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A B S T R A C T

The industrially collected process data usually exhibit non-Gaussian and multi-mode characteristics. Due to
sensor failures, irregular disturbances, and transmission problems, there are unavoidable outliers that make
the data exhibit heavy-tailed characteristics. To this end, a variational auto-encoder regression method based
on the mixture Laplacian distribution (MLVAER) is proposed, by introducing a type-II multivariate Laplacian
distribution in the latent variable space for robust modeling, and further extending it to the mixture form
to accommodate multi-mode processes, the corresponding reparameterization trick is finally proposed for
the mixture form of this distribution for neural network gradient descent training. The model based on this
distribution assumption has higher degrees of freedom than the model based on the traditional multivariate
Laplace distribution assumption when the network structure is the same. Numerical simulation and experiments
on two industrial examples demonstrate that the proposed algorithm reduces the root mean square error by
over 15% compared to other algorithms.
. Introduction

Some key variables in industrial processes are impossible to mon-
tor directly with typical hardware sensors due to high measurement
osts, physical constraints, and so on. In response to these challenges,
oft sensor technology has advanced quickly in recent decades, al-
owing it to forecast key variables by mapping auxiliary variables for
ifficult-to-measure variables. Soft sensor technology based on mecha-
ism modeling is costly to model because it requires prior knowledge
f the processes and is considerably more difficult to model due to the
rocess’s complexity. As information technology improves, soft sensor
echnology has introduced data-driven methods for modeling, such as
tatistical machine learning or deep learning, that are more efficient,
ess expensive, and easier to deploy. Many traditional linear methods,
or instance, Principal components regression (PCR) [1], Partial least
quare (PLS) [2–4] and non-linear methods such as Support vector
egression (SVR) [5,6], Kernel methods [7], Artificial neural networks
ANN) [8] have been widely used in the field of soft sensors. Data-
riven methods are also generally used in other industrial research
ields, including fault diagnosis, defect detection, remaining useful life
stimation, etc [9–11]. In this paper, we focus on the research progress
f these methods in the field of soft sensors.

∗ Corresponding author at: College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
E-mail addresses: zhangtianming0408@link.tyut.edu.cn (T. Zhang), yangaowei@tyut.edu.cn (G. Yan).

The above deterministic modeling method requires objects with
deterministic quantitative relationships, while most process data are
inevitably subject to noise interference and are essentially random
variables. Random variables are inherently uncertain. In contrast, prob-
abilistic models, which use methods from probability theory, stochastic
processes, and mathematical statistics to model objects with contin-
gent and random properties, are more suitable for characterizing the
behavior of random variables in processes. For modeling data with
process noise, Ge et al. [12] proposed a probabilistic PCR model (PPCR)
based on PCR. Gustafsson [13] conducted probability derivation based
on the traditional nonlinear iterative partial least squares algorithm.
Li et al. [14] proposed a new probabilistic PLS (PPLS) model based
on the PLS method, probabilistic principal component analysis (PPCA),
and probability curve fitting ideas for quantitative analysis of Raman
spectral data. However, some of the traditional PLS model’s features are
not well described in the above PPLS, so Zheng et al. [15] introduced
two types of latent variables, the first controlling the relationship
between the model’s input and output variables and the second relating
only to the input data, so only the first latent variable was used to
explain the output data. Compared to the non-deep methods men-
tioned above, deep learning techniques have demonstrated powerful
data modeling capabilities by extracting deeper abstract features from
vailable online 5 March 2024
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data through multi-layer nonlinear mapping, which is an irreplaceable
advantage in the increasingly complex modern industrial processes [8].
As a deep probabilistic latent variable model, variational auto-encoder
(VAE) blends deep learning and Bayesian variational inference, which
not only has strong feature extraction ability but also can model process
uncertainty and data noise [16]. It has a promising future in the field of
soft sensors. Shen et al. [17] first applied VAE to soft sensor modeling in
industrial processes and suggested a new nonlinear form of probabilistic
latent variable model by stacking VAE to extract deeper nonlinear
information. Chai et al. [18] integrated transfer learning into the VAE
framework and proposed a deep probabilistic transfer regression to
address the issue of the target domain’s lack of labeling while utilizing
the model’s generation and reconstruction capabilities to handle cases
with missing data.

Because of the requirements of varied product grades or operating
conditions, most industrial processes have many modes of operation,
resulting in data with multi-mode characteristics. Probabilistic models
with a single Gaussian assumption cannot handle multi-mode data
successfully. Gaussian mixture regression unifies operational pattern
recognition and variable regression into a single model via finite Gaus-
sian mixture, avoiding the creation and switching of numerous models,
and is widely used in soft sensors [19–21]. The probability model
for a single distribution can be easily extended to the case of mixed
distributions. Ge et al. [12] extended PPCR to a mixture form and
created a mixture PPCR (MPPCR) for quality prediction in multiple
operating mode processes based on the proposed PPCR. Zheng et al.
[15] developed a mixture form of the PPLS (MPPLS) to cope with
more intricate process data information. Cui et al. [22] described the
distribution of latent variables in VAE using a Gaussian mixture model
and presented a mixture variational auto-encoder regression (MVAER)
model, which was used for soft sensor modeling of complicated multi-
mode industrial processes. Zhang et al. [23] further proposed a deep
Gaussian mixture adaptive network (DGMAN) with multi-mode model-
ing, fast calibration, and distribution alignment capabilities to address
process drift issues, bridging the gap between laboratory output and
industrial practice.

The above probabilistic models generally assume that the noise
obeys Gaussian distribution or Gaussian mixture distribution, but due
to sensor failure, irregular interference, and transmission problems, the
data inevitably have outliers and thus exhibit heavy-tailed character-
istics. The presence of outliers can lead to skewed distributions and
seriously affect the mean and variance of the data, so models based
on the Gaussian distribution assumption can be poorly modeled due to
the influence of outliers. In recent years, many studies have introduced
heavy-tailed distributions such as Student’s-t distribution and Laplace
distribution for robust modeling [24,25] to overcome the effects of data
outliers. Peel and McLachlan [26] proposed a more robust clustering
method by modeling the data with a mixed Student’s-t distribution. Zhu
et al. [27] proposed a robust modeling strategy with a mixture PPCA,
which can handle both outliers and missing data and applies to multi-
mode data, also using multivariate Student’s-t distribution to reduce
the negative impact of outliers. Considering the supervised case, Wang
et al. [28] proposed a robust soft sensor approach based on Variational
Bayesian Student’s-t mixture regression (VBSMR), which explicitly con-
sidered the dependence of quality variables on process variables and
introduced the Student’s-t distribution to handle outliers. Yan et al.
[29] proposed a robust stochastic configuration network method based
on Student’s-t mixture distribution (SM-RSC), aiming to alleviate the
impact of outliers or noise on data-driven modeling. However, the
degree of freedom parameter in the Student’s-t distribution requires a
numerical optimization algorithm to solve the differential equation. For
the Laplace distribution, a closed-form solution with unknown param-
eters can be used, making the computational procedure and expression
simpler. Zhu et al. [30] constructed a robust principal component
regression model (MRPPCR-L1) with multiple modes of operation using
2

multivariate Laplace distribution. Yang et al. [31] developed a soft
sensor algorithm based on a robust mixture probabilistic partial least
squares model (RMPPLS). The multivariate Laplace distribution is used
for robust modeling and the mixture form of the probabilistic partial
least squares model is used for multi-mode description.

