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Abstract

A coupled description of flow and thermal-reactive transport is spanning a wide range of scales in space
and time. Subsurface reservoir heterogeneity with complex multi-scale features increases the complexity
further. The spatial resolution required during a simulation is dependent on the type and degree of geological
heterogeneity, but also on the flow physics and the well locations (Karimi-Fard & Durlofsky, 2014). Traditional
upscaling or multi-scale techniques are usually focused on the accuracy of the pressure solution and often
ignore the transport. Improving the transport solution can however be quite significant for the performance
of the simulation, especially in complex applications related to reactive and compositional flow. The use of
a method called Adaptive Mesh Refinement (AMR) enables the grid to adapt dynamically during the course
of the simulation, which facilitates the efficient use of computational resources (Karimi-Fard & Durlofsky,
2014; Cusini et al., 2016). In this work, the aim was to develop such an AMR framework for general-purpose
reservoir simulation. The approach uses a multi-level grid and is applicable to fully unstructured grids.

The adaptivity of the grid in the developed AMR procedure is based on a hierarchical grid. The multi-level
grid is constructed starting with the static geological model, a fine-scale model that accurately approximates
the prospective reservoir. The control volumes present in the model are described by a list of volumes, depths
and reservoir properties, and by a connectivity list for all neighbouring blocks, with corresponding transmis-
sibility. The coarser levels are constructed through cell partitioning of the fine-scale model, called level 0. A
global flow-based upscaling is applied to redefine the cell properties at the coarser levels. Each coarser level
is also described by a list of volumes, depths, reservoir properties and a connectivity list with correspond-
ing transmissibility. An inter-level connectivity list is constructed which includes the connections between
control volumes of consecutive levels. The connectivity lists with corresponding transmissibility, along with
the cell properties of each control volume are combined to form global arrays describing the full hierarchy of
levels. The simulation is then started at the coarsest level, while keeping the wells at the finest level of refine-
ment for more accurate representation of the solution. Dynamic adaptivity is performed, based on adaptiv-
ity criteria which were developed specific to the used application, resulting in a new grid configuration. The
multi-level connectivity list together with the cell properties are redefined at each time step and used as input
for the next simulation. The developed AMR framework was implemented in Delft Advanced Research Terra
Simulator (DARTS, 2019) which uses the recently developed linearization technique called Operator-Based
Linearization, developed by Voskov (2017).

The performance of the proposed approach was illustrated for several applications, including geothermal
energy extraction and reactive transport. For geothermal applications, several models were tested: a homo-
geneous reservoir with unstructured grid, a synthetic fluvial model with shale blocks illustrating the role of
shale in thermal recharge, a highly heterogeneous fluvial system with low net-to-gross ratio, and several lay-
ers of a highly-heterogeneous SPE10 reservoir. The results of these flow examples demonstrate a high level of
solution accuracy relative to the reference fine-scale solution. The solution error is considerably decreased
as compared to the coarse-scale model. Important features are captured at a higher resolution while keep-
ing the amount of cells to a reasonable number. For the fluvial model, a different approach was adopted for
cell aggregation, consisting of grouping the facies together, where shale-regions are kept coarse, and high-
permeability facies are kept at a fine level. This significantly improved the solution as compared to the coarse
model, where cold front propagation is overestimated. For the application of reactive flow, the dissolution
of calcium carbonate through the formation of wormholes was analyzed. Here as well, the solution is con-
siderably improved when using the AMR model. The wormholes are accurately represented, with improved
computational performance.
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1
Introduction

Production development of prospective reservoirs includes the use of various technologies that provide in-
formation at many different scales. These scales range from core plugs being a few centimeters in size to well
logs detecting properties a few meters around the well, and to seismic imaging covering a significant volume
with limited resolution (few meters vertically and 10’s of meters horizontally). However, time and capital lim-
itations result in sparse direct sampling of reservoir rock and fluid properties. This is why the construction of
reservoir models, through integration of these data using geostatistical reservoir description algorithms, has
become a crucial step in resource development (Branets et al., 2009). These algorithms conventionally result
in fine-scale descriptions of reservoir properties (porosity, permeability) on grids of tens of millions of cells
(M. A. Christie, 1996).

A considerable important issue is the risk and uncertainty assessment of reservoir performance. The uncer-
tainty can be gauged by simulating an ensemble of different geological realizations. This may require to run
thousands of simulations to cover a wide range of parameter variation. It is however not computationally fea-
sible or desirable to perform these simulations on the high-fidelity (fine-grid) model. Significantly upscaled
models (i.e., the mapping of rock and fluid properties to a coarser resolution) are therefore required, where
these models should ideally be even coarser than typical reservoir simulators, which can handle on the order
of 105 −106 simulation cells (Durlofsky, 2005). In the presence of more complex physics, excessive upscaling
may, however, result in non-satisfactory results, which necessitate the use of advanced algorithms and solvers
to allow for higher resolution grids to be employed (Cusini et al., 2016).

Traditional Algebraic Multiscale techniques (Wang et al., 2014; Jenny et al., 2003), developed to solve the
elliptic (or parabolic) pressure equation in sequentially coupled simulations, mainly focus on the pressure
solution and often ignore the transport. However, in complex applications related to chemical and compo-
sitional EOR (Enhanced Oil Recovery), reservoir storage and geothermal industry, the number of conserved
chemical species can be large which makes any improvement in transport solution quite significant for the
performance and robustness of the simulation. A technique called Adaptive Mesh Refinement (AMR) pro-
vides an effective means for adapting the resolution of a model to solution requirements. This method is well
developed in many areas of computational physics (e.g. fluid dynamics and solid mechanics) but is however
not widely used for practical reservoir simulation (Karimi-Fard & Durlofsky, 2014).

In today’s literature, several researchers have developed and proposed AMR procedures to capture the local
nature of transport processes. Bahrainian and Dezfuli (2014) have developed a novel unstructured grid gen-
eration algorithm which considers the effect of geological features and well locations in the grid resolution.
This strategy involves the definition and construction of the initial grid based on the geological model, geom-
etry adaptation of geological features and grid resolution control. Trangenstein (2002) used the combination
of high-resolution discretization methods with dynamically adaptive mesh refinement for a two-component
single-phase model for miscible flooding. Pau et al. (2012) proposed an AMR algorithm for compressible two-
phase flow in porous media. The method is implemented within a block structured adaptive mesh refinement
framework which allows the grids to dynamically adapt to flow features and enables efficient parallelization
of the algorithm. The coarse-scale permeability was obtained by averaging the fine-scale permeability. Sim-
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2 1. Introduction

ilar techniques have been developed for compositional simulation (Sammon et al., 2003), thermal problems
(Christensen et al., 2004), improved/enhanced oil recovery processes (Van Batenburg et al., 2011) and many
more applications.

In this project, the aim was to develop a dynamic AMR scheme using an unstructured multi-level gridding
framework, for general-purpose reservoir simulation. The focus lied particularly on thermal-reactive flow
and transport formulation which are required for a wide range of subsurface applications. First, a fine-scale
geological model was constructed accurately, approximating all reservoir heterogeneity. This model is repre-
sented by a list of volumes, depths and a connectivity list (Lim et al., 1995) describing each control volume.
Next, a global flow-based upscaling was applied and an unstructured partitioning of the original grid was
constructed as suggested in (Karimi-Fard & Durlofsky, 2014). This partitioning provides coarser levels of the
original model each of which is also described by a list of volumes, depths and a connectivity list. A coarser
connectivity list includes connections between control volumes at the given level as well as interconnections
between the levels. Once the full hierarchy of levels is constructed, the simulation is started at the coarsest
grid. Grid space refinement criterion is developed for particular applications. The multi-level connection list
is reconstructed at each time step and used for the simulation. The proposed approach was implemented
in Delft Advanced Research Terra Simulator (DARTS) which is based on Operator-Based Linearization tech-
niques (Voskov, 2017).

The report outline is as follows; first, the methodology describing the relevant governing equations, the con-
struction of the multi-level framework and the dynamic adaptivity scheme is presented. The approach was
then tested on several applications of practical interests, including geothermal applications and reactive flow.
The results of these test examples are presented in chapter 3, along with an error analysis. This is followed by
concluding remarks on the methodology and the results of the tested applications. And finally, some recom-
mendations for further research and development of the framework are discussed.



