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Abstract
Airborne wind energy (AWE) is a wind energy technology in the development phase con-
sisting of tethered kites that reach high altitudes consisting of relatively stable wind speeds.
While no company has yet reached the point of commercial viability, a variety of AWE tech-
nology concepts and designs have been under development and are currently at low- to
intermediate technology readiness levels. When AWE systems are grid-connected a power
smoothing element is needed to smooth the oscillating power output of the system for
the grid. This oscillation is the result of the tethered kites operating in a pumping cycle
consisting of a phase where the tether is reeled out, producing electricity, and a phase
where the tether is reeled in, consuming a small amount of electricity. This fluctuating
electricity output requires smoothing to comply with the ramp limits of the grid, which
define the system design of the storage element used for this application. In this thesis, a
framework for modeling a grid-connected hybrid power system (HPS) consisting of AWE
and batteries participating in the day-ahead market (DAM) has been developed in the
MATLAB environment. The framework incorporates an existing AWE performance and cost
model with power smoothing performance, battery degradation, and DAM storage arbi-
trage. Multiple use case scenarios are evaluated to test the economic performance of mul-
tiple configurations of the HPS. These scenarios are; an AWE system with an ultracapacitor
(UC); an AWE system with batteries; a battery system operating in DAM arbitrage and an
AWE system with batteries operating in DAM arbitrage. The configurations were evaluated
using multiple performance metrics, primarily the internal rate of return (IRR) as a metric
for economic performance.

Power smoothing requires high power output and due to the nature of battery technology,
a battery system sized for that power output results in a certain over-sizing factor in terms
of energy capacity. Simulations of the HPS performance with a battery smoothing system
were used to identify the quantity of excess storage capacity present. A simulation of the
HPS participating in storage arbitrage was then used to determine the economic viability
of using the battery system for both power smoothing and arbitrage. The arbitrage behav-
ior of the storage system was determined by a heuristic selling logic model developed to
simulate the combined use of a storage system for power smoothing and arbitrage. The
arbitrage logic is based on price volatility and power smoothing constraints. The arbitrage
behavior was set to trade energy at high/low price points of the DAM taking into account
the trade-off between profit and excessive use of the battery resulting in increased battery
degradation. Integration of the AWE-produced energy and the discharged battery energy
sold on the DAM, the profitability of all use cases defined by the scenarios was assessed
and compared.

Simulation of the UC and battery power smoothing configurations showed the performance
and the costs associated with each storage technology type. The battery power smoothing
system resulted in significantly lower system cost overall and consequently an increase in
profitability (IRR of 12.37%) compared to the more expensive UC power smoothing con-
figuration (IRR of 10.20%). The battery system operated in DAM storage arbitrage showed
a negative profit, concluding that at the battery price point and DAM simulated, the arbi-
trage revenue is significantly lower over the lifetime than the initial and operational costs.
The HPS configuration with batteries used for power smoothing combined with arbitrage
showed a marginal increase in economic performance with an IRR of 12.43%. This showed
a potential value increase of the system when using excess capacity arbitrage but not at a
significant rate. Lower battery prices and more optimal arbitrage operation could increase
the added value further.

Keywords: Airborne wind energy (AWE), hybrid power systems (HPS), power smoothing,
day-ahead market (DAM), system design, battery arbitrage
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1| Introduction

1.1. Background

There is a global effort to mitigate greenhouse gas (GHG) emissions and reduce global
warming. Energy use is responsible for most of the global greenhouse gas emissions, there-
fore a transition of the global energy system is of the utmost importance. Mitigating GHG
emissions can be achieved by transitioning to higher shares of renewable energy (RE) and
phasing down fossil fuel-based energy [7]. The problem with phasing down fossil fuel gen-
eration and replacing it with renewable generation is that this generation is susceptible
to intermittency and therefore requires creative solutions to replace the phased-down
fossil fuel-based generation. One of these solutions is combining different RE sources in
a Hybrid Power Plant (HPP), a mix of generating technologies that can potentially trans-
form the nature of variable renewable technologies by combining individual strengths and
weaknesses [8]. These combinations of one or more renewable sources and a possible stor-
age system are one way to diversify the renewable energy portfolio that helps avoid the
intermittency created by the power sources. Distribution of the renewable capacity among
different technologies will smooth the aggregated renewable output [9]. The effectiveness
of the distribution depends on how complementary the technologies are. Including vari-
ous renewable power production in the portfolio provides a more stable combined output.
Airborne Wind Energy (AWE) could provide this energy diversification due to its versatility
and adaptability. AWE is a wind energy concept that uses tethered kites to capture more
stable wind resources at variable and higher altitudes.

