VanillaGP: Genetic Algorithm for

Inductive Program Synthesis

Bachelor Thesis for CSE3000
by Farhad Azimzade

%
TUDelft

VanillaGP: Genetic Algorithm for Inductive Program
Synthesis

Farhad Azimzade*
Supervisor: Sebastijan Dumandié '
EEMCS, Delft University of Technology, The Netherlands

January 26, 2022

Abstract

Inductive Program Synthesis is the problem of generating programs from
a set of input-output examples. Since it can be reduced to the search prob-
lem in the space of programs, many search algorithms have been successfully
applied to it over the years. This paper proposes, develops, and analyses
a novel algorithm in the family of Genetic Algorithms, called VanillaGP.
While generally not showing superior performance compared to a recent
best-first Brute method on the subset of program synthesis tasks used in
the paper, VanillaGP does appear to reach a comparable relative improve-
ment of the errors in the training data.

1 Introduction

Program synthesis is the problem of generating general computer programs from a starting
set of conditions, requirements, or samples. It allows for automatic generation of algorithms
given a problem domain, namely its Domain Specific Language (DSL), and some description
of the intended behavior. Program synthesis has been used to (re)discover complex tree-
based algorithms [5], as well as database queries from a handful of examples [6], therefore
making a strong case for its usefulness and effectiveness.

The general approach is to search the program space in an attempt to stumble upon a
suitable program that covers the specified preconditions. Since program synthesis can be
reduced to a search problem in the space of programs defined in a particular DSL, a number
of search techniques and heuristics can be applied to solve program synthesis.

Recently, a search algorithm, dubbed Brute [2], has been proposed to tackle program syn-
thesis. The method used in Brute is a best-first approach, which means that as programs
are being explored, only decisions and steps that immediately improve the loss function are
taken. Brute first looks for a function that, when applied to the input, results in the closest
output to the one desired. Then, it iteratively searches the set of functions to append to

*f.azimzade@student.tudelft.nl
'S.Dumancic@tudelft.nl

the current best program. This strategy, while producing decent results, is susceptible to
converging to a sub-optimal solution too quickly. That is, the Brute algorithm will find the
locally optimal solution (i.e. the program that produces the lowest error of all the programs
explored up to that point). However, such a solution may not be the globally optimal solu-
tion, and the algorithm will inevitably miss this fact, as it never backtracks.

One way of going beyond locally optimal solutions is the family of search algorithms called
Genetic Algorithms (GA). GAs attempt to emulate the process of reproduction and gene-
passing in biological systems. These algorithms essentially sample random points in the
search space, and then continue to transform them, by crossing them together or mutating
them, in an attempt to increase the resulting fitness of each found solution.

Classic GAs work with fixed-length encoding of the search space. In this case, the space of
all the programs generateable from the set grammar of the DSL does not adhere to that
property, since programs can be of varying lengths. This means that gene cross-overs that
take place within an iteration of a classic GA are not quite as suitable. Instead, an ap-
proach popularized by John R. Koza, called Genetic Programming (GP) [4], may seem more
compelling in this respect, as it tackles programs in their tree form directly. The algorithm
this paper proposes draws some inspiration from Koza’s work, but effectively attempts to
adapt the classic GA (i.e. working on strings rather than trees) to the problem of program
synthesis.

The core idea of the algorithm, VanillaGP, is to apply the genetic algorithm method to the
search for programs in the enriched space of programs. What is meant by "enriched" is
the preliminary step of generating auxiliary functions, such that the pool of programs the
genetic algorithm can sample from as its function alphabet is larger than the set of the basic
functions defined by the DSL. This step ensures that a sufficient complexity can be main-
tained in the resulting programs. Additionally, it allows for the simplification of the search
algorithm, as the need for constructing those sub-programs (or functions) is largely omitted
and delegated to this so-called invent stage. This step of preliminary invention of functions
of a certain complexity actually comes directly from the Brute algorithm [2]. There it assits
the best-first search algorithm, while in VanillaGP, a GA uses those functions alongside the
basic DSL-defined functions as genes in individual program genotypes.