Currently, the literature primarily utilizes the type I multivariate
Laplace distribution, as proposed by Eltoft et al. [32]. This distribution
assumes that the mixture variables corresponding to each component
of the random vector share a common factor, resulting in identical
heavy tails for each marginal distribution. Consequently, even when
the covariance matrix is diagonal, the components of the random vector
remain correlated. This lack of flexibility may lead to redundancy when
using this distribution as a prior for latent variables. To address these
limitations, Zhang et al. [33] introduced a more flexible alternative
called the type II multivariate Laplace distribution. In this distribution,
the common factor of the type I distribution is replaced with multiple
independent and identically distributed standard exponential random
variables. As a result, the correlation between components of the
random vector now depends solely on the covariance matrix’s structure.
Although this modification improves flexibility, the type II multivariate
Laplace distribution still assumes a single-peaked distribution, making
it unsuitable for modeling multi-mode data.

To overcome this limitation, this paper proposes a mixture type
II multivariate Laplace distribution by introducing random variables
that follow a multinomial distribution. Furthermore, this distribution is
combined with a deep network to develop a variational auto-encoder
regression method based on the mixture Laplace distribution.

Table 1 shows the differences between the recently published work
and the proposed algorithm in terms of whether to consider uncer-
tainty, outliers, multi-mode, nonlinearity, and multiple outputs. It can
be seen that the proposed algorithm provides solutions for a wider
range of industrial problems compared to other algorithms. It is im-
portant to note that the term ‘‘nonlinearity’’ in the table refers to
the nonlinearity of the model in a single mode. The models GMR,
MPPCR, MPPLS, VBSMR, MRPPCR-L1, and RMPPLS are essentially a
combination of multiple linear models, with each mode corresponding
to a linear model. On the other hand, MVAER, DGMAN, and MLVAER
are a combination of multiple nonlinear models, and each mode corre-
sponds to a nonlinear model. The main contributions of this paper are
summarized below:

(1) A variational autoencoder regression method based on the
mixture Laplace distribution is proposed. By introducing the mixture
Laplace distribution, our method offers a flexible and robust frame-
work for modeling multi-mode processes contaminated with outliers.
This method breaks the limitations of single-peaked distributions and
effectively mitigates the interference caused by outliers, resulting in
improved algorithmic robustness and accuracy.

(2) A mixture type II multivariate Laplace distribution combined
with a deep network is proposed. Due to its marginal distribution
can have different heavy tails, the model based on this distribution
assumption exhibits higher generality compared to models based on the
traditional multivariate Laplace distribution assumption for the same
network structure. This higher generality enables the model to handle
more complex industrial scenarios. Additionally, this method offers an
effective solution to enhance model compactness.

(3) A resampling strategy suitable for multivariate Laplace distribu-
tion is studied for gradient descent training of neural networks.

2. Variational auto-encoder

Consider the data set 𝐗 composed of 𝑁 independent samples of
the same distribution, and the sample 𝐱 in 𝐗 is obtained from the
sampling of continuous or discrete variables. Suppose there is an un-
observable variable 𝐳, which is generated by some prior distribution

𝐳, and the value of 𝐱 is generated by some conditional distribution
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Table 1
Comparison table of recently published work.

Model Uncertainties Outliers Multi-mode Nonlinear Multi-output

PCR and PLS based [1–4] × × × × ✓

SVR based [5,6] × × × ✓ ✓

PPCR and PPLS based [12–15] ✓ × × × ✓

VAE based [17,18] ✓ × × ✓ ✓

GMR, MPPCR and MPPLS [12,15,19] ✓ × ✓ × ✓

MVAER and DGMAN [22,23] ✓ × ✓ ✓ ✓

VBSMR, MRPPCR-L1 and RMPPLS [28,30,31] ✓ ✓ ✓ × ✓

SM-RSC [29] ✓ ✓ ✓ ✓ ×
MLVAER (Ours) ✓ ✓ ✓ ✓ ✓
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𝐳

𝑝𝜃 (𝐱 |𝐳 ). Given a sample 𝐱, its logarithmic marginal likelihood 𝑝𝜃 (𝐱)
can be decomposed into:

log 𝑝𝜃(𝐱) =
∑

𝐳
𝑞𝜙(𝐳) log 𝑝𝜃(𝐱)

=
∑

𝐳
𝑞𝜙(𝐳)

(

log 𝑝𝜃(𝐱, 𝐳) − log 𝑝𝜃(𝐳 |𝐱 )
)

=
∑

𝐳
𝑞𝜙(𝐳) log

𝑝𝜃(𝐱, 𝐳)
𝑞𝜙(𝐳)

−
∑

𝐳
𝑞𝜙(𝐳) log

𝑝𝜃(𝐳 |𝐱 )
𝑞𝜙(𝐳)

=𝐸𝐿𝐵𝑂 +𝐾𝐿(𝑞𝜙(𝐳) ‖‖𝑝𝜃(𝐳 |𝐱 ) )

(1)

where 𝑞𝜙(𝐳) is the additionally introduced variational density function,
𝐾𝐿(𝑞𝜙(𝐳) ‖‖𝑝𝜃(𝐳 |𝐱 ) ) is the KL divergence of distributions 𝑞𝜙(𝐳) and
𝑝𝜃(𝐳 |𝐱 ), 𝜙 and 𝜃 are their parameters, respectively, and 𝐸𝐿𝐵𝑂 is the
lower bound of evidence. According to Bayes’ theorem, the posterior
distribution of 𝐳 can be obtained as follows:

𝑝𝜃(𝐳 |𝐱 ) =
𝑝𝜃(𝐱 |𝐳 )𝑝𝜃(𝐳)

∫𝐳 𝑝𝜃(𝐱 |𝐳 )𝑝𝜃(𝐳)𝑑𝐳
(2)

