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Abstract

This paper introduces SEMM: a method based on Frequency Based Substructuring (FBS) techniques that
enables the construction of hybrid dynamic models. With System Equivalent Model Mixing (SEMM) fre-
quency based models, either of numerical or experimental nature, can be mixed to form a hybrid model.
This model follows the dynamic behaviour of a predefined weighted master model. A large variety of ap-
plications can be thought of, such as the DoF-space expansion of relatively small experimental models using
numerical models, or the blending of different models in the frequency spectrum. SEMM is outlined, both
mathematically and conceptually, based on a notation commonly used in FBS. A critical physical interpret-
ation of the theory is provided next, along with a comparison to similar techniques; namely DoF expansion
techniques. SEMM’s concept is further illustrated by means of a numerical example. It will become apparent
that the basic method of SEMM has some shortcomings which warrant a few extensions to the method. One
of the main applications is tested in a practical case, performed on a validated benchmark structure; it will
emphasize the practicality of the method.

Keywords: System Equivalent Model Mixing, hybrid model, dynamic substructuring, frequency based
substructuring, model expansion, trust function

Nomenclature

DoF degree of freedom
FRF frequency response function
u dynamic displacements / rotations
f applied forces / moments
g interface forces / moments
Y admittance FRF matrix
Z impedance FRF matrix
T transformation matrix
B signed Boolean coupling matrix
C compatibility coupling matrix
E equilibrium coupling matrix
L localisation matrix

?par pertaining to the parent model
?ov pertaining to the overlay model
?rem pertaining to the removed model
?SEMM pertaining to the SEMM hybrid model
?+ pseudo inverse
?b boundary or interface DoF
?i internal DoF
?d discarded internal DoF
?k kept internal DoF
(+) Model coupling
(−) Model decoupling
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1. Introduction

Structural dynamic analysis is an essential step in the design of high-tech mechanical systems. Complex
products such as cars, airplanes, and high-tech machines are designed in an increasingly modular fashion,
combining off-the-shelf components with newly designed parts. This generally requires the construction
of dynamic models for each component in the system, which can be assembled or ‘substructured’ together
in order to evaluate dynamic properties of the full product, such as global vibration modes or mechan-
ical/acoustical transfer functions. Developments in Dynamic Substructuring (DS) [1–4] have increased the
flexibility to combine component models from multiple modelling domains, such that experimentally ob-
tained models may be incorporated with similar ease to numerical models. Still, the component models
must fulfil two main requirements: they must correctly depict the dynamic properties of the actual compon-
ent (e.g. resonance frequencies and damping) and possess clearly defined interfaces for assembling to their
adjacent components.

Numerical modelling has long been the industry practice and is particularly strong in the latter: creating
models with high spatial resolution from which interface degrees of freedom (DoF) are easily and unambigu-
ously obtained. To correctly represent the dynamics of the actual component, models are often updated with
experimental dynamic properties obtained from measurements. Advancement in experimental techniques
now also facilitate experimental modelling as an integral means to obtain dynamic models, for instance rep-
resented by frequency response functions (FRF) for all relevant interface DoF. This has led to an increase in
experimental modelling of relatively complex structures, due to the fact that experimental models offer the
dynamic transfers of the mechanical system ‘as is’, whereas the numerical model offers a ‘best-approximated’
description.

1.1. Difficulties & remedies in experimental modelling

Yet, standalone experimental models lack the strong suits of the numerical model. It remains challenging
to extract a consistent dynamic model from essentially independent (and often imperfect) measurements,
performed on a limited number of non-collocated DoF. Many strategies have been proposed to mitigate these
shortcomings:

• Modal fitting: these techniques fit the observed dynamics (FRF) to an analytical dynamic manifold,
expressed by a finite set of (linear) vibration modes with, per definition, consistent dynamic behaviour.
However, these methods do not incorporate the full extent of the experimental results; this is mainly
because they project all measured physical effects on a model with limited dynamic leeway [5, 6].

• Expansion using numerical models: several techniques employ FE-models in order to ‘fill in the blanks’
between the measured nodes of the experimental FRFs. Static expansion methods like Guyan ex-
pansion use the stiffness matrix, sometimes expanded with accelerance terms as is the case with the
Improved Reduction System (IRS). Other methods like Hurty Craig-Bampton, SEREP and VIKING also
incorporate dynamic behaviour [7–9].

• Expansion using local rigidness: a typical shortcoming of experiments is a lack of rotational DoF and
inability to express translational/rotational responses at the exact location where forces/moments act
(sometimes called collocated or vectorially-associated DoF). The Virtual Point Transformation solves this
by combining multiple translational DoF and assuming that the structure surrounding the interface
exhibits rigid behaviour. In essence, this involves an expansion using six rigid Interface Displacement
Modes (IDMs) per coupling point, or more if flexible interface behaviour is to be included [10–12].

• Simulating realistic boundary conditions: instead of trying to capture the interface dynamics in free
conditions, one might also mass-load the interfaces of interest, to be closer to the assembled condition.
Substructure coupling and decoupling techniques can be used to remove or replace the surrogate
parts. This concept is probably best known as the Transmission Simulator method for use in the modal
domain, but can be equally effective in frequency-domain substructuring [13–16].
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1.2. Hybrid modelling using SEMM

In the end, the choice between numerical or experimental modelling is made per component based on
how the strengths and weaknesses of the respective modelling type best coincide with the requirements of
the model. As such, this choice is in fact a compromise. It stands to reason therefore, that the ability to
incorporate the strong suits of different modelling techniques into a single model is beneficial. A hybrid
model could implement the ‘as is’ description of the experimental model, combined with the extensive DoF-
space and consistency associated with the numerical model.

System Equivalent Model Mixing (SEMM) is a method that means to facilitate the construction of hybrid
models based on substructure coupling and decoupling. It applies boundary conditions to a predefined slave
model such that it behaves as a certain input master model. Unlike the methods described above, it does not
follow an updating scheme and it does not remove physically relevant information. Furthermore, the SEMM
framework is a frequency-independent process; this essentially means that the method choices can be made
per frequency line, enhancing mixing flexibility.

1.3. Paper outline

This paper introduces SEMM: a method to mix multiple equivalent models of the same component into
one hybrid model. The method is largely based on the Lagrange multiplier frequency-based substructuring
(LM-FBS) method [17], hence section 2 commences with a brief revision of this method which will benefit
the understanding of SEMM. Next, SEMM is presented mathematically in section 2.2 and then conceptually
in section 2.3. Here a critical physical interpretation is given and elaborated with an example in section 2.4.
The critical examination will highlight some problems including the presence of spurious peaks.

To remedy these complications, several extensions to the method are examined in section 3. These exten-
sions include the use of an extended interface description in section 3.1, an introduction to unique internal
DoF in the master models in section 3.2, and finally the theory on hybrid dynamics is touched upon in
section 3.3.

Once the theory is fully expounded, the method is put to practice on a benchmark structure in section
4. In this test case, one of the envisioned practical applications of SEMM will be investigated, namely
using SEMM-expanded internal DoF in the construction of high-quality modular system models. A practical
investigation into how numerical models can be used to enhance low-frequency content of experimental
models is also performed.

2. Theory

This section introduces the basic theory of the SEMM method, starting with a recap of Lagrange multiplier
frequency-based substructuring (LM-FBS) which provides the basic framework and notation for the theor-
etical derivation [2]. As more theory on SEMM is presented, the overlap with FBS methods will become
apparent. Indeed, the method is borne by the idea of dynamic substructuring; however, applied to assemble
equivalent models of a single component rather than to assemble distinct components.

2.1. Short revision of the LM-FBS method

Let us consider two given structures: components A and B. These components can be coupled dynamically
on a predefined interface. The uncoupled equation of motion is presented below. Note that the explicit
dependency on frequency is omitted for clarity reasons, as will be done for the remainder of the paper.