2
Methodology

2.1. Governing equations
General-purpose reservoir simulation is based on the solution of governing equations which describe mass
and energy transfer of various species in the subsurface. The flow of mass and energy in a system with np

phases and nc components are described in this section. For this general-purpose thermal-compositional
model, nc component mass conservation equations and a single energy conservation equation need to be
solved (Khait & Voskov, 2017). When chemical reactions occur in the system, an additional term describing
nk kinetic reactions is added on the right-hand side of the mass conservation equation. These governing
relations are described as:

∂

∂t

(
φ

np∑
p=1

xcpρp sp

)
+div

np∑
p=1

xcpρp up +
np∑

p=1
xcpρp q̃p =

nk∑
k

vck rk , c = 1, . . . ,nc , k = 1, . . . ,nk , (2.1)

∂

∂t

(
φ

np∑
p=1

ρp spUp + (1−φ)Ur

)
+div

np∑
p=1

hpρp
−→up +div(κ∇T )+

np∑
p=1

hpρp q̃p = 0, (2.2)

where t is the time, vck is the stoichiometric coefficient associated with kinetic reaction k, rk is the rate
of kinetic reaction k. The right-hand side of the mass conservation equation 2.1 is the kinetic term which
describes reactions. It is set to zero when no chemical processes are involved in the system. The rest of the
terms in the system can be described as functions of spatial coordinate ξ and/or physical stateω:

φ(ξ,ω) : porosity,
xcp (ω) : the mole fraction of component c in phase p,
sp (ω) : phase saturation,
ρp (ω) : phase molar density,−→up (ξ,ω) : phase velocity,
q̃p (ξ,ω,u) : source of phase p,
Up (ξ) : phase internal energy,
Ur (ξ) : rock internal energy,
hp (ξ) : phase enthalpy,
κ(ξ,ω) : thermal conduction.

An exception is the phase source term, which is also dependent on u - well control variables.

The rock internal energy and thermal conduction are assumed to be spatially homogeneous for simplification
of the problem, meaning that they are characterized as functions of the spatial coordinateω only. Phase flow
velocity −→up is assumed to follow Darcy’s law, expressed as:

−→up =−
(

K
kr p

µp

(∇Pp −−→
γ p∇D

))
, p = 1, . . . ,np , (2.3)
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4 2. Methodology

where

K(ξ) : permeability tensor,
kr p (ω) : relative permeability of phase p,
µp (ω) : phase viscosity,
Pp (ω) : pressure in phase p,−→
γ p (ω) : gravity vector,
D(ξ) : depth (backward oriented).

The nonlinear unknowns in this system of equations are the pressure P , the overall compositions zc of each
component and the enthalpy h.

2.2. Modeling approach
In order to solve the governing equations 2.1 and 2.2, we apply a finite-volume discretization on a general
unstructured mesh and perform a backward Euler approximation in time to both equations, where the phase
velocities −→up are substituted by the Darcy relation (2.3):

V

[(
φ

np∑
p=1
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l +Γl
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)
+∆t

np∑
p=1

hpρp qp = 0.

(2.5)

Here V is the control volume for which the system is being solved, qp = q̃pV is a source of phase p, n is the
previous time step whereas n +1 is the time step we want to solve for. Capillarity and gravity are neglected in
these equations, and a Two-Point Flux Approximation (TPFA) with an upstream weighting is applied. ∆ψl , the
phase potential, therefore simply becomes the difference in pressure between blocks connected via interface
l , while ∆T l is the temperature difference between these blocks; Γl

p = Γl k l
r p /µl

p is a phase transmissibility,

where Γl is the constant geometrical part of the transmissibility (involving permeability and geometry of the
control volume). Finally Γl

c = Γlκ is the thermal (conductive) transmissibility (Khait & Voskov, 2017). This
system of equations is solved for each mesh element in time, where the unknowns are the composition of
the nc components and the pressure for the mass conservation equation (2.4), and the pressure and enthalpy
for the energy equation (2.5). To solve the system and these unknowns, it is therefore necessary to assign the
relevant known properties to each grid cell, i.e. the volume, porosity and depth, and a connectivity list with
corresponding transmissibility for each pair of connections.

In general-purpose reservoir simulation, the solving process requires the linearization of strongly nonlin-
ear governing equations. In conventional reservoir simulators, a Newton-Raphson based method is typically
used for the linearization, which solves on each nonlinear iteration a linear system of equations in the follow-
ing form:

J (ωn)(ωn+1 −ωn)+ r (ωn) = 0, (2.6)

where r is the residual and J is the Jacobian, which is the derivative of the residual with respect to primary
nonlinear unknowns, defined at a nonlinear iteration n. In this work, we use a recently-developed approach
called Operator Based Linearization (OBL). The main idea of OBL is to transform the discretized mass and en-
ergy conservation equations (2.4 and 2.5) to an operator form, where space-dependent ξ and state-dependent
ω properties of governing equations are separated. This provides the opportunity to approximate the repre-
sentation of the exact physics of a problem through the discretization of the state-dependent properties. The
underlying methodology of OBL is explained in more detail in (Voskov, 2017) and (Khait & Voskov, 2017).



2.3. Multi-level grid generation 5

2.3. Multi-level grid generation
The adaptivity of the grid in the developed AMR scheme is based on a hierarchical representation. The sim-
ulation grid is composed of several predefined levels representing the same geological properties at different
resolutions. The construction of such a multi-level grid is explained in this section.

We start with a fine-scale model (static geological model) which accurately represents all reservoir hetero-
geneity. This grid is defined as level 0 and represents our finest level. The modeling grid is defined by a
list of control volumes, depths, reservoir properties (all spatially distributed properties required to solve the
discretized relations 2.4 and 2.5) for each mesh element, and a list of connectivity with corresponding trans-
missibility between neighbouring cells. I.e., each cell has a defined volume, depth and porosity, which are
stored in an ordered list. Each cell has an assigned index number which associates it with corresponding
properties. The connectivity list consists of two indexes, associated with cells adjacent to this connection,
and the corresponding interface transmissibility. These concepts will be explained further in this section.

Next, level 1 is defined, where control volumes are constructed by aggregating fine grid cells. Upscaling is
applied to redefine volume, depth and reservoir properties at a coarser level. A connectivity list, with cor-
responding transmissibility, is constructed for this level and inter-level connections are defined in addition.
Similarly, more levels of coarsening can be constructed. A control volume in grid-level n always consists
of cells from grid-level (n −1), resulting in a hierarchical relationship (Karimi-Fard & Durlofsky, 2014). The
simulation grid is then obtained by combining control volumes from grids of different levels. A schematic
representation of this procedure is illustrated in figure 2.1 below, where the different levels are shown, along
with a potential configuration for the simulation grid.

Simulation grid

Level 0 Level 1 Level 2

Figure 2.1: 2D Multi-level grid with three pre-constructed grids (levels) with an example simulation grid which is constructed by aggre-
gating control volumes from different levels.

To solve the governing equations, we hence need a connectivity list (for connections within each level and
also describing inter-level connections) with corresponding transmissibility, a list of volumes, a list of depths
and other properties defined at each control volume within the hierarchical grid. The next sections will
present the methodology behind the construction of the hierarchical grid and the determination of the re-
quired properties.

2.3.1. Cell aggregation

A mesh consists of a set of finite elements, each having vertices with allocated coordinates. To conduct cell
aggregation, the centroid, defined as the arithmetic mean position of all the vertices in a given geometry, is
first computed for each mesh element in the grid in question. Figure 2.2 below shows the scheme of an exam-
ple 2D unstructured grid with Delauney triangulation, used to illustrate how cell aggregation is conducted.
As can be seen, in this particular example, each cell has 3 vertices, and a centroid (represented in red) with
coordinates xc and yc defined as

( x1+x2+x3
3 , y1+y2+y3

3

)
, where xi and yi are the coordinates of the vertices. Each

mesh element has an assigned index number.
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15

x

y

(i, j)

centroid

(i, j)

Figure 2.2: 2D unstructured grid with Delauney triangulation. The centroid of each mesh element is represented by a red point, with
coordinates (i , j ). Each cell has an assigned index number.

Cell aggregation is then carried out by dividing the grid in the x- and y-direction (and in the z-direction for
3D models) into equidistant intervals. A predefined scaling factor is used in these directions, which results
in intervals with ∆x and ∆y spacing in the x- and y-direction respectively. Each interval has coordinates
[i , i +∆x] in the x-direction and [ j , j +∆y] in the y-direction. Centroids of cells whose coordinates are within
a given x y-area are aggregated to form one coarse cell. To check whether a fine cell f is within a given plane
which will form coarse cell F , the following algorithm is implemented for the coordinates xc f and yc f of the
centroid of fine cell f :

if i É xc f < i +∆x and j É yc f < j +∆y, cell f ∈ cell F. (2.7)

Figure 2.3 below shows the range partitioning (illustrated by the white lines) for the above example (figure
2.2). The x- and y-range were divided in 5 and 3 equidistant intervals respectively. The yellow-highlighted 2D
plane has range [i , i +∆x] in the x-direction and [ j , j +∆y] in the y- direction. For this given example, all cell
centroids whose x- and y- coordinates fall within this x- and y-range, are aggregated to form one coarse cell.
I.e., cells 41, 46, 68, 77, 84, 92, 106, 111 and 118 form coarse cell 0.

