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Summary
Bacteria are everywhere and play essential roles in Earth’s diverse ecosystems and hu-
man health. For example, humans harbor a complex and essential gut microbial com-
munity comprising thousands of bacterial species (in addition to numerous viruses,
fungi, and microbial eukaryotes). This community helps break down and synthesize
nutrients, trains the immune system, and keeps pathogens at bay. However, imbal-
ances in this community are associated with several diseases, including obesity, in-
flammatory bowel syndrome, and recurrent urinary tract infections. Moreover, bac-
teria can cause deadly infections, and many are developing resistance to our most
potent antibiotics. Studying bacteria is thus essential for identifying differences be-
tween pathogens and harmless commensals, countering antimicrobial resistance, and
understanding their impacts on human health.

To studybacteria, we typically characterize and compare their genomes. The genome
comprises all of an organism’s hereditary information, and its genes encode themolec-
ular machines necessary for cell function, providing an overview of an organism’s
capabilities. The hereditary information in genomes additionally enables inferring
the organism’s evolutionary history, which helps in understanding why specific traits
evolved or aid in inferring transmission links in case of an outbreak.

A challenge with comparing large sets of bacterial genomes is the extensive varia-
tion in genome content amongmany species. For example, two Escherichia coli strains
can share as little as 50% of their genes. Current computational tools offer biased or
incomplete views of genetic variation among strains. This hinders the identification
of genotype-phenotype associations, prevents tracking mobile genetic elements, and
limits our understanding of the microbial communities they are part of.

The central question of this thesis is how to design computational tools that enable
accurate characterization of genetic variation among diverse bacterial genomes. This
thesis introduces new algorithms to identify and represent genetic variation using
graph data structures. It additionally presents a tool that characterizes strain-specific
genetic variation in microbial communities, even in the presence of same-species
strain mixtures. Finally, this thesis uses the previously mentioned tools to investi-
gate the role of the gut microbiome in women with recurrent urinary tract infections,
offering novel insights into the gut and bladder dynamics of E. coli.

Collectively, we expect this work to contribute to an improved mechanistic under-
standing of bacteria’s role in human health, help track and counter the spread of an-
timicrobial resistance, and inform on the development of microbiome-mediated ther-
apeutics.

vii





Samenvatting
Overal om ons heen zijn bacteriën te vinden en ze zijn essentieel in diverse ecosyste-
men op aarde en belangrijk voor de menselijke gezondheid. De menselijke darmflora
is een voorbeeld van een complexe gemeenschap die duizenden bacteriesoorten be-
vat (naast vele soorten virussen, schimmels, en eencellige eukaryoten). De darmflora
helpt met het verwerken van voedsel, traint het immuunsysteem, en houdt ziektever-
wekkers buiten de deur. Aan de andere kant, als de darmflora uit balans raakt kan
dat leiden tot verschillende ziektes zoals obesitas, prikkelbaredarmsyndroom, of te-
rugkerende blaasontstekingen. Bacteriën kunnen verder ook dodelijke infecties ver-
oorzaken en worden steeds meer resistent tegen onze sterkste antibiotica. Het is dus
belangrijk om bacteriën te bestuderen om uit te vinden hoe deze onze gezondheid
beïnvloeden, beter te begrijpen wat de verschillen zijn tussen ziekteverwekkers en
bacteriën die zonder problemen met ons leven, en het tegengaan van antibiotica re-
sistentie.

We bestuderen bacteriën vaak door hun genomen te vergelijken. Het genoom om-
vat alle erfelijke informatie van een organisme. De genen erin bevatten de instructies
omdemoleculairemachines te produceren die een cel nodig heeft voor zijn functione-
ren. De erfelijke informatie kan verder worden gebruikt om de evolutionaire historie
te reconstrueren. Dit helpt met het begrijpen waarom bepaalde eigenschappen zijn
ontstaan of het reconstrueren van een transmissienetwerk tijdens een uitbraak.

Het vergelijken van vele genomen wordt bemoeilijkt door de enorme genetische
diversiteit in veel bacteriesoorten. Bijvoorbeeld, twee Escherichia coli stammen delen
soms maar de helft van hun genen. De huidige algoritmes voor het vergelijken van
genomen geven een incompleet of vooringenomen beeld tussen de verschillen tussen
de stammen. Dit limiteert het vinden van genotype-fenotype associaties, bemoeilijkt
het volgen van genen die antibiotica resistentie veroorzaken, en beperkt het inzicht
in de gemeenschappen waarin de bacteriën zich bevinden.

De hoofdvraag in deze thesis is hoe we betere algoritmes en software kunnen ont-
werpen die beter de genetische verschillen in kaart kunnen brengen tussen diverse
bacteriële genomen. We introduceren nieuwe algoritmes om zulke verschillen te vin-
den en te representeren met behulp van graafdatastructuren. Verder presenteren we
een nieuw algoritme die stam-specifieke genetische variaties kan karakteriseren in di-
verse microbiële gemeenschappen, zelfs als er meerdere stammen van dezelfde soort
aanwezig zijn. Deze tool wordt gebruikt om te onderzoeken wat de rol van de darm-
flora is in vrouwenmet terugkerende blaasontstekeningen. Dit levert nieuw inzichten
op over de aanwezige E. coli in darm en blaas.

Wij verwachten dat deze thesis zal bijdragen aan nieuwe inzichten over hoe bac-
teriën onze gezondheid beïnvloeden, het volgen en tegengaan van de spreiding van
antibioticaresistentie, en de ontwikkeling van nieuwe darmflora-gebaseerde medicij-
nen.
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2 1. Introduction

B ACTERIA are present in countless environments in almost every imaginable corner
of our planet. Whether it is near hot vents deep on the ocean floor [1], in hot and

acidic springs [2], or in the soil of a backyard [3], bacteria likely inhabit that space.
They can be traced back billions of years in the geological record [4], long before the
rise of eukaryotic organisms. For all those years, “bacteria [and archea]—the only
inhabitants—continuously transformed the planet’s surface and atmosphere and in-
vented all of life’s essential miniaturized chemical systems” [5].

Their omnipresence alsomeans they shape humanhealth and society in important
ways. For example, while many help us digest food and keep pathogens at bay, some
can cause deadly infections. We study bacteria to maximize their positive and limit
their negative impacts. Studying bacteria frequently starts with characterizing and
comparing their genomes, and advances in DNA sequencing technology have made
sequencing complete genomes routine.

In this thesis, we focus on computational tools for comparing genomes and how
we obtain novel biological insights from them. This chapter will first expand on the
numerous impacts of bacteria on our society and why studying them is important.
We will explain methods for characterizing the genomes of a single strain as well as
methods for characterizing complete microbial communities. Wewill discuss current
algorithms and tools to compare genomes and the common challenges they face. Fi-
nally, we will briefly cover the outline of the rest of the thesis and our contributions
to the challenges facing bacterial genomics today.

1.1.Manybacteria are beneficial to humans, though some
cause deadly infections

Bacteria impact human society in amyriad ofways, both positive and negative. For ex-
ample, bacteria colonize many sites on and within ourselves, e.g., the skin, the mouth,
or the gut [6]. Many of those colonizing bacteria benefit us: they help to prevent
pathogens from invading and help to digest food [7]. Another way bacteria have pos-
itively impacted human society is through their role in food fermentation. Nearly
every human cuisine includes fermented foods, including sourdough, yogurt, kefir,
cheese, and kimchi, among many others [8]. Bacteria play a crucial role in many of
these. Fermentation aids in preserving food in the absence of refrigeration and likely
provided early human societies with a method to store food surpluses of one season
to survive more scarce seasons [9].

Bacteria are additionally a rich source of useful molecular tools. For example, the
polymerase chain reaction (PCR)method, which rapidlymakesmany copies of a piece
of DNA, enables genetic analyses even when the input DNA quantities are very low.
This has many applications and is fundamental to many medical diagnostic tests, in-
cluding the SARS-CoV-2 test [10]. PCRworks by successively cycling between high tem-
peratures, which denatures the two strands of DNA, and low temperatures, at which
an enzyme called a polymerase replicates each strand of DNA [11]. Specifically, it
relies on the Taq-polymerase, which remains stable at higher temperatures and can
withstand the high-temperature cycle. This polymerase was isolated from Thermus
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acquaticus, a bacterial species found near hot springs in Yellowstone National Park
[12].

Another important molecular tool discovered in bacteria is the CRISPR/Cas system.
CRISPR/Caswas originally discovered as a bacterial defense systemagainst phages, the
viruses that infect bacteria [13]. Since its discovery, it has been repurposed as a simple,
cheap, and accurate genetic engineering method. It transformed biological research,
enabling cheap, functional screens, control of gene expression, and cured people with
sickle-cell disease [14, 15].

Bacteria also substantially negatively impact human society by causing life-
threatening infections. Worldwide, bacterial infections were responsible for more
than 9 million deaths in 2019 [16] (including more than a million deaths from
Mycobacterium tuberculosis alone [17]). Worryingly, resistance to common an-
timicrobials is increasing, and in 2019, about 1.2 million deaths could be directly
attributed to antimicrobial-resistant (AMR) bacteria [18]. The increased prevalence
of bacterial AMR could make simple surgeries again life-threatening because of our
inability to suppress bacteria in open wounds.

Contributing to the problem is the lack of new classes of antibiotics. While the
early 1900s was a golden age for the discovery of new antimicrobial compounds, be-
tween 1962 and 2000, no new classes of antibiotic drugs were approved by the Food
and Drug Administration (FDA) [19]. Because of the challenges involved in developing
new antibiotics and the lack of business incentives, nearly all pharmaceutical compa-
nies have scaled down or even shut down their antibiotic research divisions [19]. To
counter AMR, we thus cannot rely on new antibiotics alone.

Alternative strategies to combat AMR include preventing the spread of resistant
bacteria and preventing the spread of genes that cause resistance. Bacteria are every-
where, and in our highly connected society, they can rapidly spread around, bringing
along the genes responsible for resistance. Common travel routes are through the air,
through contaminatedwater, through contaminated food, or through animals, among
numerous other pathways [19]. They can further propagate resistance locally to other
bacteria because they have genetic mechanisms to exchange genes if they are near
each other [20]. Knowledge about these travel routes can inform on implementing
measures to counter this spread.

To maximize bacteria’s positive impacts and limit their negative impacts, we need
to understand how bacteria function, evolve, and travel. Knowledge about bacterial
biology can lead to the discovery of new useful molecular tools or give insights into
preventing or treating bacterial infections.

1.2. The genome gives insight into an organism’s evolu-
tionary history and functional capabilities

An organism’s genome is defined as its complete set of DNA molecules and provides
a great starting point for nearly any study. It contains all of an organism’s hereditary
information and encodes instructions to manufacture almost every cell component.
This information is encoded using the using the four nucleobases adenine (A), gua-
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nine (G), cytosine (C), and thymine (T). Specific regions in the genome, genes, code for
specific molecular machines. To build these, genes are transcribed to RNA; the RNA
molecule is then further processed and translated into a protein, the major type of
molecular machine in the cell [21]. Some RNA molecules, however, are already func-
tional on their own and do not get translated [22]. Characterizing a genome thus gives
us an overview of the major components an organism requires to function [23].

The genome is hereditary and thus is passed on from generation to generation.
When a cell replicates, it copies its DNA and transfers it to the daughter cell. While
DNA replication is highly accurate, it is not perfect, and a daughter cell might receive
amutated version of its parent’s genome [23]. Sometimes, amutation breaks an essen-
tial gene, killing the offspring, while othermutations have a neutral or even a positive
effect on the offspring’s ability to survive in its environment. In the latter two cases,
the daughter cell will pass the acquiredmutation to its offspring. Over time,mutations
will accumulate, and by comparing the genomes of multiple individuals and inspect-
ing who shares particular mutations with whom, we can estimate their relatedness
and infer the evolutionary history of these individuals [23].

Understanding how genetic diversity arises and how genomes evolve is important
for accurately inferring evolutionary relationships. This sectionwill first explore com-
mon properties of bacterial genomes and sources of genetic diversity. Wewill explain
how evolutionary relationships between genes can be used to infer evolutionary re-
lationships between strains or species and additionally aid in transferring functional
knowledge from one species to another. Finally, we will describe several important
applications of the wealth of information encoded in the evolutionary histories, e.g.,
how it enables tracking species or strains across space and time.

Bacterial genomes are highly diverse, driven by horizontal gene
transfer

Bacterial genomes typically comprise a single circular chromosome, which is, on av-
erage, 3.9 million base pairs (Mbp) in length [24]. Additionally, many bacteria harbor
one or more plasmids: smaller, usually circular, genetic elements that can replicate in-
dependently of the chromosome. Plasmid lengths typically range froma fewkilobases
to hundreds of kilobases [25]. While bacterial genomes are thus much smaller than
many eukaryotic genomes (the human genome is approximately 3.2 Gbp in length),
they are densely packed with genes and have an average protein-coding gene density
of 87% [26].

A surprising finding since the availability of multiple complete bacterial genomes
is the extensive diversity in gene content within the same species [27]. For example,
two Escherichia coli strains can share as little as 50% of their genes despite being con-
sidered the same species [28]. What defines them as E. coli is a set of core genes shared
among all species members. Genes with more variable presence are called accessory
genes. The combined core and accessory genes are defined as a species’s pangenome.
As a metaphor, core genes can be seen as a smartphone operating system, providing
the basic needs to function. In contrast, accessory genes are installable apps, provid-
ing additional functionality for specific tasks and environments [29].
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How does this diversity in gene content arise? Multiple evolutionary mechanisms
could result in altered gene content, and they can be broadly classified into three
groups: gene loss, gene gain through duplication, and gene gain through horizontal
gene transfer [30]. Genes can be lost due to errors in replication. For example, a mu-
tation could disrupt the promotor region of a gene, preventing the RNA polymerase
from transcribing it. Errors in replication could also result in gene duplications [31].
Since the host cell now has two redundant copies, one copy could evolve into a gene
with a new function because of reduced selective pressures and increased mutation
rates.

However, the biggest driver of gene content diversity is the acquisition of novel
genes through horizontal gene transfer (HGT) [32, 33]. Many bacteria have numerous
capabilities to obtain DNA through other means than vertical descent [20]: 1) they
can pick up extracellular DNA from the environment, a process called transforma-
tion (Figure 1.1a); 2) they can exchange DNA directly with their neighbors through a
newly formed channel, a process called conjugation (Figure 1.1b); 3) they can get in-
fected by phages, who inject a genetic payload into the bacterial cell, a process called
transduction (Figure 1.1c); and 4) they can use specialized outer membrane vesicles
to exchange genetic material, a process called vesiduction (Figure 1.1d). Exchange of
genetic material generally occurs more frequently between closely related bacteria,
though it can happen between distantly related species [34].

HGT enables adaptive evolution without being limited to starting from gene
copies within its own genome. Instead of a slow, iterative mutational process to
invent new functions, HGT enables the transfer of complete functional genes or even
whole metabolic pathways, enabling quick adaptation to new niches or evolutionary
pressures [32]. In most cases, the transferred genes retain the same function in the
new host cell. However, newly acquired genes can assume new roles, e.g., because
of redundancy in metabolic pathways, resulting in reduced selective pressure and
increased mutation rate. In turn, this could generate genes with new functionality.

Pangenomes differ in size and reflect a species’ lifestyle

A consequence of the resulting diversity in gene content is that a single genome rarely
represents a species’ total genetic repertoire. This raises questions about how many
genomes are required to fully represent a species’ pangenome and how pangenomes
differ between species.

To gain insight into the growth and size of a species’ pangenome, we typically plot
a rarefaction curve, which plots pangenome growth as a function of total number of
genomes analyzed. Pangenome sizes are frequently modeled as the cumulative sum
of a power law function, i.e., the expected number of newly discovered gene fami-
lies per genome is proportional to a function 𝑁−𝛼 , where 𝑁 represents the number of
genomes. When fit to the data, the value of the exponent 𝛼 aids in classifying a species’
pangenome: if 𝛼 > 1, the size of the pangenome will approach a constant as new
genomes are added, and the pangenome is said to be closed. If 𝛼 ≤ 1, the pangenome
will grow indefinitely, and such pangenomes are said to be open (Figure 1.1e,f).

Species with closed pangenomes are typically niche specialists, have lower rates
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Figure 1.1: Bacteria readily exchange genetic material through other means than vertical descent, result-
ing in highly diverse genomes. (a) Illustration of bacterial pangenomes. Each oval wedge represents the
gene set of a single strain. (b-e)Mechanisms of horizontal gene transfer include (a) transformation, (b) con-
jugation, (c) transduction, and (d) vesiduction. Republished from Brito et al. [20]. (f) Example illustrations
and rarefaction curves for open (E. coli) and closed (M. tuberculosis) pangenomes. (g) The evolutionary
relationships of three ancestral genes, A, B, and C, across three species.

of HGT, and have smaller population sizes [34]. An example of such a species is
M. tuberculosis, the causative agent of tuberculosis, which mainly lives in human
macrophages. A recent analysis of its pangenome, comprising 4,063 gene families,
considered 3,116 (77%) gene families part of the core. The parameter 𝛼was estimated
to be 1.5, indicating a closed pangenome corresponding to its niche lifestyle in human
macrophages.

Species with open pangenomes, however, are often generalists that can adapt to
many ecological niches [35]. They frequently interact with other members in diverse
communities, have high rates of HGT, and have large population sizes [34]. For ex-
ample, a large study analyzing 1,294 diverse E. coli genomes sampled from humans,
non-human vertebrates, and environmental sources revealed a pangenome compris-
ing 75,890 gene families, ofwhich only 2,486 (3%)were considered part of the core [28].
When data was fit to the power law function, they obtained an 𝛼 = 0.46, indicative of
an open pangenome, corresponding to E. coli’s diverse lifestyles and environments.

Evidence for high rates of HGT in species with open pangenomes includes the nu-
merous singleton gene families observed inmany species, i.e., gene families attributed
to only one strain [30, 36]. This suggests that many acquired genes do not rise to
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fixation in the population and are quickly lost. For example, the same E. coli study
described above showed that E. coli singleton gene families are enriched for mobile
genetic elements (MGEs), and noMGE family was found to be part of the core, suggest-
ing that many singletons are only transiently present in a strain [28]. Elucidating the
interplay between HGT, pangenome dynamics, and evolutionary processes like selec-
tion or drift is an active area of research [37, 35, 38]. An improved understanding of
the processes that structure pangenomeswill help us understand how bacteria evolve
in response to new evolutionary pressures [39].

Orthologous genes are key to inferring the evolutionary histories of
a species and transferring functional knowledge

By comparing genomes and analyzing who shares which mutations with whom, we
infer the evolutionary histories of a set of strains. However, because of frequent HGT,
some genes can have a different evolutionary history than the host. To accurately
infer the evolutionary relationship between strains or species, we need to consider
the evolutionary relationships between their individual genes.

A pair of genes are homologs when they derive from a shared ancestor. We can
further distinguish between different evolutionary scenarios: 1) a pair of genes are
orthologs if they are related through a speciation event (i.e., through vertical descent),
2) a pair of genes are paralogs if they are related through a gene duplication event,
or 3) a pair of genes are xenologs if they are related through horizontal gene transfer
(Figure 1.1g) [40]. Since orthologs are, by definition, genes inherited vertically, the
combined set of orthologous genes between a set of species or strains best describes
their evolutionary history.

Identifying orthologs between species or strains is additionally helpful for trans-
ferring functional knowledge from one species to another. According to the “ortholog-
function conjecture”, orthologous genes are most likely to have equivalent functions
across species. In contrast, paralogous and xenologous genes aremore likely to evolve
new functions because of lower selective pressure [41]. Several large-scale efforts aim
to catalog known orthologs between species and include predicted and experimen-
tally validated functional annotations [42, 43]. Current gene prediction and annota-
tion tools, including PROKKA [44] or BAKTA [45], cross-reference predicted genes with
these databases. By characterizing the genome and its genes, we obtain an overview
of a strain’s functional capabilities without the need for experiments.

Genomes enable the tracking of strains across space and time

What information is present in the evolutionary history of a set of strains or species?
One useful aspect frequently reflected in the evolutionary tree is the geographical
distribution of a species. For example, if a particular strain acquired a mutation that
allowed it to colonize a new environment, its descendants could form a new lineage in
the evolutionary tree associated with that environment. These environment-lineage
associations can help contextualize strains in newly collected samples, e.g., when a
strain is genetically similar to strains associated with a known environment.
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A well-known example that demonstrated the use of genomes to track strains
and identify geographical links is the NextStrain platform during the SARS-CoV-2
pandemic [46]. Across the world, hospitals and other medical institutions collected
samples from SARS-CoV-2 infected patients, sequenced the viral genome, and
deposited sequences to public databases. The NextStrain platform inferred the
evolutionary histories of these strains and linked lineages to geographical location,
enabling near real-time detection of highly virulent variants and presenting clues on
how the virus spread from country to country.

Other applications of the evolutionary history include uncovering the source of
hospital outbreaks. We can track how bacteria spread around in a hospital by collect-
ing samples from infected patients, sinks, door handles, counters, etc. Two genetically
similar strains collected from different patients could be evidence of recent patient-to-
patient transmission (e.g., when sharing a ward). Similarly, if several strains collected
from infected patients are all genetically similar to strains collected from a sink, that
could be evidence that the sink is a reservoir of pathogenic bacteria.

The accumulation of mutations and resulting genetic differences additionally re-
flect time. In current models for molecular evolution, a key assumption is that the
mutation rate is fixed as long as the function does not change [47]. By quantifying
genetic distances, we can thus estimate when two strains or species diverged.

Linking evolutionary events to points in time can help explain why species or
strains evolved in a particular way. For example, the genus Enterococcus comprises a
diverse set of bacterial species commonly found in the gut microbiome of most land-
based insects, invertebrates, and mammals, including humans [48]. Two species, En-
terococcus faecium and Enterococcus faecalis, have independently evolved to become
multidrug-resistant, hospital-adapted pathogens, becoming one of the major causes
of healthcare-associated bacterial infections [49, 50, 19]. To answer why specifically
Enterococcal species have adapted so well to the hospital environment, Lebreton et al.
characterized the genomes of a diverse set of Enterococcus species and reconstructed
their evolutionary history [50]. Enterococcus diverged from its aquatic ancestors, and
the estimated time of emergence, as reflected in the evolutionary tree, is concordant
with the terrestrialization of animals. This transition from a water-based environ-
ment to a land-based environment was accompanied by increased hardening of the
cell wall, enabling it to survive longer in harsh conditions on land. This hardened
cell wall, which arose about 425 million years ago, enables it to resist many common
disinfectants and antibiotics used in hospitals today [50].

1.3. Bacteria live in complex and diverse communities
Bacteria are often important members of diverse communities, which can contain
other species of bacteria, archaea, viruses, or single-celled eukaryotic organisms [51].
Some microbial communities have important roles, such as driving earth’s geochemi-
cal cycles [52] or contributing to human health and disease [6]. It is essential to study
such communities holistically to understand the principles governing community as-
sembly [53], elucidate species-species interactions [54], or infer community function.

Several technologies enable the profiling of microbial communities. This includes
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metagenomics, which profiles the combined genomes of all community members;
metatranscriptomics, which profiles the community-wide expressed genes; metapro-
teomics, which profiles protein abundances; and metabolomics, which profiles
the metabolites present [55]. Reductions in the cost of these technologies and im-
proved protocols have enabled unprecedented insights into numerous microbial
communities’ structure, composition, dynamics, and functional potential [51, 56].

One of the most widely studied microbial communities is the human gut micro-
biome [6, 57]. It comprises an estimated 1,000 different bacterial species (and addi-
tional archaea, fungi, and viruses) and harbors the same order of magnitude of bac-
terial cells as the total number of human cells [7, 58]. The community is essential
to human health: It aids in nutrient breakdown and synthesis [59] and conditions the
immune system to distinguish between pathogen and harmless commensal [60]. Com-
munity imbalances have been associated with several diseases, including inflamma-
tory bowel disease (IBD) [61], obesity [62], or colorectal cancer [63] (further reviewed
in refs. [64, 7, 56]).

The link between the microbiome and disease can occur at several levels [64, 56].
In some diseases, the absence, presence, or change in abundance of specific species
can be directly linked to disease, e.g., in case of a Clostridium difficile infection [65]. In
other diseases, the cause could be a specific species lineage, e.g., because of toxic gene
products produced by particular strains [63]. More often, the disease will likely result
from a complex interplay between the host immune system, specific members of the
microbiome, and the metabolic state of the gut [64, 61].

While metagenomics, metatranscriptomics, metabolomics, and other profiling
technologies each provide valuable and orthogonal insights into a community’s
state, in the remainder of this thesis, we will mainly focus on metagenomics when
analyzing microbial communities. The insights gleaned from genomes, as discussed
in previous sections, also apply to the analysis of metagenomes: they enable tracking
strains over time and provide an overview of a community’s functional potential.

1.4. Advances in sequencing technology enable high
throughput characterization ofwhole (meta)genomes

An organism’s genome or a community’s metagenome is a rich source of information.
However, given a sample specimen collected from soil, blood, urine, or feces, how do
we determine the complete sequence of A, C, G, and Ts for the organisms in a sample?

This section will discuss common DNA sequencing strategies to characterize
genomes in a sample. We first describe methods for preparing and extracting
the DNA molecules of interest, e.g., from a single or all community members. We
will introduce the three commonly used sequencing platforms and discuss their
advantages and disadvantages. Finally, we will discuss algorithmic approaches to
infer the sample genome(s) from sequenced reads, first focusing on inferring a single
strain’s genome and later on how these methods can be adapted to profile whole
communities.
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Preparing DNA for sequencing
Since a sample specimen could harbor multiple organisms and strains, we typically
streak it out on a petri dish, allowing individual bacterial colonies to grow in culture
(Figure 1.2a). This enables picking and isolating specific colonies (representing the
clonal expansion of a single strain), extracting DNA from these isolates, and putting
them on a sequencing instrument. Sequencing the entire genome of a single isolate
from culture is called whole genome sequencing (WGS).

Culturing has long been the standard approach to characterize bacterial strains in
a sample [66]. Technological improvements in the past decade have enabled culturing
of nearly all human-associated bacterial species [67, 68, 69, 70]. However, many other
species, especially those from non-human-associated communities, remain challeng-
ing to grow under laboratory conditions (if at all). Culturing is also laborious and low
throughput, requiring manual picking and isolating of specific colonies. Another lim-
itation is the resulting biased view of genetic diversity in a sample because typically
only a subset of colonies are isolated and sequenced, and because of the potential for
evolution within a culture [66].

Instead, whole metagenome sequencing (WMS) is a culture-free alternative ap-
proach for characterizing strains [51]. For WMS, DNA is directly extracted and
sequenced from a sample specimen. The sequenced DNA thus represents fragments
from all sample members, not just a single strain. WMS offers a more complete and
less biased view of the sample’s genetic diversity and enables the characterization of
genomes from unculturable species.

When DNA has been extracted, either from an isolate or directly from the sample,
it is further processed before sequencing. The DNA is fragmented into smaller pieces
since no sequencing platform can sequence complete genomes at once (Figure 1.2b). A
sequencer can read these smaller fragments, and since these reads represent smaller
fragments of the sequenced genome, we rely on algorithms to infer complete sam-
ple genomes. The accuracy and completeness of these reconstructions depend on
the sequencing technology used, as each has limitations regarding fragment lengths,
throughput, and sequencing error profiles.

Current sequencing technology platforms
Today’s most common sequencing platforms include Illumina, Pacific Biosciences
(PacBio), and Oxford Nanopore Technologies (ONT) [71, 72]. Illumina’s platform can
sequence short (100-250 bp) fragments with high accuracy (an error rate of < 0.1%)
and high throughput. Its larger machines can sequence billions of reads per run.
This enables amortizing sequencing costs over many samples by pooling them on
a single flow cell, making it one of the most cost-effective sequencing solutions. A
disadvantage of Illumina’s technology is its short read length, which provides limited
genomic context and makes it harder to infer what piece of the genome it represents.

The last decade has seen increased adoption of “long read” sequencing platforms,
including PacBio and ONT [73]. A major benefit of these platforms is their ability to
sequence much longer fragments, with average read lengths of approximately 15 kbp
and with ONT up to hundreds of kbp [74]. Longer reads provide more genomic con-
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Figure 1.2: Typical whole genome sequencing workflows and algorithmic approaches to infer sample
genomes. (a) Sample specimens are plated on a petri dish. We isolate individual colonies and extract their
DNA. (b) Since current sequencing instruments cannot read full chromosomes, the isolated DNA is frag-
mented before being placed on a sequencing instrument. (c) Intituition behind de novo assembly. We first
identify all-vs-all pairwise overlaps between reads (1). We reconstruct the original genome by iteratively
stringing together overlapping reads (2). (d) Repeats in the true genome (black lines) prevent complete
genome reconstruction, resulting in fragmented assemblies with multiple contigs. (e) Genome inference
through variant calling. Reads are aligned to a previously assembled reference genome. Alignment pileups
are analyzed to identify genetic variants, such as substitutions, insertions, or deletions. (f) Repeats in the
reference are hard to characterize without reads spanning the repeat.
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text, making reconstructing complete genomes easier. Analogously to a puzzle, a puz-
zle with larger pieces is easier to assemble than one with smaller pieces. Long-read
sequencing technologies have greatly improved their accuracy in recent years, with
PacBio’s high-fidelity reads achieving an error rate of 0.1% (on par with Illumina),
while ONT’s recent nanopore chemistry (R10.4) achieves error rates of 0.5-1% [75]. A
disadvantage of long-read sequencing platforms is their relatively low throughput,
higher cost, and higher DNA input requirements.

An additional unique feature of ONT’s platform is their instruments’ range of phys-
ical sizes. Most sequencing instruments, including those from Illumina and PacBio,
are about the size of an office printer or a large refrigerator. ONT offers similar-sized
instruments for higher throughput settings (e.g., large sequencing centers), but addi-
tionally offers a handheld device sized like a smartphone. Combined with a relatively
simple protocol for DNA extraction, this enables direct sequencing of samples at loca-
tion, which aids real-time genomic epidemiology during an outbreak, e.g., during the
Zika virus epidemic in South America [76, 77].

Reconstructing an isolate genome from scratch using read data only

One common strategy to reconstruct a strain’s genome in the case of a sequenced iso-
late is de novo assembly. De novo assembly aims to reconstruct genomes from read
data only, without aid from a previously completed reference genome. A typical work-
flow first involves identifying pairwise sequence overlaps between reads. If the suffix
of one read overlaps the prefix of another, the latter read can extend the first read’s
genome sequence. By repeatedly extending the reconstructed sequence with reads
that overlap with the end of the sequence, we ultimately assemble the entire genome
(Figure 1.2c) [78].

In practice, however, several challenges prevent the complete reconstruction of a
genome. One important challenge is repetitive genome content, e.g., a gene present
twice. When trying to extend the sequence with an overlapping read during assem-
bly, a repeat results in multiple options for sequence extension: either the flanking
sequence of the first copy of the repeat or the flanking sequence of the second copy. If
the length of reads is insufficient to span the entire repeat, linking each copy’s correct
left and right flank will be impossible (Figure 1.2d). This halts the assembly process
and results in fragmented assemblies, with the genome split into multiple contigs.

Another challenge is the identification of pairwise overlaps between reads. Reads
can contain sequencing errors, which means the overlap detection algorithm should
be able to identify inexact overlaps. There is a trade-off between being able to detect
overlaps in the presence of sequencing error and introducing falsely detected over-
laps because of inexact overlap detection. Falsely detected overlaps can lead to ambi-
guity in the assembly, similar to repetitive genome content, or result inmisassemblies.

Modern genome assemblers typically implement these ideas using one of two ma-
jor computational models: 1) using the overlap-layout-consensus (OLC) approach, or
2) using a De Bruijn graph (DBG) [78]. In the first model, pairwise overlaps between
reads are computed and explicitly stored in a string graph [79]. The graph is cleaned
so the remaining paths represent the reconstructed genomewith high probability [80].
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To construct a DBG, explicitly computing pairwise overlaps between reads is unnec-
essary. In a DBG, nodes are 𝑘-mers, i.e., sequences of a fixed length 𝑘, and directed
edges connect nodes where the 𝑘 − 1 suffix of one node matches the 𝑘 − 1 prefix of
another. By extracting k-mers from reads and adding nodes and edges to the graph
where necessary, we implicitly obtain overlaps between reads because of shared k-
mers. After cleaning the graph, removing 𝑘-mers likely originating from sequencing
error, the remaining paths in the graph represent the genome with high probability
[81, 82]. We refer to recent reviews for an in-depth discussion of current tools and
practices [78, 83]

Reference-assisted genome inference using read alignment

Instead of reconstructing an isolate genome de novo, we can map and compare se-
quenced reads to a previously characterized reference genome. For each read, we
search for a locus in the reference that likely represents its origin by looking for re-
gions with high sequence similarity to the read. However, the strain is unlikely to be
identical to the reference genome, and the sequenced reads could contain evidence
for alleles that differ from the reference.

To infer these differences, each read is aligned to the reference genome. Sequence
alignment is a form of inexact string matching, which aims to pair nucleotides in
the read and the reference that likely share an evolutionary origin, allowing for mis-
matches, newly inserted nucleotides, and deletions [84, 85, 86]. When all reads are
aligned, the resulting alignment pile-ups along the reference can be analyzed to infer
where the sample strain differs from the reference, a process called variant calling
(Figure 1.2e) [87, 88]. We can reconstruct the genome of the sample strain by taking
the majority allele present among reads at sites with identified differences. A more
in-depth discussion of the methods and best practices are reviewed in refs. [89, 88].

Amajor advantage of variant calling-based genome inference is that the reference
will typically be a fully assembled genome accompanied by extensive biological anno-
tations. Identified variants can thus be directly analyzed in their biological context.
Other advantages include the lower computational requirements compared to assem-
bly workflows and the simplicity of comparing genetic variation amongmultiple sam-
ples, which we will discuss further in a later section.

While the reference genome might be a genome with repetitive content resolved,
repeats still cause challenges for variant calling. For example, when a gene is present
twice in a reference, reads from the sample genome homologous to those genes can
not be unambiguously mapped (Figure 1.2f). Assigning any identified genetic varia-
tion to the correct copy will be impossible.

An additional challenge includes the introduction of reference bias. Using a refer-
ence limits the identification of variants to genomic content sharedwith the reference.
For example, the reference might lack genes in the sample strain, preventing those
reads from aligning. Additionally, if the sample strain diverged substantially from
the reference, reads might not align accurately because of low sequence similarity.
These issues lower the accuracy of variant calls, especially in bacterial species with
open pangenomes, because of extensive diversity in gene content [90, 91].
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Profiling metagenomes
The methods discussed so far assume that reads originate from a single isolate.
However, sequenced reads could originate from multiple species or strains in
metagenomic data. Specialized tools are required to profile genomic content in a
metagenome accurately.