This research paper attempts to investigate how well and under what conditions VanillaGP
performs on the problem of program synthesis using three types of experiments as an eval-
uation proxy. These experiments, as described in [2], are experiments with pixel images,
robot agent navigation, and string transformation. One of the issues this paper explores
is the impact of using a genetic algorithm, such as VanillaGP, in program synthesis on the
ability to escape local extrema. The stochasticity of VanillaGP has the potential to explore
the problem space more boldly and not be tempted by local extrema as much as a best-first
algorithm, such as Brute, would. Another point of interest is the generalizability of the
found problems. This is primarily relevant to the string transformation domain, whereby
the program found by looking at training examples has to solve or almost solve the test
samples as well.

Further, section 2 of the paper lays out the general approach taken within this research
project to investigate the research questions. Section 3 introduces the basic notion of a

program that is used with respect to inductive program synthesis, as well as a general in-
troduction to Genetic Algorithms. The full description of the VanillaGP algorithm itself is
in section 4. Section 5 describes the experiments conducted in the process and the corre-
sponding results obtained. In section 6, some of the ethical considerations of the research
project are discussed. Section 7 concludes the paper and exposes some of the limitations of
this current work and potential remedies.

2 Methodology

This research paper extends the recent work done in [2] on applying a best-first search al-
gorithm with a distance function to the problem of Inductive Program Synthesis (IPS).
The key takeaway from that work is that a fairly straightforward deterministic algorithm
can be useful in program synthesis if a distance function is used that allows to differentiate
between two candidate solutions when neither is the desired solution for the problem. That
is, the usage of a distance function can provide the search algorithm with the additional
information as to how far the produced solution is from the desired result. This in turn
leads the algorithm down the potentially more beneficial search paths.

Furthermore, this research work is part of a larger collaborative peer-group effort that ex-
plores various alternative search algorithm paradigms in their applicability to IPS. The peer
group involves five algorithm designs, one of which is the Genetic Algorithm, that were
researched, constructed, and tested on the data that was used in the Brute paper.

The original paper on Brute implements the algorithm in a logic programming language,
Prolog. While having its advantages, it could be argued that a more common imperative
language implementation would be more simple to work with going forward. As such, the
peer group settled on the idea of re-implementing both the original Brute algorithm and
each of the novel algorithms in Python.

Alongside the algorithms, the testing environment had to be implemented as well. This in-
volves the definitions of programs that algorithms would be working on, the domain-unique
token functions that make up the programs, the interpreter for running the programs, and
a variety of parsers for the training and test data.

Finally, experiments examining the performance of the search algorithms were conducted.
The three experiment domains are the ones described in the Brute paper [2], and some of the
similar properties of interest were analysed, such as solution percentage per task complexity.

3 Background

3.1 What Are Programs?

Since the particular flavour of program synthesis tackled in this paper is inductive program
synthesis, the algorithm for the generation of programs is supplied with input-output pairs
that constitute the positive examples for the problem. That is, the desired program P. needs
to meet the requirement that for each pair (in, out), P.(in) = out holds.

The positive examples are themselves pairs of input states and output states. The nature
of the states is experiment-dependent, which means each of the three experiments imposes
its own interpretation of the state. However, the general abstraction of the state is the type
Env (environment). So, an example supplied to the algorithm would be a pair (in, out) of
type (Env, Env).

Finally, the program itself represents a pipeline of functions that transforms a given input
state into the output state of the same type. A program then is a sequence:

Py=fuofa10.0fy

where each function f; is of type Env — Enw.

One aspect relevant to genetic algorithms particularly is that such a definition of a program
is more natural in the context of genetic algorithms than the more traditional representation
of programs in a tree form. This is because in GA, genomes are represented as strings, with
each character coming from some (usually binary) alphabet [7]. As such, a program can
be thought of as a genome where each gene comes from a set of the pre-defined functions
(function alphabet F):

F:{f07f17"'afn}
Bi=1fj : [y € F]

3.2 Genetic Algorithm Blueprint

Genetic algorithms are crude approximations of the basic processes involved in the evolution
of biological systems. They commonly involve two fundamental operations: gene crossover
and gene mutation. Crossovers emulate the reproduction of two members of a population,
while the mutation models the potential random gene mutations in the DNA of biological
organisms. The proposition of genetic algorithms is that such an iterative process of breed-
ing and mutation can lead to better performing genotypes (i.e. stronger evolved organisms).

One of the core operations in genetic algorithms is that of genetic crossover. A crossover
is the process that involves two members of a population exchanging parts of their genetic
material and producing new members of the same "species", broadly speaking. As per [{],
genetic algorithms commonly work on binary strings. In this case, the genotype of each
member is a binary string. This means that during crossover, parts of one parent genotype
of a population are combined with some other part of another parent’s genotype to produce
a child genotype.