AWE is an emerging wind energy technology [10] still in the early development phase.
AWE systems operate at higher altitudes than conventional wind turbines (100 − 500me-
ters) [10]. Due to this higher operating altitude, the tethered kites experience more con-
stant and stronger wind speeds than turbines at lower altitudes. In addition to the capabil-
ity of flying at higher speeds the AWE systems can also vary the height of operation to the
optimal point, resulting in less variable energy production compared to conventional wind
energy technologies [11]. The dominant form of onshore and offshore wind energy is the
horizontal axis, three-bladed turbine. Many turbine types have been commercially viable
for a long time and are installed in great capacity globally [12]. A comparison of the two
main AWE concepts and a conventional wind turbine can be seen in Figure 1.1.
Several types of AWE systems are in development today, the main difference between
them being the kite and generation types [13]. The twomost researched kite types are
fixed-wing and soft-wing kites, which can be seen in Figure 1.1. The other main distinc-
tion is the generation type, whether energy is generated at the ground or the kite. Both
these concepts rely on crosswind flight operation and were first described by Loyd [14].
Fly-generation systems have a generator located at the kite that directly converts aerody-
namic energy to electrical energy that is transmitted down through the kite. For ground
generation systems, a tethered kite flies crosswind patterns while unwinding a winch at
the ground. A generator connected to the winch produces energy while the tether is wind-
ing out, this is called the reel-out phase. When the tether reaches its limit, the kite glides
down and the tether reels in. During this reel-in phase, the generator consumes energy.
These two phases are the pumping cycle [15].

The reeling phases of the pumping cycle with their corresponding power output can be
seen in Figure 1.2. The tethered kite operates at varying altitudes, alternating between
reeling out the kite, producing mechanical power, and reeling in the kite, requiring me-
chanical power. The kite is flown in crosswind maneuvers in the reel-out phase to maxi-

1



1.1. Background 2

AWE Fixed-Wing Horizontal axis wind turbineAWE Soft-Wing

100 - 500 m

100 m

Figure 1.1: Comparison of two ground-generation AWE types and horizontal axis
wind turbines indicating operating altitudes

mize the power to the generator. During reel-in no maneuvers are performed, instead, the
kite is flown to a minimal tether length to require the least amount of energy. As such the
reel-in phase consumes only a small fraction of the energy generated during the reel-out
phase [15]. The variable energy within the pumping cycle results in oscillating power, to
supply energy to the grid that oscillation requires smoothing. Power smoothing is the ap-
plication of a storage component for providing a constant power output to the grid regard-
less of fluctuations that occur during cycle operation.

Reel-out phase

Reel-in phase

P

P

t

t

Wind

Energy production

Energy consumption

Figure 1.2: Overview reeling phase and power output relative to cycle average.

When considering renewable technologies for energy production the advantages of AWE
over conventional wind turbines could prove beneficial in energy generation portfolios.
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The high and adjustable operating range provides access to a wide range of wind resources,
the small foundation and portable nature of the system lead to flexible implementation
and the system is suitable for a wide range of applications. This capture of wider wind re-
sources can be valuable in a HPS as these aim to balance the strengths and weaknesses
of generation sources to provide constant energy production. That same constant produc-
tion improves profitability in electricity markets as this depends on providing energy that is
predictable and controllable [16].

As shares of renewable energy sources (RES) on the electricity grid increase, the flexibility
of the grid decreases. This is due to fossil-fuel-based power plants such as gas and coal
power having the ability to scale their output or dispatch of power. Since RES are not able
to do this and on top of that as susceptible to variable resources, reliable electricity supply
is harder. Energy storage, such as lithium-ion batteries, is a source of flexibility that can be
implemented on the electricity grid. Beyond storage by itself, there is an increased benefit
when combining storage with RES, as this can increase the reliability of the energy supply
without further stress to the transmission system [17]. The combination of RES power and
storage technologies is a hybrid power system (HPS), defined as a combination of one or
multiple RES components, such as wind or solar PV energy, and often a storage technol-
ogy. An overview of an example hybrid power system configuration can be seen in Figure
1.3. Many different configurations exist, as a HPS can be any combination and be config-
ured off-grid or grid-connected.