17

Δx

Δy

(i+Δx, j)(i, j)

(i, j+Δy)

Figure 2.3: 2D unstructured grid from figure 2.2 with the range partitioning (represented by the white lines) in the x- and y-direction
with ∆x and ∆y spacing respectively. Aggregation is carried out for cells whose centroid fall within a given x- ([i : i +∆x]) and y-range
([ j : j +∆y]). E.g., all cells whose centroids are found within the yellow-highlighted 2D range are aggregated to form one coarse cell.
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For the given 2D unstructured grid example above, the so-called level 1 - i.e. the next level of coarsening - is
shown in figure 2.3 below. The numbers represent the assigned indices of the newly constructed coarse cells.
If one wants to construct an additional level, the same procedure can be followed with a larger x- and y-range
partitioning, where grid cells of level 1 are aggregated to form level 2.

18

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

x

y

Figure 2.4: 2D unstructured grid of figure 2.2 after cell aggregation. This grid represents the next level of coarsening of the finest grid:
level 1.

For further steps into the construction of the levels, a list - "fines in coarse" - is constructed where the corre-
sponding indices of the aggregated fine cells are listed for each coarse cell. Table 2.1 below tabulates this list
for the example above (figures 2.2 to 2.4). This type of list is generated for each coarse level (level > 0) in the
hierarchical grid. These lists are useful for the construction of the cell properties (e.g. volume, porosity) of
the coarse levels, where the cell data from the fine level is needed during upscaling.

Table 2.1: "fines_in_coarse" list of the example 2D unstructured grid of figures 2.2 - 2.4. This list describes for each coarse cell, the
aggregated fine cells of level n −1 to form the coarse cell of level n.

Coarse cell Fine cells
0 41, 46, 68, 77, 84, 92, 106, 111, 118
1 2, 4, 12, 51, 55, 65, 78, 122
2 8, 25, 26, 27, 28, 29, 30
3 3, 5, 13, 44, 52, 79
4 16, 42, 45, 49, 74, 87, 90, 104, 114, 117
5 21, 34, 37, 61, 63, 71, 73, 82
6 15, 18, 56, 88, 96, 100, 102, 109, 110, 123
7 23, 35, 57, 94, 97, 98, 99, 101, 107, 108
8 14, 24, 64, 67, 89, 95, 115, 121
9 20, 33, 38, 60, 62, 70, 72, 83

10 17, 40, 47, 50, 75, 86, 91, 105, 113, 116
11 1, 7, 11, 53, 58, 81
12 9, 19, 22, 31, 32, 36, 39
13 0, 6, 10, 54, 59, 69, 80, 120
14 43, 48, 66, 76, 85, 93, 103, 112, 119

Note that cell aggregation can also be conducted while taking care of highlighting geological features (e.g.
fractures) and different facies in the model. For example, cell aggregation can be conducted by grouping
domains with the same facies together into one coarse cell, or, in fractured reservoirs, by aggregating cells by
isobar contours similar to (Karimi-Fard & Durlofsky, 2014).
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2.3.2. Connectivity list

The proposed AMR technique uses the Finite Volume Method (FVM) for discretization. The implementation
of the finite volume discretization method to the mass conservation equation 2.1 requires the evaluation
of the flow between two adjacent control volumes in terms of the cell pressures. Using a Two-Point Flux
Approximation (TPFA), the flow rate is defined as:

Qi j = Γi j
p (Pi −P j ), (2.8)

where:

Qi j : flow rate between cells i and j ,

Γ
i j
p : phase transmissibility between cells i and j ,

Pi : pressure of cell i ,
P j : pressure of cell j .

A schematic representation of the TPFA is shown in the figure below, where pressure is defined at the cell

center, and flow rate Qi j and phase transmissibility Γi j
p are defined at the interface between the two cells.

10

i j
Pi Pj

Γp
ij

Qij

Figure 2.5: Flux representation based on the two-point flux approximation for two neighbouring grid cells i and j with pressures Pi and
P j defined at the cell centers and transmissibility Γi j defined at the interface.

Similarly, the heat flux between two adjacent control volumes is expressed in terms of thermal transmissibility
Γc and is, also using a TPFA, defined as:

Qh
i j = Γ

i j
c (Ti −T j ), (2.9)

where Γi j
c is the thermal transmissibility at interface i j , Ti and T j are the temperatures of cell i and j respec-

tively, and Qh
i j is the heat flux at interface i j .

To evaluate the flux between two adjacent control volumes, it is necessary to know and store existing neigh-
bouring blocks within the mesh. A so-called connectivity list is therefore constructed where for each interface
between two control volumes, the indices of these cells are listed together with the transmissibility value (Lim
et al., 1995). The result is a list with all connection pairs present in the grid. A few important points to be noted
are:

• Each connection consists of only two elements,

• The connection pairs are not repetitive,

• No-flow boundaries imply the absence of connections and are hence not listed in the connectivity list.

The figure below shows a simple example of a 2D Cartesian structured grid, with corresponding cell indexing.

3

12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 3 0, 2…15   cell index

connection

Figure 2.6: 4x4 Cartesian grid denoting cell indexing and showing neighbouring connections. Indexing is based on a Cartesian structured
mesh for simplicity.
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As can be seen in figure 2.6 above, cell 0 is connected to cell 1 and 4. Similarly, cell 1 is connected to cells 0, 2
and 5. Evaluating each control volume results in a list representing all dual connections within the grid. Table
2.2 below shows the connectivity list for the above example (figure 2.6). The list is expressed as two columns,
cell i and cell j , where each row represents a connection pair.

Table 2.2: Connectivity list of the example grid from figure 2.6.

Cell i Cell j

D
u

al
co

n
n

ec
ti

o
n

s

0 1
0 4
1 2
1 5
2 3
2 6
3 7
4 5
4 8
5 6
5 9
6 7
6 10
7 11
8 9
8 12
9 10
9 13

10 11
10 14
11 15
12 13
13 14
14 15

In the proposed AMR scheme, the connectivity list of each level is determined systematically. Each mesh
element consists of a set of vertices x. E.g. a triangular mesh element comprises 3 vertices, and a Cartesian
grid comprises 4 vertices. These vertices are numbered uniquely. The vertices x comprised in a cell i are
stored in a list; this is done for each mesh element in level 0. To determine whether two control volumes i
and j are adjacent, we take the intersection of both sets of vertices. That is:

{x|x ∈ i } ∩ {x|x ∈ j }. (2.10)

If the intersection size, in the case of a 2D grid, is equal to 2, both cells have a line in common, indicating that
they have a common interface and are hence connected.

Each geometry has a different criterion. For 2D shaped mesh elements, the interface is a line; for 3D shaped
cells, the interface is a plane. Hence the criterion is that the intersection length should equal 2 for 2D shapes
and 3 or more for 3D shapes. This methodology is applied to the finest level of refinement - level 0. The
result is a connectivity list representing all the unique connection pairs within level 0. The interface area is
subsequently computed (and stored for transmissibility computation in further steps) for each connection,
using the coordinates of the intersecting vertices.

The next step is to store for each cell i , connection pairs (interfaces) which consist of cell i , i.e. the interface
which consists of a face of cell i . This is easily done by simply storing all the connection pairs which have cell
i listed. Table 2.3 below lists the methodology for the example above (figure 2.6).
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Table 2.3: Interfaces l contained in each cell i for level 0. The interfaces are expressed as connection pairs, describing an interface.

Cell i Faces
0 (0, 1), (0, 4)
1 (0, 1), (1, 2), (1, 5)
2 (1, 2), (2, 3), (2, 6)
3 (2, 3), (3, 7)
4 (0, 4), (4, 5), (4, 8)
5 (1, 5), (4, 5), (5, 6), (5, 9)
6 (2, 6), (5, 6), (6, 7), (6, 10)
7 (4, 7), (6, 7), (7, 8)
8 (4, 8), (8, 9), (8, 12)
9 (5, 9), (8, 9), (9, 10), (9, 13)

10 (6, 10), (9, 10), (10, 11), (10, 14)
11 (7, 11), (10, 11), (11, 15)
12 (8, 12), (12, 13)
13 (9, 13), (13, 14)
14 (10, 14), (13, 14), (14, 15)
15 (11, 15), (14, 15)

For coarser levels (level > 0), a list with corresponding fine connection pairs is also constructed, where all the
connection pairs of the fine grid cells i contained in coarse cell I are stored. This is done for each coarse cell.
This way, we can now easily determine the coarse level connectivity list. This is done similarly as for level 0,
however, now the common fine grid faces are determined instead of the common vertices. To illustrate the
methodology, the simple example grid from figure 2.6 is taken. Cell aggregation is conducted, which results
in four coarse grids as depicted in the figure below, where the grey cell is coarse cell 0, the green cell is coarse
cell 1, the blue cell coarse cell 2, and the pink cell coarse cell 3:

4

12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 3

2 3

0 1

Cell 

aggregation

Figure 2.7: 4x4 Cartesian grid showing cell aggregation, resulting in four coarse grid cells.

