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ABSTRACT Optimizing vessel hull resistance is pivotal for enhancing maritime performance and
minimizing environmental impacts. Traditional methods combine expert intuition with Data-Driven Models
(DDMs), relying on parametrization to predict and optimize hull geometries using Experimental Fluid
Dynamics (EFD) or Computational Fluid Dynamics (CFD) data. However, these conventional approaches
are hampered by several limitations: they require significant human input, are computationally intensive and
costly, and lack flexibility in adapting to new families of geometries or parameters beyond predefined ranges.
Addressing these challenges, our research introduces a novel method that significantly reduces the need
for human intervention, computational resources, and costs, while also improving the model’s adaptability.
By proposing a new a parametrization technique that accurately encompasses the Delft Systematic Yacht
Hull Series (DSYHS), we demonstrate that DDMs can be effectively trained directly on EFD datasets.
This eliminates the dependency on extensive CFD simulations or the generation of new EFD data tailored
to a specific investigation. Our approach matches the performance of leading-edge CFD models, even in
extrapolating conditions, with physical plausibility and minimal human oversight. The validation of our
method under various and increasingly complex extrapolating scenarios, employing statistical analyses on
the DSYHS EFD dataset and comparisons with state-of-the-art CFD models, underscores the effectiveness
of our proposal. Furthermore, we demonstrated that our model can successfully optimize hull resistance
when navigating geometric parameters outside the confines of the DSYHS validating our results through
leading-edge CFD simulations. This work addresses the limitations of existing methodologies by offering a
novel approach more accurate, efficient, cost-effective, flexible, automated, and robust to extrapolation for
hull resistance optimization.

INDEX TERMS Computational fluid dynamics, data-driven models, DelftBlue, Delft Systematic Yacht Hull
Series, extrapolation, hull parametrization, hull resistance, optimization, sailing yachts.

The associate editor coordinating the review of this manuscript and

approving it for publication was Utku Kose .

I. INTRODUCTION
Vessel hull resistance optimization is a critical design prob-
lem [1], [2], [3]. The hull-form resistance must be minimized

76102

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0001-7350-1082
https://orcid.org/0000-0001-8891-4963
https://orcid.org/0000-0002-8445-395X
https://orcid.org/0000-0002-9652-6415


J. M. Walker et al.: Data-Driven Models for Yacht Hull Resistance Optimization

to improve performance and, in the case of motorized vessels,
to minimize the environmental footprint [4], [5]. In order to
achieve this goal, a wide and multidimensional design space
needs to be explored [6], which is not a trivial task given the
complexity of the representation space [7], [8].

Conventional methods to assess the performance of
candidate vessel designs are computationally intensive or
time-consuming or both [8], [9], and [10]. In fact, the classic
approach to determine the hull resistance is to perform
Experimental Fluid Dynamics (EFD) using model scale
tests [11], [12], [13]. However, considerable effort is required
to construct a model scale of the candidate hull and to perform
the test in the appropriate facility. For this reason, modern
approaches rely on virtual experiments using Computational
Fluid Dynamics (CFD) [1], [14], [15], [16], [17], [18], [19],
[20], [21], [22]. CFD usually provides accurate results that
can be validated via EFD to improve the trustworthiness of
the virtual experiment [1], [17], [23]. Nevertheless, when it
comes to optimizing the design of the vessel hull, assessing
the performance of many different candidate designs is
required [24]. In this setting, using CFD results is impractical
due to its computational requirements [8], [9], [25]. For this
reason, recently, Data-Driven Models (DDMs) are attracting
the attention of the industry and academia for their ability to
accurately surrogate complex experimental (e.g., EFD) [26],
[27], [28], [29] or numerical (e.g., CFD) [1], [14], [16],
[17], [19], [21], [22] procedures based on a historical
collection of their inputs and outputs, with a function that is
computationally expensive to construct but computationally
inexpensive to use. Consequently, DDMs can be included
directly both in a human-driven optimization loop reducing
the computational requirements (i.e., time) between design
iterations or developing a fully automated optimization
loop requiring minimal human intervention, enabling the
exploration of a wider design space [2], [30].

Current approaches to vessel hull resistance optimization
rely on a mix between human experience and DDMs [1],
[14], [16], [17], [19], [21], [22], [31], [32]. As the first step,
human experts define a specific parametrization, i.e., a rich
yet synthetic quantitative descriptors of a set of candidate
geometries, and parameter ranges, i.e., the geometry design
space [1], [14], [16], [17], [19], [21], [22], [31], [32]. For
this purpose, several approaches exist in the literature: from
Free-Form Deformation (FFD) [1], [16], [17], [19], [21],
[22] to B-Splines [14], [22], and model design parame-
ters [31], [32] each one having its strengths and weaknesses
(Section II). Once the parametrization and parameter ranges
have been defined, a dataset composed of parameters’ values
(using the selected parametrization) and associated resistance
(measured with EFD or estimated using CFD) is built [1],
[14], [16], [17], [19], [21], [22], [32]. This process is time,
computational, and financially demanding [33], [34], [35].
For this reason, it is necessary to carefully select a minimal
number of parameters configuration in the parameters ranges,
i.e., a small number of candidate geometries, selected with
more or less complex strategies [36], [37] and then perform

the EFD or run the CFD simulations. EFD are seldom used
because of the very specific parametrization, and parameter
ranges. Moreover, EFD data are seldom shared and available
to researchers and practitioners [38] in many cases due to
confidentiality issues. In some cases, an already available
set of EFD or CFD is available, and it is possible to
enrich it with very few new candidate geometries performing
EFD or running CFD simulations [39], but to the best
of the authors’ knowledge, no one in the literature is
proposing this approach. Most, if not all, of the work relies
just on CFD simulations [14], [16], [17], [19], [21], [22],
[32]. Based on the dataset of candidate geometries and
their resistance, a DDM-based surrogate of the relationship
between the parametrization and the resistance is built,
which allows estimating the resistance for a new parameter
configuration at a fraction of the time, computational, and
financial requirements of the EFD or CFD or both [1], [14],
[16], [17], [19], [21], [22], [31], and [32]. The resulting
surrogate is then exploited, with different levels of human
supervision, by an optimizer to search for the optimal
parameters configuration in the parameter range, retrieving
then the associated optimized geometry [1], [14], [16], [17],
[19], [21], [22], [32]. In practical cases, resistance is one of
the different design optimality conditions (e.g., resistance at
high and low speed), therefore, multiple optimal solutions
are retrieved according to the Pareto front [40]. Figure 1
summarizes the current approach we just described.