Wind Energy

Battery storage

Solar PV Energy

Grid

Figure 1.3: Overview components and configuration of grid-connected hybrid
power plant

When energy production plants are connected to the grid and participate in electricity
markets they are exposed to fluctuating prices. The profit of the plant depends on how
well the market value of energy can be captured. An example of one electricity market,
the day ahead market (DAM) prices are seen in Figure 1.4. These DAM prices clearly show
the dynamics at play when selling energy in this market. The price fluctuation is signifi-
cant throughout the day, resulting in hours at which energy is produced varying in terms
of the market value that is captured for this energy. Due to this many renewable energy
technologies are combined with storage systems to improve stability of output and adjust
the moment when energy is supplied to the grid. The types of storage applications for this
combination are explained further in Chapter 2. The use of storage to shift the moment of
dispatch away from the moment of generation is considered energy arbitrage. This arbi-
trage using storage components of HPPs has been proven to improve revenue-generating
capabilities [18]. The extra revenue this generates depends on electricity market dynamics
further explained in Chapter 2.
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Figure 1.4: Example of DAM price for the NL bidding zone on 20-10-2024 [1].

The basics of arbitrage revenue are the storing of energy at low electricity prices and sell-
ing at high prices. The revenue is largely based on the volatility of the price, where higher
price fluctuations allow for higher revenues. An intuitive example of how this works is stor-
ing energy generated by solar PV at noon during the day and selling it at night. During the
point of high PV generation, the prices will be lower due to an excess of generation and at
night the prices will be higher due to higher energy demand for lighting and appliances.

This research aims to model a grid-connected AWE-HPS participating in the electricity
market and evaluate the results. The model is made using MATLAB and is used to evaluate
the economic performance of the AWE-HPS for different configurations under a certain
wind andmarket price environment. Performance metrics describing the cost, profit, and
return on investment are calculated to compare the different configurations and assess
the market value of each system. An example overview of a grid-connected ground-gen
fixed-wing AWE-HPS is shown in Figure 1.5.

Figure 1.5: Example of AWE-HPS combining pumping cycle AWE with battery
storage.
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1.2. Motivation and aim

Looking at the developments discussed in this chapter, the area of interest for this research
is the market value maximization of grid-connected ground-gen AWE systems combined
with a storage component. The AWE system’s ability to capture consistent wind resources
and the opportunities of storage arbitrage point to a need to investigate the profitability
of such a system. In this research, the ground-generation fixed-wing AWE system is used
combined with the market and wind environment of a particular region in the Nether-
lands. The concepts and developments researched are valid across multiple contexts how-
ever and as such the lessons learned in this research are applicable universally.

This research aims to assess the economic performance of a ground-gen fixed-wing AWE
system in grid connection and identify opportunities to increase the value of the system in
this grid-connected context.

Problem analysis and formulation of a research question will stem from a literature review.
After this, the research approach is carried out. The required background for this research
is based both in understanding the AWE and storage technologies as well as the workings
of electricity markets and battery arbitrage. The literature review focuses on these aspects.

The report will be presented in the following structure:

• Chapter 2 is the literature review, describing both the background knowledge that
is the context of this research and an analysis of the problem by defining the gaps in
current research.

• Chapter 3 is about the model developed to answer the research questions.

• Chapter 4 is about the scenarios applied to the developed model to answer the re-
search questions and what analysis using these scenarios shows. The results of the
simulated scenarios are then discussed.

• Chapter 6 is about the answer of the research question gained through the applica-
tion of the developed model, ending in recommended further research.



2| Literature Review

This literature review was conducted to gain knowledge on multiple dimensions of research
that underline this thesis topic. Exploration of the background knowledge needed to be
able to conduct research on the goals set is summarized in Section 2.1 to 2.3. This explo-
ration will include the state of the art of research relevant to the research goal of this thesis.
Section 2.4 includes an evaluation of the areas not covered by present research, the formu-
lation of the research question, and finally the approach set for this thesis to answer the
research question.

2.1. Airborne Wind Energy

The most commonly studied AWE concepts are ground-gen pumping kite power. Most
research is focused on off-grid systems that exclude the power fluctuation effect on the
supplied power. Research on power smoothing solutions for AWE systems has been con-
ducted for fixed-wing AWE systems, therefore this thesis considers fixed-wing ground-gen
pumping cycle AWE systems.