Zu = f + g, Z ,

[
ZA 0
0 ZB

]
(1)
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Here Z represents the substructures’ dynamic stiffness or impedance matrices in block-diagonal form, f
the vector of applied forces to the system and g the vector of interface forces needed for substructure
coupling. When coupled, the system is said to be subject to two sets of constraints or conditions: these are
the compatibility and equilibrium condition, represented in matrix notation by (2) and (3) respectively. A
signed Boolean matrix B, comprising ones and minus ones on the interface DoF, accounts for the two sets
of conditions in an efficient manner:

Bu = 0 (2)

g = −BTλ (3)

The matrix notation allows for the direct application of these conditions into (1), which in turn can be recast
in matrix notation as:[

Z BT

B 0

] [
u
λ

]
=

[
f
0

]
(4)

The presented system of equations is solved for the coupled displacements u. This results in the single-line
method (7), obtained following the derivation below:

u = Z−1
(
f −BTλ

)
Bu = BZ−1

(
f −BTλ

)
= 0

λ =
(
BZ−1B

)−1
BZ−1f

u =
[
Y −YBT

(
BYBT

)−1
BY

]
f (5)

Where Y represents the uncoupled system admittance model defined as:

Y ,

[
YA 0
0 YB

]
=

[
(ZA)−1 0

0 (ZB)−1

]
=

[
ZA 0
0 ZB

]−1

(6)

Noting that the terms between the brackets in equation (5) is the transfer from a force f to the coupled
displacements u, the coupled admittance Ȳ is derived as:

Ȳ = Y −YBT
(
BYBT

)−1
BY (7)

Ȳ is the dually-assembled system model as a result of the LM-FBS procedure, which provides the basis for
SEMM coupling and decoupling. Therefore, method (7) will be used throughout the following sections to
solve the system equations of SEMM.

2.2. Basic concept of SEMM

2.2.1. The different input models

As the name implies, System Equivalent Model Mixing (SEMM) is a process of mixing equivalent models
of a component, yet from different modelling natures. For the following explanation, a naming convention
will be used to indicate the different models: the hybrid, parent, overlay and removed model. Each is briefly
introduced here, followed by a more in-depth mathematical explanation in the remainder of the section.

1. Hybrid Model: the resulting model constructed with SEMM. This model is the result of a SEMM coup-
ling between the input parent and overlay models.

2. Parent Model: the model from which the hybrid model inherits the DoF structure, i.e. the hybrid model
consists of the same DoF-set as the parent model. However, the parent model will not provide the
dynamics to the hybrid model.
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Y
par
N×N

Yov
M×M Yrem

M×M YSEMM
N×N(+) (−) =

Figure 1: A parent model with a large number (N) of DoF (left) is coupled to an overlay model with a subset (M � N)
of DoF (centre-left). From this coupled model a subset of the parent model called the removed model (centre-right) is
decoupled to create a new ’hybrid’ formulation (right). This hybrid model has the size (N) of the parent model, yet
extended with the dynamic information provided by the overlay model.

3. Overlay Model: the model which provides the dynamic properties by enforcing them onto the parent
model. This model’s DoF-set is a subset of the parent model’s DoF-set.

4. Removed Model: this model is a condensed sub-model of the parent model and consists of a subset of
DoF of the parent model. The objective of this condensed model is to remove the parent dynamics
from the component, in order for it to be replaced by the dynamics of the overlay model.

SEMM is based on the coupling on all shared DoF of two equivalent component models: a parent model
Ypar and an overlay model Yov, defined as follows:

Ypar ,

[
Yii Yib

Ybi Ybb

]par

; Yov ,
[
Ybb

]ov
(8)

The parent DoF are grouped in internal i and boundary DoF b. The internal DoF are unique to the parent
model whereas the boundary DoF are shared with the overlay model. Relation (9) states that the overlay
model’s DoF-set is a subset of the parent model DoF-set1. Consequently, all overlay DoF are shared with
the parent model2 and because coupling occurs between all shared DoF the overlay model contains only
boundary DoF.

{uov} ∈ {upar} (9)

The basis of SEMM is that the overlay model will provide the dynamics to the hybrid model, whereas the
parent model provides the DoF-structure. The resulting hybrid model will thereby consist of the entire parent
DoF-set {upar}. In fact, the hybrid model can be regarded as a coupled parent model. Figure 1 illustrates
how the various models relate.

In order to force the overlay dynamics in the parent model DoF-structure, the original parent model dynamics
must first be removed. This is done by decoupling a condensed form of the parent model, namely condensed
on the boundary DoF. This model is called the removed model Yrem, defined below:

Yrem ,
[
Ybb

]par
=
[
Zpar

bb − Zpar
bi

(
Zpar

ii

)−1
Zpar

ib

]−1

(10)

It should be noted that the removed model is expressed in the admittance notation, therefore it is automatic-
ally defined as the condensed form of the parent model. The dynamic stiffness expression on the right-hand
side of (10) assumes the form of a Schur complement used in Guyan reduction.

1The name ‘overlay model’ derives from this property: the overlay model can be placed over the intersection of the DoF-sets of two
given models.

2The general application of SEMM does indeed allow for the mixing of two models, each with unique internal DoF; this is done with
the introduction of secondary parent models in section 3.2
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Y
par

−Y
rem

Y
ov

fi
fb

ui

ub

Figure 2: The intersection of the three models is displayed graphically. The overlay model Yov is coupled to the removed
interface model Yrem. This model is in turn coupled to its parent model Ypar. These relations are described by the signed
boolean coupling matrix B. The overlay model’s name is derived from the fact that it is placed over the other models.

2.2.2. Creating the hybrid model

In order to touch on the physical concept of SEMM, the mathematical theory must first be presented. Once
the basic theory is discussed the physical interpretation can be provided. This basic method will be further
illustrated with a short example.

Let us start by assuming a system of equations consisting of the three introduced models. Again, applied
forces f and boundary forces g act on the system. Note that the dynamic stiffness of the removed model is
supplied with a minus sign to realise decoupling behaviour.Zpar 0 0

0 −Zrem 0
0 0 Zov

upar

urem

uov

 =

fpar

0
0

−
gpar

grem

gov

 (11)

The applied forces act only on the parent model. This is because, as previously stated, the effects on
the parent model are of interest; the overlay and removed model are used only to define new boundary
conditions on said parent model. These boundary conditions are, as with LM-FBS, the compatibility and
equilibrium conditions inherent to DS.

The compatibility relations between the three models read:

upar
b = urem = uov =⇒

{
upar
b − urem = 0 (12a)

urem − uov = 0 (12b)

It should be noted that the relation is explicitly made between the parent and removed model, and between
the removed and overlay model. By extension, an implicit relation between the parent and the overlay
model exists. This relation is displayed graphically in Figure 2.

Next, the equilibrium relation is defined as:

gpar
b + grem + gov = 0 (13)

Again, these relations can be expressed mathematically in the standard form of (2) and (3) respectively;
these are repeated below:

Bu = 0 (14)

g = −BTλ (15)
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This is done by defining a Boolean matrix B as:

B ,
[
Bpar Brem Bov

]
=

[
0 −I I 0
0 0 −I I

]
(16)

By implementing the constraints (14) and (15) into the equation of motion (11), the dual dynamic stiffness
form is obtained3:

Zpar 0 0 BparT

0 −Zrem 0 BremT

0 0 Zov BovT

Bpar Brem Bov 0



upar

urem

uov

λ

 =


fpar

0
0
0

 (17)

Note that it is now written in the same notation as (4). It can therefore be solved for u following the
single-line method of LM-FBS (7):

Ȳ = Y −YBT
(
BYBT

)−1
BY where Y ,

Ypar 0 0
0 −Yrem 0
0 0 Yov

 (18)

Since SEMM is based on FBS, the same assumptions regarding linearity, time-invariance, and damping that
govern FBS models also govern the models in the SEMM process.