The current approach has its limitations. The first one
is the need for more or less partial human supervision in
geometry parametrization and optimization [1], [14], [16],
[17], [19], [21], [22], [31], [32]. In fact, the parametrization
needs to satisfy multiple functional requirements: it must
be informative enough to allow for the prediction of the
resistance and to be homomorphic (i.e., one geometry
corresponds to a particular value of the parameters and vice-
versa), but it should be synthetic and intelligible enough to
allow for interpretation and test (e.g., for physical plausibility
of the results) [1], [14], [16], [17], [19], [21], [22], [31], [32].
Moreover, human intervention should also be limited during
the optimization phase: the parametrization and the surrogate
should be accurate and physically plausible enough to not
induce the optimizer into unfeasible, physically implausible,
or degenerate solutions [41]. The second limitation is the
need for extensive computational efforts (for CFD), costs (for
EFD), and time (for both CFD and EFD) needed to build the
dataset required in the surrogation [1], [14], [16], [17], [19],
[21], [22], [31], [32]. The ideal situation would be to just rely
on previous CFD and EFD and not requiring new CFD and
EFD for a new design. The last limitation is the limited ability
of the approach to work beyond the specific setting (e.g.,
changes in the family of geometry or extrapolation outside
the parameter ranges) as observed in many works [1], [14],
[16], [17], [19], [21], [22], [31], [32].

To overcome the limitations discussed above, we propose
a novel approach to vessel hull optimization, summarized in
Figure 2.
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FIGURE 1. Current approach to vessel hull optimization.

FIGURE 2. Proposed approach to vessel hull optimization.

In previous work [42], we explored the viability of
the novel approach in a constrained context, showcasing
its effectiveness in a singular scenario. To build on these
findings, this study enhances the initial methodology by
providing a comprehensive suite of metrics for both devel-
opment and testing in varied scenarios. In particular, we have
broadened the range of algorithms used to develop surrogates,
refined both quantitative and qualitative evaluation metrics
for surrogates and geometries, and conducted validations
across diverse scenarios. This approach offers a more
thorough insight into the performance capabilities of the

proposed method and a presents a holistic description of the
implementation for enhanced repeatability.

As the first step, we propose a parametrization approach
able to cover a large set of geometries (i.e., parent hulls)
and not just a variation of a particular parent hull. More
specifically, our parametrization is a homomorphy not only
able to well represent the entire Delft Systematic Yacht
Hull Series (DSYHS) (composed of 6 parent hulls) but,
as described later, is also able to perform well beyond the
DSYHS (i.e., extrapolate). While requiring some human
intervention, this step has the capability to minimize it.
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In fact, this parametrization can be used for all designs around
the 6 parent hulls of the DSYHS, namely, the parametrization
step should not be performed every time we change the parent
hull as it happens now. This approach paves the way toward
more general homomorphic parametrization able to copewith
the largest possible sets of parent hulls, allowing us to easily
plug them into our pipeline, further decreasing the need for
human intervention.

Then, in order to further minimize the human intervention
in the parametrization phase, we decoupled the parametriza-
tion exploited to define the geometry and to define the
optimization parameters from the features necessary to
predict the hull resistance based on DDMs. In particular,
from a hull geometry defined by a particular configuration
of parameters, we exploit the Nautilus code1 which is able
to automatically extract a series of features able to cover and
extrapolate overmultiple parent hulls while being informative
enough to allow for effective and physically plausible
predictions of the resistance associated with a particular
hull [26], [27], [28], [29]. This decoupling is a fundamental
and key contribution to our approach. In fact, the features
extracted by Nautilus should not meet the requirement of the
geometry parametrization to be homomorphic. This, on one
hand, facilitates the ability to create a rich and informative
features set that can be used to predict the hull resistance
via DDMs without any human intervention (using Nautilus).
On the other hand, the homomorphic parametrization of the
geometry just needs to focus on the parameters to optimize
during the optimization step reducing its complexity and
minimizing the human intervention in those cases when new
parent hulls need to be covered. This decoupling reduces the
original complex and constrained problem into two simpler
ones.

Thanks to the decoupled approach to the parametrization,
which is able to cover multiple parent hulls [42], we can train
DDMs based on the already available EFD of the DSYHS
requiring no additional EFD or CFD. However, CFD has been
used to check the physical plausibility of the trained DDMs
in both synthetic extrapolating scenarios inside the DSYHS
and also with a more realistic test outside the DSYHS. For
the first case, we defined three, increasingly challenging,
extrapolation cases by removing part of the EFD during
the DDMs training phase and using those data for testing
purposes

• Leave One Velocity Out (LOVO) where we remove all
the EFD corresponding to a particular velocity;

• Leave One Geometry Out (LOGO) where we remove
all the EFD corresponding to a particular geometry
(variation of a particular hull);

• Leave One Series Out (LOSO) where we remove all the
EFD corresponding to a particular series (all variations
of a particular parent hull).

For the more realistic test outside the DSYHS, we rely on all
but one series belonging to DSYHS to train the DDM, and

1https://github.com/mai-lab-tud/nautilus

then we tested it with variations of a particular parent hull
that was not used to train the DDM and explore geometric
parameters δ% larger than the ones covered by the DSYHS.
The proposed surrogate (tested in terms of different

extrapolating scenarios and physical plausibility against
CFD) is exploited (with minimal levels of human supervision
to define the parameters range and constraints) by an
optimizer (chosen according to the best options in the
literature) to search for the optimal parameters configuration,
and retrieve the associated optimized geometry. In particular,
we will search for the Pareto front in terms of resistance
at high and low speeds. Furthermore, we show that it
is possible to optimize the hull resistance by exploring
geometric parameters beyond the boundaries of the DSYHS
and validating the results via state-of-the-art CFD.

The rest of the paper is organized as follows. Section II
reviews the relevant related works; Section III describes the
available data; Section IV outlines the proposed methodol-
ogy; Section V contains the results; and finally, Section VI
concludes the work.

II. RELATED WORKS
In this section, we review the relevant related works describ-
ing the adopted parametrization, data sources, data validation,
surrogates, optimization strategies, obtained results, and the
respective validations for each work.

In [14] the authors considered the design optimization
of one of the Series 60 hulls. Authors leveraged 7 design
variables to parametrize the hull, and an initial population of
210 geometries are evaluated using a Steady Ship Flow solver
based on the Neumann-Michell theory. The Steady Ship Flow
model was validated against data coming from the literature
on the topic. A Radial Basis Function based surrogate
of the resistance was constructed and leveraged within
Multi-Objective Artificial Bee Colony based optimization
framework. Statistical validation for the surrogate was not
reported, but a visual representation of the results, i.e., scatter
plots of the real versus predicted resistance showed a good
agreement between the surrogate and the original model.
The optimization was constrained by a 1% change in the
displacement. The results of the optimization found an 8%
reduction in total resistance at a Froude number2 of 0.27 and
were validated using a Reynolds Averaged Navier Stokes
based CFD tool (which is a high fidelity approach).

In [1] the authors relied on CFD and EFD to optimize
an offshore aquaculture vessel. The ship was parametrized
using FFD with 9 design variables, and 300 geometries were
sampled and evaluated using a CFD model validated against
EFD data. The CFD had a good agreement with the EFD and
showed a maximum error of 6.7%. The authors proposed a
Support Vector Regression based surrogate coupled with the
NSGA-II optimizer to minimize total resistance and wake

2The Froude number is commonly used in naval architecture to represent
the ratio between the inertial and gravitational forces, and is proportional to
the velocity [43].
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flow at the design speed. The results showed reductions
of 1.6% and 18% for total resistance and wake flow,
respectively. A model of the optimal hull was built and tested
via EFD to validate the reduction in total resistance and wake
flow.