2.1.1. Pumping cycle

Wind energy has been around for a long time, with large utility-scale horizontal wind tur-
bine plants existing all over the globe. These turbines capture wind energy at heights around
100meters and represent large shares of the renewable portfolios of many energy sys-
tems. This wind energy technology has evolved with many innovations aimed at maximiz-
ing the energy yield at their hub heights by controlling the power output through system
design and control innovations [19]. Airborne Wind Energy is a new emerging technology
that aims to capture more stable winds at higher altitudes. AWE systems can adjust the
operation height for the varying wind speeds allowing the kite to operate at the optimum
altitude andmaximize the potential energy yield [10]. Besides the ability to capture wind
energy at variable and higher altitudes the AWE systems also potentially require less mate-
rial and footprint than wind turbines. The construction of both the kite and the foundation
need less material, due to fewer moments and forces being exerted on the system [20].

The main concept of AWE is the ground-generated pumping cycle system. In this AWE sys-
tem, a tethered kite operates at varying altitudes, alternating between reeling out the kite,
producing mechanical power, and reeling in the kite, requiring mechanical power. The
reeling phases with their corresponding power output can be seen in Figure 1.2, located
in Section 1.1. The variable energy output within the pumping cycle results in oscillating
power, to supply energy to the grid that oscillation requires smoothing. Power smoothing
is the application of a storage component for providing a constant power output to the
grid regardless of fluctuations that occur during cycle operation. This AWE cycle operation
can be described using the power profile, which consists of the cycle average, the peaks,
and the reel-out and reel-in phases. These power profile aspects define the required power
smoothing and depend on the wind speeds. The function of the power smoothing com-
ponent is to provide constant power to the grid at every wind speed by maintaining the
net cycle average to the grid. The power smoothing component is connected between the
AWE system and the grid connection [2]. A representation of the pumping cycle energy
relative to the net average output can be seen in Figure 2.1. The pumping cycle reeling en-
ergy levels depend on the wind speed, as does the cycle average.

6
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Figure 2.1: Intermediate storage charging and discharging energy areas [2]

Research into the value of AWE-produced energy requires simulation of power output
using an AWE power profile. On top of that research into additional value that can be ex-
tracted from a power-smoothing storage component requires simulation of the power
smoothing profile. These simulated properties can be determined using a model that com-
putes fixed-wing AWE system output. The model used in this thesis is developed by Joshi
et al [21], which provides estimations of the net power output of a fixed-wing AWE system.
Based on a multitude of inputs that can be set for any number of system properties, the
power output of the system is determined. This model simulates a kite as a point mass op-
erated in circular flight maneuvers while reeling out the tether. This operation is divided
into segments where for each segment the cycle power is maximized by optimising the
operational parameters. These parameters are defined by the kite, tether, and drivetrain
properties. This cycle power is used to determine the power output for a wind environ-
ment and the reeling power used to obtain this power output. The power output provides
an AWE system power curve that can be used to calculate the energy yield for a wind en-
vironment. The reeling power at each wind speed can be used to determine the required
power and energy for smoothing the oscillating AWE output for connection to the grid.

The AWE performance determined by the performance model developed by Joshi et al
[21] can be combined with an AWE cost model developed by Joshi and Trevisi [22] to de-
termine the cost associated with the energy yield. This cost model uses parametric costs
that estimate capital expenditures (CapEx) and operational expenditures (OpEx) associ-
ated with each component of the defined airborne wind energy system. The cost model
take into account a power smoothing component for grid-connection, in this research that
component was excluded. By excluding this cost component the model developed in this
thesis could determine power smoothing sizing and cost to be able to compare the cost
and sizing of different storage technologies.

2.1.2. Power smoothing storage

The previous section described the AWE pumping cycle and the corresponding power pro-
file. An intermediate storage component is needed to supply a stable power output to the
grid. To use electrical storage technologies for this function, the mechanical power trans-
mitted from the tether to the winch needs to be converted using a generator. The elec-
trical power can then be smoothed before being supplied to the grid. This configuration
of electrical power smoothing of an AWE system can be seen in Figure 2.2. In a techno-
economic analysis of different storage technologies that can be used for power smoothing,
Joshi et al [2] conclude that electrical ultracapacitors are the best technology to be used
for smoothing.