Crossovers come in different sizes. The simplest is a one-point crossover. This is a situation
whereby the two parent strings are cut in one place each. A single point is selected in one
parent, and a potentially different point is selected in the second parent. Then, the part
up until the selected point of the first parent and the part from the selected point of the
second parent onward are combined, resulting a single string that represents one child. The
same is done with the second pair of substrings, which produces the second child. The more
complex crossovers are n-point crossovers. The essentially execute the same operation as
the one-point crossover, except, as the name suggests, they cut each string n times. This

results in a more complex recombination of children programs.

The other fundamental operator is genetic mutation. This is a process by which genomes
within a population may be altered with a certain probability. Each gene can be replaced
with one of the other available alleles. In the traditional case of binary strings, the alleles
that a gene can take are the two entries of the binary alphabet {0, 1}. So, in this case, a
random mutation is akin to a random bit flip in a binary string.

4 Genetic Algorithm: VanillaGP

As mentioned in Section 3, a program comprises functions with a single argument of type
Env and a single output of type Env as well. Koza’s classic approach to genetic program-
ming [4], however, operates on abstract syntax trees (ASTs), whereby each function in a
program can have any number of arguments but only one output. This difference brings
VanillaGP closer to ordinary genetic algorithms than Koza’s vision of GP, although techni-
cally, it still is a program generation search algorithm.

VanillaGP is an iterative genetic algorithm that performs a set number of genetic operations
repeatedly to search for and find an appropriate solution. Figure [1| shows a diagram of a
single iteration of the algorithm.

Gen i oot Gen {1’ CrOSSOVer Gen i’ e Gen i+1
selection mutation
Py Py Py Py
P P, P2 P
Pn_1 P, Pon—1 Pn_1

Figure 1: A single iteration of the VanillaGP algorithm

The algorithm starts with a randomly generated population of programs, such that each
program in the initial population is at most of length [,,,, and the total number of pro-
grams in the population {Fy, P, ..., Py_1} is N. Usually, the initial population performs
fairly poorly on the tasks, although given a high enough NN, these random programs may
happen to stumble upon solutions to the simplest of problems within a given domain.

Next, programs from the initial population Gen 0 need to be considered for inclusion in the
next generation. A sensible approach is to take into the account the corresponding fitness
values of the programs. That is, the more fit individual programs ought to get a better
chance of propagating their genes onward during crossover. This filtering of programs is the
purpose of the selection algorithm.

The selection algorithm is SUS (Stochastic Universal Sampling). SUS [1] is a method of
stochastically selecting elements from a set based on some weighting. In this case, it is used
to select N programs as candidates for reproduction from one generation based on their fit-
ness values. The idea behind it is to represent the fitness of each program as a proportionally

scaled section of a metaphorical circular wheel. Then, N randomly-generated equidistant
points are selected on the wheel. The "bins" or sectors of the wheel that these points land
on then determine which NV programs get selected.

In order for SUS to determine the proportions on the wheel, each program in the generation
needs to be assigned a fitness value. This is the purpose of the fitness function. In the case
of VanillaGP, the fitness function is the reciprocal of the cumulative error obtained from
running every candidate program on each of the sample inputs and comparing the resulting
state with the desired output state. The discrepancy in the two is the resulting error. The
relationship between the fitness and error of a program P; is as follows:

1

fitness function(P;) =
error;

where the value of the error; itself is computed as:

error; = E 6’[”7’07"3

jE€examples

This means that for a given training example (in?, out?), the distance between the output
state resulting from P;(in?) = out! and the true/desired output state out’ is computed by
the distance function and stored as the errorf . Having done that for each training exam-
ple, the function sums the distances up to get the cumulative error.

One thing to note here is that the cumulative error function can also return an infinite error.
This occurs when the interpreter encounters a run-time error while a candidate program P;
is being evaluated on one of the inputs in’. This indicates that the particular program at-
tempted to perform illegal operations, such as, for instance in the case of the robot domain,
escaping the bounds of the grid. Alternatively, the error function can return 0 value in the
case that the program P; successfully solves all the specified examples. These two special
cases are handled by assigning zero fitness to invalid programs and infinite fitness to the
programs that fully solve the examples.

If after the selection is complete, a program ends up chosen, it is paired up with another
selected program to produce two child programs in the process of crossover.