Taxonomic profiling tools, includingKRAKEN [92] andMETAPHLAN [93], are typically
reference-assisted approaches that report the species-level composition of metage-
nomic samples. KRAKEN analyzes the 𝑘-mer composition of a sample to the 𝑘-mer
profiles of references in its database to estimate taxa abundances [92]. METAPHLAN
estimates abundances by analyzing read alignments to a set of phylogenetically infor-
mativemarker genes, precomputed by the tool’s authors [93]. While these tools enable
valuable insights into the high-level composition and dynamics of metagenomic sam-
ples, they offer limited insight into the genomic content of sample strains.

Instead of taxonomic profiling, an alternative method to offer insight into sample
genomic content is the de novo assembly of metagenomes [51]. Similar to the assem-
bly of isolates, these approaches aim to reconstruct all sample genomes from scratch
using the sequenced reads.

However, assemblies from metagenomic data are often highly fragmented and in-
complete because of three main factors [51, 94]. First, repetitive content is an even
larger problem in metagenomic assembly compared to assembly of isolates. Ambigu-
ity in the assembly graph can arise because of genes conserved between species or
even across the bacterial kingdom [95]. Another cause of ambiguity is the presence of
multiple strains of the same species, who share their core genes but have different ac-
cessory genes [94]. Second, the uneven abundance of species in metagenomes makes
it more challenging to distinguish between sequencing errors and low-abundance
species. Third, an additional “contig binning” step is required to group contigs from
the same species. However, this process frequently omits mobile genetic elements,
resulting in incomplete views of a genome [20].

Both taxonomic profiling and assembly approaches offer limited or incom-
plete strain-level insights. Distinguishing between strains is important because of
strain-specific biological differences such as antibiotic resistance, pathogenicity,
or metabolic capabilities [7, 96]. The current inability to accurately characterize
metagenomes at the strain level is a major barrier to understanding species popu-
lations, ecologies, transmission patterns, and their role in health and disease [51, 7,
96].

1.5. Biological sequence alignment computes which
residues likely have shared evolutionary origin

Genomes evolve and change over time, but given two DNA sequences, how do we
determine what has changed? What nucleotides in one sequence have been substi-
tuted in the other sequence? What nucleotides are newly inserted or deleted? The
identification of genetic changes is at the heart of computational genomics. It enables
many important analyses, including computing evolutionary relationships by quanti-
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fying differences, inferring a sample genome from read alignments (as described in
the previous section), and elucidatingmolecularmechanisms underlying a phenotype
by linking specific variants to the phenotype.

This section will introduce algorithms for computing biological sequence align-
ments, which enable the identification of common similarities that share an evolu-
tionary origin. An alignment is an ordered arrangement of two sequences (the order
of nucleotides in both sequences should remain the same), where nucleotides in one
sequence are paired with nucleotides in the other or with a newly introduced gap.
Paired identical nucleotides are calledmatches; if they are different, we call themmis-
matches. Nucleotides pairedwith a gap symbol are called indels. For example, we find
many shared nucleotides by rearranging two seemingly different DNA sequences, AT-
GCTTA and TGCAATTA (Figure 1.3a). Intuitively, good alignments maximize matching
nucleotides between sequences and minimize mismatches, insertions, and deletions
[97].

We will first introduce common alignment cost models to quantify good and bad
alignments. Next, we describe popular dynamic programming algorithms to compute
alignments that minimize the alignment cost.

Alignment cost models to quantify plausible alignments

To obtain biologically plausible alignments, an alignment cost model should reflect
the biology of DNA (or proteins if comparing amino acid sequences). The three most
commonly used cost models, in order of biological accuracy, are edit distance, linear
gap penalties, and affine gap penalties [97, 84]. The edit distancemodel is the simplest
model, in which mismatches and indels have unit costs, while matches have zero cost
(Figure 1.3b). The total cost of an alignment would be 𝐶 = 𝑁𝑥 + 𝑁𝑔, with 𝑁𝑥 and 𝑁𝑔
representing the number of mismatches and indels, respectively.

Mismatches and indels, however, can occur at different rates, and the linear gap
penaltymodel addresses this by penalizing these events differently [98]. In thismodel,
matches, mismatches, and indels have different associated costs (Figure 1.3c). The
total cost of an alignment can be computed as 𝐶 = 𝑁𝑚Δ𝑚 + 𝑁𝑥Δ𝑥 + 𝑁𝑔Δ𝑔, with 𝑁𝑚
the number of matches and Δ𝑚 , Δ𝑥 , Δ𝑔 the cost of a match, mismatch, and an indel,
respectively. One disadvantage of this model is the linear weighting of consecutive
indel positions. Because the insertion or deletion of multiple consecutive nucleotides
frequently occurs as a single biological event, long indels can get excessively penalized
because each gap position increases the cost [84].

To address this, the alignment cost model would ideally include an indel cost func-
tion 𝑔(𝑙) to consider an indel’s length. Supporting any arbitrary function 𝑔(𝑙) would
complicate the design of an algorithm to compute alignments [84]. Instead, in affine
gap penaltymodels, 𝑔(𝑙) is required to be in the form of 𝑔(𝑙) = Δ𝑜 + 𝑙 ⋅ Δ𝑔, i.e., a linear
model where opening a new indel is penalized differently than extending an existing
indel [99] (Figure 1.3d). In this equation, Δ𝑜 represents the cost of opening a new indel,
and Δ𝑔 is the cost of extending an existing indel. The total cost of an alignment would
then be 𝐶 = 𝑁𝑚Δ𝑚 + 𝑁𝑥Δ𝑥 + 𝑁𝑔Δ𝑔 + 𝑁𝑜Δ𝑜, where 𝑁𝑜 represents the number of distinct
indels, 𝑁𝑔 the total number of indel positions. Affine gap penalty models are the most
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Figure 1.3: Concepts of biological sequence alignment. (a) Example alignment of two sequences, with
matching nucleotides in bold. (b-d) Quantifying the alignment quality using (b) edit distance, (c) linear
gap penalties, and (d) affine gap penalties. Δ𝑥 , Δ𝑔, and Δ𝑜 represent the alignment cost of a mismatch, gap
extension, and newly opened gap, respectively. (e) Example initialization of the alignment dynamic pro-
gramming matrix. Each remaining cell is computed by considering the minimum alignment cost of three
predecessor cells (orange arrows) plus the additional cost of the alignment extension. (f) The completed
dynamic programming matrix. We obtain the final alignment (yellow arrows) by tracing which cell is com-
puted from which predecessor. (g) A finite state machine diagram representing alignment using affine gap
penalties. Circles represent the (mis)match, insertion, and deletion states, which adjust sequence positions
𝑖 or 𝑗 when entered. Arrows represent state transitions, labeled with the alignment cost.

commonly used cost models for DNA sequence alignment, as they offer the best bal-
ance between computational tractability and biologically accurate alignments [84, 85,
86, 100].

Note that the total alignment cost can be written as a weighted sum of individual
alignment events in all cost models. This property enables the design of efficient algo-
rithms to compute accurate alignments.

Computing optimal alignments with dynamic programming

A dynamic programming-based algorithm is a commonmethod to compute alignments
that minimize the alignment cost. For clarity of presentation, we will first introduce
the algorithm using the edit distance or linear gap penalty model. The algorithm is
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the same for both models since the edit distance model is a special case of the linear
gap penalty model, where Δ𝑚 = 0, Δ𝑥 = 1, and Δ𝑔 = 1. The extension to the affine gap
penalty model will be discussed afterward.

The core idea behind the dynamic programming algorithm is to compute the align-
ment iteratively, reusing solutions for shorter subsequences computed in previous it-
erations. To see how this works, note that the total costs for each model described
above are a weighted sum of (mis)matches and indels. Suppose we know the mini-
mum cost for a previously computed alignment of shorter subsequences. In that case,
we can compute the minimum cost of an extension of that alignment by adding the
cost of the extension. For example, if extending an alignment with a match, the min-
imum cost of this extended alignment would be the minimum cost of the previous
alignment plus Δ𝑚; if extending with a mismatch, we would add Δ𝑥; and if extending
with a gap, we would add Δ𝑔.

Specifically, let 𝑅 = 𝑟1𝑟2…𝑟𝑛 and 𝑄 = 𝑞1𝑞2…𝑞𝑚 be two DNA sequences to align. Let
𝑖 and 𝑗 refer to positions in 𝑅 and 𝑄, respectively, and we define the subsequence of 𝑅
up to the 𝑖th position as 𝑅[1… 𝑖] = 𝑟1𝑟2…𝑟𝑖 , and similarly the subsequence of 𝑄 up to
the 𝑗th position as 𝑄[1...𝑗] = 𝑞1𝑞2…𝑞𝑗 . We denote 𝐶(𝑖, 𝑗) as the minimum cost to align
𝑅[1… 𝑖] and 𝑄[1… 𝑗]. 𝐶(𝑖, 𝑗) can be computed recursively by considering three possible
scenarios (Figure 1.3e): first, 𝑟𝑖 could be aligned to 𝑞𝑗 , in which case the alignment
cost 𝐶(𝑖, 𝑗) = 𝐶(𝑖 − 1, 𝑗 − 1) + Δ(𝑖, 𝑗). Here, Δ(𝑖, 𝑗) is a function that returns match cost
Δ𝑚 if 𝑟𝑖 = 𝑞𝑗 , and the mismatch cost Δ𝑥 otherwise. Second, 𝑟𝑖 could be aligned to a
gap, in which 𝐶(𝑖, 𝑗) = 𝐶(𝑖 − 1, 𝑗) + Δ𝑔. Finally, 𝑞𝑗 could be aligned to a gap, in which
𝐶(𝑖, 𝑗) = 𝐶(𝑖, 𝑗 − 1)+ Δ𝑔. The minimum alignment cost 𝐶(𝑖, 𝑗)would be the minimum of
these three cases:

𝐶(𝑖, 𝑗) =min
⎧

⎨
⎩

𝐶(𝑖 − 1, 𝑗 − 1) + Δ(𝑖, 𝑗) (Mis)match,
𝐶(𝑖 − 1, 𝑗) + Δ𝑔 Deletion,
𝐶(𝑖, 𝑗 − 1) + Δ𝑔 Insertion.

(1.1)

To be able to compute𝐶(𝑖, 𝑗) for all possible values, weneed to handle the base cases
separately, i.e., the cases where either 𝑖 = 0 or 𝑗 = 0. Note that the definition of 𝐶(𝑖, 𝑗)
depends on undefined cases when 𝑖 = 0 or 𝑗 = 0 (𝑖 − 1 or 𝑗 − 1 would be negative). To
compute 𝐶(0, 𝑗) and 𝐶(𝑖, 0), we observe that those cases correspond to prefixing either
𝑄 or 𝑅 with gaps, and thus we define 𝐶(0, 𝑗) = 𝑗Δ𝑔 and 𝐶(𝑖, 0) = 𝑖Δ𝑔. The remainder
of 𝐶(𝑖, 𝑗) cells can be computed by progressing row-by-row and column-by-column.
After completing thematrix, the finalminimumalignment cost between 𝑅 and𝑄 is the
bottom right cell 𝐶(𝑛,𝑚). The alignment itself can be inferred by repeatedly tracing
which cell derived from which other cell until it reaches 𝐶(0, 0) (Figure 1.3f).

To support affine gap penalties we need to keep track of opened gaps. To achieve
this, we store three separate costs for each pair (𝑖, 𝑗): 𝑀(𝑖, 𝑗) represents the minimum
alignment cost of 𝑅[1… 𝑖] and 𝑄[1… 𝑗] in the case where 𝑟𝑖 is aligned to 𝑞𝑗; 𝐷(𝑖, 𝑗) rep-
resents the minimum alignment cost in the case where 𝑟𝑖 is aligned to a gap (i.e., a
deletion in 𝑄 with respect to 𝑅); and 𝐼(𝑖, 𝑗) represents the minimum alignment cost
in the case where 𝑞𝑗 is aligned to a gap (i.e., an insertion in 𝑄 with respect to 𝑅). Us-
ing separate variables for the alignment costs ending in the (mis)match, deletion, and
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insertion states, we can define separate recursive functions considering the different
costs of opening or extending an indel. The recurrence relations then become [84, 99]:

𝑀(𝑖, 𝑗) = min
⎧

⎨
⎩

𝑀(𝑖 − 1, 𝑗 − 1) + Δ(𝑖, 𝑗) (Mis)match,
𝐷(𝑖 − 1, 𝑗 − 1) + Δ(𝑖, 𝑗) Close deletion,
𝐼(𝑖 − 1, 𝑗 − 1) + Δ(𝑖, 𝑗) Close insertion,

𝐷(𝑖, 𝑗) = min {𝑀(𝑖 − 1, 𝑗) + Δ𝑜 + Δ𝑔 Open deletion,
𝐷(𝑖 − 1, 𝑗) + Δ𝑔 Extend deletion,

𝐼(𝑖, 𝑗) = min {𝑀(𝑖, 𝑗 − 1) + Δ𝑜 + Δ𝑔 Open insertion,
𝐼(𝑖, 𝑗 − 1) + Δ𝑔 Extend insertion.

(1.2)

This set of recurrence relations can be interpreted as a state machine, with 𝑀, 𝐷,
and 𝐼 the different states, and with varying costs to stay in a state or transition to
another (Figure 1.3g) [84].

1.6. Computational methods to characterize genetic vari-
ation genome and pangenome-wide

Through sequence alignments, we obtain similarities and differences between bio-
logical sequences. However, the algorithms to compute these alignments assume se-
quences to be collinear, i.e., the shared nucleotides between sequences generally re-
tain the same order save for gaps and mismatches. This assumption is often violated
when comparing whole bacterial genomes because of inversions, mobile genes, re-
combination, and other structural variants [101, 102]. Since the substitution, inser-
tion, and deletion alignment operations do not accurately model these larger changes,
additional strategies are required to compare complete genomes.

This section will describe common approaches to compare genome and
pangenome-wide genetic variation among two or more bacterial strains. We
will discuss methods to compare strains directly from sequenced reads, e.g., by
aligning reads to a reference genome, and strategies to compare de novo assembled
genomes. Finally, we will discuss approaches to characterizing extensive diversity
gene content in bacterial genomes, i.e., tools to characterize and analyze bacterial
pangenomes.

Direct comparison of whole genome assemblies

To compute whole genome alignments, in the presence of large structural variants
and rearrangements, we first identify pairwise homologous (and locally collinear) re-
gions between genomes [101, 103, 104]. This is usually done by first identifying ‘seeds,’
(short) exactmatches between genomes, and chaining seeds in close proximity to each
other to obtain larger collinear blocks with high sequence similarity. Tools to com-
pute such homology maps include MUMMER [101, 105], which uses “maximal unique
matches” between genomes as seeds, and MASHMAP [106], which uses “minmers” as
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Figure 1.4: Illustration of several genome comparisonmethods. (a)Whole genome alignment between two
E. coli assemblies visualized as a dot plot. Each line represents a locally collinear aligned region between
E. coli UTI89 (x-axis) and E. coli J53 (y-axis), either on the forward (dark grey) or reverse strand (orange).
(b) (Pan)genome comparisons through shared genes. Genes (arrows) among a set of input genomes are
clustered. Nucleotide-level variation (red crosses) per gene cluster can be obtained through an MSA. The
gene presence/absence matrix (black squares) enables separating core from accessory genes. (c) Genome
comparisons through an intermediate reference genome. Read alignments to a reference enable inference
of shared homologous genome content between a strain and the reference (shaded areas). Genetic variants
(red crosses and dashed lines) are described with respect to the reference, enabling easy comparisons of
variants. (d) Genome comparisons through a pangenome reference graph. Multiple reference genomes
are combined in a graph (black, blue, and green lines), enabling the identification of variants in a larger
fraction of strains’ genomes compared to a single reference (blue and green shaded areas).

seeds. Each identified locally collinear block is input into a pairwise sequence align-
ment algorithm to obtain nucleotide-level differences between genomes.

Besides small genetic variants, homologymaps revealmuch insight into structural
differences between genomes, for example, when visualized as a dot plot (Figure 1.4a).
In such a plot, an (anti-)diagonal line represents a locally collinear block with high
sequence similarity. Horizontal or vertical shifts between lines indicate the presence
of large indels. Lines going diagonally from the bottom left to the top right indicate
homology between forward strands; lines going anti-diagonally from the top left to the
bottom right indicate homology between opposite strands and represent inversions.
For example, E. coli J53 has much of its genome inverted with respect to E. coli UTI89,
as indicated by the many lines on the antidiagonal in Figure 1.4a.

While whole genome alignment enables comparison of all shared genome con-
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tent between two strains, it is harder to scale comparisons betweenmultiple genomes.
Comparingmultiple genomeswould require all-vs-allwhole genomealignments, with-
out an obvious method to identify which regions are homologous between multiple
genomes. This hinders analyses of genetic variation at the population level.

Gene-centered pangenomics and comparisons of genomes

An alternative approach to compare genome assemblies that scales to thousands of di-
verse strains is to characterize and compare their shared genes. Comparing gene con-
tent is at the heart of nearly all bacterial pangenome analysis tools [107, 108, 109, 110,
111, 112, 91]. These tools typically take annotated genomes as input and cluster genes
based on sequence similarity and gene neighborhoods (Figure 1.4b). Nucleotide-level
differences per gene cluster can be obtained by computing an MSA of gene sequences.
Comparing genes enables near-complete comparisons of genomes since bacteria have
high coding densities.

Gene presence/absence patterns can be further analyzed to separate core from
accessory genes. Genes present in all genomes are part of the core (genes A and B
in Figure 1.4b), while genes with variable presence are accessory (genes C and D in
Figure 1.4b).

An important application of gene-centered pangenome analyses is investigating
gene gain and loss events along the evolutionary history. In earlier sections, we dis-
cussed that the combined set of orthologous genes encodes the organisms’s evolution-
ary history. Most bacterial pangenome analysis tools include strategies to distinguish
between orthologous and paralogous genes post-clustering. To obtain the evolution-
ary history of all input strains, we thus input the combinedMSAof all orthologous core
genes to a phylogenetic tree construction tool [113, 114]. Patterns of accessory gene
presence and absence can then be analyzed in the context of the strains’ phylogeny,
e.g., to infer gene gain or loss events in specific lineages.

While these tools enable valuable insights into the evolution of an organism and
its genes, the focus on genes also has a significant downside: it prevents characteriz-
ing variation in intergenic regions. Variation in intergenic regions is important since
it could substantially impact phenotypes, e.g., by changing a promotor, affecting gene
expression [115]. Another downside is the reliance on genome assemblies and accu-
rate gene annotations. Genome assemblies, especially those constructed from short
reads, can be fragmented and incomplete. Automatic gene prediction tools are im-
perfect and can miss or misclassify genes or return inaccurate start and end coordi-
nates [116]. Errors in the assembly or annotations impact downstream analysis of
pangenome growth, classification of core vs. accessory, and distinguishing between
orthologous vs. paralogous genes [39].

Reference-assisted comparison of genetic variation

Comparing variant calls with respect to a reference genome allows for comparing
genomes without needing de novo assembly [87]. When reads align to a particular
locus in the reference, we assume the read’s genomic origin is homologous to that
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locus (Figure 1.4c; grey-shaded areas). If we run a variant calling workflow for mul-
tiple samples, and when reads from different samples align to the same locus in the
reference, we use the reference as a proxy to infer homology between sample strains.
By assessing inferred alleles in each sample at the same reference positions, obtained
variant calls can be easily compared (Figure 1.4c; red crosses).

The simplicity of scaling comparisons tomultiple samples is amajor benefit of vari-
ant calling workflows. Variant calls can be obtained independently for each sample,
and since each variant is described with respect to the reference, they can be easily
compared. Variant calling workflows typically require few computational resources,
enabling the analysis of large datasets.

However, thismethod’s downside is that it only allows comparisons of variant calls
in genome content shared with the reference (Figure 1.4c; unshaded areas in strain 1
and 2). If the reference does not contain specific genes in the sample strains, it will be
impossible to compare variation within them since the reads from those genes have
no place to align. Reads could also misalign to a locus with partial sequence similar-
ity, resulting in false positive variant calls. The more distant the reference from the
sample strain, the lower the accuracy of variant calls [90].

Another consequence of the inability to characterize genes not present in the ref-
erence is that obtaining a complete picture of gene content diversity among a set of
strains is challenging. Reference-assisted genome comparisons are, therefore, unsuit-
able for the characterization of bacterial pangenomes.

Comparing genetic variation using pangenome-reference graphs

In recent years, there have been increased efforts to extend variant calling to allow
for multiple reference genomes [117, 118]. These approaches promise to combine the
benefits of variant calling (simple workflows, the ability to obtain variants for each
sample independently, and a common coordinate system for comparison) with the
benefits of pangenome analysis tools (characterizing a species’ total genetic diversity).

References are combined into a pangenome reference graph (Figure 1.4d) to sup-
port variant callingwith respect tomultiple references. Pangenome graphs compactly
represent multiple references by grouping shared genomic content while also repre-
senting each genome’s unique content. Generally, nodes represent the sequence of a
piece of the genome, either unique or sharedwith other genomes, while edges connect
nodes representing adjacent blocks of genomic content in at least of the genomes [117,
118]. Each input genome can be reconstructed by traversing a specific path through
the pangenome graph.

Including multiple references in a pangenome graph increases read alignment ac-
curacy [119] and enables comparison of genetic variation across a larger fraction of
sample strain’s genomes. For example, the pangenome reference in Figure 1.4d en-
ables the detection of a shared A allele in strains 1 and 2 because of shared homology
to the blue reference. Variation in those regions of the genomewas previously missed
when using a single reference (Figure 1.4c).

Algorithms to construct pangenome reference graphs are still an active area of
research. Two recently published approaches mainly focused on eukaryotic (human)
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pangenomes include MINIGRAPH-CACTUS [120] and the pangenome graph builder
(PGGB) [121]. These tools construct pangenome graphs based on whole genome
alignments and can represent large structural changes between genomes as well as
small nucleotide-level variations. While these pipelines could be used to construct
bacterial pangenomes, there has not been any evaluation of these tools’ ability to
accurately identify homology relations between genomes in the presence of much
higher recombination rates and gene content diversity, as observed inmany bacterial
species.

A pangenome reference approach focusing on bacterial genomes is PANDORA [91].
Pandora constructs reference graphs per gene and thus relies on other tools to define
what genes are homologous among reference genomes. It enables calling variants
directly from sequenced reads using its own read-mapping approach. However, its
read-mapping approach is relatively simplistic: it cannot accurately map reads span-
ning gene boundaries and does not handle situations where reads map (partially) to
multiple genes. PANDORA also inherits the issues of other gene-centered pangenome
analysis tools discussed earlier by relying on gene annotations.

PANAROO is another graph-based and gene-centered bacterial pangenome analysis
tool [111]. In the Panaroo graph, nodes represent gene families, and edges connect
nodes representing adjacent genes in at least one genome. Panaroo includes several
algorithms that alleviate some of the issues with inaccurate gene annotations. It uses
the graph topology to recover missing genes, detect misclassified genes, and fix in-
correct gene clusterings. The resulting graph gives valuable insights into structural
rearrangements between genomes. However, the graph does not include sequence
information, making it unsuitable for read alignment or describing variants and thus
unsuitable as a pangenome reference graph.

To our knowledge, none of the existing tools can construct bacterial pangenome
graphs that include both genes and intergenic regions, construct graphs that can serve
as a reference for variant calling, and work with many bacterial species’ high recom-
bination rates and gene content diversity. This hinders the identification and descrip-
tion of variants across large datasets of diverse strains and is a barrier to improved
understanding of genetic variation and its impact on phenotypes.

1.7. Thesis contributions and outline
Comparing genomes is central to bacterial genomics. It enables tracking strains, un-
derstanding their evolution, and elucidating the molecular mechanisms underlying a
phenotype. The central question of this thesis is how we can improve our ability
to characterize genetic variation in bacteria, considering the extensive strain-
level diversity among many species. In the following chapters, we will introduce
new tools and algorithms to tackle this problem and use these tools to gain new in-
sights into strain-level dynamics.

In Chapter 2, we first introduce a new algorithm for partial order alignment (POA).
POA is a common multiple sequence alignment approach with many applications in
genome assembly, RNA isoform inference, variant calling, and pangenomics. Our al-
gorithm exploits exact matches between a query sequence and the POA graph, reduc-
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ing runtime and memory usage and enabling the construction of megabase-length
alignments, which was not previously possible.

Chapter 3 introduces the Strain Genome Explorer (STRAINGE) suite, a new set
of tools to characterize strain-level bacterial genetic variation using WMS data.
STRAINGE’s pipeline comprises two main components: first, it identifies represen-
tative reference genomes for each strain in a sample, enabling the detection of
same-species strain mixtures. Second, STRAINGE further characterizes strain vari-
ation by analyzing read alignments and calling variants compared to the reported
references. STRAINGE was designed to operate at coverages as low as 0.5x, enabling
the detection and characterization of previously unnoticed strains.

Chapter 4 covers a large, multi-institute, year-long study investigating the link be-
tween gut microbiota and recurrent urinary tract infections (UTIs). For this study,
we collected monthly stool, urine, and blood samples from women with and without
a history of UTIs. Additional samples were collected during and after a UTI. Using
STRAINGE, we gained detailed insights into the E. coli strain-level diversity in the gut
and bladder. Despite divergent outcomes, we found that both women with rUTI and
controls share similar E. coli dynamics.

We will conclude this thesis by discussing the remaining gaps in analyzing bacte-
rial (pan)genomes and highlighting promising new technologies that will transform
our ability to analyze bacterial genetic diversity. We believe these new technologies
and computational tools will help counter the growing antibiotic resistance epidemic
and help understand the role of bacteria in health and disease.
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Abstract
Motivation: Partial order alignment is a widely used method for computing multiple
sequence alignments, with applications in genome assembly and pangenomics,
among many others. Current algorithms to compute the optimal, gap-affine partial
order alignment do not scale well to larger graphs and sequences. While heuristic
approaches exist, they do not guarantee optimal alignment and sacrifice alignment
accuracy.

Results: We present POASTA, a new optimal algorithm for partial order align-
ment that exploits long stretches of matching sequence between the graph and a
query. We benchmarked POASTA against the state-of-the-art on several diverse
bacterial gene datasets and demonstrated an average speed-up of 4.1x and up
to 9.8x, using less memory. POASTA’s memory scaling characteristics enabled
the construction of much larger POA graphs than previously possible, as demon-
strated bymegabase-length alignments of 342Mycobacterium tuberculosis sequences.

Availability and implementation: POASTA is available on Github at https:
//github.com/broadinstitute/poasta.

2.1. Introduction
Multiple sequence alignments (MSAs) are central to computational biology. MSAs
have many applications, including computing genetic distances, which can serve as a
basis for a phylogeny; determining consensus sequences, e.g., to perform read error
correction; and identifying allele frequencies, e.g., for sequence motif identification.

Computing the optimal MSA with the sum of all pairs (SP) score is an NP-complete
problem [1]. These classical exact algorithms have a runtime exponentially related to
the number of sequences and are thus intractable for even modest-sized datasets. In-
stead, nearly all popularMSA tools, includingMAFFT [2] andMUSCLE [3], compute the
MSA progressively: first, an alignment between two sequences is computed, then ad-
ditional sequences are added one by one until all sequences have been aligned. The
runtime of these approaches is linear in the number of sequences instead of expo-
nential. While MSAs computed this way do not necessarily find the globally optimal
solution for the SP objective, they are still highly useful approximations to otherwise
intractable alignment problems.

Partial order alignment (POA) is a well-known progressive MSA approach that pi-
oneered using a graph to represent an MSA rather than a sequence profile [4]. This
improved the ability to represent indels, leading to higher-quality alignments. Since
POA is a progressive MSA algorithm, the optimal SP score is not guaranteed for the en-
tire MSA. However, POA does guarantee that each individual sequence-to-graph align-
ment is optimal.

POA is relevant to many applications, including de novo genome assembly (e.g.,

https://github.com/broadinstitute/poasta
https://github.com/broadinstitute/poasta
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Figure 2.1: Representation of the dynamic programmingmatrix to compute the global alignment of a nusA
gene sequence (x-axis) to a POA graph constructed from 50 other nusA gene sequences (y-axis). Each pixel
represents a computed alignment state, and the color represents the alignment cost of that state. White
pixels represent uncomputed states.

read error correction and consensus generation) [5, 6, 7], RNA isoform inference [8],
structural variant (SV) characterization [9], and variant phasing [10].

POA is also essential to two recent human pangenome graph construction
pipelines [11, 12]. These pipelines are pushing the limits of POA, as aligning long
stretches of homologous sequence among input genomes requires substantial com-
puting and memory resources. For example, consider the gap-affine alignment of a
500 kbp sequence to a graph with 500k character-labeled nodes. Conventional POA
approaches have a runtime and memory complexity of 𝑂(|𝑉|𝑚), i.e., a product of the
number of nodes in a POA graph |𝑉| and the sequence length 𝑚. This example would,
therefore, require about 3 TB of RAM (assuming 32-bit integers for storing alignment
costs in three alignment state matrices).

Several tools, including SPOA [7] and abPOA [13], have been developed to address
the need for faster and more memory-efficient POA algorithms. The current state-of-
the-art, SPOA, is a reimplementation of the original algorithm, which accelerates com-
puting the dynamic programming (DP) matrix by using single-instruction-multiple-
data (SIMD) instructions available onmodern CPUs. While faster, SPOA still computes
the full DP matrix and thus does not ameliorate demands on memory usage. abPOA
additionally improves performance by applying an adaptive banding strategy to par-
tially compute the DP matrix. However, this sacrifices the guarantee of finding the
optimal sequence-to-graph alignment.

Here, we present POASTA: a fast, memory-efficient, and optimal POA algorithm
that computes many fewer alignment states than SPOA, thus enabling the construc-
tion of much larger POA graphs (Figure 2.1). It is built on top of the A* algorithm [14],
with a new POA-specific heuristic. Inspired by the recently published wavefront al-
gorithm for pairwise alignment [15], it also exploits exact matches between a query
sequence and the graph. We additionally introduce a novel superbubble-informed
[16] technique for pruning the number of computed alignment states without sacri-
ficing alignment optimality. We benchmarked POASTA against SPOA [7] on diverse
sets of bacterial housekeeping genes extracted from RefSeq and demonstrated its in-
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creased performance. Additionally, we constructed megabase-length alignments of
342Mycobacterium tuberculosis sequences, demonstrating its reducedmemory usage
and highlighting POASTA’s ability to alignmuch longer sequences than previously pos-
sible.

2.2.Methods
POA algorithms compute an MSA by iteratively computing the alignment of a query
to a directed acyclic graph (DAG) representing the MSA from the previous iteration
[4]. Instead of the original DP formulation (Supplemental Text A; Supplementary Fig-
ure A.1a), POASTA’s algorithm is based on an alignment graph (Supplementary Fig-
ure A.1b; not to be confused with the POA graph), enabling the use of common graph
traversal algorithms such as the A* algorithm to compute alignments [14, 17, 18, 19].
POASTA further accelerates alignment using three novel techniques: 1) a cheap-to-
compute, POA-specific heuristic for the A* algorithm (Figure 2.2a), 2) a depth-first
search component, greedily aligning exact matches between the query and the graph
(Figure 2.2b); and 3) a method to detect and prune alignment states that are not part
of the optimal solution, informed by the POA graph topology (Figure 2.2c). Together,
they substantially reduce the number of computed alignment states (Supplementary
Figure A.2).

Definitions and notation

To describe the algorithm in detail, we will use the following notation. A POA graph
𝐺 = (𝑉, 𝐸) is a character-labeled DAG, where nodes 𝑣 ∈ 𝑉 represent the symbols in
the input sequences, each labeled with a character from an alphabet Σ. Edges (𝑢, 𝑣) ∈
𝐸 connect nodes that are adjacent in at least one input sequence. We additionally
assume the POA graph has a special start node 𝜈with outgoing edges to all nodes with
no other incoming edges and a special termination node 𝜏 with incoming edges from
all nodes with no other outgoing edges.

The optimal alignment of a query sequence 𝑄 = 𝑞1𝑞2…𝑞𝑚 (of length 𝑚) to 𝐺 is
the alignment of 𝑄 to a path 𝜋 = 𝜈𝑣1𝑣2...𝑣𝑛𝜏, spelling a sequence 𝑅 that minimizes the
alignment cost 𝐶 (Supplementary Figure A.1a). Commonly used cost models are linear
gap penalties and gap-affine penalties. In the former, each gap position is weighted
equally, and the alignment cost is defined as 𝐶 = 𝑁𝑚Δ𝑚 + 𝑁𝑥Δ𝑥 + 𝑁𝑔Δ𝑔, where 𝑁𝑚
represents the number ofmatches,𝑁𝑥 is the number ofmismatches, and𝑁𝑔 is the total
length of gaps. The cost of each alignment operation is represented by Δ𝑚 , Δ𝑥 , and Δ𝑔,
representing the cost of a match, mismatch, and a gap, respectively. In the case of
gap-affine penalties, opening a new gap has a different (typically higher) cost than
extending an existing gap. The total cost is defined as 𝐶 = 𝑁𝑚Δ𝑚 +𝑁𝑥Δ𝑥 +𝑁𝑜Δ𝑜 +𝑁𝑔Δ𝑒 ,
with 𝑁𝑜 the number of distinct gaps and Δ𝑜 the cost of opening a new gap, and Δ𝑒 the
cost of extending a gap [20]. POASTA supports both the gap-linear and the gap-affine
cost models, though it constrains Δ𝑚 to be zero and all other costs Δ𝑥 , Δ𝑜 , Δ𝑔 , Δ𝑒 to be
≥ 0. Additionally, in case of the gap-affine model, it requires that the gap open cost Δ𝑜
is greater than the gap extension cost Δ𝑒 . For clarity, we focus on the gap-linear cost
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model; the use of POASTA with the gap-affine cost is explained in the Supplemental
Text A.2.

The alignment graph 𝐺𝐴 = (𝑉𝐴 , 𝐸𝐴) is a product of the POA graph and the query
sequence, and paths through it represent possible alignments between them. Nodes
⟨𝑣, 𝑖⟩ ∈ 𝑉𝐴 = (𝑉×{0, 1, ..., 𝑚}) represent alignment stateswith a cursor pointing to a node
𝑣 in the POA graph and a cursor to a query position 𝑖 (Supplementary Figure A.1b).
Edges in the alignment graph correspond to different alignment operations, such as
(mis)match, insertion, or deletion, and are weighted with the respective alignment
cost. Edges connect alignment states where either one (indel) or both of the cursors
havemoved ((mis)match), and the construction of edges is further detailed in the Sup-
plementary Text A.2. The lowest cost path in the alignment graph from ⟨𝜈, 0⟩ to align-
ment termination state ⟨𝜏,𝑚⟩ is equivalent to the optimal alignment of 𝑄 to 𝐺.