It can be seen from Eq. (2) that the solution of 𝑝𝜃(𝐳 |𝐱 ) involves the
ntegral problem and is not easy to calculate. When the distribution of
𝜃(𝐳 |𝐱 ) is more complex, the effect of using simple distribution 𝑞𝜙(𝐳) to
pproximate 𝑝𝜃(𝐳 |𝐱 ) is also poor. 𝑝𝜃(𝐱 |𝐳 ) is also generally difficult to
odel directly using known distribution family functions because of its

omplexity. As a deep generative model, the variational autoencoder
ethod uses neural networks to model 𝑞𝜙(𝐳) and 𝑝𝜃(𝐱 |𝐳 ), which are

called inferential networks and generative networks, respectively. Since
the goal of 𝑞𝜙(𝐳) is to approximate 𝑝𝜃(𝐳 |𝐱 ), which is related to 𝐱. It
is often written as 𝑞𝜙(𝐳 |𝐱 ), and generally assumed that 𝑞𝜙(𝐳 |𝐱 ) obeys
the multivariate Gaussian distribution of a diagonal matrix with a
covariance matrix. The overall goal of variational autoencoders is to
maximize the evidence of the lower bound 𝐸𝐿𝐵𝑂, as follows:

𝐸𝐿𝐵𝑂 =𝐸𝐳∼𝑞𝜙(𝐳|𝐱 )

(

log
𝑝𝜃(𝐱, 𝐳)
𝑞𝜙(𝐳 |𝐱 )

)

=𝐸𝐳∼𝑞𝜙(𝐳|𝐱 )
(

log 𝑝𝜃(𝐱 |𝐳 )
)

−𝐾𝐿
(

𝑞𝜙(𝐳 |𝐱 ) ‖‖𝑝𝜃(𝐳)
)

(3)

where 𝑝𝜃(𝐳) is the prior distribution, generally taken as the standard
Gaussian distribution, 𝜃 and 𝜙 are the corresponding parameters of the
generated network and the inferred network, respectively.

3. Mixture Laplace distribution

To solve the analysis problem of continuous data with outliers,
constructing more flexible and heavy-tailed distributions has become
the research content of many scholars. The Laplace distribution is a
heavy-tailed distribution. The definition of the traditional multivariate
Laplace distribution, also known as the Type I multivariate Laplace
distribution, is as follows:

𝐳 = 𝝁 +
√

2𝑈1∕2𝐭 ∼ 𝐿𝑑 (𝝁,𝜮) (4)

here 𝐭 =
[

𝑇1,… , 𝑇𝑑
]T ∼ 𝑁𝑑 (𝟎,𝜮), 𝑈 ∼ 𝐸𝑥𝑝 (1), 𝑈 and 𝐭 are

independent of each other, 𝑑 is the number of variables, 𝝁 is the mean
ector, and 𝜮 is the scale parameter matrix. It can be seen that all
omponents in Eq. (4) have the same value for the mixture variable,
.e. 𝑈 ∼ 𝐸𝑥𝑝 1 , so each marginal distribution can only have the same
3

( )
heavy-tailed, which also leads to a necessary connection between the
different components, making the degrees of freedom of the type I
multivariate Laplace distribution smaller than 𝑑.

To obtain a more flexible multivariate Laplace distribution, Zhang
t al. [33] proposed a type II multivariate Laplace distribution by
eplacing the common factor 𝑈 with variables

{

𝑈𝑖
}𝑑
𝑖=1

i.i.d∼ 𝐸𝑥𝑝 (1) that
ollow a standard exponential distribution with independent identical
istribution. The different components of the distribution no longer
hare a common factor, leading to increased degrees of freedom com-
ared to the type I distribution. Higher degrees of freedom imply
reater generality of the model with the same network structure. Fur-
hermore, it signifies higher model compactness with the same network
omplexity. The type II multivariate Laplace distribution is defined as
ollows:

= 𝝁 +
√

2𝐔1∕2𝐭 ∼ 𝐿𝑑 (𝝁,𝜮) (5)

where 𝐮 =
[

𝑈1,… , 𝑈𝑑
]T, 𝐔1∕2 = 𝑑𝑖𝑎𝑔

(

√

𝐮
)

, 𝐮 and 𝐭 are independent of
each other. Given 𝐮, the conditional distribution corresponding to 𝐳 is:

𝐳 |𝐮 ∼ 𝑁𝑑
(

𝝁, 2𝐔1∕2𝜮𝐔1∕2) (6)

When 𝜮 is a diagonal matrix, the type II Laplace distribution will
degenerate into the product of multiple independent unary Laplace
distributions. In this case, the Eq. (6) is equivalent to the following
form:

𝐳 |𝐮 ∼ 𝑁𝑑 (𝝁, 2𝐔𝜮) (7)

Fig. 1 shows the probability density plots of the Gaussian distri-
bution, Type I Laplace distribution, and Type II Laplace distribution,
as well as their joint probability density and edge probability density
distribution comparison plots. It can be seen from the figure that
the Laplace distribution has a higher probability at the edge than
the Gaussian distribution. The type II Laplace distribution and type
I Laplace distribution have the same edge distribution, but there are
differences in the joint distribution.

Given the diverse product grades and operating conditions in indus-
trial processes, it is common for these processes to exhibit multi-mode
characteristics in the collected data. Single-peaked probability models
are inadequate in effectively capturing and representing such com-
plex, multi-mode data. To address this limitation, this paper further
introduces a random variable, denoted as 𝑐 ∈ {1,… , 𝐾}, which fol-
lows a multinomial distribution. This variable is utilized to indicate
the specific Laplace distribution from which the samples originate. A
novel framework based on a mixture of type II multivariate Laplace
distributions is proposed. The multinomial distribution is defined as
follows:

𝑝 (𝑐 = 𝑘) = 𝜋𝑘, 1 ⩽ 𝑘 ⩽ 𝐾 (8)

Let 𝝅 =
[

𝜋1,… , 𝜋𝐾
]

and satisfy 𝜋𝑘 ⩾ 0, ∑𝐾
𝑘=1 𝜋𝑘 = 1, where 𝜋𝑘 denotes

the probability. Sample 𝐱 is generated by the 𝑘th Laplace distribution.
For convenience, 𝑝 (𝑐 = 𝑘) is abbreviated to 𝑝

(

𝑐𝑘
)

. From this, a mixture
model with 𝑘 Laplace components can be obtained as follows:

𝑀𝐿𝑑

(

𝝅,
{

𝝁𝑘
}𝐾
𝑘=1 ,

{

𝜮𝑘
}𝐾
𝑘=1

)

=
𝐾
∑

𝜋𝑘𝐿𝑑
(

𝝁𝑘,𝜮𝑘
)

(9)

𝑘=1
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Fig. 1. Distribution visualization.

Fig. 2. Probabilistic graphical model.

where 𝝁𝑘 and 𝜮𝑘 represent the mean vector and scale parameter
matrix corresponding to the 𝑘th Laplace component, respectively, while
{

𝝁𝑘
}𝐾
𝑘=1 and

{

𝜮𝑘
}𝐾
𝑘=1 represent the set of 𝝁𝑘 and 𝜮𝑘, respectively.