The type of crossover used here is a straightforward one-point crossover, which means given
two sequences of functions, each one will be cut at a single point and then recombined with
the other part of the second sequence. An example of such a procedure is as follows:
Given are two parent programs:

nlhlalel Bl a]ls] 6]

IR

After the crossover, the resulting child programs are:

fo|f1|f2|f3|f4|f8|f9|
ol 5] 5|

| Pehita,

| Penitd,

Here, the one-point crossover uses index 4 in the first program and index 0 in the second
program. Crossover produces two child programs with a mixture of the functions from the
parent programs.

A more intricate crossover is the n-point crossover. This operator cuts the program genome
into n random sublists and then recombines them into two child programs. In theory this
provides more program diversity, as the children bear less similarity to the parent programs.
An example of a 2-point crossover starts with two parent programs:

(nlp Al sl u]s] 6]
(|l s | fo| fu] fo] fis |

before each gets cut into 3 randomly-sized pieces and recombined:
o | Al K] ho] |
Flel sl]l 6] m]fs]

| Pehitd,

| Peritd,

As a result, the child programs have more diversity in their genome, since, parts of the
parent genomes more freedom for ordering themselves in the child genomes.

The final operation performed on the generation is mutation. Traditionally, mutation in-
volves replacing a gene in the genome of an individual by a different allele — a possible
value of the gene. In this case, replacement gene comes from the pool of functions. Here,
the sequence of functions in each program is altered by substituting another function from
the pool of possible functions in place of an existing function in the sequence. So, given a
program such as P; = [fo, f1, f2, f3, f4, f5, [6], @ random mutation operation may choose to
mutate the function f; into a function fi14, where fi4 € function alphabet. This results
in the program P! = [fo, f14, f2, f3, f4, f5, f6]. Such an example (but with one additional
mutation) is shown here:

nlhlalel Bl u]ls] 6]
Pl h [l BlA]E] L]

However, in the hope of attaining more program diversity, VanillaGP also implements a
different mutation operation, called UMAD (Uniform Mutation by Addition and Deletion)
[3]. It is a variation of the mutation operator that allows for, as the name suggests, adding
and deleting genes from a genome. UMAD works by first iterating through the genome of
an individual and adding genes with a certain probability either right before or right after
an existing gene. Then it iterates again to perform deletions with some probability. Such a
process has the potential of increasing or decreasing the lengths of genomes stochastically,
resulting in a potentially more diverse population. The following is an example of a single
UMAD operation:

B

(Pl A [l b B]l F]fo]f]

|P1”|fo|f14|f2|f4|f3|f5|

Here, after the addition step, the program P; has been enriched with three randomly chosen
functions fi4 fs, and fi9 to produce an intermediate program P;. Then, in the deletion
step, functions that happen to have been deleted are fi, f3, fig, and fg. As can be seen,
the starting program is longer than the resulting program, whereas the ordinary mutation
operator preserves the size of the program.

At the end, the initial generation is transformed into Gen 1. This process is repeated for
a set number of iterations, in the hope of producing a final generation that contains one of
the plausible solutions to the original problem. Furthermore, the best program from each
generation is saved, such that if the evolutionary process ends up with a worse-performing
program, the algorithm manages to return the best-performing program it has encountered
over the course of the run.

5 Experiments and Results

5.1 Experimentation Environment

In order to analyse the performance of VanillaGP, it has been deployed in the experimen-
tation environment. The experimentation environment follows the one outlined in [2] and
involves three testing domains: robot, pixel, and string domains. Each domain comes with
a set of possible atomic functions and specified testing and, in the case of the string domain,
training samples. These samples themselves are grouped together by their task complezity,
which is a property defined for each domain. Task complexity, as the name implies, is a
measure of the difficulty that the algorithm is expected to have when generating the appro-
priate program. It also means a larger potential distance between input and output states,
which makes the search for the solution tougher. Each domain has five complexity groups.

As for the atomic functions, each domain has a specific set of transition functions (ones
that return a transformed state) and boolean functions (ones that return a boolean truth
value). In addition, programs in all domains can use two common functions: an if-then-else
statement and a while loop, the conditions for which come from the boolean function set,
and the bodies are programs in their own right and can be sequences of any functions valid
in the domain.

The robot domain represents a challenge of directing a robot agent across a grid, one cell
of which contains a ball that can be picked up and moved. The goal for the algorithm is to
find a program that, given the starting positions of the robot and the ball, can instruct the
robot to pick up the ball and drop it off at the desired position — cell.

