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Abstract 

Wheelchair basketball has become increasingly popular, leading to a rise in professionalism. While performance measures exist, 
they lack objective metrics directly related to an athlete’s individual load that can be measured during games. An objective measure 
related to the athlete’s load can provide information about fatigue and the total load of training or matches. A recent study 
presented a theoretical framework for calculating power during games. This study aims to examine the utilization of power metrics 
derived from Inertial Measurement Units (IMUs) in wheelchair basketball using the theoretical framework, focusing on power 
produced during straight-line sprinting in matches. This will be done by answering the main question of this paper: How can 
individualized power metrics for performance monitoring be derived during wheelchair basketball match play using IMUs? Eight 
female participants from the Dutch national wheelchair basketball team were assessed in twelve international practice games using 
IMUs on their wheelchairs. Power profiles were created based on sprint power, offering insight into sprint powers and their 
distribution. Work done, determined from power output and push duration, provided insights into athlete fatigue during games. 
Power profiles can be used to monitor long-term performance, either between games or between seasons. Regression analysis 
showed a significant positive effect of classification scores on single push power output, with an R-squared value of 0.75. This study 
proposes areas for future research, including integrating trunk motion analysis and exploring the effects of different player positions 
on power profiles. By enhancing the understanding of player performance, these findings contribute to the professionalization of 
wheelchair basketball, aiming to optimize performance and reduce injury risks. 

Index Terms 

Mechanical power, Power profile, Work, Wheelchair sports, Inertial measurement unit, Wheelchair propulsion, Rolling resistance 
force 

I. INTRODUCTION 

A. Beginning of performance measuring in wheelchair basketball 

After the Second World War, veterans started playing wheelchair basketball. It gained popularity and became one of the sports 

in the first-ever Paralympic games (IWBF, n.d.). By gaining popularity, the competition increased and consequently, the 

professionalism increased. This resulted in athletes and coaches searching for ways to enhance performance. One of the first 

studies into wheelchair basketball performance during games was that of Byrnes et al. (1994). This study determined the 

athlete’s contribution to a game as a performance measure. Performance measures are quantitative indicators utilized to 

compare athletes across different games and among athletes. After this initial research, subsequent studies further explored 

wheelchair basketball performance, revealing that mobility performance, which encompasses wheelchair handling skills (Veeger 

et al., 2017), could serve as a valuable performance measure (Rhodes et al., 2015, Sarro et al., 2010, Usma-Alvarez et al., 2010). 

With the use of Inertial Measurement Units (IMUs), van der Slikke et al. (2016) could create six key features to describe 

wheelchair mobility performance in match play accurately. These features are average speed, average max speed, average 

acceleration, average rotational speed in a curve, average max rotational speed in turn, and average rotational acceleration. 

Enhancing these skills not only contributes to athletes’ overall performance but also aids in their ability to navigate the court 

effectively. 

B. Introduction of power 

While previous studies in wheelchair basketball performance provided quantifiable metrics for mobility performance, they 

lacked objective measures directly related to an athlete’s individual load that could be measured during games. An objective 

measure related to the athlete’s load can give information about, for instance, fatigue or the total load of a training or match. 

The information provided by objective measures can aid coaches in athlete monitoring and reducing injury risks (van Dijk et al., 

2024, Halson, 2014, Soligard et al., 2016, Mujika, 2016). Heart rate is not an option given the delayed response, it would result 

in an underestimation of sprint effort. Furthermore, heart rate responses differ in Paralympic athletes, compared to able-bodied 

athletes (Paulson et al., 2015). Power is one of the most used objective metrics in other sports that is related to load and can be 

measured during games (Pelland-Leblanc et al., 2013, Barker et al., 2011, Waldron et al., 2015, Pinot and Grappe, 2011, Sanders 

et al., 2017a and Sanders et al., 2017b). This paper defines power as the mechanical power exchanged between the athlete and 

the environment (van Dijk et al., 2024b & Van der Kruk et al., 2018). 