In [16] the authors considered the design optimization
of a bulbous bow. The bow was parametrized based on
FFD with 6 design parameters to control the protrusion and
immersion of the bulb. A small number of geometries (25)
were evaluated using high fidelity CFD considering 5 Froude
numbers (i.e., 0.294, 0.312, 0.331, 0.349, 0.367, and 0.386).
The CFD was validated with two levels of mesh coarsening
(0.8M and 2.8M cells) and compared to EFDwhich showed a
maximum deviation of 5.6%.AKrigging based surrogate was
developed and coupled with a NSGA-II optimizer. The 5 best
geometries (each corresponding to different local minima)
were validated against the CFD and the results showed that
the performance of 3 geometries were unsatisfactory while
the remaining 2 showing a reduction in the total resistance of
approximately 6÷7%.

In [32] the authors parametrized a twin-skeg fishing
vessel based on 6 dimensionless design variables. The
CFD approach was numerically validated through a mesh-
coarsening procedure with 3 levels of grid refinement and
54 simulations were perdformed to construct a dataset.
A Krigging based surrogate showed a Coefficient of Deter-
mination of ∼ 0.95. Coupling the latter with a NSGA-II
optimizer, the authors minimized the total resistance at
4 different velocities between 9 and 12 knots. The optimal
model corresponded to a reduction of 5.6% in the total
resistance at the design speed of 11.3 knots which was later
validated using the CFD model.

In [17] the authors addressed the optimization of the KCS
vessel parametrized based on FFD and 6 design variables.
A high fidelity CFD model was constructed to evaluate
the performance of 120 geometries at the design speed
(Froude number was fixed to 0.26). A mesh coarsening
procedure was exploited to validate the mesh (1.5M cells)
along with a comparison to EFD coming from the literature.
A Response Surface Model based surrogate was constructed
and statistically validated with Leave One Out showing
a Coefficient of Determination of 0.97 and Root Mean
Square Deviation of 0.05N. The NSGA-II based optimization
framework was employed to minimize the total resistance
subject to a 1% change in displacement. The results, validated
with CFD model, showed a reduction of 0.32N in the total
drag.

In [19] the authors considered the optimization of the
KCS vessel at 2 speeds. The vessel was parametrized
based on FFD using 5 design variables. An Neumann-
Michell coupled with Reynold Avereraged Navier Stokes
CFD based approach, validated on EFD, was exploited to
generate an initial population of 40 geometries evaluated at
2 speeds. A Gaussian Progress Regression based surrogate
was developed, but no statistical validation was reported,
nevertheless scatter plots of real versus predicted resistance

show a good agreement between the surrogate and the
Neumann-Michell coupled with CFD based approach. The
authors leverage a NSGA-II optimizer to minimize the
resistance, and the results showed a 9.24% reduction at a
Froude number of 0.26 (corresponding to the vessel design
speed) and a 4.99% reduction at a Froude number of 0.2.

In [21] the authors parametrized a Wigleyship based on
FFD using 2 design variables. A panel-based CFD approach
was exploited to evaluate the wave making coefficient at
a Froude number of 0.35 and the model was validated
against CFD data coming from the literature. A Deep Belief
Neural Network based surrogate showed a Coefficient of
Determination of ∼ 1. Coupling the latter with a Quadratic
Lagrangian based Non-Linear Programming optimizer, the
authors minimized the wave making coefficient at Froude
numbers between 0.28 and 0.36. The optimal model corre-
sponded to a reduction of 12% in the wave making coefficient
which was later validated using a CFD model showing an
uncertainty of 5%.

In [31] the authors leveraged a parametric model consisting
of 6 design variables to optimize a catamaran. The authors
evaluated 2000 geometries using a panel-based CFD model
validated against high fidelity CFD results coming from
the literature. This study included a notably higher number
of geometries with respect to other referenced works due
to their use of low fidelity CFD which is of course
less computationally expensive. Gaussian Process, Support
Vector, and Multi Adaptive Splines based surrogates were
developed and statistically validated showing a Coefficients
of Prognosis of 0.57, 0.73, and 0.81 respectively. For this
reason, the authors exploited the Multi Adaptive Splines
based surrogate coupled with the NSGA-II optimizer to
minimize the vessel resistance at 21, 23, 25, 27 and 30 knots.
Two optimal hull designs were validated against the low
fidelity CFD and a high fidelity CFDwith 2.1M cells. For one
of the two hulls, the panel-based CFD predicted a decrease in
resistance of 1.32÷1.44% but the high fidelity CFD actually
showed an increase in resistance of 1.2%. For the other hull
the panel-based CFD predicted a reduction of 0.91÷1.57%
which was in agreement with the high fidelity CFD showing
a reduction of 1.1%.

In [22] the authors leveraged a FFD and spline based
parametrization with 5 design variables for the DTMB-
5415 hull. The authors combined the Neumann-Michell
and the Reynolds Averaged Navier Stokes CFD mod-
els to predict the coefficient of resistance by evaluating
50 geometries using Neumann-Michell and 30 geometries
using the Reynolds Averaged Navier Stokes CFD models.
The mesh was validated through a coarsening procedure.
The Neumann-Michell and the Reynolds Averaged Navier
Stokes CFD were validated on experimental data coming
from the literature. A Krigging based surrogate was proposed
and statistically validated showing an Average Absolute
Error of 0.29, a Maximum Absolute Error of 1.93, and a
Root Mean Square Error of 0.45. The authors demonstrated
that the surrogate accuracy increased with the addition of
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TABLE 1. Summary of the reviewed related works reported in Section II describing the adopted parametrization, data sources, data validation, surrogate
and optimization strategies, obtained results, and the respective validations for each one of them.

high fidelity samples. The optimization was carried out
using a Genetic Algorithm to minimize the resistance at a
Froude number of 0.28 showing a reduction in resistance
of 2÷5%.

For the sake of completeness, the review’s summary is also
reported in Table 1.

From the literature review, it is possible to identify several
areas of interest for future research to address the current gaps
in methodology.

Specifically, the current approach utilizes FFD and
parametric model based parametrizations, with a focus on
building a design space around a specific parent hull.
Additionally, data generation and validation is completed by
the use of both CFD and EFD, which suffers from significant
computational and time demands. There is a diverse use of
surrogates, however, areas of surrogate validation are not well
defined, often lacking statistical validation, relying instead
on qualitative agreements from scatter plots. This is crucial
as it was observed that the optimizer could be induced
into false minima that were not physically plausible during
development.

In contrast, the proposed approach addresses all of
these challenges simultaneously. In particular, the shape
decoupled methodology allows for the use of historical data
in the surrogate training phase and the robust statistical
validation ensures the surrogates are physically plausible. The
comparison between current approaches in the literature and
the proposed approach are summarized in Table 2.

III. AVAILABLE DATA
In this section we will describe the data that we will
exploit in this study. In particular, we leverage the DSYHS
database [44] (available upon request to the Delft University
of Technology Ship Hydromechanics Laboratory3) which has
been used in a number of works [26], [27], [28], [29], [45].