B

Figure 2: An example of the input and output states of the robot experiment

The list of possible base functions here is:
[MoveLeft, MoveRight, MoveUp, MoveDown, Grab, Drop|
and eight boolean functions:
[AtLeft, AtRight, AtTop, AtBottom, NotAtLeft, NotAtRight, NotAtTop, NotAtBottom]

Task complexity in the robot domain refers to the size of the grid that is used in an example.
The example in Figure 2] for example, is a 4 x 4 grid, which places it in the second complex-
ity group. In total there are examples of complexity 2, 4, 6, 8, and 10, based on the grid sizes.

The pixel domain poses a challenge of drawing binary pixel images of characters/symbols
given the desired ASCI character. The input states are empty pixel canvases, and the task
is to produce a program that can walk around the grid and draw in the appropriate pixel
values.

The list of possible base functions in this domain is:

[MoveLeft, MoveRight, MoveUp, MoveDown, Draw]

and eight boolean functions:
[AtLeft, AtRight, AtTop, AtBottom, NotAtLeft, NotAtRight, NotAtTop, NotAtBottom]

The string domain is the most complex domain of the three and is, essentially, the prob-
lem of discovering an appropriate program that can transform the set input strings into the
corresponding output strings. This is also the only domain that requires a training dataset
as well as the test set. This is because the algorithm is expected to discover a potentially
complex rule/mapping that the training set adheres to and then apply it to the test set to
demonstrate its competence and generality.

The training examples fed into the algorithm are of the form:

"Kurt Gédel" = "KG"

Here, the rule that the algorithm is expected to discover is that the string containing the
first and last names of a person should be converted to the string of just the initials.

First, the algorithm attempts to minimize the error for the training data. This produces
a program that, in theory, correctly transforms the training inputs into outputs. Then, to
check the generality of the solution program found by the algorithm, the program is run on
the unseen, test examples. These two evaluations result in the training and test errors of
the best-found program respectively.

10

Furthermore, specific to the string domain, samples are run in a fashion resembling a tra-
ditional k-fold cross validation. Given n input-output examples, each sample case contains
Nirain < N training examples that are fed into the algorithm to discover the underlying
rule/mapping of strings. The sample case also contains nies; = N — Nyrgin test examples
that are unseen examples that are used to test the final program returned by the algorithm
after the training is complete. In total, there are multiple such cases for the same set of
input-output examples, such that each sample case uses a different training and testing sub-
sets, hence the resemblance to k-fold validation.

The list of possible base functions here is:
[MoveLeft, MoveRight, MakeUppercase, MakeLowercase, Drop|

boolean location functions:
[AtStart, AtEnd, NotAtStart, NotAtEnd)|
and boolean character functions:

[IsLetter, IsNumber, IsSpace, IsUppercase, IsLowercase, IsNotLetter, IsNotNumber,
IsNotSpace, IsNotUppercase, IsNotLowercase]

5.2 Results and Discussion

With the experimentation environment defined, VanillaGP could be run to check its perfor-
mance. One of the main properties of interest when examining the results of the experiments
is the percentage of tasks solved for each complexity class. This measure is aimed at com-
paring the competence of an algorithm as the tasks become tougher. In most cases, one
would expect the performance to go down as the complexity increases.

To compare Brute and VanillaGP, both algorithms were given the same amount of time per
sample task. In this case the time limit was 1 minute, after which, if the algorithms did not
find a solution to the task, they had to terminate and return the best program they had
found. Specific to VanillaGP, all experiments were run with the population size N = 200,
maximum initial program length ,,,,, = 10, and allowed to run for 200 generations at most.
The caveat here is that due to the sheer number of tasks and complexity of the string do-
main, the time limit was set to only 10 seconds per task. Figure [3| shows the results of the
runs on the three domains.

11

Pixel Domain Robot Domain String Domain

27.59
—o— Brute 1004 —e— Brute

—e— VanillaGP 25.0 —e— VanillaGP

801 22,54

20.01
60 -

17.54

s Solved (%)

Tasks Solved (%)
Tasks Solved (%)

40 % 15.0
8

12.54
20 20
—e— Brute 10.04
—e— VanillaGP

1 2 3 4 5 2 4 6 8 10 1 2 3 4 5 6 7 8 9
Task Complexity Task Complexity Task Complexity

Figure 3: Solved percentage against complexity of Brute and VanillaGP.