  



C. Theory behind calculating power 

Despite its potential utility in wheelchair basketball, measuring power directly has been challenging. In a study by Miyazaki et 

al. (2020), a power-measuring device for wheelchair basketball was created. Like cycling, where a force sensor sits in the crank 

arm, they added force sensors to the push rim. However, this device was expensive and heavy, so measuring power directly is 

currently not viable (Chenier et al., 2021). Fortunately, a more feasible approach involves leveraging IMUs to calculate´ power, 

as demonstrated in other sports like cross-country skiing (Gløersen et al., 2018, Uddin et al., 2021, de Vette et al., 2022). Van 

Dijk et al. (2024b) presented a theoretical framework for monitoring mechanical power in wheelchair sports. This framework 

uses the power balance where the combination of the athlete and the wheelchair is considered as a rigid body. The power 

balance can be seen in Equation 1. The forces displayed in the equation are; the rolling resistance of the center of mass (COM) 

(Froll,COM), the air resistance of the COM Fair,COM, and the gravitational resistance of the COM Fg,COM. 

By multiplying the resistance forces with the velocity of the COM vCOM the power loss due to those resistance forces can be 

calculated.   represents the power of the kinetic energy. maw represents the mass of the athlete and 

wheelchair (aw) combined. In this paper, gravitational resistance does not apply, since the athletes were measured in an indoor 

hall with horizontal flooring. Wheelchair basketball is an indoor court sport, therefore the air resistance can be considered 

negligibly small (Barbosa et al., 2014, van Dijk et al., 2024b). Van Dijk et al. (2024b) mention two different models to calculate 

power, one requires measurement of the vCOM and the other of vwc. Many applications in cyclical sports use average power output 

per push (Holt et al., 2021, Leo et al., 2022), a method that may be transferable to wheelchair basketball. Over multiple 

propulsion cycles the average velocity of the COM vCOM equals the average velocity of the wheelchair vwc. With IMUs, it’s possible 

to measure the velocity of the wheelchair accurately. 

  (1) 

D. Specific approach for this paper 

The sport of wheelchair basketball is a very high-intensity sport. In other words, the athletes have to produce numerous sprints 

with little rest (Coutts, 1992, Croft et al., 2010, Molik et al., 2010). Since the knowledge about the rolling resistance during turning 

is limited it’s currently too complicated to determine cornering power (van Dijk et al., 2024). Therefore, this study will focus on 

straight-line sprint power. 

E. Power metrics 

A review by Van der Slikke et al. (2022) showed that current monitoring tools lack individualization for performance 

monitoring. Furthermore, monitoring load has not been possible during competition. 

In cycling, different power metrics are used (Sørensen et al., 2019 & Allen et al., 2019). Most of these metrics are based on 

power per given time. In wheelchair basketball, power over time will not be useful, since there is no continuous effort. So, this 

raises the question of which power metrics can be rewritten for wheelchair basketball. A metric that can be rewritten into power 

per push is a power profile, also known as the ”signature of the athlete” (Pinot and Grappe, 2011). An example of a power profile 

can be seen in Figure 1. But instead of power for 5 seconds or 5 minutes, it will be power for one or two pushes, etc. Power 

profiles are used for long- and short-term monitoring. Multiple power profiles can give mean and max values for the athlete, so 

single-game performance can be compared to the athlete’s ability.  

Power is also used to determine the intensity of a training session or race. In cycling training stress score (TSS) is used to give 

a value for the session’s intensity and provide information about the required recovery (Sanders et al., 2017b & Sanders et al., 

2017a). However, calculating TSS requires continuous effort and is therefore not possible to implement in wheelchair basketball. 

Fortunately, according to Erp et al. (2019), the amount of work done is a good predictor for TSS, and with IMU data, calculating 

the work done during a single push will be possible. Therefore, information about the work done during a game can provide 

insights into fatigue. If an athlete’s work done per quarter or minute at the end of the game is lower than at the beginning, it 

could indicate that fatigue is becoming a factor. 



 

Fig. 1: Visual representation of a power profile. Adapted from Leo et al. (2022). Where Pmax is 1s peak power, W’ is work above 

critical power, CP is critical power, LT is lactate threshold, GET is gas exchange threshold 

F. Research gap and question 

Despite advancements in performance monitoring, individualized power metrics tailored to the unique demands of 

wheelchair basketball are lacking. This study aims to fill this gap by deriving such metrics using IMUs. This leads to the following 

research question: What individualized power metrics for performance monitoring can be derived in wheelchair basketball 

match play using IMUs? This question will be answered by creating power profiles for long-term monitoring of individual athletes, 

showing the individualization. Also, the work done per minute and quarter will provide information about the intensity and 

possibly predict fatigue by lower values than in previous quarters. 