In [11] the authors present the original series of theDSYHS
which included 22 systematically varied sailing yacht hulls,
alongside a polynomial expression they developed to deter-
mine the residual hull resistance in terms of the hull geometry,
over a range of Froude numbers. In the successive years
many more experiments were added to the DSYHS database

3https://dsyhs.tudelft.nl
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TABLE 2. Comparison between the current approaches (see Table 1) and the proposed one describing the adopted parametrization, data sources, data
validation, surrogate and optimization strategies, obtained results, and the respective validations for each one of them.

TABLE 3. Geometric boundaries of each series of the DSYHS.

TABLE 4. Hydrostatic coefficients provided in the DSYHS to describe the
geometries.

and now, to the best of the authors’ knowledge, the DSYHS
database is currently the largest collection of sailing yacht
EFD in the world.

The current DSYHS database contains the hull collections
for Series 1÷7 (S1÷S7) where S5 does not exist in the
database. The 6 series, composed of parent hulls and their
derivatives, are in model scale (which is the scale which
the experiments were performed at) and span approximate
lengths of 2.100÷2.500m, widths of 0.440÷0.660m, and
depths of 0.270÷0.350m. Table 3 shows the geometric
boundaries of each series of the DSYHS.

From these 6 Series, namely the parent hulls, 54 different
geometries G have been derived. For each geometry, the total
resistance Rt over a range of speeds v had been retrieved via
EFD. A visual representation of this description is reported
in Figure 3. The total number of EFD in the DSYHS dataset
is 702.

The 54 geometries contained in the DSYHS are
described through the use of hydrostatic coefficients
common for naval architecture applications, see Table 4 for
details.

Note that, for a general geometry, the parameters reported
in Table 4 can be easily retrieved with Nautilus1.

FIGURE 3. The database contains the hull collections for Series 1÷7
(S1÷S7) where S5 does not exist in the database. From these 6 Series,
namely the parent hulls, 54 different geometries G have been derived. For
each geometry, the total resistance Rt over a range of speeds v had been
retrieved via EFD.

IV. METHODOLOGY
In this section, we will deepen the description of the
methodology we propose starting from the schema presented
in Figure 2.

In particular, Section III already focused on the available
data, while the following aspects of the methodology will be
the subjects of this section:

• the development of the surrogate to estimate Rt based
on the parameters reported in Table 4 that can also
be retrieved with Nautilus1 for any hull geometry
(Section IV-A);

• the validation in different extrapolating scenarios and
the physical plausibility against CFD of the surrogate
(Section IV-B);

• the homomorphic parametrization of the hull and
the parameters range and constraints generating the
parameter space (Section IV-C);

• the optimization framework which searches in the
homomorphic parameters space simultaneously opti-
mizing Rt for both a high vHigh and low vLow estimated
with the surrogate (Section IV-D);

76108 VOLUME 12, 2024
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• the verification of the physical plausibility against CFD
of the geometries on the Pareto front generated by the
optimizer (Section IV-E).

Note that, with the aid of the proposed decoupling strategy
between the parametrization exploited by the optimizer and
the one exploited by the surrogate, given a point in the
homomorphic parameters space it is possible to extract the
input of the surrogate with Nautilus1 and estimate the Rt
for vHigh and vLow with minimal computational requirements
making the optimization fast and cheap to perform.

A. SURROGATE DEVELOPMENT
The problem of predicting Rt based on the parameters
reported in Table 4 and the velocity v can be mapped to a
typical regression problem by Machine Learning [46], [47].
The No-Free-Lunch Theorem [48] ensures us that, in order

to find the best algorithm for a particular application, it is
necessary to test multiple algorithms. In our case, we will
test 4 state-of-the-art algorithms4 [49], [50]: Random Forests
(RF) [51], [52], XGBoost [53], Kernel Ridge Regression
(KRR) [47], and the Extreme Learning Machine (ELM) [54],
[55] namely a Single Layered Neural Network [56], [57]
where the weights of the first layers have been randomly set
reducing the computational burden of the training phase with
minimal, if not absent, effect on accuracy.

In RF we need to tune the number of features to randomly
sample from the whole features during each node of each tree
creation nf and themaximum number of elements in each leaf
of each tree nl . As RF performance improves by increasing
the number of trees nt , we set it to 1000 as a reasonably large
number yet computationally tractable.

In XGBoost, we need to tune the learning rate of the
gradient lr , the max depth of each tree nd , the minimum
loss reduction ml , the number of points to randomly sample
from the whole training set for each tree creation nb, and
the number of features to randomly sample from the whole
training set during the creation of each node for each tree nf .
In KRR we chose to rely on the Gaussian kernel for

the reason described in [58], and then the regularisation
hyperparameter λ and the kernel coefficient γ need to be
tuned.

In ELM, we use the sigmoid activation function in the
hidden layer and the linear activation in the output layer. Then
we need to tune the number of hidden neurons hl and then
the regularisation hyperparameter λ on the weights of the last
layer.

The summary of these hyperparameters with the associated
search space is reported in Table 5.

Note that, the selection of the best performing algorithm
and the best hyperparameters, will depend on the scenario
under consideration and on two different metrics, namely
accuracy and computational requirements (see Section IV-B).

4Results in Kaggle www.kaggle.com, the most popular Machine Learning
competition website, shows that these algorithms are the top winners.

TABLE 5. Hyperparameters and hyperparameters search space for all
algorithms tested in this work, d = 13 denotes the number of features in
the dataset (see Table 4).

The performance, in terms of accuracy, will be measured
in accordance with different metrics: three quantitative (the
Mean Absolute Error - MAE, the Mean Absolute Percentage
Error - MAPE, and the Pearson Product-Moment Correlation
Coefficient - PPMCC) [59] and one qualitative (the scatter
plot actual versus predicted value) [60].
The performance, in terms of computational requirements,

will be measured by means of time to build the model
(Training Time) and time to make a prediction (Test Time).
Since our surrogate will be leveraged in the optimization
phase (see Section IV-D), the most important computational
metric is the Test Time.

B. SURROGATE VALIDATION AND PHYSICAL
PLAUSIBILITY
In our work, we will study three different extrapolating
scenarios based on the intrinsic hierarchy of the dataset. This
will allow us to understand the extrapolation ability and the
robustness of the different models described in the previous
section (see Figure 4 for a visual representation):

• LOVO: where we remove all the EFD corresponding to
a particular velocity. Since the EFD, for each geometry
and each series, has been performed at different speeds,
we create an histogram of the velocities with 16 bins. For
the sake of replicability, one can find the final binning
(with lower vl and upper vu bounds) reported in Table 6.
The LOVO scenario, then, is actually leaving out all the
EFD following in one of these bins. The scope of this
scenario is to test the extrapolation ability of the model
in terms of velocity, namely to estimate the resistance at
a velocity never observed before in the dataset;

• LOGO: where we remove all the EFD corresponding to
a particular geometry (variation of a particular hull). The
scope of this scenario is to test the extrapolation ability
of the model in terms of geometry, namely to estimate
the resistance of a geometry never observed before in the
dataset;

• LOSO: where we remove all the EFD corresponding
to a particular series (all variations of a particular
parent hull). The scope of this scenario is to test the
extrapolation ability of the model in terms of series,
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FIGURE 4. Visual representation of the three different extrapolating
scenarios we investigated in this work based on the intrinsic hierarchy of
the dataset. In particular we highlighted data hidden from the training
phase and exploited just for testing purposes in orange.