Next, we construct hierarchical connection lists. First, the fine-scale interfaces (represented by connection
pairs) are stored in a list for each coarse block. The connections which consists of two fine cells that are
both found within a given coarse cell I are unaccounted for, as they form inner interfaces, whereas we are
interested in the outer faces. For the example above, this results in the following list tabulated in table 2.4
below:

Table 2.4: List of faces (corresponding connection pairs) for each coarse cell in the coarse grid.

Coarse cell I Faces
0 (1, 2), (4, 8), (5, 6), (5, 9)
1 (1, 2), (5, 6), (6, 10), (7, 11)
2 (4, 8), (5, 9), (9, 10), (13, 14)
3 (6, 10), (7, 11), (9, 10), (13, 14)

Next, the common faces between each coarse cell are determined. This is implemented by evaluating the
intersection between the set of faces f belonging to coarse cell I and the set of faces f forming coarse cell J .
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This is expressed as:

{f|f ∈ I } ∩ {f|f ∈ J }. (2.11)

If a given coarse cell I has a or multiple common faces f with another coarse cell J within the grid, these two
cells form neighbouring blocks. For further steps such as the transmissibility computation, the area of the
connecting interface is stored, which is here expressed at the sum of the intersecting faces.

For inter-level connections, a similar method is implemented. For each coarse cell I in level n, the intersec-
tion of its set of faces f with the set of faces f of a given fine cell i is determined. This operation is conducted
for every fine cell i in level (n−1), except for the fine cells comprised in the evaluated coarse cell I (i ∈ I ). This
is expressed mathematically as follows:

{f|f ∈ I } ∩ {f|f ∈ i }, where {i |i ∉ I } (2.12)

Similarly, if a given coarse cell I has a common face with a fine cell i , the two cells are connected. This
procedure is applied between all levels n and (n −1). The result is a list of connections within level 0, a list of
connections for each level n, and an inter-level connectivity list, each having a corresponding interface area
stored.

2.3.3. Transmissibility computation

The transmissibility is defined as the ratio between the rate and pressure gradient applied at a given interface.
It is a key parameter to compute the flux between two neighbouring cells. In this project, the AMR method is
implemented for unstructured grids of any geometry. The definition of the transmissibility for unstructured
grids is expressed as:

Γ12
p = Γ12λ with Γ12 =

(
α1α2

α1 +α2

)
and αi = A

ki

Di
n ·di , (2.13)

where:

Γ12
p : transmissibility between cells 1 and 2,
Γ12 : constant geometrical part of the transmissibility,
λ : mobility of a given phase p,
A : interface area,
ki : permeability of cell i ,
Di : distance between centroid of cell i to interface area A,
n : unit vector normal to the interface,
di : unit vector along the line joining centroid of cell i to the center of interface A.

Here, the directional permeability of each cell is expressed as the magnitude of the cell’s [kx ,ky ,kx ] coordi-
nates multiplied by the unit vector di .

Figure 2.8 below is a schematic representation of two unstructured grid cells with relevant parameters to
compute the transmissibility across the interface.

11

1 2
k1

k2

A

D1 D2

Figure 2.8: Transmissibility representation for two neighbouring unstructured cells 1 and 2 with permeability k1 and k2 and distances
D1 and D2 to the interface separating the two control volumes with interface area A.



12 2. Methodology

To solve the mass conservation equation (eq. 2.1), the flow rate must be computed for the interface of every
neighbouring cells. It is therefore necessary to compute the transmissibility for each dual connection listed in
the connectivity list. The result is a list consisting of all connections, with their corresponding transmissibility.
This methodology is applied at the finest level of refinement, level 0.

For thermal problems, another type of transmissibilityΓl
c must be computed to approximate thermal conduc-

tive flux in the energy equation 2.2. Since thermal rock conduction is not as heterogeneous as permeability,
the thermal transmissibility is defined as the geometric coefficient, that is, the area of the interface l divided
by the sum of the distances D1 and D2 from centroids to interface l , multiplied by the average conduction
κ12. For the example illustrated in figure 2.8, the thermal transmissibility is expressed as:

Γ12
c = κ12

A

D1 +D2
. (2.14)

2.3.4. Upscaling

As mentioned earlier, level 0 is represented by a list of volumes, depths and reservoir properties. I.e., each
mesh element has a defined volume, depth and reservoir properties, which are derived from the static geo-
logical model. Once the hierarchical grid is constructed, all cell properties must be redefined for the coarser
levels (level > 0). This is done by upscaling the properties of the corresponding fine grid cells.

The volume is upscaled by simply summing the volumes of the aggregated fine grid cells vi ;

VI =
∑
i∈I

vi . (2.15)

If depth upscaling is needed, i.e. if cell aggregation is carried out in the z-direction, it is conducted by simply
computing the z-coordinate value of the coarse cell centroid (average of the vertices of the fine-grid cells i
comprised in a given coarse cell I ) as an upscaled depth value.

The porosity, thermal conductivity, and rock heat capacity are upscaled using a volumetric averaging. For
example, the sum of the porosity φi multiplied by the corresponding cell volume vi of each fine cell i is taken
over the total volume of the coarse cell VI ;

φ̄I = 1

VI

∑
i∈I

viφi . (2.16)

In this study, for the upscaling of permeability, we use the flow-based upscaling technique developed by
(Karimi-Fard et al., 2006; Gong et al., 2008; Karimi-Fard & Durlofsky, 2012). This technique uses the pressure
solution when the system has reached steady-state to compute the flow across each interface. The trans-
missibility can then be derived through rearranging the flow equation 2.8. These approaches can be applied
to unstructured coarse grids with generally-shaped control volumes (Karimi-Fard & Durlofsky, 2014). The
coarsening technique defines the coarse transmissibility ΓI J

p between two adjacent control volumes I and J .
This is expressed as:

ΓI J
p =

∣∣∣∣ QI J

PI −P J

∣∣∣∣. (2.17)

The coarse-grid average pressures PI and P J , and the coarse-grid flow rate QI J , are computed using a fine-
grid pressure solution. These quantities are given by:

PI = 1

VI

∑
i∈I

vi pi , P J = 1

VJ

∑
j∈J

v j p j , QI J =
∑

(i∈I , j∈J )
Qi j =

∑
(i∈I , j∈J )

Γ
i j
p (pi −p j ), (2.18)

where pi and p j define the fine-scale pressures in the corresponding coarse blocks. In the flow rate expres-

sion Qi j , i j indicates the interface between fine cells i and j and Γ
i j
p denotes the transmissibility for this

interface. This i j interface comprises a portion of the interface between coarse blocks I and J . To find the
fine connections consisting of the interface between coarse blocks I and J , i.e. the interface I J , the fine con-
nectivity list is looped where dual connections that consist of one fine cell in coarse block I and its neighbour
comprised in coarse block J are stored. Then equation 2.18 is applied to these connections.

For inter-level connections, a similar approach is followed. Equation 2.18 is used with however PI being the
fine-scale pressure pi of the fine grid in question, and P J remaining the coarse-scale pressure, computed
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as outlined in equation 2.18. This procedure is conducted for each inter-level connection found within the
hierarchical grid.

For thermal problems, a similar method can be implemented, but is however not computationally efficient
as temperature takes significantly longer to reach a steady state. We therefore use equation 2.14 to compute
the upscaled thermal transmissibility, where the area is expressed as the sum of the fine-scale faces which
compose interface I J , and the distances D I and D J represent the distances between the cell centroid and the
centroid of the coarse interface.

2.3.5. Global indexing

Once all needed parameters at every hierarchical level are evaluated, which include cell properties, a con-
nectivity list with associated transmissibility for each level and between levels, it is necessary to combine the
levels in order to form a global hierarchical set of grids. To combine the levels, it is however necessary to as-
sign a unique indexing to each and every mesh element contained in the multi-level grid. This is where global
indexing plays a role. For convenience, indexing is ordered starting from the coarsest level. An example of
global indexing is shown in the figure below.