4. Mixture Laplace variational autoencoder

The mixture type II multivariate Laplace distribution still has a
limited ability to fit complex nonlinear data, for this reason, this paper
extends it to deep networks and proposes a variational auto-encoder
regression algorithm based on the mixture Laplace distribution, called
MLVAER, where the latent variable 𝐳 ∼ 𝑀𝐿𝑑

(

𝝅,
{

𝝁𝑘
}𝐾
𝑘=1 ,

{

𝜮𝑘
}𝐾
𝑘=1

)

,
and specifically, 𝜮𝑘 is the diagonal matrix. From Section 3, the Laplace
distribution can be regarded as a mixture of Gaussian distributions
under multiple exponential distributions, so the latent variable 𝐮 is
introduced to assist the construction of the Laplace distribution, and
the mixture Laplace distribution is in turn a mixture of Laplace dis-
tributions, so the category indicator variable 𝑐 is introduced to assist
the construction of the mixture Laplace distribution. The variables 𝐮
and 𝑐 are defined in the same way as in Section 3. Fig. 2 shows the
probabilistic graphical models of VAE, MVAER, and MLVAER, where
the solid line indicates the generative model and the dashed line
indicates the variational approximation.

Further, the framework of MLVAER is shown in Fig. 3, where
the trapezoidal boxes represent the neural network, the light blue
background boxes represent additional descriptions of the variables,
and the arrows represent the flow of data. It can be seen from Fig. 3
4

Fig. 3. Mixture Laplace auto-encoder framework diagram.

that MLVAER is mainly composed of five parts: inference network 1,
inference network 2, prior network, generative network, and regression
network. Its theoretical basis and loss function of training will be given
in Section 4.1.

4.1. Variational lower bound

The mixture Laplace variational autoencoder introduces three latent
variables 𝐳, 𝐮, and 𝑐. According to Eq. (3), its variational lower bound
is:
𝐸𝐿𝐵𝑂 =𝐸𝐳,𝐮,𝑐𝑘∼𝑞𝜙(𝐳,𝐮,𝑐𝑘|𝐱 )

(

log 𝑝𝜃(𝐱, 𝐲 ||𝐳,𝐮, 𝑐𝑘 )
)

− 𝐾𝐿
(

𝑞𝜙(𝐳,𝐮, 𝑐𝑘 |𝐱 ) ‖‖𝑝𝜃(𝐳,𝐮, 𝑐𝑘)
)

(10)

According to the generation process, the generation of 𝐱 and 𝐲 is only
directly related to 𝐳. Eq. (10) can be further expressed in the following
form:

𝐸𝐿𝐵𝑂 =
𝐾
∑

𝑘=1
𝑞𝜙(𝑐𝑘 |𝐱 )𝐸𝐳∼𝑞𝜙(𝐳|𝐱 ,𝑐𝑘)

(

log 𝑝𝜃(𝐱 |𝐳 )
)

+
𝐾
∑

𝑘=1
𝑞𝜙(𝑐𝑘 |𝐱 )𝐸𝐳∼𝑞𝜙(𝐳|𝐱 ,𝑐𝑘)

(

log 𝑝𝜃(𝐲 |𝐳 )
)

− 𝐾𝐿
(

𝑞𝜙(𝐳,𝐮, 𝑐𝑘 |𝐱 ) ‖‖𝑝𝜃(𝐳,𝐮, 𝑐𝑘)
)

(11)

The first term can be regarded as the minimum reconstruction error,
and its expectation can be approximated according to the sampling,
but since the sampling relation is not derivable, the corresponding re-
parameterization technique is proposed for calculation in Section 4.2.
Assuming that 𝑝𝜃(𝐱 |𝐳 ) obeys Laplace distribution with mean 𝐱̂𝑘 and
scale parameter 1, the first term can be simplified to absolute value
loss −

∑𝐾
𝑘=1 𝑞𝜙(𝑐𝑘 |𝐱 ) ||𝐱 − 𝐱̂𝑘||.

The second term can adopt a similar strategy as the first one,
however, considering the practical situation of soft sensor modeling,
the predicted value should be more accurate and stable close to the real
value without the need for generation ability. Meanwhile, the variance
part of the latent variable 𝐳 can be regarded as noise independent of
the predicted value 𝐲, so only the mean part of z needs to be input
to the regressor, that is, the input to the regression network is 𝝁𝑘.
Assuming that 𝑝𝜃(𝐲 |𝐳 ) obeys a Laplace distribution with mean 𝐲̂𝑘 and
scale parameter 1, the second term can be simplified to absolute value
loss −

∑𝐾 𝑞 (𝑐 𝐱 ) |𝐲 − 𝐲̂ |.
𝑘=1 𝜙 𝑘 | | 𝑘|
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T

p
r

R

The third term can be further broken down as follows:
𝐾𝐿

(

𝑞𝜙(𝐳,𝐮, 𝑐𝑘 |𝐱 ) ‖‖𝑝𝜃(𝐳,𝐮, 𝑐𝑘)
)

=∫𝐳

𝐾
∑

𝑘=1
∫𝐮

(

𝑞𝜙(𝐳,𝐮, 𝑐𝑘 |𝐱 ) log
𝑞𝜙(𝐳,𝐮, 𝑐𝑘 |𝐱 )
𝑝𝜃(𝐳,𝐮, 𝑐𝑘)

)

=∫𝐳

𝐾
∑

𝑘=1
∫𝐮

(

𝑞𝜙(𝐳,𝐮, 𝑐𝑘 |𝐱 ) log
𝑞𝜙(𝐳 |𝐱 ,𝐮, 𝑐𝑘)
𝑝𝜃(𝐳 ||𝐮, 𝑐𝑘 )

)

+ ∫𝐳

𝐾
∑

𝑘=1
∫𝐮

(

𝑞𝜙(𝐳,𝐮, 𝑐𝑘 |𝐱 ) log
𝑞𝜙(𝐮)
𝑝𝜃(𝐮)

)

+ ∫𝐳

𝐾
∑

𝑘=1
∫𝐮

(

𝑞𝜙(𝐳,𝐮, 𝑐𝑘 |𝐱 ) log
𝑞𝜙(𝑐𝑘 |𝐱 )
𝑝𝜃(𝑐𝑘)

)

=
𝐾
∑

𝑘=1
𝑞𝜙(𝑐𝑘 |𝐱 )∫𝐮

𝑞𝜙(𝐮)𝐾𝐿
(

𝑞𝜙(𝐳 |𝐱 ,𝐮, 𝑐𝑘) ‖‖𝑝𝜃(𝐳 ||𝐮, 𝑐𝑘 )
)

+ 𝐾𝐿
(

𝑞𝜙(𝑐𝑘 |𝐱 ) ‖‖𝑝𝜃(𝑐𝑘)
)

(12)

where 𝑝𝜃
(

𝐳 |
|

𝑐𝑘
)

= 𝐿𝑑 (𝟎, 𝐈), 𝑝𝜃
(

𝐳 |
|

𝐮, 𝑐𝑘
)

= 𝑁𝑑
(

𝝁̃𝑘, 2𝐔
)

, 𝑝𝜃(𝑐𝑘) =
1
𝐾 , 𝝁̃𝑘

is the parameter to be learned by the neural network.