2.2.3. Retaining the primal DoF

The coupled model Ȳ is the dually assembled form of the hybrid model. This form has redundant DoF,
namely the boundary DoF that appear three times in the system. To retain the unique DoF, use can be made
of the localisation matrix L, which is known to be the null space of B [2]. Although one may select the
unique DoF manually, the following is a mathematically correct way [12]:

YSEMM = L+ Ȳ
(
L+
)T

(19)

A simple form of the localisation matrix and a generalised inverse are given here:

L =


I 0
0 I

0 I

0 I

 =⇒ L+ =

[
I 0 0 0
0 I 0 0

]
(20)

Note that indeed BL = 0 and L+L = I. Furthermore, this choice of generalised inverse corresponds with
the preference to focus on the parent DoF-space. Equation (19) can then be expanded4 to the single-line
method of YSEMM:

YSEMM = [Y]
par −

[
Yib

Ybb

]par

(Yrem)
−1

(Yrem −Yov) (Yrem)
−1 [Ybi Ybb

]par
(21)

Equation (21) is the single-line formulation of the basic form of SEMM. From this equation, two important
observations are made:

3In fact, the form (17) is nothing more than a substitution coupling. This substitution of sub-components is applied in other coupling
techniques; e.g. it is commonplace when using the transmission simulator method [13, 16].

4The single-line method for the general form of SEMM of (21) is derived using a primal admittance notation in Appendix A.
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1. If the overlay model is equal to, or a reduced form of, the parent model, then the overlay and removed
model are identical; thus the second term in (21) is nil and the hybrid model equals the parent model.
The mixed model between two identical models is, clearly, that same model.

2. The overlay model Yov which determines the dynamics is not inverted in the process. As a con-
sequence, ill-conditioning due to noise does not explode in the inversion, unlike in classic FBS coup-
ling where noise in the interface is problematic due to the over-stiffening effect of the coupling (see
for instance [18]).

2.3. Physical interpretation

The mathematics are interpreted physically as follows: The parent model consists of DoF with a certain
spatial relation, defined by the FRF in Ypar. For some of these DoF, i.e. the boundary DoF b, another spatial
relation is known: those of the overlay FRF Yov. By coupling both models and subsequently decoupling
the removed model Yrem given by (10), new compatibility and equilibrium conditions are placed on the
boundary DoF of the parent model such that these DoF strictly follow the dynamics of the overlay model. The
behaviour of the remaining unique internal DoF i is imposed by the boundary forces g acting on the system.

In essence, a reduced coupling interface is used to force dynamic behaviour between models. The use of
reduced models to describe full system dynamics is no novelty: reduction techniques have been a study since
the 1960s [7, 19] and are aimed on forming equivalent reduced models, which in turn could be used for a
variety of applications such as model expansion, optimisation, and updating. Table 1 is a collection of some
techniques used today.

Table 1: Some expansion techniques found in literature: how they work and under which conditions [7, 11, 19, 20].

Technique Expansion Condition

Guyan Expansion u = Tub =

[
−K−1

ii Kib

I

]
ub

Exact for static boundary-boundary and boundary-
internal dynamics. No mass contributions taken
into account.

IRS . . . +

[
K−1

ii

(
Mib − MiiK

−1
ii Kib

)
0

]
M−1

bb Kbbub

Similar to the Guyan expansion but augmen-
ted with an inertia term by means of boundary
accelerance.

Dynamic Expansion u = Tub =

[
−Z−1

ii Zib

I

]
ub

Exact for boundary-boundary and boundary-
internal dynamics throughout the frequency band.

Hurty Craig-Bampton u = Tub + Rηm =

[
−K−1

ii Kib Φim

I 0

] [
ub

ηm

] In addition to Guyan expansion, internal-internal
dynamics are described by a (truncated) set of
m internal modes. Modal amplitudes ηm are
required.

SEREP/VIKING u = Tub =

[
ΦimΦ+

mb
ΦbmΦ+

mb

]
ub

Exact expansion for the truncated set of m modes.
If m < b smoothing is applied to all DoF in u.

Virtual Point
Transformation u = Rq =

[
ΦLoc.

IDM

]
q

Expansion of DoF from a virtual set of DoF q
by means of local (rigid) interface displacement
modes (IDM).

In the SEMM method, the removed interface model Yrem is a reduced form of the parent model Ypar. In
fact, by its definition (10), the removed model is the dynamically condensed form of the parent model.
Analogously, all expansion methods described in Table 1 state that the expanded model is equivalent to
the reduced form where the remainder is deemed negligible, which depending on the conditions can be
accurate. More generally, the methods state that the expansion is:

Ypar = TYremTT + Yres

Ypar ≈ TYremTT (22)
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Unlike the expansion techniques described, SEMM states that this residual parent admittance Yres is not
deemed negligible, thus is not removed from the system. This is because it characterises the dynamics that
are uncontrollable by the chosen boundary, better expressed as internal-to-internal dynamics. Furthermore,
retaining the residual admittance allows the resulting model to be full rank, which greatly benefits the
models’ applicability. Nevertheless, by definition, this residual admittance is a property of the parent model
and thus conflicts with the overlay dynamics. As a consequence, an error exists which scales with the delta
between the overlay and removed model:

εres ∝ ∆Y ∆Y = Yov −Yrem (23)

Fortunately, since the coupling is done between equivalent models, the delta and therefore the error can be
assumed small.

Let us now examine this residual parent admittance Yres. It is defined by a set of modes of the parent model
that have nodes on all boundary DoF b. These are the modes of the internal parent model, also called the
internal or fixed-interface modes as used in the Hurty Craig-Bampton reduction (see for instance [21]). For
the internal DoF where this residual lives, it is derived as:

Yres
ii = Ypar

ii −Ypar
ib

(
Ypar

bb

)−1
Ypar

bi (24)

Physically the residual describes the motion of a system as if the interface were fixed, i.e. it describes the
internal system. As these internal modes have eigenfrequencies much higher than the full system modes, it
can be reasoned that the resulting error εres only becomes apparent at higher frequencies. Nonetheless, the
error causes undesired spurious peaks in the hybrid model at the internal mode frequencies. This effect will
be illustrated with a numerical example in section 2.4.

It can thus be concluded that there are shortcomings to the basic method as presented in the previous
section. The apparent limitations of the basic method are the following:

1. The existence of conflicting dynamics due to the residual admittance Yres causes spurious peaks in the
hybrid model at internal mode frequencies. In 3.1 this problem is addressed by redefining the removed
model Yrem.

2. Relation (9) states that the overlay DoF-set is a subset of the parent DoF-set. This evokes a serious
limitation to the overlay model’s size. Certainly, both input models could generally consist of DoF not
present in the other, i.e. both could contain unique internal DoF i. Relation (9) of the basic method
decides however, that the overlay model contains only boundary DoF and has no room for internal
DoF that might be of interest. This limits the size of the hybrid model. In 3.2 this problem is resolved
with the introduction of a secondary parent set.

3. As the dynamics of the hybrid model are defined by the overlay model only, the parent dynamics are
dismissed entirely. In fact, the method revolves around the removal of parent and the insertion of
overlay dynamics, as illustrated in Figure 1. Nonetheless, there are situations or frequency ranges
where the parent model is the more trusted source of dynamics. The basic method does not facilitate
parent model dynamics in the hybrid model. This is circumvented in 3.3 by redefining the source of
the overlay model, hence permitting to ‘fade in’ dynamics of the parent into the overlay.

2.4. Numerical example: a truss construct

For this example a simple truss-construct is created with the use of simple bar elements (figure 3). It is
modelled in two manners, each with different mechanical properties. The first model is used as the parent.
The second model is condensed on a subset of DoF to form the overlay model. Rayleigh damping is used for
both models; the Rayleigh damping coefficients α and β are provided along with other mechanical properties
in Table 2.
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Figure 3: A Numerical truss-frame structure created with bar elements. There are 15× 2 = 30 DoF. The top three nodes
are fixed for both the parent and overlay models.

Due to the differences in the properties of the bar elements, the eigenmodes of the parent and overlay model
are at a slight off-set from one another. Although the two are equivalent — as they describe the same system
— both offer different predictions on the system dynamics. In Table 3 the eigenfrequencies of the parent
and overlay model are listed. Additionally the fixed-boundary modes of the parent Ypar are provided.

Table 2: The mechanical properties of the truss construction for the parent Ypar and overlay Yov model.

Properties Parent Overlay

Area 64 mm2 36 mm2

E-Modulus 110 GPa 120 GPa
Density 7800 kg/m3 7800 kg/m3

α 5e-6 [-] 1e-6 [-]
β 1e-8 [-] 1e-8 [-]

Table 3: The eigenfrequencies of the Parent Ypar and Overlay Yov are provided on the left. On the right the fixed-
boundary modes of the parent model are also given. Note that the fixed-boundary modes of the parent model act at
much higher frequencies than the free-modes of the parent model, as expected.