II. METHOD 

A. Experimental setup 

This study was approved by the Ethics Committee of the Technical University of Delft. All participants signed an informed 

consent. 

Eight female participants from the Dutch national wheelchair basketball team were measured in twelve international practice 

games in Papendal (Netherlands) between June 2021 and November 2022. The measurements were performed starting at the 

warm-up until the end of the game. During the first match the participants were aged 28.5 (± 7.4) with a mean classification of 

2.9 (± 1.2), the distribution of the classifications and the number of games played can be seen in Table I. The classification of the 

athlete depends on the level of their disability, with a score of 1.0 indicating the most significant impairment and 4.5 indicating 

the least considerable impairment. During the warming-up of one of the games, every athlete performed three coast-down tests. 

A coast-down test is a test in which the athlete accelerates to get some speed and then sits completely still. This determines the 

speed loss over time, which is only related to the resistance forces since all non-resistance forces are zero. Detailed equations 

can be seen in Equation 2, a minus sign is introduced since deceleration is considered. During the coast-down test, the athletes 

were instructed to push three times and to sit upright with their hands on their lap after the third push. It is assumed that no 

changes were made to the equipment regarding wheel angle or tire pressure additionally, since all games were played in the 

same hall, the assumption was made that the rolling resistance coefficient calculated from one coast-down test can be applied 

to all games. 



   (2) 

  

TABLE I: Distribution of the classifications and number of games played 

TABLE I: Distribution of the classifications and number of games played 

B. Equipment 

Two IMUs were used (MoveSense, Suunto Oy, Vantaa, Finland). One was placed on the frame’s camber bar and one on the 

right wheel’s axle, as seen in Figure 2. The IMUs only measured gyroscope data. Both IMUs had a sampling frequency of 100 Hz. 

The IMU data were collected via Wi-Fi using the wheelchair mobility performance monitor (WMPM) app (Van der Slikke et al., 

2017), which automatically synchronizes the time between the sensors. The athletes and their wheelchairs were weighed 

independently using a scale. The camber angle and wheel circumference were measured before one of the games. 

 

Fig. 2: Placement of the IMUs on the wheelchair 

C. Analysis 

The gyroscope data from the IMUs were imported and processed in Matlab (version 23.2.0.2515942, Mathworks, Natick, MA, 

United States of America). The data were filtered with a 2nd order low-pass recursive Butterworth filter with a cut-off frequency 

of 10 Hz (Van der Slikke et al., 2015). The gyroscope data were then used to calculate the frame speed (vframe) and acceleration. 

Equation 3, Equation 4 and Equation 5 were used for calculating the frame speed. First, the angular velocity of the wheel (ωwheel) 

is corrected since it is affected by frame rotations Van der Slikke et al. (2015). This can be corrected with the angular velocity of 

the frame (ωframe). In the equations, ϕcamber is the camber angle, and fs is the sample frequency. The acceleration is calculated by 

taking the derivative of the frame speed. These equations are based on the equations presented by van Dijk et al. (2021). The 

linear acceleration was then filtered with a sample frequency of 1.5 times the mean push frequency. The mean push frequency 

was considered the most prominent frequency, on the frequency spectrum, between 1.2 Hz and 3.5 Hz (Van der Slikke et al., 

2016). 

ωwheel,corrected = ωwheel − tan(ϕcamber)∗ ωframe ∗ cos(ϕcamber) (3) 

vwheel = ωwheel,corrected ∗ wheelcircumfence (4) 

vframe = vwheel −(tan(ωframe/fs)∗ wheelbase/2)∗ fs (5) 

 

  

Classifications 1 1.5 2 2.5 3 3.5 4 4.5 

Number of athletes 1 1 1 0 1 1 2 1 

Games played 11 4 9 0 8 6 4-10 11 



In this paper, gravitational resistance does not apply, since the athletes were measured in an indoor hall with horizontal 

flooring. Since the velocity was also not reaching speeds over 4.5 m/s, air resistance is considered negligibly small (Barbosa et 

al., 2014, van Dijk et al., 2024b). Rolling resistance is therefore the only resistance considered in this paper. The friction coefficient 

was calculated using a coast-down test to determine the rolling resistance. During the roll-out of the coast-down test, the only 

force acting on the wheelchair-athlete combination is rolling resistance. Therefore with a coast-down test, the friction coefficient 

was calculated. This was done by fitting a first-order polynomial after the last push of the test to determine the speed loss over 

time during the roll-out and using the slope coefficient to determine the rolling coefficient. The calculations can be seen in 