𝐾𝐿
(

𝑞𝜙(𝑐𝑘 |𝐱 ) ‖‖𝑝𝜃(𝑐𝑘)
)

=
𝐾
∑

𝑘=1
𝑞𝜙(𝑐𝑘 |𝐱 ) log

(

𝐾𝑞𝜙(𝑐𝑘 |𝐱 )
)

(13)

𝐾𝐿
(

𝑞𝜙(𝐳 |𝐱 ,𝐮, 𝑐𝑘) ‖‖𝑝𝜃(𝐳 ||𝐮, 𝑐𝑘 )
)

= 1
2

(

tr
(

𝜮𝑘
)

− 𝑑 − log
(

|

|

𝜮𝑘
|

|

)

+

(

𝝁𝑘 − 𝝁̃𝑘
)⊤𝐔−1 (𝝁𝑘 − 𝝁̃𝑘

)

2

)

(14)

However, the 𝐾𝐿 divergence between 𝑞𝜙(𝐳 |𝐱 ,𝐮, 𝑐𝑘) and 𝑝𝜃(𝐳 ||𝐮, 𝑐𝑘 )
tends to infinity when the elements in 𝐮 tend to zero, and the 𝐾𝐿
divergence fails to measure the difference between the two distribu-
tions. Therefore, this paper uses the Wasserstein distance to measure
the difference between 𝑞𝜙(𝐳 |𝐱 ,𝐮, 𝑐𝑘) and 𝑝𝜃(𝐳 ||𝐮, 𝑐𝑘 ).

[𝑞𝜙(𝐳 |𝐱 ,𝐮, 𝑐𝑘), 𝑝𝜃(𝐳 ||𝐮, 𝑐𝑘 )]

= ‖

‖

𝝁𝑘 − 𝝁̃𝑘
‖

‖

2 + 2Tr (𝐔) + 2Tr
(

𝜮𝑘𝐔
)

− 4Tr
(

(

𝜮𝑘𝐔2)1∕2
) (15)

Further obtainable:

∫𝐮
𝑞𝜙(𝐮)[𝑞𝜙(𝐳 |𝐱 ,𝐮, 𝑐𝑘), 𝑝𝜃(𝐳 ||𝐮, 𝑐𝑘 )]

= ‖

‖

𝝁𝑘 − 𝝁̃𝑘
‖

‖

2 + 2Tr (𝐈) + 2Tr
(

𝜮𝑘
)

− 4Tr
(

𝜮1∕2
𝑘

)

(16)

Combining the above analysis, the final variational lower bound is
expressed as:

𝐸𝐿𝐵𝑂 = −
𝐾
∑

𝑘=1
𝑞𝜙(𝑐𝑘 |𝐱 ) ||𝐱 − 𝐱̂𝑘|| −

𝐾
∑

𝑘=1
𝑞𝜙(𝑐𝑘 |𝐱 ) ||𝐲 − 𝐲̂𝑘||

−
𝐾
∑

𝑘=1
𝑞𝜙(𝑐𝑘 |𝐱 )𝐷𝑖𝑣

(17)

where 𝐷𝑖𝑣 = log
(

𝐾𝑞𝜙(𝑐𝑘 |𝐱 )
)

+ ‖

‖

𝝁𝑘 − 𝝁̃𝑘
‖

‖

2 + 2Tr (𝐈) + 2Tr
(

𝜮𝑘
)

−
4Tr

(

𝜮1∕2
𝑘

)

.

4.2. Reparameterization trick

In the framework of the algorithm proposed in this paper, 𝝁𝑘
and Σ𝑘 are the outputs of the neural network containing gradient
information. To ensure that the gradient descent training of the neural
network proceeds smoothly, the resampling equation for the Laplace
distribution only needs to include 𝝁𝑘 and Σ𝑘. In Eq. (4), since 𝐮 and
𝐭 are independent of each other, they can be sampled separately to
obtain 𝐮̂ and 𝐭̂. When sampling 𝐭, considering that 𝐭 obeys a Gaussian
distribution, the standard Gaussian distribution can be sampled first to
obtain 𝜻𝑘, and according to the nature of the Gaussian distribution, the
sampling of 𝐭 can be further obtained as 𝐭̂ = 𝜻𝑘 ⊙

√

Σ𝑘. The detailed
process is:
5

(1) Generate 𝐾-independent samples
{

𝜻𝑘
}𝐾
𝑘=1 that obey the standard

Gaussian distribution;
(2) Generate 𝑑 independent samples 𝐮̂ =

[

𝑢1,… , 𝑢𝑑
]T, 𝐔̂1∕2 =

𝑑𝑖𝑎𝑔
(
√

𝐮̂
)

that obey an exponential distribution with 𝜆 = 1;

(3) Repeat step 2 to generate a total of 𝐾 sets of
{

𝐔̂1∕2
𝑘

}𝐾

𝑘=1
;

(4) The sampling results for the Laplace distribution are as follows:

𝐳̂𝑘 = 𝝁𝑘 +
√

2𝐔̂1∕2
𝑘

(

𝜻𝑘 ⊙
√

Σ𝑘

)

.

4.3. Procedure of MLVAER modeling

For convenience, the inferred network 1 𝑞𝜙(𝑐𝑘 |𝐱 ), inferred network
2 𝑞𝜙(𝐳 |𝐱 ,𝐮, 𝑐𝑘), prior network 𝑝𝜃(𝐳 ||𝐮, 𝑐𝑘 ), generative network 𝑝𝜃(𝐱 |𝐳 ),
and regression network 𝑝𝜃(𝐲 |𝐳 ) are denoted as 𝛱𝜙, 𝑄𝜙, 𝑃𝜃 , 𝐺𝜃 and 𝑅𝜃 .

he pseudo-code of MLVAER is shown in Algorithm 1.