21

76 77 78 79 80 81 82 83

68 69 70 71 72 73 74 75

60 61 62 63 64 65 66 67

52 53 54 55 56 57 58 59

44 45 46 47 48 49 50 51

36 37 38 39 40 41 42 43

28 29 30 31 32 33 34 35

20 21 22 23 24 25 26 27

16 17 18 19

12 13 14 15

8 9 10 11

4 5 6 7

2 3

0 1

Level 0Level 1Level 2

Figure 2.9: Example of a Cartesian structured 3-level hierarchical grid with global indexing. Numbering starts at the coarsest level and
finishes at the finest level of refinement.

The procedure used to assign global indexing is to simply add the number of cells of the previous level(s) to
the current level. E.g., for level 1 from the figure above, numbering starts at the total number of cells of level
2 n2; for level 0, numbering starts at n2 +n1. This procedure is applied to the bookkeeping lists such as "fines
in coarse" and to the connectivity list of the corresponding levels. After the global indexing is applied to the
connectivity lists, the connectivity list at each level and the inter-level connection lists are combined into one
list. This is conducted by concatenating these lists to form one list describing all existing connections within
the hierarchical grid. Regarding the list of cell properties, global indexing is applied by simply concatenating
the lists together in the right order, i.e. from the coarsest level to the finest level. This way, indexing is done
in the same order as the global indexing. The result is a global list of volumes, depths and relevant reservoir
properties describing each mesh element within the hierarchical grid.

Having constructed the hierarchical grid and assigned it global indexing, the pre-processing stage is complete
and the simulation with dynamic adaptivity can be performed.

2.4. Dynamic adaptivity framework
Once the hierarchical grid of predefined levels is constructed, the pre-processing stage is ready and hence
simulation process can start. This section describes the procedure undertaken for implementation of dy-
namic refinement and/or coarsening.

To find the solution to the governing equations 2.1 and 2.2, we need to solve for the solution variables (pres-
sure and composition for the mass conservation equation and pressure and enthalpy for the energy equa-
tion). To do so, as mentioned earlier, we need the known variables for each and every mesh element within
the grid; that is, the volume, depth and reservoir properties. Moreover, to solve for the flux term, we also need



14 2. Methodology

a connectivity list with corresponding transmissibility. The model implemented in DARTS therefore requires
as input a list of volumes, depths, reservoir properties describing every grid cell within the simulation grid,
and a list of connections and corresponding transmissiblity.

Furthermore, as not all cells present in the hierarchical grid are within the simulation grid, we hence require
a list of active blocks, which is a list where the indices (global indices) of the active cells are stored.

To determine whether grid adaptivity is necessary, we define refinement and coarsening criteria, which are
dependent on the application used. In this study, we adopted an approach where the difference in solution
variable is analysed between neighbouring blocks. Therefore, the difference in the solution variable of inter-
est X is computed between each pair of cells active in the simulation grid. If this difference is higher than
a given threshold, both neighbouring blocks are refined. For the coarsening of a set of fine cells, belonging
to a given coarse cell, the difference between all the corresponding fine cells and their neighbouring cells is
computed; if each and every one of these connections have a difference in solution variable below a given
threshold, the fine cells are coarsened to the next consecutive level.

For cells marked for refinement, the corresponding fine cells from the level below are added to the list of
active blocks, which is used for implementation of the next time step, while the indices of the coarse cells in
question are suppressed. Similarly, the cells marked for coarsening are suppressed from the active cells, and
the corresponding coarse blocks are added. Figure 2.1 below shows an example of a two-level hierarchical
grid. The current time step simulation grid is represented on the bottom left. After a check for adaptivity was
conducted, cells 1 and 2 were marked for refinement. Hence as explained above, the cell indices 1 and 2 are
suppressed from the list of active blocks, and their corresponding fine cell indices are added (6, 7, 10 and 11
for coarse cell 1, and 12, 13, 16 and 17 for coarse cell 2). The scheme at the bottom right of the figure shows the
simulation grid which will be used for the next time step. Cell adaptivity results in an unstructured indexing
as shown in the figure below.
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Figure 2.10: Schematic representation of a 2-level hierarchical grid, with illustrated the adaptivity procedure and the redefinition of the
active blocks for the simulation grid of the next time step tn+1.

Once the simulation grid is redefined and the list of active cells is updated, the connectivity list and cor-
responding transmissibility must be redefined. This is done by copying the list of connections for the whole
hierarchical grid, where only the connections and corresponding transmissibility involving the active cells are
kept, while connections involving non-active cells and their corresponding transmissibility are suppressed.
Similarly, the same holds for the list of volume, depth and relevant properties. Only the cell properties of the
active blocks are stored.

For computation of the next time step solution Xn+1, the solution of the previous time step Xn is required
(see equations 2.4 and 2.5). However, Xn doesn’t have the same grid configuration as the next time step tn+1.
It is therefore necessary to convert the grid of solution Xn to the same configuration as the simulation grid
at tn+1. To do so, we use simple mapping techniques. A prolongation operator is firstly used to redefine the
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solution variable X at each cell of the finest level of refinement (level 0). A so-called constant prolongation is
implemented; i.e., all sub-domain values Xi are set to the coarse value solution variable X I :

Xi = X I , ∀i ∈ I . (2.19)

Subsequently, restriction to the new simulation grid is conducted on the prolongated solution; i.e., for cells
already at the finest level, the solution stays the same; when several control volumes are grouped into a single
coarser control volume, the coarse value X I is set to the volume-weighted average of all sub-domain values
Xi (Karimi-Fard & Durlofsky, 2014):

X I = 1

VI

∑
i∈I

vi Xi . (2.20)

A schematic representation of this procedure for the 2-level hierarchical grid and for the new simulation grid
of figure 2.10 (tn+1) is shown in figure 2.11 below.
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Figure 2.11: Schematic representation of the prolongation and restriction operation for the example in figure 2.10 above.

The model, however, necessitates sequential numbering for mesh generation. It can be seen in figure 2.10
that indexing is non-consecutive when grid adaptivity is applied. This is where local indexing comes in play.
That is, the active blocks indices are re-numbered in a sequential order to prevent undefined indices in the
mesh. The figure below shows this procedure for the problem described in figure 2.10.
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Figure 2.12: Example of the global to local index conversion for the simulation grid of time tn+1 for the problem illustrated in figure 2.10.

This new local indexing is assigned to the list of cell properties (volume, depth, porosity...etc).

To keep track of the global indexing of each active cell for future steps in the procedure, a so-called Global to
Local array is constructed. This consists of a list, with size corresponding to the total number of blocks in the
hierarchical grid, where the index represents the global indexing and the value represents the local indexing
for the current time step. Blocks that are not active are given a value of -1. This array is used to convert the
global connectivity list to local numbering. This array is redefined at each time step. Table 2.5 below lists the
Global to Local array for the simulation grid shown in figure 2.12.

Table 2.5: Global to local array with listed the local indexing for a given grid cell in the new simulation grid (having a global index
assigned).

Global 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Local 0 -1 -1 1 -1 -1 2 3 -1 -1 4 5 6 7 -1 -1 8 9
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In the synthetic examples used to illustrate the performance of the AMR framework, the first time step simula-
tion is started at the coarsest level. For improved accuracy, the cells containing the wells are kept at the finest
level of refinement, level 0. We therefore construct an active list containing the indices of the well blocks,
and the remaining indices of the coarsest level. Global to local indexing is then applied in order to avoid
non-assigned indices. When primary variables are solved, it is important to convert the local indexing back
to the global indexing (using Global to Local array) in order to perform the adaptivity check and to redefine
the active list and new simulation grid.

The procedure described above, which redefines the grid configuration for the next simulation, is repeated at
each time t . Both the pre-processing stage, which consists of the construction of the hierarchical grid, along
with the dynamic refinement framework are summarized in the flow chart shown in figure 2.13 below.

Level 0 
fine-scale model

→ K, 𝜙, V, D

Construct
level > 0

Construct level and
inter-level conn list

Compute
transmissibility level 0

→ Γ0

Global flow-based 
upscaling 
→ Γ, V, 𝜙, D

Construct global lists
Global indexing

→ conn list, Γ, V, 𝜙, D

Pre-processing stage Adaptivity framework

t = 0
Coarsest level, wells at 

level 0
→ initiate simulation grid 𝛺

Update grid properties
→ conn list, Γ, V, 𝜙, D

Global to local indexing
→ conn list, Γ, V, 𝜙, D, Xo

Run model at time t
Solve primary variables 

Xn
→ local indexed Xn

Local to global indexing
→ global indexed Xn

Check Xn for adaptivity
→ new simulation grid 𝛺

Update grid properties
→ conn list, Γ, V, 𝜙, D

Prolongation of Xn
to level 0

→ XP

Restriction of XP
to new simulation grid Ω

→ XR

Global to local indexing
→ conn list, Γ, V, 𝜙, D, XR

t = t + Δt

Figure 2.13: Flow chart describing the steps in the pre-processing stage, i.e. the construction of the hierarchical grid; and describing the
adaptivity framework.