Mode
Eigenfrequencies [Hz]

Mode
Eigenfrequencies [Hz]

Parent Ypar Overlay Yov Fixed-boundary modes of the parent model

1 137 143 1 866
2 410 428 2 899
3 476 497 3 1120
4 820 856 4 1190
5 930 971 5 1376
6 1169 1221 6 1457
7 1240 1295 7 1809
8 1385 1446 8 2070

Let us apply a dynamic load-case. It is explained in the previous section that the residual Yres contains
the fixed-boundary eigenmodes of the parent model. Since the hybrid model contains this residual, it is
sensitive to the eigenfrequencies of this fixed internal system resulting in spurious peaks. Figure 4 is a plot
of a driving-point FRF of an internal DoF in the truss-construct. Note that the hybrid model does indeed
have spurious peaks at these fixed-boundary modes.

2.4.1. The low-frequency case

The system is first actuated by a harmonic load at 420 Hz (Denoted by a dotted line in Figure 4). Note that
it is in the regime relatively unaffected by the error caused by the residual.
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Figure 4: A driving-point FRF of an internal DoF in the truss construct. The hybrid model follows the overlay model for
the lower frequencies. At higher frequencies, illustrated by the shaded area, contributions of the fixed-boundary system
become more dominant resulting in spurious peaks; the first one appearing at its first eigenfrequency (866Hz). The
vertical dotted lines denote the harmonic load frequencies applied to the system in the following cases.

Figure 5 displays the response of the truss-construct for the different model configurations. The parent
model has explicit information on all DoF and shows a vastly different response than the overlay which
only has explicit information on a few nodes (illustrated by the black stars). However, by forcing the parent
boundary DoF to behave as the overlay boundary DoF the resulting hybrid model provides the explicit
response of the implicit overlay model rather accurately. Note that the boundary DoF as configured by both
the hybrid and overlay model are in the exact same positions as required by the method.

Figure 5: A truss construct actuated by a force at 420Hz. Both a parent and overlay model exist and both predict
different responses to the same load. Furthermore, the parent model (left) describes all nodes whereas the overlay
model (centre) describes only a few, marked with a black star. SEMM is applied to create a model with the DoF of the
parent model and provides the response of the overlay model.

2.4.2. The high-frequency case

To demonstrate that it is indeed this parent residual that causes the spurious peak, a uniform harmonic load
at the first fixed-boundary eigenfrequency (the vertical dotted line in the shaded area of Figure 4 at 866 Hz)
is now applied to the system.

The responses of the truss-system, as predicted by the various models, are given in Figure 6. The responses
of the system as predicted by both the parent and overlay model are barely observed. However, as seen
in the FRF in Figure 4, the hybrid model is sensitive to the first fixed-boundary eigenfrequency; therefore
the response is that of the corresponding fixed-boundary eigenmode. This unwanted error is a consequence
of a discrepancy caused by the residual parent admittance Yres defined by the fixed-boundary system. It
becomes apparent that the choice of boundary DoF for the overlay model is of importance. With the standard
implementation of SEMM, the boundary DoF-set must be chosen such that the residual system is as stiff as
possible, thus decreasing the residual admittance and shifting the fixed-boundary eigenmodes to higher
frequencies. This can be interpreted as the DoF-set’s ability to properly represent the system’s behaviour;
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affected by the spatial and modal distribution of the selected boundary DoF.

Figure 6: The response of the truss-system under a uniform harmonic load at 866Hz. Both the parent (left) and overlay
model (centre-left) barely respond. In contrast, The internal system of the parent model and therefore the residual Yres

has its first mode at this frequency (centre-right). Consequently, the hybrid model (right) is sensitive to this actuation.

3. Extensions to the method

The previous chapter introduced the basic method of SEMM, which allows two equivalent models to be
combined to form a hybrid model. However, the method is rather restricted, as SEMM is, in fact, a framework
for model mixing. In this chapter, three extensions to SEMM are presented. In section 3.1 an extension is
introduced which combats the spurious peaks by redefining the removed interface in the decoupling step.
In section 3.2 the foundation of the overlay model is broadened. A secondary set of internal DoF – unique
to the overlay model – is included as a secondary parent model. Finally in section 3.3 trust functions are
introduced, that facilitate the shifting of the dynamic source to either the parent or overlay model.

3.1. The extended interface

In sections 2.3 and 2.4 the concept of the residual parent admittance in the SEMM method is introduced.
This residual, although physically relevant, does conflict with the overlay model dynamics: it causes spurious
peaks in the dynamic domain of the internal parent system.

Unfortunately, this residual is a direct consequence of unobserved motion and cannot be removed. However,
the nature of the residual parent admittance can be controlled. If the residual is defined by the limited
observability and controllability of the chosen interface on the parent model, then extending this interface
should improve the method. Indeed, including internal DoF in the decoupling of a substructure from a
system model has been found to improve on the accuracy of model decoupling; see for instance [14, 15, 22].
The decoupling and thus removal of the parent dynamics can be made cleaner by decoupling an extended
definition of the interface. Instead of removing only the boundary DoF, some of the unique internal DoF of
the parent set of DoF are included in the decoupling step’s compatibility and equilibrium conditions.

The unique internal parent DoF-set denoted by i is decomposed into a set of discarded and kept DoF, re-
spectively denoted by d and k. Note that this decomposition can be done differently for the output and input
DoF such that non-square interfaces are created.

ui =

[
udc

ukc

]
fi =

[
fde

fke

]
(25)

Where the subscripts in the decomposition (de, ke) and (dc, kc) stand for equilibrium and compatibility
respectively. The removed interface is extended to include the kept unique internal DoF. As a result, the
removed interface model is redefined as follows:

Yrem ,

[
Ykcke

Ykcb

Ybke
Ybb

]par

(26)
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Figure 7: Depending on the choice of kept and discarded DoF the removed interface can be extended to include unique
internal DoF in the decoupling step. (a): All internal DoF are discarded (fi = fde , ui = udc); this is the same as
applying the basic method. (b): All the internal input DoF are kept in the equilibrium and all are discarded in the
compatibility condition (fi = fke , ui = udc). (c): Conversely, all the internal input DoF are kept in the compatibility
and all are discarded in the equilibrium condition (fi = fde , ui = ukc).(d): All the internal DoF in both the equilibrium
and compatibility conditions are kept (fi = fke , ui = ukc). Note that all forms between the minimum of (a) and the
maximum of (d) can exist.

It is important to note that the choice of kept and discarded DoF is made separately for the compatibility
and equilibrium conditions, allowing the creation of non-square matrices Yrem. This is clearly depicted in
Figure 7 where configuration (b) and (c) show non-square definitions of the removed model. Because of
this, the coupling matrix introduced in equation (16) may now be defined separately for the compatibility
and equilibrium conditions:

C ,
[
Cpar Crem Cov

]
=

dc kc b kc b b0 −I 0 I 0 0
0 0 −I 0 I 0
0 0 0 0 −I I

 (27a)

E ,
[
Epar Erem Eov

]
=

de ke b ke b b0 −I 0 I 0 0
0 0 −I 0 I 0
0 0 0 0 −I I

 (27b)

Using the coupling matrices of (27a) and (27b), the equation of motion becomes:
Zpar 0 0 EparT

0 −Zrem 0 EremT

0 0 Zov EovT

Cpar Crem Cov 0



upar

urem

uov

λ

 =


fpar

0
0
0

 (28)

Equation (28) is solved using LM-FBS (7) to obtain the dual hybrid model Ȳ. To obtain the primal variant,
the following localizing matrices are used:

LE , null{E} (29a)

LC , null{C} (29b)

Such that the primal model becomes:

YSEMM = L+
E Ȳ (L+

C)T (30)
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Figure 8: A driving-point FRF of an internal DoF in the truss construct of Figure 5. With the extension of the boundary
conditions in the decoupling step of SEMM, the spurious peaks are removed. The hybrid model now follows the reference
model throughout the frequency band.