The electrical power smoothing utilizing ultracapacitors is efficient due to the high power
output at low installed capacities. However, due to the high cost of these systems, it was
deemed interesting to investigate the possibility of using a battery system for electrical
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Figure 2.2: Electric power smoothing solution configuration [2]

power smoothing. To understand the storage technology requirements and performance,
certain storage aspects need to be understood. These include the C-rate, response time,
cycle lifetime, self-discharge, and round-trip efficiency. All these aspects will be described
and the corresponding specifications for ultracapacitors and batteries provided. The at-
tributes of both these technologies are described in Table 2.1.

Capacitors can store and release energy through chemical processes, these capacitors
are often referred to as supercapacitors or ultracapacitors (UCs). The principle of UCs is
the electric double layer, where charge separation exists at the interface between a solid
electrode and the electrolyte. UCs are used because they have high power density (500
− 5000W/kg), long cycle time (> 105 ), high efficiency (85 − 97%), fast response speed (<
5 ms), and a long lifetime (about 40 years), and short charging time. However, the draw-
backs of UCs are a high self-discharge rate, high capital cost, and low energy capacities
[23].

Batteries are long-term energy storage devices, the most widely used and researched of
these are Li-ion batteries. Rechargeable batteries operate by an anode that provides elec-
trons and a cathode that absorbs electrons. A separator insulates between the anode and
cathode. An electrolyte is responsible for transporting electrons between the cathode and
the anode. The advantages of batteries are high energy density (80 − 200Wh/kg), high
power density (500 − 2000W/kg), long cycle life (103 - 104 cycles) and low self-discharge.
But the corresponding cyclic depth-of-discharge (DoD) can result in low system lifetime
[23].

The main difference between UCs and batteries is the cost per installed capacity and the
ratio between the installed capacity (kWh) and the rated power output (kW). The capital
cost of UCs are in the range of 60 000 €/kWh [24], while batteries could potentially be
produced at 130 - 220 €/kWh in the near future. The ratio is called the C-rate of a storage
technology, the inverted is also often referred to as the duration of the storage technology.
The duration of storage is the length of time a storage system can generate at full output
before needing to recharge [25]. Within these defined specifications the duration of a bat-
tery at an equal capacity and power would be one hour. This one-hour duration is derived
from a full 1 kWh capacity being discharged in one hour at 1 kW output. The C-rate of this
same battery would be one, as the ratio of energy capacity over power output is one. Bat-
tery systems can be built at varying C-rates but often exist in the range of 0.1 − 2 C. Ultra-
capacitors have significantly higher C-rates at near 200.

The round-trip efficiency of a storage technology is the energy supplied by the storage de-
vice during discharge divided by the energy provided during the charging [6]. This defines
the value that can be gained from storing energy since a lower round-trip efficiency lowers
the energy that is usable after storage. Alongside the efficiency of cycling through the stor-
age, another metric is the self-discharge rate. This is defined as the percentage of capacity
that is lost in the system over a day. For rechargeable batteries, the round-trip efficiency
is often in the range of 90 – 97% and the self-discharge rate is at 0.1 − 0.3 %. This makes
batteries suitable for long-term storage. UCs have efficiencies of > 97%, but self-discharge
rates of 5 – 40% per day, making UCs less suitable for long-term storage.

Response time (RT) or ramp rate is the time that a storage system takes to go from rest to
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rated output power level. Faster ramp rates correspond with lower response times and a
lower response can lead to more value, depending on the application. Response time is
mainly determined by inverter selection and storage system design. If low response times
are critical to the desired operation, a system design and inverter can be chosen that can
respond at the desired rate [24]. Depending on the system design both battery system
and UC systems can achieve response times <5 ms [23].

The lifetime of a storage system is defined by both possible full load cycles and possible cal-
endar years. Calendar life is defined as the years a storage system can be operational with-
out degradation due to cycling being taken into account. Cycle life is defined as the full ca-
pacity charge-discharge cycles the system can run in its useful lifetime, defined by the life-
time until the useful capacity is 80% of the original capacity. For a storage system under a
certain cycling operation, the lifetime is defined by either the cycle- or calendar lifetime de-
pending on which limit is reached first. A significant amount of full-load cycling will lead to
an actual lifetime that is significantly shorter than the calendar life [6]. UCs have very high
calendar and cycle lifetime at 16 years and 106 cycles [24]. In the case of batteries, the cal-
endar lifetime is 10 years, while the cycle lifetime is in the range of 103 - 104 cycles [23].