As can be seen, the initial results of running VanillaGP on the three domain experiments
left quite a lot to be desired. It was evident that it could solve only some of the simpler
examples, and struggled more still to attain the true solutions for the somewhat more com-
plex ones. Furthermore, it was outperformed by Brute search in all three domains on all
complexities. The only domain where VanillaGP had a spell of superiority is the string
domain. Here, it solves more cases than Brute for the first 4 complexity classes, but drops
off rather quickly afterwards.

However dismal those results may have been, it was curious to see at least how close Vanil-
laGP got to the desired targets without solving the tasks. This was not obvious in the plots
of the solved tasks, since that measure only takes into account the tasks that terminated
with an error of exactly 0. While this is the desired behavior of the algorithms, it could still
be insightful to look at the improvement that VanillaGP could obtain from the input states
it was given in the tasks.

Hence, a new measure of relative improvement was conjured up. Relative improvement is
the percentage measure of how much closer the output state of the final program returned
by the algorithm is to the desired output state. In other words, how does the final program
compare to an empty program? It is defined as:

initial error — final error error(Pempty) — error(Pfinal)
rel = - =
initial error error(Pempty)

Relative improvement is a "consolation" measure of sorts. Since with respect to the fully
solved cases, the performance of VanillaGP is not on par with the benchmark set by Brute,
it becomes more useful to look a broader statistic to check its performance. Such a statistic
is provided by I,..;, as it gives an idea of whether or not any reasonable learning has occurred
for a given example.

Since I,.¢; is calculated for each task individually, for visualization, an average value was
taken within each complexity class of tasks. The resulting plots are shown here:

12

Pixel Domain Robot Domain String Domain
100 4 0—0—0\. 100 100
w0 g ol ‘\‘___.\’__—4 £ 0l ; :

60 -

60 -

404 404

Avg. Relative Improvement (%)

20
—e— VanillaGP —8— VanillaGP —e— VanillaGP
—o— Brute —o— Brute —e— Brute

Avg. Relative Improvement (%)
Avg. Relative Improvement (%)

0
1 2 3 4 5 2 4 6 8 10 1 2 3 4 5 6 7 8 9
Task Complexity Task Complexity Task Complexity

Figure 4: Average relative improvement grouped by complexity for VanillaGP.

The results of I,..; are somewhat more promising. Although the relative improvement wanes
with increasing complexity in the pixel domain, the other two indicate better results. The
plots show that for the robot domain, VanillaGP achieves around 80% improvement for all
complexities. What is also evident is that Brute outperforms VanillaGP in this regard as
well, with its I,.,; at 100% for the robot and almost 100% for the pixel domain. String
domain is the only one where VanillaGP does consistently better, but the discrepancy in
the performance is largely inconsequential. That being said, it appears that the downward
trend for Brute is somewhat steeper than that of VanillaGP, perhaps indicating a higher
robusteness of VanillaGP at more complex tasks.

While it may not be trivial to explain the positive performance in the string domain, the
reasonably high relative improvement of VanillaGP may stem from its tendency, or lack
thereof, of becoming stuck in local extrema that Brute may find itself in. The following
is a plot of the error progression throughout the iterations of the two algorithms on one
individual task:

Error Progression in Task strings/2-245-8.pl

354
304
254\
‘é 204
frr
15 A
104
— Brute
—— VanillaGP
51 — Initial Error
0 10 20 30 40 50 60

Iteration

Figure 5: Change in the error of the best-found program across generations.

From here, it may be observed that while Brute seems to start showing almost monotonic
behavior rather early on, VanillaGP does wiggle its way out of such states of stagnation

13

more successfully. Such is the design of the algorithm and its parental paradigm. It’s clear
that the solution VanillaGP proposes in one iteration is occasionally worse than that in
the previous iteration. This jagged stochastic behavior helps it prevent lengthy stagnation.
However, despite its potential to escape monotonic behavior, it is evident that the actual
error with respect to the desired solution is still relatively high, with VanillaGP’s final figure
plateauing at about 6 error units and the overall minimal error of 3 in the entire run, which
was obtained half way through the run.

Another point of interest is the generalizability of the resulting programs in the string do-
main. Having been trained on the training set, the algorithm produces a singular best
program that it has encountered. This program is expected to be able to tackle all of the
test cases as well, since the underlying rule of string transformations is the same for both
sets of input-output examples.