3
Applications

The performance of the developed AMR method is illustrated for several applications in this chapter. The ap-
plications, tested in this study, are a production of geothermal energy and a reactive flow of acid in carbonate
reservoirs. For all cases, we consider a single injector single producer configuration. This section presents an
analysis based on comparison between the solution accuracy among the fine, coarse and AMR grid.

3.1. Geothermal reservoirs
Geothermal technology has recently received substantial attention as an alternative source of energy. How-
ever, geothermal production systems have a relatively low return on investment, where uncertainties related
to lack of detailed information about subsurface formations can significantly affect the quantification of the
economic planning and feasibility of geothermal projects (Willems, 2017). It is therefore important to reduce
the uncertainty and produce a high accuracy solution while keeping the computational costs low. Geother-
mal systems therefore represent a good candidate for implementation of our AMR framework since it keeps
the accuracy of simulation process close to the fine-scale while the performance is close to coarse-scale mod-
els.

Simulation of geothermal reservoirs implicates the solution of both mass 2.1 and energy 2.2 conservation
equations where pressure and enthalpy are the solution variables. We are mostly interested in the accurate
prediction of the temperature displacement front and resulting thermal breakthrough time. Dynamic adap-
tivity will be illustrated for four synthetic geothermal examples:

• A homogeneous reservoir with unstructured meshing,

• A simple sugar-cube-like fluvial model with shale blocks,

• A heterogeneous fluvial system from (Shetty et al., 2017) with low net-to-gross ratio,

• And finally, several layers of a highly heterogeneous SPE10 reservoir.

In DARTS, the enthalpy is used as nonlinear unknown instead of the temperature. The adaptivity criteria
are therefore applied to the enthalpy solution where the difference in enthalpy between two adjacent control
volumes is analysed. This is done for each pair of connection within the simulation grid. Here, we applied
the following adaptivity criteria:{

if ∆hi j > 70 k J , mark cells i and j for refinement,
if ∆hl < 40 k J , ∀l ∈ I , mark cells {∀i ∈ I } for coarsening.

(3.1)

3.1.1. Homogeneous model

The first model is a simple 2D homogeneous reservoir (constant permeability) with unstructured triangular
mesh. As mentioned before, we consider a single injector (I) and a single producer (P) configuration. A two-

17
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level hierarchical grid is used, with 1420 cells in level 0 and 75 cells in level 1. Figure 3.1 below illustrates both
levels, along with the permeability field (constant permeability of 2000 mD), and the well locations.
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Figure 3.1: Hierarchical grid of the unstructured homogeneous model. Left figure: permeability field with reservoir dimensions and well
locations; middle figure: level 0, the finest level of refinement, with unstructured gridding; right figure: coarser level, level 1 where each
color represents a coarse cell.

The level 1 is illustrated above where each color represents a coarse cell. As can be seen, cell aggregation
has been conducted by dividing the x- and y- axes into 5 and 15 equidistant intervals. The cells at the well
locations are kept fine at all times. The simulation was conducted for a period of 5500 days. The temperature
solution at three different times is shown in figure 3.2 below. Figure (a) represents the temperature solution
at fine scale, figure (b) the solution on the AMR grid, figure (c) shows the coarse-scale solution, and figure (d)
shows the node distribution for the AMR simulation run.
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tD = 0.1 tD = 0.3

tD = 1

(a) (b) (c) (d) (a) (b) (c) (d)

(a) (b) (c) (d)

Figure 3.2: Temperature solution of the homogeneous reservoir with unstructured gridding at tD = 0.01, 0.3 and 1. (a) represents the
fine-scale solution; (b) represents the AMR solution; (c) is the coarse-scale solution; (d) is the node distribution of the AMR grid.
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As can be seen, the solution on the AMR grid demonstrates a particularly good match with the fine-scale solu-
tion. Moreover, the node distribution shows high concentration along the front and at the well locations, and
low concentration behind and ahead of the front, where no significant changes are observed. This consider-
ably lowers the computational time as compared to running the fine-scale model. The coarse-scale solution
differs notably from the AMR and fine-scale solution, with a faster cold front propagation at the coarse grid
which is more pronounced in comparison at late times tD = 0.3 and 1.

To describe the differences quantitatively, an error analysis was conducted, where the error of both AMR and
coarse solution are computed relative to the fine-scale solution. Both the L2 norm and L-infinity norm were
calculated for each time step throughout the simulation. Figure 3.3 below shows both norms for the error
between the AMR result and the fine-scale solution, and the error between the coarse-scale and fine-scale
solution. As can be seen, the relative error of the AMR solution is significantly lower than the coarse solution
in both the L2 and L-infinity norm.
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Figure 3.3: L2 norm (left) and L-infinity norm (right) of the difference between the coarse model and the fine model, and between the
AMR model and the fine model, both relative to the fine-scale solution, for the homogeneous model with unstructured gridding from
figures 3.1 to 3.2.

The graph below shows the percentage of grid cells used in the simulation using the AMR grid, relative to the
total number of cells in the fine-scale model. As can be seen, the amount of cells is considerably reduced,
ranging from 8 to 60%. The trend shows an overall increase as the front propagates, and a decrease when the
cold front has reached the producing well, which results in coarsening at locations where no more thermal
variations are detected.
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Figure 3.4: Percentage of mesh elements used during the simulation of the AMR model, relative to the total number of cells in the fine-
scale model in time for the homogeneous model with unstructured gridding from figures 3.1 to 3.2.

This considerably improves the performance of simulation since the AMR approach is much more favourable
in terms of efficient use of computational resources. The cold water front is well-captured throughout the
simulation and the results are close to the fine-scale solution.
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3.1.2. Sugar-cube shale model

Shales are often neglected in conventional reservoir simulation as the convective flow is never acquired in
shales due to low permeability. However, for geothermal applications, they represent an important source of
heat which recharges the flowing cold water (thermal recharge). It is therefore important to model the shale
bodies which are in close proximity to the sand channels. However, modelling of the shales significantly
increases computational time since shales often occupy a significant amount of computational grid. Here,
we test an application of our AMR approach to a sugar-cube model where cubes represents shale bodies and
space between them fluvial channels.

We use a simple 2D setup to illustrate the effectiveness of the AMR solution. In total, a 5 by 6 shale block
configuration is used. Shale blocks have a permeability of 10−2 mD while the sand bodies have a permeability
of 103 mD. The injector and producer are placed at opposite corners of the reservoir as shown in the figure
3.5. Level 0 consists of 4588 fine cells. Level 1 is constructed differently from conventional AMR approach
with the sand channels kept at fine level, and only the shale blocks are coarsened by a ratio of 100 (10×10).
The coarse grid, level 1, contains 1618 cells. Both levels are shown in figure 3.5 below.
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Figure 3.5: Hierarchical grid of the model with shale blocks. Left figure: permeability field with reservoir dimensions and well locations;
middle figure: level 0, the finest level of refinement; right figure: coarser level, level 1.

Figure 3.6 below depicts the temperature solution at three different times throughout the simulation: tD =
0.1, 0.3 and 0.7. Similarly to the previous example, the solution is shown for (a) the fine grid, (b) the AMR grid
and (c) the coarse grid.
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tD = 0.1 tD = 0.3

tD = 0.7

Figure 3.6: Temperature solution of the shale blocks model at three different times: tD = 0.1, 0.3 and 0.7. (a) is the fine-scale solution
(level 0); (b) is the AMR solution; (c) is the coarse-scale solution (level 1).
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As can be seen on the AMR figure (b), the grid refines as soon as the cold front arrives at proximity to a shale
body. The cold front is accurately represented on the AMR grid and there are no differences compared to the
fine grid. On the coarse grid however, the cold front propagates further than for the fine and AMR model,
which is clearly visible at the late time recording tD = 0.7 in the figure above. When the cold front passes part
of the shales blocks and these have cooled down, coarsening occurs as observed at tD = 0.7.

An error analysis was performed to investigate the relative error of the AMR and coarse model where the fine-
scale solution is taken as reference. Figure 3.7 below depicts the error distribution through time of both the
AMR and coarse model relative to the fine model.
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Figure 3.7: L2 norm (left) and L-infinity norm (right) of the difference between the coarse model and the fine model, and between the
AMR model and the fine model, both relative to the fine-scale solution, for the shale blocks model from figures 3.5 to 3.6.

