration to drift over time. This can be due, for exam-
ple, to fluctuations in the room temperature and 1/ f noise of the electronics equipment.
Therefore, we measure the offset with the same precise procedure after a few days and
assess how much it can drift. For the first device, such offset was always lower than
1µV and typically closer to ∼ 0.1µV. For the second device, concerning only Fig. 6.12
and 6.11, the offset calibration was less rigorous, for Fig. 6.12 we estimate an offset of
∼ 1µV. Lastly, we note that a finite voltage applied to the left or right normal-metal leads
(VL or VR) might lead to an effective voltage difference between the two superconduct-
ing leads due to a voltage divider effect (Martinez et al., 2021); we calculate the impact of
such effect on the voltage offset between the superconductors to be ∼ 0.1µV.
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MEASURING THE SPECTRUM AS A FUNCTION OF VH1

To measure the two- and three-site chain spectrum as a function of VH1 (Fig. 6.5), we
follow the same procedure outlined for two-site chains in ref. (Zatelli et al., 2024). For
every VH1 set-point, we perform a sequence of three measurements:

1. We set QD3 off-resonance and measure the VQD1–VQD2 charge stability diagram.
From the center of the corresponding crossing (when t1 =∆1) or avoided-crossing
(t1 ̸=∆1), we extract the δVQD1 = δVQD2 = 0 charge degeneracy point.

2. We measure the two-site chain spectrum at the charge degeneracy point.

3. Finally, we set QD3 back on-resonance and measure the three-site chain spectrum
at the charge degeneracy point.
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Figure 6.6: QD spin polarization. From the QD2 Coulomb diamonds shown in panel a, spanning two orbitals,
we extract respectively charging energies of 3.3 and 2.5meV and lever arms of 0.28 and 0.23. Using such lever
arms, we can fit the g -factor from the Bx dependence at VS1 = 1mV shown in panel b. The black dashed
lines yield g = 45±7, on par with our previous measurements (Wang et al., 2022a). With magnetic field B =
Bx = 200mT, this gives a Zeeman splitting EZ = gµBB = 0.5meV, which is much bigger than our temperature
broadening (few µeV) and our interdot couplings tn and ∆n . If the QDs are strongly hybridized with the ABSs,
then the g -factor is renormalized to lower values. Then, a lower bound to the QD g -factor is set by the ABS
one, which is ∼ 20, as estimated below in Fig. 6.7 and in Ref. (Dvir et al., 2023) (a direct g -factor measurement
of strongly hybridized QDs is reported in Ref. (Zatelli et al., 2024)). This gives a lower bound EZ > 0.2meV for
all our QDs. We note that the Zeeman splitting might vary from dot to dot, but as long as EZ ≫ kB T, tn ,∆n ,
the QDs are well polarized. Finally, two further independent checks are consistent with a high Zeeman energy:
first, the QD spectra shown in Fig. 6.9 show isolated lines for all the QD resonances used for the experiment,
secondly, the PMM spectra measured when detuning individual QDs, reported in the linked repository, do not
show the extra features predicted for low Zeeman energy (Bozkurt et al., 2024; ten Haaf et al., 2024a).
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Figure 6.7: ABS spectroscopy. a. Spectroscopy of the left hybrid. b. Spectroscopy of the right hybrid. Both
panels are measured at a fixed external magnetic field roughly parallel to the nanowire Bx = 200mT and exhibit
ABSs populating the spectrum. We chose a magnetic field intensity that is large enough to polarize the dots
(≳ 100mT) but small enough for the ABSs not to close the gap (≲ 300mT). From the ABS energy, we estimate
the ABS g -factor to be ∼ 20. Both measurements are corrected for a dilution refrigerator line resistance of 7kΩ.
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Figure 6.8: QD-ABS charge stability diagrams. a. Left zero-bias conductance as a function of VQD1 and VH1.
b, c, d. Right zero-bias conductance as a function of VQD2 and VH1 (panel c), VQD2 and VH2 (panel c), VQD3
and VH2 (panel d). All panels show how a pair of QD resonances is modulated by the neighboring hybrid gates,
indicating QD-ABS hybridization (Zatelli et al., 2024). Panels b and c are measured before forming a QD on the
right; here there is a single tunneling barrier separating the right normal lead and the right hybrid so that it is
possible to perform spectroscopy of QD2 from the right normal lead as long as the right bias VR is smaller than
the superconducting gap (Bennebroek Evertsz’, 2023).

Figure 6.9: QD spectroscopy. a. QD1 spectroscopy. The QD state appears as an eye shape, while the ABSs of
the left hybrid are visible at higher energies (Zatelli et al., 2024). b. QD2 spectroscopy taken from the left probe.
Here QD1 is kept in the middle of the pair of charge degeneracy points shown in panel a: VQD1 = 0.396V. QD1
states appear as persistent lines at ≈±60µV and mix with the ABS and QD2 spectra. c. QD2 spectroscopy taken
from the right probe. Here VQD3 = 0.232V. QD3 states appear as persistent lines at ≈±25µV and mix with the
ABS and QD2 spectra. Both panels show zero energy crossings at ≈ 0.246 and ≈ 0.2615V, which we attribute to
QD2 charge transitions. d. QD3 spectroscopy. We note that the eye shape is smaller compared to QD1, which
implies a lower lever arm. The lever arms αn are extracted for all QDs from the slopes of the fitted blue dotted
lines; here we find α1 = 0.03, α2 = 0.025 and α3 = 0.014.
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Figure 6.10: Impact of QD2 on the coupling between the outer dots. a-b. QD1–QD3 charge stability diagrams
measured from the left probe (panel a) and the right one (panel b). At the center of the avoided crossing, all
QDs are on resonance. c-d. Same measurements of panels a and b, but with QD2 2mV off-resonance. e-f.
Here QD2 is 5.3mV off-resonance. The more QD2 is detuned, the smaller the QD1–QD3 avoided crossings
are. In panels e and f, the avoided crossings are barely noticeable, indicating suppression of the coupling
between the outer dots. Finally, we note that not only the size of the avoided crossings but also the amount
of conductance indicates suppression of the QD1–QD3 coupling: in panel e, the vertical conductance line
representing the QD3 charge transition is barely visible; while in panel f it is the horizontal line corresponding
to the QD1 transition to be suppressed.
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Figure 6.11: a, b. I-V curves without and with a measurable supercurrent. The voltage V12 between the two
superconductors is measured as a function of the current bias Ibias between them. See the code in the shared
repository for measurement details. c, d. Left spectroscopy of a three-site chain as a function of Ibias, without
and with a measurable supercurrent. To avoid complications due to supercurrent, in all the measurements
reported in this manuscript (apart from Fig. 6.11b,d) the tunneling barriers forming QD2 are kept high enough
to suppress the supercurrent. In the left column of this figure, we check that such settings show a linear I-
V curve and that the Ibias doesn’t affect the three-site chain spectrum. To prove that our device can carry
supercurrent and this might affect the spectrum of a three-site chain, we lower the QD2 tunneling barriers and
measure what is presented in panels b and d. A detailed investigation of the effects of supercurrent is beyond
the scope of this manuscript and is left for follow-up works.
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Figure 6.12: Second device. a-c, e-g. Left and right tunneling spectroscopy of a second device tuned to the
double sweet-spot condition of Eq. 6.2. Here, t1 = ∆1 ≈ 25µeV and t2 = ∆2 ≈ 50µeV. Such coupling strengths
are tuned on purpose to values similar to the ones measured for the device in the main text. The remarkable
similarity between this figure and panels a-f of Fig. 3 evidences the determinism and reproducibility of our
tuning procedure across multiple devices. This device’s QDs, ECT and CAR are characterized at zero external
magnetic field in ref. (Bordin et al., 2024b). d. Linecuts of panel c at δVQD3 = −5mV (blue) and 0mV (pink)
showing that when all QDs are on resonance there is no gap in the conductance (pink line) due to fast phase
precession.
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Figure 6.13: False-colored scanning electron microscope images of both devices. InSb nanowires (green)
are deposited on top of an array of bottom gates (pink) and contacted by superconductors (blue) and normal
metals (yellow). The fabrication details are reported in ref. (Bordin et al., 2024b).
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Figure 6.14: a-d. Theoretical simulation of Fig. 4 data with the spinless model of Eq. 6.1. All panels report
the average conductance of 50 simulations with different phases on ∆2. The phase choices are uniformly
distributed between 0 and 2π. Panel d displays linecuts at µ= 40µeV.
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Figure 6.15: Zero-bias peak stability against variations of the chemical potential.a-c. Tunneling spectroscopy
measured from the right side of the device. a Two-site Kitaev chain located on the right side of the device, with
the leftmost dot being off-resonance. b A three-site Kitaev chain device. Stability of the zero-bias peak against
detuning of all constituent quantum dots. The range of voltage variation for stable zero-bias conductance peak
is now enhanced relative to the two-site device. c. Conductance spectrum for a three-site Kitaev chain when
detuning two quantum dots on the right side. In this scenario, the zero-bias conductance peak persists against
dot detuning. d-f. Theoretical simulations of each detuning scenario with phase averaging. It shows good
consistency with the experimental measurements.

Figure 6.16: Zero bias peak persistence of a three-site chain while detuning any pair of QDs. a-l. Tunnelling
spectroscopy from the left probe (top row) and the right one (bottom row). a, b. Symmetric detuning of QD1
and QD2. c, d. Anti-symmetric detuning of QD1 and QD2. e-l. Symmetric and anti-symmetric detuning of any
other pair of QDs. All panels show a persistent zero-bias conductance peak over the full detuning range.
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Figure 6.17: a, b. Tunneling spectroscopy of a 2-site chain (panel a) and 3-site chain (panel b) as a function
of VH1. This measurement is a repetition of what is presented in Fig. 6.5 of the main text but with higher
resolution and only around the VH1 ≈ 0.88V sweet-spot. δVQD3 =−4mV in panel a and 0mV in panel b.
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Figure 6.18: a, b.. Right tunneling spectroscopy of a 2-site chain (panel a) and 3-site chain (panel b) as a
function of VH2. δVQD1 =−4mV in panel a and 0mV in panel b. We note that the zero-bias conductance peak
of panel a is more stable compared to the one of Fig. 6.5a, we speculate that this is due to accidental similar
dispersion of t2 and∆2 as a function of VH2 (see also Fig. 6.19). Nevertheless, the 3-site zero-bias conductance
peak of panel b is more persistent. We note that such peak broadens and its intensity fades at the edges of the
scan, which may indicate the onset of splitting. This can be a result of imperfect centering of VQD1 at µ= 0.
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Figure 6.19: a, b. Left tunneling spectroscopy of a 2-site chain (panel a) and 3-site chain (panel b) as in Fig. 6.5
and 6.17 but for a different VH1 range. Here we can appreciate that even two-site chains can have improved the
zero-bias conductance peak stability: the pink arrows highlight three sweet-spot regions, two of which have
a more stable zero-bias peak. This can be due, for instance, to accidentally similar dispersion of t1 and ∆1 as
a function of VH1, which can, in principle, be optimized using the external magnetic field direction (Bordin
et al., 2023). However, this requires careful tuning or searching to avoid non-sweet-spot regions, highlighted
here with blue arrows. The 3-site chain has instead a stable zero-bias peak over the full range (panel b). We
also note, for both panels, the presence of a spurious resonance (green arrows) likely due to an accidental dot
near the left probe.
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Figure 6.20: a, b.. Conductance simulation with t1 varied from 0 to 20µeV for a 2-site chain (panel a) and
a 3-site chain (panel b) exactly as Fig. 5c,d. ∆1 = 10µeV. c, d.. Conductance simulations as a function of
∆1. t1 = 10µeV. The result is identical to the panels above where t1 was varied instead. e, f.. Conductance
simulations in a more realistic scenario, where t1 and ∆1 are varied simultaneously as if there were a single
ABS mediating them (Liu et al., 2022; Bordin et al., 2023). In all scenarios, the left column – corresponding to
2-site chains – exhibits zero energy crossings, while the right column – corresponding to 3-site chains – shows
persistent zero-bias peaks over the full range. For 3-site chain simulations, the conductance is averaged over
50 phase values of ∆2, uniformly distributed from 0 to 2π.
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Figure 6.21: Qubit coherence times as a function of the number of sites, assuming charge noise to be the
only source of noise. For a fair comparison, we assume homogeneity in the Hamiltonian parameters: t =∆=
20µeV, αD = 0.04, ∂t/∂VH = 5×10−3.
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Detection and control of Andreev Bound States (ABSs) localized at semiconductor-
superconductor interfaces are essential for their use in quantum applications. Here we
investigate the impact of ABSs on the supercurrent through a Josephson junction contain-
ing a quantum dot (QD). Additional normal-metal tunneling probes on both sides of the
junction unveil the ABSs residing at the semi-superconductor interfaces. Such knowledge
provides an ingredient missing in previous studies, improving the connection between the-
ory and experimental data. By varying the ABS energies using electrostatic gates, we show
control of the switching current, with the ability to alter it by more than an order of mag-
nitude. Finally, the large degree of ABS tunability allows us to realize a three-site Andreev
molecule in which the central QD is screened by both ABSs. This system is studied simul-
taneously using both supercurrent and spectroscopy.
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Cornelis Wolff, Erik P. A. M. Bakkers, Alfredo Levy Yeyati, Leo P. Kouwenhoven, arXiv preprint arXiv:2402.19284.
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7.1. INTRODUCTION

Q
uantum dots (QDs) confine electrons into orbitals with discrete energies,
similar to individual atoms (Kouwenhoven et al., 2001). They find count-
less applications as sensors (Lu et al., 2003; Zhu et al., 2015), light sources
(Michler et al., 2000; García de Arquer et al., 2021) or qubits (Hanson
et al., 2007; Burkard et al., 2023). Superconductors, on the other hand,

feature an attractive pairing between electrons, condensing them into a sea of Cooper
pairs (Tinkham, 2004). One consequence of this pairing is the ability to carry super-
current: zero-resistance transport of electron pairs. Supercurrent can flow even if two
superconducting leads are connected by a thin insulating material or a weak link. Such
a system is known as a Josephson junction and forms the core component behind su-
perconducting qubits (Clarke and Wilhelm, 2008; Kjaergaard et al., 2020) and supercon-
ducting diodes (Ando et al., 2020).

Using semiconducting QDs as weak links in Josephson junctions combines the pre-
cise orbital tunability of QDs with the quantum coherent properties of superconductors,
resulting in substantial control over the supercurrent (Jarillo-Herrero et al., 2006; van
Dam et al., 2006; Jørgensen et al., 2007; Katsaros et al., 2010; Szombati et al., 2016) and
facilitating cQED operation (Bargerbos et al., 2022, 2023a). Intriguingly, QDs can also hy-
bridize with a superconductor. For example, when hosting an odd number of electrons
a QD acts as a localized spin 1/2, which becomes screened by quasiparticles at stronger
coupling, resulting in a spinless Yu-Shiba-Rusinov ground state (Maurand et al., 2012;
Lee et al., 2012; Pillet et al., 2013; Jellinggaard et al., 2016). Control of this interaction
allows for tuning of both the ground state composition and the spectrum; an interesting
lever for Andreev Spin Qubits (Padurariu and Nazarov, 2010; Hays et al., 2021; Pita-Vidal
et al., 2023, 2024b), Kitaev chains (Dvir et al., 2023; Tsintzis et al., 2022; ten Haaf et al.,
2024a) and the creation of larger superconducting molecules (Deacon et al., 2015; Probst
et al., 2016; Bouman et al., 2020; Estrada Saldaña et al., 2020). However, typical devices
are prone to the formation of accidental QDs or localized ABSs due to defects or impu-
rities (Pan and Das Sarma, 2020; Prada et al., 2020; Valentini et al., 2021). Such states are
hard to characterize and control and are generally detrimental to device operation. Con-
versely, recent works have shown that gate-controlled ABSs are useful for tuning the cou-
pling between sites in minimal Kitaev chains (Liu et al., 2022; Bordin et al., 2023; Zatelli
et al., 2024; Liu et al., 2024a), spurring further interest into measuring and manipulating
them.