TABLE 6. Histogram of the velocities with 16 bins for the DSYHS EFD.

namely to estimate the resistance for a series never
observed before in the dataset.

Note that the LOSO scenario is, in our work, the most
interesting and useful one in practical applications. In fact,
in practice, what we want to do is to generate geometry for
a new, previously unexplored series, and this is precisely the
scope of the LOSO scenario: we assume to have developed
a few series, and we try to infer something for a news series
that was previously unexplored.

What remains to be addressed is how to tune the hyperpa-
rameters of the different Machine Learning algorithms that
we tested to generate the surrogate (see Section IV-A) and
how to assess their final performance [61].

For what concerns the last point, the answer is easy.
Based on the different scenarios (LOVO, LOGO, and LOSO)
we have to split the data in Training Dn and Test Tt sets
using the principle of the different extrapolating scenarios.
For example, in the LOVO scenario, we put all the EFD
corresponding to one of the histogram bins in Tt while
the remaining ones are kept in the Dn. Then we can use
Dn to both train the model and select the associated best
hyperparameters and use Tt to assess the performance of the
final model. Repeating multiple times, this procedure will
give us the average performance in the different scenarios.

Instead, for tuning the hyperparameters of the different
Machine Learning algorithms, we proceeded as follows.
We took Dn and split it into Learning Ll and Validation Vv
sets considering the very same extrapolating scenario that
we use for assessing the final performance. Then we train
each model with Ll with many different hyperparameters
configurations and measure its performance on Vv according
to the MAE. Then we repeated the experiment multiple
times and selected the hyperparameters’ configuration which
gives the best average MAE on the validation sets. Finally,
we retrained the model with the selected best configuration of
the hyperparameters on the wholeDn which is the model that
will be used for testing purposes (see the previous paragraph).

To ensure the physical plausibility of the proposed
surrogate, we leveraged a state-of-the-art CFD model. For
the DSYHS, EFD have been carried out by means of a large
experimental campaign carried out at the Delft University of
Technology towing tank5 and for this reason, they possess
some level of uncertainty that cannot be removed. Therefore,
to measure the quality of our surrogate we need to compare its
performance against a baseline which, in our case, is a state-
of-the-art CFD model.

Unfortunately, the CFD model is too computationally
expensive to run for all the geometries and velocities in the
databases. For this reason, we will compare our surrogate on
a subset of them. In particular, we will consider the most
challenging scenario, i.e., the LOSO, and we will perform
the comparison between the CFD and the proposed surrogate
models on the series which exhibit the largest deviation
between the surrogate and the EFD results.

For the CFD model, the mesh generation, the computation
of the solution, and the post-processing of results was carried
out in Star CCM+

6 which is a state-of-the-art commercial
CFD package. The simulation domain was created to satisfy
the following constraints: the depth under the vessel was
greater than twice the draft, the length of the domain after
the vessel was longer than twice the length of the vessel,
and the width of the domain was 50% larger than the length
of the vessel. To reduce the computational demand of the
simulation, the hull was divided symmetrically along the
longitudinal axis and only half of the problem was simulated

5www.tudelft.nl/3me/over/afdelingen/maritime-and-transport-
technology/research/ship-hydromechanics/facilities/towing-tank-no-1

6www.plm.automation.siemens.com/global/en/products/simcenter/STAR-
CCM.html
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FIGURE 5. The mesh exploited for the CFD simulations with the Star
CCM+6 package. The mesh included a surface mesh refinement on the
vessel hull and on the boundaries of the domain in addition to volume
mesh refinements around the hull, wake, and free surface.

to assess the hydrodynamic performance. The CFD model
is a finite volume based viscous RANS solver which can
compute the hull resistance in various calm-water conditions
by solving the underlying partial differential equations. For
the problem at hand, a RANS solver was used considering the
k−ω shear-stress turbulence model with wall functions [62].
The boundaries of the domain were set so the symmetric
and far-field boundaries were considered as symmetry planes.
The top, bottom, and inlet boundaries were considered as
velocity inlets while the outlet boundary was considered as
a pressure outlet. The volume of fluid technique was used
to establish a free surface in the solution and solving the
underlying equations with the volume fraction of both water
and air [63]. To find the solution of the hull resistance, the
vessel was simulated using the dynamic fluid body interaction
module in Star CCM+

6 with two degrees of freedom (sink
and trim), which is in line with the experimental campaign
outlined in [11], [12], and [13]. The simulation was set-up
with a time-step of 0.001s and the behavior of the vessel
simulated for a period of 60s. The solution of the simulation
was then taken as the time averaged response over this period.
The described CFD simulation was validated against the
original EFD results for a number of geometries to ensure
it could be used for the physical plausibility of the surrogate.
A mesh coarsening procedure was carried out with 3 · 105,
9 · 105, and 3 · 106 cells respectively to ensure there was
grid independence. Results using the highest fidelity mesh
with 3 · 106 cells are presented in Section V. Figure 5
shows the exploited mesh for the CFD simulations with the
Star CCM+

6 package. The mesh included a surface mesh
refinement on the vessel hull and on the boundaries of the
domain in addition to volume mesh refinements around the
hull, wake, and free surface.

C. HULL PARAMETRIZATION AND PARAMETERS RANGE
In this section, we will describe the adopted homomorphic
parametrization, together with the associated parameter
range, that will be leveraged during the optimization phase
(see Section IV-A) to search for the best hull, i.e., the hull that
will exhibit the bestRt at vLow and vHigh. It is worth noting that
this parametrization is decoupled from the one exploited in
the definition of the surrogate (see Section IV-D) as described
in the introduction (see Figure 2).

In particular, a parametric model for a sailing yacht
hull [42], [64], [65], [66], [67], [68], [69], [70] was developed
with the Siemens NX7 software leveraging on 32 parameters.
The full list of parameters together with their description is
reported in Table 7 and visualized in Figure 6.

The 32 parameters govern the hull geometry through the
use of B-Spline curves [71], which in turn, drive the design
of the yacht hull surface inside the parametric model. The
parametrization is directly related to control points on the
B-Spline curves which allows the parameters to be modified
independently and ensures the desired homomorphic prop-
erties. Geometric constraints were imposed on the model to
ensure G0 (positional) and G1 (tangential) continuity at the
intersection between adjacent splines to assist in producing
feasible designs. Additionally, the G2 (curvature) continuity
was also applied to ensure a smooth surface was retrieved
from the model [70]. Figure 6 includes: an example cross-
section of the mid section (top left), an isometric view of the
parametric hull (top right), and a planar view in the xz plane of
the parametric hull (bottom). Parameters denoted with an x or
z define features in the xz plane and parameters denoted with
y define features in the xy plane. The parameters preceded by
P refer to the B-spline control points in the yz plane of each
section.