Equation 2. Where m is the mass of the wheelchair in and athlete in kg, g is the gravitational acceleration in m/s2,  is the 

change of velocity over time in m/s2, and Cr is the roll resistance coefficient. Since deceleration is considered, a minus sign is 

used. A visual representation of the coasting tests can be seen in Figure 3, where the velocity of the wheelchair is plotted over 

time and the first-order polynomials are plotted from after the last push until the athlete makes a turn. 

 

Fig. 3: Visual representation of the coasting tests with fitted line (only straight line data are plotted), the blue line represents the 

velocity of the wheelchair and athlete. The other colored lines are the first-order polynomials 

Since this paper focuses on straight-line sprinting, direction changes had to be removed from the data. To determine straight 

lines and thus eliminate corners, the movement of the athletes was plotted. By choosing the maximum allowed angular velocity, 

it was possible to determine which value of angular velocity showed the best result. The best result was considered when only 

the straight-line movement of the athletes was plotted. An angular velocity threshold of 10 deg/s gave the required result. A 

push detection algorithm was made to detect the pushes during the game. An acceleration threshold of 0.5 m/s2 was determined 

by examining the data. A push in this paper means a push cycle, the athlete starts and stops this cycle in the same position. The 

moment where the acceleration was zero before the threshold was reached is considered the start of the cycle. The end of the 

cycle is considered as the moment where the acceleration is zero after the velocity reaches a peak. By examining the data some 

cycles had a very short recovery phase of 0.05 s or less. Consequently, these pushes resulted in high power values that were 

considered abnormal. Janssen et al. (submitted) reported that the wheelchair acceleration continued 0.24-0.17 seconds after 

hand release, the recovery phase. Therefore, a minimal recovery phase of 0.15 seconds was added in this study. A visual 

representation can be seen in Figure 5 with the push cycles being the gray area under the plotted velocity. The acceleration is 

also plotted in red. If a push cycle was not starting and ending with acceleration zero, because only straight-line movement was 

used, this push cycle was not used in the calculations. This would have resulted in over- or underestimations of power. 



 

Fig. 4: Flow diagram of creating the MATLAB algorithm 

Research by Janssen et al. (submitted) was used to determine a minimal push time. This study measured sprint characteristics 

from wheelchair tennis players. The results from this research showed a minimal push cycle of 0.25 seconds. As described earlier, 

a push cycle is a push with the recovery phase added. Upon closer inspection with a visual representation of the velocity, a 

minimal push cycle duration of 0.25 seconds excluded some full pushes. Therefore, a minimal push cycle of 0.20 seconds was 

used. To determine if a sprint was performed a minimal velocity needed to be reached. Based on the research of Janssen et al., 

submitted the minimal velocity was set at 3 m/s for a sprint with multiple pushes. The minimal velocity for a one-push sprint 

was set at 1.5 m/s. The power of the pushes was calculated using the power equation from the introduction Equation 1. In this 

case, the power of the kinetic energy was calculated with the following formula: Pk = m ∗ awc ∗ vwc, and the power of the rolling 

resistance was calculated by multiplying the rolling resistance force and the velocity of the wheelchair: Pf = Froll ∗ vwc (van Dijk et 

al., 2021). After calculating the power per push and power per sprint, multiple performance metrics were calculated. Those are 

power profile and anaerobic load. 

Two power profiles were created. Creating both power profiles involved calculating the mean of the highest three values per 

push number or consecutive pushes within each game. Subsequently, the mean power profile across all games was determined. 

The consecutive power profile is derived from the mean power output of consecutive pushes during a sprint. In contrast, the 

arranged power profile illustrates the power output specific to each push number during a sprint. Figure 5 shows a sprint of 8 

pushes. For the consecutive power profile, this sprint will result in 36 values, 8 values for 1 push, 7 values of the mean of 2 

consecutive pushes up to 1 value of the mean of 8 consecutive pushes. For the arranged power profile, this sprint will result in 

8 values, one for each sprint number. Push 7 for example will give a value for the arranged power profile value push number 7. 