In this work, we investigate – theoretically and experimentally – the impact of ABSs
on a QD-based Josephson junction, and distinguish its features from a S-QD-S junction.
We show how gate-tuning of ABSs affects both the size and gate symmetries of the crit-
ical current; an important quantity for e.g. Andreev Spin Qubits, whose readout signal
is proportional to it (Pita-Vidal et al., 2023, 2024b). Furthermore, we study the influence
of the QD-ABS tunnel coupling on the spin screening of the odd-parity doublet state, by
comparing measurements of zero-bias conductance and critical current. In this manner,
we realize an ABS-QD-ABS Andreev trimer where the screening of the central QD is fa-
cilitated by ABSs in both leads, highlighting their potential use in realizing larger chains
and artificial molecules.
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Figure 7.1: a. Illustration of the device. b. Schematic of the measurement setup on a false-colored scan-
ning electron micrograph of the reported device. c. Imeas as a function of VQD and Vbias showing a single
Coulomb diamond. The dashed lines correspond to a QD model with charging energy U = 2.7meV and lever
armα= 0.26. d. Vmeas as a function of VQD and Ibias. The blue line identifies the switching current, Isw, where
the Josephson junction transitions from a superconducting to a resistive regime. e, f. Examples of typical tun-
neling spectroscopy measurements (from a previous cooldown of the same device) of the left and right hybrids

respectively; gL ≡ d IL
dVL

and gR ≡ d IR
dVR

are measured with standard lockin techniques.

A tunable Josephson junction can be realized by contacting a semiconducting nanowire
with two superconducting leads (van Dam et al., 2006; Lee et al., 2012; Pillet et al., 2013;
Estrada Saldaña et al., 2018). In this work, two Al contacts are deposited on an InSb
nanowire using the shadow-wall lithography technique (Heedt et al., 2021), creating two
superconducting-semiconducting hybrid segments. In addition, we introduce one Au
normal contact at each end of the device. Below the nanowire, separated by a thin di-
electric, an array of bottom gates defines an electrostatic potential along the device, as
Fig. 7.1a illustrates. The three gates between the hybrid segments form a QD; its chem-
ical potential is controlled by VQD while the barriers are tuned by VT1 and VT2. Two ad-
ditional outer barriers separate each hybrid from the external normal contacts, turning
them into tunneling probes.

The device is loaded in a dilution refrigerator with a base temperature of ∼15mK.
Both normal contacts are connected to corresponding voltage sources and current me-
ters (VL, IL and VR, IR). The Josephson junction in the middle of our device is connected
to a flexible circuit that enables setting either a voltage bias or a current bias across the
junction. Fig. 7.1b shows that while the left Al contact is always grounded, the right one is
connected to a switch between either a voltage source with a current meter (Vbias, Imeas)
or a current source with a voltage meter (Ibias, Vmeas). See the Supplementary Informa-
tion for further nanofabrication and circuit details (Fig. 7.9).
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Panel c of Fig. 7.1 reports a voltage bias measurement characterizing the QD’s Coulomb
blockade diamonds. In panel d, instead, we apply a current bias and observe a Vmeas = 0
region, which is identified as the DC supercurrent regime. The transition from zero to fi-
nite voltage is marked by a blue line, with the associated current bias values denoted
as Isw, the switching current. An explanation of how Isw is extracted is presented in
Fig. 7.10. As previously demonstrated in literature, Isw(VQD) depends sensitively on the
QD gate voltage. The device behaves like a supercurrent transistor: Isw is maximal at
the QD charge degeneracies, where the parity transitions between even and odd, while
it is suppressed whenever the QD is off-resonance (Jarillo-Herrero et al., 2006; van Dam
et al., 2006).

The novelty of our device is highlighted in panels e and f of Fig. 7.1, which show ex-
amples of tunneling spectroscopy measurements performed from the left and the right
normal probes, yielding differential conductance gL and gR respectively. Both hybrid
segments feature ABSs that disperse as a function of the gate voltages VH1 and VH2. To
understand their implications, we introduce in the following section a minimal three-
site model, considering a single ABS on the left, a single QD orbital in the center, and a
single ABS on the right.

7.3. MODEL
The left and right ABSs are modeled as single levels with negligible charging energy
(UABS = 0) coupled to BCS superconductors by couplings ΓL/R in the atomic limit (Bauer
et al., 2007). Both ABSs are tunnel coupled to a central QD with a large charging en-
ergy, U = 10∆, where∆ represents the energy of the superconducting gap. This system is
described by the following Hamiltonian:

H = HABS +HD +HT (7.1)

HABS =
∑

j=L/R

[
ξ j n j +Γ j d †

j↑d †
j↓+h.c.

]
(7.2)

HD = U

2
(n −nC)2 (7.3)

HT =
∑

j=L/R

∑
σ=↑/↓

t j d †
Cσd jσ+h.c. (7.4)

Here, ξL/R are the single-level energies, with nL/R and d †
L/Rσ denoting the corresponding

number and creation operator. These result in ABS excitation energies EL/R =
√
ξ2

L/R +Γ2
L/R

and particle-hole coherence factors u2
L/R = 1

2

(
1+ ξL/R

EL/R

)
and v2

L/R = 1−u2
L/R (Bauer et al.,

2007). The central QD is described by a typical Anderson model with creation operators
d †

Cσ, the number operator n = d †
C↑dC↑+d †

C↓dC↓ and the number nC describing the elec-
trochemical potential controlled by VQD. Lastly, the QD is tunnel coupled to the ABSs by
couplings tL/R = |tL/R|exp

[
iφL/R

]
, with the phase drop across the junction characterized

by the difference φ=φL −φR. A sketch of the model is depicted in Fig. 7.2a. This model
neglects both the detailed structure of the ABSs, e.g. multiple orbitals, and any screening
of the QD due to a direct coupling to the BCS density of states (Pillet et al., 2013; Lee et al.,
2013), capturing only the screening stemming from the coupling to ABSs. Consequently,
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the validity of the model is limited to where ABSs are tuned close to their energy min-
ima. More details can be found in the Supplementary Information. Theory plots in this
manuscript are produced with numerical diagonalization of Eq. 7.1, capturing QD-ABS
hybridization and its dependence on uL/R, vL/R and nC, for all coupling regimes. Here,
we define the junctions critical current as, Ic = maxφ

[
I (φ)

]
, following typical conven-

tions, which in plots is obtained numerically.

c b 

a 

Figure 7.2: a. Schematic of the ABS-QD-ABS model depicting the decoupled (tL/R = 0) electronic spectrum of
each component. The scale ∆ illustrates the position of the BCS continuum neglected in the model, while the
QD spectrum is shown in scale of U . Symbols E and O indicate even and odd ground state parity respectively.
Smaller sketches resembling this schematic are used in the following figures to indicate gate settings. b-c.
Sketches of 4th order cotunneling contributions to the critical current, Ic, for a S-QD-S model (b) and an ABS-
QD-ABS model (c). The numbers below indicate the ordering of the dominant 4th order process for an empty
QD, n = 0.

For low ABS-QD coupling, intuition on the behavior of Ic can be obtained from the low-
est (4th) order perturbation theory in tL/R. This yields qualitatively similar Ic curves to
a weakly coupled QD junction with BCS leads: QD parity transitions (nC = 0.5 or 1.5)
result in peaks of Ic accompanied by a switch from a 0 to a π phase (van Dam et al.,
2006; Martín-Rodero and Levy Yeyati, 2011). However, the supercurrent through an S-
QD-S junction involves virtual occupation of the BCS continuum, while the supercurrent
through an ABS-QD-ABS junction instead relies on the occupation of the ABSs (Fig. 7.2b-
c). In the U ≫∆ limit, the peak Ic is given by:

S-QD-S Ic,peak ≈
8e

ħ
|tL|2|tR|2

2∆3 (∆ρL)(∆ρR) (7.5)

ABS-QD-ABS Ic,peak ≈
8e

ħ
|tL|2|tR|2

ELER(EL +ER)

(
ΓL

2EL

)(
ΓR

2ER

)
, (7.6)

where ρL/R denotes the density of states. Here, the factors (∆ρL/R) and (ΓL/R/2EL/R)
correspond to |uL/RvL/R|, which denote the expectation value of adding or removing a
Cooper-pair (Estrada Saldaña et al., 2018). Intuitively, the ABS energies EL/R act as a
gap and the additional powers of ELER in denominators stem from the asymmetrical
coherence factors when ξL/R ̸= 0 (Bennebroek Evertsz’, 2023). Further details on the cal-
culations, including more terms and the nC dependence, are reported in Supplementary
Information.
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This perturbative approach highlights the difference between S-QD-S and ABS-QD-ABS
junctions and inspires the next section. Since both EL/R and the uL/R and vL/R compo-
nents depend on ξL/R, tunable by VH1/H2, their effect on the supercurrent can be tested
experimentally.

7.4. SUPERCURRENT CONTROL

Figure 7.3: a. gL as a function of VL and VH1, showing the ABS energy dispersion. b. ABS energy and square of
the particle-hole components uL and vL as predicted by the theory model. c. Isw as a function of VQD ranging
over a single QD orbital and color-coded to the vertical line cuts in panel a. The inset illustrates the chemical
potentials of the three sites of our system. When a site is colored yellow, the corresponding chemical potential
is varied. Otherwise, a red arrow indicates the fixed position of the chemical potential. d. Ic predicted by the
theory model. e. Isw as a function of VH1, tracing the left QD parity transition in panel c. f. Theory Ic as a
function of ξL, tracing the left QD parity transition in panel d. g. Isw as a function of VH1 and VH2. The black
dashed line indicates the position along VH2 at which Isw in panel c and e is measured. See Fig. 7.13 for extra
details. h,i. Spectra of both hybrids (panel h shows the same data as panel a but including negative VL values).
For both panels, VQD is fixed at 358mV. All the other figures in the manuscript, excluding Fig. 7.1e,f which
were measured in a previous cooldown, make use of the same ABSs shown here.

To test the impact of ABSs on the supercurrent, we focus in Fig. 7.3a on a single ABS
weakly coupled to the QD. In panel c, we measure the switching current Isw as a function
of VQD at three different positions along VH1, color-coded to the vertical line cuts shown
in panel a. We observe an overall increase in Isw as we move closer to the minimum
energy of the ABS, which is reproduced by the model in panel d, and which can be un-
derstood from the denominator in Eq. (7.6). When comparing theory to experiment we
distinguish between measured switching current, Isw, and theoretical critical current, Ic,
since Isw might be reduced (Isw < Ic) by circuit noise and thermal fluctuations (Tinkham,
2004). In some instances, the employed minimal model predicts Ic to be smaller than the
measured Isw. These discrepancies we ascribe to missing critical current contributions
from e.g. direct coupling to the BCS states or neighboring QD and ABS orbitals neglected
in the model. We stress that all parameters of the model, apart from tL and tR, are esti-
mated from independent measurements such as ABS spectroscopy and QD Coulomb
diamonds (see Fig. 7.11). The summary of all extracted and fitted model parameters is
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reported in the Supplementary Information (Table 1).
So far, we studied the switching current as a function of VQD. To study it instead as a

function of VH1, we may track the Isw peak value along one of the QD parity transitions
(as detailed in Fig. 7.13c). In Fig. 7.3e we plot Isw (blue) as a function of VH1, tracking the
left QD parity transition in Fig. 7.3c. We observe a maximum Isw of 1.28nA around the
ABS minimum energy and a decline in Isw as we move away from this minimum. No-
tably, Isw is decreased as low as 0.24nA when EL approaches ∆, suggesting that most of
the supercurrent is mediated via the ABS and not via the BCS continuum. This is sup-
ported by the model, which does not include these continuum states and yields a similar
decrease in panel f. Finally, we note in panels d and f, that Ic is not symmetric around
nC = 1 and ξL = 0. This feature is visible with the numerical diagonalization of Eq. 7.1
and is not captured by 4th order perturbation theory. We will return to such asymmetries
in Fig. 7.8 and in the following section dedicated to stronger couplings (Fig. 7.4).

Thus far, the ABS in the right hybrid was kept at VH2 = 990mV. In Fig. 7.3g, we present
Isw as a function of both ABS gates. In the corners of panel g, both ABSs are tuned away
from their energy minima, resulting in a minimal Isw of 0.12nA (pink arrow). Along the
sides of the panel, a single ABS reaches its energy minimum, resulting in an increase of
Isw to ∼ 1nA. In the middle of the panel, both ABSs are positioned at their energy min-
ima, resulting in a maximum enhancement of Isw up to 2.58nA (orange arrow). Control-
ling the ABSs, we can modulate Isw by over an order of magnitude.

7.5. ANDREEV TRIMER
After demonstrating switching current control, we turn our attention to the physics of
an ABS-QD-ABS molecule. Conceptually, this setup is reminiscent of a S-QD-S junc-
tion. However, while the screening states of the S-QD-S junction are of a complicated
Kondo-like nature (Martín-Rodero and Levy Yeyati, 2011; Meden, 2019), the ABS-QD-
ABS equivalents are simpler. Here, at odd-parity the QD binds to an excited ABS, gaining
an exchange energy Eex, of order ∼ |tL/R|2/U . If Eex exceeds EL/R, then the QD odd-parity
ground state is screened and rendered into a molecular singlet state of even parity. To
investigate this bonding, we fix the electrochemical potential of the right ABS and study
the coupling between the left ABS and the QD by looking at the ABS-QD charge stability
diagrams of Fig. 7.4 (the right ABS setpoints are shown in Fig. 7.14). Due to our device
geometry, charge stability diagrams can be measured either via tunneling spectroscopy
from the normal probes or via supercurrent through our Josephson junction. In the first
case, the parity transitions of the QD are identified by zero-bias conductance peaks and,
in the second case, by switching current peaks.

We can vary the ABS-QD coupling from weak to strong by tuning VT1. The crossover
is characterized by a critical tunnel coupling t c

L = p
UΓL/6 (see the Supplementary In-

formation for a detailed derivation). When the coupling is weak ( tL ≪ t c
L, panels a,d)

the QD parity transitions are barely shifted along VQD as we sweep VH1. As a result, the
odd-parity sector separating the even-parity sectors remains roughly equal in width. In
the intermediate coupling case ( tL ≲ t c

L, panels b,e), the QD parity transitions are visi-
bly modulated and the odd-parity sector is reduced as shown in Fig. 7.4b. In the strong
case ( tL > t c

L, panels c,f), the topology of the ABS-QD charge stability diagram is changed
(Grove-Rasmussen et al., 2018; Estrada Saldaña et al., 2020): when the ABS is at its energy
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Figure 7.4: a-c. Zero-bias conductance gL as a function of VQD and VH1 for weak, intermediate and strong
QD-ABS hybridization. The strength is tuned by the tunnel gate voltage VT1 = 210,220 and 226mV for panels
a, b and c respectively. The spectrum of the ABSs is reported in Fig. 7.14. d-f. 2D maps of the switching current
corresponding to the same gate range of panels a-c. g-i. Theory simulation of the zero-energy density of states
using the Lehmann representation at φ = 0 (see Supplementary Information). j-l. Simulated critical current
using our minimal three-site model. Panels (g, j), (h, k) and (i, l) share the same model parameters.

minimum, the system no longer transitions to an odd-parity ground state. All coupling
regimes are accurately reproduced by our model in both conductance and supercurrent
simulations (panels g-l).