A very simple observation that was made during the inspection of the results was the sur-

prising number of tasks whereby the programs discovered by VanillaGP produced an infinite
error when evaluated on the test set. A further analysis reveals the following figures:

Infinite-Cost Cases in the String Domain

25

20

N (%)
-
w

10

Brute VanillaGP

Figure 6: The portion of the tasks where test error becomes infinite.

Figure [6] provides a comparison of Brute and VanillaGP in terms of the percentage of tasks
that had infinite test errors. As it turns out, VanillaGP is about 6 times as likely to produce
programs that prove to be invalid when applied to test cases. This is a clear sign of the lack
of generalizability of the programs found by the genetic algorithm.

The percentage of infinite-cost programs is a proxy used for the generalizability potential
of a search algorithm. As mentioned in Section 3, an infinite cost implies that the program
attempts invalid operations when run on a given input. However, the training error is always
finite, since all inputs are valid states, and the simplest best program that the algorithm
starts with is the empty program, meaning that the resultant program will be at least as
good as the empty program, which is valid. So, a reasonably generalizable algorithm will
attempt to minimize the number of instances where the train cost is finite, while the test
cost is infinite (indicating a run-time error in the found program on valid input). Despite its

14

naivety, this measure n., already indicates that VanillaGP fails to return robust programs
in over a quarter of the cases. This is contrasted with Brute’s 5% noo.

The first version of VanillaGP was a basic implementation of a genetic algorithm with an
ordinary mutation operator and one-point crossover. However, in the course of development,
it appeared that there may be a certain lack of program diversity.

In order to check this, a short statistic was observed about each generation. The standard
deviation of the program length within each generation was used as a proxy for program
diversity. What was noticeable was an almost nonexistent change in the lengths of the
programs across generations. This was thought to be a limitation and a sign of potential
stagnation early on.

Both n-point crossover and UMAD are attempts at diversifying the population. These
versions of the genetic operators have the effect of disturbing the structure of individual
programs and so exploring more varied regions of the search space of programs. However,
this property may not always be of value. In the case where a program in the generation is
particularly close to the solution, it has a higher likelihood of being destroyed in the name of
diversity, since neither operation (in their current implementations, at least) take the fitness
of programs into account. As such, on the occasions where a program needs to be honed,
these operators may be doing more harm than good.

6 Responsible Research

An integral part of academic research are the ethical considerations and implications of re-
search. As such, this section of the paper is dedicated to the discussion of the aspects of
this research project relevant to maintaining academic integrity.

Firstly, an important aspect of research is reproducibility and the availability of data. To
this end, a joint decision amongst the peer group has been made to make the repository
containing both the novel code and the data fed into the algorithms publicly available. In
the same way as the previous development in Inductive Program Synthesis conducted by
the peer group’s supervisor, as well as the data used for experiments, was kindly provided
to the members of the peer group for use and reference, this paper and all the information
associated with it is up for public viewing.

Another significant academic value is the impartiality toward the obtained results. That is,
it is crucial for individual researchers to provide and for institutions to at least not disincen-
tivize negative results in research work. Negative results, while not immediately impressive,
allow for a crucial step of inquiry — shrinking the search space. Elimination of certain types
of methods, techniques, causal factors, etc. can indeed prove to reduce the space of param-
eters that upcoming researchers in the field would have to look into.

As was shown above, the performance of the algorithm developed in this paper has fallen
short of expectations and did not appear to explicitly support the initial hypotheses. How-
ever, in order to maintain integrity, and in spite of the minor positive aspects of the al-
gorithm’s performance, all of the encountered flaws or potential shortcomings have been

15

hereby addressed.

7 Conclusions and Future Work

7.1 Conclusion

This research paper provides the design and analysis of a novel Genetic Algorithm on the
problem of Inductive Program Synthesis (IPS). VanillaGP is a classical genetic algorithm
applied to the domain of IPS as a potential improvement on or alternative to the deter-
ministic Brute algorithm that was recently shown to be particularly effective at generating
programs, albeit in a restricted Domain Specific Language (DSL).

VanillaGP, as any Genetic Algorithm, works by creating and breeding generations of pro-
grams in search of a program meeting the pre-defined condition(s). The programs themselves
are defined as varied-length linear sequences of token functions. This means that the algo-
rithm essentially finds itself somewhere between the traditional Genetic Algorithms and the
specific branch of them, called Genetic Programming.