Again, generalized inverses exist for both LE and LC analogue to the one presented in (20). The associated
single-line method is denoted below, which is derived following the primal admittance notation in Appendix
A.

YSEMM = [Y]
par −

[
Yike Yib

Ybke Ybb

]par ([
Ybke

Ybb

]rem
)+

(Yrem
bb −Yov)

([
Ykcb

Ybb

]rem)+ [
Ykci Ykcb

Ybi Ybb

]par

(31)

By extending the decoupling interface the relationship between the internal system and the boundary system
is redefined. Including an internal DoF in the removed model physically accounts to removing the connection
between said internal DoF and the boundary system, i.e. the internal-to-boundary and boundary-to-internal
dynamics. Consequently, a fully extended interface removes the connection between the boundary and
internal system resulting in free behaviour of the internal system. This, in turn, removes the rigid or fixed-
boundary behaviour in the residual Yres, i.e. it removes the spurious peaks at fixed-boundary modes.

It should be noted however, that this in itself introduces another erroneous assumption: The physical con-
nection which is removed in the extended interface configurations does indeed exist, therefore scenario’s
can be thought of where accepting some if not all physical connections is preferred.

The extended interface for the truss-construct

To demonstrate the effects of the extended interface, the example of the previous section is repeated. This
time, a hybrid model is constructed with (31) where all internal DoF are kept following the schematic
depicted in Figure 7d. In Figure 8 the same driving-point FRF as before is shown for the new scenario.
Unlike the hybrid FRF constructed with the basic method, the FRF constructed with the extended decoupling
interface contains no spurious peaks. This is a consequence of the hybrid model no longer being sensitive to
the fixed-boundary system.

The performance of the configurations in Figure 7b and Figure 7c are not demonstrated here as the effects
of an extended interface are best illustrated by the configuration in Figure 7d. This is because for these con-
figurations, since a physical connection still exists, there is still a sensitivity to the fixed-boundary dynamics
albeit in a lesser form.

3.2. The secondary parent model

In the most general form of SEMM, the two combined models can each have unique internal DoF. In other
words, two parent models exist: a primary and a secondary parent model, respectively denoted by Ypar,1
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and Ypar,2. They are defined as:

Ypar,1 ,

[
Yii Yib

Yib Ybb

]par,1

; Ypar,2 ,

[
Yii Yib

Yib Ybb

]par,2

SEMM is now performed in two directions as illustrated in Figure 9. For each parent model a subset is
removed; this can be done following either the normal configuration or with the extended interface method.
The removed interfaces are defined as:

Yrem,1 ,

[
Ykcke Ykcb

Ybke Ybb

]par,1

; Yrem,2 ,

[
Ykcke Ykcb

Ybke Ybb

]par,2

The overlay model can be adopted from either parent model5. For now, let us state that the overlay model
is taken from the secondary parent model, thus staying in line with the theory:

Yov ,
[
Ybb

]par,2

The coupling matrices are extended with the relations to the secondary model. The compatibility and

Y
par,1

−Y
rem,1

Y
ov

−Y
rem,2

Y
par,2

Figure 9: The SEMM concept can be extended with the secondary parent model. The secondary parent model is the
model from which the overlay model is extracted. SEMM can be performed in both directions.

equilibrium matrices now read:

C ,
[
Cpar,1 Cpar,2 Crem,1 Crem,2 Cov

]
(32a)

E ,
[
Epar,1 Epar,2 Erem,1 Erem,2 Eov

]
(32b)

Again, the combined equations can be recast in matrix form. Note that the applied force vector is extended
with secondary parent forces, that actually allow to excite the full DoF-space of both models (which was not
the case with the standard definition of the overlay model). Consequently, cross terms now exist between
secondary and primary parent models; the models are linked through the overlay model.

Zpar,1 0 0 0 0 Epar,1T

0 Zpar,2 0 0 0 Epar,2T

0 0 −Zrem,1 0 0 Erem,1T

0 0 0 −Zrem,2 0 Erem,2T

0 0 0 0 Zov EovT

Cpar,1 Cpar,2 Crem,1 Crem,2 Cov 0




upar,1

upar,1

urem,2

urem,2

uov

λ

 =


fpar,1

fpar,2

0
0
0
0

 (33)

5In fact, the overlay model can even adopt a mixed definition of both models; this is the subject of 3.3.
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By solving (33), a full system is derived including the internal DoF of both parent models and the interac-
tions therein. These interactions are however ’bottlenecked’ through the interface defined by the overlay.
Therefore, for these interactions, it is doubly as important that the interface adequately describes the system
dynamics.

3.3. Trust function

The overall dynamics of the resulting hybrid model are determined by definition of the overlay. However, as
explained in the previous section, the overlay can be extracted from either input parent model. Consequently,
the overall dynamics can be steered towards the dynamics defined by either parent model. In fact, this choice
can be made per frequency step; the overlay can, for example, be extracted from the model deemed most
trustworthy at that particular frequency.

Naturally, the resulting model would contain sharp jumps at frequencies where the overlay’s definition is
shifted from one parent to the other. Therefore, it would be beneficial if near these shift-frequencies the
overlay dynamics can be recast as a weighted mix of both parent models, such that smooth transitions can
be made from one to the other parent model. For this to occur, it is required that in these transition zones
hybrid dynamics are defined and that these hybrid dynamics can be tuned or faded.

The hybrid dynamics can be created by artificially increasing the influence of either model in a SEMM
coupling. The influence of a model in an assembly is determined by the relative stiffness of the models
at the boundary. It follows that by weakening the stiffness of the overlay relative to the parent model
its influence in the resulting model decreases. This can be achieved by including a symmetric frequency-
dependent weighting matrix called the trust function W(ω) in the compatibility and equilibrium conditions.
The function’s name derives from the fact that it tries to quantify the frequency-dependent trust one has in
a given model. It is defined as follows:

W(ω) ∈ R2 : [0, I] Where W = WT (34)

This function is implemented in the compatibility and equilibrium conditions between the parent and re-
moved model. For example, the compatibility conditions become:

W(ω)upar
b = urem = uov =⇒

{
W(ω)upar

b + urem = 0 (35a)

urem + uov = 0 (35b)

Essentially, the compatibility now states that for every unit displacement of the removed interface DoF, and
by extension overlay DoF, there is W(ω) units displacement of the parent DoF. Similarly, the equilibrium
conditions are altered; it is stated that the sum of interface forces of the removed and overlay model is equal
but opposite to the weighted parent interface forces, which can be denoted as:

W(ω)gpar
b = − (grem + gov) =⇒ W(ω)gpar

b + grem + gov = 0 (36)

The weighting matrix W(ω) is easily implemented in the coupling matrix B:

B ,
[
W(ω)Bpar Brem Bov

]
=

[
0 −W(ω) I 0
0 0 −I I

]
(37)

By inserting the weighting matrix in the coupling matrix we allow for a gap/discrepancy to exist in both
the displacement compatibilities and the force equilibria at the interface. This effectively means that the
interface is to some degree compliant; a concept that is more often used in dynamic substructuring to
model the effects of joints [23, 24]. In this case however, the interface dynamics are unknown as they are
a consequence of the required response, i.e. the required force and displacement gaps. Note that if the
weighting matrix is identity, no weakening occurs and normal SEMM is applied. The system equation is
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Figure 10: Substructuring benchmark structure [25] used to demonstrate the practical application of SEMM. The struc-
ture consists of substructures A and B which are coupled together at two coupling points to form assembly AB.

once again put in the dual admittance form:
Zpar 0 0 BparTWT (ω)

0 −Zrem 0 BremT

0 0 Zov BovT

W(ω)Bpar Brem Bov 0



upar

upar

uov

λ

 =


fpar

0
0
0

 (38)

The system equation is solved for u as before using the LM-FBS formulation of equation (7). Theoretically,
the resulting tuned model Ytuned follows the dynamics as defined by the trust-function. Unfortunately
however, the internal DoF Ytuned

ii are sensitive to the weakening brought about by the trust-function resulting
in spurious peak at frequencies where W(ω) approaches identity.