In the weak coupling regime, the switching current could be understood with 4th

order perturbation theory; the presence of ABSs quantitatively affects Ic, with EL/R mim-
icking a smaller ∆. However, in the intermediate and strong coupling regimes, the pres-
ence of ABSs leads to a qualitative difference as well: the grey arrows in Fig. 7.4e,f,k,l
highlight strong asymmetries in the switching current peak heights. Such asymmetries
are due to the u and v components of the ABSs. Approaching e.g. nC ∼ 0.5, the ABS-QD
hybridization is strongest for an ABS with |u|≫ |v | as then both the ABS and the QD are
most easily excited by the addition of an electron. This stronger hybridization results in a
higher Ic, as shown also in Fig. 7.7. Switching current peak asymmetries were previously
attributed to multiple QD orbitals (van Dam et al., 2006). Here we propose an additional
possibility for hybrid devices: asymmetries explained by the coherence factors of subgap
ABSs.
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7.5.1. SIMULTANEOUS TUNING OF ALL THREE SITES

Strong couplingIntermediate couplingWeak coupling
VH2

VH1

VQD

Figure 7.5: Measured 3D charge stability diagrams for weak, intermediate, and strong coupling between the
QD and the neighboring ABSs. The blue surfaces delineate the boundaries between even and odd parity. See
Fig. 7.12 for the measurement details.

Finally, we turn our attention to the full three-site Andreev molecule by varying the right
ABS as well. Fig. 7.5 shows 3D charge stability diagrams extracted from zero-bias con-
ductance measurements (the technique is explained in Fig. 7.12). In the weak coupling
regime (tL ≪ t c

L, tR ≪ t c
R), the parity transitions form two parallel planes, isolating an

odd-parity region between two even-parity regions; here, varying VQD can always switch
the ground state parity, regardless of the ABS tuning, indicating the independence of the
three components. In the intermediate coupling regime (tL ≲ t c

L, tR ≲ t c
R), the situation

is different, as can be appreciated by the different topology of the parity transition man-
ifold, which presents a hole connecting the two even-parity regions. In this regime, it
is only when both ABSs are simultaneously at their minimum energy that the odd par-
ity sector can be screened to an even parity, indicating Eex > EL/R, while a single ABS
at minimum energy cannot fully screen the odd parity sector. This shows that the two
ABSs can cooperate in the screening of the QD spins, expanding the regions where the
system has an even-parity ground state. The even-parity regions expand even further in
the strong coupling regime (tL > t c

L, tR > t c
R), where the topology of the parity transition

manifold is changed once more. Here a single ABS, positioned at its energy minimum,
is able to fully screen the odd parity QD state, as observed by the odd-parity domes only
being present in the four corners of the diagram where both ABSs are tuned away from
their energy minima.

To appreciate the effect on the supercurrent of the parity transitions shown in Fig. 7.5,
we focus in Fig. 7.6 on the strong coupling regime. Keeping the QD gate fixed as in panel
c, we study the system as a function of both ABS gates. Panel a shows the measured
charge stability diagram, while panel b shows the corresponding Isw map. The theory
counterpart is presented in panels d and e. These simulations reproduce the experimen-
tal features, apart from a discrepancy between Isw and Ic at the center of panels b and e,
where both ABSs are tuned to their energy minima. We speculate that this discrepancy
stems from the possibility of ground state transitions as a function of phase difference,
φ. For φ= 0, the two ABSs cooperate in screening the QD. This decreases the odd-parity
area shown in panel f, compared to the screening from a single ABS. For φ=π, however,
the two ABSs compete, expanding the range of the odd-parity ground state (Rozhkov and
Arovas, 1999; Pavešić et al., 2024). This results in an area in Fig. 7.6e where the ground
state transitions from singlet to doublet asφ changes from 0 toπ. This area is shown with
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Figure 7.6: a. Left zero-bias conductance gL as a function of VH1 and VH2 in the strong coupling regime. Grey
lines indicate the positions of the energy minima of both ABSs. b. A 2D switching current map. In both panel
a and b, VQD is placed between the two QD parity transitions as panel c indicates. d. Theory simulation of the
zero-energy density of states using the Lehmann representation at φ = 0. e. Simulated critical current using
our minimal three-site model. Panels d and e share the same model parameters. f. A phase space diagram
indicating the ground state transitions of the system at φ= 0 (blue) and φ= π (green) for parameters of d and
e with tL = 0.7 and tR = 0.8. For comparison, in black the ground state transitions are illustrated assuming a
single ABS. The red-shaded areas of panels e and f indicate the region where φ= 0 and φ=π result in different
ground state parities. The question mark indicates that ground state parity is not unique in this region.

red overlays in panels e and f, and qualitatively matches the area of discrepancy between
b and e. We recall that our critical current is defined as Ic = maxφ

[
I (φ)

]
. If the ground

state is unstable as a function of phase, the real device is affected by non-trivial phase
dynamics and might switch prematurely to the resistive branch. These phase-induced
ground state transitions, appearing solely in the strong coupling regime, are further dis-
cussed in the Supplementary Information (Fig. 7.8, 7.16 and 7.17). They are beyond the
scope of this manuscript and motivate future works incorporating SQUIDs, which could
unveil the interesting phase-dependence of this regime.
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7.6. CONCLUSION
In summary, we realized a QD embedded into a Josephson junction with additional side
probes revealing neighboring ABSs. These ABSs are shown to be the primary carrier of
supercurrent, with measured switching currents matching the predictions of a simple
three-site model. This illustrates the crucial role of controlling and detecting localized
ABSs in semiconductor-superconductor hybrid devices. Furthermore, by tuning cou-
plings and ABSs we have demonstrated that the system effectively behaves as an Andreev
trimer, whose charging diagram can be fully characterized via either supercurrent or nor-
mal probe measurements. This additionally exemplifies how ABS tuning can be done via
supercurrent in long nanowire-based Kitaev chains, for which the normal probes would
be further away from central ABSs (Tsintzis et al., 2024; Miles et al., 2024; Bordin et al.,
2024b). Besides that, our study sets the ground for future works on Josephson junc-
tion devices with increased complexity, including longer Andreev molecules predicted
to modulate the supercurrent non-locally (Kocsis et al., 2024) and complex Andreev spin
qubit devices (Pita-Vidal et al., 2024b).
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7.7. SUPPLEMENTARY INFORMATION

7.7.1. THEORY

MODEL DETAILS

In this section, we elaborate on the theory used in the main text. In general, the coupling
of an interacting QD with a superconducting gap leads to the formation of YSR states
which, in full treatment, requires techniques able to capture strong interaction, e.g. the
Numerical Renormalization Group (NRG) (Bauer et al., 2007). In this paper we instead
opt for a minimal model, capturing the dynamics of an ABS coupled to a QD qualita-
tively. We assume that both the left and right ABS can be described as a non-interacting
resonant level (UABS = 0) coupled to a superconducting lead with gap∆, shown in eq. (1-
4) of the main text. The full Hilbert space of this Hamiltonian is 64×64 and can be nu-
merically diagonalized to obtain measurables. The supercurrent is given by,

I (φ) = 2e

ħ
∂F (φ)

∂φ

T=0= 2e

ħ
∂Eg (φ)

∂φ
(7.7)

with the systems free energy, F , being fully characterized by the ground state energy,
Eg (φ), at zero temperature, T = 0, which is the limit used in the main paper. In our
device geometry, we don’t have active control over the phase, which therefore adjusts
itself to satisfy the current-phase relationship φ(Ibias, Ic). The critical current is given
by Ic = maxφ

[
I (φ)

]
and, for a sinusoidal current phase relation, is either at φ = π/2 or

φ= 3π/2 for even and odd ground state parity respectively (van Dam et al., 2006).
In the weak coupling limit, tL/R ≪U ,ΓL/R, the critical current can also be analytically

obtained via 4th order perturbation of the current operator in tL and tR (Novotný et al.,
2005; Estrada Saldaña et al., 2018),

Ic(n = 0) = e

ħ
ΓLΓR|tL|2|tR|2

ELER

[ 4

(E1 −E0 +EL) (E2 −E0) (E1 −E0 +ER)
(7.8)

+ 2

(E1 −E0 +EL) (EL +ER) (E1 −E0 +ER)

]
,

Ic(n = 1) = e

ħ
ΓLΓR|tL|2|tR|2

ELER

[ ∑
k=0,2

1

(Ek −E1 +EL) (EL +ER) (Ek −E1 +ER)
(7.9)

+
∑

m=L,R

2

(E0 −E1 +Em) (EL +ER) (E2 −E1 +Em)

]
,

Ic(n = 2) = e

ħ
ΓLΓR|tL|2|tR|2

ELER

[ 4

(E1 −E2 +EL) (E0 −E2) (E1 −E2 +ER)
(7.10)

+ 2

(E1 −E2 +EL) (EL +ER) (E1 −E2 +ER)

]
,

where E0 = Un2
C/2, E1 = U (1−nC)2/2, and E2 = U (2−nC)2 are the QD eigenenergies.

Analytical expressions of 4th or higher order perturbation terms can be obtained using
pymablock (Araya Day et al., 2023; Araya Day et al., 2024).
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Lastly, we evaluate the electron and hole component of the Lehmann representation
from the eigenstates of eq. (1-4) of the main text using,

GR
j e (ω) =

∑
i

∑
σ

| 〈i |d †
jσ

∣∣g〉 |2

ω−Ei +Eg + iη
(7.11)

GR
j h(ω) =

∑
i

∑
σ

| 〈i |d jσ
∣∣g〉 |2

ω−Ei +Eg + iη
(7.12)

with
∣∣g〉

indicating ground state and the sum of i is over all other excitation’s. A broad-
ening, η, has been added for visibility. Using these, the local tunneling density of states
(DOS) of site j , as probed by a weakly coupled metallic lead (Domínguez and Yeyati,
2016), is given by,

DOS j (ω) = Im
[
G j e (ω)+G j h(−ω)

]
, (7.13)

which can be compared to measurements of the tunneling DOS using either the left or
right metallic lead as a probe. Throughout the paper, we plot the DOS in arbitrary units,
as the magnitude depends on unknown quantities such as the initial density of states,
etc. In general, we find that the theory matches experimental data to a qualitative degree
across most gate settings. An exception occurs in the regimes where one or both ABSs
are brought far away from their energy minima, such that EL/R ≈ ξ/R > ∆. The primary
contribution to both the screening of the QD and supercurrent across it then stems from
the gap, which is not captured by the model.

CRITICAL COUPLING t c
L/R

In the section “Andreev trimer” we define the boundaries between coupling regimes in
terms of t c

L/R which we derive here. In the Hamiltonian of Eq. (1) at nC = 1 (half-filling),
and considering tL ≈ 0 while neglecting the right ABS, the ground state is given by the
odd-parity half-filled QD with spin σC and energy EO = 0, denoted |0L,σC〉. The first
excited even-parity state (assuming U /2 ≪ EL) is given by |σL,σC〉, with σL denoting the
spin of an excited ABS and energy EE = EL. Next, using quasi-degenerate perturbation
theory we expand to second order in tL to truncate higher energy states. For the even
parity we consider only the lowest energy exchange state, |Sex〉 = 1p

2
(|↑L,↓C〉− |↓L,↑C〉).

From this, we obtain the following modified energies of the even and odd parity states,

EO =−2
t 2

L

U +2EL
, EE = EL −8

U t 2
L

U 2 −4E 2
L

. (7.14)

Further, assuming U ≫ 2EL, we find that a ground state transition occurs at EL = 6t 2
L /U ,

which yields the critical value t c
L/R = p

UΓL/R/6 for the particle-hole symmetrical point
EL/R = ΓL/R used in the main text. This term yields the screening threshold for a single
ABS-QD system, while the screening of the joint ABS-QD-ABS system is more compli-
cated, also depending on the uL/R, vL/R factors of the ABSs, which do not influence t c

L/R.

CRITICAL CURRENT ASYMMETRIES

Next, we discuss various regimes of the model and its impact on experimental interpre-
tation. In Fig. 7.7a, we show Ic at weak coupling such that the 4th order approximation is
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Figure 7.7: a Comparison between S-QD-S and ABS-QD-ABS in the low coupling limit, which for ABS is tL =
tR = 0.01∆ and for BCS corresponds to coupling rate ΓLS = ΓRS = 0.001∆. Furthermore, U = 2 meV and ξL =
ξR = 0.0 for all plots. Negative Ic indicatesπ-phase. b Highlight of Ic asymmetry at higher tL for finite detuning,
ξL = −0.2∆, with ∆ = 0.2 meV, U = 10∆, tR = 0.1∆, and ξR = 0.0. c DOS for identical parameters as b with
tL = 0.4∆ and φ= 0.

valid, and compare it to the standard BCS 4th order result (Estrada Saldaña et al., 2018).
In general for both models, if U /∆ is increased Ic becomes more confined around the
parity transitions. Choosing ∆ = ΓL = ΓR yields very similar curves between ABS and
BCS, supporting that in the low coupling regime the ABSs qualitatively act as reduced
gaps. In Fig. 7.7b we show that for finite ABS detuning, ξL = 0.2∆, the critical current
is initially symmetric between the two parity transitions for low coupling (tL = 0.01∆),
but becomes asymmetric as the coupling is increased. This highlights the breakdown
of the 4th order expansion, which is always symmetric, and the appearance of QD-ABS
hybridization. In Fig. 7.7c we show the DOS for similar parameters and highlight the dif-
ferent sizes of anti-crossings which correlate with the Ic asymmetry. This relates to the
coherence factors of the ABSs; for positive ξL, the hole component vL is amplified while
at the 2 to 1 QD parity transition the QD is also most easily excited by the removal of an
electron. At the 0 to 1 transition, there is a mismatch as the QD is most easily excited by
the addition of an electron, and so the hybridization is smaller.