Algorithm 1 MLVAER

Input: Data
{

𝐱𝑖
}𝑛
𝑖=1, 𝑘 = 1,… , 𝐾

Output: 𝛱𝜙, 𝑄𝜙, 𝑃𝜃 , 𝐺𝜃 and 𝑅𝜃

1: Initialization parameters 𝜙 and 𝜃;
2: while (𝜙, 𝜃) not converged do
3: 𝑐𝑘 = Embedding (𝑘)
4: 𝝅𝑖 = 𝛱𝜙

(

𝐱𝑖
)

5: 𝝁̃𝑖𝑘 = 𝑃𝜃
(

𝑐𝑘
)

6:
{

𝝁𝑖𝑘
}𝐾
𝑘=1 ,

{

𝜮𝑖𝑘
}𝐾
𝑘=1 =

{

𝑄𝜙
(

𝐱𝑖 ⊕ 𝑐𝑘
)}𝐾

𝑘=1
7: According to Section 4.2, we get

{

𝐳̂𝑖𝑘
}𝐾
𝑘=1

8: 𝐱̂𝑖𝑘 = 𝐺𝜃
(

𝐳̂𝑖𝑘
)

9: 𝐲̂𝑖𝑘 = 𝑅𝜃
(

𝝁𝑖𝑘
)

10: 𝐷𝑖𝑣𝑖𝑘 = log
(

𝐾𝜋𝑖𝑘
)

+‖

‖

𝝁𝑖𝑘 − 𝝁̃𝑖𝑘
‖

‖

2+2Tr (𝐈)+2Tr
(

𝜮𝑖𝑘
)

−4Tr
(

𝜮1∕2
𝑖𝑘

)

11: 𝐸𝐿𝐵𝑂𝑖 = −
𝐾
∑

𝑘=1
𝜋𝑖 ||𝐱𝑖 − 𝐱̂𝑖𝑘|| −

𝐾
∑

𝑘=1
𝜋𝑖 ||𝐲𝑖 − 𝐲̂𝑖𝑘|| −

𝐾
∑

𝑘=1
𝜋𝑖𝐷𝑖𝑣𝑖𝑘

12: The parameters (𝜙, 𝜃) are updated according to the loss 𝐿𝑜𝑠𝑠 =

−
𝑛
∑

𝑖=1
𝐸𝐿𝐵𝑂𝑖 using the gradient descent method.

13: end while

5. Experiment

In this section, the proposed model is experimentally validated by
numerical simulation experiments, Tennessee Eastman (TE) simulation
experiments [34], and laboratory small wet ball mill experiments, and
compared with the five methods. The GMR algorithm is a common non-
deep multi-mode regression algorithm; AE is a representative algorithm
for deep learning; VAE can be regarded as a probabilistic form of
AE, which is a traditional algorithm for deep probability learning;
MVAER extends the latent variables obeying Gaussian distribution to
Gaussian mixture distribution based on VAE; LVAER replaces Gaussian
distribution with Laplace distribution, and LVAER is also a special form
of the proposed method when the mode number is set to 1. In summary,
this experiment contains a comparison of the deep learning method
and non-deep learning method, the comparison of the non-probability
model and probability model, the comparison of the Gaussian distribu-
tion hypothesis and Laplace distribution hypothesis, the comparison of
the single distribution hypothesis and mixture distribution hypothesis,
which can make the effect of the model fully verified.

To evaluate the performance of the model, two metrics (root mean
squared error (RMSE) and R2 coefficient) are used to quantify the
rediction effect of the model, which are defined in Eqs. (18) and (19),
espectively.

MSE =

√

√

√

√
1

𝑁
∑

(

𝑦𝑖 − 𝑦̂𝑖
)2 (18)
𝑁 𝑖=1



Measurement 229 (2024) 114435T. Zhang et al.
Fig. 4. Schematic diagram of the distribution of the training set data in numerical simulation.
Table 2
Numerical simulation parameter settings.

Parameters input
[

𝑥1 𝑥2
]

output 𝑦

𝝅 𝝁 𝜮

k=1 0.2
[

−4 0
]

[

2 1
1 1

]

𝑦 = 1.5𝑥1𝑒𝑥2

k=2 0.3
[

2 6
]

[

1 0.5
0.5 2

]

𝑦 = 𝑥1 + 𝑥22

k=3 0.5
[

3 −3
]

[

3 −1
−1 1.5

]

𝑦 = 𝑥1𝑥2

R2 = 1 −
∑𝑁

𝑖=1
(

𝑦𝑖 − 𝑦̂𝑖
)2

∑𝑁
𝑖=1

(

𝑦𝑖 − 𝑦̄
)2

(19)

where 𝑁 is the number of samples, 𝑦̄ = 1
𝑛
∑𝑛

𝑖=1 𝑦𝑖, 𝑦̂𝑖 is the predicted
value of the 𝑖th sample.

5.1. Numerical simulation experiments

In this section, a numerical simulation with three modes is designed,
where each mode follows a different Gaussian distribution. Each Gaus-
sian component and its functional relationship with the output are
shown in Table 2.

According to the parameter settings in Table 2, 1000 samples were
generated as the training set, and 500 samples were generated as
the test set. The training set data are normalized to zero mean unit
variance, and the test set is similarly processed according to the mean
and variance of the training set. To simulate data polluted by outliers,
outliers uniformly distributed in [−2, 2] are added along each feature
and label dimension for the normalized training set. The percentages
of abnormal values were 1%, 3% and 5% of the total, respectively,
and a total of one set of normal data and three sets of polluted data
were generated. Fig. 4 plots the distribution of the training set samples
contaminated with outliers, where the red dots represent samples or
labels with outliers. From the figure, we can see that the generated
data are multi-mode and heavy-tailed.

According to the trial-and-error method, the inferred networks 1
and 2 of the proposed method are set as a single hidden layer, the
number of hidden layer units is set to 8 and 16, the latent variable
dimension is set to 2, the number of modes is set to 3, the regression
network is set as a fully connected layer, the generated network is
symmetric with the inferred network, the epoch is set to 200, the batch
6

size is set to 32, and the model with the best result in the training set
200 times is taken as the final model. The corresponding parameter
settings of other comparison methods are consistent with those of the
method proposed in this paper. The experimental results, RMSE and R2

are shown in Table 3.
For a more visual comparison of the models, histograms and line

plots of the evaluation index results for different models with different
proportional outlier disturbances are plotted in Fig. 5.

From the experimental results, it can be seen that MLVAER achieves
the best results in all cases, and LVAER is the next best. The slope of
the line in Fig. 5 shows that MLVAER and LVAER are less affected
by the outliers, and MLVAER is more robust than LVAER. The VAE
algorithm based on a Gaussian distribution of latent variables and
the MVAER algorithm based on a Gaussian mixture distribution are
more susceptible to outliers. As a deterministic modeling method, AE
is less accurate than probabilistic modeling and even inferior to the
non-deep GMR algorithm when the percentage of outliers is small. The
performance of the GMR algorithm deteriorates dramatically when the
outliers are accounted for 5%. Due to the powerful feature extraction
capability of the neural network, the upward trend of the error or the
downward trend of the R2 of the AE algorithm does not change greatly.