Nevertheless, the boundary DoF, which are fully controlled by both overlay and parent models, effectively
carry the user-defined hybrid dynamics. Therefore, Ytuned

bb is a proper overlay model which can be used in
any of the SEMM configurations. By definition, the internal DoF will follow the tuned dynamics of Ytuned

bb .
As no weakening is performed in these configurations no spurious peak occurs. Consequently, in order to
translate these tuned dynamics to internal DoF, a two-step SEMM is applied; first (38) is solved to obtain
Ytuned

bb , which in turn is inserted as an overlay model in (17), (28) or (33).

4. Example: benchmark structure

This section demonstrates the practical applicability of SEMM for the typical use of mixing a ‘small’ exper-
imental model with the DoF-space of a full numerical model. The example uses the benchmark structure
depicted in Figure 10, used previously to validate experimental dynamic substructuring and transfer path
analysis methods; see [25, 26]. It is a system consisting of three substructures, denoted A, B and R, that can
be coupled in multiple configurations. This example uses substructures A and B only: A is a solid aluminium
structure (loosely shaped after the character itself) with a stepper-motor attached; B is a steel structure
featuring a honeycomb-like plate with numerous out-of-plane vibration modes.

4.1. Introduction

The envisioned end goal of this study is to couple models of substructures A and B in the two-point coup-
ling configuration using LM-FBS in a frequency range of 0 to 3000 Hz. As can be understood from the
figure, coupling of rotational dynamics is essential for this test case in order to realise complete coupling
behaviour. Therefore we will first seek to determine high-quality 6-DoF models of the dynamics at each
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coupling point, i.e. comprising three translations and three rotations. To that end, the Virtual Point Trans-
formation (VPT) method will be employed to construct virtual nodes with full 6-DoF dynamics, derived from
an overdetermined set of translational FRF around each coupling point6.

In practice, for a 6-DoF virtual node, this means using at least three tri-axial sensors and applying more
than six linearly independent impact directions. For a structure consisting of multiple coupling points this
might not be easy or feasible, for instance due to the high required sensor count or added weight limitations.
The predominant advantage of an expansion method like SEMM is thus that it is theoretically possible to
perform an experiment with fewer sensors and expand to DoF which have not been measured. This way, a
sufficiently large DoF-basis can be acquired to perform the virtual point transformation, which can then be
used to determine the 6-DoF virtual nodes7 for the coupling points of the substructures.

In this example of SEMM, a modest set of measured DoF on substructure A is used as the overlay model
and an associated parent model is constructed from an FE model. The resulting hybrid model follows the
dynamics of the measurement, hence represents the dynamics of the actual component. It will thus be shown
that an experimental DoF-set, essentially insufficient for virtual point modelling, can be used to construct a
high-quality hybrid model for the entire frequency range of 0 to 3000 Hz. Additionally, with the use of the
trust function of section 3.3, dynamics of the numerical model are inserted in the low-frequency band to
complement the experimental data that is untrustworthy at these low frequencies.
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Figure 11: The system at hand consists of substructures A and B. Substructure A is modelled both numerically and
experimentally and the parent and overlay models are extracted respectively. SEMM is performed with the parent and
overlay model as described by equation (28). A VP transformation is applied on the hybrid model and it is validated by
direct comparison with the VP transformed experimental model of A. The hybrid model is subsequently coupled to the
VP transformed experimental model of substructure B and this is compared to the experimental measurements of the
full-system model AB.

4.2. Application

Figure 11 is a flowchart depicting the process applied in this test-case. Substructure A is modelled both
numerically and experimentally and will be the candidate for the application of SEMM. The hybrid model of

6The mathematical details of the virtual point transformation method are omitted; the interested reader is referred to [11, 12].
7Applying the VPT method is in that regard similar to introducing an RBE3 element to interpolate between multiple 3D nodes,

which is standard practice in many FE codes.
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A will be compared to its experimental counterpart as part of the validation. Thereafter, the hybrid model
will be coupled dynamically to substructure B to form a hybrid model AB which is in turn validated by
comparison with both a purely experimental FBS model and measurements performed directly on AB.

4.2.1. Experimental overlay model of A

(a) Experimental Model (b) Overlay Model

Figure 12: (a): The full experimental measurement sensor (blue) and impact (red) locations. (b): The subset of
impact and sensor locations used for the overlay model. Note that the limited number of sensor and impact locations is
insufficient for proper virtual point definition.

Impact hammer FRF measurements are performed on structure A to construct an experimental FRF-model.
Figure 12a shows the sensor and impact locations used in the experiment, comprising 3 tri-axial accelero-
meters (i.e. 9 channels) and 16 impact points per coupling point. The measured DoF-set is sufficiently large
to construct the virtual points required for coupling, i.e. sufficient independent DoF have been measured
near each coupling point.

From this experimental FRF-model, a subset of DoF is used as the overlay model in the SEMM process. This
selection of DoF is shown in Figure 12b. Note that with this set the virtual points would be underdetermined,
i.e. this DoF-set in itself is not large enough to construct the virtual nodes. The full ‘donor’ experimental
model of A (Figure 12a) is subsequently used to validate the hybrid model of A and used to construct a pure
experimental FBS model of AB.

4.2.2. Numerical parent model of A

Additionally, un undamped FE-model is constructed for component A (without the stepper-motor) whose
node locations are shown in Figure 13a. This is used to construct a reduced FE-FRF model which will act
as the parent. This model contains the overlay DoF-set as well as a set of internal DoF which are used
to construct virtual points; these DoF are shown in Figure 13b. Figure 14 is a close up of a virtual point
configuration where the red and blue arrows represent the input and output DoF of the model respectively
and the green arrows represent the virtual point. Clearly the set of numerically modelled DoF can readily
observe and control the virtual point. It should be noted however, that the virtual point transformation itself
is not yet performed.

Table 4: The size of the DoF-sets used in the practical case. The overlay model has 9 output DoF and 6 input DoF which
are all considered boundary DoF. These are expanded to the 54×54 DoF in the parent model. A full-interface decoupling
is used: all internal DoF are kept, and non are discarded (Represented by Figure 7d)

Internal i Kept k Discarded d Boundary b

Output DoF 54 54 0 9
Input DoF 54 54 0 6
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(a) FE-model (b) FE-FRF Parent Model

Figure 13: (a): The node locations of the FE model used to construct the numerical FRF model. (b): The DoF locations
of the numerical FRF model used as the parent model in the SEMM process. Note that the stepper-motor is not included
in the numerical FE-model.

4.2.3. Hybrid model of A

SEMM is applied on the parent and overlay model constructed above by means of a full interface decoupling
defined by equation (28). Here all internal DoF are kept in the decoupling step of SEMM (Shown graphically
by figure 7d). The resulting SEMM constructed hybrid model follows the experimental dynamics from the
overlay model yet can both observe and control the virtual points since it consists of the same DoF-space as
the parent model.

Figure 14: A closer look at the parent model DoF locations of Figure 13b where the sensor location of the overlay model
and the virtual point (green) is included. Note that the chosen parent DoF-set is sufficient to properly define this virtual
point.

4.2.4. Hybrid and experimental model of AB

The resulting hybrid model is coupled to the experimental model of structure B to form the hybrid model of
AB. In order to couple the models the virtual points method is used to construct the collocated virtual nodes
at the coupling points; displayed in Figure 14. The coupling itself is done with the LM-FBS method (7) with
the virtual point DoF as the boundary DoF.

In order to proper validate the hybrid model of AB a pure experimental DS model is also constructed. This
is done by coupling the full set of experimental measurements to the same experimental model of B. Again,
this is done with the LM-FBS method on the virtual point nodes.

4.3. Results

The resulting hybrid model is first validated by comparison between the experimental and hybrid FRF,
both internally and at the virtual points. Afterwards, the validated hybrid model of A is coupled to the
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experimental model of substructure B to form the hybrid model AB. The coupled hybrid AB model is then
validated by means of comparison with both the pure experimental coupled model AB and the measurements
performed directly on structure AB.