PHASE-INDUCED GROUND-STATE PARITY TRANSITIONS

Finally, we discuss the strong coupling regime shown in Fig. 7.6 of the main text, and
the dissimilarity between measured switching current and critical current in proximity
to ξL ≈ ξR ≈ 0.0. In this regime, the current phase relation (CPR) becomes largely non-
sinusoidal with ground state transitions occurring as a function of φ, as can be seen in
Fig. 7.8b-g. This is distinct from other explored regimes for which the CPR is mostly sinu-
soidal. Here, ground state transitions are apparent in b and c, while d stays singlet for all
φ and shows a more sinusoidal CPR in g. The skewed CPRs shown in e and f are related
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Figure 7.8: a Full range Ic plot identical to Fig. 7.6 of the main text. Icons indicate ξL and ξR settings in plots
below. b-d State dispersion as a function of φ of the three lowest energy states for; b ξL = ξR = 0.0, c ξL = 0.2∆,
ξR =−0.2∆, and d ξL = ξR = 0.2∆. Full lines indicate singlet parity states, while dashed lines indicate doublet
parity. e-g Associated CPR of the three states plotted above. Colors indicate state matching state in plots above.

to small anti-crossings between the two lowest singlet states as seen in b and c. All this
together leaves some complications in how to interpret the measured switching current
as we will now discuss. In a typical Resistively and Capacitively Shunted Junction (RCSJ)
model, the supercurrent branch corresponds to a particle at rest in a washboard poten-
tial at a finite phase, φ = arcsin(I /Ic) with no voltage drop across the junction, V = 0
(Tinkham, 2004). Here the washboard is given by the sinusoidal CPR of the ground state,
which is assumed to be unchanging. The stability of this branch relates to the possibility
of escaping into a running finite voltage state, V ̸= 0, where the phase, φ, evolves with
time. For our system, in e.g. Figs. 7.8c,f, the washboard potential would be skewed due
to the non-sinusoidal CPR of either the singlet or doublet state (depending on which is
occupied) yielding more complicated RCSJ dynamics. In addition, as the not occupied
state has lower energy in parts of the CPR, a parity-changing relaxation process can oc-
cur as φ evolves, resulting in a change of CPR and thus washboard potential. The full dy-
namics of this system would depend on the singlet to doublet relaxation rate compared
to the rate of φ change, typically dictated by circuit impedance at GHz frequencies, as
well as the circuit details. A full treatment of this is beyond our scope. We simply note a
correspondence between the range where model and experiment do not match well and
the range where ground state transitions occur as a function of φ. This area is marked by
red lines in both Fig. 7.6 and Fig. 7.8.
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7.7.2. METHODS

NANOFABRICATION

The nanofabrication process is identical to what is reported in ref. (Bordin et al., 2024b).
An InSb nanowire is deposited with a micromanipulator on top of pre-patterned bottom
gates (3/17 nm of Ti/Pd). We note that while our device has 11 bottom gates as in (Bordin
et al., 2024b), only 7 of them are necessary for the experiment of the present manuscript:
3 central gates are used to form a QD, 2 gates – one per hybrid – are used to control the
ABSs and 2 more gates are used to form tunneling barriers between the superconducting
contacts and the outer normal-metal ones. The remaining 4 gates are not used, they are
held at a fixed positive voltage for the full duration of the experiment. This ensures that
the corresponding portions of the nanowire are not pinched-off and always conduct.

A bi-layer dielectric deposited with ALD separates the gates from each other and
from the nanowire (10/10 nm of Al2O3/HfO2). The superconducting Al contacts are de-
posited with the shadow-wall lithography technique after removal of the native oxide on
the surface of the nanowire via hydrogen cleaning (Heedt et al., 2021). Finally, 10/120 nm
of Cr/Au contacts are deposited on the two sides of the device with standard e-beam
lithography after the removal of the native oxide with Ar milling.

We note that most choices of thicknesses and materials are not critical. The essen-
tial requirements are the creation of a QD in a Josephson junction and the formation of
ABSs, which are ubiquitous across diverse platforms (De Franceschi et al., 2010). In our
specific material combination, the ABSs are particularly visible thanks to the otherwise
hard gap of our InSb-Al hybrids (Heedt et al., 2021), they are isolated from each other
thanks to the confining geometry, they can extend far below the Al energy gap thanks
to the tunability of our semiconductor (van Loo et al., 2023), and they can be analyzed
thanks to the normal-metal probes on either side of our device. We have empirically
demonstrated the impact of such ABSs on the supercurrent, emphasizing that it should
not be disregarded in any Josephson junction device defined in hybrid materials, in-
cluding superconductors in combination with InSb, InAs, Si, Ge nanowires and 2DEGs,
carbon nanotubes and others.

ELECTRICAL CIRCUIT

The device is placed inside a dilution refrigerator with a base temperature of ≈ 15mK.
It is connected to standard measurement equipment via fridge lines, resulting in an in-
series resistance RF at multiple points in the circuit as illustrated in Fig. 7.9.

The normal leads of the device, NL and NR, are connected to independent voltage
sources, VL and VR, and current meters, IL and IR. The use of operational amplifiers
results in an additional series resistance ROA added to RF. In all experiments presented
in this work, RL, RR and RQD ≫ RF +ROA such that their effect on transport experiments
is negligible. We have, therefore, not corrected our data for voltage drops across these
circuit resistances. Conductance measurements are performed using lock-in techniques
with an AC excitation between 5 and 10µV.

The superconducting leads, S1 and S2, allow for both a voltage and current bias on
the Josephson junction. In either configuration, S1 is grounded and S2 is driven. Transi-
tioning between setups occurs via a switch as indicated in Fig. 7.9. To prevent a potential
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Figure 7.9: The measurement setup. The device is enclosed by the green dashed line. RL, RR and RQD repre-
sent the tunneling barriers used for spectroscopy and the formation of the QD. The blue dashed line denotes
the part of the circuit placed inside the dilution refrigerator at 15 mK. The device is connected to standard
measurement equipment outside the fridge by fridge lines with a resistance RF. The switch allows for the tran-
sition between voltage- and current-biased experiments on the Josephson junction. The switch is presented
open in this figure.

build-up of large voltages when the switch is open, an additional transport channel is
created between S1 and S2 via a parallel resistor R|| = 10MΩ.

In the voltage bias setup, S2 is connected to a voltage source Vbias and current meter
Imeas. This setup allows for characterization measurements of the QD in the form of
Coulomb diamonds. For these measurements, I21 is always corrected for the leakage
current flowing through R|| and RR. To minimize the leakage current, we aim for R|| and
RR ≫ RQD.

In the current bias setup, S2 is connected to a current source Ibias. The voltage over
the junction V21 is measured using a four-probe configuration to circumvent the fridge
line resistances as illustrated in Fig. 7.9. It is essential that, whilst in the supercurrent
regime, all current flows through the Josephson junction and none through other trans-
port paths such as R|| or RR to accurately determine Isw. This is ensured by the fact that
RQD = 0 in the supercurrent regime. When the Josephson junction is resistive, this no
longer holds and some of the applied current will leak away. We argue that this is not rel-
evant since we are generally only interested in the supercurrent regime of the junction.

CONTACT AND GATE SETTINGS

The voltage biases on the leads (VL,Vbias,VR) are varied only during spectroscopy mea-
surements; otherwise, they are kept at 0V.

The voltages set on the 11 bottom gates are always specified in the exp_name at-
tribute of every measurement. If a gate is swept, the initial value is specified. For in-
stance, the gate settings of Fig. 7.1c,d have the following values (in mV):
500, 500, -100, 481(VH1), 226(VT1), 345(VQD, swept), 241(VT2), 995(VH2), -117, 700, 700.
The 3 gates on the left and the 3 gates on the right of the device are fixed so that, on
each side, the two external ones are always at high voltage and the one closest to the
superconductor is forming a tunneling barrier, they are basically never varied (they are



7

150 7. IMPACT OF ABSS WITHIN THE LEADS OF A QUANTUM DOT JOSEPHSON JUNCTION

significantly different only for the measurement of Fig. 7.1e,f since they are from a previ-
ous cooldown). A label is given only to the 5 gates in the center of the device. VH1, VQD,
and VH2 control the left ABS, the QD, and the right ABS, respectively. They are contin-
ually varied; therefore, most figures highlight in yellow the swept one(s) and in red the
set-points of the fixed one(s). Finally, VT1 and VT2 control the tunnel couplings between
the QD and the ABSs. They are never swept; they are varied only to set the ABS-QD
hybridization to be either weak, intermediate or strong. There is obviously a sensible
cross-talk between neighboring gates so that the raw values of VT1 and VT2 are not very
meaningful out of context; the coupling strength is better assessed from the ABS-QD
charge stability diagrams as shown in Fig. 7.4 rather than looking at the raw voltages. On
the other side, the cross-talk between next-to-nearest-neighbor gates is negligible due
to the efficient screening of electric fields operated by the two superconducting strips on
top of the device and by the nearest-neighbor gates at the bottom; so that any experi-
ment that fixes VT1 and VT2 and sweeps any combination of VH1, VQD and VH2 can be
performed without invoking virtual gates. See, for instance, Fig. 7.16.

SWITCHING CURRENT EXTRACTION
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IBias (nA)

0.15
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Figure 7.10: An I-V curve of the QD Josephson junction, extracted from Fig. 7.1d. The red dashed line denotes a
threshold of 20µV, placed on Vmeas. Isw is extracted as the last measured point along Ibias below the threshold.
Above this threshold, the junction is assumed to be resistive. Due to the sharp transition, this procedure is not
sensitive to the threshold choice: we tested multiple values between 10 and 50µV and observed no appreciable
difference in the Isw extracted.

FITTING PROCEDURE

Estimating the theory model parameters relies on a variety of measurements, presented
in Fig. 7.11a-c. The Hamiltonian parameters are illustrated in panel g. Both the ABS
chemical potential ξL/R and the coupling between ABS and superconductor ΓL/R can
be estimated from ABS spectroscopy by comparing panels (b, e) and (c, f). We note that
although the same ABSs are used throughout this work,ΓL/R may vary slightly from figure
to figure since it is sensitive to changes in the potential landscape generated by the gates,
see details in the linked repository. Therefore, for every measurement presented in the
main text, we monitor the ABS spectroscopy, from which we extract ΓL/R and ξL/R. The
charging energy can be extracted from Coulomb diamonds presented in Fig. 7.1c, which
leaves the couplings between the QD and the ABSs tL/R as the only free parameters. tL/R

are estimated based on the best fit to the experiment (panel a).
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g h
Model parameters

tL tR
Fixed Fitted

U = 10∆ tL = 0.85∆
ξL = 0.9∆ tR = 0.65∆
ξR = −0.7∆
ΓL = 0.2∆
ΓR = 0.25∆

Figure 7.11: The fitting procedure. a. Vmeas as a function of VQD and Ibias. Vmeas is saturated at 250µV. The
black line denotes Isw, extracted at a threshold of 20µV. b, c. The sub-gap excitation spectra measured from
NL and NR as a function of VH1 and VH2 respectively. The dotted lines indicate the positions along VH1 and
VH2 at which the supercurrent measurement of panel c was taken. d. A calculation of Ic as a function of nC,
controlling the occupation of the QD. e, f. The excitation spectrum of the left and right ABS as a function of
ξL and ξR, simulated by the exact model. Grey horizontal lines indicate the gap edge. The dotted lines denote
ξL and ξR as estimated from the experimental data in panel b and c. g. A schematic of the model, depicting
all parameters. h. The model parameters used for panel d. Fixed parameters are estimated based on ABS
spectroscopy and Coulomb diamonds.
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RENDERING OF 3D CHARGE STABILITY DIAGRAMS

Every 3D charge stability diagram of Fig. 7.5 is extracted from a series of twenty VH1–VQD

2D zero-bias conductance maps at different VH2 set-points, as shown if Fig. 7.12. From
every 2D conductance map, we extract the charge degeneracy points with the follow-
ing algorithm. First, the 2D map is smoothed with a Gaussian filter, then, a Hessian
filter highlights the ridges by extracting the minimum eigenvalues of the matrix of sec-
ond derivatives; for both filters, we use functions of the scikit-image python package.
Finally, a custom find_ridge routine extracts the charge degeneracy points from the
filtered 2D map starting from the maxima on the top and bottom edges and following
the pixels with maximum values. A representative example of this procedure is shown in
the top row of Fig. 7.12. The bottom part of Fig. 7.12 shows the result of the charge de-
generacy point extraction on top of all the raw 2D conductance maps of the intermediate
coupling regime. Similar plots for the weak and strong regimes are shared in the linked
repository. After all charge degeneracy points are extracted, they can be converted into a
3D manifold with a point-cloud-to-mesh conversion function. Specifically, we used the
reconstruct_surface function of the pyvista python package.

All raw data, code, and extracted charge degeneracy points for all coupling regimes
are shared in the linked Zenodo repository.
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Intermediate coupling

VH2

VH1

VQD

Figure 7.12: 3D charge stability diagram extraction procedure. The four-panel sequence in the first row shows
how the charge degeneracy points are extracted from a zero-bias conductance measurement. First, the raw
data is smoothed with a Gaussian filter; then, a Hessian filter highlights the ridges; finally, a custom algorithm
extracts the charge degeneracy points starting from the maxima on the top and bottom edges and following the
pixels with maximum values. Such process is repeated for the 20 slices at different VH2 values shown below;
the extracted charge degeneracy points are plotted here on top of the raw conductance data. Eventually, all
the charge degeneracy points are converted into the 3D manifold shown in the top-right corner using the
reconstruct_surface function of the pyvista python package. For further details see the Methods and the
linked repository.
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7.8. EXTENDED DATA

h

e

g

f

d

c

b

a

Figure 7.13: a, b, c, d, e. 2D maps of Isw as a function of VH1 and VQD. These are 5 examples among 40 VH1-
VQD maps taken at different VH2 set points ranging from 988 to 1002mV, collectively forming a 3D dataset of
Isw as a function of VH1, VQD and VH2. From such dataset, we extract the data plotted in panels f, g, and h. f,
g, h. 2D maps of Isw as a function of VH1 and VH2. In panels f and g, VQD is placed along the left and right QD
resonance respectively, color-coded to superimposed lines in panel c. In panel h, VQD is placed in between the
two QD resonances. Panel f reports the same data of Fig. 7.3g.
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Figure 7.14: ABS spectra at Fig. 7.4 settings. a-c. Spectrum of the left ABS for low, intermediate, and strong
coupling regimes, respectively. d-f. Spectrum of the right ABS for low, intermediate, and strong coupling. The
red lines indicate the VH2 settings used in Fig. 7.4. For weaker couplings, VH2 is set closer to the ABS energy
minimum in order to get comparable switching currents over the different coupling regimes; for the strong
coupling VH2 is set where the ABS energy approaches the superconducting gap.
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Figure 7.15: Dissection of the ABS-QD system in the strong coupling regime. a. Spectroscopy as a function
of VH1 and measured from NL. The position of VQD is indicated by the vertical line-cut in panel b. b. Zero-
bias conductance, measured from NL, as a function of VQD and VH1. c, d. Spectroscopy as a function of VQD
measured from NL. Positions along VH1 are indicated by horizontal lines in panel b. e. Isw as measured along
the vertical black line of panel f. f. Isw as a function of VQD and VH1. The gray inset indicates the minimum
energy of the ABS. Dashed lines correspond to panels g and h. g, h. Isw as measured along the horizontal lines
in panel f, extracted using a threshold of 30µV.
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Strong coupling

Intermediate coupling

Weak coupling

Figure 7.16: Additional QD spectroscopy measurements. The left side of the figure shows three Isw maps as
a function of both ABS gates in the weak, intermediate, and strong coupling regimes. The strong coupling
Isw map is identical to panel b of Fig. 7.6, the weak and intermediate Isw maps present additional data not
presented in the main text. The QD gate is kept between the two resonances, as in Fig. 7.6. The right side of
the figure shows spectroscopy measured from NL. Each plot corresponds to a different configuration of VH1
and VH2, as indicated in the Isw maps. In the weak coupling regime, parity switches are observed for every
combination of VH1 and VH2. In the intermediate regime, the parity switch no longer occurs when both ABSs
are at their energy minima (panel e), resulting in a strong increase in the Isw map on the left. In the strong
coupling regime, parity switches only occur when both ABSs are placed far from their energy minima (panels
a,c,g,i).
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Phase depencence

Figure 7.17: Modulation of the excitation spectrum as a function of phase in the strong coupling regime. The
left side of the figure shows theory simulations of the DOS, at φ = 0, in accordance with the strong coupling
data presented in Fig. 7.16. The middle panel, corresponding to both ABSs being at their energy minima and
highlighted by a thick black line, is reevaluated at different values of φ on the right side of the figure, ranging
from φ = 0 to φ = π. A modulation of the excitation spectrum is clearly visible in this case. Depending on φ,
the ground state parity of the system may be even (φ = 0,π/3,2π/3) or odd (φ = π). The region in VH1 vs VH2
space where this switching of the ground state parity is possible is indicated in red in Fig. 7.6. The excitation
spectrum of panels where one ABS is placed far from its energy minimum is largely unaffected by φ, as can be
observed from the dotted and dashed panels presented in this figure.