Attribute Description UC Batteries

Cost Capital cost per unit capacity 60 k€/kWh 130 - 220 €/kWh

C-rate Ratio power over energy 𝑃/𝐸 200 1

𝑁cycles Lifetime in full load cycles > 105 103 - 104

𝑁years Lifetime in calendar years 16 10

RT Potential response time <5ms <5ms

𝜂 Round-trip efficiency > 97% 90 – 97%

Table 2.1: Comparison of attributes of electrical storage technologies

The use of UC technology in its application of power smoothing AWE produced energy has
been researched and proven in previous research [2]. The use of batteries for this same
application could provide the potential for additional value to the system due to the at-
tributes described in Table 2.1. The feasibility of the use of batteries depends on the grid
requirements for power smoothing, these are described further in Section 2.2.2. The addi-
tional value of the battery system depends on the market dynamics that allow value addi-
tion through storage capacity, these dynamics are described further in Section 2.3.2.

2.1.3. Market value of Airborne Wind Energy

The pumping cycle operation has been proven to work and generate energy, however no
commercial models yet exist to prove the commercial viability. In a study on the state of
the art for niche wind energy technologies at lower technology readiness levels (TRL), an
assessment was made for AWE. As of 2023, they found AWE to be at TRLs ranging from
three to five, generally considered the discovery and development phase [12]. TRL three
is considered as the level where the concept has been proven, TRL five being the level at
which the technology is validated in the relevant environment [26]. The next phase after
this would be the deployment phase, where commercial models of the technology are im-
plemented.

Given the current state of AWE technology, research is currently focused on modeling AWE
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systems and building prototypes. In terms of researching the technology diffusion of AWE,
a study that modeled scenarios for the development and market growth of AWE showed
a substantial decrease in AWE cost in the future [3]. This study concludes that the levelized
cost of energy (LCoE) of AWE will end up at a lower cost point than onshore wind energy,
as can be seen in Figure 2.3. These projections are based on several assumptions, how-
ever, such as the growth evolving similar to the historical growth of established wind tech-
nologies. The cost model described in Section 2.1.1 computes the LCoE of a 100 kW fixed-
wing AWE system at current cost levels to be 158 €/MWh, significantly higher than the
LCoE levels shown in Figure 2.3. The LCoE does not factor in the value of the generated
electricity quantified by the electricity price and is therefore not the only metric to research
when determining the value of AWE-produced energy.

Figure 2.3: Average LCoE of AWE and onshore wind turbine technologies [3]

Studies exist on the added value of commercial AWE to the electricity system. Malz et al
[27] created a framework for including the effect of varying market electricity prices in as-
sessing AWES performance. Using the framework, the marginal value of an incremental
increase in AWE share of the electricity system is calculated. This marginal value repre-
sents the change in electricity system costs whenmore AWE is included in this system.
This study concluded the increased AWE share will not increase the overall wind energy
share, showing the value of AWE is highest when replacing wind turbines. The concluding
added value of AWE that was found is based on an AWE LCoE of 35 - 45 €/MWh. The anal-
ysis done in this study shows there is economic value to AWE commercial models as a part
of the electricity system. The LCoE connected to this value, however, is significantly lower
than the current cost models.

Considering one of the advantages of AWE is the portability and scale-ability of the sys-
tem, one study focused on the optimal sizing of a HPP using AWE for off-grid applications.
Reuchlin et al [28], developed a model that determines the optimal sizing of AWE, solar
PV, batteries, and diesel generators by optimizing for the lowest overall LCoE. This study
concluded an added value of AWE due to the lower battery requirement needed to supply
a load. The framework does not include scenarios of grid-connection and as such does not
show the added value of AWE for a system exposed to price fluctuation.

Another use case based on the portability and low overall mass of AWE systems is harvest-
ing wind energy on Mars, researched by Schmehl et al [29]. This research analyses the per-
formance of a combination of AWE, solar PV, and short-term battery storage to power a
subsurface Mars habitat. The Mars AWE-HPP was proposed by Ouroumova et al [30], in
an aerospace engineering design synthesis exercise at the TU Delft. The proposed HPP
was further studied for feasibility by Rodriguez [31], who implemented a QSMmodel to
more accurately determine the potential. In this AWE-HPP, intermediate storage was in-



2.1. Airborne Wind Energy 11

cluded for power smoothing but not used for additional storage capacities. The system
was scheduled for an operation that optimally uses AWE and solar PV energy to supply the
habitat demand. Different system design configurations showed the effect of using multi-
ple smaller AWE systems in phase-shifted operation, reducing the required intermediate
storage for buffering AWE output.