For easier interpretation, one value of the power profile will be displayed to compare all games played by a single athlete. For 

the consecutive power profile, this value will be the maximum power for one single push, later called single push power. For the 

arranged power profile, the value will be the mean of three consecutive pushes from the consecutive power profile. 



 

Fig. 5: Visual representation of a sprint (only straight-line data are plotted). This graph shows a sprint of eight pushes, starting 

from standing still, pushes are numbered. The total sprint time is around four seconds. 

D. Statistics 

Outcomes were tested with the Kolmogorov-Smirnov test for normal distribution. For displaying all power profiles, a 

correlation test was done between the individual values of the power profiles and the displayed value. For the consecutive power 

profile, this will be the single push power. For the arranged power profile, this will be the maximum value of the mean of three 

consecutive pushes. To determine the effect of classification on power output, a linear regression analysis was done between 

the classifications and the single-push power values of the power profiles. 

  



(b)  Arranged power profile of all athletes. 
Calculated by taking the mean of all games for a 
single athlete. 

 

III. RESULTS 

A. coast-down tests 

In total 63 games were analyzed, per athlete there were between four and eleven games. During one of the games, the coast-

down tests resulted in a mean rolling coefficient (µr) of 0.125 (± 0.0055). This resulted in a mean rolling resistance of 8.99 N (± 

3.68). A full overview of the rolling coefficient and rolling resistance for every athlete can be seen in Table II. 

TABLE II: Rolling coefficient and rolling resistance for every athlete, with µ being the rolling coefficient and Froll being the rolling 

resistance force 

B. Power profiles 

After calculating power, power profiles were created as described in the method section. This was done for every game of 

every athlete. Figure 6 shows the mean of all power profiles per athlete, Figure 7 shows all power profiles of one athlete. 

This spread is similar to the spread for other athletes. The consecutive power profiles have little differences between them and 

follow the same trajectory. The arranged power profiles differ more however, there is a trend visible. Two visuals were created 

to monitor athlete performance over a longer period. The first visual showcases a full power profile from a certain period, 

providing a comprehensive overview of an athlete’s performance throughout the entire period. This helps in understanding 

broader performance patterns and long-term progress or regression. The second visual represents a single value of the power 

profile per game, allowing for quick comparisons between individual games and identifying trends or anomalies in performance. 

These can be seen in Figure 8 and Figure 9 The value chosen for the consecutive power profile was the single push power since 

this value had a mean correlation of 0.46 with all other values. For the arranged power profile the value with the highest 

correlation with all values was the mean of three consecutive pushes from the consecutive power profile, with a correlation of 

0.34. 

 
(a) Consecutive power profiles of all athletes. Calculated 
by taking the mean of all games for a single athlete. 

 

 

 

Fig. 6: Power profiles of all athletes. From these graphs, it is already visible that the higher-value classifications produce more 
power. Both power profiles show decreased power over consecutive pushes or push numbers. Each athlete has their own line, 
with the legend displaying their classification  

 

Classification 1 1.5 2 3 3.5 4(1) 4(2) 4.5 

μ 0.015 0.014 0.008 0.007 0.012 0.010 0.010 0.024 

Froll (N) 10.0 9.8 5.6 4.7 8.6 8.9 7.6 16.8 



 

(a) Spread of consecutive power profiles of athlete with 
classification 4.5 including the mean of all consecutive power 
profiles and highest values ever recorded. 

 

(a) Single push power value of every game of athlete 
with classification 4.5. The mean line represents the mean 
single push power of all games, the max value is the highest 
single push power recorded. Since all games are shown, this is 
equal to the highest bar. 

 

(b) Consecutive power profile per period of the athlete 
with classification 4.5, sum21 is the mean of all games of the 
summer season of 2021, sum22 is the mean of all games of the 
summer season of 2022 and win22 is the mean of all games of 
the winter season of 2022. The mean value is the mean of all 
consecutive power profiles and the max is the highest value the 
athlete ever recorded, which can be from different games. 

Fig. 8: Consecutive power profile per period and single push power value per game. Also included are the mean and max values 

of the athlete. In this figure single-game performance can be compared to all games and the periods can show long-term 

progression or regression, combining games reduces the effects of single-game performance and gives a more nuanced image 

of the performance difference. 