Figure U nC ξL ξR ΓL ΓR tL tR

7.3d 10 [0.2, 1.8] -0.05, -0.35, -0.65 0.37 0.2 0.16 0.2 0.38
7.3f 10 - [-0.8, 0.6] 0.37 0.2 0.16 0.2 0.38

7.4g,j 10 [0,2] [-1,1] -0.7 0.3 0.2 0.3 0.3
7.4h,k 10 [0,2] [-1,1] 0.5 0.25 0.2 0.6 0.3
7.4i,l 10 [0,2] [-1,1] 1.3 0.2 0.25 0.7 0.45

7.6 10 1 [-1, 0.8] [-1, 0.8] 0.25 0.35 0.7 0.8

7.7a 10 [0,2] 0 0 0.001 0.001 0.01 0.01
7.7b,c 10 [0,2] 0.2 0 1 1 0.4 0.1

7.8a 10 1 [-1,1] [-1,1] 0.25 0.35 0.7 0.8
7.8b - - 0 0 - - - -
7.8c - - 0.2 -0.2 - - - -
7.8d - - 0.2 0.2 - - - -

7.11 10 [0,2] 0.9 -0.7 0.2 0.25 0.85 0.65

7.17 10 [0,2] - - 0.3 0.2 0.8 0.75

Table 7.1: A summary of all model parameters used throughout this chapter. All parameters except nC are in
units of ∆= 0.2 meV.
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Quivi è la sapïenza e la possanza
ch’aprì le strade tra ’l cielo e la terra,

onde fu già sì lunga disïanza».

Dante Alighieri, Paradiso, XXIII, 37-39

[This is the Wisdom and the Potency
that opened roads between the earth and Heaven,
the paths for which desire had long since waited.]

This chapter begins by discussing ongoing progress in Kitaev chain engineering. Finally, it
presents a roadmap to the next goals: a first Majorana qubit and the scaling up of Kitaev
chains towards the topological limit.

159



8

160 8. OUTLOOK

C
hapter 6 leaves the reader suspended by an open question: can we con-
trol the phase of a three-site Kitaev chain in hybrid nanowires? It is a
question with important consequences. Fixing the phase is essential both
for maintaining the coherence of a Majorana qubit and for scaling up the
chain to many sites. Any π-phase mismatch in a long chain introduces a

domain wall, essentially breaking the chain into smaller fragments and, thus, impeding
the realization of a robust topological phase. Recently, ten Haaf et al. (2024b) showed
how to fix the phase in a Kitaev chain defined in a two-dimensional electron gas device;
here, we close the circle by demonstrating phase control in a hybrid nanowire as well.

8.1. PHASE CONTROL
Fixing the relative phase between two superconductors is straightforward: it is sufficient
to connect them in a superconducting loop geometry, as shown in the top left picture of
figure 8.1. It is not as trivial, though, to link the superconductor phase difference φAl to
the three-site Kitaev chain phase difference φ. In the case of a single ABS mediating CAR
and ECT in each hybrid section, then the link is provided by equations 6.19 and 6.20,
yielding

φ=φAl +constant (8.1)

where the constant is either 0 orπdepending on the chosen sweet-spot (Liu et al., 2024b).
If the device is not so ideal, then the constant might assume different values, as sug-
gested by the experimental evidence of ten Haaf et al. (2024b). Nevertheless, φ and φAl

should still differ only by a fixed constant, which guarantees the ability to set φ= 0 with
an appropriate out-of-plane magnetic field Bz . Panels a and b of figure 8.1 show the
measured conductance spectra for such a field sweep. In this case, the constant is ≈ 0
and the period is ≈ 7.3mT, which is compatible with the device loop size.

µ1 µ2
µ3

Device B of chapter 6

This device

500 nm

Bz

Figure 8.1: Three-site Kitaev chain with phase control. Left and right differential conductance of a three-site
chain as a function of the out-of-plane magnetic field Bz (panels a,b) and the detuning of QD1 (panels c,d),
QD2 (panels e,f), and QD3 (panels g,h). Panel j shows a linecut of panel f, while panel i shows an analogous
linecut from a device without a loop (from Figure 6.12). Green and blue arrows highlight the excited states.
Bx = 175mT in all panels but j, where it is 220mT. Bz = 0mT in all panels but a and b. To be published by
Bennebroek Evertsz’ et al. (2025).
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Panels c to h display conductance spectra at Bz = 0 as a function of each dot’s detuning.
Although these spectra resemble earlier measurements of loop-less devices (figures 6.3
and 6.12), we note two important differences. First, the spectrum is gapped: the linecut
in panel j reveals three separated peaks, while panel i – from a loop-less device – shows
nearly flat conductance on the sides of the zero-bias peak due to fast phase precession
(see section 6.4). Second, the two excited states (indicated by blue and green arrows)
appear simultaneously only when either the phase or the middle QD is detuned. Both
observations are compatible with a three-site Kitaev chain model with fixed phaseφ= 0.
In particular, observing a single excited state in panels c, d, g, h signals that each normal
lead cannot couple to the states on the other side – a symptom of ideal device behavior.
It indicates that the tuning of φ and µ2 to 0 is precise and that the Zeeman splitting is
large enough that distant states are not sensibly coupled via other spin species at higher
energy. Therefore, the ideal, spinless, three-site Kitaev chain model with φ= 0 seems to
adequately describe the system. This is further confirmed by the simulations reported
in figure 8.2. For such a simple model, the match between theory and experiment is
extraordinary.
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Figure 8.2: Theoretical simulations of the differential conductance of a three-site Kitaev chain. The calcula-
tion utilizes the scattering matrix approach (Dvir et al., 2023) at finite temperature kB T = 3µeV and coupling
to the leads ΓL = ΓR = 0.8µeV. t1 = ∆1 = 15µeV, t2 = ∆2 = 10µeV. All the µn that are not varied are kept at
0µeV. In panels c-h, φ= 0.

The proof of phase control concludes the main quest of this thesis. In summary, we
showed how to realize every element of the Kitaev chain Hamiltonian (chapters 2, 3, 5),
how to control them (chapter 3), and how to realize two- and three-site Kitaev chains
hosting Majorana bound states (chapters 4, 6, and 8). We also demonstrated that three
sites offer more protection against perturbations of the parameters (chapter 6), thanks
to an energy gap in the middle of the chain (ten Haaf et al., 2024b).

What’s next?
The remaining sections of this chapter explore future directions. Ranging from the phe-
nomenology of a Kitaev chain coupled to an additional quantum dot to the architecture
of a Majorana qubit and the challenges of scaling up the chain even further.
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8.2. ASSESSING MAJORANA QUALITY IN FEW-SITE CHAINS COU-
PLED TO A QUANTUM DOT

Stating that Majorana bound states are topologically protected means that their energy
doesn’t split for small perturbations of the Hamiltonian parameters and, at the same
time, that local additions to the Hamiltonian do not couple them (Kitaev, 2001). Al-
though not yet topological, partial protection against parameter perturbations in two-
and three-site Kitaev chains was demonstrated, showing, in particular, that three-site
chains are significantly more robust. It is then compelling, from a fundamental point of
view, to test how isolated the Majoranas are by attempting to couple them via additional
device elements. It is also important from a practical point of view since the residual
coupling of Majorana bound states would limit future qubit performance via dephasing.

A first hint of Majorana isolation in three site chains comes from the lack of multiple
excited states in panels c, d, g, h of figure 8.1, discussed above. However, this is neither
quantitative nor direct evidence, since the lack of coupling between leads and distant
excited states doesn’t exclude coupling between distant Majoranas. A direct evidence of
Majorana isolation can be obtained by attempting to couple the edge Majoranas via an
additional quantum dot located at one end of the chain. This test was studied theoret-
ically by Prada et al. (2017) and Clarke (2017) in the context of Lutchyn-Oreg nanowires
and then adapted by Seoane Souto et al. (2023) to minimal Kitaev chains. Hence, it is
sometimes referred to as the Prada-Clarke test.

Conceptually, the test is simple: it requires an additional quantum dot – “PC” in fig-
ure 8.3 – and sweeping one of its levels across zero energy (Deng et al., 2016, 2018). If
the PC dot couples to both Majoranas, then it splits their energy. This is possible only
if there is a finite overlap between the wavefunctions of the two Majorana bound states;
the amount of splitting could be used as a quality measure of the Majorana localization
(Prada et al., 2017; Clarke, 2017; Deng et al., 2018; Seoane Souto et al., 2023).

2-site chain 3-site chain

PC

Lead

Figure 8.3: Prada-Clarke test in two- and three-site Kitaev chains. a,b. Conductance spectra of Kitaev chains
coupled to an additional dot, as a function of the gate voltage controlling the dot energy. c, d. Half width at
half maximum of the zero-bias conductance peak of panels a and b, respectively. Bx = 175mT in all panels.
Bennebroek Evertsz’ et al. (2025).
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Figure 8.3 compares the results of a Prada-Clarke test performed on two- and three-site
Kitaev chains (left and right columns, respectively). Both chains are defined in the same
device and switching between one and the other is executed, as in chapter 6, by setting
the third dot of the chain off and on resonance (see schematics above). In particular, the
measurements shown in panels a and b are identical in everything but the plunger gate
voltage of the rightmost QD, which is set 4.7mV off-resonance in panel a.

Since the Majorana energy splitting is smaller than the linewidth, we quantify it by
tracking the excess of half width at half maximum (HWHM) of the zero-bias conductance
peak. When the PC dot is off-resonance, the HWHM is ≈ 7µV for both the two- and the
three-site chain. Instead, when it’s on resonance, the HWHM increases by as much as
≈ 5µV for the two-site chain, while there is no visible increase for the three-site chain.
Notice that when the PC dot is off-resonance, it effectively behaves as a standard tunnel-
ing barrier (Deng et al., 2016). Since no splitting is observed in that limit, we conclude
that the splitting observed in panel a is not detectable with standard spectroscopy: the
Prada-Clarke test gives access to new information. It also provides a remarkable energy
resolution ≲ 1µV, estimated from the deviations from HWHM = 7µV in panel b.

The simple Prada-Clarke test of figure 8.3 shows that poor man’s Majoranas in this
two-site chain are indeed coupled by the additional dot, while there is no detectable
coupling in the three-site chain. This demonstrates that scaling up the chain is not only
increasing the protection against parameter perturbations (chapter 6) but also isolating
Majoranas from local couplers. Piece by piece, we are engineering all the features of
topologically protected Majoranas.

True topology arises only in an infinite Kitaev chain, while, for any finite chain, it is
important to quantify the Majorana quality in terms of metrics. One metric suggested by
Tsintzis et al. (2022) is the so-called Majorana polarization (MP), another one, recently
proposed by Svensson and Leijnse (2024), is the local distinguishability (LD), and finding
new metrics is an active field of research. The desired properties of Majorana quality
metrics are (1) ease to calculate, (2) ease to measure, (3) prediction power – the ability to
connect it to other properties such as qubit coherence time, gate fidelity, and Majorana
braiding visibility. The Majorana polarization on the first chain site can be calculated as
follows, in the general case of a finite Zeeman splitting:

MP1 =
∑
σ

(〈o|γ1σ |e〉2 −〈o|γ2σ |e〉2
)

∑
σ

(〈o|γ1σ |e〉2 +〈o|γ2σ |e〉2
) (8.2)

where σ runs through the two spin species, γ1σ,2σ are the Majorana operators in the first
site, and |e〉, |o〉 are the lowest-energy states with even and odd fermion parity, respec-
tively. An analogous definition can be given for the MP on the last site.1 The link between
the MP, qubit performance, and braiding visibility is studied by Tsintzis et al. (2024), but
measuring the MP is not as easy. One proposal to measure the MP relies on coupling
two Kitaev chains to a transmon qubit (Pino et al., 2024). A much simpler method is pro-
vided by the Prada-Clarke test: Seoane Souto et al. (2023) simulated the correspondence

1Here we are reporting the MP definition used in Aksenov et al. (2020), Tsintzis et al. (2022), Seoane Souto et al.
(2023), and Tsintzis et al. (2024). See Sticlet et al. (2012), Sedlmayr and Bena (2015), Sedlmayr et al. (2016),
and Samuelson et al. (2024) for slightly different MP definitions depending on the generality of the context.
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between the Majorana splitting induced by the Prada-Clarke dot and the MP of Kitaev
chains with limited Zeeman energy.

The poor man’s Majorana splitting of figure 8.3a,c is likely due to imperfect device
tuning since here the Zeeman energy is very large compared to t ,∆. Therefore, future
directions include

• tuning the device as well as possible and using the measured HWHM to set a lower
bound to the corresponding MP,

• performing Prada-Clarke tests at different Zeeman energies – to gauge the depen-
dence and find whether the Majorana quality is limited by either imperfect tuning
or finite Zeeman,

• relating the splitting induced by the Prada-Clarke dot to other Majorana quality
metrics.

In summary, coupling Kitaev chains to an additional quantum dot demonstrates that
three-site chain Majoranas can be more isolated than two-site ones (figure 8.3) and pro-
vides an accessible experimental tool to quantify the Majorana quality required for qubits
and braiding (Seoane Souto et al., 2023; Tsintzis et al., 2024). However, a Prada-Clarke
test can only predict future qubit properties. To move beyond prediction, we need to
realize an actual qubit. Once realized, we might even employ the qubit itself to further
investigate the Majorana properties connected to topology, such as protection and iso-
lation.
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8.3. MAJORANA QUBIT
Creating a first Majorana qubit is not easy. This section outlines the requirements needed
to accomplish it and presents a viable architecture. Many steps are needed, ranging from
the device nanofabrication to the readout of the qubit state. They are summarized in the
following table. Different steps require different experimental capabilities, in particular,
some tasks can be performed slowly while others have stringent speed requirements. In
the following, we discuss the typical timescale of every step and the constraints that need
to be considered to design, build, wire, and operate a viable qubit device.

Step Process Timescale
1 Device nanofabrication and cooldown weeks
2 Device characterization and tuning months
3 Qubit initialization µs
4 Qubit manipulation ns
5 Qubit readout µs

FABRICATION

The first step is, of course, the nanofabrication of a parity qubit device. This is relatively
easy since it relies on the already-developed fabrication techniques used for chapters 3
to 7 (van Loo, 2023, chapter 3) and for the Kitaev chain of sections 8.1 and 8.2. Essen-
tially, a Majorana qubit device requires two of such chains within the same nanowire
(see section 2.2.1) This is not an issue since InSb nanowires are long enough to host two
chains (they are ∼10µm long so they could fit two Kitaev chains with as much as ∼20
sites each) and the gate and contact yield is nearly 100% (for instance, during the exper-
iments of chapters 6 and 7, 4 three-site devices were tested, for a total of 16/16 working
contacts and 43/44 working gates). This does not mean that fabricating a qubit device is
trivial, since nanofabrication is always unpredictable due to machine misbehavior, but
rather that fabricating two Kitaev chains within the same nanowire is essentially as diffi-
cult as fabricating one.