Fig. 6 shows the predicted curve versus the true curve when the
outliers are accounted for 3% in the total. Methods constructed based
on Gaussian or a mixture of Gaussian distributions are disturbed by
outliers that increase the variance of the Gaussian distribution, which
enhances the robustness and may significantly reduce the sensitivity of
the model to the sample, making it difficult to fit the output to the peak
data. The AE algorithm does not take into account the randomness of
the data, and the fit to the peak data is also poor. MLVAER and LVAER
algorithms introduce the Laplace distribution to model the heavy-tailed
data, which effectively reduces the interference of outliers. MLVAER
also takes into account the multi-mode situation of the data and further
improves the accuracy compared with LVAER.

5.2. TE dataset experiments

The TE process simulation platform is a common industrial process
simulation platform in the field of soft sensors. The TE process is shown
in Fig. 7. A detailed description is available in [34].

The reactor pressure and reactor level in the process have a signif-
icant impact on the production cost and are often adjusted according
to the production requirements. In this paper, the reactor pressure and
level are set according to the parameters in Table 4, and the data are
obtained for four conditions, each containing 1000 samples. From each
condition, 70% of the samples were randomly selected as the training

set, and the rest of the samples were used as the test set. The TE
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Fig. 5. Visualization comparison of algorithm performance in numerical simulation experiments.

Fig. 6. Comparison of prediction curves using different algorithms in numerical simulation experiments.

Fig. 7. Schematic diagram of the TE process.
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Table 3
Algorithm performance evaluation indicators for numerical simulation experiments.

Percentage of outliers Evaluation indicators Soft sensor algorithms

GMR AE VAE MVAER LVAER MLVAER

0% RMSE 0.1026 0.1097 0.0548 0.0483 0.0490 0.0356
R2 0.9887 0.9871 0.9968 0.9975 0.9974 0.9986

1% RMSE 0.1002 0.1215 0.0530 0.0531 0.0530 0.0340
R2 0.9892 0.9841 0.9970 0.9970 0.9970 0.9983

3% RMSE 0.1331 0.1373 0.0799 0.0843 0.0729 0.0445
R2 0.9863 0.9797 0.9931 0.9924 0.9943 0.9978

5% RMSE 0.1995 0.1327 0.0828 0.0990 0.0642 0.0588
R2 0.9572 0.9811 0.9926 0.9895 0.9956 0.9963
Table 4
Pressure and level setting values of TE reactor.

Condition Reactor pressure /Pa Reactor level /%

1 2750 65
2 2250 65
3 2250 75
4 2750 75

Table 5
Algorithm performance evaluation indicators for TE simulation experiments.

GMR AE VAE MVAER LVAER MLVAER

RMSE 0.0890 0.1400 0.0777 0.0744 0.0737 0.0555
R2 0.9922 0.9808 0.9941 0.9946 0.9947 0.9970

process has 12 manipulated variables (XMV(1-12)) and 41 measured
variables (XMEAS(1-41)), of which the measured variables contain
22 process-measured variables and 19 component-measured variables.
In this paper, the process measurement variables and manipulation
variables are used as auxiliary variables of the data-driven soft sensor
to predict component B (XMEAS(30)) to be measured.

According to the trial-and-error method, the inferred networks 1
and 2 of the proposed method are set as a single hidden layer, the
number of hidden layer cells is set to 16 and 32, the latent variable
dimension is set to 8, the number of modes is set to 4, the batch size
is set to 128, and the rest of the settings are the same as the numerical
simulation experiments.

The experimental results (RMSE and R2 coefficients) are shown in
Table 5. For a more visual comparison of the model performance,
Fig. 8 shows the histograms of the performance metrics of different
algorithms. From the figure, it can be seen that the MLVAER with
the latent variable introduced into the mixture Laplace distribution
performs significantly better than the other algorithms, and the LVAER
with the single Laplace distribution is the second best. Similarly, the
MVAER algorithm with latent variables introduced into the mixture
Gaussian distribution outperforms the VAE algorithm with a single
Gaussian distribution. GMR, as a non-deep method, cannot extract the
nonlinear relationships of the data well, and GMR uses all the features
in the prediction process and is more susceptible to outlier interference.
The AE algorithm does not consider the uncertainty of the data, and its
modeling effect is the worst.

Fig. 9 shows the plot of predicted and true values for different
algorithms, while Fig. 10 shows the scatter plot of predicted and true
values for different algorithms. From these two plots, it can be seen
that the prediction results of MLVAER are closest to the true values.
From Fig. 9, it can be seen that LVAER has a significant drift in the
third mode prediction. The prediction curves of other algorithms have
more noise fluctuations. Among them, GMR also has a large outlier in
the first mode.

5.3. Ball mill dataset experiments

Ball mills are essential crushing equipment in the process industry.
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If they cannot operate at the optimal load point, it can cause a large
amount of energy waste, and in severe cases, lead to serious produc-
tion accidents. Its process has the characteristics of high nonlinearity,
multiple outputs, and strong coupling. At the same time, its internal
environment is harsh, making it difficult to directly detect load pa-
rameters using physical sensors. Due to the widespread occurrence of
multiple operating conditions in industrial processes, there is an urgent
need for high-performance multi-mode soft sensor algorithms to predict
mill load parameters.

The key load parameters commonly used in the industry for ball
mills include charge volume ratio (CVR), material-to-ball volume ratio
(MBVR), pulp density (PD) and ball charge volume ratio (BCVR). In this
paper, a small laboratory wet ball mill with a drum diameter of 60 cm,
length of 70 cm, volume of 200L, and maximum steel ball loading of
0.6t was used for simulated operation. The mill was driven by a three-
phase motor with a power of 4 kW through a QYD-type speed reducer,
and its speed was controlled by a frequency converter. A steel ball with
a diameter of 30 mm was selected as the grinding medium to grind the
iron powder in the test, and an acceleration sensor model ULT2003V
was used to detect the vibration signal of the bearing seat. The signals
were synchronously acquired by NI’s cDAQ9184 with a sampling fre-
quency of 51.2 kHz. To facilitate the storage and monitoring of data,
Labview is used to build a data acquisition platform, and high-speed
real-time communication with cDAQ9184 is carried out through USB.
The experimental process of the ball mill is shown in Fig. 11.

To simulate the multi-working condition process in the actual indus-
try, the experiment changed the BCVR of the mill and got five different
working conditions. After Fourier transformed the collected vibration
signals, the experimental data of the ball mill’s multi-condition process
was obtained. In this paper, the Fourier-transformed features of the
bearing vibration signals are used as input to model and predict the
key load parameters (CVR, MBVR, and PD) of the mill.