For what concerns the parameters ranges, they have been
designed following this principle. First, for each parameter,
we search for the minimum and maximum value in a
specific series Si, i.e., the series that we want to optimize
(see Section IV-D). Then we increased that range by δ%.
This extrapolation is especially useful because, in practice,
we want to be able to generate a geometry for a new,
previously unexplored series rather than restrict ourselves
to preexisting designs. In the experiments, we will show
that the δ = 30% is the limit threshold beyond which
the surrogate starts to induce the optimizer into degenerate
solutions. The parameter ranges extracted from the original
54 hulls belonging to the DSYHS database are reported in
Table 8.
The proposed homomorphic parametrization does not

succumb to the limitations of the current approaches, i.e., the
need to re-parametrize each parent geometry, and is able to
cover the whole DSHYS database and beyond (i.e., up to δ%
of the DSHYS).

D. OPTIMIZATION FRAMEWORK
In this section we will present the proposed approach to the
search for the best hull in a series Si, in terms of the best Rt at
vHigh and vLow, in line with the referenced works [16], [31],
leveraging the parametrization described in Section IV-C and
the surrogate described in Section IV-A.

Since it is not a fair trade-off between the resistance Rt and
the volume of the hull∇, i.e., having no submerged body will
correspond to the case where the resistance is zero, and in
line with the original investigations of [11], [12], and [13],

7www.plm.automation.siemens.com/global/en/products/nx/
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TABLE 7. The 32 parameters together with their description characterizing the adopted homomorphic parametrization for a sailing yacht hull developed
with the Siemens NX 7.

FIGURE 6. A visual representation of the 32 parameters characterizing the adopted
homomorphic parametrization for a sailing yacht hull developed with Siemens NX 7.

we are concerned about optimizing the relative resistance to
the submerged volume (i.e., Rt

∇
).

Again, in line with the referenced works [14], [19], the
optimization problem is subject to a constraint to bound the
volume according to a lower and upper boundary ∇l and ∇u
respectively. ∇l and ∇u have been set by searching for the
minimum and maximum value in a specific series Si, i.e., the
series that we want to optimize, because we aim to optimize
the geometry of a hull that fits within a particular series i.e.,
conforms to the same volume constraints.

At this point, we can formalize our problem as follows

min
p

{
Rt (p, vHigh)

∇(p)
,
Rt (p, vLow)

∇(p)

}
,

s.t. ∇l ≤ ∇(p) ≤ ∇u,

pl(δ) ≤ p ≤ pu(δ), (1)

where p is the vector of the 32 parameters of the homomor-
phic parametrization of Table 7, pl(δ) and pu(δ) are their
lower and upper bounds of the parameters as a function of
δ, ∇(p) is the volume of the hull we want to optimize as
a function of p estimated with Nautilus1, ∇l and ∇u are
the upper and lower bound of ∇(p). Finally, Rt (p, ·) is the
total resistance as a function of p and the velocity (computed
at vHigh and vLow) estimated via the surrogate described in
Section IV-A but where p induces the geometry and, based
on the geometry, Nautilus1 estimates the quantities of Table 4
that together with the velocity are the actual inputs of the
surrogate.

Problem (1) is a non-linear non-linearly constrained multi-
objective optimization problem that is hard to optimize in
practice.

The first step toward the solution of Problem (1) is to
reformulate the problem as a single objective one. For this
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TABLE 8. The parameter ranges for the 32 geometric design parameters
of the values extracted from the DSYHS database. The parameter ranges
are reported in mm.

purpose we will rely on a classical approach: replace the
multiple objectives with a weighted sum of the different
objectives (changing the sign in front to the objective so as
to have all minimization or maximization) [72]

min
p

λ
Rt (p, vHigh)

∇(p)
+ (1 − λ)

Rt (p, vLow)
∇(p)

,

s.t. ∇l ≤ ∇(p) ≤ ∇u,

pl(δ) ≤ p ≤ pu(δ), (2)

where λ ∈ [0, 1] defines the importance of the different
objectives, i.e., for λ → 1 we care more about Rt (p, vHigh)
than Rt (p, vLow) and vice-versa for λ → 0. Solving
Problem (2) for different values of λ allows for the creation
of the so-called Pareto frontier in a computationally efficient
way [72].

Problem (2) is a non-linear non-linearly constrained
optimization problem. In order to solve this problem different
approaches can be exploited [73]. In the literature, there are
a number of state-of-the-art algorithms available that are
able to deal with this problem, e.g., gradient descent [74],
swarm [75], and evolutionary [76]. A series of no-free-lunch
theorems [77] ensure us that there is no way to choose a-priori
the best optimization algorithms for a particular problem and
the only option is to empirically test multiple approaches
verifying which is actually the best one. As a consequence,
to the best of the authors’ knowledge and according to the
literature on the subject [1], [16], [17], [19], [22], we opt for
the Evolutionary Algorithm (EA) as it showed to be the best
approach for these class of problems. In particular, we relied
on an EA-based optimization framework built in MATLAB8

using the function ga which is a variant implementation
of the NSGA-II [78], [79] Genetic Algorithm. Moreover,

8https://mathworks.com/products/matlab.html

TABLE 9. Parameters setting for the optimization algorithm exploited to
solve Problem (2).

we customize the optimizer adding a multi-start approach,
running the algorithm multiple times keeping the best solu-
tion found in the different starts. For the sake of repeatability,
Table 9 reports the parameters’ set that empirically produced
the best results in the paper.

E. OPTIMIZATION FRAMEWORK PHYSICAL PLAUSIBILITY
In this section, we will present the proposed approach to
demonstrate the physical plausibility of the solution (i.e.,
hull geometry) retrieved by solving Problem (1) through
Problem (2) with different λ (see the previous section).

First, we need to better specify our definition of physical
plausibility. In particular, in this work, we consider the
ability of the optimizer to find non-degenerate geometries,
namely geometries that in EFD will exhibit Rt (p, vHigh) and
Rt (p, vLow) far away from the one suggested by the optimizer.
Such geometry is then considered non-physically plausible.
This outcome may happen for two main reasons, which are
also connected

• the first one is because Rt (p, vHigh) and Rt (p, vLow)
inserted in Problems (1) and (2) are not the real
resistances but a surrogate characterized by no infinite
precision and limited extrapolation abilities (this has
been already tested in Section IV-B). As a consequence,
during exploration, the EA can spot false minima
induced by the imprecision and the extrapolation
limitations of the surrogate model

• the second one is that the parameter space defined by
pl(δ) and pu(δ), namely by δ is too large, requesting the
optimizer to search within a parameter space that has
more risk of imprecise extrapolation of the surrogate.

For this reason, analogously to what has been done for the
surrogate in Section IV-B, we will test the geometries found
by the optimizer with the Star CCM+

6 package checking the
deviation between the estimated Rt (p, vHigh) and Rt (p, vLow)
and the one identified by the surrogate and then the optimizer.
In the CFD simulation based on the Star CCM+

6 package,
we exploited the same setting described in Section IV-B.

V. EXPERIMENTAL RESULTS
In this section, we will report the results of applying the
methodology described in Section IV to solve the problem
faced in this work using the data described in Section III.

Specifically, we performed the following experiments
• in Section V-A we tested the quality of the surrogate
model in the different extrapolating scenarios (LOVO,
LOGO, and LOSO);

• in Section V-B we focused on the LOSO scenario,
the most challenging and useful in practice, testing
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the physical plausibility of the results against the
CFD;

• in Section V-C we tested the quality of the optimization
framework on a particular series of the DSYHS showing
that we can improve the current geometries with new
designs that we tested using CFD to verify their physical
plausibility.