Figure 8.4 illustrates the parity qubit design we propose here. If all nanofabrica-
tion processes run with no incidents, it requires about 10 days to fabricate, bond, and
cooldown in a dilution refrigerator.

TUNING

Tuning a device is more delicate and time-consuming. Characterizing the ABSs, forming
the QDs, and tuning the couplings may require several weeks (see appendix C). Part of
the tuning can be performed with the DC measurement techniques used in chapter 6,
but not all of it. The difficulty lies in forming and characterizing the QDs in the bulk of the
device since they are not accessible with local tunneling spectroscopy performed from
the normal probes on the sides. To overcome this limitation, we propose two possible
techniques:

• Single-lead radio-frequency (RF) reflectometry using an LC resonator attached to
the superconductor. Normally, this is performed as in Jung et al. (2012) using a
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normal-metal lead. For an extensive review, see Vigneau et al. (2023). Using a
superconductor is partly different. It requires either adding the parent gap ∆Al ≈
200µV to the bias voltage (and relying on finite temperature to poison the other-
wise fully filled or fully empty BCS density of states) or destroying superconductiv-
ity by either heating the device to T ≳ Tc ≈ 1.2K or applying an out-of-plane field
Bz ≳B c

z ≈ 200mT

• Dispersive gate sensing. This requires an LC resonator attached to the plunger gate
of the sensed QD and another electron reservoir attached to the same QD so that
that charge can tunnel in and out of it. The minimal system enabling dispersive
gate sensing is then a double quantum dot (Colless et al., 2013).

In our laboratory, we are familiar with both techniques (Wang et al., 2022b; de Jong et al.,
2021). Therefore, the next goal is implementing either of the two on a Majorana qubit
device, to demonstrate its tunability. With single-lead spectroscopy, the QDs should be
tuned one by one by setting all other QDs off-resonance, with dispersive gate sensing,
the QDs need to be kept on resonance in pairs.

In addition, in the specific case of Kitaev chains, we suggest another available tech-
nique combining different elements of the previous two:

• CAR-induced quantum capacitance. Traditional single-lead reflectometry from a
gapped superconductor is challenging since single electrons cannot tunnel in and
out of a single QD. However, if there are two QDs coupled to a superconductor,
then tunneling of electron pairs is enabled by CAR. Therefore, if the energy levels
of consecutive QDs are antialigned, a reflectometry signal arises on the supercon-
ducting lead. This procedure was originally proposed by Liu et al. (2022) and Wang
(2023, chapter 10) as a parity readout technique. It could be used for device tuning
as well, as long as pairs of consecutive QDs are kept on resonance, where being on
resonance means, in this context, having both QD energies at zero or, in general,
antialigned.

normal lead
gates

superconductor

Kitaev chain Kitaev chain

charge
sensor

charge
sensor

tunable
coupler

normal lead

Bz

Bx

VRF, in VRF, out VRF, in VRF, out

VRF, in VRF, out

VRF, in

VRF, out

VRF, in
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VDC

LC 
resonator

fast lines
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Figure 8.4: Majorana qubit made with a pair of 3-site Kitaev chains coupled by a central QD.
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There are no stringent speed requirements for the tuning process. Characterizing a de-
vice and tuning both Kitaev chains to the sweet spot may take several weeks to a few
months. As long as the dilution refrigerator is operational and the device electrostatics
are stable enough, time is not a concern. In practice, the gate configuration of our de-
vices can be stable for weeks (see section 6.7.3) and in case of a sudden charge jump it is
typically not difficult to rapidly find the sweet spot again.

Instead, qubit operations such as initialization, manipulation, and readout have strin-
gent speed requirements. They are discussed in the next sections. We begin with qubit
manipulation, which has the shortest timescale of all.

QUBIT MANIPULATION

For the first proof of principle, we propose to rely on qubit gates that are not protected.
Physical or measurement-based braiding proposals typically involve devices that are
more complicated than figure 8.4’s (Alicea et al., 2011; Plugge et al., 2017; Tsintzis et al.,
2024). They will be explored in future works. Here, we rely on the partial protection of
few-site Kitaev chains to propose much simpler qubit gates that are not topologically
protected. The basic principle is breaking the Majorana protection for short intervals by
coupling the Majoranas together. The free evolution induced by Majorana interaction
implements the desired gates.

In concrete, we adapt the poor man’s Majorana qubit proposals of Tsintzis et al.
(2024) and Pan et al. (2024) to generic few-site chains. The low-energy Hamiltonian for
such a qubit has the following form (Pan et al., 2024):

Hint =
ε

2
σz +

λ

2
σx (8.3)

where ε is the coupling between Majoranas of the same chain, λ is the coupling between
adjacent Majoranas from the different chains, and σz and σx are Pauli matrices on the
qubit space (which is either the even or the odd total parity subspace of the non-local
fermions stored into such Majorana modes). The intra-chain Majorana coupling ε cor-
responds to the energy splitting induced by detuning from the Kitaev chain sweet-spot.

If every QD of the chain is detuned by δµn , then ε = δµN
∏N−1

n=1
δµn
2tn

(see section 6.7.1).
The inter-chain Majorana coupling λ corresponds to the tunnel coupling between the
two chains (Tsintzis et al., 2024). The control of both couplings ε and λ enables all ro-
tations of the qubit Block sphere. For instance, figure 8.5 illustrates the pulse sequences
that can be used to measure either Rabi or Ramsey oscillations.

Rabi Ramsey

Figure 8.5: Rabi and Ramsey pulse sequences.
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Referring to the Rabi and Ramsey experiments, the constraints on the couplings, the
wiring, and the qubit manipulation speed finally become clear:

• A lower bound on the gate duration is set by the electronics speed. Commercial
pulse generators can have a rise time of ∼1ns.

• Correspondingly, the device wiring must accommodate fast pulses. Figure 8.4 de-
vice needs at least 4 fast lines: three connected to the QD plunger gates of one
Kitaev chain (to control ε) and one more line connected to the gate controlling λ.

• Another lower bound is set by the maximum achievable λ. Since tunnel coupling
can easily reach a few µeV, this is typically not a limiting factor: with λ = 1µeV, a
full qubit rotation is achieved with a square pulse lasting ≈ 4ns.

• Another lower bound is set by the Kitaev chain energy gap: minn(2tn). To avoid
Landau-Zener transitions causing leakage to the excited states, all pulses must be
slow enough to be adiabatic. This is typically not a concern for our devices: a
gap of ∼20µeV prescribes all ε and λ ramps to last much longer than 0.2ns. The
electronics speed is typically a stricter lower bound.

• On the other side, the upper bound on the qubit manipulation timescale is set by
how well ε and λ can be switched off. Residual intra-chain coupling leads to de-
phasing, while residual inter-chain coupling leads to unwanted qubit rotations.
Both are detrimental. In two-site Kitaev chains, ε is zero only upon precise tuning
of t = ∆. Zatelli et al. (2024) estimated a ∼70neV noise floor for ε, which leads to
an estimated dephasing time of ∼10ns. Thus, we propose to design a Majorana
qubit made of three-site Kitaev chains, where the dephasing time is expected to
improve up to ∼1µs (chapter 6). Then, to limit unwanted qubit rotations to the
same timescale, the residual coupling λ must be switched off to ∼ 1neV or less.
Note that the control of the λ amplitude must span at least two orders of magni-
tude: the maximum λmust reach ∼0.1µeV to enable qubit gates much faster than
the dephasing time, while the minimum λ should be less than ∼ 1neV. For this
reason, we propose to use a quantum dot as a tunable coupler between the two
Kitaev chains of the qubit. As shown in figure 5.9, the current through a QD can
span more than two orders of magnitude while switching from the charge degen-
eracy points to the Coulomb blockade region.

• Finally, we recall that a hard upper limit on the qubit manipulation time is set by
the quasi-particle poisoning time, i.e. the characteristic timescale for which the
parity is conserved in a superconducting system. Since quasi-particle poisoning
flips the qubit, it is a limit for T1. In our systems, the quasi-particle poisoning time
is above 1ms so it is not a concern for a three-site Kitaev chain qubit.

In summary, the design proposed in figure 8.4 offers a viable qubit manipulation win-
dow: qubit gates can be as short as several ns while residual couplings limit operations
under 1µs. Gates can be controlled with as little as 4 fast lines, wired with coaxial cables
and low-pass filters with a cut-off frequency of ∼1GHz.
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QUBIT READOUT

The parity of two-site Kitaev chains can be read out via charge sensing (Tsintzis et al.,
2024) or CAR-induced quantum capacitance (Liu et al., 2023). Here, we recommend the
former, since it is easier to generalize to few-site Kitaev chains of any length. As pro-
posed by Tsintzis et al., we rely on the tunability of the Majorana protection to read out
the parity. Since Majoranas are chargeless, a Kitaev chain tuned to the sweet spot yields
no signal, whereas a finite charge sensing signal appears as the chain is tuned out of the
sweet spot. This can be achieved by pulsing the plunger gate voltages of all the QDs of
one chain. It is the same type of pulse required for a ε

2σz gate, so it doesn’t add any over-
head to the Kitaev chain wiring in terms of fast lines and room temperature electronics.
We note that a finite ε leads to dephasing, but this is irrelevant for readout purposes since
projecting on the |0〉〈0| or |1〉〈1| qubit subspaces is insensitive to the relative phase differ-
ence. Instead, what is relevant is the residual inter-chain coupling λ, since it superposes
the |0〉 and |1〉 qubit states. How well λ can be switched off determines the upper bound
on the readout timescale. Reading out in a few µs requires λ to be 1neV or less.

On the other side, the lower bound on the parity readout timescale is set by the sen-
sitivity of the charge sensor. This is quantified in terms of the signal-to-noise ratio (SNR)
depending on the readout time. A charge sensor can be implemented with an addi-
tional QD on the side of the chain; the QD is coupled to a normal lead connected to an
LC resonator, as shown in figure 8.4. It is important to ensure that the charge sensor is
coupled only capacitively to the Kitaev chain: the tunneling barrier between the charge
sensor and the first sensed QD of the Kitaev chain must be pinched strongly so that no
electrons can tunnel within the qubit operation timescales. Tunneling electrons would
flip the qubit, just like quasi-particle poisoning. Charge sensing of a minimal Kitaev
chain with an SNR > 1 in ≈ 200µs was demonstrated by van Driel et al. (2024b). A higher
SNR

p
Hz can be obtained by increasing the signal with a higher-quality-factor resonator

or by lowering the noise with an additional amplifier at the coldest plate of the dilution
refrigerator (de Jong et al., 2021).

Instead of optimizing the SNR
p

Hz, an alternative is reducing further the minimal λ.
However, it might be challenging to span it by more than four orders of magnitude, from
the λ ∼ 0.1µs needed for fast qubit manipulation to the λ≪ 10ps needed for a readout
taking ∼100µs. A third alternative is relying, once more, on the tunability of the chain by
setting ε≫λ. This locks the qubit precession approximately around the z axis. This way,
the constraint posed by the residual coupling λ is moved from the readout timescale to
the readout fidelity. The readout error would be ∼ arctan(λ/ε). Since ε can be tuned up
to ∼10µeV (figure 6.4), this technique relaxes enormously the readout requirements for
the residual coupling λ. In this scenario, the readout timescale is limited by the quasi-
particle poisoning.

QUBIT INITIALIZATION

Since the readout technique discussed above is a projective measurement, the qubit can
be initialized by reading it out. Alternatively, it can be initialized by waiting more than
the quasi-particle poisoning time after pulsing the QDs of both chains where the quasi-
particle population is unbalanced (Tsintzis et al., 2024).
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8.4. SCALING-UP THE KITAEV CHAIN
After realizing the first Majorana qubit, the natural progression is to scale up the chains
to improve its performance. Figure 8.6 shows that the expected dephasing time of a Ki-
taev chain qubit scales exponentially as a function of the chain length. It improves by
three orders of magnitude every two additional sites. Based on this prediction, the next
crucial target is realising a five-site Kitaev chain, which is the shortest one predicted to
outperform the typical coherence times of popular solid-state platforms such as spin
qubits and superconducting qubits (Stano and Loss, 2022; Kjaergaard et al., 2020). This
would be a ground-breaking milestone. It would also stimulate research towards hy-
brid quantum processors. For instance, spin qubits defined in semiconductor quantum
dots have the advantage of allowing fast two-qubit gates, due to their strong inter-QD
coupling. However (especially if not isotopically purified), they typically have a shorter
coherence time than superconducting qubits. A hybrid quantum processor using spin
qubits for fast operations and Kitaev chains as quantum memories could outperform su-
perconducting qubits on multiple metrics. Such a hybrid platform would benefit from
the long coherence of Kitaev chains even without implementing topologically protected
gates via braiding.

However, Kitaev qubits and hybrid spin-Kitaev qubits become technologically ap-
pealing only if the coherence of Kitaev chains can surpass, substantially, the best semi-
conducting spin qubits ever made (Stano and Loss, 2022; Burkard et al., 2023). Therefore,
scaling up even further five sites is crucial. This will bring the Majorana research to new
grounds since there are other phenomena that would bind the lifetime of longer Kitaev
chains. For instance, the quasi-particle poisoning time is a hard limit on the T1 of a
Majorana qubit: finding strategies to increase it is an important and timely research di-
rection, shared with the superconducting qubit community (Wang et al., 2014; Bargerbos
et al., 2023b; Connolly et al., 2024). Similarly, the residual inter-chain coupling λ leads

Kitaev chain dephasing time (estimate)

Typical coherence times

Spin qubits

Quasiparticle poisoning,
residual coupling

Superconducting qubits

Neutral atoms

Next targets

State of the art

a

b

Figure 8.6: Scaling targets. a. Estimated T∗
2 of a Majorana qubit limited by a finite intra-chain coupling ε

due to ∼10µV gate noise (blue line). The lifetime T1 is limited by quasiparticle poisoning and residual inter-
chain coupling λ (red shade). b. Typical coherence times of selected qubit platforms. We remark that typical
timescales shouldn’t be compared just as absolute values, but also related to the typical gate duration of each
platform (Stano and Loss, 2022; Kjaergaard et al., 2020; Evered et al., 2023). In this context, Kitaev chains can
be especially competitive due to relatively long dephasing times and relatively fast gates (see section 8.3).
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to unwanted qubit flips over the h
λ timescale, motivating the development of high-range

tunable couplers.

We remark that the interest in scaling up the Kitaev chain extends beyond Majorana
qubit performance. First and foremost, scaling up the chain offers the opportunity to
study the appearance of topology. This is characterized by increased protection against
perturbations and the transition from a discrete spectrum of excited states to a continu-
ous band (Sau and Das Sarma, 2012).