Both the L2 norm and the L-infinity norm are plotted. As can be seen, the error of the coarse model is sig-
nificantly larger than for the AMR model, where the error is close to zero. The percentage of cells used in the
AMR grid relative to the amount of cells used in the fine grid is shown in figure 3.8 below. As can be seen, the
percentage of cells ranges from roughly 35% to around 90% halfway through the simulation, when the cold
front reaches the producing well, and then lowers to 65% when shale blocks proximal to the injector wells
have cooled down to injection temperature, and hence coarsening occurs.
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Figure 3.8: Percentage of mesh elements used during the simulation of the AMR model, relative to the total number of cells in the fine-
scale model in time for the shale blocks model from figures 3.5 to 3.6.

As observed, the computational time and effort was considerably reduced throughout the simulation, and
the AMR solution outcome shows a very accurate representation of the fine-scale model.

3.1.3. Fluvial heterogeneous model

Our AMR framework was tested for a heterogeneous reservoir with a low net-to-gross ratio (N/G = 35%).
The permeability field ranges from 0.1 to 3400 mD with a significant amount of shale regions present. The
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hierarchical grid for this example is a structured grid and it comprises two levels. The finest grid, level 0,
consists of 2400 grid cells with 40 cells in the x-direction and 60 cells in the y-direction. Level 1 was reduced
to 150 mesh elements, where aggregation was done using 4x4 fine mesh elements, resulting in 10 grid cells
in the x-direction and 15 grid cells in the y-direction. The permeability field along with the hierarchical grid
for this example is shown in figure 3.9 below. The location of the injector (I) and producer (P) are depicted in
yellow on the permeability distribution figure below.
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Figure 3.9: Hierarchical grid of the heterogeneous model with low net-to-gross ratio. Left figure: permeability field with reservoir dimen-
sions and well locations; middle figure: level 0, the finest level of refinement; right figure: coarser level, level 1.

The simulation was conducted until cold water breakthrough reached the producing well. Figure 3.10 below
illustrates the temperature solution at different times throughout the simulation. For each time shown, figure
(a) represents the fine-scale solution, figure (b) is the AMR solution, and figure (c) is the coarse-scale solution.
The grid is kept at its finest level at well locations.

Figure 3.10: Temperature solution of the heterogeneous model with low net-to-gross ratio at three different times: at tD = 0.1, 0.3 and 1.
(a) is the fine-scale solution (level 0); (b) is the AMR solution; (c) is the coarse-scale solution (level 1).
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As can be seen, the AMR mesh exhibits a significant improvement in temperature solution compared to the
solution on the coarse grid. Refinement is mainly focused at the front and slightly beyond the front, while
areas where insignificant changes occur remain coarse. Important details, such as fingering effects at the
cold water front, which are neglected on the coarse grid, are clearly visible in both fine and AMR solutions,
which results in a more accurate representation of this physical phenomenon.

The relative error throughout the simulation run was recorded, where the fine model is taken as reference
solution, for comparison between the coarse and AMR model. Figure 3.11 below shows the L2 norm and the
L-infinity norm error in time.

Figure 3.11: L2 norm (left) and L-infinity norm (right) of the difference between the coarse model and the fine model, and between the
AMR model and the fine model, both relative to the fine-scale solution, for the heterogeneous model with low net-to-gross ratio from
figures 3.9 to 3.10.

As can be seen, the marked improvement is also recorded in the error analysis, where the error between the
coarse and fine model is notably larger than the error between the AMR and fine model. The L2 norm remains
relatively constant for the AMR solution whereas it increases slightly in time for the coarse solution.

The graph in figure 3.12 below shows the amount of grid-cells used in the simulation where AMR was imple-
mented, compared to the fine-scale model, expressed in percentage.
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Figure 3.12: Percentage of mesh elements used during the simulation of the AMR model, relative to the total number of cells in the
fine-scale model in time for the heterogeneous model with low net-to-gross ratio from figures 3.9 to 3.10.

As can be seen, the percentage of fine grid cells in the AMR grid ranges from 8 to 70% throughout the sim-
ulation. This represents a significant improvement in computational effort and time, while still capturing
important features.
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3.1.4. SPE10 reservoir

In this example, four highly heterogeneous fluvial layers of the SPE 10 model from layer 79-th to 82-nd were
used (M. Christie & Blunt, 2001). This 3D model consists of a channeled system with high permeability chan-
nels and low permeability shales around the channels. The permeability ranges from 0.0015 to 20000 mD as
shown in figure 3.13 for layer 79 using the logarithm of the permeability to emphasize the contrast between
geological features. Level 0 consists of 52800 cells with 60, 220 and 4 cells in the x-, y- and z-direction respec-
tively. Level 1 has been reduced to 825 cells with an aggregation of 4 fine grid cells in all 3 directions. Both
levels are shown in figure 3.13 below.
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Figure 3.13: 2D overview of the hierarchical grid of the SPE10 reservoir (layers 79 to 82). Left figure: permeability field with reservoir
dimensions and well locations; middle figure: level 0, the finest level of refinement; right figure: coarser level, level 1.

The simulation was conducted for a period of 500 days. Figure 3.14 below illustrates the temperature solution
at three different times with (a) at the fine scale, (b) on the AMR grid and (c) at the coarse scale.
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Figure 3.14: Temperature solution of the SPE10 reservoir at three different times. (a) is the fine-scale solution (level 0); (b) is the AMR
solution; (c) is the coarse-scale solution (level 1).
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As can be seen, the AMR solution shows significant improvements in the solution as compared to the coarse-
scale solution. The coarse-scale solution neglects important fine-scale features along the cold front. It can be
observed that mesh refinement occurs along the cold front, where significant changes are observed, but the
mesh remains coarse at locations where no major changes occur. This improves the efficiency of computa-
tions.

An error analysis was also conducted in order to record the performance of the AMR framework relative to
the fine-scale solution. Figure 3.15 below depicts the L2 and L-infinity norm of the error throughout the
simulation.
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Figure 3.15: L2 norm (left) and L-infinity norm (right) of the difference between the coarse model and the fine model, and between the
AMR model and the fine model, both relative to the fine-scale solution, for the SPE10 reservoir model from figures 3.13 to 3.14.

The graphs show that the error resulting from the AMR model is significantly less than the error resulting from
the coarse-scale model, for both the L2 and L-infinity norm. The L2 norm relative error reaches a maximum
of 0.5% for the AMR model and 1% for the coarse-scale solution. The L-infinity norm relative error is around
0.04 for the AMR model, whereas it is around 0.09 for the coarse model. The error is therefore halved when
using the AMR model.

The performance of the AMR framework can also be illustrated through determining the percentage of grid
cells of the fine-scale model used during the simulation run on the AMR grid. The graph in figure 3.16 below
depicts this percentage throughout the simulation.
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Figure 3.16: Percentage of mesh elements used during the simulation of the AMR model, relative to the total number of cells in the
fine-scale model in time for the SPE10 reservoir model from figures 3.13 to 3.14.

As shown in the figure above, the number of grid cells present in the AMR grid ranges from 2 to 55% of the
fine-scale model. This represents a considerable improvement in efficient use of computational resources.
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3.2. Reactive transport
Carbonate reservoirs host a major part of the world’s hydrocarbon reserves. But besides hydrocarbon re-
serves, the ongoing energy transition has resulted in an increase interest in geothermal systems where many
are hosted by carbonate rocks. These reservoirs can have heavily fractured and karstified intervals, result-
ing in unforeseen hazards during drilling. Furthermore, naturally fractured carbonate reservoirs contain a
large uncertainty in flow response due to the poor ability to predict the spatial distribution of discontinuity
networks at reservoir-scale.

Another important process related to dissolution is well acidization used to increase the production. This pro-
cess involves the dissolution of reservoir rock to stimulate flow towards the wells. These chemical reactions
are localized and form important features for accurate representation of the flow response. Furthermore,
reaction rates which occur during dissolution are high, resulting in a sharp front in the flow response. More-
over, during dissolution, formation and development of an unstable dissolution front with multiple worm-
holes can occur and its modeling is quite sensitive to the resolution (Shaik et al., 2018). In near-well acidiza-
tion processes, the regime which forms a single dominating wormhole is the most preferable. It is therefore
important to accurately predict this unstable dissolution while keeping the computational time reasonable.
AMR is therefore a good solution to model these reservoirs and chemical processes to solution requirements.