According to the trial-and-error method, the inferred network 1 was
set as two hidden layers with the number of hidden layer cells set to
64 and 32, the inferred network 2 was set as two hidden layers with
the number of hidden layer cells set to 128 and 64, the latent variable
dimension set to 64, the number of modes set to 5, the batch size set
to 512, and the rest of the settings were the same as the numerical
simulation experiments.

The experimental results, RMSE and R2 are shown in Table 6. Fig. 12
shows the histograms of the performance evaluation for a more visual
comparison of the models. The scatter plots for the three major load
parameters of CVR, MBVR, and PD are shown in Fig. 13, Fig. 14,
and Fig. 15. It can be seen that MLVAER performs best among all the
algorithms, with LVAER being the next best. The scatter plot shows
that the Laplace distribution-based algorithm does not have significant
mean drift and the predictions are less noisy and closer to the true
values than the other algorithms. GMR is the worst performer in dealing
with high-dimensional nonlinear data such as ball mill data because it
does not have feature extraction and nonlinear modeling capabilities.

Based on the above experimental analysis, the proposed method
MLVAER and its special form of single Laplace distribution LVAER are
significantly better than other comparison algorithms in dealing with
nonlinear and outliers. Among them, the accuracy of MLVAER is further
improved based on LVAER by considering the multi-mode of the data.
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Fig. 8. Histograms of performance indicators for different algorithms in TE experiments.
Fig. 9. Comparison of prediction curves using different algorithms in TE simulation experiments.
Fig. 10. Scatter plot comparison of prediction results of different algorithms in the TE simulation experiment.
6. Model complexity analysis

In this section, MACs (Multiply-Accumulate Operations) and Params
(Parameter Quantity) are used to measure the time complexity and
space complexity of the model, respectively. Where 1 MACs contains
9

a Multiply-Accumulate Operation and an Additive Operation, while
Params denote the parameter quantity of the model. When calculating
MACs and Params, the structure of the model adopts the same settings
as the experiments on the TE dataset, and the size of the input matrix
is set to 100 × 30. In addition, to better compare the computation time
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Fig. 11. Schematic diagram of the experimental process of the ball mill.
Table 6
Algorithm performance evaluation indicators for ball mill experiments.

Load parameters Evaluation indicators Soft sensor algorithms

GMR AE VAE MVAER LVAER MLVAER

CVR RMSE 0.2454 0.1091 0.1075 0.1306 0.0934 0.0837
R2 0.9398 0.9881 0.9884 0.9829 0.9913 0.9930

MBVR RMSE 0.2990 0.0981 0.0959 0.0916 0.0795 0.0737
R2 0.9106 0.9904 0.9908 0.9916 0.9937 0.9946

PD RMSE 0.1922 0.1192 0.1216 0.1309 0.1150 0.0987
R2 0.9630 0.9858 0.9852 0.9829 0.9868 0.9903
Fig. 12. Histograms of performance indicators for different algorithms in ball mill experiments.
Table 7
Complexity and accuracy of the model.

Metrics AE VAE MVAER LVAER MLVAER

MACs 2.4400e+05 2.6960e+05 8.1419e+06 3.2940e+05 1.1739e+06
Params 2.5430e+03 2.8070e+03 8.8160e+03 3.4400e+03 3.4910e+03
Train Time 26.5488 33.4180 95.1792 53.8783 109.1532
Test Time 0.0073 0.0094 0.0193 0.0149 0.0175
RMSE 0.1400 0.0777 0.0744 0.0737 0.0555
of the model in the real case, this section compares the running time of
different models in the training and testing phases using the TE dataset
as an example, and the RMSE of the model is also given as a reference.
The specific results are shown in Table 7.

To compare the differences between different models more intu-
itively, this section normalizes the different metrics and plots them
in the form of radar charts, as shown in Fig. 16. The closer the
model metrics are to the center point location that their correspond-
ing performance is better. From the figure, it can be seen that the
mixture models MLVAER and MVAER take longer time to train and
test compared to other models, and the time complexity and space
complexity of the models is also higher. However, the time complexity
10
and space complexity of MLVAER is much smaller than that of MVAER.
This is mainly because MVAER builds a separate neural network for
each distribution, which results in redundancy of the network, while
MLVAER simplifies the network by changing the inputs of different
category variables to realize different distributions corresponding to
different outputs. Studies have shown that the shallow layers of neural
networks are mainly used to extract some generalized features, and
the last layers are related to the task. The structure of the proposed
algorithm and the comparison algorithm in this paper can be regarded
as the last layers of the network that are related to the task, and thus do
not bring excessive computational burden due to the structural problem
when the data dimensions are higher and the model is more complex.
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Fig. 13. Prediction results of CVR in ball mill experiments.

Fig. 14. Prediction results of MBVR in ball mill experiments.

Fig. 15. Prediction results of PD in ball mill experiments.
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Fig. 16. Histograms of performance indicators for different algorithms in TE
xperiments.

n terms of testing time, the mixture algorithm, although slower than
he other algorithms, runs within a reasonable range. In terms of model
ccuracy, the proposed algorithm has the smallest RMSE, which is
ignificantly better than other algorithms.

. Conclusion

Aiming at nonlinearity, multi-mode, and the data heavy-tailed prob-
em caused by outliers contamination widely existing in the industry,
his paper proposed a multi-mode industrial soft sensor method based
n a mixture Laplace variational auto-encoder. The method introduces
type-II multivariate Laplace distribution for robust modeling of pro-

ess noise containing outliers. Each marginal distribution of the type-II
istribution can have different heavy tails so that the model based on
he assumption of this distribution has higher degrees of freedom than
hat based on the assumption of the traditional multivariate Laplace dis-
ribution with the same network structure. Extending it to the mixture
orm can cope with more complex data distribution scenarios in the
ndustry. Compared with the method based on Gaussian distribution,
he proposed method not only breaks the limitation of single-peak
istribution, but also is less susceptible to the interference of outliers,
nd can more effectively extract the potential features of complex
ulti-mode data affected by outliers. The experiments show that the
roposed method can provide better prediction results compared with
ther methods.

As a deep probabilistic learning method, the proposed method still
as much room for research in dealing with dynamic problems, missing
ata problems, and semi-supervised problems with insufficient labels,
hich are common in industry. In addition, the method proposed in this
aper is a universal framework, and its application is not limited to the
ield of soft sensors. For example, changing the neural network section
o Convolutional Neural Network (CNN) can be used for processing
omputer vision or image recognition tasks, while changing it to Long
hort Term Memory Network (LSTM) can be used for time series pre-
iction tasks. Due to the fact that the method proposed belongs to the
enerative model, it can theoretically also be used for generative tasks.
herefore, the method still needs further exploration and research in a
ider range of applications.
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