Secondly, the challenge of tuning longer chains forces further investigation of the
phase behavior. Kitaev chains with N > 3 require more than one superconducting loop,
which poses the challenge of tuning all N−2 phase differences with a single free parame-
ter: Bz . Up to N ∼ 7, this is achievable by designing loop sizes of different areas, such that
the optimal phase of every loop can be approximated by selecting appropriate multiples
of the flux quantum. If the ratios between the loop areas are irrational, this approxima-
tion can be, in principle, arbitrarily accurate. In practice, the larger the loop areas, the
better the approximation, due to the number of flux quantum multiples that are accessi-
ble before a large Bz destroys superconductivity (Bz ∼ 100mT). This strategy works well
for a limited number of loops, after which the required amount of flux quantum mul-
tiples becomes exponentially large (for a target phase precision δφn ∼ π

x the required
amount of multiples scales as ∼ xN−2). To scale up further, it is unthinkable to tune
all phases with a single parameter Bz : every φn should be addressed with a dedicated
tuning knob. A standard strategy popular in the superconducting qubit community is
controlling every loop with a dedicated flux line (Pita-Vidal et al., 2024a), but given the
small footprint of Kitaev chain devices, fabricating many flux lines can be challenging
and cumbersome. An attractive alternative was recently proposed by Liu et al. (2024b).
This relies on the ABS origin of the tn and ∆n couplings and the one-dimensionality of
the nanowire to tune the relative φn phases in a fully electrostatic fashion, i.e. acting
only on the bottom gate voltages. The device shown in figure 8.7 can be used to test the
assumptions and the feasibility of such a protocol.

Finally, scaling up Kitaev chains stimulates the development of new automation tech-
niques. Koch et al. (2023) and van Driel et al. (2024a) pioneered the advent of machine
learning to tune the t/∆ balance in minimal Kitaev chains. Now, the dream is to create

Bz

Bx

VRF, in VRF, out

normal lead
gates

normal lead

VRF, in VRF, outVRF, in VRF, out

superconductor

Figure 8.7: 5-site Kitaev chain.
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a fully autonomous algorithm, able to tune a Kitaev chain from scratch, as was recently
achieved for spin qubits (Schuff et al., 2024). This requires the autonomous formation
of the QDs, the optimization of the inter-dot couplings, and the balance of all the tn/∆n

ratios. A device like figure 8.7’s is ideal for training such an algorithm: normal-lead spec-
troscopy (accessing the innermost sites via cotunneling) can be used to understand and
label the data, while the algorithm can take as inputs either gate sensing signals or CAR-
induced quantum capacitance detected with RF reflectometry on the superconducting
lead. An algorithm getting only gate sensing or RF reflectometry signals as the possible
inputs is then applicable to Kitaev chains of any length.
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8.5. CONCLUSION
In essence, this dissertation illustrates the realization of few-site Kitaev chains: it starts
with a review of the theory background (chapter 2), it constructs the necessary ingredi-
ents (chapters 3 and 5), and demonstrates the capabilities of two- and three-site chains
(chapters 4, 6 and 8). In the outlook, we propose three follow-up experiments for the
coming years: coupling one chain to an additional quantum dot to quantify the Majo-
rana quality, coupling two three-site chains together to realize a parity qubit, and creat-
ing a five-site Kitaev chain to better understand the advent of topology.

Looking ahead, I hope the impact of this work transcends the engineering of Kitaev
chains. The Andreev trimer investigation of chapter 7 serves as a simple example of how
such efforts can yield unexpected discoveries — an outcome I aspire to see repeated.
I wish the nanotechnological capabilities shown here could serve as an inspiration for
novel metamaterial concepts and new creative approaches to Hamiltonian engineering.
It would be wonderful to see the Kitaev chain eventually become a valuable technology,
but my deepest hope lies elsewhere: seeing new students fall in love with this science
and bring new ideas. This journey is not all about what we can achieve, but what we can
learn, and whom we can inspire.





A
ECT DESTRUCTIVE INTERFERENCE

W
e report here a brief calculation showing why the interference be-
tween the two ECT paths is destructive. Considering CAR and ECT
as second-order processes, their rate can be calculated using Fermi’s
golden rule:

I ∝ 2π

ħ

∣∣∣∣
∑
m

〈
f
∣∣V |m〉〈m|V |i 〉

Em −Ei

∣∣∣∣
2

δ(E f −Ei ) (A.1)

where |i 〉, |m〉
∣∣ f

〉
are the initial, intermediate and final states, and Ei , Em and E f are

their energies. V is a perturbative coupling of the following form:

V = tLc†
L↑d↑+ tR d↑c†

R↑+ tLc†
L↓d↓+ tR d↓c†

R↓
+ tLcL↑d †

↑ + tR d †
↑cR↑+ tLcL↓d †

↓ + tR d †
↓cR↓

(A.2)

where cL , d and cR are the annihilation operators for the left QD, the ABS, and the right
QD, respectively, and ↑ and ↓ label the spin. The terms appearing in V account for all the
processes where a particle tunnels from a QD to the ABS or vice-versa: tL and tR are the
corresponding probability amplitudes for the left and the right respectively.

We label the joint state with the convention
∣∣left QD, ABS, right QD

〉
(and of course〈

left QD, ABS, right QD
∣∣), where the ABS state can be either the singlet |S〉 = u |0〉−v |↑↓〉

or one of the two doublet states |↑〉, |↓〉. It is crucial to fix an order for the application of
the operators and stick to it, because, as it will be clear in the following, the minus sign of
the ECT destructive interference arises from the anticommutation rules of the fermionic
operators. Here, we choose the same order for simplicity: left QD, ABS, right QD.

|↑,↑,↑〉 = c†
L↑d †

↑c†
R↑ |0,0,0〉

|0,↑↓,0〉 = d †
↑d †

↓ |0,0,0〉
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With these ingredients, we can calculate ECT and CAR rates. We report the calculation
explicitly for ↑↑ ECT, other processes can be calculated in a very similar way. Inserting
Eq. A.2 in Eq. A.1 and preserving only non-zero terms we get

I ↑↑ECT ∝
et 2

L t 2
R

ħ

∣∣∣∣
V↑
E↑

+ V↓
E↓

∣∣∣∣
2

(A.3)

where

V↑ = 〈0,S,↑|d↑c†
R↑ |0,↑,0〉〈0,↑,0|cL↑d †

↑ |↑,S,0〉
= 〈0,S,↑|d↑c†

R↑d †
↑ |0,0,0〉〈0,↑,0|cL↑d †

↑c†
L↑(u − vd †

↑d †
↓ ) |0,0,0〉
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↑ |↑,↓,↑〉〈↑,↓,↑|d↑c†
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Exclamation points highlight the step where fermionic operators are reordered, yielding
the signs highlighted in yellow. The destructive interference of ECT arises as anticipated
from the anticommutation relations of the fermionic operators.
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M
ost of the nanofabrication techniques used in this thesis were devel-
oped by Sebastian Heedt, Marina Quintero-Pérez, Francesco Borsoi,
Nick van Loo, and Grzegorz P. Mazur over the last five years. They are
beautifully reviewed in van Loo’s PhD thesis. Here, we supplement
his work by detailing the fabrication procedures and other preparatory

steps used for the nanowire devices discussed in this dissertation. We make use of the
following TU Delft and Kavli Nanolab equipment:

Nickname Manufacturer, model, (role) Specifications
EBPG5200 Raith EBPG5200 (Electron

Beam Pattern Generator)
100kV acceleration voltage;
< 20nm alignment resolution.

Tepla PVA TePla 300 (plasma) Pyrex holder with Faraday grid.
QT-AJA AJA (evaporator) Loaded with Au, Pd, Co, Ti, and Cr;

powered by 10kV Temescal CV-12SLX;
equipped with KDC40 ion source in the
load-lock, KSC1202 source controller.

MB-AJA AJA (evaporator) Loaded with Pd, Pt, and Ti;
powered by 10kV Temescal CV-6SLX;
equipped with KDC40 ion source in the
load-lock, KSC1202 source controller.

UTS Evaporator with a cryop-
ump in the main chamber
and the possibility of hydro-
gen clean in the load-lock

Loaded with Pt, Ti, Al, and AlOx;
powered by 10kV Temescal CV-12SLX;
the arm can be rotated, the stage cooled
with liquid N2; no PMMA allowed.

AC Metal Alliance Concept AC450
(sputtering system)

Loaded with Cr, Mo, W, and Co;
equipped with 600W Huttinger RF and
1500W DC source.

Dicer Disco Hi-Tec Europe GmbH
DAD3220
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Nickname Manufacturer, model, (role) Specifications
Oxford ALD Oxford Instruments Flexal

(Atomic Layer Deposition)
Thermal and plasma-assisted
ALD of Al2O3 and HfO2.

CPD Leica CPD3
(Critical Point Dryer)

Super-critical CO2 drying

Vacuum oven Binder VD23
Optical
microscope

Olympus BX51
with DP25 camera

Amplification: ocular 10x,
objective 5x/10x/20x/50x/100x.

SEM Hitachi S-4800 (Scanning
Electron Microscope)

Max resolution: 1nm at 15kV,
2nm at 1kV; LN2 cooled plate.

Micromanipulator Equipped with a Leica
optical microscope

Three-axis needle control;
moving stage.

Probe station SUSS MicroTec PM8
Bonder F&S Bondtec 5630 Fed with 25µm thick Al wire.

B.1. SUBSTRATE PREPARATION
The substrate nanofabrication starts with a standard 4-inch wafer. Typically, we use
525±25µm Si wafers covered with 285nm of SiO2. The substrate undergoes four electron-
beam lithography (EBL) steps to deposit, in order, EBL markers, bottom gates, bond-pads,
and smart-walls. Below, we list the procedures in detail.

MARKERS

1. Spin-coating with PMMA-950-A6 resist at 4000 rpm (rotations per minute). The
wafer is then baked on a hot-plate at 180◦, for 15 minutes. Before spin-coating,
cleaning the wafer with Tepla (200sccm O2 flow, 600W power, 5minutes) can im-
prove the resist adhesion.

2. EBPG5200 exposure.

3. Resist development for 1 minute in an MIBK:IPA solution with 1:3 ratio (methyl
isobutyl ketone and isopropanol), followed by rinsing in pure IPA for 1 minute and
then blow drying with N2.

4. Tepla descum with oxygen plasma, with 200sccm flow, 100W power, for 1minute.

5. Metal evaporation in QT-AJA: 5nm of Ti deposited at 0.5Å/s followed by 65nm of
Pt deposited at 1Å/s.

6. Lift-off in acetone, overnight, followed by 10 minutes in an ultrasonic bath. Keep
the sample vertical for the lift-off. Then, rinse in IPA for 1 minute and blow dry
with N2.

7. Tepla ashing: 200sccm O2 flow, 600W power, for 5minutes.
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The markers are deposited at a wafer scale, whereas gates, bondpads, and smart-walls
are deposited on smaller 18x18mm pieces. We refer to the following nomenclature:

Nickname Shape Dimensions
wafer round 4-inch diameter
coupon square 18mm side
chip square 9mm side

At this stage, the wafer is diced into coupons, after applying a protective layer of PMMA-
950-A4, spun at 4000 rpm and baked at 180◦ for 5 minutes. For the following EBL steps,
we process one or two coupons together, so that the fabrication of 4 or 8 identical chips
can be carried in parallel.

GATES

1. Spin-coating with PMMA-950-A2 at 4000 rpm, baking at 180◦ for 15 minutes.

2. EBPG5200 exposure.

3. Development: MIBK:IPA (1:3) for 1 minute, rinsing in pure IPA for 1 minute, and
blow drying with N2.

4. Tepla descum: 200sccm O2 flow, 100W power, for 1minute.

5. MB-AJA: 3nm of Ti deposited at 0.5Å/s followed by 17nm of Pd deposited at 1Å/s.

6. Lift-off in acetone, overnight, possibly followed by 5 minutes in an ultrasonic bath
at minimum power or by gentle blowing with a pipette. Then, rinse in IPA for 1
minute and blow dry with N2.

7. Tepla ashing: 200sccm O2 flow, 600W power, for 5minutes. (optional)

Figure B.1: SEM image of the fine gate structure of a three-site Kitaev chain device.
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BOND-PADS

1. Spin-coating with PMMA-950-A6 at 4000 rpm, baking at 180◦ for 15 minutes.

2. EBPG5200 exposure.

3. Development: MIBK:IPA (1:3) for 1 minute, rinsing in pure IPA for 1 minute, and
blow drying with N2.

4. Tepla descum: 200sccm O2 flow, 100W power, for 1minute. (optional)

5. AC Metal: W sputtering at 150W RF power for 150s. Expected thickness = 50nm.

6. Lift-off in acetone, overnight, possibly followed by 5 minutes in an ultrasonic bath
at minimum power or by gentle blowing with a pipette. Then, rinse in IPA for 1
minute and blow dry with N2.

7. Tepla ashing: 200sccm O2 flow, 600W power, for 10minutes. (important)

Then, the whole substrate is covered by a dielectric deposited with ALD. Typically, we
deposit 20nm of HfO2 at 110◦ (chapters 3 and 4) or a double layer of 10nm of Al2O3 +
10nm of HfO2 (chapters 5, 6, and 7).

SMART-WALLS

1. Tepla cleaning: 200sccm O2 flow, 600W power, for 5minutes.

2. Spin-coating with HSQ FOx25 at 1500 rpm, baking at 180◦ for 2 minutes. The HSQ
is stored in a fridge and must be warmed up to room temperature by waiting at
least 5 minutes before usage. To minimize the chances of forming cracks on the
resist film, the HSQ should be sprayed with a pipette on the whole coupon and
spun immediately.

3. EBPG5200 exposure.

4. Development: Microposit MF321 for 5 minutes at 50◦. The coupon is held verti-
cally, with a magnet spinning at 250 rpm to stir the liquid. Rinsing is performed
in two steps: first, the coupon is transferred to water to stop the development,
then it is transferred to IPA. Both transfers must be performed carefully, holding
the coupon horizontally, and without breaking the surface tension of the liquid
droplet on the substrate.

5. Since blow-drying with N2 might damage thin smart-wall structures, the substrate
is dried in the CPD. If all smart-walls are relatively thick (> 300nm) then blow-
drying with N2 is fine.

6. Tepla cleaning: 200sccm O2 flow, 600W power, for 5minutes.

Finally, each coupon is cleaved into four identical chips.
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General remarks:

• Just before spin-coating, cleaning the wafer with Tepla (200sccm O2 flow, 600W
power, 5minutes) improves the resist adhesion.

• After development, it is wise to inspect the resist with an optical microscope.

• For the lift-off, two hours are typically sufficient to dissolve the PMMA in acetone
at room temperature, it is even faster in warm acetone. After the PMMA is com-
pletely dissolved, delicate pipetting or sonication can help to lift-off the residual
metal film.

• SEM imaging of the fine structures can be done only in the absence of PMMA or
HSQ. It is possible to image the smart-walls after depositing a thin metallic layer
on top. In general, SEM inspection dopes the substrate so it is better to avoid it for
the chips that are going to be used later on.

B.2. NANOWIRE CONTACTING
A key feature of our fabrication procedure is a clear separation between what is prepared
before the incorporation of the nanowire and what is added after. The primary reason for
such a division is the strict thermal budget of hybrid InSb-Al nanowires: if their temper-
ature surpasses ∼40◦, the interface degrades. This is a severe constraint for cleanroom
processes, so the more that can be done before the nanowire is deposited the better.
A secondary yet powerful benefit of splitting the fabrication in two is the addition of a
checkpoint: when the substrate preparation is finished, SEM inspection of one of the
chips verifies the quality of the entire batch.