Optimal alignment with A* using a minimum remaining gap cost
heuristic
To compute the lowest-cost path in the alignment graph, i.e., the optimal alignment,
POASTA uses the A* algorithm [14]. For POASTA, we adapted the widely used gap-cost
heuristic for pairwise alignment to POA (Figure 2.2a) [21, 22]. This heuristic is admissi-
ble, i.e., a lower bound on the true remaining cost, thus guaranteeing that A* finds the
lowest-cost path. The intuition behind the heuristic is to prioritize alignment states in
which the length of the unaligned query sequence is similar to the path lengths to the
end node 𝜏.

To compute heuristic ℎ⟨𝑣, 𝑖⟩, POASTA scans the POA graph before alignment starts
and stores the shortest and longest path length to the end node 𝜏 for all nodes in the
graph, denoted as 𝑑min

𝑣,𝜏 and 𝑑max
𝑣,𝜏 . This can be computed in 𝑂(𝑉+𝐸) time by visiting the

nodes in reverse topological order. POASTA compares these path lengths to the length
of the unaligned query sequence 𝑙𝑟 = 𝑚 − 𝑖 and infers the minimum number of indel
edges to traverse from ⟨𝑣, 𝑖⟩ to the alignment termination ⟨𝜏,𝑚⟩ state as follows:

Definition 1 (Minimum number of indel edges)

𝑁min
𝑔 =

⎧

⎨
⎩

𝑙𝑟 − (𝑑max
𝑣,𝜏 − 1) if 𝑑max

𝑣,𝜏 − 1 < 𝑙𝑟
(𝑑min
𝑣,𝜏 − 1) − 𝑙𝑟 if 𝑑min

𝑣,𝜏 − 1 > 𝑙𝑟
0 otherwise

(2.1)

We subtract one from 𝑑min
𝑣,𝜏 and 𝑑max

𝑣,𝜏 to exclude the edge towards 𝜏.

Proof See Supplemental Text A.2. □

Combining the computed minimum number of indel edges to traverse with the
alignment costmodel, e.g., the linear gap costmodel, enables us to compute the heuris-
tic.
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Definition 2 (Minimum remaining gap cost heuristic)

ℎ⟨𝑣, 𝑖⟩ = 𝑁min
𝑔 Δ𝑔 (2.2)

Lemma 1 (Admissibility) ℎ⟨𝑣, 𝑖⟩ is admissible.

Proof The true remaining alignment cost, using linear gap penalties and assuming a
match cost Δ𝑚 of zero, is defined as 𝐶𝑟 = 𝑁𝑥Δ𝑥 + 𝑁𝑔Δ𝑔, where 𝑁𝑥 and 𝑁𝑔 represent the
number of remaining mismatches and the total remaining gap length respectively, Δ𝑥
the mismatch cost, and Δ𝑔 the gap cost.

Using Definition 3, we infer that 𝑁𝑔 ≥ 𝑁min
𝑔 . Since the mismatch cost Δ𝑥 ≥ 0, we

note that the 𝑁𝑥Δ𝑥 ≥ 0, and thus observe that

𝑁𝑥Δ𝑥 + 𝑁𝑔Δ𝑔 ≥ 𝑁min
𝑔 Δ𝑔 ⇒ 𝐶𝑟 ≥ ℎ⟨𝑣, 𝑖⟩.

ℎ⟨𝑣, 𝑖⟩ is thus a lower bound on the true remaining alignment cost. □

Depth-first alignment of exact matches between query and graph
To further speed up alignment and reduce the number of computed alignment states,
POASTA greedily aligns exact matches between the query and graph (Figure 2.2b).
This is possible because POASTA requires that the alignment cost for a match is zero
and all other alignment costs be ≥ 0. Traversing a match edge ⟨𝑢, 𝑖⟩ → ⟨𝑣, 𝑖 + 1⟩ will
always be the optimal choice if the latter state has not been visited yet since match
edges have zero cost and all other paths (requiring indels) will have higher or equal
cost [19, 15]. This implies that in the presence of an unvisited match, we can ignore
insertion edge ⟨𝑢, 𝑖⟩ → ⟨𝑢, 𝑖 + 1⟩ and deletion edge ⟨𝑢, 𝑖⟩ → ⟨𝑣, 𝑖⟩.

To implement this, POASTA combines the regular A* algorithm with a depth-first
search (DFS) component. When a state ⟨𝑢, 𝑖⟩ is popped from the A* queue, we initiate
a DFS from this state. We assess whether a successor state ⟨𝑣, 𝑖 + 1⟩ 𝑣 ∶ (𝑢, 𝑣) ∈ 𝐸 is a
match; if it is, we push it on the stack to be processed in the next DFS iteration; when
there is a mismatch, we append it to the A* queue. In the latter case, we no longer
can ignore the insertion and deletion edges, so we additionally queue insertion state
⟨𝑢, 𝑖 + 1⟩, and deletion state ⟨𝑣, 𝑖⟩. Note that, just like regular DFS, a state is removed
from the stack after all its successors (matches or mismatches) have been explored.
Thus, using DFS enables greedily aligning long stretches of exact matches, even in the
presence of branches in the graph.

Pruning alignment states not part of the optimal solution
When POASTA’s depth-first alignment finds a long stretch of matching sequence, the
corresponding path through the POA graph might traverse a superbubble [16]. A su-
perbubble (𝑠, 𝑡) is a substructure in the POA graph with specific topological features
(Supplementary Figure A.3): it is acyclic; it has a single entrance 𝑠 and a single exit 𝑡;
all paths leaving 𝑠 should end in 𝑡; and no path from “outside” the superbubble can
have an endpoint inside the bubble. The set of nodes 𝑈 on paths from 𝑠 to 𝑡 is called
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the interior of a bubble, which can be empty. In a POA graph, superbubbles represent
the alleles present at particular loci in the MSA.

POASTA exploits the fact that all paths through a superbubble have a common
endpoint, its exit 𝑡. If an alignment state ⟨𝑡, 𝑝⟩ is reached during alignment with a
particular cost 𝐶⟨𝑡,𝑝⟩, POASTA candetectwhether another yet-to-visit state ⟨𝑣, 𝑖⟩ ∶ 𝑣 ∈ 𝑈∪
{𝑠} that is part of the same superbubble, can improve over this cost. This is especially
effective when combined with the depth-first greedy alignment described above; if a
bubble exit is reached at a low cost because of a long stretch of matching sequence,
we can often prune alignment states on alternative paths through the bubble because
they can not improve over the already-found path.

To quickly retrieve topological information about super-bubbles, POASTA con-
structs a superbubble index before alignment. For every node in the POA graph, it
stores the superbubbles in which it is contained, along with the shortest and longest
path length to the corresponding superbubble exit (Figure 2.3a). For example, the red
node (node 5) in the example shown in Figure 2.3b has two paths to the superbubble
exit (node 13): one path with length 2 (blue) and one path with length 4 (green).
POASTA identifies superbubbles using the 𝑂(𝑉 + 𝐸) algorithm described by Gärtner
et al. [23]. The shortest path lengths can be computed using a backward breadth-first
search (BFS), and the longest path lengths can be computed by recursively visiting
nodes in postorder, both 𝑂(𝑉 + 𝐸) operations.

To test if a state ⟨𝑣, 𝑖⟩ should be pruned, POASTA first uses the superbubble index
to infer the range of states ⟨𝑡, 𝑗min⟩… ⟨𝑡, 𝑗max⟩ reachable from ⟨𝑣, 𝑖⟩ assuming the best-
case scenario of traversing zero-cost match edges (Figure 2.3c). For example, when
aligning a query CCGCTTTCGAGCCC to the graph in Figure 2.3b, POASTA will initially
find a long stretch of matches between the query and a path in the graph, traversing
the superbubble (4, 13) (Figure 2.3d; grey squares). In a following iteration, it tests
alignment state ⟨5, 5⟩, where node 5 is part of the same superbubble (4, 13), which is
reachedwith an alignment cost 4 (Figure 2.3d; red square). It looks up the path lengths
to the superbubble exit 𝑑min

5,13 = 2 and 𝑑max
5,13 = 4 and infers that we can reach ⟨13, 7⟩ and

⟨13, 9⟩ from ⟨5, 5⟩ with the same alignment cost of four (Figure 2.3d; blue and green
arrows and dotted squares).

POASTA can now compare this best-case alignment cost, when reached from a
state ⟨𝑣, 𝑖⟩, to the alignment costs of states that reached the superbubble exit prior,
or an implicitly opened gap from those. Implicitly opened gap costs are upper bounds
on the cost for yet-to-visit alignment states and are computed on the fly when testing
to prune a state (Figure 2.3e). For example, the green path in Figure 2.3d could reach
alignment state ⟨13, 9⟩with an alignment cost of four. However, alignment state ⟨13, 9⟩
is also reachable from the prior reached bubble exit ⟨13, 8⟩, by opening an insertion
and reaching it with a lower cost of two (Figure 2.3e). Similarly, the blue path in Fig-
ure 2.3d could reach alignment state ⟨13, 7⟩ with an alignment cost of four. This state
has not yet been reached and is also not reachable by opening a gap from a previously
reached exit. However, suppose we extend the blue path, assuming additional traver-
sal of zero-cost match edges. In that case, we reach an alignment state ⟨14, 8⟩ which
is reachable from a previously reached exit by opening a deletion. The opened dele-
tion would reach ⟨14, 8⟩ with a cost of two, lower than the cost of four when reached
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through the blue path. Since both best-case scenarios from ⟨5, 5⟩would result in higher
alignment costs compared to opened indels from a prior reached exit, POASTA infers
⟨5, 5⟩will not be part of the optimal solution and prunes it from further consideration.

In the example discussed above, the bubble exit was only reached once. Bubble ex-
its, however, can be reachedmultiple times during alignment (with varying alignment
costs). All previously reached positions should be considered when testing whether a
state can be pruned (Supplementary Figure A.4). The Supplemental Methods further
detail how POASTA prunes alignment states when the bubble exit has been reached
multiple times.

2.3. Results
Benchmarking using bacterial housekeeping genes
To compare POASTA’s speed and memory usage to the current state of the art, we
generated multiple benchmark datasets from bacterial housekeeping genes (dnaG,
nusA, pgk, pyrG, and rpoB). These genes are present in nearly all bacteria and are
commonly used to create bacterial phylogenies, requiring MSA [24]. We downloaded
all 40,188 RefSeq-complete genomes representing the breadth of bacterial diversity
and extracted genes of interest using the accompanying gene annotations. Gene se-
quences were deduplicated and coarsely clustered using single-linkage hierarchical
clustering. This resulted in multiple genus-spanning clusters. For each gene family,
we selected one or more clusters as benchmark datasets, choosing clusters with at
least 100 sequences and varying pairwise ANI (Supplemental Methods). The 13 se-
lected benchmark sets each contained 140-2,385 gene sequences, withmean sequence
lengths of 1-4kbp and pairwise ANIs of 82%-97% (Supplemental Table 1).

POASTA constructs multiple sequence alignments 4x faster than
other optimal methods
We assessed POASTA’s runtime andmemory compared to SPOA, the only other POA al-
gorithm that guarantees optimal partial order alignments [7]. We did not benchmark
against general sequence-to-graph aligners such as Astarix [19], GWFA [25], PaSGAL
[26], andGraphAligner [27] since these are unable to computemultiple sequence align-
ments and we would be unable to compare total runtime. We ran POASTA and SPOA
to compute the full MSA of the 13 selected datasets and recorded their total runtime
and memory usage.

For 12 of 13 datasets, POASTA computed the complete MSA faster than SPOA,
achieving an average speed-up of 4.1x. The highest speed-up was 9.8x (Figure 2.4a).
The one instance where SPOAwas faster corresponded to the gene set with the lowest
pairwise ANI (82.6%). POASTA’s strongest relative performance was in settings with
ANIs of 90-100% and sequences longer than 1,500 bp (Figure 2.4b,c). Furthermore,
SPOA required, on average, 2.6x more memory than POASTA (Figure 2.4d-f).

We also compared POASTA’s runtime and memory to abPOA, a popular tool for
POA that does not guarantee optimal alignment [13]. As expected due to its adaptive
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banding strategy, abPOA is faster than POASTA (3.5x; Supplementary Figure A.5a).
Surprisingly, abPOA used more memory than POASTA across nearly all benchmark
sets (Supplementary Figure A.5b), as it allocates memory for the entire matrix, even
though it only computes a fraction of it. For our dataset, we found that abPOA found
the optimal alignment the vast majority (99.8%) of the time (Supplemental Text A.2).
However, our test dataset had few large indels and adaptive banding strategies are
known tomiss the optimal alignment more frequently in the presence of indels larger
than the band size [28]. For many cases where the optimal alignment was missed in
our test dataset, abPOA produced erroneous alignments that started or ended at un-
expected nodes. This resulted in alignment costs that were lower than the global opti-
mum reported by SPOA and POASTA, which should be impossible (see Supplemental
Text A.2).

POASTA enables the construction of megabase-length POA graphs

To further test POASTA’s limits, we benchmarked its ability to align datasets with av-
erage sequence lengths of approximately 250 kbp, 500 kbp, and 1 Mbp. We extracted
subsequences from all 370 RefSeq-complete whole genome assemblies of Mycobac-
terium tuberculosis, covering a broad range of the species’ diversity (including repre-
sentatives from all known lineages; Mash-estimated average pairwise ANI of 99.3%
[29]). M. tuberculosis has relatively little large-scale structural variation, including
few large inversions or genes translocating to different locations, which POA cannot
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model and align accurately. After orienting genomes such that each started with the
gene dnaA, we truncated at specific shared genes to achieve sequences of the desired
length (Supplemental Text A.2). For the 250 kbp, 500 kbp, and 1 Mbp benchmarks,
we truncated at the genes trmB, thiE, and gltA2, respectively. Since POA expects se-
quences to be colinear, we also excluded 28 genomes with more than 15% (≥ 660 kbp)
of its complete genome inverted with respect to the canonical reference H37Rv (Sup-
plemental Text A.2).

POASTA successfully computed MSAs for the 250 kbp, 500 kbp, and 1 Mbp bench-
mark sets with manageable runtimes and memory (Table 2.1). None of these align-
ments could be completed with SPOA or abPOA, which required more memory than
the 240 GB available in the Google Cloud VM used for benchmarking (Supplemental
Text A.2). The estimated memory requirements for the 250, 500, and 1,000 kbp bench-
marks would be 0.95, 3.5, and 13 TB, respectively (assuming 32-bit integers for storing
scores).

Table 2.1: POASTA runtime and peak memory usage for three benchmark sets comprising 342M. tubercu-
losis sequences of approximately 250, 500, and 1,000 kbp.

Sequence set Runtime Max. memory

250 kbp 5.3 h 63.8 GB
500 kbp 24 h 120 GB
1,000 kbp 69 h 231 GB

We assessed computed alignments at a known drug resistance locus to validate
that theMSA correctly captured knownvariation. InM. tuberculosis, the S450L change
in the rpoB gene is one of the most common rifampicin resistance-causing mutations
[30, 31]. We first characterized codons representing the 450th amino acid of rpoB
using just the reference genomes and accompanying gene annotations. We obtained
each codon using the start position of the rpoB gene to compute the reference locus
representing the 450th amino acid of rpoB. In our set of genomes, we similarly ob-
served that the S450L mutation is the most common allele present other than the ref-
erence or wild-type allele (Table 2.2; 103 genomes have the S450Lmutation). To check
if the observed codons were correctly aligned in the POA graph, we extracted a small
subgraph surrounding the 450th amino acid of rpoB in H37Rv (Figure 2.5). While this
subgraph was obtained using H37Rv coordinates, all codons listed in Table 2.2 were
also represented as different paths in the graph, and the graph edge counts, indicat-
ing the number of genomes sharing that edge, matched the codon counts obtained
through gene annotations. POASTA thus correctly captured known variation at this
locus while the alignments were computed unaware of genes.

2.4. Discussion
In this work, we introduced POASTA, an optimal POA algorithm supporting gap-affine
penalties with increased performance. These improvements are achieved using three
algorithmic innovations: a minimum remaining gap cost heuristic for A*, depth-first
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greedy alignment ofmatches, and pruning states not part of the optimal solution using
superbubble topology. In benchmarking on short sequences (1-4 kbp), POASTA was,
on average, 4.1x faster than the current state-of-the-art SPOA [7] and used 2.6x less
memory. On longer sequences (250-1,000 kbp), POASTA generated alignments with
manageable runtime and memory, while SPOA failed.

POASTA includes several algorithmic innovations inspired by recent advances in
pairwise and graph alignment. For example, POASTA takes inspiration from the re-
cently published wavefront algorithm (WFA), a fast algorithm for pairwise alignment
[15]. WFA similarly exploits exact matches between sequences and rapidly computes
alignments by only considering the furthest-reaching points on DP matrix diagonals.
However, their DPmatrix diagonal formulation does not directly apply to graph align-
ment. In contrast to pairwise alignment, a stretch of exact matches between the query
and the graph may span multiple diagonals in the DP matrix because of branches in

Table 2.2: Diversity of codons across 342M. tuberculosis genomes representing the 450th amino acid in the
rpoB gene. In three genomes, there was uncertainty about the second base in the triplet indicated by IUPAC
code N (any base) or Y (C or T).

Codon Amino acid Count

TCG (reference) S 232
TTG L 103
TTT F 2
TNG - 2
GCG A 1
TGG W 1
TYG - 1
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the graph, complicating the definition of furthest-reaching points. While others have
introduced variants of the WFA for graphs [25, 10], none support the gap-affine scor-
ing model, which is preferred because it gives more biologically relevant alignments
[20]. As an alternative to processing only the furthest-reaching points on a diagonal,
POASTA uses its knowledge of graph topology, as stored in its superbubble index, to
detect and prune alignment states that are not part of the optimal solution, thus speed-
ing up alignment.

POASTA additionally takes inspiration from the recent read-to-graph aligner As-
tarix. Like POASTA, Astarix uses the A* algorithm for alignment, though with a differ-
ent heuristic [19, 32]. The benefit of our minimum remaining gap cost A* heuristic is
the simplicity of the required computation. All preprocessing can be done in 𝑂(𝑉 +𝐸)
time, and all the necessary data is stored in 𝑂(𝑉) additional memory. The fast compu-
tation of the heuristic is important because the POA graph is updated at each iteration.
Combined, these innovations can substantially reduce the number of computed align-
ment states, speeding up the construction of the complete MSA and enablingMSAs for
longer sequences than was previously possible.

POASTA did not improve over SPOA in every scenario—it performed less well than
SPOA in settings with high sequence diversity, where there are fewer stretches of ex-
act matches for POASTA to exploit. In this situation, POASTA must explore more mis-
match and indel states, increasing computation time. Though POASTA still computes
fewer alignment states than SPOA, its runtime can become longer because the A* al-
gorithm is less predictable and CPU cache-efficient than computing the full DP matrix
row-by-row in a contiguous block of memory. Despite POASTA’s higher compute time
per alignment state compared to SPOA, the reduction in computed alignment states
is often large enough to gain a net decrease in total runtime. To further develop our
understanding of POASTA’s performance characteristics, future work could include
determining tight upper bounds on its runtime complexity, e.g., by adapting the ar-
guments of Myers’ 𝑂(𝑛𝑑) algorithm for pairwise alignment to the sequence-to-graph
alignment problem [33].

We envision several future improvements to the POASTA algorithm. POASTA could
be expanded to support dual gap-affine penalties, enabling computing improved align-
ments in the presence of large indels [34]. Bi-directed variants of the A* algorithm,
where the search for the shortest path is started from both the start and the end,
could substantially improve POASTA’s runtimewith respect to sequence diversity [35].
A more informative A* heuristic, e.g., the recently published seed-heuristic [32] or
one inspired by A*PA2 [36], could speed up alignment by improving estimates of the
remaining alignment cost, improving the prioritization of alignment states to visit.
Other strategies could be to utilize GPUs since massively parallel versions of A* exist
[37]. Finally, we could combine the superbubble index with the Gwfa algorithm [25]
to link diagonals across nodes and increase power to prune suboptimal alignment
states.
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2.5. Conclusions
We present POASTA, a novel optimal algorithm for POA. Through several algorithmic
innovations, POASTA computed the completeMSA faster than existing tools in diverse
bacterial gene sequence sets. It further enabled the creation of much longer MSAs, as
demonstrated by successfully constructing MSAs from M. tuberculosis sequence sets
with average sequence lengths of up to 1 Mbp. The algorithms and ideas presented
here will accelerate the development of scalable pangenome construction and analy-
sis tools that will drive the coming era of genome analysis.
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Abstract
Human-associated microbial communities comprise not only complex mixtures of
bacterial species, but also mixtures of conspecific strains, the implications of which
are mostly unknown since strain level dynamics are underexplored due to the diffi-
culties of studying them. We introduce the Strain Genome Explorer (StrainGE) toolkit,
which deconvolves strain mixtures and characterizes component strains at the nu-
cleotide level from short-read metagenomic sequencing with higher sensitivity and
resolution than other tools. StrainGE is able to identify strains at 0.1x coverage and
detect variants for multiple conspecific strains within a sample from coverages as low
as 0.5x.

3.1. Background

H UMAN-associated microbial communities include complex mixtures of bacterial
species. Many of these species are renowned for their genomic and phenotypic

plasticity. For example, strains of Escherichia coli share a core genome representing
only about half of their genes [1] and cause distinct disease including diarrhea and
urinary tract infections, or potentiate tumorigenesis, while other strains are able to
co-exist with their host without causing overt illness [2, 3, 4]. Multiple distinct strains
of the same species, often from genetically dissimilar phylogroups, frequently coexist
within a single human gut community [5, 6], the implications of which are mostly
underexplored due to the difficulties of studying strain-level variation from complex
community samples.

While culture-based approaches have been aworkhorse for dissecting strain-level
diversity, these approaches can be slow and unfaithful to the true representation of
strains, due to culturing bottlenecks that limit observed diversity, as well as the po-
tential for evolution during culture [7]. Whole metagenome shotgun sequencing ap-
proaches offer less perturbed views of strain-level diversity, but require specialized
computational tools. However, most current strain-level metagenomic data analytical
tools (reviewed in Anyansi et al. [8]) were not designed to work at the low coverages
typically found for many clinically relevant organisms inmetagenomic samples, such
as E. coli in the human gut [5]. Existing tools that aim to disentangle within-species
strainmixtures include BIB [9], StrainEst [10], and DiTASiC [11], as well as the broader
taxonomic profiling tools like Kraken2 [12] and GOTTCHA [13] when given an appro-
priate database. These tools rely upon a precomputed database of reference genomes,
from which the best matches are reported for a sample (or set of samples). Thus, out-
put from these tools is dependent upon database granularity and does not distinguish
between distinct strains matching the same reference. Another class of tools char-
acterizes and tracks strains based on single nucleotide variant (SNV) profiles along
a single reference or a set of marker genes, including MIDAS [14], StrainPhlan [15]
and ConStrains [16]. In the case of strain mixtures, MIDAS and StrainPhlan do not
untangle the SNVs coming from different strains, while ConStrains attempts to link
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SNVs with similar allele frequencies, though linking SNVs requires high strain cover-
age to be accurate [16, 17]. A third class of tools aims to recover strain-level varia-
tion after de novo metagenomic assembly, including DESMAN [17], inStrain [18] and
STRONG [19]. Assembly approaches require higher sequence coverage than typically
achieved for lower abundance members of a community. To our knowledge, none
of these computational approaches work robustly at low coverages (<10x), accurately
disentangle mixtures of same-species strains, and distinguish similar strains at the
nucleotide level.

In order to be able to disentangle mixtures of low-abundance, clinically impor-
tant strains within metagenomic data, we developed the Strain Genome Explorer
(StrainGE) toolkit. In an advance over related tools, StrainGE works at exceptionally
low sequence coverages (from 0.1x) to identify strains in a sample, and allows the
user to characterize and compare strains across samples at the nucleotide level, with
high resolution. We have extensively benchmarked StrainGE on synthetic data and
compared it against other state-of-the-art strain detection tools. We also applied
StrainGE to multiple clinical human gut metagenomic datasets, demonstrating
StrainGE’s ability to glean insights into biological systems that previous tools could
not, including observing previously undetected persistence of low-abundance strains
across time. Herein, we applied StrainGE to the analysis of clinically important strains
of E. coli and Enterococcus, but StrainGE can be broadly applied to all community
assemblages where same species bacterial strain dynamics are of interest.

3.2. Results
Strain Genome Explorer (StrainGE) toolkit

StrainGE is a toolkit for strain-level characterization and tracking of species (or gen-
era) of interest from short read metagenomic datasets, tuned specifically to capture
low abundance strains where data are scant. StrainGE has two key components:
Strain Genome Search Tool (StrainGST), and Strain Genome Recovery (StrainGR).
StrainGST sensitively reports reference genome(s) from a database that are most
similar to the strain(s) in a sample. StrainGR analyzes short read alignments to a
reported reference genome(s) to identify single nucleotide variants (SNVs) and large
deletions (i.e., gaps in coverage) relative to the reference. Though StrainGST can
be used as a standalone tool, the StrainGE tool suite, including StrainGR, enables
sensitive nucleotide-level comparison and tracking of strains across multiple samples
and provides insights into potential functional variation among individual strains.

In brief, StrainGST builds a database of high-quality reference genomes (e.g., Ref-
Seq assemblies) from a species or genus of interest (Figure 3.1a), filtering them to re-
move highly similar genomes using a k-mer based clustering approach, with a tunable
threshold (Table B.1). StrainGST’s default database clustering threshold (0.9 Jaccard
similarity) corresponds to an approximate ANI of 99.8% [20], which determines the
minimum distance between reference genomes. To identify a similar reference(s) to
the strain(s) within a sample and to estimate its relative abundance, StrainGST com-
pares the k-mers in the sample to those of the database reference genomes (Figure 3.1)
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Figure 3.1: StrainGE is a toolkit to track, characterize and compare low-abundance strains inmetagenomic
samples. (a) Overview of StrainGE pipeline. StrainGST uses a database of high quality reference genomes
to select those most similar to strains present in a metagenomic sample. StrainGR further characterizes
SNVs and gaps that differ between references selected by StrainGST and the actual strain present in the
sample. (b) At each iteration, StrainGST scores each reference strain by comparing the k-mer profile of
the reference to the sample k-mers, reporting the reference closest to the highest abundant strain in the
sample. The k-mers in the reported reference are removed from the sample and the process is repeated
to search for lower-abundance strains, until there are insufficient k-mers. (c) StrainGR uses a short read
alignment-based approach to characterize variation (SNVs and gaps) between the reference(s) identified by
StrainGST and the metagenomic sample. Regions shared between the concatenated genomes (grey shaded
areas) are detected and excluded from variant calling. Alleles are classified as “strong” or “weak”. After
applying rigorousQCmetrics, positions in the reference are classified as i) “reference confirmed” (light grey;
a single strong reference allele); ii) “SNV” (red; a single strong alternative allele); or iii) “multi-allelic” (blue;
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the reads) is classified as “reference confirmed” because only the reference allele is considered strong at
that position. The “callable” genome is defined as all positions within the reference with at least one strong
allele call.
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and iteratively ranks each reference using three key metrics, similar to QuantTB [21]:
1) the fraction of reference k-mers present in the sample, 2) the fraction of sample k-
mer counts explained by a reference, and 3) the evenness of the distribution of shared
k-mers along a reference. If the resulting score is above a tunable threshold, the ref-
erence strain is reported as present in the sample.

StrainGR was designed to complement StrainGST by providing a more detailed
view of the nucleotide- and gene-level differences between a strain in a sample and
its closest reference, which can be used to compare across samples having strains that
match the same reference. StrainGR analyzes alignments of metagenomic sequenc-
ing data to each StrainGST predicted reference (Figure 3.1c). To ensure accurate SNV
calls while maintaining sensitivity at low coverage, StrainGR employs stringent qual-
ity thresholds and heuristics to filter spurious alignments and reduce the number of
incorrect calls.

To separate SNVs belonging to different strains, StrainGR creates a concatenated
set of reference genomes, containing all references predicted by StrainGST in a sam-
ple or set of samples. It uses this reference set to align metagenomic reads and call
variants. While close reference genome(s) generally result in more accurate align-
ments and variant calls [22], StrainGR still provides meaningful relationships when
the reference is more distant, as would be the case in a smaller constructed database
or with less well-studied organisms (Supplemental Text B.3; Figure B.1-B.4). To pre-
vent assigning alleles incorrectly, StrainGR only calls variants in regions unique to a
single reference by filtering out ambiguously aligned reads. In cases where StrainGST
has identified distinct but closely related strains across samples, StrainGR can per-
form another, coarser round of reference clustering prior to concatenation in order
to increase the amount of unique sequence for variant calling.

Variant calls can then be used to compare strains across samples. StrainGR com-
pares positionswithin the “callable genome”, or the set of positionswith any reference
or alternative allele supported by at least two good reads and >10% of the alignment
pileup (Figure 3.1c). To perform a comparison, only “common callable” positions are
considered, which represent the subset of the callable genome for a given reference
that is shared by two samples. Strain relationships can be assessed using two keymet-
rics: i) the Average Callable Nucleotide Identity (ACNI), or the percentage of common
callable positions where both samples have a single identical base call; and ii) a “gap
similarity” metric, as patterns of large deletions are often conserved between closely
related strains, which can provide an orthogonal metric of strain similarity [23]. The
ACNI and gap similarity values that define two samples as containing the same “strain”
depend on the research question [7]. For the purposes of thismanuscript, we consider
two samples to contain the same strain if ACNI is ≥ 99.95%, which was based on our
benchmarking of in silico E. coli spiked metagenomes. This threshold is stricter than
our initial database clustering threshold of 99.8%, as samples matching the same ref-
erence in the database can contain different strains. As different studies may neces-
sitate different strain definitions, we have intentionally made these thresholds easily
tunable. With StrainGST able to accurately report close references to strains at cov-
erages as low as 0.1x, and StrainGR able to track and characterize strains from 0.5x
coverage, StrainGE enables sensitive analysis of very low-abundance strains, such as
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typical E. coli relative abundances of <0.1% within a 3G metagenomic sample.

Benchmarking StrainGE on Escherichia
StrainGE was designed to be broadly applicable across different bacterial genera and
species, including less well-studied species lacking numerous high quality reference
genomes (Supplemental Text B.3). For benchmarking, we focused on E. coli, an evolu-
tionarily and functionally diverse species. Despite their importance to human health,
E. coli are typically found at low (<1%) relative abundance in diverse strain mixtures
in human guts [5]. We first used StrainGST to construct an Escherichia-specific ref-
erence database by downloading all available complete Escherichia assemblies from
NCBI RefSeq (929 assemblies, July 2019; Materials andMethods; Additional File 2). Be-
cause plasmids readily transfer between different genetic backgrounds of the same
and/or different species (Supplemental Text B.3) [24], scaffolds labeled as plasmid,
or those <1 Mbp were removed. After using the default clustering threshold corre-
sponding to 99.8% ANI, the resulting StrainGST database contained 361 complete
Escherichia chromosomes, comprising 341 E. coli and Shigella chromosomes repre-
senting all eight phylogroups [1], as well as 20 chromosomes from other Escherichia
species.

StrainGE can accurately characterize strains and approximate ANI at coverages
as low as 0.1x

To assess StrainGE’s ability to detect and characterize strains, we first benchmarked
each of StrainGE’s components, StrainGST and StrainGR, individually. To benchmark
StrainGST, we first used in silico constructed metagenomes that were spiked with se-
quences of known Escherichia strains at varying relative abundances. We compared
StrainGST’s ability to identify the correct close reference to that of two similar tools
that depend on reference databases, BIB [9] and StrainEst [10]. While the databases
used for StrainGST and StrainEst were identical, BIB’s database construction method
did not scale; thus, we used a smaller databasewith 20 genomes. StrainGST performed
as well as, or better than, the other tools across all scenarios tested, including mixes
of up to 3 strains at unequal abundances or 4 strains of equal abundance, and stood
out strongly when strains were at very low abundance (Supplemental Text B.3; Fig-
ure B.5).

To further benchmark these three tools on real sequencing data of known strain
composition, we created and sequenced amock community containing approximately
99% human DNA and 1% E. coli DNA, representing a mixture of four distinct, previ-
ously sequenced strainswith fully finished genomesmixed in unequal (approximately
80:15:4.9:0.1) relative abundances (Materials and Methods). StrainGST resolved the
composition of this in vitromock communitywithout error (Table 1), while other tools
reported two or more false positives (Table B.2).

To benchmark StrainGR’s ability to call variants (SNVs and large deletions, or gaps),
we used another set of Escherichia-spiked metagenomes, with reads simulated from
in silico mutated reference genomes (99.9% ANI to reference; 5,000 SNVs). StrainGR
accurately called SNVs and large deletions, for both single strain and mixture sam-
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ples, providing key information to assess whether two samples shared a strain via
the ACNI metric, StrainGR’s approximation of ANI, and gap similarity (Supplemental
Text B.3; Figure B.6). To assess the accuracy and robustness of ACNI, we generated
spiked metagenomes similar to those described above, but we varied the number of
SNVs introduced in silico (100%-99.9% ANI to reference; 0-5,000 SNVs) and used dif-
ferent metagenomic background samples, some with other E. coli strains present (Ta-
ble B.4). Identical strains in different samples had high ACNI and gap similarity (Fig-
ure 3.2a) and StrainGR’s ACNI across all strain pairs correlated strongly with true ANI,
even though ACNI is based on unique regions, and ANI is based on the entire genome
(Figure 3.2b). In this benchmark, the optimal ACNI threshold to classify two samples as
having the same strain was 99.98% (Figure B.7), which is likely higher than the value
we would expect from real data due to the artificially uniform distribution of SNVs in
our synthetic benchmarks, and that the references used in benchmarking were also
present in the StrainGST database. For analysis of real data in this manuscript, we
chose a slightly lower value of 99.95%.