The potential value of AWE compared to wind turbines was researched by Vos et al [32].
They found that onshore AWE outperforms conventional onshore wind due to higher wind
resource availability and the AWE generation profile. The AWE generation profile was found
to sometimes complement conventional onshore turbines, showing the potential of com-
bining these wind energy technologies. The main limiting factor for deployment of AWE
on a large scale was found to be the achievable power density per ground surface area.
Considering the AWE system costs and learning curve of 3% used in the analysis, it is possi-
ble that AWE deployment could become competitive in the energy sector in the 2030s.

Joshi [33] researched the system design and revenue generation of Airborne wind energy
in his 2020 thesis. Using ERA5 wind data en ENTSOE DAM price data (both at a resolution
of 1 hour) the effect of wind conditions on DAM prices was analysed for three locations.
The effect of different performance metrics (LCoE, NPV, LRoE) on the system design of an
optimal AWES is significant, showing the case for value-driven design when participating
in the DAM.

The commercial viability of AWE systems is hard to determine due to the phase the tech-
nology is currently in. Most energy yields reported for AWE are simulated potential yields.
Due to this fact, the actual system design and costs of commercial models are as of yet
uncertain. The research on commercial viability relies on either using current prototype
model costs with the application of a learning curve on the associated costs or using pro-
jected future costs on a component level. The application of a learning curve has been
done by Reuchlin et al [34]. In this research, the costs of a specific Kitepower model were
taken and a learning curve similar to the historic learning curve of horizontal wind turbines
was applied.

Joshi and Trevisi [22], developed parametric cost models aimed at estimating capital (CapEx)
and operational (OpEx) expenditures associated with each AWE system component. These
cost models were created using contributions from AWE companies, tether and ground
station manufacturers, suppliers, and university research groups to provide input. These
contributor inputs were combined with publicly available reports and articles to ascertain
cost references. These costs represent current system costs and commercial performance
is subject to AWE technology policies such as Feed-in-Tariffs (FIT) in terms of potential rev-
enue.
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2.2. Hybrid Power Systems

Hybrid power systems exist in different configurations and sizes and offer several advan-
tages to separate energy systems. The advantages of output stability and its effect on eco-
nomic performance and considerations are addressed in many studies. Many of the ex-
isting installed HPPs include storage systems for optimal dispatch, these storage compo-
nents serve multiple purposes in a HPP.

2.2.1. Hybrid Power Profitability

Traditionally, in a power system dominated by fossil fuel-based energy production, the
power output is directly related to the fuel used. Shifts in required energy can easily be fa-
cilitated by increasing the fuel consumed. In a power system with high shares of renew-
able energy, the power is related to natural resources such as sunlight and wind speed
and as such can not be influenced to produce more energy to meet demand. The effect
of RES share in the global energy system in terms of intermittency can be seen in Figure
2.4. This figure shows the research by Mulder et al [4], where the effect of intermittent en-
ergy sources was analyzed and the need for storage quantified. The daily and seasonal mis-
match between energy generation and demand were simulated.

Figure 2.4: Estimated output per day of wind and solar power in the months of the
years indicated [4].

Intermittency has resulted in a lot of studies and applications for storage systems that can
provide the inertial response (IR) that renewable power cannot provide inherently. This is
why many RES power plants are combined with storage capacity to provide a more stable
plant output to the grid. A HPP is a combination of one or more renewable energy sources
and usually, but not always, a storage system. Value synergy between the sources and stor-
age can than be attained, in terms of shared and stable, and predictable output on a plant
level.

HPP research generally focuses on the profit of the plant to assess the added value of com-
bining or co-locating the different sources. The value of co-location depends on the anti-
correlation between renewable sources which determines the capacity factor of the whole
plant. There is value in the stable dispatchability of a power plant. The different HPS types
can be seen in Figure 2.5, these combinations represent the additional values synergy
they can provide. Wind and solar PV can complement the energy yield of each other, while
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storage components can store that energy yield for later moments, shifting the dispatch
over time. For the storage component of a HPP the value lies in the added value of shifting
energy temporally. The value of shifting energy over time can be internal or external, by ei-
ther storing energy to discharge at moments of higher prices or to improve the stability of
the plant [16].