NANOWIRE DEPOSITION
As soon as the substrates are prepared and can be trusted, the fabrication resumes on
one of the chips with the incorporation of the nanowire. This is deposited with a needle
controlled by a micromanipulator, under an optical microscope. After the nanowire
lands on the substrate, it can be pushed next to the smart-walls with the needle itself, as
shown in van Loo (2023, chapter 3). Since every chip contains a few copies of identical
devices, this process is repeated for every device.

SUPERCONDUCTING CONTACTS
The chip is loaded into the UTS load-lock and pumped overnight. Then, the stage is
heated to 550K for outgassing and kept at that temperature for 2 or 3 hours. At the same
temperature, the hydrogen cleaning of the surface is started: H2 is injected into the load-
lock at a 2sccm flow to reach a pressure of 6.2 × 10−5 mbar. A W filament heated to
∼ 2000K creates H∗ radicals which react with the surface oxide of the InSb nanowire,
cleaning it (Haworth et al., 2000; Tessler et al., 2006; Webb et al., 2015). During the H
cleaning, the stage is held at a 120◦ angle for 30 minutes and at a 30◦ angle for another
30 minutes, to target an approximately uniform cleaning of all the exposed facets of the
nanowire. After H cleaning, the stage is loaded into the main chamber and cooled down
to 138K using liquid N2, letting it thermalize for 1 hour. Finally, Al is deposited at a
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∼3Å/min rate while keeping the stage at alternating angles: 45◦, 15◦, 45◦, 15◦, 45◦, 15◦.
2 or 3nm of Al are deposited at each angle each time for a total thickness ranging from
5 to 17nm, depending also on the nanowire facet. The nanowire is finally capped with
7.5nm of Al2O3 deposited at 45◦ and another 7.5nm at 15◦ to prevent uncontrolled oxi-
dation of the Al when the nanowire is eventually exposed to air.1

NORMAL CONTACTS

1. Spin-coating with PMMA-950-A6 at 4000 rpm, vacuum baking at room tempera-
ture for 3 hours in the vacuum oven.

2. EBPG5200 exposure.

3. Development: MIBK:IPA (1:3) for 1 minute, rinsing in pure IPA for 1 minute, and
blow drying with N2.

4. Tepla descum: 200sccm O2 flow, 100W power, for 1minute.

5. MB-AJA: the surface oxide is removed with Ar milling. After pumping the load-lock
under 1µTorr, Ar is injected with a flow of∼10sccm to reach a load-lock pressure of
∼1mTorr. A Kaufmann KDC40 ion source ionizes, accelerates, and finally neutral-
izes the Ar to bombard the sample. We Ar mill in two rounds of 15 or 20s, separated
by one minute of cooldown time, with ∼6 cathode V, 5.75 cathode A, 40 discharge
V, 0.06 discharge A, 600 beam V, ∼10 beam A, 89 accelerator V, ∼2.9 accelerator mA,
∼10 emission mA, ∼7 neutralizer V, ∼10 neutralizer A. After milling, the sample is
transferred to QT-AJA for Cr/Au deposition.2

6. QT-AJA: 10nm of Cr deposited at 0.5Å/s followed by ∼120nm of Au deposited at
1.5Å/s.

7. Lift-off in acetone, overnight, followed by gentle blowing with a pipette. Then,
rinse in IPA for 1 minute and blow dry with N2.

8. SEM inspection of the final chip. (optional)

9. Measure of the resistance between Au contacts at the probe station. (optional)

1The UTS is the most technical machine among the ones listed here. In fact, hydrogen cleaning and Al deposi-
tion are the only processes described in this appendix that I couldn’t perform myself. They were executed by
either Grzegorz P. Mazur or Jan Cornelis Wolff.

2During the transfer from MB-AJA to QT-AJA, the sample is exposed to air for a few seconds. It would be ideal
to deposit Cr/Au right after milling – without breaking the vacuum – but this was not possible: the Ar milling
in QT-AJA was defective (leading to blow-up of nanowires due to electrostatic discharges, it is still unknown
why this was happening in QT-AJA and not in MB-AJA), while MB-AJA didn’t have any Cr or Au for deposition
(and we were not allowed to add it to the pockets). Nevertheless, the ex-situ process described above is able
to give good ohmic contacts. This creates the suspicion that the main role of milling is not the removal of the
nanowire oxide but rather the creation of metallic In droplets on the surface.
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Cr/Au

smart-wall

InSb

gates

Al

Figure B.2: SEM image of a three-site Kitaev chain device after contact deposition.

BONDING
Finally, The chip is glued on a printed circuit board (PCB) using GE varnish. Based on the
SEM inspection (and possibly on the room temperature resistance), one or two devices
are selected for cryogenic measurements. They are wired using the Bondtec bonder.

a cbDevice Chip PCB

Figure B.3: a Optical microscope image of a bonded device. b Image through a lens of a full chip with two
bonded devices. c Image of the PCB inserted into the puck to be loaded into a dilution refrigerator.





C
HOW TO TUNE A KITAEV CHAIN

H
ere we report a brief and practical tutorial on how to tune a Kitaev chain
from scratch. This appendix revisits the structure of the second part
of chapter 2, replacing theoretical concepts with real measurements on
InSb-Al hybrid nanowires.1 The steps of the tuning process are outlined
in the following checklist:

C.1. PINCHOFFS
First of all, check whether all the gates are responsive. For every bare semiconducting
section, set all gates to a voltage that keeps the semiconducting channel in the conduct-
ing regime and then try to pinch-off the current with individual gates.
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Figure C.1: Pinch-off curves for the three gates controlling each QD of a three-site chain device. Vbias = 1mV.
The semiconducting InSb channel is conducting for Vgate ∼ 0.5V and insulating for Vgate ∼−0.5V (with a 10nm
of Al2O3 + 10nm of HfO2 dielectric separating the InSb nanowire from the gates).

1In the following, different figures may come from different devices. They are meant to show the most repre-
sentative example of each tuning step rather than a consistent tuning of the same device. For the tuning of
a single device see the Kitaev3 > raw_data > databases-and-notebooks > devA-notebook-*.pdf
files in https://zenodo.org/records/10709983.
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C.2. HYBRID SPECTRA
Then, perform tunneling spectroscopy of the hybrids at zero and finite magnetic field.
This checks that the hybrid gates are responsive as well and locates the ABSs. For the
following tuning steps, it is useful to avoid low-energy ABSs, since their energy would
limit the Kitaev chain gap.2 It is also important to make sure that the ABSs couple to
both sides of the hybrid section. This can be verified by observing the same spectrum
from both sides of the hybrid, as reported in the Supplementary Information of Wang
et al. (2023), or by measuring a finite non-local conductance, as shown in figure 3.1.
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Figure C.2: Examples of tunneling spectroscopy of one InSb-Al hybrid at zero and finite magnetic field (the
two examples are from the same device but with slightly different gate settings). In panel a, only a few ABSs
have an energy that is significantly lower than the Al gap (≈ 230µV). At finite field (panel b), the ABS energies
are reduced according to EABS = E@B=0

ABS − gµB B/2 with a g-factor ranging from 10 to 40. This lies between the
Al g-factor (≈ 2) and the InSb g-factor (≈ 45). Typically, ABSs at low Vhybrid gate are more superconducting-
like and have a relatively low g-factor, whereas high-Vhybrid gate ABSs are more semiconducting-like and have
a higher g-factor. In the example of panel b, none of the ABSs with Vhybrid gate < 0.3V reach zero energy at
Bx = 0.2T, while some of the others do.

C.3. FORM QDS

Figure C.3: QD formation. a. Corner plot having the barrier gate voltages on the two axes. VQD = 0.6V,
Vbias = 1mV. b. Zoom into the tunneling regime. c. Coulomb peaks

(
here, Vbias = 0.5mV

)
.

2In principle, zero-energy ABSs could be used to define a “Shiba” chain emulating the Kitaev chain Hamil-
tonian (Fulga et al., 2013). However, tuning a Shiba chain comes with theoretical (Miles et al., 2024) and
experimental complications (Wu et al., 2021; van Driel et al., 2024b). Such a scenario is beyond the scope of
this appendix.
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The formation of a QD starts from the corner plot illustrated in figure C.3a: while keep-
ing the QD plunger gate in the conducting regime, both tunnel gates are swept. In this
example, both the left and the right tunnel gates switch from the tunneling to the con-
ducting regime around ∼150mV. A zoom into the tunneling regime (panel b) shows sets
of parallel lines, indicating the appearance of QD resonant levels. Panel c shows how
the QD plunger gate controls the corresponding Coulomb peaks. Eventually, the QD is
characterized by measuring the Coulomb diamonds (figure C.4b) and checking the spin
polarization with increasing magnetic field (figure C.4c).
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Figure C.4: QD characterization. Vbias = 0.8mV in panels a and c. From panel b, we extract the lever arm
α∼ 0.3, the charging energy Ec ∼ 2mV, and the typical level spacing ∆En ∼ 1mV; from panel c we extract the
g-factor ∼ 40. The g-factor can be estimated either from the slope of the resonances or from the extension of
the dark-red triangle. Such a triangle is dark precisely because two spin species are available within the bias
range above the gap

(
Vbias −∆Al

)
.

C.4. OPTIMIZE QD BARRIERS
After the QDs are formed, fine-tuning the tunneling barriers is key. The barriers sepa-
rating the QDs from the normal-metal probes can be as high as possible, to have the QD
lifetime much smaller than the thermal broadening Γ≪ kB T . This scenario is optimal
for tunneling spectroscopy since the linewidth is not limited by the QD lifetime. On the
other side, the barriers separating the QDs from the hybrid sections shouldn’t be too in-

Figure C.5: Impact of the barrier between a QD and a hybrid segment. First row: Coulomb peaks. Second
row: Coulomb diamonds. Third row: sub-gap spectrum.
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sulating, otherwise, they would limit the Kitaev chain tn and ∆n couplings. The status of
such barriers can be diagnosed in at least three ways:

• Looking at the Coulomb peaks.
The top row of figure C.5 shows the evolution of the Coulomb peaks as the barrier
gate voltage is increased. Here, the peak height stops increasing when Vbarrier ≥
50mV, indicating that the current through the QD starts to be limited by the other
barrier (to the normal lead). At the same time, from Vbarrier ∼ 60mV on, the peaks
get wider and the Coulomb diamonds get more and more blurry, indicating that
the QD lifetime (above gap) is set by the QD-hybrid barrier.

• Looking at the QD spectrum (bottom row of figure C.5).
Below the superconducting gap∆Al, the spectral lines stay sharp even for relatively
high Vbarrier since the Al gap works effectively as an energy barrier for the QD. Here,
a particle-hole symmetric spectrum appears from Vbarrier ∼ 60mV on. In particu-
lar, an eye-shaped spectrum is visible at Vbarrier = 70mV, indicating that the QD
is strongly coupled to a superconductor (Lee et al., 2013; Jellinggaard et al., 2016),
the smaller the eye, the stronger the coupling. In addition, if the hybrid is popu-
lated by ABSs, the direct coupling between the QD and the ABSs can be estimated
from the avoided crossings between the QD eye-shape and the ABS spectral lines
(Zatelli et al., 2024; Liu et al., 2024a).

• Looking at the QD-ABS charge stability diagrams (figure C.6).
If a QD and an ABS hybridize, then the QD resonances are modulated by the ABS
chemical potential (Grove-Rasmussen et al., 2018). This feature can be used to
locate the ABSs in hybrid-gate space (Zatelli et al., 2024). For instance, in panel a
of figure C.6, at least four ABSs can be located using this method.
Strong hybridization can lead to the appearance of dome-like shapes, as in the top
of panel c. This scenario should be avoided since it is detrimental to a smooth
tuning of the tn and ∆n couplings. Note that the QD-ABS hybridization may vary
substantially from ABS to ABS.

ABS

ABS

ABS

ABS

stronger
hybridization

weaker
hybridization

Figure C.6: QD-ABS charge stability diagrams. Here, a small Vbias = 50µV enables current flow; charge stabil-
ity diagrams can be measured at zero bias as well by means of lockin conductance (Bordin et al., 2024a).
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Here, we would choose an optimum barrier gate voltage of 60mV or 70mV for the device
of figure C.5 and Vbarrier ∼ 80mV for the device of figure C.6.

C.5. BALANCE tn AND ∆n
After finding ABSs, forming QDs, and optimizing the barriers as described above, ob-
serving strong interdot couplings is straightforward. This is manifest in the appearance
of avoided crossings in the QD-QD charge stability diagrams, as illustrated in figure C.7.
Then, to find a t = ∆ sweet-spot, the procedure is simple: find a Vhybrid gate value with t
dominance (avoided crossings opened along the anti-diagonal), find another Vhybrid gate

value with ∆ dominance (avoided crossings opened along the diagonal), and continuity
guarantees to have a sweet-spot at some in-between point. It is sufficient to find these
conditions for a single charge degeneracy point. Here, figure C.7 shows a particularly
ideal scenario, where the t and ∆ dominance (panels a and c, respectively) happen for
all four charge degeneracy points spanning all possible QD spin combinations. In par-
ticular, panel b shows the sweet-spot for the top-left one (up-down spin configuration).
At this stage, QD1 and QD2 form a minimal Kitaev chain.

t > ∆ t < ∆
t = ∆

Figure C.7: QD-QD charge stability diagrams. From Zatelli et al. (2024).

Tuning a longer Kitaev chain involves repeating this same procedure for all QD pairs, in
order: first, form a minimal chain between QD1 and QD2, then, set QD1 off-resonance
and balance t2 and ∆2 to form a minimal chain between QD2 and QD3 – importantly,
the QD2 resonance must be the same used for the first minimal chain – then set QD2 off-
resonance and balance t3 and ∆3, and so on. In this inductive procedure, there is one
final and key aspect to keep under control: the phase φn .

C.6. MATCH THE PHASES
For minimal Kitaev chains, the phase is irrelevant, for three-site ones it is sufficient to
connect the two superconductors in a loop and apply an out-of-plane field to control
the single phase degree of freedom of such a device. Longer chains have more than
one phase degree of freedom and require a slightly more elaborated tuning. The sim-
plest solution is addressing each new φn degree of freedom with the freedom of choos-
ing a corresponding tn = ∆n sweet-spot. Sau and Das Sarma (2012) pointed out, for
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one-dimensional Kitaev chains with magnetic field along the chain, that tn and ∆n are
supposed to be real. Later, Liu et al. (2024b) noted that, if tn and ∆n are mediated by
ABSs, then either tn = +∆n or tn = −∆n , depending on the sweet-spot and the spin-
configuration of choice. In particular, switching one spin or inverting the u and v com-
ponents of the ABS should switch the sign. Hence, to tune an arbitrarily long Kitaev
chain, it is sufficient to make sure, with appropriate sweet-spot choices, that tn = +∆n

for all n. Here, figure C.8 shows two examples of three-site Kitaev chain sweet-spots
where the out-of-plane field Bz sweeps the phase. In the first, φ ≈ 0 at Bz = 0, while
φ ≈ π in the second. The target for arbitrarily long chains is choosing the sweet-spots
such that, for all n, φn ≈ 0 at Bz = 0, so that no out-of-plane field is needed to tune the
chain.
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Figure C.8: Three-site Kitaev chain spectrum as a function of the out-of-plane field Bz having φ ≈ 0 (panel a)
or φ≈π (panel b) at Bz = 0.
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