StrainGE was the most accurate at detecting shared strains at coverages as low
as 0.5x

Having demonstrated that both StrainGST and StrainGR worked well, we aimed to as-
sess StrainGE’s complete pipeline to track strains across samples, including in strain
mixtures. We compared StrainGE’s ability to track strains to two recent, highly cited
strain-tracking tools, MIDAS [14] and StrainPhlan [15]. Although MIDAS and Strain-
Phlan require high strain coverage to run to completion (5x and 10x, respectively), we
were able to use manual tuning to allow these tools to accommodate our lower cov-
erage benchmarks (Materials and Methods). We excluded ConStrains [16] because of
its high coverage requirements which could not easily be tuned [16, 17]. To assess the
sensitivity of these tools to distinguish between similar strains, we generated pairs
of spiked metagenomic samples, each containing one or more Escherichia strains at
0.1x-10x coverage. Similar strain pairswere derived from the same reference genome,
but with a different set of 5̃,000 random SNVs introduced in silico into each strain’s
genome (Figure 3.3a-b). This resulted in each strain having 99.9% ANI to the refer-
ence and each strain pair having 99.8% ANI to one another. This identity level should
result in strain pairs matching the same StrainGST reference but still distinguishable
by StrainGR.

At 10x coverage, MIDAS and StrainPhlan performed comparably using tuned (Fig-
ure 3.3) and default (Figure B.8) settings. While StrainGE and MIDAS performed well
across all scenarios at high coverage, StrainPhlan performed poorly onmixes because
it only reported a single SNV profile for each sample. For lower coverage scenarios,
StrainGE consistently outperformed themanually tuned versions ofMIDAS and Strain-
Phlan (Figure 3.3). For single strain samples, StrainGE perfectly matched strain pairs
down to 0.1x coverage, withMIDAS performing comparably (Figure 3.3c). StrainPhlan
performed marginally at 1x coverage, and still was unable to run to completion at
coverages lower than 1x. For simple mixtures (Figure 3.3d), only StrainGE andMIDAS
correctly matched most pairs, because StrainPhlan was unable to disentangle mixes.
StrainGE was the only tool that was able to generate results across the whole range of
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Figure 3.2: StrainGR discriminates between highly similar strains and reports ACNI which strongly corre-
lates with true ANI. (a) For all synthetic sample pairs with the same StrainGST reference called, the Jaccard
gap similarity index and pairwise ACNI are plotted. Circle size indicates the percentage of the reference
genome that was callable across both strains being compared. Red circles indicate comparisons between
identical strains. (b) For all pairs, the true ANI between spiked isolates is plotted against the ACNI, as es-
timated by StrainGR. The dashed line indicates parity between these metrics. Pairs of strains could have
0-10,000 SNV differences.
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Figure 3.3: StrainGE is the only tool that can detect strain sharing at coverages as low as 0.5x. (a) Depic-
tion of how synthetic Escherichia genomes were generated from randomly selected NCBI RefSeq genomes
to create sets of closely related strains (e.g., A1/A2 and B1/B2) for spike in experiments. (b) Depiction of
how spiked metagenomes were created using synthetic genomes from (a). Each circle represents a spiked
metagenome. The color of the circle indicates which synthetic strain was included: single color circles
indicate spiked metagenomes containing a single synthetic strain, and two color circles indicate spiked
metagenomes containing two synthetic strains mixed at equal proportions. (c-e) Precision-recall curves
for each tool and coverage 0.1x-10x, when given the task to detect which sample pairs contain identical
strains. The area under the curve (AUC) is depicted as a heatmap below. The “successful comparisons” bar
plot indicates the percentage of sample pairs for which a comparison was possible (i.e., tools ran to comple-
tion for both samples). (c) Limiting to single-strain samples from distinct references. (d) Including samples
with two strains, but limited to strains from distinct references. (e) Including samples with closely related
strains.
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Table 3.1: StrainGST was the only tool that correctly identified the known composition of a mock commu-
nity.

Predicted strains
True strain
(phylogroup) StrainGST StrainEst BIB

E. coli SEC460
(A) 3 3

E. coli K-12 GM4792
99.24%

E. coli UTI89
(B2)

E. coli UM146
99.95%

E. coli UM146
99.95%

E. coli H105
98.49%

E. coli Sakai
(E)

E. coli 149
99.89%

E. coli 149
99.89%

E. coli 108
99.97%

E. coli 24377A
(B1) 3 3

E. coli S40
99.01%

7 E. coli APEC IMT5155
99.51%

7 S. flexneri G1663
97.97%

7 E. coli RM14721
99.44%

7 E. coli LHM10-1
98.12%

7 E. coliMSHS 133
97.67%

7 S. dysenteriae 80-547
97.71%

7 E. coli IMT16316
97.39%

7 S. dysenteriae
ATCC 12039
97.08%

A check mark indicates that the exact strain was present in our database and correctly identified. A strain
name indicates that the exact reference was not in the reference database, but the closest available refer-
ence was correctly identified (along with its approximate ANI to the actual strain). A strain name with an
“X” indicates a false positive strain identified by the tool that was not present in the mock community. Per-
centages near strain names indicate approximate ANI to the closest true strain. Relative abundances for
each strain are listed in Table B.2.

coverages, scoring almost perfectly down to the lowest tested coverage of 0.1x. When
we included samples containing very closely related pairs (Figure 3.3e), StrainGE and
MIDAS performed well down to 0.5x coverage, but StrainPhlan could not distinguish
between closely related strains, even at 10x coverage, likely due to its reliance on
marker genes which comprise only a small fraction of the genome. Whereas StrainGE
relied on a mean callable genome of 74% ± 13% (at 10x coverage), StrainPhlan relied
on marker genes which only covered on average 1.4% ± 0.3% of the references.

StrainGE achieved this high sensitivity with comparable runtime to MIDAS and
StrainPhlan, and its memory usage was well within the range of modern cluster sys-
tems or powerful personal computers (Figure B.9). Another key advantage of StrainGE
over the other tools is its ability to link a strain in a sample to its specific close reference
genome reported by StrainGST, which places an observed strain within the known
phylogenetic structure of the reference database (Figure B.10). In contrast, the SNV
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profiles outputted by StrainPhlan (based on marker genes) or MIDAS (compared to a
single built-in E. coli reference) do not offer convenient phylogenetic placement.

In real metagenomic data, StrainGE identifies low-abundance
strains and can track strains across samples, including in strain
mixtures

StrainGE can identify lower abundance instances of persistent strains previously
undetectable by other tools

In order to assess StrainGE’s utility to characterize strains from real-world samples,
we examined its performance, using default parameters with our Escherichia refer-
ence database, on a previously published metagenomic dataset of 27 longitudinally
collected stool samples from a patient with Crohn’s disease, upon which MIDAS
was run to delineate E. coli strains [25]. MIDAS identified seven dominant “strain
types” (“ST1” - ”ST7”) that varied in abundance over time. Each belonged to a distinct
multi-locus sequence type (MLST) and represented one of five E. coli phylogroups.
StrainGE showed good concordance with results from MIDAS for all high-abundance
strains (>10% abundance) (Table 3.2). For the two calls that disagreed, our StrainGST
database lacked representatives for the two MLSTs reported by MIDAS. However,
StrainGE selected the next closest reference, which we confirmed by comparing the
whole genome sequence from a cultured representative of ST1 [25] to our reference
database.

StrainGST also identified seven distinct strains missed by MIDAS (Figure 3.4a).
While the majority of these were secondary strains found to coexist with a dominant
strain predicted by MIDAS, StrainGST also predicted strains at timepoints where
MIDAS called none (time points 6-10). In most of these cases, the strains were at
�1% relative abundance and were also detected by MIDAS at higher abundance
in other time points (e.g., ST3; dark green), lending credence to their existence in
these samples and suggesting that some strains were more persistent over time than
previously predicted (Figure 3.4a).

We ran StrainGR on all datasets using a concatenated reference including 10 out
of 14 total references reported by StrainGST to ensure each genome had at least 20%
unique genome content (Materials and Methods; Figure 3.4b). SNV and gap patterns
predicted by StrainGR showed that the majority of strains matching the same ref-
erence had strikingly high pairwise ACNI (>99.96%) and gap similarity (>0.97) (Fig-
ure 3.4c,d), which were within the range of those of same-strain sample pairs in our
simulations (Figure 3.2a). However, StrainGR results from strains matching the E. coli
118UI (dark green) reference stood out. While 118UI-like strains from samples 3 and
4 had ACNI and gap similarity relationships that were on par with what we observed
in same-strain simulations, all other comparisons fell outside of this range, suggesting
that this individual carried a mixture of 118UI-like strains in their gut over time that
were closely related, but not necessarily the same with respect to gene content and
single nucleotide variation (Figure B.11).
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Figure 3.4: StrainGE identified previously undetected low-abundance strains in longitudinal samples from
an individual with Crohn’s disease. (a) Stacked barplot showing the relative abundances of StrainGST calls
for each of 27 longitudinal stool metagenomes from Fang et al. [25]. Circles indicate the strain detected in
Fang et al., colored by its StrainGST counterpart and labeled using the ST designations (ST1-ST7) assigned by
Fang et al. Small grey circles indicate sampleswhere no strainwas predicted in Fang et al.; these are labeled
with “n.d.” (b) Single-copy core phylogeny of the 14 StrainGST reference genomes with close matches to
strains across samples. Colors are based on the reference’s clade; see column “Clade”. “Collapsed” column
indicates which reference was selected as a representative for subsequent StrainGR analysis, when two
or more references shared more than ∼99.2% ANI. (c) For all sample pairs matching the same collapsed
reference, the Jaccard gap similarity index and pairwise ACNI are plotted. Circles indicate comparisons
where the predicted reference was the same before collapsing, and diamonds indicate cases where the
predicted reference before collapsingwas different. Sizes of shapes indicate the percentage of the reference
genome that was callable across both strains being compared. Filled in shapes indicate whether this strain
instance was undetected by MIDAS. Dark green circles are labelled with the timepoints compared. (d)
Zoomed in view of the upper right corner of figure c).



3.2. Results

3

59

Table 3.2: The strains predicted by MIDAS match the dominant strains predicted by StrainGE.

Strain
(timepoints)

MIDAS StrainGE

MLST E. coli
phylogroup MLST E. coli

phylogroup
Most abundant

strain

ST1 (1) 95 B2 95 B2 PA45B*
ST2 (2) 1629† E 1011 E Santai
ST3 (3-4) 69 D 69 D 118UI
ST4 (11-18) 58 B1 58 B1 D5
ST5 (19-22, 27) 131 B2 131 B2 MVAST0167
ST6 (23, 24) 409† A 1408 A AR_0061
ST7 (25, 26) 1727 B1 1727 B1 2011C-3911

* The actual strain corresponding to ST1 (3_2_53FAA) was whole-genome sequenced by Fang et al. [25].
PA45B and 3_2_53FAA share 99.9% average nucleotide identity based on whole-genome comparative ge-
nomics analysis.
†MLST profilewas not represented by any reference genome in the StrainGE database. StrainGST predicted
the closest reference within the StrainGE database, which was within the same phylogroup.

StrainGE accurately and sensitively identified a low-abundance, persistent strain
of E. coli in longitudinal stool samples from a woman with recurrent urinary tract
infection

Although the results of StrainGE on the Fang et al. [25] dataset highlighted its ability
to resolve strains present at low abundance, the overall E. coli relative abundances
in these samples were significantly higher (median 7.9%; range 0.05%-27%) than
those typically seen in the human gut. Thus, we also tested StrainGE on 12 stool
metagenomes having more typical E. coli relative abundances (median 0.55%; range
0.006%-17.4%), which originated from a single individual with a history of recurrent
urinary tract infection (rUTI) over the span of a year. Given that the gut is a known
important reservoir for UTI-causing E. coli [26], it was of interest to trace gut E. coli
strain dynamics and their relationship with UTI.

StrainGST detected a total of five distinct strains of E. coli (Figure 3.5a), including a
recurrent strain detected in over half of samples. The persistent strain, an E. coli 1190-
like strain from phylogroup D, had amedian relative abundance of only 0.6% (range 0-
1.2%) andwas detected even in samples that were composed ofmultiple E. coli strains,
including at very low (20-fold less) abundance relative to another strain (Figure 3.5a).
Despite its low abundance, we were able to confirm that all E. coli 1190-like strains
had extremely high ACNI (>99.95%) and gap similarity (>0.98) (Figure 3.5b), in line
with the identities observed for same-strain benchmarking (Figure 3.2a), suggesting
that this strain, also the causative agent of this individual’s rUTI, persisted long-term
in their gut.

Further, StrainGR output enabled us to look closely at the locations and identities
of SNVs and genes within gaps relative to the reference. For example, we consistently
identified a large gap across all time points encoding a prophage found in the original
reference, but apparently lacking in the E. coli 1190-like strain in this individual (Fig-
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Figure 3.5: StrainGE detected a long-term, persistent strain of E. coli in a woman with rUTI. (a) Relative
abundances predicted by StrainGE are shown for all E. coli strains detected. (b) For all sample pairs contain-
ing a strain matching to E. coli 1190, plot shows pairwise ACNI and gap similarity scores. Size of the circle
indicates the percentage of the common callable genome. (c) Zoom in on a region of the chromosome of E.
coli 1190. Grey shaded areas indicate “callable” regions, where StrainGR had enough read data to make a
strong allele call. Predicted gaps are shaded black. The blue line represents the number of SNVs per 1,000
bp, observed in at least 3 samples. (d) Further zoom-in representing a region where StrainGR identified a
nonsynonymous SNV that was consistently detected across all 1190-like strains.
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ure 3.5c). Using StrainGR output that included both strong and weak variant calls (see
Figure 3.1c for strong vs. weak calls; Materials and Methods), we were able to track
839 variant sites across samples, where the corresponding allelewas strongly called in
at least one sample, and weakly called in at least five samples (e.g., a nonsynonymous
SNV in the gene cydC; Figure 3.5d). At each of the 839 variant sites, the called allelewas
identical across all time points, except for three sites where another secondary weak
allele was called, further supporting the persistence of a single UTI-causing strain.

StrainGE accurately recapitulated known strain-level diversity frommetagenomes
and traced strains from mother to child

To demonstrate StrainGE’s applicability to other bacterial genera, we selected a previ-
ously published dataset investigating the impact of mode of delivery on the infant gut
microbiome, including transmission and carriage of opportunistic pathogens from the
Enterococcus genus [27]. Shao et al. longitudinally followed 596 babies (and 175moth-
ers) by collecting stool samples that were thenwholemetagenome shotgun sequenced
and cultured for pathogens, including 451 enterococci that were then whole genome
sequenced. This dataset allowed us to evaluate StrainGE’s ability to report on i) the
relationships between enterococcal strains predicted directly from metagenomes in
comparison to those calculated from the genomes of cultured isolates, and ii) mother
and child strain sharing. Furthermore, this dataset allowed us to evaluate StrainGE’s
ability to predict and compare strains across samples using a sparser database, as
there were fewer than a third as many RefSeq complete Enterococcus genomes than
for Escherichia.

We built a 163-member StrainGST database representing references from 80 E. fae-
cium, 39 E. faecalis and 44 other enterococcal species (Materials and Methods; Addi-
tional File 2) and ran StrainGE on all 1,679 stool metagenomes. StrainGE identified
strain relationships that were very similar to those Shao et al. obtained using bacte-
rial isolate comparisons. For example, the species distributions were roughly similar
(Table B.3) and nearly half (42%) of references predicted by StrainGST belonged to
one of the five major E. faecalis lineages previously identified (Figure 3.6a). The pair-
wise ACNI distributions for strains matching these references mirrored the tree topol-
ogy (Figure B.12), and across the whole data set pairwise ACNI correlated strongly
with ANI between corresponding isolates (Pearson’s r=0.96; Figure 3.6b; Materials and
Methods).

Shao et al. used StrainPhlan [15] to predict instances of mother-to-child strain
sharing, including 7 E. faecalis and 2 E. faecium transmission events. Though no
direct comparison of transmission predictions could be made (sample names were
not reported), we hypothesize that StrainGE’s predictions would be more accurate
since StrainPhlan’s marker genes covered only 3.6% ± 1.7% of reported Enterococcus
genomes, while StrainGE’s callable genome was on average 39% ± 33%. Using
StrainGE, we identified 17 mother-baby pairs for which StrainGST reported the
same reference, of which six had sufficient common callable genome to calculate
ACNI. Three pairs had ACNI <99.7% and three had ACNI near 100%, including an
example at 99.999% (Figure 3.6c) suggesting that there were at least three instances of
mother-baby strain sharing that we could confidently call based on our “same strain”
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Figure 3.6: StrainGE recapitulates strain-diversity among bacterial isolates using metagenomic data only.
(a) Single-copy core phylogenetic tree of E. faecalis isolates from the UK Baby Biome Study (UK BBS) (𝑛 =
282) in the context of isolates from other public UK hospitals (𝑛 = 168), human gut microbiota (𝑛 = 28),
or other environmental sources (𝑛 = 27). Five major lineages were identified, represented by ST16, ST179,
ST30, ST191 and ST40. Tree republished with permission from Shao et al. [27]. (b) Scatterplot relating
ANI between isolates (x-axis) to StrainGE’s computed ACNI between metagenomes from which the isolates
were derived (y-axis). (c) Barplot showing StrainGST predicted references and their relative abundances
(y-axis) for strains present inmetagenomic samples from amother and her child taken over several days (x-
axis). Strains matching the same reference are shown in the same color. Lines connecting bars are labelled
with StrainGR computed ACNI. (d) For all pairs of samples with a strain close to either E. faecium DMEA02
(yellow) or E. faecalis SF28073 (blue), ACNI (y-axis) and gap similarity are plotted (x-axis). Circles with a
black border represent pairs of samples from the same subject (or its mother). Size of the circle represents
the percentage of common callable genome.
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ACNI threshold of 99.95%. Comparisons of strains matching the same reference from
other mothers or babies revealed that they generally had considerably lower ACNI
and gap similarity (Figure 3.6d).

3.3. Discussion
The ability to discern strain-level variation from primary specimens—where the
species of interest may be at low abundance—can transform our understanding of
species populations, ecologies, and transmission patterns. We have shown that our
novel tool suite, StrainGE, is easy to use for ultra sensitive detection of strains in
primary specimen metagenomes. StrainGE uses both k-mer and alignment analysis
to characterize sample strain genomes, including their i) closest matching reference,
which places them phylogenetically, ii) relative abundance, and iii) estimated ANI
(ACNI) to other strains, which can be achieved even at very low coverage levels, with
more detailed information about specific variants and cross-sample comparisons
becoming available as coverage increases. StrainGE can provide nucleotide level
resolution for individual bacterial strains or strain mixes that are present at 0.1%
relative abundance e.g., 0.5x coverage for a 5Mb genome within 3Gb of sequencing
reads. StrainGE provides a substantial advance over previously published tools,
which i) were not designed to work at these low coverages [16] ii) report only overall
consensus SNV profiles for a mixture [14, 15], or iii) do not offer nucleotide-level
resolution [9, 10, 11].

In addition to demonstrating good performance on an extensive array of bench-
marking samples, we showed that StrainGE provided insights into the strain-level dy-
namics of bacteria in three real-world sample sets. For a patient with Crohn’s disease,
StrainGE identified co-existing strains and strains at timepoints missed by another
popular strain-tracking tool. StrainGE similarly was used to identify the long-time gut
carriage of a low abundant UTI-causing E. coli strain, which we could track via stereo-
typical gene absence and SNP patterns, reported by StrainGE, that could be discerned
evenwhen other strains were present. Finally, usingmetagenomic data from primary
stool specimens, StrainGEwas able to recapitulate relationships among E. faecalis pre-
viously observed using whole genome sequencing of isolates and phylogenetic recon-
struction, as well as provide strong evidence for transmission of E. faecium strains
from mothers to their children. For this vignette, we used an ACNI threshold that we
empirically determined to represent the same strain from in silico experiments. How-
ever, the measures that define “same” versus “different” strains will depend upon
the research question and the species being evaluated [7]. StrainGE provides a com-
pendium of outputs for assessing relationships between strains in detail, which can
be used to evaluate appropriate thresholds for any system.

While we demonstrated StrainGE on a narrow set of bacterial species, StrainGE
is designed to be broadly applicable to any genus or species, with a wide range of
database sizes. While a dense database is generally preferred because the accuracy
of variant calls improves with genetically closer references [22], our benchmarking
showcased that StrainGST and StrainGR combined can return accurate information
about strain relationships, even when few reference genomes are available. Further-
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more, the default database clustering threshold of 99.8% is tunable to adjust for the
number of references StrainGST considers since, for example, a very dense database
could cause StrainGST to report different, but closely related references for two sam-
ples containing the same strain. To balance these two factors, we included a tool
“prepare-ref” in the StrainGE suite, which performs an additional coarser round of
clustering of StrainGST-determined references for a set of samples in order to select a
smaller set of representatives prior to running StrainGR. This step increases the total
amount of unique content across references to be considered in ACNI calculations and
enables direct comparisons of more strains with respect to their nucleotide and gap
similarities.

While StrainGST and StrainGR were designed to work together, both tools can
work in isolation and provide useful stand alone output. StrainGST with a dense
database can provide fast phylogenetic placement of strains. Though not shown here,
this also works on whole genome sequence data from bacterial isolates, providing
a quick snapshot of phylogenetic relationships without needing to perform reference
alignments or othermore time-consuming phylogenomic pipelines. StrainGR could be
usedwithout StrainGSTwhengoodquality assemblies are available for strains present
within a mixed community dataset. For example, long read sequencing and assembly
of isolates or even whole metagenomes from a select number of time points could
provide high quality substrates for StrainGR evaluations of strains in short read time
series data. Though competitive and filling a niche left behind by other strain-tracking
tools, StrainGE has several limitations. It evaluates the relationships between strains
using only unique regions of reference genomes, is unable to detect new genes that
occur in strain genomes that are not present in its closest matching reference, and
currently only works with Illumina data. Furthermore, StrainGE is currently not de-
signed to phase SNVs from multiple strains matching the same reference in the same
sample. In this case, StrainGR will output evidence for multiple alleles, but the fre-
quencies of which cannot be robustly compared to link alleles together at the cover-
ages under which StrainGE was designed to operate.

3.4. Conclusions

Here, we present StrainGE, a novel suite of tools to characterize conspecific strains
in complex microbial communities. We have demonstrated its accuracy using bench-
marks and have shown that it represents a major advance over other published tools.
Using three clinical metagenomic time series, we demonstrated its ability to yield in-
sights into biological systems that previous tools could not, including the persistence
of low-abundance strains across time. StrainGE’s sensitivity at very low coverages
(0.1x and higher) will help to accelerate our understanding of the role of strain-level
variation in shaping ecological and disease processes.

StrainGE is installable through bioconda and available at https://github.com/
broadinstitute/strainge.

https://github.com/broadinstitute/strainge
https://github.com/broadinstitute/strainge


3.5. Materials and Methods

3

65

3.5.Materials and Methods
Strain Genome Explorer toolkit algorithms

StrainGST: Strain Genome Search Tool

StrainGST is a k-mer based tool used to identify specific strain(s) of a species in
a metagenomic sample. StrainGST computes a reference database of previously
sequenced strains from this species, and uses it to report close reference genomes
to strains present in a metagenomic sample along with their relative abundances.
The references reported by StrainGST can be used as input to StrainGR to further
characterize genetic variation found within the metagenomic sample.

Creating a StrainGST database. A StrainGST database is constructed from a set of
high quality sequenced reference genomes for a single species or genus, such as all
complete reference genomes in NCBI RefSeq. From this set of genomes, StrainGST
generates a database of k-mer profiles, using a sliding window (window size k) to
traverse each genome and count the frequency of each k-mer. To reduce memory
usage and computation time, a minhash technique (similarly to Mash [20] is applied
to keep 1% of the k-mers with the lowest hashes.

StrainGSTnext performs clustering to remove highly similar genomes from the ref-
erence set. In order to track and compare genomic variation across related samples,
StrainGR must be able to align reads to a common reference genome across different
sample sets. Therefore, the references reported by StrainGST should not be too closely
related, or each sample could end up matching distinct yet closely related references,
making comparisons difficult. StrainGST computes pairwise Jaccard similarities us-
ing each reference genome’s k-mer set, performing single linkage clustering using a
Jaccard similarity threshold of 𝜏, and picking a single representative genome for each
cluster to include in the reference set. StrainGST selects the genome with the highest
mean similarity to all other genomes in that cluster. This process ensures that the
k-mer similarities between remaining genomes in the database are all lower than 𝜏.
Additionally, to remove genomes from the database that are highly similar to another
genome, but that may have lower Jaccard similarity due to the presence of large in-
dels, StrainGST removes genomes where 99% or more k-mers overlapped with those
from another genome.

Identifying strains present in a sample. StrainGST uses this database to identify
the closest reference genome(s) to the strain(s) present within a sample (Figure 3.1).
First, all reads in the sample are k-merized, resulting in the k-mer set 𝐾𝑠𝑎𝑚𝑝𝑙𝑒 . The
algorithm then selects for k-mers from the species of interest by taking the intersection
between the sample k-mer set and that of the reference database for the species of
interest (Figure 3.1b), excluding k-mers not associated with the target species.

StrainGST then uses these k-mers to identify the reference genome(s) with the best
k-mer matches to the sample using an iterative process. In each iteration, StrainGST
scores each reference genome in the database against the remaining k-mers in𝐾𝑠𝑎𝑚𝑝𝑙𝑒
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in order to find the reference with the best score, which is reported to the user as
the reference with the strongest evidence of being present. The scoring system is de-
scribed in detail below. If no reference strain is identified that scores above a thresh-
old 𝜃 (adjustable by a command line option), the algorithm is terminated. The default
value for 𝜃 (0.02) was optimized to maximize sensitivity while minimizing false posi-
tives. In each iteration, k-mers corresponding to the reference selected are removed
from the sample k-mer set in order to enable identification of secondary strains in the
next iteration. This process continues until either no strain is reported or the maxi-
mum number of iterations is reached (default of 5).

Scoringmetric for selectingmatching reference strains. To determinewhich ref-
erence strain to report in each iteration, we calculate a score for each reference strain
using a combination of three metrics based on: 1) the fraction of matching k-mers in
the reference; 2) the fraction sample k-mer counts that could be explained by this ref-
erence genome; and 3) the evenness of the distribution of matching k-mers across the
genome.

(1) Fraction of matching k-mers in the reference (𝑓). This metric represents the
fraction of distinct k-mers in reference 𝑗 that is present in the sample and has a value
between 0 and 1, where 1 would indicate all k-mers of this reference are present in
this sample.

𝐾′ = 𝐾𝑠𝑎𝑚𝑝𝑙𝑒 ∩ 𝐾𝑗
𝑓 = |𝐾′|

|𝐾𝑗|
(3.1)

𝐾𝑠𝑎𝑚𝑝𝑙𝑒 represents all k-mers in the sample, 𝐾𝑗 represents all k-mers in reference 𝑗,
and 𝐾′ represents the set of k-mers both present in the reference and in the sample.

(2) Fraction of sample k-mers that could be explained by this reference (𝑎). To
give more weight to reference genomes that are similar to higher abundance strains
in the sample, StrainGST calculates the fraction of database k-mers remaining in the
sample that could be explained by the k-mers in this reference:

𝑎 =
∑𝑖∈𝐾′ 𝑐𝑖

∑𝑖∈𝐾𝑠𝑎𝑚𝑝𝑙𝑒 𝑐𝑖
(3.2)

𝑐𝑖 represents the count of k-mer 𝑖 in the sample. Note that we include k-mer counts,
rather than using the fraction of distinct k-mers, which givesmoreweight to reference
strains with high average depth of coverage. This metric has a value between 0 and 1.

(3) Evenness (𝑒). To quantify whether the matching k-mers are evenly distributed
across the reference genome, rather thanbeing foundpredominantly in a small region
(e.g., due to a horizontal gene transfer event, or conserved regions attracting reads
from different species), we defined the evenness score. First, we assumed that the
coverage across the genome follows a Poisson distribution. The rate parameter 𝜆𝑗
of the Poisson distribution specifies the average depth of coverage across the whole
genome:
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𝜆𝑗 =
1
|𝐾𝑗|

∑
𝑖∈𝐾𝑗

𝑐𝑖
𝑑𝑖𝑗

(3.3)

Here, 𝑐𝑖 represents the count of k-mer 𝑖 in the sample, and 𝑑𝑖𝑗 represents the count
of k-mer 𝑖 in reference strain 𝑗. If 𝑋 is the random variable that indicates how many
reads cover a position, then using the Poisson distribution, the probability of observ-
ing x reads at a position is:

𝑃(𝑋 = 𝑥) =
𝜆𝑥𝑗 exp(−𝜆𝑗)

𝑥! (3.4)

The probability of observing 0 reads at a position is then 𝑃(𝑋 = 0) = exp  (−𝜆𝑗).
The probability of observing at least one read at a position is [28]:

𝑃(𝑋 > 0) = 1 − 𝑃(𝑋 = 0) = 1 − exp  (−𝑗) (3.5)
This probability also represents the expected fraction of the genome covered by

at least one read given a certain average depth of coverage. The evenness score de-
scribes how well the observed fraction of the genome covered by at least one read
(which is estimated using the fraction of matching k-mers in the reference defined
earlier), matches the expected fraction of the genome covered by at least one read
when assuming a Poisson distribution for the depth of coverage:

𝑒 = 𝑓
1 − exp  (−𝑗) (3.6)

This score will be close to 1 if the observed fraction of the genomewith at least one
read matches the expected value for a certain average depth of coverage (assuming a
Poisson distribution). It will be closer to zero if only small portions of the genome are
well covered. A value higher than 1 indicates that the observed fraction of the genome
with at least one read is higher than the expected fraction of the genome with at least
one read. To bound this score between 0 and 1, StrainGST uses the minimum of e and
its reciprocal:

𝑒′ =min  (𝑒, 1𝑒 ) (3.7)

Finally, we combined these threemetrics together in order to obtain the final score:

score = 𝑓 ⋅ 𝑎 ⋅ 𝑒′2 (3.8)
At each iteration, the reference strain with the highest score represents the best

match to the highest abundant strain remaining in the sample and is reported to the
user.

StrainGR: Strain Genome Recovery

The StrainGR pipeline consists of: 1) building a concatenated reference based on refer-
ence strains reported by StrainGST; 2) aligning reads to the concatenated reference; 3)
analyzing read alignments to call SNVs and large deletions; and 4) using these variant
calls to analyze gene content or track strains across multiple samples.
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Preparing a concatenated reference. To analyze a set of related samples together,
such as a longitudinal series, StrainGR concatenates a single, unified set of represen-
tative references present across the whole dataset. This can facilitate comparisons of
alignments or genomic variation across a set of samples, which may contain different
strain mixes at different time points. Use of the concatenated reference allows reads
with an allele unique to a particular strain to be aligned to the genome of the cor-
rect reference strain, thus helping disentangle reads frommixture samples. Genomes
from the same species, however, will share conserved genomic regions (i.e., house-
keeping and other core genes), where the aligner will be unable to place reads un-
ambiguously within the concatenated reference. StrainGR detects and excludes these
conserved regions from variant calling.

In order to minimize conserved regions where StrainGR is unable to call variants,
it is important to select a set of reference strains that are not too closely related, which
could result in a large fraction of the concatenated reference genome beingmarked as
shared. To construct a concatenated set of references with an optimal degree of simi-
larity, StrainGR includes a tool called prepare-ref that analyzes StrainGST output from
a set of samples (e.g., a longitudinal set from a single patient) and generates a concate-
nated reference ready for use with StrainGR, optionally performing another round of
clustering at a stricter threshold to prevent too-closely related genomes from being
included. By default, the stricter clustering threshold is set to a Jaccard similarity of
0.7 ( 99.2% estimated ANI).

Read alignment and filtering. The reads from a metagenomic sample are then
aligned to the concatenated reference using BWA-MEM [29], removing read pairs with
1) improper pairing; 2) clipped alignment; or 3) implied insert size smaller than the
read length. In order to identify shared regions within the concatenated reference
which should be excluded from variant calling, StrainGR tracks the number of “multi-
mappable” read alignments (those which map equally well at multiple locations) at
each position in the reference. When the majority of aligned reads at a position are
multi-mappable, StrainGR excludes this position from variant calling. We rely on
BWA’s “XA” SAM tag to obtain a read’s alternative alignment locations, so aligners
other than BWA are not currently supported by StrainGR.

In addition to excluding multi-mappable regions, StrainGR also excludes regions
with abnormally high coverage (greater than threshold 𝜏), likely due to genes highly
conserved across genera which attract nonspecific reads from other members of the
microbial community. was chosen such that the probability of observing a depth of
coverage higher than 𝜏 is 1 × 10−7 assuming a Poisson distribution. This value results
in a threshold of 10x coverage when the mean coverage depth across the genome is
1x, and a threshold of 20x when the mean is 5x.

SNV calling. StrainGR analyzes read alignments to identify single-nucleotide vari-
ants (SNVs) between a specific strain within a metagenomic sample and its closest ref-
erence genome identified by StrainGST. To filter likely sequencing errors, bases with
an Illumina Phred base quality score <5 are ignored by default. An allele is consid-
ered strong if the sum of base quality scores supporting that allele is i) higher than
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50 (roughly equivalent to having at least two high-quality supporting reads) and ii) at
least 10% of the total sum of base quality scores of all alleles at that genomic position.
If an allele is present but doesn’t match these criteria, it is considered weak. StrainGR
stores weak evidence for use when tracking a strain acrossmultiple samples—if a par-
ticular strain is highly abundant in some samples, with many strong SNP calls, then
weak calls can be useful to discern that allele in low abundance samples from the
same sample set.

Based on the observed alleles, StrainGR classifies a genomic position as either “ref-
erence confirmed”, “SNV” or “multiple alleles”. If a position has a single strong allele
call, and that allele is the same as the reference, the position is classified as “reference
confirmed”. A position with a single strong allele call that is different from the refer-
ence is classified as a SNV. Any position with multiple strong allele calls (whether they
match the reference or not) is classified as “multiple alleles”.

To estimate the overall degree of similarity between the strain in the sample and
its closest reference, StrainGR computes an estimate of average nucleotide identity
(ANI) using StrainGR SNV calls: the average callable nucleotide identity (ACNI) is the
percentage of positions marked as “reference confirmed” out of all positions with a
single strong allele call.

Large deletion predictions. StrainGR also analyzes the read alignments to identify
large deletions present in a specific strain within a sample, as compared to its closest
reference identified by StrainGST. Consecutive positions in the reference genome over
a specified length (by default 5,000 bp; 2 genes) with no aligned reads could indicate
a large deletion. To account for situations with low coverage across the genome (<1x),
StrainGR employs a simple heuristic that exponentially scales the threshold for the
length of such regions at lower coverages; thus, only longer gaps can be detected at
lower coverages. If 𝜆 is the average depth of coverage along the genome, and Φ is the
unadjusted threshold, then the adjusted minimum size of a “gap” is:

Φ′ = 1 − exp(−𝜆) (3.9)

Large deletions are used to assess whether particular genes are absent from the
strain in a sample. In addition, the overall pattern of deletions across the genome for
the strain in a longitudinal sample set can be used as a strain “fingerprint” to track a
particular strain across samples.