All experiments were performed with 2×Intel XEON E5-
6248R 24C 3.0GHz CPUs and 192 GB of Memory.

A. SURROGATE MODELS VALIDATION IN THE
EXTRAPOLATING SCENARIOS
In this section, wewill report the performance of the surrogate
models described in Section IV-A using the validation
approaches described in Section IV-B in the different
extrapolating scenarios. In particular, we will compare the
results of the different algorithms employed to build the
surrogate (RF, XGB, KRR, and ELM) on the different
extrapolating scenarios (LOVO, LOGO, and LOSO) using
different metrics. For the metrics, we measured the accuracy
with both quantitative (MAE, MAPE, and PPMCC) and
qualitative (scatter plot) measures and the computational
requirements (Training Time and Test Time).

Table 10 reports for all algorithms employed to build
the surrogate (RF, XGB, KRR, and ELM) and for all the
different extrapolating scenarios (LOVO, LOGO, and LOSO)
the different metrics employed to evaluate the performance
(MAE, MAPE, PPMCC, Training Time, and Test Time).
Figure 7, instead, reports the scatter plot for the best algorithm
in each scenario (ELM for LOVO and KRR for LOGO and
LOSO) where we considered just the Accuracy as a metric
since the Test time differences are negligible.

From Table 10 and Figure 7 it is possible to observe that
• as the complexity of the extrapolation scenario increases
(i.e., from LOVO to LOSO) the average accuracy of the
models, across all of the algorithms, decreases;

• the ELM is the best performing algorithm for the
LOVO scenario, while the KRR is the best performing
algorithm for the LOGO and LOSO scenarios;

• despite the fact RF was demonstrated as the best
algorithm overall in terms of Test Time, differences with
the othermethods are negligible for our application (well
below fractions of milliseconds);

• final performance both in terms of accuracy (well below
1% of error) and Test Time (less than 10−5 [s]) even
in the most challenging scenario (LOSO) make these
surrogates perfect to be employed inside and automatic
optimization framework (see Section IV-D). In fact,
in order to reach this level of accuracy, usually a CFD
simulation is required, but the same prediction takes
around 1 hour with CFD.

B. SURROGATE VALIDATION AND PHYSICAL
PLAUSIBILITY IN THE LOSO SCENARIO
In this section, wewill deepen the analysis of the performance
of the best algorithm identified in Section V-A for the

LOSO scenario (KRR), because, in practice, this is the most
interesting scenario. In fact, in practice, what we want to do is
to generate geometry for a new, previously unexplored series.

Let us start by validating the quality of the model on the
different series and on the different geometries.

Table 11 reports, for the KRR in the LOSO scenario, the
different metrics of accuracy (MAE, MAPE, and PPMCC)
for each of the series. Instead, Figure 8 reports, for the KRR
in the LOSO scenario, the scatter plot for each of the series.

From Table 11 and Figure 8 it is possible to observe that
the surrogate performs better on some series than on others.
This is due to several reasons

• the performance of the surrogate decreases at higher
speeds as less experiments have been performed at
higher speeds. As a matter of fact, for S1, S2, and S4,
the poor performance is exhibited around Resistances in
the range from 40–100N (see Figures 8a, 8b, and 8d);

• the poor performance for S1 as the LOSO (Figure 8a)
is related to the fact that there are significantly more
geometries in this series than in any other (22 out of
47 geometries according to Table 3). Consequently,
when we check S1 in the LOSO scenario, we have very
few geometries to learn our model.

Let us continue this section with the test of the physical
plausibility of the surrogate.
First, we have to look in detail at the performance of the

surrogate in each geometry of the series. Since reporting
all the errors for all the geometries of all the series is not
meaningful, we decided to report in Table 12, for the KRR in
the LOSO scenario, the different metrics of accuracy (MAE,
MAPE, and PPMCC) for the best (i.e., the one exhibiting the
smallest error) and worst (i.e., the one exhibiting the most
significant error) geometries in each of the series.
From Table 12, it is possible to observe how the gap

between the best and the worst geometries can be significant.
Nevertheless, large or small here is not a concept that we can
define without having a baseline.
For this reason, in Figure 9, we reported, for the best

and worst geometry in each of the series as in Table 12,
the comparison between the EFD (the available data), the
KRR surrogate (that we learned from the EFD in the LOSO
scenario), and the CFD (using the StarCCM+

6 package as
described in Section IV-E). Note that, for the EFD just few
points are actually known andwe linearly interpolate between
them. For the CFD, we have the same issue since making
one prediction, as pointed out in Section V-A, takes a few
hours. Instead, for the KRR, we can make prediction for a
huge number of points since only fractions of milliseconds
are needed (see Table 10).
From Table 12 and Figure 9, we can observe that the

deviation of the KRR-based surrogate from the EFD is,
in terms of magnitude, similar, when not better, than the
one of the CFD even when we consider the geometry in
which the surrogate performs worse. Moreover, the resistance
behaviour as a function of the speed is quantitatively
aligned with the expectations. In conclusion, the KRR-based
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TABLE 10. Surrogate Models Validation in the Extrapolating Scenarios: metrics employed to evaluate the performance (MAE, MAPE, PPMCC, Training
Time, and Test Time) for all algorithms employed to build the surrogate (RF, XGB, KRR, and ELM) and for all the different extrapolating scenarios (LOVO,
LOGO, and LOSO).

FIGURE 7. Surrogate Models Validation in the Extrapolating Scenarios: scatter plot for the best algorithm in each scenario (ELM for LOVO and KRR
for LOGO and LOSO) considering just the Accuracy as a metric since the Test time differences are negligible (see Table 10).

TABLE 11. Surrogate Validation in the LOSO Scenario: metrics of accuracy
(MAE, MAPE, and PPMCC) for each of the series of the KRR (the best
algorithm identified in Section V-A).

TABLE 12. Surrogate Validation in the LOSO Scenario: different metrics of
accuracy (MAE, MAPE, and PPMCC) for the best (i.e., the one exhibiting
the smallest error) and worst (i.e., the one exhibiting the most significant
error) geometries in each of the series for the KRR in the LOSO scenario.

surrogate performance and physical plausibility can be
considered at the level of a state-of-the-art CFD-based model

at a fraction of its computational requirements: from hours to
a fraction of milliseconds.

C. OPTIMIZATION FRAMEWORK VALIDATION AND
PHYSICAL PLAUSIBILITY
At this point, we have empirically shown that the proposed
parametrization and the surrogate are able to work well also
in extrapolating scenariosmatching the performance, in terms
of accuracy and physical plausibility, of state-of-the-art CFD
models at a fraction of their computational requirements.
In this section, we will leverage this surrogate in the
optimization framework proposed in Section IV-D, validating
its performance by means of the approach described in
Section IV-E.
For computational constraints (i.e., using the CFD too

many times would result in months of simulations) in
this section we limit the analysis to the optimization of
a single series Sj. In order to have a realistic baseline
(i.e., EFD data) we designed a specific experiment: we
trained the surrogate with the EFD of all the series in
the DSYHS except Sj simulating the need to design a
vessel exactly in the missing series. In this way, the EFD
data of Sj will function as a realistic baseline to compare
with the results of our optimization. Note that, with this
approach, we are actually using the surrogate as in the
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FIGURE 8. Surrogate Validation in the LOSO Scenario: scatter plot for the
KRR (the best algorithm identified in Section V-A) for each of the series
(see Table 10).