4.3.1. Comparison of the internal DoF

One of the advantages of SEMM is the ability to expand experimental dynamics to DoF other than the ones
measured. In Figure 15 the admittance FRF from a force at a virtual point to an acceleration in the centre
is shown. Note in Figure 12b that the overlay model has neither sensor, nor impact information available
in the centre of structure A, thus the resulting hybrid FRF is based on expansion of experimental (overlay)
information in the numerical (parent) structure.
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(a) Numerical vs. Measurement (b) SEMM vs. Measurement

Figure 15: Internal FRF from a corner force to a displacement in x-direction at the centre of the structure. Although
the numerical (blue) eigenfrequencies in (a) do not coincide with the experimental eigenfrequencies the hybrid model
(green) in (b) follows those of the experimental model. However, the discrepancy between experimental and numerical
models causes a stiffness off-set in the hybrid model.

In Figure 15a the reference measurement and the numerically simulated FRF are compared. There are not-
able discrepancies in the FRF characteristics of interest, i.e. frequency off-set, damping values, and general
admittance. This is in great part due to the fact that the motor is not included in the FE-model whilst it is
included in the measurements. Nevertheless, this numerical model can be used effectively to construct the
hybrid model. Figure 15b shows the FRF of the hybrid model as compared to the reference measurement. A
relatively large stiffness difference can be seen between 500 and 800 Hz and from 1600 Hz onwards, yet the
eigenfrequency and damping information of the experiments (overlay) are captured in the hybrid model, as
expected. The stiffness differences can be accounted to the fact that input overlay information is dynamically
‘far’ from the desired internal DoF. The discrepancy between the overlay and removed model (introduced in
(23)) is too large in this particular frequency band.

4.3.2. Comparison of the VP DoF

Evidently SEMM can expand an experimental DoF-set with DoF from a parent DoF-set and form independent
FRF. Next, we require that the expanded DoF can be used to form physically relevant hybrid virtual points.
Therefore, although the hybrid virtual points are derived from minimal experimental data, they should
represent the virtual points of the full experimental model. In Figure 16 both a numerically simulated and
hybrid driving-point FRF of a virtual point are compared to the experimental reference.

Figure 16b shows that the virtual point constructed in the hybrid model with an underdetermined set of
experimental DoF is still representative of the experimental virtual point. This is despite the fact that the
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(a) VP: Numerical vs. Measurement (b) VP: SEMM vs. Measurement

Figure 16: A driving point FRF in the z− direction of virtual point 2. Note that the numerically constructed virtual
point (blue) in (a) differs much from the experimental reference, yet the SEMM constructed hybrid model (green) in
(b) follows the experimental model up to 3 kHz

numerically simulated virtual point FRF does not properly resemble the measured reference as shown in
Figure 16a.

This is possible because SEMM effectively removes the need for mathematical overdetermination of the
virtual point; the numerical structure used already ensures mathematical overdetermination. All that is
required of the overlay model’s DoF-set is that it is representative of the structure’s motion in the chosen
frequency band which is evident from the FRF results in Figure 15b.

4.3.3. Comparison between coupled and measured AB

The question arises if the virtual point acquired though SEMM is still viable for use in DS. Although Figure’s
15 and 16 show that the hybrid model’s eigenfrequencies match those of the experimental model; with DS
coupling the general stiffness contribution also plays an important role in the coupling since the relation in
stiffness of the two models determine the stiffness of the system.

To test the viability of the hybrid virtual points both the hybrid model of AB and the pure experimental
coupled model of AB are compared to the measurements on the full-structure AB. The results are shown in
Figure 17.

Figure 17 shows driving-point FRF of a virtual point. Both the pure experimental coupled model AB dis-
played in Figure 17a and the hybrid coupled model AB displayed in Figure 17b closely resemble the reference
full-structure measurement in the frequency band up to 1600 Hz. At higher frequencies the FRF for both the
pure experimental and the hybrid coupled model diverge from the reference. Since both the SEMM model,
and the experimental model are no longer valid, this error is attributed to the DS coupling and not the
SEMM method; higher frequencies have thus been left out of the analysis.

A few observations are made however:

• At 440 Hz there is a eigenfrequency shift of the hybrid coupled model; this is not the case in the
pure experimental model. Note that this is in the frequency regime where a flat stiffness difference is
observed in the expanded DoF of the hybrid model. It is possibly the cause of a frequency shift in the
coupled FRF.

• A large eigenfrequency shift exists between the reference eigenfrequency at 790 Hz and the hybrid
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Figure 17: A driving-point FRF in the z− direction of the virtual node 3. Both the pure experimental DS model of AB
(a) and the hybrid DS model (b) are compared to a reference measurement of the physical component AB.

eigenfrequency at 840 Hz. It should be noted however, that in the experimental coupled model no
eigenfrequency peaks are clearly visible in this frequency range.

• For both the pure experimental and the hybrid coupled model the low-frequency content is poor. This
is due to the poor low-frequency measurements of structure A which are passed on to the hybrid
model. This is fixed by mixing in trusted numerically simulated FRF with the use of trust functions in
the next section.

4.4. Trust function

Depending on the complexity of the structure at hand, experimental models certainly have an advantage
over numerical models in the higher frequency domains. At lower frequencies however, experimental models
are contaminated by the dynamics of the setup and by the measurement range of the equipment used. This
results in low measurement coherence for this particular band. Indeed, in Figure 17 it is clearly seen that
the experimental DS results, and consequently the hybrid DS results are very noisy in the lower frequency
band. Conversely, numerical models excel in the lower frequency range. They are generally capable of
determining the static situation as well as the first modes of a structure.

Using the trust functions introduced in section 3.3 an overlay model can be created which follows trusted
numerical dynamics in the lower frequency bands and gradually switches over to experimental dynamics
at an appropriate user-defined frequency. Therefore, the hybrid model will circumvent the low coherence
measurement of experimental models in the lower frequency but still follow experimental dynamics at the
higher frequencies. This results in an hybrid model based on the ”best of both worlds”

For the trust function a switching frequency at 250 Hz is defined. To ensure that there is no sudden shift in the
FRF the model dynamics are gradually shifted over a 100 Hz frequency band from 100 % to 0 % numerical
(parent) dynamics. The function is depicted over the resulting FRF in Figure 18b. The trust function is
applied to both the hybrid model of structure A, as well as a new hybrid model of structure B. The models
are coupled like before to construct an AB hybrid model.

In Figure 18 the resulting hybrid AB model is compared to the measurement of AB as before; focussed on
the low frequencies. Due to the use of numerical dynamics in this frequency range, experimental noise
is removed from the hybrid model. The trust function ensures a gradual and physically relevant shift to
experimental dynamics throughout the given shifting bandwidth.
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Figure 18: A close-up of the low-frequency band of the driving point FRF in z− direction from Figure 17. Again,
the experimental DS (a) and the hybrid DS (b) are compared to the reference measurement. Due to the inclusion of
numerical dynamics in the low-frequency band of the hybrid FRF the noise due to low coherence is removed.

5. Discussion

5.1. On the SEMM method

SEMM is explained conceptually as a parent model adapted to follow overlay model dynamics. In effect, the
overlay model is expanded to the parent model DoF-set. Therefore the overlay DoF can be regarded as the
master DoF-set, whereas the parent DoF-set is regarded as the slave DoF-set.

Although the overlay model can be regarded as the master model it is still the parent model that provides
the basis for the new FRF. The interface conditions ensure that the interface FRF become identical to those
of the overlay model yet this is not defined a priori which can result in some practical complications in
situations with poor conditioning.

It is stated at the end of section 2.2 that the overlay model is not inverted in the process, while in fact it is
inverted twice. This theoretically cancels the inversion, yet in practice this is not the case in situations with
poor conditioning. The single-line methods of (21) and (31) avoid this double inversion. Consequently,
the single-line method is the preferred method for the application of SEMM. Unfortunately no single-line
method is derived for the use of trust-functions.

5.2. On the construction of the input models

The physical interpretation provided in section 2.3 gives an insight into the physical process behind the
method. It accentuates the problems inherent in the method, and thereby the demands placed on the
parent and overlay model in order to construct adequate hybrid models. The numerical example presented
in section 2.4 already illustrates the need for the overlay model to describe the relevant dynamics of the
structure, i.e. its representability as a full structure model. In addition, since the method places strict
conditions on the full overlay model, it must not be ill-conditioned. In practice, this requires the DoF-set of
the (experimental) overlay model to allow sufficient flexibility between DoF. Therefore a balance is needed
between the rank-ability and conditioning of the overlay model as a result of the boundary DoF choice8.