Strain comparisons across samples. To assess whether the strains in two samples
are the same (or very closely related), we compare both SNV calls (via pairwise ACNI)
and patterns of large deletions. StrainGR calculates pairwise ACNI by dividing the
number of positions where both samples have the same strong allele by the total num-
ber of positions where both samples have a single strong allele. To compare the pat-
tern of predicted deletions between two samples, StrainGR calculates the Jaccard sim-
ilarity: if 𝐺1 is the set of positions not marked as a large deletion in sample 1, and 𝐺2 is
the set of positions not marked as a large deletion in sample 2, then the gap similarity
𝑙 is defined as
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𝑙 = |𝐺1 ∩ 𝐺2|
|𝐺1 ∪ 𝐺2|

(3.10)

Benchmarking StrainGE using simulated data and mock communi-
ties

Spiked metagenome generation

Unless otherwise noted, all synthetic metagenomes used for benchmarking were gen-
erated as follows: reads were simulated from the relevant genomes using ART [30]
and merged with reads subsampled from a genuine metagenomic data set without
detectable E. coli (accession SRS014613) as per MetaPhlan2 [31] and StrainGST, up to
a fixed depth of 3 Gb. At this depth, strain coverages of 0.1x, 0.5x, 1x and 10x cor-
responded to relative abundances of 0.016%, 0.083%, 0.16%, and 1.6%, respectively,
assuming a 5 Mb E. coli genome.

StrainGST database for Escherichia

For construction of the Escherichia reference database, all complete Escherichia
genomes available in NCBI RefSeq were downloaded in July 2019 (929 genomes total;
Additional File 2). All tools required to construct the StrainGST database are included
in the StrainGE suite (kmer counting, clustering, and database construction). The full
database with 361 Escherichia genomes uses 7.3 Gb of disk space.

In order to set StrainGST’s default clustering threshold, we benchmarked its ability
to correctly identify single strain and two-strain mixes using the metagenomic spike-
in methods described below, using synthetic reads generated from 200 randomly se-
lected E. coli genomes spiked into subsets of real metagenomic samples devoid of E.
coli, to a total of 3 Gb. For the single-strain benchmarks, 200 samples were gener-
ated with 10x, 1x, 0.5x, and 0.1x coverage of each of the selected E. coli genomes (800
samples total). For the 2-strain mix benchmarks, 100 random 2-strain combinations
from the set of 200 selected E. coli genomes were spiked in at each combination of 10x,
1x, 0.5x, and 0.1x coverage (10 coverage combinations, 1000 samples total). The 1800
benchmark caseswere runusing database clustering thresholds of 0.95, 0.90, 0.85, and
0.80 Jaccard k-mer similarity, corresponding toMash distance ANIs of 99.89%, 99.77%,
99.63%, and 99.49%, respectively. For each threshold, we measured precision, recall,
and F1 score for strain identification, with true positives being only those cases in
which StrainGST identified the closest reference strain to the true strain as measured
by Jaccard k-mer similarity. The clustering threshold of 0.90 generated the best com-
bined results in each of the three metrics (Table B.5).

Phylogenetics andMLST typing of genomes in the Escherichia reference database

A single copy core (SCC) phylogeny was generated for the entire database of reference
genomes. In brief, SynerClust [32] was used to generate clusters of orthologous genes
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(orthogroups). A concatenated alignment was generated for all single-copy, core or-
thogroups using MUSCLE [33]. A phylogenetic tree was constructed using FastTree
v2.1.8 [34]. Phylogenetic trees were visualized using iTol [35].

MLST designations for each reference genome were predicted with the tool mlst
(https://github.com/tseemann/mlst). Sequence types reported were based on the Acht-
man scheme. E. coli clade/phylogroup designationwas determined using ClermonTyp-
ing (https://github.com/A-BN/ClermonTyping). For cases when there were missing or
conflicting results between predicted typing and MASH groups, the clade designation
for a given genome was selected based on where it was located in the SCC phylogeny
with respect to unambiguous genome to clade designations.

Creation of four-strain E. coli mock community

Four phylogenetically distinct E. coli strains - H10407 (clade A), E24337A (clade B1),
UTI89 (clade B2), and Sakai (clade E) - were cultured separately overnight at 37ºC
in 2 mL of liquid LB media shaking at 200 rpm. The bacterial number in each cul-
ture was estimated via optical density and then combined at a ratio of 80% H10407,
15% UTI89, 4.9% Sakai, and 0.1% E24337A. Genomic DNA was then extracted from
this mock community using the Qiagen MagAttract DNA Isolation Kit (Hilden, Ger-
many), following manufacturer’s protocols. In two separate tubes, human genomic
DNA was then added to the extracted E. coli DNA for final ratios of 99% human / 1%
E. coli (weight / weight). Sequencing data for this mock community has been submit-
ted to NCBI’s Sequence Read Archive (SRA) under bioproject PRJNA685748 (biosample
SAMN17091845).

Comparison of tools for tracking specific strains across samples using simulated
sets of related samples

We compared the ability of StrainGE, StrainPhlan [15], andMIDAS [14] to track strains
across samples. We performed strain tracking comparisons across ten sets of twelve
spiked metagenomes, where each set of twelve was structured similarly in terms of
strain content (Figure 3.32a-b). For each set, we randomly picked two Escherichia
reference genomes (A and B) from NCBI RefSeq complete, and derived two different
but closely related synthetic strains from each reference by introducing ∼5,000 ran-
dom SNVs (99.9% ANI) uniformly across the genome. We spiked reads generated from
these synthetic genomes into a realmetagenome to generate samples containing these
strains in different combinations (Figure 3.3b), at 0.1x, 0.5x, 1x and 10x coverage.

For each data set, we assessed strain similarity metrics calculated by each tool, to
determine whether the tool could match i) the identical strain found in different sam-
ples (i.e., strain A in sample 1 and 2; Figure 3.3); ii), strains found either in mixtures or
single-isolate samples (i.e., strain A in sample 1, 2, 5, and 6; Figure 3.3d); or iii) closely
related strains (i.e., the ability to distinguish strain A1 from strain A2; Figure 3.3e).
In each case, we compared the tools’ predictions to the known strain content of each
sample to calculate true positives (TP), false positives (FP), and false negatives (FN). For
each tool, we varied the threshold (discussed in detail below) for determining shared
strains in order to plot precision-recall curves.



72 3. StrainGE: a toolkit to track and characterize low-abundance strains

Detecting shared strains using StrainGE. For each sample, we ran the complete
StrainGE pipeline: StrainGST was run to identify the closest reference genomes, and
StrainGR was run on a sample-specific concatenated reference to call genetic varia-
tion. To detect shared strains, we collected all samples predicted to match to the same
StrainGST reference, and computed a pairwise ACNI matrix for strain comparisons
with at least a 0.5% callable genome. The similarity matrix was transformed to a dis-
tance matrix by computing 1-ACNI, and transformed to a genetic distance using the
Jukes-Cantor model [36]. If a pair of samples did not share any predicted close ref-
erence genomes, we set the distance between those samples to the maximum integer
value. To plot the precision-recall curve, we varied the genetic distance threshold that
determines when strains are considered the same.

Detecting shared strains with StrainPhlan. We ran StrainPhlan on each sample,
using the tool’s marker gene database v295 (Jan 2019). Using the marker gene SNV
profiles for each sample, StrainPhlan computed the pairwise sample distance matrix
using Kimura’s two parameter model [37] (as suggested in their user manual). To plot
the precision-recall curve, we varied the genetic distance threshold that determines
when samples share a strain, as performed for StrainGE. To tune StrainPhlan for lower
coverage levels, we ran it using –relaxed-parameters.

Detecting shared strainswithMIDAS. WeranMIDASv1.3.2 (database version v1.2)
with default parameters. MIDAS includes a strain tracking tool that is first “trained”
by giving it a single sample from each patient in a cohort. This training step identifies
unique SNV markers for each patient. For our benchmarking, we “trained” MIDAS
on samples containing a single strain (sample 1 for strain A1, sample 3 for strain B1,
sample 7 for strain A2, and sample 9 for strain A2). (This likely helped the tool in
benchmarking since, in a real world scenario, it is likely unknownwhether a training
sample contains a single strain.) Next, MIDAS compares these SNV markers to alleles
in other samples and assesses howmuch they overlap. To plot precision-recall curves,
we varied the percentage of overlappingmarkers between two samples that serves as
a threshold to determinewhether two samples share a strain. To tuneMIDAS for lower
coverage levelswe ran its merge_snvs.py scriptwith –all_snvs –all_samples and
its strain_tracking.py script with –min_reads 1.

Evaluating the ability of StrainGR to quantify strain sharing in distinct metage-
nomic backgrounds

In order to determine how well StrainGE metrics recapitulated genetic relationships
between strains, we generated another set of spiked metagenomic samples, spiked
with varying quantities of E. coli reads from real, previously sequenced isolates. Ten
stool metagenomes were randomly selected from the Human Microbiome Project [5]
(Table B.4). The randomly selected samples contained E. coli at relative abundances
between 0.005% and 0.9%; no two samples contained the same E. coli strain based on
StrainGST output. Ten complete genome sequences of E. coli isolates, distinct from
those identified in the background metagenomes, were selected from NCBI RefSeq



3.5. Materials and Methods

3

73

database. For each isolate, ten variantswere created by generating randommutations,
such that the ANI to the original reference ranged from 99.9% to 99.99% at increments
of 0.01%. Each reference and variant (110 in total) were spiked into at least two ran-
domly chosen distinct metagenomic backgrounds at coverage levels of 0.1x, 0.5x, 1x,
2x or 5x. A total of 300 synthetic samples were generated, with 350 pairs containing
an identical strain in a distinct background. All spiked samples were analyzed with
StrainGE; all sample pairs with a matching StrainGST reference were compared us-
ing StrainGR. StrainGST hits corresponding to strains present in background samples
were not considered further. The ACNI was calculated for every pair.

Evaluation of StrainGE on longitudinal, clinical metagenomic sam-
ples

Metagenomic time series from a patient with Crohn’s disease

We downloaded from the UCSD Qiita database (https://qiita.ucsd.edu/; Additional File
3) 27 metagenomic data sets representing stool longitudinally collected from a single
individualwith Crohn’s Disease [25]. We ran the full StrainGEpipeline on each sample,
using our Escherichia database and default parameters, to identify and analyze E. coli
strains. For StrainGR, to ensure each genome had sufficient unique content, we con-
structed a concatenated reference using StrainGE’s builtin prepare-ref tool, which per-
formed another round of clustering of the StrainGST reported references at a default
threshold of 99.2% ANI. The resulting reference contained 10 out of 14 total reported
references (Figure 3.4b; phylogroup G, B2 and A). For pairwise strain comparisons,
we only included samples where the common callable percentage of the genome was
>0.5%.

Metagenomic sequencing of longitudinally collected stool

Twelve longitudinally collected stool sampleswere extractedwith Chemagen Kit CMG-
1091 (Baesweiler, Germany). Libraries were generated with NexteraXT (Illumina, San
Diego, CA, USA) and sequenced in paired-end mode on an Illumina HiSeq 2500 (101
bp length) and/or IlluminaHiSeq X10 (151 bp length). Short-read sequencing datawas
submitted to the SequenceReadArchive (SRA)with Bioproject accession PRJNA400628
(Additional File 3). We ran the full StrainGE pipeline on each sample, using our Es-
cherichia database and default parameters, to identify and analyze E. coli strains. For
pairwise strain comparisons, we only included samples where the common callable
percentage of the genome was >0.5%.

Characterization of Enterococcus strain diversity across a large cohort of babies

We downloaded data from by Shao et al. [27] from ENA, including 1679 metagenomes
(accession ERP115334) and all isolate samples tagged as Enterococcus (accession
ERP024601). We ran StrainGE on each metagenomic sample, using our Enterococcus
database. To compare StrainGE’s ACNI to true ANI between the corresponding isolate
genomes, we ran StrainGST on the raw isolate reads to identify a close reference
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genome, aligned the isolate reads to this reference using BWA-MEM [29], and used
Pilon [38] to call variants. To compute the ANI between each pair of isolates that
matched the same reference, we compared reference and alternative alleles called
by Pilon where both samples had a single base call. For pairwise strain comparisons
using StrainGR in the corresponding metagenomic samples, we only included pairs
with a common callable genome >0.5%.
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Abstract
Recurrent urinary tract infections (rUTIs) are a major health burden worldwide, with
history of infection being a significant risk factor. While the gut is a known reservoir
for uropathogenic bacteria, the role of the microbiota in rUTI remains unclear. We
conducted a year-long study of women with (𝑛 = 15) and without (𝑛 = 16) history of
rUTI, from whom we collected urine, blood and monthly faecal samples for metage-
nomic and transcriptomic interrogation. During the study 24UTIswere reported, with
additional samples collected during and after infection. The gut microbiome of indi-
viduals with a history of rUTI was significantly depleted in microbial richness and
butyrate-producing bacteria compared with controls, reminiscent of other inflamma-
tory conditions. However, Escherichia coli gut and bladder populations were compa-
rable between cohorts in both relative abundance and phylogroup. Transcriptional
analysis of peripheral blood mononuclear cells revealed expression profiles indica-
tive of differential systemic immunity between cohorts. Altogether, these results sug-
gest that rUTI susceptibility is in part mediated through the gut–bladder axis, compris-
ing gut dysbiosis and differential immune response to bacterial bladder colonization,
manifesting in symptoms.

4.1. Introduction

U RINARY tract infections (UTIs) are among the most common bacterial infections
worldwide and a significant cause of morbidity in females, with uropathogenic

Escherichia coli (UPEC) being the primary causative agent [1]. One of the strongest
risk factors for UTI is a history of prior UTIs [2], but the biological basis and risk fac-
tors for long-term recurrence remain unclear in otherwise healthy women. 20-30%
of women diagnosed with a UTI will experience a recurrent UTI (rUTI), with some suf-
fering six or more per year. Over one million women in the United States are referred
to urologists each year because of rUTIs, and the rapid spread of antibiotic resistance
in uropathogens is making treatment more challenging.

The gut is a reservoir for UPEC, and UTIs most commonly arise via the ascension
of UPEC from the gut to the urinary tract [3, 4, 5]. Recent studies have explored the
‘gut microbiota-UTI axis’, showing that uropathogen abundance in the gut is a risk
factor for UTI in kidney transplant patients [6], and that a ‘bloom’ in uropathogen gut
abundance may precede infection [7]. Other studies have demonstrated differences
in gut microbiome composition associated with children suffering UTIs [8], and with
kidney transplant patients developing bacteriuria [9], compared to healthy controls.
Furthermore, fecal microbiota transplants to treat Clostridium difficile infections may
have the collateral effect of reducing the frequency of rUTI [10, 11], suggesting that
perturbation of the gut microbiota can modulate rUTI susceptibility.

It is increasingly accepted that the gut microbiota can play a role in conditions
affecting distal organs—for instance, the gut-brain and gut-lung axes are the subject
of ongoing research [12, 13, 14, 15]. However, the gut-bladder axis—the spectrum
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of direct and indirect interactions between gut flora and the bladder immune and/or
infection status—remains uncharacterized, and the role of the gut microbiota in rUTI
susceptibility is not well understood. No study has yet ascertainedwhether: i) gut dys-
biosis is associated with rUTI susceptibility; ii) rUTI women have unique uropathogen
dynamics within and between the gut and the bladder; or iii) microbiome-mediated
immunological differences may be linked to rUTI susceptibility, as seen in other dis-
eases [16].

Here, we present results from the UTI microbiome (UMB) project, a year-long clin-
ical study of women with a history of rUTI and a matched cohort of healthy women.
Our unique longitudinal study design allowed us to explore the importance and in-
terdependence of the gut microbiota and E. coli strain dynamics in rUTI, susceptibil-
ity to infection, and host immune responses that may impact these dynamics. Using
multi-omic techniques, we determined that: i) compared to healthy controls, women
with a history of rUTI had a distinct, less diverse gut microbiota, depleted in butyrate
producers and exhibiting characteristics of low-level inflammation; ii) differential im-
munological biomarkers suggest rUTI women may have a distinct immune state; iii)
E. coli strains were transmitted from the gut to the bladder in both cohorts, though no
UTI symptoms occurred in healthy controls; and iv) UTI-causing E. coli strains often
persistently colonized the gut and were not permanently cleared by repeated antibi-
otic exposure. Thus, susceptibility to rUTI is in part mediated through a syndrome
involving the gut-bladder axis, comprising a dysbiotic gut microbiome with reduced
butyrate production and apparent alterations of systemic immunity. Our work shows
that UPEC strains persist in the gut despite antibiotic treatment, which itself may ex-
acerbate gut dysbiosis.

4.2. Results
Frequent antibiotic use and E. coli infections in rUTI cohort

Women with a history of rUTI were recruited to the UMB study, along with an age-
and community-matched control cohort comprising healthy women (Methods). A to-
tal of 16 control and 15 rUTI women participated in the year-long study, providing
monthly home-collected stool samples, as well as blood, urine and rectal swabs at
enrollment and subsequent clinic visits for UTI treatment (Figure 4.1a). Participants
completed monthly questionnaires on diet, symptoms, and behavior (Supplementary
Data). There was a greater proportion of white women in the rUTI cohort, and self-
reported antibiotic use was higher in this group in line with UTI treatment; otherwise,
few dietary or behavioral differences were apparent (Extended Data Table 1).

A total of 24 UTIs occurred during the study, all in rUTI women, who each experi-
enced 0-4 UTIs (Figure 4.1b). Nineteen were diagnosed by clinicians and five were in-
ferred through self-reported symptoms and antibiotic use in the questionnaire during
monthly sample collection. UTIs were typically treated with ciprofloxacin or nitrofu-
rantoin. No significant temporal risk factors for UTI were identified amongst dietary
or behavioral variables. Sexual intercourse is a well-known risk factor for UTI [2, 17],
and all 19 clinically diagnosed UTIs occurred following at least one reported sexual
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Figure 4.1: Study design and sample collection for the UMB study. (a) Stool sampleswere collectedmonthly
from rUTI and control patients. Stool, urine and blood plasma samples were collected upon enrollment
and subsequent UTI clinic visits. Biweekly stool samples were requested following UTI diagnoses. (b) Stool
and urine samples collected from all rUTI and control participants (excluding one rUTI and two control
participants who dropped out of the study prior to completion). Each participant’s enrollment timeline is
represented by horizontal gray lines, with stool (black dots) and urine (triangles) sample collection times
denoted. Red symbols denote diagnosed and inferred UTI events.



4.2. Results

4

83

encounter in the previous two weeks (Extended Data Figure C.1).
Urine samples collected at the time of clinical UTI diagnoses were plated on Mac-

Conkey agar; bacterial growth was detected (> 0 CFU/ml) from the majority (15/19;
79%, Supplementary Table 1). To determine the cause of infection, we sequenced
13 urine cultures, as well as uncultured urine, from all UTI diagnoses, defaulting to
results from cultures when available. E. coli dominated 12/13 (92%) sequenced out-
growths; the remaining sample was dominated by Klebsiella pneumoniae. Sequenc-
ing uncultured urine from the remaining UTI samples identified uropathogens in a
further four samples, including E. coli (two), Enterococcus faecalis and Staphylococ-
cus saprophyticus, while two yielded no bacterial sequence (Supplementary Table 1).
Based on sequencing, we defined 14 E. coli UTIs, comprising 82% of infections for
which a bacterial cause could be inferred, broadly reflecting previous estimates of
the proportion of all UTIs caused by E. coli [1].

rUTI gut depleted in microbial richness and butyrate-producers

It is increasingly recognized that the gut microbiota plays a role in a range of autoim-
mune and inflammatory diseases [18], as well as susceptibility to infection [16], and
can alter inflammation in distal organs [19]. While previous studies have highlighted
differential abundances of non-uropathogenic gut taxa as risk factors for bacteriuria
in kidney transplant patients (reduced Faecalibacterium and Romboutsia [9]) and UTIs
in children (reduced Peptostreptococcaceae [8]), it is unclear if these are risk factors
for recurrence in otherwise healthy adult women. To explore this, we sequenced and
analyzed themetagenomes of 367 longitudinal stool samples from both rUTI (𝑛 = 197)
and control (𝑛 = 170) women (Figure 4.1b; Methods). Rectal swabs, collected during
clinic visits, were not used to determine microbiome profiles.

There were broad differences in the gut microbiota composition between cohorts
(Figure 4.2a-c). We fit linear mixed models with individual-level random effects to
determine differences in diversity and composition between cohorts, adjusting for re-
cent antibiotic use (Methods). Gut microbial richness was significantly lower, on aver-
age, in rUTI women (𝑝 = 0.05, Figure 4.2c). At the phylum level, we saw elevated levels
of Bacteroidetes (false discovery rate [FDR] = 0.003) and a lower relative abundance of
Firmicutes (FDR = 0.02) in rUTI women. We identified 22 differentially abundant taxa
(FDR < 0.25) at lower taxonomic levels, 16 ofwhichwere depleted in rUTIwomen (Sup-
plementary Table 2; Figure 4.2b), including Faecalibacterium as previously reported
[9].

Several of the taxa reduced in the rUTI gut, including Faecalibacterium, Akkerman-
sia, Blautia and Eubacterium hallii, are associated with short chain fatty acid (SCFA)
production, including propionate and butyrate, which exert an anti-inflammatory ef-
fect in the gut through promotion of the intestinal barrier function and immunomod-
ulation [20, 21]. Blautia was additionally identified as the only taxon significantly de-
pleted at the time of UTI relative to non-UTI samples (FDR = 0.01). Cumulatively, SCFA
producers, particularly butyrate producers, were significantly less abundant in rUTI
women (𝑝 = 0.001) (Figure 4.2d; Extended Data Figure C.2). Four KEGG Orthogroups
[22] representing components of butyrate production pathways were significantly re-
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duced across the rUTI cohort (Supplementary Table 3). Functional analysis with HU-
MAnN2 (ref. [23]) additionally revealed pathways depleted in the rUTI cohort, includ-
ing those associated with sugar degradation and biosynthesis of metabolite interme-
diates and amino acids (Supplementary Table 4), many of which were also found to
be differentially abundant in a study of irritable bowel syndrome (IBS) patients with
sugar malabsorption [24].

This loss of gut microbial richness, diversity, and butyrate-producing bacteria is
also a hallmark of exposure to broad spectrum antibiotics, including ciprofloxacin
[25, 26, 27], which was used to treat more than a third of UTIs in our study. Thus, we
sought to determine whether antibiotic effects may contribute to the observed shifts
in microbiome composition in rUTI women (‘rUTI dysbiosis’). Though antibiotic ex-
posure in the previous two weeks was associated with a significant reduction in mi-
crobial richness (𝑝 = 0.05), this loss of richness was not sustained. Samples taken 2-6
weeks after antibiotic exposure were not significantly different from baseline levels
(𝑝 = 0.2). Furthermore, we saw no association between the reported number of an-
tibiotic courses and average richness (Figure 4.2c), and no differences in the overall
gutmicrobiome stability between cohorts, despitemore frequent antibiotic treatment
among UTI women (Extended Data Figure C.3). We observed no differences in rich-
ness or in the abundance of butyrate producers between rUTI women with different
antibiotic exposures (Extended Data Figure C.4a-b). Within the rUTI group, the fre-
quency of infections was not associated with microbial richness or the relative abun-
dance of butyrate producers. The microbial richness of women suffering UTIs during
the study did not differ significantly from that of rUTI women not reporting infections
(𝑝 = 0.4; Figure 4.2). While we did not detect a lasting impact from individual antibi-
otic courses – there were few long-term trends among rUTI women over the study
(Extended Data Figure C.4c) – it is still possible that repeated antibiotic use over years
may have contributed to the observed rUTI dysbiosis.

rUTI gut dysbiosis shares broad similarities with IBD

The depletion of butyrate-producing taxa and microbial richness, key characteristics
of rUTI dysbiosis, are also observed in other gut inflammatory conditions, including
nosocomial diarrhea [28], IBS [29], and inflammatory bowel disease (IBD) [20], partic-
ularly Crohn’s disease [30], and thus may be indicative of gut inflammation in rUTI
women. While IBD is a multifactorial disorder for which the causative role of gut
microbes is incompletely understood [31], mouse models have helped demonstrate a
causal relationship between gut dysbiosis and inflammation [32]. We compared our
data to longitudinal gut microbiome data from adults with and without IBD in the Hu-
man Microbiome Project 2 (HMP2) study [33], which shared the same extraction and
sequencing protocols (Methods). Relative to each study’s control group, we found that
the ten most significantly depleted species in the rUTI gut, including butyrate produc-
ers F. prausnitzii and E. hallii, were also depleted in the IBD gut. We further observed
a significant overall correlation in the estimated change of species-level abundances
associated with rUTI and IBD (Extended Data Figure C.5), suggesting more general
similarities.
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There were also some notable differences. Bacteroides, significantly elevated in
the rUTI group, did not differ between cohorts in the HMP2 study (Extended Data Fig-
ure C.5), and were also decreased among IBD patients in other studies [34]. E. coli
was significantly elevated in IBD patients in the HMP2 study, but showed no differ-
ence in average relative abundance between our cohorts (Figure 4.2e). Diminished
Bacteroides alongside elevated Enterobacteriaceaewas also observed in patients with
nosocomial diarrhea [28]. Diarrhea, also a symptomof IBD, is associatedwith reduced
gut transit time and is known to enrich for organisms common in the upper gastroin-
testinal tract, including Enterobacteriaceae [35], at the expense of anaerobic organ-
isms such as Bacteroides [36]. As such, rUTI women with low-level inflammation and
no diarrheamay lack the depletion of Bacteroides and elevation of Enterobacteriaceae
observed in diarrhea-associated conditions. It is also possible that the considerable
differences in treatment regimens; i.e. antibiotics vs. anti-inflammatories, contribute
to divergences of a common underlying inflammatory signal.

Differential host immune response potentially linked to rUTI

rUTI dysbiosis also shares similarities with immunological syndromes affecting distal
sites. For example, depletion of butyrate producers has been associated with rheuma-
toid arthritis, a systemic autoimmune disease which can be partially ameliorated in
animal models with oral butyrate supplementation [37, 38]. Patients with chronic kid-
ney disease also exhibit similar dysbiosis, including reduced Parasutterella andAkker-
mansia, the latter of which is inversely correlated with interleukin-10 levels, an anti-
inflammatory cytokine [39]. We hypothesized that rUTI dysbiosis may also have an
immunomodulatory role, potentially eliciting a differential immune response to bac-
terial invasion of the bladder. Thus, we explored immunological biomarkers from
blood samples collected at enrollment and UTI, quantifying (i) a Luminex panel of
human cytokines, chemokines, and growth factors involved in inflammation and T
cell activation, and (ii) cell types and the transcriptional activity of peripheral blood
mononuclear cells (PBMCs) (Methods).

Of the 39 Luminex analytes, one chemokine, plasma eotaxin-1, was higher in rUTI
women vs. control women at enrollment, and is associated with intestinal inflamma-
tion [40]. Levels of eotaxin-1 are increased in colonic tissue of patients with active
IBD [41]. Subsequent human eotaxin-1 ELISAs validated these results, highlighting an
additional link to dysbiosis-driven perturbation of the immune state; though, since
this result did not hold after adjusting for race, we could not rule out potential demo-
graphic confounders. Eotaxin-1 was also higher in blood plasma of rUTI women at
the time of UTI vs. enrollment (𝑝 = 0.04; Extended Data Figure C.6b).

Our small cohort size provided limited statistical power to identify differential ex-
pression between cohorts based on PBMC RNA Seq data, and no large-scale differ-
ences were observed (Extended Data Figure C.6a). However, we found two genes that
were upregulated in the PBMCs of the rUTI cohort (FDR < 0.1), ZNF266 and the long
non-coding RNA LINC00944 (Supplementary Table 5). ZNF266 has been previously
linked to urological health, as a potential PBMC biomarker for overactive bladder
and incontinence in women [42]. LINC00944 has been associated with inflammatory
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and immune-related signaling pathways, as well as tumor invading T lymphocytes in
breast cancer, and markers for programmed cell-death [43]. Resting NK cells were
significantly reduced at the time of UTI relative to baseline levels (𝑝 = 0.02; Extended
Data Figure C.6c). NK cells help suppress bladder infection by UPEC in mice [44], so
the loss of NK cells in the periphery may suggest a migration to the bladder at time of
rUTI.

Gut and bladder E. coli dynamics similar between cohorts

Previous work has implicated gut dysbiosis and a depletion of butyrate-producing
bacteria in enhanced susceptibility to gut colonization by pathogens, including
Salmonella [45] and C. difficile [46]. While we could not quantify absolute species
abundances, we observed no significant difference in the average relative abundance
of E. coli between cohorts (Figure 4.2e), suggesting the rUTI dysbiotic gut is no more
hospitable to E. coli colonization than controls. Further, we found no relationship
between the relative abundances of Escherichia and butyrate producers in either
cohort, suggesting that depletion of butyrate-producing bacteria does not enhance
gut colonization by Escherichia (Extended Data Figure C.7). We considered the
possibility that a temporal increase, or bloom, in E. coli relative abundance is a rUTI
risk factor. Of the samples collected in the 14 days preceding an E. coli UTI, 75%
exhibited E. coli relative abundance at or above average levels in the gut (Extended
Data Figure C.8a-b). However, elevated E. coli levels were not predictive of UTIs;
none of the 22 E. coli blooms (defined as E. coli relative abundance >10-fold higher
than the intra-host mean) occurred in the two weeks prior to UTIs. Thänert et al.
identified intestinal blooms of uropathogens preceding some UTIs, but similarly
noted that blooms often occurred in the absence of infection [7], leading us to
conclude that elevated levels of E. colimay facilitate transfer to the bladder but rarely
manifest in infection. However, without frequent urine collection, we cannot rule
out asymptomatic bladder colonization.

Though we did not detect differences in E. coli species dynamics, we hypothesized
that rUTI dysbiosis may manifest in a qualitatively different E. coli population in the
gut, contributing to increased rUTI susceptibility. We applied StrainGE [47] to ex-
plore E. coli strain-level diversity within stool metagenomes (Methods), and classified
strains by phylogroup [48]. Patterns of strain carriage were similar in the rUTI (Fig-
ure 4.3) and control (Extended Data Figure C.9) cohorts. Both the number of strains
per sample and the phylogroup distribution were comparable between cohorts (Fig-
ure 4.4, Extended Data Figure C.8c-d). While most E. coli strains (62%) were observed
in one sample only, 22% were ‘persistent’, observed in at least one quarter of their
carrier’s samples. Persistent strains were more likely to originate from phylogroups
B2 and D (𝑝 = 0.01), regardless of cohort, and were slightly more common in control
women (OR = 2.1 (0.9, 5.2), 𝑝 = 0.1), at odds with the hypothesis of differential colo-
nization resistance to phylogroups associated with UPEC between cohorts.

We then applied StrainGE to all urine samples, seeking to elucidate differences in
strain dynamics in the bladder. We found that 79% (11/14) of E. coli UTIs were caused
by phylogroup B2 (𝑛 = 7) or D (𝑛 = 4) strains (Supplementary Table 1), approximately
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in line with previous studies [4, 49]. Of the 24 healthy enrollment urine samples yield-
ing sufficient bacterial DNA to be sequenced and profiled (Supplementary Table 6),
we detected E. coli strains in 54% (13/24), including over half of samples (7/13) from
control participants, despite the absence of symptoms. All but one of these strains also
belonged to phylogroups B2 and D. Control urines carried E. coli strains that were phy-
logenetically similar to UTI-causing strains based on StrainGE predictions (Figure 4.4;
Methods), despite divergent clinical outcomes.

Mapping urine metagenome assemblies to a curated virulence factor database
showed that UTI-causing strainswere enriched in virulence factors (including iron up-
take systems (sit, chu, iro, ybt operons), colibactin (clb), and type 6 secretion systems)
relative to an E. coli species-wide database, though many of these were also present
in the one urine sample from a control participant for which we had sufficient cov-
erage to assess gene content (Methods, Supplementary Table 7). This transition of a
likely urovirulent strain to the bladder of healthy women without eliciting UTI symp-
toms is consistent with previous studies which have been unable to identify genetic
markers of urovirulence in mice [49], or consistently discriminate between UTI and
asymptomatic bacteriuria strains in women [50]. Nevertheless, the divergence in clin-
ical outcomes after bacterial bladder invasionmay still arise due to phenotypic differ-
ences in E. coli strains reaching the bladder that are not readily apparent in genome
comparisons. rUTI dysbiosis could have an impact on UPEC gene expression; it has
been shown that higher SCFA levels are associated with down-regulation of E. coli vir-
ulence factors including fimbrial and flagellar genes [51]. However, such transcrip-
tional analyses fall outside the scope of this study.

Antibiotic treatment fails to clear UTI-causing strains from gut

While it is well known that UTIs are most commonly caused by UPEC resident in the
gut, their longitudinal dynamics of these strains within the gut are less well under-
stood, despite the importance of such insights into developing rUTI prophylaxis. We
applied StrainGE to all urine samples to identify UTI-causing strains and their gut
dynamics, in particular at the time of UTI and after antibiotic exposure. Four rUTI
women suffered multiple confirmed E. coli UTIs, though only one was a same strain
recurrence (individual 8; Figure 4.3b). Comparisons of sequence data from urine sam-
ples and cultured rectal swabs from UTI clinic visits revealed that nearly all (11/12) E.
coli UTIs, for which we had same-day rectal swabs, contained the same UTI strain, un-
derscoring frequent gut to bladder transmission. The dominant E. coli strain in four
of the rectal swab outgrowths was not the UTI-causing strain, suggesting some UTIs
may be caused byminority strains. Only one UTI (individual 5, Figure 4.3) was caused
by a strain never observed in another sample from that individual. This phylogroup
B1 strain likely arose from a source other than the gut, such as the urinary tract or the
vagina, also implicated as UPEC reservoirs [7, 52].