LOSO scenario. Then we solved the optimization problem
of Section IV-D using this surrogate as resistance predictor
for different values of λ ∈ [0, 1] and with the parameter
range induced by the Sj (see Section IV-D) computing the
Pareto frontier of the geometries. The Pareto frontier of the
geometries is then compared with the EFD data of the Sj
(where we linearly interpolated between the available data).
Moreover, for each one of the geometries on the Pareto we
computed the resistance at high and low speed with the
CFD.

We set Sj = S4: this choice is based on Table 11 as
this is the series that exhibits approximately the average
performance of the surrogate in the LOSO scenario (i.e., it is
not the most challenging nor the simplest series to predict
but is an average to challenging one). For S4 the pl(δ) and
pu(δ) are reported in Table 8 while ∇l = 19 · 10−3 m3 and
∇u = 48 · 10−3 m3. We reported the results for different
values of δ ∈ {10, 20, 30}% and λ ∈ {0, 0.1, · · · , 1} linearly
interpolating between this value.

Figure 10 reports the Pareto frontier (Rt (p,vHigh)
∇(p) on the x-

axis and Rt (p,vLow)
∇(p) on the y-axis) for different values of λ and

δ together with the EFD data and the CFD validation as just
described. Additionally, Figure 11 reports a comparison of the

FIGURE 9. Surrogate Physical Plausibility in the LOSO Scenario:
comparison between the EFD (the available data), the KRR surrogate (that
we learned from the EFD in the LOSO scenario), and the CFD (using the
StarCCM+6 package as described in Section IV-E) for the best and worst
geometry in each of the series as in Table 12.

body plans9 for the baseline geometry belonging to S4 and the
optimized ones with λ = 1 and δ ∈ {10, 20, 30}%. Setting
λ = 1 implies that we prefer to minimise the resistance
at vHigh, representing a typical velocity for high-speed
operations where we should observe the most significant
differences in optimal performance.

9The body plan is commonly used in naval architecture to display hull
geometries and contains the set of transverse sections (the fore of the hull is
on the left, and the aft on the right).
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FIGURE 10. Optimization Framework Validation and Physical Plausibility:

Pareto frontier (
Rt (p,vHigh)

∇(p) on the x-axis and
Rt (p,vLow)

∇(p) on the y-axis)

for different values of λ and δ together with the EFD data and the CFD.

From Figures 10 and 11 we can observe that
• when δ is small (Figure 10a, δ = 10%) the optimization
framework coupled with the surrogate is able to find
geometries that match the performance of the one in
S4 without any a-priori knowledge of the geometries
belonging to S4. Nevertheless, it is worth noting how
the geometry found by the optimizer (Figure 11a), even
if having a similar performance, is quite different. This
is due to the fact that the optimization problem is
surely simplified, not taking into account all the realistic
constraints that impact the design of a hull geometry
(e.g., stability and seakeeping);

• when δ is a bit larger (Figure 10b, δ = 20%) the
surrogate is able to exceed remarkably, according to the
surrogate, the performance of the S4 geometry. However,
this is a bit optimistic when checking the resistance
at high speed: when using the CFD to estimate the
resistance of the geometry found with the surrogate
there is a reduction of this performance gain which
remains still remarkable. Also in this case note that
the differences in the geometries (Figure 11b) stars to
enlarge;

FIGURE 11. Optimization Framework Validation and Physical Plausibility:
a comparison of the the body plans9 for the baseline geometry belonging
to S4 and the optimized ones with λ = 1 and δ ∈ {10, 20, 30}%.

• when we further increase δ (Figure 10c, δ = 30%)
the surrogate can exceed even more, according to the
surrogate, the performance of the S4 geometry. However,
this is just a numerical artefact when checking the
resistance at high speed due to the extrapolation limits
of the surrogate. In fact, when using the CFD to estimate
the resistance of the geometry found with the surrogate,
there is a reduction of this performance that brings us
back to the gain found when δ was smaller. Note that in
this case the geometry (Figure 11b) is quite similar to
the case of δ = 20% (Figure 11b).

Finally, for the sake of completeness, a qualitative indicator
of the quality of the optimized geometry with λ = 1
(for the same reasons as before) and δ ∈ {10, 20, 30}% is
reported in Figure 12 which shows the wave profile at vHigh

of the original S4 hull (top half) and the difference with the
optimized parametric hulls (bottom half).

From Figure 12 we can observe that
• in all cases there is a noticeable difference between the
original hulls and the optimized hulls;

• when δ = 10 (Figure 12a) there is little significant
difference (indicated by the lack of white color in the
bottom half of the figure) which is expected due to the
fact that the representation space is constrained around
that of the original hull;

• when δ = 20 or δ = 30 ( Figures 12b and 12c) there
is a more significant difference between the original and
optimized wave profiles (indicated by the presence of
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FIGURE 12. Optimization Framework Validation and Physical Plausibility:
quality of the geometry generated in S4 with λ = 1 and δ ∈ {10, 20, 30}%
using the wave profile at vHigh of the baseline hull belonging to S4 (top
half) and the difference with the optimized one (bottom half).

white color in the bottom half of the figures) which is in
agreement with the results of Figure 10.

VI. CONCLUSION
In this work, we tackled the problem of vessel hull
resistance optimization, which is crucial for achieving
optimal performance and reducing environmental impact.
First, we reviewed the current approach in the literature that
mostly relies on a mix of human experience and DDMs:
human experts define, via parametrization and parameter
ranges, a series of geometries; a surrogate of the relationship
between these parameters and the resistance, based on
data from EFD or CFD, is built to interpolate within the
defined parameter ranges; finally, the optimal parameters are
found by optimizing, with more or less human intervention,
the surrogate and used to retrieve the optimal geometry.
Several limitations of the existing approaches were identified,
including the need for human intervention in geometry
parametrization and optimization, extensive computational

efforts and costs, and limited ability to work beyond the
specific settings. To overcome those limitations, and to the
best of the authors’ knowledge, for the first time in the
literature, we proposed a parametrization able to accurately
describe the entire DSYHS that was decoupled from the one
needed to create the DDM. We showed that the DDM can
be directly trained on the DSYHS EFD dataset, avoiding
the need for new CFD or EFD customized for the specific
problem, and match the performance of state-of-the-art CFD
models even in extrapolating conditions (i.e., for geometries
and parameter ranges beyond the boundaries used to construct
the surrogate), with physical plausibility and minimal human
intervention. Apart from the methodological contribution,
we also validated our approach to developing DDMs on
different and increasingly challenging extrapolating condi-
tions with statistical methods using the DSYHS EFD dataset
and for physical plausibility using state-of-the-art CFD
models. We demonstrated the effectiveness of our proposal
by showing that it is possible to optimize the hull resistance
by exploring geometric parameters beyond the boundaries of
the DSYHS.
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