 

Fig. 7: All consecutive and arranged power profiles recorded of the athlete with classification 4.5. Also included are the mean 

power profiles and the maximum values ever recorded for this athlete. 

(b) Spread of arranged power profiles of 
athlete with classification 4.5 including mean of all 
consecutive power profiles and highest values ever 
recorded. 

 



 
(b) Arranged power profile per period of the athlete with 

(a) Maximum values of three consecutive pushes of every 

game of athlete with classification 4.5 The mean line 

represents the mean power of three consecutive pushes of all 

games, the max value is the highest power over three 

consecutive pushes ever recorded for this athlete. Since all 

games are shown, this is equal to the highest bar. 

classification 4.5, sum21 is the mean of all games of the summer 

season of 2021, sum22 is the mean of all games of the summer 

season of 2022 and win22 is the mean of all games of the winter 

season of 2022. The mean value is the mean of all arranged 

power profiles and the max is the highest value the athlete ever 

recorded, which can be from different games. 

 

Fig. 9: Arranged power profile per period and maximum of the mean of three consecutive pushes per game. Also included are 

the mean and max values of the athlete. In this figure single-game performance can be compared to all games and the periods 

can show long-term progression or regression, combining games reduces the effects of single-game performance and gives a 

more nuanced image of the performance difference. 

 

  



A regression analysis was performed to determine the effect of classification on single-push power output. Power output was 

the dependent variable and classification was the independent variable. For power output, the single push power value was 

used. The slope of the regression line is 60.39, indicating that for each unit increase in the classification score, the power output 

increases by approximately 60 watts. This relationship is statistically significant with a p-value of 0.006 (p < 0.05), suggesting that 

there is a significant positive effect of classification scores on power output. The R-squared value of the model is 0.75, indicating 

that the classification scores can explain 75% of the power output variability. This shows a moderate/strong relationship between 

the variables. Figure 10 shows the scatter plot of power output against classification scores along with the fitted regression line, 

highlighting the positive relationship between the two variables. Table III shows the estimated coefficients of the linear 

regression model. 

 

Fig. 10: Linear regression analysis 

 Estimate SE tStat pValue 

(Intercept) 82.437 45.29 1.8202 0.11859 

X1 60.394 14.255 4.2366 0.0054604 

TABLE III: Estimated coefficients of the linear regression model 

C. Work done 

The amount of work done was calculated by multiplying the mean power per push with its respective push duration. Two 

versions were created, firstly a work done per minute and secondly, a work done per quarter. This was done for every athlete for 

every game. These graphs were combined and can be seen in Figure 11. 



 

Fig. 11: Work done during a single game, per quarter and minute. The blue area is the total amount of work done per quarter 

and the connected orange dots are the amount of work done in that minute. More work was done in quarters one and three 

compared to quarters two and four. However, in quarters two and four she played for fewer minutes. The minutes played in 

quarter three show more work done per minute, suggesting this quarter to be the hardest during the game. 

IV. DISCUSSION 

A. Discussing findings 

This study aimed to explore the applications of individual power metrics for performance monitoring in wheelchair basketball 

athletes. Results show that power profiles are dependent on classification, thus creating possibilities for individual performance 

monitoring. One way for individual performance monitoring can be done with power profiles for long-term monitoring. Game 

performance can be compared to previous games as well as average and maximum performance of an individual athlete’s career 

or season. 

In the consecutive power profiles, the spread of the values is not substantial, meaning that they do not deviate significantly 

from the mean. In contrast, the arranged power profiles exhibit more outliers. This allows the arranged power profile to highlight 

how an athlete’s sprint performance in specific pushes compares to standard performance. For instance, if an athlete produces 

more power in sprint push 4 and less in sprint push 5 compared to the mean, this indicates a variation in the sprinting pattern. 

Analyzing these variations in combination with play style can provide insights into how different play styles impact sprint power 

distribution. Additionally, changes in sprint power distribution can reflect the demands of different player positions, offering 

valuable information when an athlete changes positions. 



However, a downside of the arranged power profile is that it is less suitable for long-term performance monitoring because it 

is influenced by play style and position. For this purpose, a metric less affected by these factors is preferred. The consecutive 

power profile is less impacted by play style and position, making it better suited for long-term performance monitoring. 