In the flow example analyzed in this study, dissolution involves the following simple reaction where carbonate
is dissolved:

CaCO3(s) Ca2+ + CO 2–
3 (3.2)

The model we use simulates the phenomenon of unstable wormhole formation triggered by small perturba-
tions in permeability. On one side of the reservoir, an injector well is placed which is perforated throughout
the whole thickness. On the other side, the producer well is placed, also spanning the entire thickness of the
reservoir. The model described in this example has dimensions of 100 by 100 meters. A constant permeability
of 1 mD is used with 5% of random noise. The left illustration in figure 3.17 shows the well locations, along
with the permeability of the reservoir. The hierarchical grid consists of two levels, where level 0 is an unstruc-
tured grid containing 2194 triangular cells. Cell aggregation was conducted to construct level 1, where the x-
and y- axes were divided in 10 equidistant intervals, resulting in a grid with only 100 cells. Level 0 and 1 are
shown in figure 3.17.
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Figure 3.17: Hierarchical grid of the wormhole model. Left figure: permeability field with reservoir dimensions and well locations; middle
figure: level 0, the finest level of refinement; right figure: coarser level, level 1.

The AMR simulation was started at the coarse level, while keeping the well cells at the finest level throughout
the entire simulation run. For this application, the adaptivity criterion is based on the solid composition,
x[C aCO3]. The adaptivity criteria used in this example are defined as follows:{

if ∆x[CaCO3]i j > 0.02, mark cells i and j for refinement,
if ∆x[CaCO3]l < 0.01, ∀l ∈ I , mark cells {∀i ∈ I } for coarsening,

(3.3)

where ∆x[C aCO3] is the difference in composition of the calcium carbonate C aCO3 component.

The simulation was recorded at three different times: 0.13, 0.25 and at the final time (expressed in dimen-
sionless time). Figure 3.18 depicts the solid composition - the composition of C aCO3 - in time, where figure
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(a) is the fine-scale solution, figure (b) is the AMR solution, figure (c) is the coarse-scale solution, and figure
(d) represents the node distribution of the AMR grid.
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Figure 3.18: Solid composition solution of the wormhole model at three different times. (a) is the fine-scale solution (level 0); (b) is the
AMR solution; (c) is the coarse-scale solution (level 1).

As can be seen, the AMR solution is considerably more accurate than the coarse-scale solution. The far-
propagating wormhole (at tD = 1), which is present in both the fine-scale solution and the AMR solution,
is not well represented on the coarse-scale solution, where two extensive wormholes are present. The AMR
solution however shows a very good representation of the fine-scale solution throughout time. The most ex-
tensive wormhole exhibits slight differences in thickness and some minor variations are observed at the other
smaller wormholes. The node distribution follows the front, which is in this example quite dispersed, result-
ing in refinement spanning a wide area, especially at the last time step. However, considerable computational
resources are saved at the early stage of the simulation.

To quantify the differences between fine-scale solution, AMR solution and coarse-scale solution, an error
analysis was conducted. Here again, both the L2 norm and the L-infinity norm were computed for the AMR
and coarse model, relative to the fine-scale solution. The graphs in figure 3.19 below depict the outcome. As
can be seen, the AMR error is once more significantly less than the coarse model, for both norms. For the
L2 norm, the coarse-fine relative error is three times greater than the AMR-fine error at the final time step.
The L-infinity norm of the coarse-fine error starts low at the first time step, where no extensive propagation is
observed and where the model is close to the initial conditions, but then rapidly increases to 0.8 and remains
more or less constant throughout. The L-infinity norm of the AMR-fine error seems to increase in time. This
is due to the propagation of initially small errors in the solution. Note however that the relatively big error for
both the AMR and coarse-scale model are not representative for this example and are related to another type
of instability in the solution.
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Figure 3.19: L2 norm and L-infinity norm of the difference between the coarse model and the fine model, and between the AMR model
and the fine model, both relative to the fine-scale solution, for the wormhole model from figures 3.17 to 3.18.

Similarly to the previous example, we have analyzed the total number of cells used in the AMR model, relative
to the total amount of cells contained in the fine-scale grid. The graph in figure 3.20 below shows this quantity
expressed in percentage.
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Figure 3.20: Percentage of mesh elements used during the simulation of the AMR model, relative to the total number of cells in the
fine-scale model in time for the wormhole model from figures 3.17 to 3.18.

As can be seen, the amount of cells used during the AMR simulation is overall less than the amount of cells
present in the fine-scale model. Initially, the amount of cells starts at 20%, which represents the use of the
coarsest level, with both left and right boundaries kept at the finest level. It then increases, fairly steeply,
to around 95% due to the high injection velocity which corresponds to the dominating wormhole regime.
Around the end of the simulation, the amount of cells starts to decrease, which indicates coarsening at some
locations. Although almost 100% of the cells is used at two thirds of the simulation, which is computationally
expensive, considerable resources are saved in the beginning. Moreover, this problem is sensitive to the reso-
lution which requires refinement at many locations in order to accurately capture the wormhole propagation.



4
Concluding remarks

This study aimed at developing an Adaptive Mesh Refinement (AMR) technique in Delft Advanced Research
Terra Simulator for general-purpose reservoir simulation. The developed AMR framework consists of a multi-
level hierarchical grid, where levels are constructed through a mesh partitioning of the fine-scale model - the
static geological model - which is represented by a list of properties (e.g. volume and porosity). The frame-
work consists of the construction of the coarse levels through cell aggregation of the next consecutive fine
level at the pre-processing stage. The method used to aggregate fine cells includes the grouping of subdo-
mains whose centroids are found within a predefined 3D domain. In this study, domains are grouped by the
partitioning of the x-, y- and z- axes into equidistant intervals.

The aggregation of the subdomains to form a coarser level is stored as a list of indices for next stages, which
consists of the indices of the fine cells comprised in its coarse control volume for each coarse cell. Next,
in order to solve the relevant governing equations, the flow must be computed at each interface present in
the mesh. We therefore generate a list - called a connectivity list - describing all neighbouring cells within
each level and between levels. The fine-scale transmissibility is then computed using the permeability field.
Hereafter, a flow-based upscaling is applied in order to acquire the transmissibility of coarser levels, and the
inter-level transmissibility. Each control volume has defined parameters which are relevant for solving the
system (volume, porosity, depth etc).

Once the hierarchy of levels is complete, the simulation can be started. The first time step is performed on
the coarsest level, while keeping the well blocks at the finest level. Adaptivity check is performed at every time
step, using criteria specific to the application. Once the regions for coarsening and refinement are defined,
the solution is prolongated to the finest meshing level, and subsequently restricted from fine to the adaptive
simulation grid. A new connection list and grid properties are constructed for the new coarsened schema.
Once it is completed, the simulation runs for the next time step using the constructed simulation model.

The accuracy of the method was demonstrated for several problems using two different applications: geother-
mal energy extraction and reactive flow and transport. For geothermal applications, four models were tested,
including a homogeneous model with unstructured gridding, a synthetic sugar-cube-like model with high
permeability channels surrounded by shale blocks, a heterogeneous fluvial system model with low net-to-
gross ratio, and finally, the framework was tested on several layers of a highly heterogeneous SPE10 reservoir.
High levels of solution accuracy relative to the reference fine-scale results are observed for all cases. An error
analysis was conducted to record the differences between the AMR and the coarse solution relative to the ref-
erence fine-scale solution. The error resulting from the AMR model is significantly lower than for the coarse
model, for all tested problems. The overall percentage of grid cells used in the AMR model relative to the
fine-scale model is considerably decreased for most problems.

For reactive flow and transport, the dissolution of calcium carbonate rock was analyzed for a small-scale
reservoir where small perturbations in permeability induce the formation of an unstable dissolution front
with wormholes. Here also, the AMR solution shows high accuracy relative to the reference fine-scale solu-
tion. The error is approximately a third of the coarse-scale solution error. The quantity of grid cells used
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throughout the simulation run does unfavourably reach close to 100% of the fine-scale grid due to the small
characteristic domain of the model. We expect this will be improved for a larger, more realistic domain.

To conclude, the developed AMR method shows high levels of accuracy for both homogeneous and hetero-
geneous models, and can be used for geothermal applications as well as for reactive flow and transport with
dissolution. The number of cells in the AMR simulation, relative to the total number of cells of the finest
level, is considerably reduced, which is very favourable in terms of efficient use of computational resources.
The framework is applicable to two- and three-dimensional models and for unstructured as well as struc-
tured meshes. The applicability of the method to unstructured grids provides an effective means for solving
complex geological systems.

For future work, this technique can be extended to discrete fracture models, where local refinement can sig-
nificantly improve the accuracy in the representation of fractures. Moreover, the AMR framework should be
tested on other applications where localization occurs, and where higher resolution is required, e.g. in-depth
water divergence (Trujillo et al., 2018). Another possible improvement in the AMR solution is to use an inter-
polation method for the prolongation operation. This can potentially facilitate convergence of the solution
and result in a better representation of the solution outcome.
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