8To get an impression of the rank-ability (or observability) and conditioning of the overlay model, one could calculate a singular
value breakdown of the overlay FRF matrix and look at the spread of its singular values.
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These demands are vastly different than the requirements placed on experimental models destined for e.g.
virtual point transformations or multi-point constraints. Indeed, in such cases one needs complete informa-
tion of each physical connection point from the experiment, leading to large FRF models with relatively poor
conditioning. This is in sheer contrast to the focus of overlay models which must predominantly observe not
local space, but the full system modal space, as the local space is filled in by the parent model’s DoF-set.

No limitations regarding e.g. modal density, proportional damping, or choice of damping model are explicitly
made although the influence of these factors to the method’s accuracy is still unproven. The hybrid model
in the practical case is, for example, created without damping in the parent model, yet other results may be
obtained with different damping assumptions. More research into these subjects is warranted.

6. Conclusion

SEMM is presented as a technique that creates a model hybrid by expanding a DoF-set of a certain overlay
to a structure of the parent model. This expansion process warrants its comparison with other expansion
techniques, such as Guyan expansion, component mode synthesis (CMS) or modal expansion techniques.
The main difference between SEMM and the aforementioned techniques is that SEMM allows the existence
of ‘internal’ dynamics otherwise lost in the condensation process. Therefore, even though a DoF-set is
expanded, the hybrid model is an integral full-rank model.

The hybrid definition of the model has an inherent problem: the dynamics of parent and overlay model
conflict which results in spurious peaks at internal mode frequencies. This is shown in the numerical example
of section 2.4. This problem is largely mitigated by the use of extended interface decoupling of section 3.1
where the full model decoupling process completely removes these conflicting modes. Indeed, the full model
decoupling has shown the best results in the tests done.

It is shown in the sections that follow that SEMM is a framework rather than a standalone method, allowing
for several choices to be made depending on the respective needs of the application. One application that
stands out is tested as SEMM is applied practically on a benchmark structure designed for DS validations. It
is shown that SEMM allows the expansion of a small experimental DoF-set to a full-rank expanded model by
use of an FE model, and that these expanded DoF can be used to construct physically correct virtual points.
Furthermore, it is shown that these virtual points can be used to couple models in DS fashion. Finally, it is
also demonstrated that numerical dynamic information can be faded in to improve low-frequency dynamics
of the resulting hybrid FRF.

The SEMM framework as presented can be regarded as an invaluable extension to the experimentalist’s
toolkit, with the potential to save measurement time and increase the quality of hybrid dynamic models.
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Appendix A. Deriving the single-line method by primal decomposition

In this appendix the single-line method of SEMM is derived for the general single parent model method.
This is done with the primal-decomposed admittance notation [27]. The primal-decomposed notation is
first derived for SEMM.
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The parent, and overlay models are repeated below:

Ypar ,

Ydd Ydk Ydb

Ykd Ykk Ykb

Ybd Ybk Ybb

par

Yov ,
[
Ybb

]ov
(A.1)

Note that the differentiation between compatibility and equilibrium kept k and discarded d DoF is omitted
here for clarity; this differentiation still applies however. Recall from equation (26) that the removed model
is a sub-set of the parent model defined as:

Yrem ,

[
Ykk Ykb

Ybk Ybb

]par

(A.2)

The derivation is done in two separate steps. First the overlay model is decoupled from the removed model
creating a delta model Y∆. This delta model is then decoupled from the parent model. This two-step
approach is an easier derivation, thus keeping oversight in the process. Let us now define a delta model
which is the difference between the overlay and removed model:

Y∆ , Yrem (−) Yov (A.3)

This model is constructed via the primal-decomposed admittance notation. The equations of motion of the
coupled system Y∆ are denoted below:

Yrem(f + grem) = urem (A.4)

−Yovgov = uov (A.5)

Yrem
kk Yrem

kb 0
Yrem

bk Yrem
bb 0

0 0 −Yov
bb

fkfb
0

+

0grem
b

gov
b

 =

urem
k

urem
b

uov
b

 (A.6)

s.t.

grem
b + gov

b = 0 (A.7)

urem
b − uov

b = 0 (A.8)

A Lagrange multiplier λ is introduced:

λ = grem
b = −gov

b (A.9)

λ is substituted into (A.6) to form:Yrem
kk Yrem

kb

Yrem
bk Yrem

bb

0 Yov
bb

[fk
λ

]
=

urem
k −Yrem

kb fb
urem
b −Yrem

bb fb
uov
b

 (A.10)

s.t.

urem
b − uov

b = 0 (A.11)

Finally, by subtracting the third row from the second row in (A.10) the primal decomposed admittance
notation becomes:[

Yrem
kk Yrem

kb

Yrem
bk Yrem

bb −Yov
bb

] [
fk
λ

]
=

[
urem
k −Yrem

kb fb
−Yrem

bb fb

]
(A.12)
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Which is solved for λ and u:

λ = − (Yrem
bb −Yov

bb)
−1 [Ybk Ybb

]rem
f (A.13)

u = Yremf +

[
Ykb

Ybb

]rem

λ (A.14)

Substituting (A.13) into (A.14):

u = Yremf −
[
Ykb

Ybb

]rem

(Yrem
bb −Yov

bb)
−1 [Ybk Ybb

]rem
f (A.15)

From equation (A.15) the delta model Y∆ is formulated. Note that this is the primal notation analogue to
the dual-decomposed LM-FBS method of equation (5), as expected. The delta model Y∆ becomes:

Y∆ =
[
Yrem

]
−
[
Ykb

Ybb

]rem

(Yrem
bb −Yov

bb)
−1 [Ybk Ybb

]rem
(A.16)

This delta model is removed from the parent model thus effectively removing the removed model and adding
the overlay model. The hybrid model YSEMM is defined as:

YSEMM , Ypar (−) Yrem (+) Yov (A.17)

= Ypar (−) (Yrem (−) Yov)

= Ypar (−) Y∆ (A.18)

Following the same derivation as above it can be shown that the hybrid model YSEMM becomes:

YSEMM =
[
Y
]par −

[
Yik Yib

Ybk Ybb

]par([
Ykk Ykb

Ybk Ybb

]par

−Y∆

)−1 [
Yki Ykb

Ybi Ybb

]par

(A.19)

=
[
Y
]par −

[
Yik Yib

Ybk Ybb

]par

Zint

[
Yki Ykb

Ybi Ybb

]par

(A.20)

Where the coupling interface stiffness Zint is:

Zint =

([
Ykk Ykb

Ybk Ybb

]par

−Y∆

)−1

(A.21)

=

([
Ykk Ykb

Ybk Ybb

]par

−
[
Yrem

]
+

[
Ykb

Ybb

]rem

(Yrem
bb −Yov

bb)
−1 [Ybk Ybb

]rem
)−1

(A.22)

=

([
Ykb

Ybb

]rem

(Ybb −Yov
bb)

−1 [Ybk Ybb

]rem
)−1

(A.23)

=
([

Ybk Ybb

]rem
)+

(Yrem
bb −Yov)

([
Ykb

Ybb

]rem)+

(A.24)

Note the use of (A.2) to cancel the first two terms of (A.22) to form (A.23). Also note in (A.23) that the
formulation that is required to be inverted is singular as the rank is determined by the size of the boundary
which is generally smaller than the full size. Hence (A.24) is a generalized inverse.

(A.24) is inserted in (A.20) to form the single-line method of (31) which is repeated here:

YSEMM = [Y]
par−

[
Yik Yib

Ybk Ybb

]par ([
Ybk Ybb

]rem
)+

(Yrem
bb −Yov)

([
Ykb

Ybb

]rem)+ [
Yki Ykb

Ybi Ybb

]par

(A.25)

It is observed that the formulation (A.25) can be implemented directly; this circumvents any numerical
problems cause by double inversions.
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