While both power profiles have their uses, the consecutive power profile is the best representation of performance. This is 

because the arranged power profile is mainly correlated with a value from the consecutive power profile rather than values from 

its own power profile. Additionally, the consecutive power profile is more intuitive, as more pushes in a sprint will naturally show 

a reduction in power output. The arranged power profile, with its greater spread, is less useful for detecting anomalies. 

The amount of work done by the athletes can provide information about the demands of the current game. If an athlete does 

less work in a quarter than the quarter before, it could indicate that the athlete is fatigued. However, work done can also be used 

to prevent fatigue by monitoring the work done during a game. If an athlete produces more work than desired, the coach can 

give that athlete more rest to recover. 

Work done can give direct insight into the effort of the athletes during a game. Power profiles give insight into the game’s 

performance after the game has finished. Both metrics can be tailored to every individual athlete and provide meaningful 

information to coaches to get a better understanding of the demands of the game and the individual performance of the athlete. 

Results indicate that higher-classified athletes produce more power than lower-classified athletes. However, more research 

needs to be done with more athletes to verify if this applies to all athletes.  

The rolling resistance and resistance forces are similar to the ones reported during treadmill and overground wheelchair 

propulsion by Rietveld et al. (2021) and Mason et al. (2013), except for one athlete. The athlete with classification 4.5 had a 

higher rolling coefficient and therefore higher rolling resistance than previously reported in these studies. Figure 12 shows the 

coasting test velocity and fitted lines of that athlete. No abnormalities are found in this data. Therefore the higher rolling 

coefficient could be attributed to other factors, such as tire pressure, or this athlete has an inherently higher rolling coefficient. 

It is important to note that only one coasting test was performed, so there is no additional test data available to verify these 

findings. The power values of the pushes are similar to the ones reported by Janssen et al. (submitted). 

 

Fig. 12: Coasting test of the athlete with classification 4.5 with fitted lines (only straight line data are plotted), the blue line 

represents the velocity of the wheelchair and athlete. The other colored lines are the first-order polynomials 

  



B. Limitations 

One of the largest limitations of this study is that it only considers straight-line power. However, concerning the power profiles 

this should not affect the results, since the higher power values are most certainly produced during straight-line sprints. This 

study focused on sprint power, therefore the work done can also be described as sprint/anaerobic work and is consequently not 

affected by using only straight-line sprints. However to increase the usage of work done, mainly aerobic work done, in wheelchair 

basketball, one can look at corners for a better understanding of fatigue. Another limitation of this study is that the rolling 

resistance was calculated once and assumed to be equal for all games. However, some factors may influence the rolling 

resistance, for example, tire pressure or wheel angle. However, if kept the same the rolling resistance coefficient could be 

constant. On the other hand, Heringa (2023) showed a model that can calculate the normal force distribution and therefore 

detect trunk motion and improve the friction forces’ power calculations. On that note, trunk motion was not taken into account 

in this current study, research by Dijk et al. (2024a) showed that disregarding trunk motion results in a 1-6% underestimation of 

power depending on the amount of trunk motion possible. Since this study’s main focus was on differences within the athlete 

and displays of power of a single athlete, this has affected the results of this study. Consequently, when future studies are 

comparing different classifications, trunk motion needs to be taken into account. 

C. Future research 

Future research can focus on using the limitations mentioned in this paper. However, it can also look at using heart rate 

together with power. In a study by Sanders et al. (2017a) they mention that combining power and heart rate will result in a good 

estimate of fatigue. They also mention using session rating of perceived exertion (sRPE) with power. So a ratio between sRPE and 

work done might be useful for long-term fatigue monitoring and preventing overtraining or injury. Although this was done in an 

endurance sport, further research can study if it is useful in wheelchair basketball. Different positions were also not investigated 

in this study, further research can be done if positions play a role in power profiles or work done. To verify the results of this 

study and for future research, it should be noted that a higher sample size is recommended. 

V. CONCLUSION 

Power profiles and work done can give insight into an athlete’s individual performance over time and during a game. This can 

improve the understanding of wheelchair basketball players’ performance and be useful for coaches and trainers. Future studies 

can improve the suggested metrics by incorporating trunk motion and cornering.  
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