We anticipated that antibiotic exposure—particularly ciprofloxacin—would im-
pact gut carriage of E. coli strains, and may explain the lower frequency of persis-
tent colonizers in the rUTI group. Indeed, E. coli strains were detected by StrainGE
significantly less frequently in stool samples from the two weeks following antibiotic
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use (OR = 0.3 (0.13, 0.68); 𝑝 = 0.004). However, many strains apparently cleared by
antibiotics were observed again at later time points; in fact, none of the UTI-causing
strains observed in the gut was permanently cleared following antibiotic exposure. It
has previously been shown that coexistence of susceptible and resistant strains of the
same lineage through acquisition/loss of mobile resistance elements can allow UPEC
populations to rapidly adapt to repeated antibiotic exposure and persist in the gut [53].
While low-level persistence that is undetectable from sequencing data is a possibility,
we plated a subset of post-treatment stool samples onto MacConkey agar to culture E.
coli. In many cases, we observed no growth, suggesting absence rather than low-level
persistence (Supplementary Table 8). Furthermore, profiling of 12 UTI-causing strains
isolated from proximate stool samples demonstrated that the majority were suscepti-
ble to the antibiotics to which they were exposed (Supplementary Table 9). While a
single stool sample is not completely representative of the gutmicrobiota, this suggests
that UTI-causing strains may be frequently reintroduced to the gut from alternative
sources following antibiotic clearance of the bladder and gut.

4.3. Discussion
Our study design, data collection and culture-independent metagenomic sequencing
approach allowed us to characterize dynamics of the gut-bladder axis in healthy and
rUTI women. We propose that rUTI susceptibility is dependent, in part, on perturba-
tion of the gut-bladder axis, which represents a previously undescribed syndrome,
comprising gut dysbiosis and differential host immunology. While this study was
not designed to identify causal links between gut dysbiosis, immune response and
rUTI susceptibility, the proposed model is consistent with our findings and provides
a benchmark to be tested in future studies. Compared to healthy controls, women
suffering rUTI exhibited gut dysbiosis characterized by depleted levels of butyrate-
producing bacteria and diminished microbial richness. This dysbiosis did not appear
to impact E. coli dynamics within the gut; relative abundances and strain types were
similar between cohorts, suggesting that gut carriage of urovirulent bacteria in itself
is not a risk factor for rUTIs. Notably, E. coli was commonly identified in the urine
of healthy women, including strains arising from UPEC-associated clades and harbor-
ing similar virulence factors. Based on our observations, rUTI gut dysbiosis is consis-
tent with low-level gut inflammation, and is reminiscent of other disorders in which
microbiome-mediated immunomodulation plays a role in disease severity.

Our study had a number of limitations. Firstly, due to the limited collection of
urine samples in control women, it was not possible to robustly compare (i) the com-
position of the urine microbiome, and (ii) the frequency of (asymptomatic) strain
transfer from gut to bladder between cohorts. Secondly, we did not assess the role
of other potential reservoirs, such as the vagina, which could explain UTIs caused by
strains never observed in the gut. Thirdly, while StrainGE offers a high-resolution
view of E. coli strain dynamics in the gut and bladder, we cannot rule out the pres-
ence of additional, low abundance strains which could not be detected from the depth
of metagenomic data generated. Finally, the small cohort size and infrequent blood
sample collection provided limited power to assess differential expression in PBMCs.
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While we identified some indications of immunological differences between cohorts,
our findings warrant further investigations to explore microbiome-host mucosal im-
mune interactions in the context of rUTI susceptibility.

While identifying the origins of rUTI dysbiosis is outside the scope of this study, re-
peated antibiotic exposure is a plausible mechanism throughwhich dysbiosis is main-
tained. The relatively short study period precluded us from establishing whether dys-
biosis is the direct result of long-term antibiotic perturbation. In addition to the poten-
tially detrimental impact of antibiotic use on the gut microbiota, we found that treat-
ment also failed to clear UTI-causing strains from the gut in the long term. rUTI treat-
ment protocols targeting UPEC strains in the gut with minimal disruption to other gut
microbiota, such as small molecule therapeutics [54], may offer improved prospects.
Whilemore evidence is required to fully characterize the causalmechanisms between
dysbiosis and infection, our work highlights the ineffectiveness and potential detri-
mental impact of current antibiotic therapies, as well as the potential for microbiome
therapeutics (e.g. fecal microbiota transplants [10]) to limit infections via restoration
of a healthy bacterial community in the gut.

4.4.Methods
Study design and sample collection

Enrollment

This study was conducted with the approval and under the supervision of the Insti-
tutional Review Board of Washington University School of Medicine in St. Louis, MO.
Women from the St. Louis, MOarea reporting three ormoreUTIs in the past 12months
were recruited into the rUTI study arm, while women with no history of UTI (at most
one UTI ever) were recruited into the control arm via the Department of Urological
Surgery at Barnes-Jewish Hospital in St. Louis, MO. We excluded women who: i) had
inflammatory bowel disease (IBD) or urological developmental defects (e.g., ureteral
reflux, kidney agenesis, etc.), ii) were pregnant, iii) take antibiotics as prophylaxis for
rUTI, and iv) were younger than 18 years or older than 45 at the time of enrollment.
All participants provided informed consent. Microbiological information for previous
UTIs was not available. A total of 16 control and 15 rUTI women aged between 18 and
45 were recruited to the study; participants were remunerated with gift cards for par-
ticipation. 14 women in each cohort completed the entire study collection protocol;
no participants who completed the study were excluded from downstream analyses.
Participants who did not complete the study were included in cohort-level compar-
isons, but excluded from longitudinal analyses. No statistical methods were used to
pre-determine sample sizes but our sample sizes are similar to those reported in pre-
vious publications (e.g., refs [55, 56]). As an observational study with no intervention,
with cohort membership based on predetermined criteria defined above, no subject
randomization was required. Data collection and analysis were not performed blind
to the conditions of the experiments.
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Sample collection and storage

Participants provided blood and urine samples, as well as rectal swabs, at the initial
clinic visit. UTIs were diagnosed during clinic visits; additional UTIs (not presenting
at the study clinic) were inferred based on symptoms (painful urination, increased
urgency/frequency of urination, cloudy urine) and antibiotic consumption reported
in the monthly questionnaire. Women visiting the clinic during the study with UTI
symptoms provided rectal swabs, blood and urine samples, and were requested to
submit stool samples as soon as possible (within 24 hours) after the clinic visit, as well
as at a two week follow-up time point.

All participants provided monthly stool samples for 12 months. Samples were col-
lected at home, and submitted viamail following procedures developed in the Human
Microbiome Project [33]. Briefly, participants collected a fresh fecal sample in a dis-
posable toilet hat and then aliquoted two teaspoon-sized scoops of stool each into a
tube containing phosphate buffered saline and a tube containing 100% ethanol. Sam-
ples were overnight to the Broad Institute where theywere stored at -80C until sample
processing. All stool samples were shipped Monday to Thursday within each week to
limit samples long term exposure to ambient temperature; samples were stored in
patients’ home freezers until shipment, if necessary. Questionnaires were completed
with all monthly and clinical sample collections; these captured self-reported antibi-
otic and drug use, dietary intake, sexual intercourse and UTI symptoms. Participants
who did not provide stool samples and questionnaires at the beginning of eachmonth
were given phone call or email reminders to provide samples.

Sample processing

Blood sample preparation

A total of 15mL of bloodwas collected from each patient during initial enrollment and
UTI visits. The blood was stored on ice for less than 30 minutes and then mixed with
an equal amount PBS with 2% fetal bovine serum (FBS). Peripheral blood mononu-
clear cell (PBMCs) were then isolated using SepMate PBMC isolation tubes (Stemcell
Technologies) with Ficoll-Paque PLUS density gradient medium (Cytiva). Serum was
collected during the PBMC isolation process and stored at -80C until use. PBMCs were
washed with PBS plus 2% FBS and pelleted via centrifugation at 10,000 x g at room
temperature for 5 minutes. PBMC cell pellets were then flash frozen and stored at
-80C until RNA extraction.

Rectal swab and urine preparation

Rectal swabs were collected in the clinic and stored on ice for less than 30 minutes.
Rectal swabs were washed in 2 mL of PBS. 1 mL of PBS was centrifuged at 10,000 x g
at room temperature for 2 minutes and the PBS supernatant was removed. The bac-
terial/fecal pellet was then flash frozen and stored at -80C until DNA extraction. The
remaining 1 mL was then used to make serial dilutions and then plated on both Luria
Broth (LB) and MacConkey agar and incubated overnight at 37oC to quantify colony
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forming units (CFUs). After bacterial enumeration, bacteria from MacConkey and LB
plates were scraped to collect bacterial outgrowths. Bacterial cells were washed with
PBS, pelleted at 10,000 x g at room temperature for 2 minutes, flash frozen and then
stored at -80oC until DNA extraction.

Mid-stream urine samples were collected in sterile containers and stored on ice
for less than 30 minutes. 10 mL of urine was centrifuged at 10,000 x g at room tem-
perature for 5 minutes. The resulting pellet was washed in PBS, pelleted again, and
then flash frozen and stored at -80oC until DNA extraction. 1 mL of urine was used
to make serial dilutions and then plated onto both LB and MacConkey and incubated
overnight at 37oC to enumerate CFUs. After outgrowth, the plates were scraped to
collect bacterial colonies, which were then washed with PBS, pelleted at 10,000 x g
at room temperature for 2 minutes, flash frozen and then stored at -80oC until DNA
extraction.

RNA Extraction - PBMCs

RNA was extracted from stored PBMCs using TRIzol Reagent (cat. no. 15596-026 and
15596-018; Life Technologies), according to the manufacturer’s protocol. Briefly, 0.75
mL of TRIzol was added per 0.25 mL of sample and cells were lysed by several rounds
of pipetting. Samples were incubated for five minutes at room temperature. Chloro-
formwas added to the samples at the recommended concentration and samples were
incubated shaking for 15 seconds and set to rest for 2-3 minutes at room temperature.
After incubation, samples were centrifuged at 12,000 x g for 15 minutes at 4oC. The
aqueous phase was collected for RNA isolation. RNA was precipitated using 100% iso-
propanol and incubated at room temperature for 10 minutes, followed by centrifuga-
tion at 12,000 x g for 10 minutes at 4oC. The precipitated RNA was washed according
to the protocol using 75% ethanol and resuspended in RNase-free water. Extracted
RNA was stored at -80oC until further use.

DNA Extraction – Rectal Swabs and Urine

DNA was extracted from rectal swabs and urine samples plated on MacConkey agar
using theWizard Genomic DNA Purification Kit (Promega), according to the manufac-
turer’s protocol. Briefly, samples were resuspended in 600 uL of Nuclei Lysis solution
and incubated at 80oC for five minutes, then cooled to room temperature. RNase solu-
tion was added to samples and incubated for 15 minutes at 37oC, then cooled to room
temperature. 200 uL of Protein Precipitation solution was added to the RNase-treated
sample, vortexed for 20 seconds, and incubated on ice for 5minutes. After incubation,
samples were centrifuged for 3 minutes at 16,000 x g and the supernatant was trans-
ferred to a 1.5 mL microcentrifuge tube containing 600 uL of isopropanol. Samples
were gently mixed and centrifuged for 2 minutes at 16,000 x g. The supernatant was
removed and theDNApelletwaswashedwith 70% ethanol. Sampleswere centrifuged
for 2 minutes at 16,000 x g, ethanol was aspirated and DNA pellets were air-dried for
15 minutes. The DNA pellet was rehydrated with DNA Rehydration solution and incu-
bated at 65oC for 1 hour. Extracted DNA was stored at 4C for short-term storage and
at 80oC for long-term storage until further use.
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DNA Extraction – Stool

Total nucleic acid from stool was extracted following the HMP2 protocol [33], the basis
of which is the Chemagic MSM I with the Chemagic DNA Blood Kit-96 from Perkin
Elmer. DNA samples were quantified using a fluorescence-based PicoGreen assay.

WMS sequencing and sequence data processing

Libraries were constructed from extracted DNA from stool, urine, rectal swabs, and
plate scrapes using the NexteraXT kit (Illumina). Then, libraries were sequenced on a
HiSeq 2500 (Illumina) in 101 bp paired-end read mode and/or a HiSeq X10 (Illumina)
in 151 bp paired-end read mode. Sequence data was then demultiplexed. Samples
that were sequenced multiple times on different runs were pooled together. Reads
were processedwith KneadData (v0.7.2, https://huttenhower.sph.harvard.edu/
kneaddata/) to remove adapter sequence and trim low base qualities (with Trimmo-
matic), as well as to remove human-derived sequences (by aligning to human genome
with bowtie2).

Luminex assays

Custom Luminex magnetic bead assay kit was obtained from R&D systems (product
LXSAHM). Analytes from Human Inflammation and Human T Cell Response panels
were chosen for the custom kit of 39 analytes: CXCL1/GROalpha, IL-1alpha, M-
CSF/CSF1, LIF, Ltalpha/TNF-b, MIF, APRIL, CCL11/Eotaxin, CCL4/MIP-1b, CXCL8/IL-8,
IFN-g, IL-1b, IL-11, IL-13, IL-17A, IL-18, IL-21, IL-27, IL-31, IL-4, IL-6, MMP-1, TNF-a,
BAFF/BlyS, CCL2/MCP-1, CX3CL1/Fractalkine, CXCL5/ENA-78, GM-CSF, IL-10, IL-12p70,
IL-15, IL-17E/IL-25, IL-2, IL-22, IL-28A/INF-12, IL-33, IL-5, IL-7, MMP-3. Detection of
the analytes in human plasma samples was performed using the Curiox DropArray
system for miniaturization of magnetic bead multiplex kits. Plasma samples were di-
luted 2-fold for the assay. Results were read and quantified using a BioPlex multiplex
plate reader and Microplate Manager software (v5).

Eotaxin ELISA

Plasma eotaxin (CCL11) levels from rUTI and control patients were measured using
the Eotaxin (CCL11) Human Simple Step ELISA kit (cat. No. Ab185985; Abcam),
according to the manufacturer’s protocol. Briefly, plasma samples were diluted into
sample diluent and 50 uL of sample and 50 uL of antibody cocktail were added to
96 well plate strips. Plates were sealed and incubated shaking for one hour at room
temperature. Wells were washed three times with 1x wash buffer and inverted to
remove excess liquid. 100 uL of TMB substrate was added to each well; plates were
covered to protect from light and incubated shaking for 10 minutes. Stop solution
(100 uL) was added to each well and plates were incubated shaking for one minute.
The OD450 was measured and recorded to determine the concentration of Eotaxin in
pg/mL.

https://huttenhower.sph.harvard.edu/kneaddata/
https://huttenhower.sph.harvard.edu/kneaddata/


96 4. Multi-omics analysis link gut microbiome dysbiosis with rUTI in women

Sequence data analysis

Community profiling and metrics

Bacterial community composition was determined using MetaPhlAn2 (v2.7.0 with db
v20) [57] on KneadData-processed sequences. Functional profiling was performed
by HUMAnN2 (v2.8.1, database downloaded in October 2016) [23] on KneadData-
processed sequences. Diversity metrics and Bray-Curtis distances were derived
from the MetaPhlAn2 relative abundance output using the vegan package in R
[https://cran.r-project.org/web/packages/vegan/].

PBMC RNASeq analysis

Sequences from PBMC extracted mRNA were aligned to the human reference
genome (hg19, Bioproject PRJNA31257) using the STAR aligner [58]. Picard-Tools
(https://broadinstitute.github.io/picard/) was used to mark duplicate
reads. Read counts per gene were generated with subread featureCounts [59]. Read
counts were normalized into Counts Per Million (CPM) using edgeR [60]. This nor-
malized read count matrix was then used as input for CIBERSORT using the LM22
signature gene set [61]. Results from CIBERSORT reported the relative abundance of
22 different immune cell types, including both PBMC and non-PBMC cell types, and
it was used to remove three samples that were contaminated with 5% or greater of
non-PBMC cell types. The CIBERSORT filtered set of samples was used to perform
differential gene expression analysis using DESeq2 [62]. Baseline healthy control
samples were compared to baseline rUTI samples. Due to limited sample numbers
and potential confounding, we included only samples collected from caucasian
women in this analysis. Results driven by single outlying data points were not
considered.

E. coli strain profiling

In order to track E. coli strain dynamics we used Strain Genome Explorer (StrainGE),
which we extensively benchmarked for use on low abundance species in the context
of typical Illumina sequencer error [47]. We applied the StrainGSTmodule of StrainGE
to identify representative E. coli strains in all stool, urine and rectal swabs, using an
E. coli reference database generated from RefSeq complete genomes, as detailed in
van Dijk et al. [47]. Strains mapping to the same representative reference genome in
this database typically have an ANI of at least 99.9%. To provide further evidence that
same-strain calls from sample pairs from the same host were indeed matches, we ran
the StrainGRmodule of StrainGE,which calculates alignment-based similaritymetrics.
We used benchmarked thresholds to determine strain matches; strain pairs with a
common callable genome >0.5%, Jaccard gap similarity >0.95 and average callable
nucleotide identity >99.95% were deemed matches.

https://cran.r-project.org/web/packages/vegan/
https://broadinstitute.github.io/picard/
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Determination of UTI-causing strains

Urine samples provided at the time of UTI diagnosis were plated on MacConkey agar.
Sequence data was generated from DNA extracted from uncultured urine, and/or
outgrowth on selective media. The cause of UTI was deemed to be the most abundant
uropathogen, using outgrowth data where available, uncultured urine otherwise.
Species were determined to be uropathogens based on UTI prevalence studies, for
example ref. [1].

Determination of virulence factors

Urine metagenomes for which E. coli represented the dominant species were assem-
bled using SPAdes [63]. To detect virulence factors in E. coli references (see StrainGST
section above) and assembled genomes from study samples, we used the Virulence
Factor Database (VFDB) for E. coli and the type 6 secretion system (T6SS) database
(SecReT6) in genome-wide BLAST+ searches. Though VFDB contains T6SS genes, we
removed them in favor of the T6SS-specific database for a T6SS-specific analytical
pipeline. Other VFDB hits from blastn were filtered for ≥ 90% identity and ≥ 90%
coverage. All E. coli genomes were separated by phylogroup for enrichment analysis,
where Fisher’s Exact test was used to determine the significance of virulence factor
enrichment in a certain phylogroup. T6SS hits were filtered for ≥ 90% identity and
≥ 90% coverage and the system was considered present where at least 12 different
adjacent T6SS genes were present. Again, an enrichment analysis was performed us-
ing Fisher’s Exact test to determine the significance of T6SS presence in certain phy-
logroups.

Statistical testing and models

rUTI risk factors

We used questionnaire responses to determine if any dietary or behavioral factors
were associated with rUTI. We first compared the proportion of participants in each
cohort who responded positively to binary variables (e.g. dairy consumption, alcohol
etc. in the previous two weeks) in more than 50% or responses, and used a Fisher’s
Exact test to determine significance. We next fit mixed effects logistic regression mod-
els to determine temporal risk factors for UTIs. Samples collected within 3 days of UTI
diagnosis were classified as ‘time of UTI’; this binary variable was fit as a function of
host (random effects term) and each dietary or behavioral response variable collected
in the questionnaire. Variables with limited or no variance were excluded.

Identifying differences at the cohort level and time of UTI

We fit mixed effects linear regression models to compare the structure, diversity and
function of the gut microbiome between cohorts, following similar approaches em-
ployed by previous studies (for example, ref. [64]). For this purpose, we used sequence
data from all collected stool samples, but did not include rectal samples. An arcsine
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square root transformationwas applied to relative abundance values. Features (trans-
formed relative abundances, diversity, microbial richness) were fit as a function of
host (random effects term), cohort (categorical variable), and terms for antibiotic use
and race (categorical variable) to adjust for potential confounding effects. To assess
change in relative abundances at relevant timepoints, we also fit models including
covariates for ‘pre-UTI’ (14 days preceding UTI diagnosis), ‘time of UTI’ (three days
either side of UTI diagnosis), or post antibiotics (<14 days post antibiotic exposure)
as binary variables. All taxa with more than 10% non-zero values were fitted using
the lme4 function in R. Significance of associations was determined using Wald’s test,
and p-valueswere adjusted formultiple hypothesis testing using Benjamini-Hochberg
correction at each taxonomic level.

The relative abundance of SCFA producers was additionally compared between
cohorts; butyrate- and propionate-producing species were determined based on func-
tional capacity to produce butyrate and propionate [65]. These species’ relative abun-
dances were then aggregated and compared as above.

We compared the stability of the microbiome between cohorts by assessing the
distributions of within-host pairwise Bray-Curtis (BC) dissimilarities between individ-
uals. Since rUTIwomenhad, on average, slightlymore frequent sampling than control
women, due to the additional follow-up samples after UTI diagnoses, this metric may
be biased towards smaller values in this cohort. However, we observed no significant
trend between BC dissimilarity and time between samples, suggesting no detectable
long-term trends. Furthermore, we detected no difference in the distribution of time-
adjusted BC distances (BC divided by number of days between samples) between co-
horts.

IBD comparisons

To compare rUTI dysbiosis to an IBD gut state, we downloaded MetaPhlAn2 output
from the HMP2 study [33], (https://ibdmdb.org). We extracted longitudinal
samples from adults with IBD (diagnosis=’UC’ or ‘CD’) and non-IBD controls (di-
agnosis=’nonIBD’). We fit linear mixed effects models with standardized relative
abundances as a function of host (random effects term), race (race=’white’; binary
term) and recent antibiotic use. Fitted coefficients for the IBD and rUTI cohorts are
then plotted in Extended Data Figure C.5.

Data availability
Metagenomic sequence data are available from the Sequence Read Archive under
Bioproject PRJNA400628. PBMC RNASeq data are available from the database of
Genotypes and Phenotypes (dbGaP) under project number phs002728. Question-
naire data, output files from MetaPhlan2, Humann2, StrainGE are available from
https://github.com/cworby/UMB-study.

Code availability

Custom R scripts to analyze outputs are available from https://github.com/
cworby/UMB-study.

https://ibdmdb.org
https://github.com/cworby/UMB-study
https://github.com/cworby/UMB-study
https://github.com/cworby/UMB-study
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I N this thesis, we have presented several tools and algorithms to improve the identi-
fication and comparison of genetic variation in bacterial genomes, enabling new in-

sights into their biology and role in human health and disease. In Chapter 2, we intro-
duced POASTA, a new, faster, partial order alignment algorithm with much-reduced
memory usage. This enabled accurate alignments of longer genomic sequences than
previously possible, useful for pangenome graph construction. In Chapter 3, we in-
troduced STRAINGE, a new tool for detecting and characterizing same-species strains
in metagenomic samples. Many clinically relevant species are lowly abundant in the
human gut, and STRAINGE was the only tool able to deconvolve strain mixtures at
coverages as low as 0.5x. In Chapter 4, we characterized the interplay between the
gut microbiota and susceptibility for recurrent UTIs, where STRAINGE enabled novel
insights into the E. coli strain-level dynamics in the gut and bladder of women with
rUTI and healthy controls. Despite these contributions, characterizing and comparing
bacterial (pan)genomeswith extensive genomic diversity remains challenging. In this
chapter, we will review the remaining limitations of current methods, discuss future
avenues for method development, and present impactful future applications.

Moving beyond gene-centered pangenomes
Bacterial pangenome analyses have historically focused on genes [1, 2]. Such
approaches have enabled defining core and accessory genes, and since bacterial
genomes have high coding densities, enabled characterizing genetic variation be-
tween diverse bacterial strains across nearly the entire genome [3]. However, these
approaches omit the genome’s non-coding regions, while variation in those regions
could substantially impact phenotypes [4].

Instead of defining the pangenome based on genes, Marschall et al. generalize the
definition of the pangenome as “any collection of genomic sequences to be analyzed
jointly or used as reference” [5]. The design of generalized pangenome analysis tools
is an active area of research. The ultimate goal of such tools should be to represent
multiple genomes or haplotypes compactly and enable quick identification of homol-
ogous regions and (shared) genetic variation.

Two recent examples of such general pangenome graph construction tools include
MINIGRAPH-CACTUS (MC) [6] and the Pangenome Graph Builder (PGGB) [7], both of
which were used to construct the draft human pangenome [8]. These tools do not
require gene annotations and are not limited to each genome’s coding regions since
they are based on whole genome sequence alignments. The graphical representation
of input genomes encodes homology and represents both small-scale genetic varia-
tion (SNPs, indels) and structural rearrangements. The graph can additionally serve
as a basis for read alignment, enabling the genotyping of other samples with reduced
reference bias [9].

However, neitherMCnor PGGBhave been extensively tested on bacterial genomes.
Since different processes drive the evolution of bacterial and eukaryotic genomes, it
is still an open question whether the graphs constructed by either tool accurately en-
code homology relationships among bacterial genomes and whether they can accu-
rately represent genetic variation in the presence of high recombination rates and



5

105

horizontal gene transfer.
In any case, partial order alignment (POA) will likely be a valuable component for

such a pangenome graph construction pipeline. It is already an essential component
of both the MC and PGGB pipelines, highlighting the broad utility of this algorithm,
also outside bacterial genomics. We showed in Chapter 2 that POASTA significantly
reduced the computational cost to compute partial order alignments, paving the way
for genome-scale alignments and accelerating the development of novel pangenome
analysis tools.

The capability to describe genetic variation pangenome-wide will improve many
analyses. In the remainder of this chapter, we will further detail three applications
where pangenome graphs could have a significant impact. These applications include
1) pangenome-wide association studies, 2) strain-level analysis of microbial commu-
nities, and 3) genomic epidemiology.

Elucidating bacteria’s many genes with unknown func-
tion
A significant barrier to a mechanistic understanding of phenotypes is the large frac-
tion of bacterial genes with unknown functions. For example, of the approximately
ten million gene families in the human gut microbiome [10], more than 50% have an
unknown function [11].

Characterizing gene function is inherently challenging and hard to scale, and we
expect it will remain so for the foreseeable future. However, rapid advances in two
complementary genome-wide functional screening methods will likely accelerate the
elucidation of gene functions in the coming decade [12].

First, transposon-insertion sequencing (Tn-Seq) has enabled the high-throughput
screening of essential genes in controlled experimental conditions [13, 14]. Since its
introduction, Tn-Seq has revealed genes conferring resistance to antibiotics in Staphy-
lococcus aureus [15], genes in Streptococcus pyogenes essential for its survival in hu-
man saliva [16], genes essential for E. coli capsule production [17], and genes involved
in E. coli’s capacity to colonize the gastrointestinal tract [18], among many other find-
ings (recently reviewed in ref. [14]). Further scaling to more experimental conditions
and testing more strains is an active area of research [19, 14], and we refer to Cain et
al. [14] for a more in-depth discussion of future Tn-Seq directions.

Second, inspired by successes in human genome-wide association studies (GWAS)
[20], bacterial GWAS have gained traction in the past decade [21, 22]. Such studies
have implicated genes in host-adaption [23], identified genomic markers conferring
antimicrobial resistance in multiple species [24], and identified the genetic basis un-
derlying invasiveness in Streptococcus pneumoniae [25].

A benefit of GWAS is the analysis of strains directly sampled from their environ-
ments, considering the genetic variation naturally present in the population [12]. This
contrasts with Tn-Seq, where experiments are performed in highly controlled condi-
tions thatmay notmimic the bacteria’s natural environments. The downside of GWAS
is that it only provides indirect evidence for associating a variant to a phenotype [12].
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Additional follow-up studies (e.g., using engineered knock-out strains) might be re-
quired to confirm a causal relationship.

Bacterial GWAS faces additional challenges compared to human GWAS. While
meiosis in humans ensures variants are observed on many genetic backgrounds,
bacteria reproduce clonally, complicating distinguishing between causal variants
and linkage effects [22]. Correcting for strong population structure is thus essential
to prevent the identification of variants that correlate with a phenotype because they
were co-inherited with another causal variant. Recent methods have addressed this
using phylogenetic trees [26], linear mixed models [24, 27], or elastic nets [28].

A second challenge is the high genomic diversity in many bacterial species, and it
is important to consider the kind of genomic marker to be associated with a pheno-
type. In humanGWAS, SNPswith respect to a single reference typically fulfill that role.
However, limiting bacterial GWAS to a single reference would result in reference bi-
ases and omit much variation in the strains’ accessory genomes [29]. Instead, several
approaches opted to associate 𝑘-mers to phenotypes [23, 27]. 𝑘-mers are a flexible ap-
proach that can describe variation even in each strain’s accessory genome. However,
they are also redundant, increasing the number of statistical tests and reducing statis-
tical power, and can be hard to interpret [30]. While this can be partially addressed by
constructing a colored, compacted De Bruijn Graph and associating the resulting unit-
igs to phenotypes [30], another downside is that a causal variant could be obscured by
other (unrelated) variants nearby (within the length of a k-mer), reducing statistical
power.

Another alternative strategy employed by Panaroo is associating structural rear-
rangements in its gene-centered pangenome graph with phenotypes [31]. While this
enables associating (sets of) genes with particular phenotypes, it cannot associate ge-
netic variation at a lower resolution (such as SNPs) to phenotypes.

Novel pangenome analysis tools, as described in the section “Moving beyond gene-
centered pangenomes”, could bridge the current gap in our ability to describe bacte-
rial genetic variation. Such tools should be able to represent many kinds of structural
rearrangements as well as precisely describe small-scale variation, such as SNPs and
indels.

An important feature to consider in the context of GWAS is how to genotype large
sets of samples pangenome-wide. GWAS often requires large sample numbers to iden-
tify statistically significant hits [22], and we expect that Illumina’s short-read sequenc-
ing platform will be the platform of choice for the foreseeable future since it is the
most cost-effective. In our view, a genotyping approach based on read alignment to a
pangenome graph would likely be more powerful than current bacterial pangenome
analysis tools, most which rely on de novo assembly from short reads which is fre-
quently inaccurate or incomplete [32]). To that end, the ideas we presented in Chap-
ter 2, while currently implemented as a POA tool, could also aid a future read-to-grah
aligner, substantially reducing the computational cost of genotyping large sets of sam-
ples.

Finally, associating both bacterial and host genetic variation with observed pheno-
types will further detail how bacteria influence human health [22]. For example, Lees
et al. found that the genetic factors of S. pneumoniae largely explained invasiveness,
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while host genetic factors explained disease severity [25]. Taken together, we expect
such improvements to bacterial GWAS will reveal new insights into the genetic ba-
sis of phenotypes such as health and disease, elucidate molecular mechanisms, and
inform on novel therapeutics.

The therapeutic potential of the microbiome and strain-
resolved metagenomics
The therapeutic potential of the gut microbiome was first demonstrated by treating
Clostridium difficile infections using fecal microbiota transplantation (FMT) from a
healthy donor [33]. FMTs also reduce the frequency of UTI recurrence [34, 35], high-
lighting a potential avenue for treatment and motivating our investigation into the
role of the microbiome in UTI recurrence (Chapter 4).

While FMTs have successfully treated numerous conditions in the past decades,
transferring complex and heterogeneous microbial communities bears considerable
risk [36]. FMTmight transfer antimicrobial-resistant bacteria and increase the risk of
additional infections or sepsis, which could result in death [36, 37].

Instead, several companies are developing defined microbiome-based therapeu-
tics to treat C. difficile infections [38]. Some therapies, such as SER-109 [39], are de-
rived from purified stool; after purification, the remaining Firmicutes spores are pack-
aged into a capsule that can be administered orally. Other therapies, such as VE303
[40], comprise eight individually chosen bacterial strains prepared into a capsule that
can be administered orally. VER303 recently successfully finished a phase two trial
[41], and SER-109 was recently FDA-approved for treating recurrent C. difficile infec-
tions. This demonstrates such therapies’ safety, efficacy, and potential to replace cur-
rent FMT-based treatments. These successes additionally pave the way for future
microbiome-mediated therapeutics for other diseases.

Improved strain-level insights into the human microbiome will substantially ben-
efit the development of such therapeutics along three axes. First, expanding on the
joint host and bacterial GWAS discussed in the previous section, joint host and strain-
level microbial genome-wide association studies (mGWAS) could reveal novel mecha-
nisms or identify biomarkers of health and disease. The planned expansion of large
biobanks such as All of Us [42] to include human microbiome data could provide the
necessary cohort sizes to identify such associations. Early host-microbiome associa-
tion studies were focused on associating specific species with disease [43] but often
failed to identify clear links [44]. More recently, Zahavi et al. performed an mGWAS
at a lower resolution, associating specific bacterial SNPs to host body-mass index (BMI)
[45], though they did not include host genetics. They identified 40 bacterial SNPs asso-
ciated with host BMI, which were replicated in two independent cohorts. These SNPs
were primarily located in energy production and conversion genes, highlighting the
potential to gain insight into mechanisms. While promising, we envision such studies
could benefit from better representation of bacterial pangenome-wide genetic varia-
tion since Zahavi et al.’s approach used a single reference per bacterial species.

Second, improved insights into strain-level genetics will aid the engineering of
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therapeutic strains that can overcome colonization resistance [46, 47]. For example,
Zhao et al. identified within-host adaptive mutations in Bacteroides fragilis, suggest-
ing potential adaptation to the host diet, pressure from phages, or pressure from the
host immune system [48]. They could identify these mutations using an extensive
collection of sequenced isolates from a single person spanning several years. Strain-
resolvedmetagenomics would substantially help scale such analysis to larger cohorts,
omitting the requirement for large-scale isolate sequencing. The identified adaptive
alleles would inform the engineering of strains more likely to stably colonize the gut
or could out-compete a pathogen [49].

Third, insight into strain-level community dynamics will help elucidate strain-
strain interactions and improve the ability to model and predict microbiome
dynamics in response to perturbations. Microbiome dynamics are frequently mod-
eled using the generalized Lotka-Volterra ordinary differential equation model, and
several earlier works have used Bayesian approaches to infer the pairwise species
interaction parameters from several microbiome time series [50, 51, 52]. For example,
Gibson et al.’s model identified species that suppressed C. difficile, highlighting how
such models could help design consortia of strains to be used as therapeutic [51].
Dynamical system models can also predict a community’s response and stability
when perturbed by, for example, antibiotics or a probiotic set of strains [53]. While
current approaches were all limited to the species level, increasing the resolution
of such models to include strain-strain interactions could identify strain-specific
competitive or cooperative behavior that could help design a minimal set of strains
for therapeutic use.

However, technical challenges have hindered the strain-level characterization
of microbial communities. The inherently limited genome context obtained from
short reads complicates metagenomic assembly and reference-assisted approaches.
Metagenomic assemblies are often highly fragmented, especially in same-species
strain mixtures, because of a shared core and variable accessory genome [54]. In
Chapter 3, we showed that STRAINGE could effectively deconvolve strainmixtures and
identify low abundance strains from metagenomic data; however, the application
depends on a phylogeny-spanning reference database. Obtaining strain-specific
variant calls is an additional challenge since only reads in each reference’s unique
genome content will map unambiguously.

Recent advances in the quality and throughput of long-read sequencing technolo-
gies hold great promise for strain-resolved assembly of metagenomes. Long reads
enable genome assemblies with much higher contiguity, and several studies have re-
ported complete, circular chromosomes assembled from metagenomic data [55, 56].
Even when contigs were incomplete, an additional contig binning step could compute
lineage-specific bins representing near-complete assemblies of strains [55]. These con-
tiguous, near-complete assemblies were possible for species at high abundance and if
no other same-species strains were present.