The experiments that were conducted as part of this research project have demonstrated
the comparatively poor performance of VanillaGP with regards to generating complete so-
lutions to tasks. It is noticeably outperformed by Brute in all domains but one. VanillaGP’s
performance on the string domain seems to start off higher, but wanes as the complexity of
the string-based tasks it faces increases. However, VanillaGP does appear to provide rea-
sonable relative improvement in the robot and string domains, which is close to that of Brute.

All in all, while VanillaGP cannot be definitively proposed as a remedy to the world’s
program-synthesis-related woes, certain properties of it, as a Genetic Algorithm, can be
exploited under specific circumstances. That is, as any other piece of technology, it should be
used sparingly and in the suitable contexts, the full nature of which is yet to be determined.

7.2 Limitations and Future Research

One limitation of the current approach is the lack of dynamic generation of control tokens.
That is, the only if- and loop- statements that the search algorithm uses are the ones gen-
erated beforehand during the invention stage. While it is acceptable for most small/simple
problems, problems that may require nested if-statements, if-checks within loops, or even ar-
bitrarily long bodies of these control tokens, remain beyond the reach of the search algorithm.

In traditional GP, this is less of an issue, since the initial population of programs is generated
as a collection of trees node-by-node. Furthermore, the crossovers that are performed can
interchange any two subtrees of two programs, meaning that arbitrary control tokens are
potentially possible.

While incorporating similar flexibility may be challenging, Koza provides another way of

diversifying resulting programs. Automatically Defined Functions (ADFs) are, as the name
suggests, sub-programs (or functions) that the search algorithm generates automatically

16

during the search [4]. This requires programs to have several ADF branches and one result-
producing branch. The result-producing branch is the sub-program that may use (call) the
ADFs in order to solve the problem at hand more efficiently.

This extension to the current algorithm is more attainable, since one could simply emulate
different ADFs by storing a number of program lists alongside the final program. Those pro-
gram lists will then be treated the same way as ordinary programs, but the result-producing
program would be granted the ability to invoke those auxiliary programs. However, the
process of crossovers and the decision of crossover points between programs may become
more complex.

A more maverick approach would be a hybrid search algorithm that combines the strengths
of a deterministic Brute and a stochastic Genetic Algorithm. It is possible to envisage such
a hybrid system as a GA doing the exploration and sampling of the search space and then
delegating the honing job to Brute. That is, in each generation, the GA could transfer
a subset of the population that is particularly performant to Brute. Brute will, in turn,
iteratively try to improve those programs by appending new functions to them. Its high
speed means that Brute can potentially be invoked multiple times throughout the run of
a GA, without significant overhead. Whilst having its flaws (such as the assumption that
performant programs ought to be better when enriched with functions), a hybrid approach
may, if implemented, prove to be a reasonable reconciliation of stochastic and deterministic
search algorithms.

References

[1] James E. Baker. Reducing bias and inefficiency in the selection algorithm. In Proceedings
of the Second International Conference on Genetic Algorithms on Genetic Algorithms
and Their Application, page 14421, USA, 1987. L. Erlbaum Associates Inc.

[2] Andrew Cropper and Sebastijan Dumancic. Learning large logic programs by going
beyond entailment. CoRR, abs/2004.09855, 2020.

[3] Thomas Helmuth, Nicholas Freitag McPhee, and Lee Spector. Program synthesis using
uniform mutation by addition and deletion. In Proceedings of the Genetic and Evolu-
tionary Computation Conference, GECCO 18, page 112741134, New York, NY, USA,
2018. Association for Computing Machinery.

[4] John R. Koza. Genetic programming as a means for programming computers by natural
selection. Statistics and Computing, 4(2):87-112, Jun 1994.

[5] Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. Program synthesis from
polymorphic refinement types. SIGPLAN Not., 51(6):522-538, June 2016.

[6] Chenglong Wang, Alvin Cheung, and Rastislav Bodik. Synthesizing highly expressive
sql queries from input-output examples. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2017, pages
452-466, New York, NY, USA, 2017. ACM.

[7] Darrell Whitley. A genetic algorithm tutorial. Statistics and Computing, 4(2):65-85,
Jun 1994.

17

	Introduction
	Methodology
	Background
	What Are Programs?
	Genetic Algorithm Blueprint

	Genetic Algorithm: VanillaGP
	Experiments and Results
	Experimentation Environment
	Results and Discussion

	Responsible Research
	Conclusions and Future Work
	Conclusion
	Limitations and Future Research