However, in the case of same-species strain mixtures, recent benchmarking
showed an increased risk of misassembly and decreased contiguity [57]. Most assem-
blers are strain-oblivious [58], i.e., they do not try to separate reads from different
strains. If two same-species strains have substantially diverged (e.g., differ more
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than a few percentage points), read overlaps from different strains will be distinct
enough to generate separate contigs; if strains are more closely related, assemblers
will generate collapsed contigs that represent mosaics of multiple strains [56].

Methods to improve strain-level genome assembly from metagenomes are an ac-
tive area of research. The problem is similar to haplotype phasing in polyploid or-
ganisms, and Vicedomini et al. apply a phasing algorithm to recover strain-specific
contigs from a strain-oblivious assembly [58]. In contrast to haplotype phasing, how-
ever, where chromosome copies are expected to be sequenced evenly, strain abun-
dances can differ extensively, resulting in more variable allele frequencies. Linking
reads with variants having similar allele frequencies could help partition reads from
different strains [59, 60].

Another avenue for methodological improvements includes the pooled analysis
of related samples since many microbial communities are studied longitudinally. For
example, Latent Strain Analysis (LSA) partitions reads before assembly based on co-
varying patterns of 𝑘-mer sequencing depths across samples [61]. LSA was initially
designed for short Illumina reads, but given recent progress in lowering sequencing
error rates in long reads, such an approach could also benefit current long-readmeth-
ods.

Metagenomic assembly remains challenging for low-abundance species because
of insufficient read coverage, while many are of clinical importance. Reference-
assisted methods will remain an alternative to assembly to characterize such species.
For example, STRAINGE (Chapter 3) could be adapted to support long reads. The
longer reads, which provide more genome context, should result in fewer ambiguous
alignments, enabling more accurate characterization of larger portions of strains’
genomes.

Future improvements of STRAINGE could include using pangenome reference
graphs. STRAINGE currently inherits the limitations of using single references to
characterize bacterial genomes. It occasionally reports multiple reference genomes
for a single strain because no reference accurately reflects its genome. To solve
this issue, future algorithms could build a “strain-specific” reference that includes
genome content from multiple database references. Long reads could enable the
detection of such breakpoints, where the algorithm would need to switch to a locus
on another reference.

We expect these technical challenges to be overcome in the next decade, which
will provide valuable insights into the principles underlying microbiome community
assembly, community dynamics, and its role in human health. Such insights will ad-
vance the development of microbiome-based treatments for diseases such as obesity,
IBD, or recurrent urinary tract infections (Chapter 4).

Improved epidemiology of antimicrobial resistance
The rise of antimicrobial resistance (AMR) is already an urgent threat to humanhealth
care, causing millions of deaths yearly [62]. Few novel classes of antibiotics are in the
pipeline, and annual deaths are expected to rise rapidly in the coming decades [63].
While recent machine-learning-based approaches yielded promising new antibiotic
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candidates [64, 65], it could take years before such compounds are approved for clin-
ical use.

An orthogonal approach to counter AMR is through increased surveillance and
implementing measures that reduce the dissemination of AMR genes. In this thesis,
we have discussed the benefits of genomic epidemiology for tracking strains, e.g., to
infer the source of an ongoing outbreak in a hospital or to track strains over time in
the human gut (Chapter 3). In our highly connected society, large-scale surveillance of
farms, hospitals, or nursing homes is essential to gaining insights into bacteria’s travel
routes and their resistance genes [63].

STRAINGE (Chapter 3) can aid in characterizing bacterial and AMR gene travel
routes. For example, Worby et al. used STRAINGE to find frequent acquisition of resis-
tant Enterobacteriaceae strains in international travelers [66]. Another future appli-
cation of STRAINGE could be tracking strains using sequenced “plate swipes” [67]. In-
stead of sequencing isolates from a plate culture, the entire plate is deeply sequenced,
and the data thus represents DNA from all strains present, which STRAINGE could de-
convolve. This would enable more sensitive detection of strains present in the sam-
pled environment, enabling more accurate inference of transmission links.

One often overlooked aspect of AMR epidemiology is the spread of individual plas-
mids as opposed to the bacteria themselves. Plasmids are important vectors for dis-
seminating AMR genes since they are frequently transferred horizontally [68]. Track-
ing plasmids, however, has been hampered due to the technical challenges of charac-
terizing themwith short reads. Plasmids are diverse, frequently recombine, and often
highly repetitive. The high repetitiveness complicates their de novo assembly, and be-
cause of their diversity and frequent rearrangements, a single reference genome will
rarely accurately represent a set of plasmids [69].

The importance of tracking plasmids is demonstrated by Salamzade et al. [70],
where they discovered a set of plasmids harboring multiple AMR genes that had per-
sisted for over ten years at Massachusetts General Hospital (MGH) despite limited ev-
idence for large-scale bacterial outbreaks. These plasmids were acquired indepen-
dently by multiple bacterial species, causing hard-to-treat infections. This suggests
the presence of a reservoir atMGHwhere imported bacterial strains can acquire these
plasmids and become multi-drug-resistant.

Detecting these plasmids was possible because long-read sequencing enabled the
construction of complete, circularized assemblies. Long-read sequencing, however, is
still too expensive for large-scale genomic surveillance. Biases in sampling influence
the reconstructed evolutionary trees and subsequent inference of transmission links
[71, 72]. Increased sampling density of the locations under study results in more ac-
curate inferences of transmission networks [73]. For this reason, we expect Illumina
sequencing to remain the most commonly used sequencing platform for large-scale
genomic surveillance since it achieves the highest throughput and is the most cost-
effective.

New study designs focused on tracking plasmids could use a hybrid approach:
long-read sequencing for a subset of samples and short-read sequencing for all other
samples. Such a setup would combine accurate long-read plasmid assemblies with
the scale of short-read sequencing, in which a panel of long-read assembled plasmids
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will aid in tracking plasmids in short-read samples. To maximize the probability that
a short-read sample contains a plasmid related to a plasmid in a long-read sample,
plasmid content can be estimated beforehand with short reads to guide the selection
of samples that best represent plasmid content among the data set.

Novel computational tools are required to characterize and track plasmids in hy-
brid setups. Similar to a bacterial pangenome reference graph, a pan-plasmid refer-
ence graph could be a potential solution to infer what (pieces of) long-read assembled
plasmids are present in the short-read samples. We believe that POASTA (Chapter 2)
could again be an essential component of such a pipeline to construct and analyze
pan-plasmid graphs. Additionally, because plasmids frequently rearrange, novel re-
latednessmeasureswill be required to infer transmission links accurately. Two recent
approaches to achieve that include SHIP [74] and Pling [75].

The spread and persistence of plasmids within hospitals and their role in dissemi-
nating AMR genes have, until recently, been underappreciated because of the difficul-
ties in studying them. Improved tools to characterize and track individual plasmids
will give insight into their reservoirs and travel routes, informing onmeasures to curb
their spread. Such measures are desperately needed to stem the ever-increasing bur-
den of antimicrobial resistance infections worldwide.

Final remarks
Advances in sequencing technology have revealed the extensive genetic diversity
among many bacterial species. Developing novel algorithms that consider this di-
versity will greatly aid in identifying the genetic basis of phenotypes, understanding
microbial community dynamics, and tracking bacteria or their mobile genetic ele-
ments. This will lead to increased insight into the molecular mechanisms of disease,
advance the development of novel microbiome therapeutics, and reduce the burden
of (resistant) bacterial infections.
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Figure A.1: (a) Example computation of aligning “CCGCACAACGGG” to a POA graph, with mismatch cost
Δ𝑥 = 4, and gap cost Δ𝑔 = 2. The white arrows indicate the optimal alignment path. (b) A subgraph of
the full alignment graph, corresponding to POA graph nodes 13-17, and query offset 10-12. A node ⟨𝑣, 𝑜⟩ in
the alignment graph represents a cursor to a node in the POA graph 𝑣 and a query offset 𝑜. The various
alignment operations ((mis)match, insertion, deletion) correspond to different kinds of edges. Insertion
and deletion edges are weighted with the gap cost Δ𝑔, and (mis)match edges with a function Δ𝑚(𝑎, 𝑏) = {Δ𝑥
if 𝑎 ≠ 𝑏, and 0 otherwise.
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Figure A.2: POASTA’s A* heuristic and superbubble-informed pruning substantially reduces the number
of visited alignment states. Barplot indicating the percentage of visited alignment states of three POASTA
configurations compared to aDijkstra baseline (i.e., with both theA*heuristic andbubble pruning disabled).
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Figure A.4: POASTA considers all prior reached bubble exits when testing if a state can be pruned. (a)
Example that shows alignment states that reached exit 𝑡 previously at query position 𝑗1 , 𝑗2 and 𝑗3 (bor-
dered squares). Positions are stored as an ordered set 𝐽𝑡. (b) Example upper bounds for unvisited states by
implicitly opening insertions (squares without border). (c) Example upper bounds for unvisited states by
implicitly opening deletions (top; squares without border), reaching some node 𝑤 downstream of 𝑡. Trac-
ing back zero-cost match edges (black arrows) from opened deletions enables linking the upper bound to
a query position for 𝑡 (bottom). (d) Example of how POASTA determines whether to prune a state ⟨𝑣, 𝑖⟩
reached with alignment cost 𝐶. POASTA determines the lowest upper bound from implicitly opened gaps
for each query position by taking the minimum cost of an implicitly opened insertion or deletion. POASTA
only needs to compare the alignment cost 𝐶 with the upper bounds for states marked with a *. All examples
use the gap-linear cost model with Δ𝑔 = 2.
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Figure A.5: abPOA is, on average, 3.5x faster than POASTA, but doesn’t guarantee optimal alignment and
uses more memory. (a) Relative runtime of POASTA compared to abPOA for each set of gene sequences. (b)
The relationship between pairwise ANI of each gene sequence set and POASTA’s relative runtime. (c) The
relationship between mean sequence length and POASTA’s relative runtime. (d) Relative memory usage of
POASTA compared to abPOA for each set of gene sequences. (e) The relationship between pairwise ANI of
each sequence set and POASTA’s relative memory usage. (f) The relationship between the mean sequence
length of each sequence set and POASTA’s relative memory usage.
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A.2. Supplemental Methods
The connection between dynamic programming recurrence and the
alignment graph

Gap-linear alignment costs

The conventional dynamic programming (DP) recurrence for POA with gap-linear
costs is [1]:

𝑆𝑣,𝑖 =min
⎧

⎨
⎩

𝑆𝑢,𝑖−1 + Δ(𝜎(𝑣), 𝑞𝑖) ∀𝑢 ∶ (𝑢, 𝑣) ∈ 𝐸
𝑆𝑢,𝑖 + Δ𝑔 ∀𝑢 ∶ (𝑢, 𝑣) ∈ 𝐸
𝑆𝑣,𝑖−1 + Δ𝑔

(A.1)

Here, 𝜎(𝑣) → Σ returns the node label for a node 𝑣, and Δ(𝑎, 𝑏) → ℤ is a function
that returns the match cost Δ𝑚 if 𝑎 = 𝑏, and mismatch cost Δ𝑥 if 𝑎 ≠ 𝑏. The three cases
correspond to a (mis)match between the graph and query, opening or extending a
deletion, and opening or extending an insertion.

To translate the recurrence to edges in an alignment graph, we define the edge set
𝐸𝐴 as follows. Edges connect two alignment states ⟨𝑢, 𝑖⟩ → ⟨𝑣, 𝑗⟩ if one of the following
conditions hold:

• Match andmismatch. (𝑢, 𝑣) ∈ 𝐸, 𝑣 ≠ 𝜏, and 𝑖 + 1 = 𝑗, 𝑗 ≤ 𝑚, with the (mis)match
cost Δ(𝜎(𝑣), 𝑞𝑗) as weight;

• Deletion. (𝑢, 𝑣) ∈ 𝐸, 𝑣 ≠ 𝜏, and 𝑖 = 𝑗, with the gap cost Δ𝑔 as weight;

• Insertion. 𝑢 = 𝑣, 𝑢, 𝑣 ≠ 𝜏, and 𝑖 + 1 = 𝑗, 𝑗 ≤ 𝑚, with the gap cost Δ𝑔 as weight;

• Termination. (𝑢, 𝑣) ∈ 𝐸, 𝑣 = 𝜏, and 𝑖 = 𝑗 = 𝑚, with zero cost.

These edges (except for the termination edge) are analogous to the different cases
in Equation A.1. We note that edges originating from the special start node 𝜈 are anal-
ogous to the base cases in the dynamic programming problem, i.e., the first row and
column of the matrix initialized with the gap costs. Edges towards to special termi-
nation node 𝜏 have no analogous case in the dynamic programming recurrence and
therefore have zero cost.

Gap-affine alignment costs

To compute the gap-affine alignment, the Smith-Waterman-Gotoh (SWG) DP recur-
rence for affine pairwise alignment [2] can be adapted to POA as follows:

⎧
⎪⎪

⎨
⎪⎪
⎩

𝐼𝑣,𝑖 =min{𝑀𝑣,𝑖−1 + Δ𝑜 + Δ𝑒 , 𝐼𝑣,𝑖−1 + Δ𝑒}
𝐷𝑣,𝑖 =min{𝑀𝑢,𝑖 + Δ𝑜 + Δ𝑒 , 𝐷𝑢,𝑖 + Δ𝑒}

∀𝑢 ∶ (𝑢, 𝑣) ∈ 𝐸
𝑀𝑣,𝑖 =min{𝐼𝑣,𝑖 , 𝐷𝑣,𝑖 , 𝑀𝑢,𝑖−1 + Δ(𝜎(𝑣), 𝑞𝑖)}

∀𝑢 ∶ (𝑢, 𝑣) ∈ 𝐸

(A.2)
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The two cases for 𝐼𝑣,𝑖 correspond to opening an insertion and extending an inser-
tion; the two cases for 𝐷𝑣,𝑖 correspond to opening a deletion and extending a dele-
tion; and the three cases for 𝑀𝑣,𝑖 correspond to closing an insertion, deletion, or a
(mis)match.

To extend the alignment graph formulation to the gap-affinemodel, with gap open
costΔ𝑜 and gap extend costΔ𝑒 , we define thenode set of the gap-affinealignment graph
as follows: 𝑉𝐴 = (𝑉 × {0,… ,𝑚} × {𝑀,𝐷, 𝐼}). In other words, for each pair 𝑣 ∈ 𝑉, 𝑖 ∈ [0,𝑚],
we now have three possible alignment states: ⟨𝑣, 𝑖,𝑀⟩, ⟨𝑣, 𝑖, 𝐷⟩, ⟨𝑣, 𝑖, 𝐼⟩, representing the
match, deletion, and insertion state, respectively. Edges in the gap-affine alignment
graph are defined as follows:

• Edges ending in the insertion state

– ⟨𝑢, 𝑖,𝑀⟩ → ⟨𝑢, 𝑖 + 1, 𝐼⟩, 𝑢 ≠ 𝜏, 𝑖 + 1 ≤ 𝑚, weighted with gap open cost Δ𝑜 + Δ𝑒
– ⟨𝑢, 𝑖, 𝐼⟩ → ⟨𝑢, 𝑖 + 1, 𝐼⟩, 𝑢 ≠ 𝜏, 𝑖 + 1 ≤ 𝑚, weighted with gap extend cost Δ𝑒

• Edges ending in the deletion state

– ⟨𝑢, 𝑖,𝑀⟩ → ⟨𝑣, 𝑖, 𝐷⟩, (𝑢, 𝑣) ∈ 𝐸, 𝑣 ≠ 𝜏, weighted with gap open cost Δ𝑜 + Δ𝑒
– ⟨𝑢, 𝑖, 𝐷⟩ → ⟨𝑣, 𝑖, 𝐷⟩, (𝑢, 𝑣) ∈ 𝐸, 𝑣 ≠ 𝜏, weighted with gap extend cost Δ𝑒

• Edges ending in the (mis)match state

– ⟨𝑢, 𝑖,𝑀⟩ → ⟨𝑣, 𝑖 + 1,𝑀⟩, (𝑢, 𝑣) ∈ 𝐸, 𝑣 ≠ 𝜏, 𝑖 + 1 ≤ 𝑚, with (mis)match cost
Δ(𝜎(𝑣), 𝑞𝑖+1)

– ⟨𝑢, 𝑖, 𝐼⟩ → ⟨𝑢, 𝑖,𝑀⟩, 𝑢 ≠ 𝜏, weighted with zero cost
– ⟨𝑢, 𝑖, 𝐷⟩ → ⟨𝑢, 𝑖,𝑀⟩, 𝑢 ≠ 𝜏, weighted with zero cost

• Termination edges

– ⟨𝑢,𝑚,𝑀⟩ → ⟨𝜏,𝑚,𝑀⟩, (𝑢, 𝜏) ∈ 𝐸, weighted with zero cost

These edges are analogous to the cases in Equation A.2.

Proof of minimum number of indel edges

Given an alignment state ⟨𝑢, 𝑖⟩, let 𝑑min
𝑢,𝜏 and 𝑑max

𝑢,𝜏 be the minimum andmaximum path
length in the POA graph from 𝑢 to end node 𝜏. We additionally compute the length
of the unaligned query sequence 𝑙𝑟 = 𝑚 − 𝑖. The minimum number of indel edges to
traverse is then:

Definition 3 (Minimum number of indel edges)

𝑁min
𝑔 =

⎧

⎨
⎩

𝑙𝑟 − (𝑑max
𝑢,𝜏 − 1) if 𝑑max

𝑢,𝜏 − 1 < 𝑙𝑟
(𝑑min
𝑢,𝜏 − 1) − 𝑙𝑟 if 𝑑min

𝑢,𝜏 − 1 > 𝑙𝑟
0 otherwise

(A.3)

We subtract one from 𝑑min
𝑢,𝜏 and 𝑑max

𝑢,𝜏 to exclude the edge towards 𝜏.
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Proof Let 𝒲 ⊂ 𝑉 be the subset of POA graph nodes with an outgoing edge to 𝜏, i.e.,
𝒲 = {𝑤 ∶ (𝑤, 𝜏) ∈ 𝐸}. By definition of the alignment graph, the alignment termination
state is only reachable from alignment states ⟨𝑤,𝑚⟩ ∶ 𝑤 ∈ 𝒰. We will prove each case
separately.

In the first case, 𝑑max
𝑢,𝜏 − 1 < 𝑙𝑟 . By definition of 𝒲, ∃𝑤 ∈ 𝒲 such that 𝑑𝑢,𝑤 =

𝑑max
𝑢,𝜏 − 1, i.e., excluding the last edge towards 𝜏 from the maximum path length. The

presence of this maximum length path in the POA graph implies a corresponding
path of all (mis)match edges in the alignment graph, reaching the alignment state
⟨𝑤, 𝑗⟩, 𝑤 ∈ 𝒲, 𝑗 = 𝑖 + 𝑑𝑣,𝑤 . Since this traversed the maximum length path in the POA
graph, 𝑗 is also the maximum query position reachable from ⟨𝑢, 𝑖⟩. Since 𝑑𝑢,𝑤 < 𝑙𝑟 , we
infer that 𝑗 < 𝑚. This means that the alignment termination state is not reachable
from ⟨𝑢, 𝑗⟩, and at least 𝑚 − 𝑗 = 𝑙𝑟 − (𝑑max

𝑣,𝜏 − 1) insertion edges need to be traversed to
be able to reach the alignment termination state.

In the second case, 𝑑min
𝑣,𝜏 − 1 > 𝑙𝑟 . Similarly as above, ∃𝑤 ∈ 𝒲, such that 𝑑𝑢,𝑤 =

𝑑min
𝑢,𝜏 − 1, i.e., excluding the last edge towards 𝜏 from the minimum path length. To

reach the alignment termination state from ⟨𝑢, 𝑖⟩, we need to traverse at least 𝑑𝑢,𝑤
(mis)match or deletion edges, since this is the minimum length path to the POA end
node. We can, however, traverse only 𝑙𝑟 (mis)match edges, since no (mis)match edges
exist that would move the query position beyond the query sequence length 𝑚. After
traversing 𝑙𝑟 (mis)match edges, we would reach some state ⟨𝑣,𝑚⟩, with 𝑣 being a node
on theminimumpath in the POA graph 𝑢 → ... → 𝑣 → ... → 𝑤 → 𝜏. To be able to reach the
alignment termination state, we need to traverse at least 𝑑min

𝑣,𝜏 − 1 − 𝑙𝑟 deletion edges.
In the last case, 𝑑min

𝑣,𝜏 −1 < 𝑙𝑟 < 𝑑max
𝑣,𝜏 −1, which implies that there exist a path from

⟨𝑢, 𝑖⟩ to ⟨𝜏,𝑚⟩ without the need to traverse any indel edges. □

Extension of the minimum gap cost heuristic function to the gap-
affine model
To compute the minimum gap cost heuristic using gap-affine model, we need to take
into account that insertion or deletion states do not need to incur the gap-open cost
again.

A state ⟨𝑣, 𝑖,𝑀⟩ always needs to incur the gap-open cost, thus the heuristic is com-
puted as follows:

Definition 4 ℎ⟨𝑣, 𝑖,𝑀⟩ = {0 if 𝑁min
𝑔 = 0

Δ𝑜 + 𝑁min
𝑔 Δ𝑒 otherwise

A state ⟨𝑣, 𝑖, 𝐼⟩ is already in insertion state andwould not have to incur the gap open
cost again if 𝑑max

𝑣,𝜏 − 1 < 𝑙𝑟 , since the minimum number of indel edges (as described
above) are all insertion edges in that case. We compute the heuristic as follows:

Definition 5 ℎ⟨𝑣, 𝑖, 𝐼⟩ =
⎧

⎨
⎩

0 if 𝑁min
𝑔 = 0

𝑁min
𝑔 Δ𝑒 if 𝑑max

𝑣,𝜏 − 1 < 𝑙𝑟
Δ𝑜 + 𝑁min

𝑔 Δ𝑒 otherwise
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Similarly, for a state ⟨𝑣, 𝑖, 𝐷⟩, we would not have to incur the gap open cost again if
𝑑min
𝑣,𝜏 − 1 > 𝑙𝑟 , since the minimum number of indel edges are all deletion edges in that

case. The heuristic is computed as follows:

Definition 6 ℎ⟨𝑣, 𝑖, 𝐷⟩ =
⎧

⎨
⎩

0 if 𝑁min
𝑔 = 0

𝑁min
𝑔 Δ𝑒 if 𝑑min

𝑣,𝜏 − 1 > 𝑙𝑟
Δ𝑜 + 𝑁min

𝑔 Δ𝑒 otherwise

Implementation details of superbubble-informed pruning

Effective detection of prunable states by computing implicitly opened gap costs

To test if a state ⟨𝑣, 𝑖⟩ reached at cost 𝐶 and contained in a superbubble (𝑠, 𝑡) can be
pruned, POASTA infers the range of states ⟨𝑡, 𝑗min⟩, … , ⟨𝑡, 𝑗max⟩ reachable with zero-cost
match edges (Methods; Main Text Figure 3c). A naive approach would scan the entire
range ⟨𝑡, 𝑗min⟩, … , ⟨𝑡, 𝑗max⟩ and assess whether all of those states were visited prior at a
lower or equal cost to 𝐶. This would be ineffective for two reasons: 1) for larger and
more complex bubbles, the range 𝑗min, … , 𝑗max can be quite large, and 2) at the time of
testing, many of those states might not have been reached yet, thus without a known
alignment cost to compare to 𝐶.

To more effectively detect prunable states, POASTA employs the following: First,
POASTA tracks in a B-tree set onwhich query positions a superbubble exit 𝑡 have been
reached (Supplementary Figure A.4a). Then, POASTA uses the inherent ordering in a
B-tree to quickly retrieve which query positions have reached bubble exit 𝑡 in the
range 𝑗min, ..., 𝑗max. Finally, POASTA computes upper bounds on the alignment costs
for unvisited positions in this range by implicitly opening gaps from visited positions
(Supplementary Figure A.4bc). A state ⟨𝑣, 𝑖⟩ will be pruned if its alignment cost 𝐶 is
greater than or equal to the (upper bound on) costs for states ⟨𝑡, 𝑗min⟩, … , ⟨𝑡, 𝑗max⟩ (Sup-
plementary Figure A.4d). We will detail each step below.

First, the B-tree for each superbubble exit is an ordered set 𝐽𝑡 = {𝑗1, 𝑗2, … , 𝑗𝑛} of
query positions on which a superbubble exit has been reached. Each time a state ⟨𝑡, 𝑗⟩
is popped from the A* queue, POASTA inserts 𝑗 into the B-tree for an exit 𝑡 (Supple-
mentary Figure A.4a).

Second, as discussed above, POASTA assesses whether a state ⟨𝑣, 𝑖⟩ can be pruned
by comparing its alignment cost 𝐶 to the alignment costs of ⟨𝑡, 𝑗min⟩, … , ⟨𝑡, 𝑗max⟩. Using
the inherent ordering in the B-tree, POASTA can quickly find indices 𝑎 and 𝑏 using
binary search such that 𝑗min ≤ 𝑗𝑎 , … , 𝑗𝑏 ≤ 𝑗max, i.e., the list of visited query positions in
the range [𝑗min, 𝑗max].

POASTA uses this list of visited query positions to compute upper bounds on the
alignment cost for the unvisited query positions, i.e., states ⟨𝑡, 𝑗′⟩ ∶ 𝑗′ ∈ [𝑗min, 𝑗max], 𝑗′ ∉
𝐽𝑡 , by implicitly opening gaps. We call this implicitly opening gaps since these upper
bounds are computed on the fly, not recorded anywhere, and not included in the A*
queue.

For example, if ⟨𝑡, 𝑗⟩ was previously visited with a cost 𝐶⟨𝑡,𝑗⟩, then any unvisited
state ⟨𝑡, 𝑗′⟩ ∶ 𝑗′ > 𝑗 could also be reached by opening an insertion from ⟨𝑡, 𝑗⟩. In the
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case of linear gap penalties, these states would then be reached at an alignment cost
𝐶⟨𝑡,𝑗′⟩ = 𝐶⟨𝑡,𝑗⟩+Δ𝑔(𝑗′−𝑗). This is an upper bound on the cost for a state ⟨𝑡, 𝑗′⟩, since there
may exist a path to that statewith a lower alignment cost (Supplementary Figure A.4b).

Besides opening an insertion, we could also open a deletion from a previously
reached state ⟨𝑡, 𝑗⟩, reaching some state ⟨𝑤, 𝑗⟩ where 𝑤 is a node downstream of 𝑡. In
the case of linear gap penalties, this state would be reached with an alignment cost of
𝐶⟨𝑤,𝑗⟩ = 𝐶𝑗+Δ𝑔𝑑𝑡,𝑤 , where 𝑑𝑡,𝑤 is the path length between 𝑡 and𝑤. This is again an upper
bound on the cost for state ⟨𝑤, 𝑗⟩, since there may be other paths with lower alignment
costs. We link the upper bound of ⟨𝑤, 𝑗⟩ to a state involving exit 𝑡 and a query position
𝑗″ < 𝑗 by noting that any alignment path from a state ⟨𝑣, 𝑖⟩ to ⟨𝑤, 𝑗⟩ would need to tra-
verse an alignment state ⟨𝑡, 𝑗″⟩ ∶ 𝑖 ≤ 𝑗″ ≤ 𝑗 since 𝑣 is part of a superbubble with exit
𝑡. Tracing back the best-case scenario of zero-cost match edges from ⟨𝑤, 𝑗⟩, we find
that 𝑗″ = 𝑗 − 𝑑𝑡,𝑤 . Thus, for ⟨𝑣, 𝑖⟩ to improve over the upper bound for ⟨𝑤, 𝑗⟩, it would
also need to reach ⟨𝑡, 𝑗 −𝑑𝑡,𝑤⟩with an alignment cost lower than 𝐶⟨𝑤,𝑗⟩ (Supplementary
Figure A.4c).

Finally, while implicitly opening gaps enables computing upper bounds of the
alignment cost for any state in the range ⟨𝑡, 𝑗min⟩, … , ⟨𝑡, 𝑗max⟩, POASTA only needs
to check a subset of positions in this range when assessing to prune a state ⟨𝑣, 𝑖⟩.
Specifically, POASTA exploits the fact that the cost of a gap linearly increases with its
length. For example, if an exit 𝑡 has been reached on query positions 𝑗1, 𝑗2 ∈ 𝐽𝑇 , 𝑗2 ≫ 𝑗1,
the position with the lowest implicit insertion cost in the range [𝑗1, 𝑗2] would be 𝑗1 + 1,
since for all following positions, the insertion cost would only increase. Similarly,
the position with the lowest implicit deletion cost in the range would be 𝑗2 − 1.
By comparing the (upper bound on) alignment costs for the subset of positions
{𝑗min, 𝑗max} ∪ {𝑗 − 1, 𝑗, 𝑗 + 1 ∶ 𝑗 ∈ 𝐽[𝑎,𝑏]𝑡 } to the alignment cost 𝐶 of a state ⟨𝑣, 𝑖⟩, POASTA
thus determines whether ⟨𝑣, 𝑖⟩ can improve the alignment score over the entire range
⟨𝑡, 𝑗min⟩, … , ⟨𝑡, 𝑗max⟩ (Supplementary Figure A.4d).

Detecting prunable states with gap-affine penalties

Superbubble-informed pruning is straightforward to adapt to the gap-affine cost
model. One option would be to keep separate, ordered sets of reached positions
𝐽𝑀𝑡 , 𝐽𝐷𝑡 , 𝐽𝐼𝑡 for matches, deletions, and insertions. When testing to prune a state ⟨𝑣, 𝑖,𝑀⟩,
we could open gaps from positions in 𝐽𝑀𝑡 , while considering the additional gap open
cost. When testing to prune a state ⟨𝑣, 𝑖, 𝐼⟩ or ⟨𝑣, 𝑖, 𝐷⟩, we could extend gaps from
positions in 𝐽𝐼𝑡 and 𝐽𝐷𝑡 , respectively, without incurring the gap open cost. However,
the downside of such an approach is the additional cost of inserting an increased
number of positions into a B-tree, which has logarithmic time complexity.

Instead, POASTA employs another option: it tracks only reached (mis)match states
in 𝐽𝑀𝑡 , thus substantially reducing the number of times it needs to insert a position in a
B-tree. POASTA can still use the positions in 𝐽𝑀𝑡 to compute implicit gap costs and test
whether to prune states ⟨𝑣, 𝑖, 𝐼⟩ or ⟨𝑣, 𝑖, 𝐷⟩. One thing to consider is that the latter states
will not need to incur the gap open cost for extending the insertion or the deletion,
while implicit gaps from positions in 𝐽𝑀𝑡 do. Thus, POASTAwill not prune a state ⟨𝑣, 𝑖, 𝐼⟩
or ⟨𝑣, 𝑖, 𝐷⟩, reached at cost 𝐶, if ∃𝑗 ∈ 𝐽𝑀𝑡 ∶ 𝐶 < 𝐶⟨𝑡,𝑗⟩ + Δ𝑜.
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Construction of benchmark datasets
To construct our bacterial gene benchmark datasets, we first downloaded all bacterial
“complete” genomes fromNCBI RefSeq (40,188 genomes total; accessed July 2023). We
used the accompanying gene annotations to extract the dnaG, nusA, pgk, pyrG, and
rpoB gene sequences from each genome.

To create each individual benchmark set, we clustered gene sequences using
single-linkage hierarchical clustering, as implemented in SciPy [3]. Pairwise genetic
distances were estimated using Mash [4] (𝑘 = 15; sketch size = 5,000), and were
additionally used to deduplicate the sequence set, selecting one representative per
set of identical sequences. We set the clustering threshold to 0.1, i.e., a new cluster
would be formed if no neighbor could be found with a genetic distance < 0.1. This
threshold is coarse enough to generate multiple genus and species-level clusters. We
picked one or more clusters for each gene family as final datasets, each with at least
100 sequences, and varying the pairwise average nucleotide identities (ANI). Finally,
each set was sorted by picking one “center” sequence with the smallest average Mash
distance to all others and then ordering the remaining sequences in the set by the
distance to the chosen “center” sequence, a strategy commonly applied before POA
[5].

Benchmark execution details
We ran POASTA with the following parameters: mismatch cost Δ𝑥 = 4, gap open cost
Δ𝑜 = 6, and gap extend cost Δ𝑒 = 2, the same costs as used in theWavefront Algorithm
(WFA) [6]. Our benchmark suite calls POASTA’s Rust API directly to perform align-
ments. Thus, its runtime and memory usage measurements exclude anything related
to startup or file input/output.

Wewrote Rust bindings to SPOA and abPOA to achieve the same for those tools. All
tools were configured to perform global alignment using the same cost model. Tools
were run in single-threadedmode on a c2-standard-8 virtualmachine on theGoogle
Cloud Platform, with an Intel Cascade Lake CPU and with 32 GB of RAM.

Assessing the frequency of missed optimal alignments with abPOA
To assess how frequently abPOA missed the optimal alignment, we constructed a
graph comprising ten randomly selected gene sequences for each benchmark set.
The remaining sequences were then aligned to the graph without updating it. This
ensured each alignment was performed against the same graph and alignment scores
were not influenced by different alignment backtracking or graph update choices.
We performed alignments with SPOA, POASTA, and abPOA (each with the same graph
as input) and recorded the alignment score for each non-graph sequence alignment.

We identified a discrepancy in abPOA’s graph implemen-tation, which allowed
alignments to start at any node that is the start of a previously added sequence to the
graph. This enables the alignment to potentially skip nodes, whereas SPOA/POASTA
would incur additional indel costs. It similarly allowed alignments to end at any node
representing the end of a sequence added to the graph. This discrepancy resulted in
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better (i.e., lower) alignment costs than expected since we benchmarked global align-
ment where indels at the start or end still incur an alignment cost.

Construction of Mycobacterium tuberculosis dataset
To construct the benchmark sets withMycobacterium tuberculosis genomic sequences
of 250, 500, and 1000 kbp in length, we downloaded all “complete“ M. tuberculosis
genomes available on NCBI RefSeq (370 total; accessed November 2023). To make
all genomes colinear, we rotated and reoriented each genome such that each started
with the gene dnaA, using the fix-start utility in Circlator [7]. Additionally, since
inversions also break co-linearity, and POA poorly supports aligning large inversions,
we excluded 29 genomes with more than 15% (≥ 660 kbp) of its genome inverted with
respect to the canonical reference M. tuberculosis H37Rv, detected using MUMMER
[8].

We truncated genomes at specific genes to obtain sequences of the desired length.
For the 250 kbp, 500 kbp, and 1 Mbp datasets, we used the genes trmB, thiE, and gltA2
as cutoff points, respectively. We manually confirmed that these genes were located
around the 250 kbp, 500 kbp, and 1 Mbp marks in each of the dnaA rotated and reori-
ented genomes. Finally, each dataset was sorted such that references were in ascend-
ing order of their Mash distance [4] to H37Rv.

POASTAwas executedwith the same alignment costmodel as described above, but
on the larger c2-standard-60 virtual machine on the Google Cloud Platform, which
has 240 GB of RAM available.
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B.1. Supplementary Tables

Table B.1: StrainGST performance using various sized databases.

Threshold (#refs) TP FN FP Recall Precision F1

0.9 2721 57 57 0.979 0.979 0.979
0.8 (213) 2640 119 122 0.957 0.956 0.956
0.7 (88) 2532 159 289 0.941 0.898 0.919
0.6 (42) 2284 336 694 0.872 0.767 0.816
0.5 (14) 2138 120 757 0.947 0.739 0.830

TP: True Positives; FN: False Negatives; FP: False Positives; Recall: TP / (TP+FN); Precision: (TP+FP) / TP; F1
score: 2 * (Recall * Precision) / (Recall + Precision).
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Table B.2: Predicted relative abundances of strains in an in vitromock community.

StrainGST
True Strain Reference Sample DB

E. coli SEC470 E. coli SEC470 0.37% 50%
E. coli UTI89 E. coli UM146 0.20% 27%
E. coli Sakai E. coli 149 0.09% 13%
E. coli 24377A E. coli 24377A 0.07% 10%

StrainEst
True Strain Reference Sample DB

E. coli SEC470 E. coli SEC470 n/a 48%
E. coli UTI89 E. coli UM146 n/a 27%
E. coli Sakai E. coli 149 n/a 11%
E. coli 24377A E. coli 24377A n/a 5%

E. coli APEC IMT5155 n/a 3%
E. coli RM14721 n/a 1%

BIB
True Strain Reference Sample DB

E. coli SEC470 E. coli K-12 substr. GM4792 n/a 15.27%
E. coli UTI89 E. coli H105 n/a 8.54%
E. coli Sakai E. coli 108 n/a 7.57%
E. coli 24377A E. coli S40 n/a 4.51%

S. flexneri G1663 n/a 4.44%
E. coli LHM10-1 n/a 2.37%
E. coliMSHS133 n/a 2.28%
S. dysenteriae 80-547 n/a 1.66%
E. coli IMT16316 n/a 1.31%
S. dysenteriae ATCC 12039 n/a 1.20%

True Strain: True strains present in the mock community. Reference: reference reported by corresponding
tool; Sample: predicted relative abundance relative to the whole sample; DB: predicted relative abundance
relative to other references in the database.

Table B.3: Species distribution of reported StrainGST references and bacterial isolates.

Species StrainGST Isolates

E. faecalis 64.50% 78.70%
E. faecium 8.40% 13.70%
E. avium 6.90% 0%
E. casseliflavus 6.60% 2.30%
E. durans 3.90% 3.60%
Other enterococci 9.70% 1.70%

Species: which Enterococcus species; StrainGST: Percentage of StrainGST reported references of a particu-
lar species across all metagenomes; Isolates: Percentage of isolates of a particular species as reported by
Shao et al. [1].
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Table B.4: Gut microbiome samples used as metagenomic background for ACNI and gap similarity bench-
marking.

Accession Kraken E. coli Num. E. coli

SRS017821 0.00056 1
SRS017247 0.00029 1
SRS1041129 0.00083 0
SRS018606 8.00E-04 1
SRS047741 0.00071 1
SRS054590 0.00044 1
SRS064276 0.0092 1
SRS019910 0.00034 0
SRS044365 0.00525 1
SRS050299 1.00E-04 0

Accession: SRA accession; Kraken E. coli: E. coli relative abundance as predicted by Kraken2 [2]; Num. E.
coli: Number of E. coli strains as predicted by StrainGST.

Table B.5: StrainGST cluster threshold optimization. A threshold of 0.9 performed best overall.

Treshold TP FN FP Recall Precision F1

Single Strain
(𝑛 = 800)

0.80 799 1 77 0.999 0.912 0.953
0.85 793 7 23 0.991 0.972 0.981
0.90 798 2 16 0.998 0.980 0.989
0.95 790 10 26 0.988 0.968 0.978

Two Strains
(𝑛 = 1000)

0.80 1816 138 111 0.929 0.942 0.936
0.85 1867 102 60 0.948 0.969 0.958
0.90 1895 83 51 0.958 0.974 0.966
0.95 1881 101 84 0.949 0.957 0.953

Combined
(𝑛 = 1, 800)

0.80 2615 139 188 0.950 0.933 0.941
0.85 2660 109 83 0.961 0.970 0.965
0.90 2693 85 67 0.969 0.976 0.973
0.95 2671 111 110 0.960 0.960 0.960

TP: True Positives; FN: False Negatives; FP: False Positives; Recall: TP / (TP+FN); Precision: (TP+FP) / TP; F1
score: 2 * (Recall * Precision) / (Recall + Precision).
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Figure B.1: StrainGE can robustly report on strain relationships even with more distant references. Pair-
wise ACNI and gap similarity as reported by StrainGE are plotted for the Kenyan household samples which
share E. coli strains using the E. coli database (circle) or the contaminated Salmonella database (square). Us-
ing the “sparse”, or contaminated, Salmonella database, StrainGE is still able to discern close strain relation-
ships (same-household comparisons, teal) from more distant ones (different households, orange), almost
as well as when the E. coli database is used. Point size reflects the common percent between the samples.
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Figure B.2: Boxplot showing ANI between each strain in the reference database and its closest neighbor.
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Figure B.3: StrainGE could accurately detect strain sharing even when using smaller databases. (a) Depic-
tion of how synthetic Escherichia genomes were generated from randomly selected NCBI RefSeq genomes
to create sets of closely related strains (e.g., A1/A2 and B1/B2) for spike in experiments. (b) Depiction of
how spiked metagenomes were created using synthetic genomes from (a). Each circle represents a spiked
metagenome. The color of the circle indicates which synthetic strain was included: single color circles
indicate spiked metagenomes containing a single synthetic strain, and two color circles indicate spiked
metagenomes containing two synthetic strains mixed at equal proportions. (c-e) Precision-recall curves
for each tool and coverage 0.1x-10x, when given the task to detect which sample pairs contain identical
strains. The area under the curve (AUC) is depicted as a heatmap below. The “successful comparisons” bar
plot indicates the percentage of sample pairs for which a comparison was possible (i.e., tools ran to comple-
tion for both samples). (c) Limiting to single-strain samples from distinct references. (d) Including samples
with two strains, but limited to strains from distinct references. (e) Including samples with closely related
strains.
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FigureB.4: StrainGEprovides useful informationusing both small and large databases. (a) Single-copy core
phylogenetic tree of 471 E. coli genomes (including the full set of genomes contained in the large reference
database) withmajor phylogroups annotated. Black dots indicate presence of the corresponding genome in
the small (inner ring), mid and full database (outer ring). Colored rectangles indicate the genomes reported
by StrainGSTwhen using the small, mid or full database. StrainGST reported references and their estimated
relative abundances per time point when using the (b) full database, (c)mid database (d) small database.
For strains matching the same reference, pairwise ACNI and gap similarities are plotted when using the (e)
small database, (f)mid database and (g) full database.
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Figure B.5: StrainGST was more sensitive and precise in identifying close reference genomes than other
tools. Performance of StrainGST (red circles), StrainEst (brown triangles) and BIB (blue triangles) on 15 sets
of metagenomes spiked with known Escherichia strains mixed at either equal abundance (left panel; 1-4
strains for each sample, 0.1x-10x coverage) or unequal abundance (right panel; 2 strains mixed at 1x:0.5x
and at 10x:1x, or 3 strains mixed 1x:0.5x:0.1x and 10x:1x:0.5x). Performance plotted as (a) Precision, (b)
Recall, (c) F1 score, (d) Average Mash similarity to closest reference.
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Figure B.6: StrainGR accurately called SNVs and deletions in single strain and mixed samples at low cover-
ages. (a) Percent callable genome, precision, and recall for SNVs called by StrainGR on mixtures of 1-4 syn-
thetic genomes spiked into ametagenomic sample at different coverages. The “% callable genome” refers to
the fraction of the genome where StrainGR was able to make calls. (b) Percent callable genome, precision,
and recall for SNVs called by StrainGR (limited to callable genome) on pairs of Escherichia strains mixed
at unequal abundance (1x:0.5x or 10x:1x). (c) Jaccard similarity between gaps predicted by StrainGR and
known gaps, at different coverages. Dark grey bars indicate the Jaccard similarity when using the whole
genome; light grey indicates the Jaccard similaritywhen ignoring positionswith amajority ofmulti-mapped
reads. (d) An example of the pattern of deletions present within a synthetic genome (“truth”; black), com-
pared to the pattern of deletions predicted by StrainGR (“Predictions”; grey).
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Figure B.7: StrainGR metrics can be used to accurately classify strain sharing in distinct metagenomic
backgrounds. Using metagenomic samples spiked with E. coli isolates containing in silico introduced SNVs,
we used different values for StrainGR’s ACNI metric to classify sample pairs as containing the same, or
different, strains. All pairs with ACNI above the threshold were considered ’shared’ between samples. Pairs
were considered correctly classified if the true ANI was 100%. Accuracy (green) and F1 score (orange) were
calculated for a range of ACNI thresholds, additionally filtering for comparisons with a minimum amount
of common callable genome (light to darker lines). StrainGR’s ability to correctly delineate identical strain
pairs increased with a larger common callable genome, with a substantial drop in accuracy with common
callable genome <0.5%.
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Figure B.8: StrainPhlan and MIDAS did not run to completion at coverages <10x with their default settings.
(a) Depiction of how synthetic Escherichia genomes were generated from randomly selected NCBI RefSeq
genomes to create sets of closely related strains (e.g., A1/A2 and B1/B2) for spike in experiments. (b) Depic-
tion of how spiked metagenomes were created using synthetic genomes from (a). Each circle represents a
spiked metagenome. The color of the circle indicates which synthetic strain was included: single color cir-
cles indicate spikedmetagenomes containing a single synthetic strain, and two color circles indicate spiked
metagenomes containing two synthetic strainsmixed at equal proportions. (c-e) Precision-recall curves for
each tool and coverage 0.1x-10x, when given the task to detect which sample pairs contain identical strains.
The area under the curve (AUC) is depicted as a heatmap below. The “successful comparisons” bar plot
indicates the percentage of sample pairs for which a comparison was possible (i.e., tools ran to completion
for both samples). (c) Limiting to single-strain samples from distinct references. (d) Including samples
with two strains, but limited to strains from distinct references. (e) Including samples with closely related
strains.
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Figure B.10: Strains detected by StrainGE could easily be placed in phylogenetic context. Left panel: re-
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Figure B.11: StrainGR provides detailed insights in the genomic diversity of strains close to E. coli 118UI.
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B.3. Supplementary Text
Supplementary Results

StrainGE can robustly report on strain relationships with sparse databases

I. We observed that StrainGE was able to produce reliable results about strain rela-
tionships, even when the detected reference strain turned out to be a more distant
contaminant in our sequence repository; i.e., from a genetically sparse region of the
database. Using a Salmonella database, we applied StrainGE to 14 stool microbiome
samples obtained from multiple pairs of cohabiting Kenyan siblings, predicted by
Kraken2 [2] to contain low levels of Salmonella (Supplementary Methods). StrainGST
reported that 12 of the 14 samples harbored a match to the same Salmonella strain,
Salmonella sp. HNK130, suggesting that all sibling and non-sibling pairs were colo-
nized with highly similar Salmonella, despite households being geographically sepa-
rated.

Closer examination of StrainGR output revealed, however, that each predicted
HNK130-like strain had a different ACNI score relative to the reference, ranging from
98.2% to 99.7%, which were all lower than expected. Subsequent ANI and BLAST anal-
yses (SupplementaryMethods) revealed thatHNK130was actuallyE. coli. Recentwork
has shown that reference genome databases used by Kraken contain cross-species
plasmids [3], like those shared by E. coli and Salmonella, which can lead the tool to
incorrectly assign species. To avoid this problem, StrainGST does not include plasmid
content in its reference database, and the tool now flags the user when a reference
shares less than 90% ANI to other references.

After removing outliers from the Salmonella database, we reran the Kenyan sam-
ples through StrainGE, which predicted that there were no Salmonella in these mi-
crobiomes. Remarkably, the output from running StrainGE on the Kenyan samples
using our E. coli database provided very similar views of the relative closeness of E.
coli strains in cohabiting siblings as observed in our original run using the E. coli con-
taminated Salmonella database (Figure B.1). This suggested that StrainGE can return
accurate and consistent information about strain relationships, even when the best
matching strain is from a low density area of the reference database, which could
occur for species of interest that are under-represented in genome repositories.

II. While the above results suggested that our current default threshold for build-
ing the StrainGST database could be looser to make the database more sparse, we
predicted that there would be trade-offs including potentially losing the ability to re-
solve more closely related strains and reducing the amount of genome that could be
analyzed, given the known relationship between ANI and gene content similarity for
many species i.e., more distantly related isolates tend to share fewer genes [4].

In order to formally test this, we first created Escherichia databases with increas-
ingly fewer references by clustering the downloadedEscherichia references at Jaccard
similarity thresholds of 0.8, 0.7, 0.6 and 0.5 (estimated ANI 98.2%-99.5%), resulting in
databases with 213, 88, 42, and 14 Escherichia references, respectively. Then, to as-
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sess the impact of having fewer references on StrainGST’s accuracy, we benchmarked
these sparser databases against the original denser database (361 genomes; Jaccard
similarity threshold of 0.9) using the same set of 1,800 samples used to optimize the
clustering threshold for E. coli, each containing 1-2 strains (Materials & Methods). Re-
call remained consistently high, indicating that StrainGST was able to pick the closest
references in the sparser databases. The overall F1-score, however, decreased for
smaller databases, driven by an increased number of false positives (Table B.1). As
the closest reference could be quite distant from the sample strain, it was often un-
able to explain significant portions of the sample genome, leaving sufficient k-mers
remaining for StrainGST to report an additional false positive reference.

To investigate how database sparseness impacted tracking strains across sam-
ples, we repeated the in silico strain tracking tests (Figure 3.3) using StrainGR with
two smaller databases (Figure B.2), clustered at thresholds of 0.5 (very sparse; 14
Escherichia genomes) and 0.7 (intermediate; 88 Escherichia genomes). As compared
to the original database of 361 references, the intermediate database performed com-
parably for all tests at coverages of 1x and higher (Figure B.3c,e,d); however, at low
coverages (0.5x), a single sample set where StrainGST made incorrect reference calls
led to a lower area under the precision-recall curve (AUC) across all tests. For the very
sparse database, StrainGE was able to correctly detect shared strains across single
strain samples (Figure B.3c), as well as mixes (Figure B.3d), at strain coverages of at
least 0.5x; however, at low coverages (0.1x) its performance dropped considerably.
In some low-coverage cases, StrainGE was not able to run to completion due to the
default minimum coverage requirements not being met (as indicated by the lower
“successful comparisons”; Figure B.3c,d,e). In cases where it did complete, the scant
read data aligned less accurately to the more distant reference, which could share as
little as ∼ 98% ANI with the sample strain. In addition, this very sparse database also
performed worse than denser databases in distinguishing between closely related
strains across all coverages (Figure B.3e), likely because less accurate alignments
resulted in lower and less accurate ACNI values.

To examine how the sparser databases would affect results from running
StrainGE on real data, we reran the pipeline on the same metagenomic dataset as
in Figure 3.5 (woman with recurrent urinary tract infection) using the intermediate
and very sparse databases and compared results to those using the original database.
StrainGST results were similar across all databases, with nearly identical read-outs
of overall Escherichia relative abundance, and reported references mostly from the
same phylogroups at similar relative abundances (Figure B.4b,c,d; phylogenetic dis-
tribution of reported references shown in Figure B.4a). We only observed discordant
results with the very sparse database: a strain originally represented by a reference
from phylogroup B1 was now represented by a reference from phylogroup A (time
point 6); and a phylogroup D strain close to E. coli 1190 in the dense database was
represented by two phylogroup D references (time points 3-5, 8, 11).

Despite some StrainGST-level differences across database runs, StrainGR was still
able to distinguish between “same” and “different” strains that hit the same reference.
For example, StrainGR pairwise comparisons of a phylogroup D strain identified by
all three (dense, intermediate and very sparse) databases consistently revealed high
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ACNI and gap similarity, indicating that the strain was the same across samples (Fig-
ure B.4e,f,g). In contrast, for a pair of strains originally mapping to different refer-
ences with the dense and intermediate databases, but mapping to the same reference
with the very sparse database, StrainGR correctly identified that these two strains
were not the same, as suggested by the lowered ACNI (Figure B.4g; time points 6-7).

Though “same” versus “different” strain assignments were generally consistent
across databases, we observed a notable difference in ACNI estimates using the very
sparse database for comparisons involving time point 6, a sample with relatively high
abundance of E. coli and consistently predicted to carry two strains (Figure B.4g).
While we can not confirm why ACNI estimates differed so dramatically for the very
sparse database, we hypothesize that the reported references in the medium and full
databasewere better representations of the strains in the sample, able to attract reads
to the correct locations which improved deconvolution of a strain mixture, resulting
in more accurate ACNI values.

In conclusion, while StrainGE can provide useful information even with a small
database (still able to pick the closest references), the accuracy of ACNI improved as
the database size got larger. Thus, when using a very sparse database and in case of a
strainmixture, we encourage users to bemore careful interpreting ACNI, and use any
available longitudinal information to confirm the presence of a “same” or “different”
strain.

StrainGSTworks at lower coverages and pinpointsmore closely related references
than other tools.

In order to assess the sensitivity and specificity of StrainGST compared to similar tools,
we constructed in silico metagenomes that were spiked with sequences of known
strains of Escherichia at varying relative abundances. We simulated reads from
randomly selected Escherichia genomes downloaded from RefSeq, approximately
one third of which were also represented in our Escherichia reference database, and
mixed them with reads from a metagenomic sample from the Human Microbiome
Project without any detectable Escherichia, to a total of 3 Gb per sample (Materials
& Methods). Strains were mixed at both equal (1-4 strains) and unequal (2-3 strains)
abundances to achieve between 0.1x and 10x depth of Escherichia coverage (roughly
0.02% to 1.6% relative abundance) per sample per strain, designed to cover the
typical ranges of complexity and abundance of E. coli within metagenomic stool
samples. A total of 240 spiked metagenomes were generated with strains mixed at
equal abundance, and another 30 with strains mixed at unequal abundance.

We compared StrainGST to two similar tools, which also identify strains in a sam-
ple based on those in a reference database: BIB [5] and StrainEst [6]. BIB applies
a Bayesian model to sample reads aligned to a core alignment of its database in or-
der to identify the closest strain(s). StrainEst applies a regression model based on
unique SNVs in the genomes of strains represented in its database to identify the clos-
est strain(s) in a sample. All tools were run on each spiked metagenome sample, and
the fidelity of the results were determined by comparing the reports from each tool
against the known composition of the spiked metagenomes. We excluded DiTASiC [7]
because the programhaltswhen fewer than 75%of reads can be assigned to reference,
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which makes it much less flexible than StrainGE for characterizing low-abundance
species, and excluded PathoScope [8] and Sigma [9], because we were unable to run
them to completion because of their dependencies on outdated databases or software
(Materials & Methods). Because BIB’s database construction step, which required gen-
eration of a core alignment using progressiveMauve [10], could not scale to include
all 361 reference genomes used for benchmarking StrainGST and StrainEst, we also
created a smaller database for BIB with only 20 reference genomes.

StrainGST performed as well as, or better than, the other tools across all scenarios
tested, and stood out strongly when strains were at very low abundance, either alone
or as part of a mixture with other strains. StrainGST had the highest precision (mean
0.99), F1 score (mean 0.99), and its recall and average Mash similarity [11] were at
least as good as that of the other tools when given the task of identifying the closest
reference(s) to those present in the spiked metagenome (Figure B.5). There was no
significant correlation between StrainGST’s F1 scores and the number of strains with
an exact reference match in the database (Spearman’s 𝜌 = 0.06, p-value=0.25) suggest-
ing that StrainGST performance was not dependent upon exact matches to references
in the database. Although StrainEst was tested using the same reference database as
StrainGE, StrainEst often reported a strain different from the true closest strain in the
database or none at all, thus lowering both its precision and recall. However, in these
cases, StrainEst still selected a strain with relatively high similarity, as reflected in
its high Mash similarities. In contrast, while BIB often picked the closest strain in its
database (mean recall 0.94), the selected reference was often a poor proxy given BIB’s
smaller database, resulting in much lower Mash similarities.

The high performance of StrainGST was especially striking at lower coverages.
While StrainGST consistently performed well across all coverages and mixtures, both
StrainEst and BIB performed poorly at coverages <1x. StrainGSTwas the only tool able
to recover mixtures of strains present at a 20-fold coverage difference, as reflected by
a mean precision of 0.98 and mean recall of 1.0 in the 10x:1x:0.5x benchmark (Fig-
ure B.5). These results highlight the wide dynamic range over which StrainGST was
able to correctly identify the closest strains within mixtures, including for the abun-
dance range typically seen for key organisms such as E. coli in the human gut.

StrainGR accurately identifies SNVs at low coverages.

StrainGR is unique in its ability to call SNVs across the close reference genomes of
strain(s) identified by StrainGST using metagenomic data. Although other tools can
identify nucleotide-level differences across sets of samples, they are limited to either
marker gene sets, or a single reference, which may be quite distant. To further char-
acterize the ability of StrainGE to call SNVs within low-abundance strains in a metage-
nomic sample, we introduced random SNVs into sets of Escherichia genomes at equal
abundance, or unequal abundance. We mixed simulated reads from these strains
into a real metagenomic sample, and compared the SNVs called by StrainGR to the
known SNVs (Figure B.6a-b; Supplementary Methods). StrainGR achieved near per-
fect precision and recall at identifying true SNVs (>0.95 for coverages 0.5x and above).
However, the fraction of the genome where StrainGR was able to make calls (the “%
callable genome”) was reduced when coverage decreased, or when multiple strains
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were present, due to there being a greater fraction of shared genome content between
references decreasing the unique regions that StrainGE can use for SNV calling. We
observed no clear reduction in precision or recall formixes, either at equal or unequal
abundances, highlighting the ability of StrainGR to effectively disentangle SNVs from
different strains.

StrainGR accurately identifies large deletions at low coverages

Because of frequent recombination and horizontal gene transfer in bacteria, patterns
of large deletions (gaps) provide an orthogonal line of evidence for strain similarity
[12]. StrainGR is unique in its ability to call large deletions relative to close reference
genomes. In order to benchmark this ability, we introduced random deletions of 5-
100kb into Escherichia genomes, and mixed simulated reads from these strains into a
real metagenomic sample. We then compared the deletions predicted by StrainGR to
the known deletions by computing the Jaccard similarity (Supplementary Methods).
StrainGR’s large deletion predictions closely matched the true deletions, with a Jac-
card similarity of approximately 0.8 for coverages 0.5x and higher (Figure B.6c), and
high concordance when examining genome-wide patterns of deletions (example in
Figure B.6d). Multi-mapping reads (due to repeats in the reference genome) reduced
the accuracy of calling deletions, as multi-mapping reads that map to a region of the
reference that is present, as well as all or part of a deleted region, will not be properly
marked as a deletion. When ignoring positionswith amajority ofmulti-mapped reads,
the concordance between predicted and true deletions was even higher, reaching a
Jaccard similarity score of 0.9 at 10x coverage (Figure B.6c). The pattern of deletions
shared across strains in a dataset should be consistent across all samples to be com-
pared and may reflect evolutionary history, thus providing another key indicator of
strain relatedness.

Supplementary Methods
StrainGST benchmarking. We compared the ability of StrainGST to select the closest
strain in an Escherichia reference database to BIB [5] and StrainEst [6]. We excluded
PathoScope [8] because its database construction process required taxonomy IDs in
BLAST’s NT database, which have been phased out by NCBI. Sigma was excluded be-
causewe could not run the pipeline end-to-end, aswewere unable to run steps that de-
pended on MPI for compute parallelism. Where possible, we used the same database
to ensure fair comparison. For StrainGST and StrainEst, we used the same 361-strain
database. For BIB, since BIB’s database construction process did not scale, we gener-
ated a smaller database containing 20 representative genomes. To select the 20 repre-
sentatives, we computed pairwise Mash distances [11] between all 929 genomes used
as input into the StrainGST Escherichia database and performed hierarchical cluster-
ing to obtain 20 clusters. The genome from each cluster with the lowest average dis-
tance to all other genomes in its cluster was selected.

We took into consideration StrainEst and BIB calls that reported a strain at >1%
abundance relative to other strains in the database, the same threshold used in Al-
banese and Donati [6]. We used pairwise Mash distances to assess how close a re-
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ported strain was to the true strain, counting a reported strain as a true positive if it
was the closest strain in the database to the strain in the sample. Any other reported
strain that was not present in the sample was counted as a false positive. If any of the
strains present in the sample were not reported by the tool, it was counted as a false
negative.

We ran each tool on 240 spikedmetagenomeswith 1-4 strainsmixed at equal abun-
dance, with average coverage of 0.1x, 0.5x, 1x or 10x; 40 spiked metagenomes with
two strains mixed at 10x:1x or 1x:0.1x; and 40 spikedmetagenomes with three strains
spiked at 10x:1x:0.5x or 1x:0.5x:0.1x. Strains for each sample were randomly selected
from NCBI RefSeq and metagenomes were generated as described in the main text
Materials & Methods.

Application of StrainGE using a Salmonella database

We constructed a StrainGST database from 877 genomes identified as Salmonella in
NCBI RefSeq. 177 genomes were retained after database clustering using default set-
tings (clustering genomes with ANI higher than approximately 99.8% ANI to another
reference in the database, and keeping a single representative from each cluster). We
ran StrainGST with this final database, using default settings.

ANI comparisons between HNK130 and the other members of the Salmonella ref-
erence database were approximated usingMash-based k-mer similaritymetrics avail-
able in StrainGE. BLAST results for HNK130 revealed close hits to E. coli rather than
Salmonella. ANI comparisons between the HNK130 genome and E. coli genomes were
performed using Chunlab’s ANI calculator tool (https://www.ezbiocloud.net/tools/ani)
[13].

As a positive control test set to verify that StrainGE works on Salmonella, we ran
previously published metagenomic datasets where Salmonella content was proven
[14] against our cleaned Salmonelladatabasewhere the contaminatingE. coli genomes
had been removed.

Benchmarking of StrainGR SNV calls using simulated data

To benchmark the ability of StrainGR to call SNVs, we introduced random SNVs into
randomly drawn genomes from the NCBI RefSeq complete database, such that the av-
erage nucleotide identity to the original reference was 99.9% (approximately 5,000
SNPs). We generated synthetic reads from these genomes and spiked them into a
metagenomic samplewith no E. coli as for other benchmarks (Materials andMethods).
We constructed a total of 320 synthetic communities with spiked-in strains at equal
abundance, including i) 20 sets for each number of strains per sample (1-4 strains);
and ii) 20 sets at each coverage (0.1x, 0.5x, 1x and 10x, corresponding to relative abun-
dances of approximately 0.02x - 1.6x). We also created 20 two-strain communities at
10x:1x and another 20 at 1x:0.5x coverage.

Using these simulated metagenomic samples, we used StrainGR to investigate
whether we could correctly identify the synthetically introduced SNPs or deletions,
even when mixed within a metagenomic background. For each sample, we prepared
a concatenated reference containing the original references used to generate the
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benchmark sample. We aligned the reads to its concatenated reference, and ran
StrainGR to call SNVs. The SNV calls made by StrainGR were compared to the truth
(i.e. the known set of mutations introduced into that synthetic strain) using Illumina’s
som.py (https://github.com/Illumina/hap.py) and each call was classified as either a
true positive (TP), false positive (FP), or false negative (FN).

Benchmarking of StrainGR large deletion predictions using simulated data

To benchmark the accuracy of StrainGR in predicting large deletions, we created a
separate set of 80 synthetic samples based on 20 randomly selected E. coli genomes
present in the NCBI RefSeq complete database, in which we deleted random blocks of
genes (sized 5-100kb), resulting in loss of approximately 7.5% of the total genes in each
reference genome. From these synthetic samples, we simulated reads using ART [15]
at fixed coverages of 0.1x, 0.5x, 1x and 10x, and mixed the simulated reads with reads
subsampled from a real metagenomic sample, as for the SNV benchmarks described
above. Reads were aligned to the original reference, and large deletions predicted by
StrainGR were compared to true deletions using the Jaccard similarity metric:

Jaccard = |𝐺𝑠 ∩ 𝐺𝑡|
|𝐺𝑠 ∪ 𝐺𝑡|

(B.1)

𝐺𝑠 is the set of positions in the genome where StrainGR predicted a large deletion,
and 𝐺𝑡 is the actual, known set of positions for large deletions.
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C.1. Extended Data Figures

Figure C.1: Sex precedes all clinical UTI events. Survey reports of intercourse frequency in the previous
two weeks. Responses are partitioned by (i) control women, (ii) rUTI women at time of UTI, and (iii) rUTI
women at non-UTI time points.
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Figure C.2: SCFA producing bacteria are depleted in the rUTI gut. Cumulative relative abundances of
(a) butyrate and (b) propionate producing bacterial species in rUTI and control samples. Box plots display
the median (center line), 25th and 75th percentiles (box), as well as the 5th and 95th percentiles (whiskers).
Within-host average relative abundances of individual species for (c) butyrate and (d) propionate produc-
ers are also shown. Horizontal lines denote the mean relative abundance in rUTI (red) and control (blue)
women.



156 C. Supp. Materials - Gut microbiome dysbiosis in women with rUTI

Figure C.3: Bray Curtis dissimilarity across stool samples. (a) For each patient, the distribution of Bray-
Curtis dissimilarities between all stool samples, ordered by increasing mean patient values within each
cohort. (b) Bray-Curtis distributions between samples taken at the time of UTI vs. healthy time points (red),
compared to all pairwise healthy sample comparisons. Box plots show the median (center line), 25th and
75th percentiles (box), as well as the 5th and 95th percentiles (whiskers).
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Figure C.4: rUTI dysbiosis is not driven by antibiotic use during the study. We grouped rUTI women
according to their antibiotic exposures at any point during the UMB study; (i) ciprofloxacin (𝑛 = 6) (ii)
non-ciprofloxacin antibiotics (𝑛 = 6); (iii) no antibiotics (𝑛 = 3); (iv) any antibiotics (𝑛 = 12). Groups were
compared against each other and against the control cohort (𝑛 = 16) for (a) overall microbial richness
and (b) relative abundance of butyrate producers. Crosses represent mean values for individuals, boxplots
denote the IQR and 95% central quantiles for each group. Wilcoxon rank sum tests (two-sided)were applied
to group pairs to derive p-values. (c) Temporal trends of microbial richness (black) and relative abundance
of butyrate producers (red) in all rUTI participants using antibiotics during the study. For each individual,
linear models were fit to observations (points) over time; fitted trends are shown, with coefficients & p
values reported at the top of each panel. Dashed vertical lines denote antibiotic usage. Participant mean
values are represented by horizontal lines.
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Figure C.5: Most species depleted in the rUTI gut are also depleted in the IBD gut. We compared dis-
criminatory taxa in rUTI women to those in IBD patients using data from adult participants in the HMP2
study [1]. For each study, we fitted mixed effects models to standardized Metaphlan2 relative abundances
as a function of categorical disease group (rUTI or IBD respectively, vs. each study’s control cohort), includ-
ing covariates for race and antibiotic use. The disease group coefficients are plotted against each other for
each species, with circle pairs representing the average relative abundance in each study. Species with
uncorrected p values <0.05 in either study are labelled. Species not present in at least 10% of samples in
either study are excluded. IBD comprises patients with either CD or UC.
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Figure C.6: Immunological differences between cohorts (a) PCA plot of gene expression across cohorts,
based on PBMC RNA Seq data. Samples are partitioned into healthy controls (𝑛 = 13), rUTI patient baseline
(enrollment; 𝑛 = 12) and rUTI patient at time of UTI (𝑛 = 17). (b) Plasma eotaxin-1 levels in control women,
and rUTI women at healthy enrollment and time of UTI. (c) Relative abundance of NK cells in control and
rUTI women based on CIBERSORT output. Box plots display the median (center line), 25th and 75th per-
centiles (box), as well as data points within 1.5 IQR of the upper & lower quartiles (whiskers), and outliers
beyond this range (dots).
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Figure C.7: Limited relationship between non-SCFA-producing taxa with butyrate producers. For
all non-SCFA-producing genera detected across all samples, the correlation coefficient between its relative
abundance and the relative abundance of butyrate producers was calculated and plotted against its mean
relative abundance across (a) control (𝑛 = 170) and (b) rUTI (𝑛 = 197) samples. Genera with an absolute
correlation coefficient greater than 0.25 are labeled, along with Escherichia, represented by the red point.
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Figure C.8: E. coli relative abundance around the time of UTI and phylogroup distributions. For all
stool samples taken within 3 days of a UTI event, the log fold change is given relative to (a) the median E.
coli relative abundance in the corresponding patient, excluding samples taken at the time of UTI, and (b)
the relative abundance of E. coli in the preceding stool sample. ‘X’ denotes samples for which there was
no prior sample available. (c) Number of detected E. coli strains by sample type. (d) Number of detected
StrainGST reference strains vs. relative abundance of E. coli.
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Figure C.9: Strain dynamics in control women. Strain dynamics within all control participants; analo-
gous to Fig. 4.3 (a) Phylogenetic tree comprising strains called by StrainGE across all stool and urine samples,
colored by phylogroup. Bars show number of unique participants with at least one strain observation; bars
are bolded if the strain was identified in at least one urine sample. Each strain identified in control women
is uniquely identifiable by the phylogroup (colour) and ID (numeral) indicated right. (b) Each panel repre-
sents longitudinal strain dynamics within one patient. Numerals refer to strain identifiers in (a). All fecal
strains are connected to their most recent previous observation in fecal samples. Diamonds denote clinical
rectal swabs. Strains identified in urine outgrowth depicted if available; otherwise raw urine strains are
shown. Fecal or urine samples with no detected E. coli strains represented by open grey symbols. Vertical
dashed lines represent self-reported antibiotic use.
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C.2. Extended Data Tables
Additional supplementary data tables are available online at https://doi.org/10.
1038/s41564-022-01107-x.
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