(a)

(b)

(c)

(d)

Figure 2.5: Possible grid-connected HPS configurations: (a) Wind + PV + Storage, (b)
Wind + Storage, (c) Wind + PV, (d) PV + Storage.

To research the impact on grid connection and infrastructure use of hybrid power plants,
Vattenfall has built a HPP in the Netherlands, at Haringvliet. A picture of the Haringvliet
HPP can be seen in Figure 2.6. Operational since 2021 it consists of 22 MW of wind en-
ergy, 38 MW of solar PV energy, and 12 MWh of battery storage. Its operation is evaluated
for the production time, to review the increased flexibility due to co-location [35]. Thus far
they have found a reduction in the costs of the combined operation compared to separate
plants, due to utilization of shared grid connection and control. Additional revenue is possi-
ble since the HPP is less dependent on subsidies to participate in markets [5].



2.2. Hybrid Power Systems 14

Figure 2.6: The Haringvliet hybrid power plant, operated by Vattenfall [5]

Modeling the economic performance of a HPP depends on multiple factors, such as which
markets the plant operates in and how profit is modeled. Zhu et al [36] researched HPP
profitability and found that perfect forecast assumptions impact the modeled profit sig-
nificantly. Perfect forecast assumption is explained further in Section 2.3. A lot of value in
HPP configurations with storage lies in the storage system’s ability to compensate for er-
rors made in the predicted output of the renewable produced output. Zhu et al found that
wind forecast errors affected the HPP profit a lot more than the market price forecast. This
shows an opportunity for HPP storage components to gain profit from imbalance resolu-
tions in high wind power penetrated bidding zones.

Dykes et al [16] have researched the opportunities for renewable hybrid power plants and
their participation in several market types. They find that combining different variable en-
ergy sources and storage technologies increases both the overall revenue in trading pro-
duced electricity and the ability to participate in capacity markets due to the stability pro-
vided. The effect of renewable energy moving to subsidy-free operation affects HPP par-
ticipation in different markets were analyzed. Several market archetype scenarios that are
shown describe that sizing of the HPP system varies significantly based on the market con-
text applied.

The growth of renewable energy production and the increased focus on hybrid power plants
have resulted in several studies that focus on HPPmarket interaction and profitability. These
studies involve either the combination of wind and batteries or wind, solar, and batteries.
While the motivation and goals are often aligned, the methods tend to differ. Since there
are several methods to assess both economic profitability and technical potential, these
studies show the possibilities in assessing market interactions of HPPs using AWE.

Van Holthoon [37] in his 2021 thesis describes the market types a HPP can participate
in. The research concluded no significant added value of combining storage and wind
at the current battery technology costs and further described the revenue to occur inde-
pendently of its combination with wind power. Participation in Day-ahead and free bid-
ding/contracted frequency restoration were modeled to maximize Net Present Value. Mehta
et al [38] also researched the value synergy of wind energy and batteries, with special fo-
cus given to the influence of market participation on the added value of batteries in the
system. Their analysis showed batteries added value in the frequency restoration market
but battery costs were too high for added value in spot market participation. However, the
main objective was to compare against wind-only cases and depends on the use of a wind
forecast error function.
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From studies on battery systems in HPP configurations, it becomes clear that the costs of
both the battery packs and the overall system are an important factor in the added value.
NREL projects the costs of battery storage regularly. The latest projections from 2021 show
battery system costs of 130 €/kWh for a low costs assessment and 225 €/kWh for a high-
cost scenario [39]. Costs were converted from 2020 US dollars to 2020 euros through the
exchange rate. These projections are for 2030, a year that was previously used in research
on the deployment of commercial AWE systems [34].

Iori et al [40] when researching design drivers for storage systems in HPPs concluded that
the storage components come at a significant cost. The optimal sizing of the storage in
an HPP was found to depend significantly on the storage cost assumptions used. The stor-
age costs assumption used in this research is based on an NREL report on storage model-
ing inputs. In this report from NREL [6], the future cost reduction of battery systems was
projected. These projections show battery costs of 38% relative to 2019 values for an opti-
mistic scenario and 75% in a conservative scenario. They conclude that cost reductions will
be higher for long-duration batteries (low C rate) than for short-duration batteries (high C
rate). The cost projections can be seen in Figure 2.7.

Figure 2.7: Conservative and advanced cost projections of utility-scale battery
system cost [6]

2.2.2. Power stability

Power smoothing of Renewable Energy has been researched since these technologies
have penetrated the electricity market. Storage systems have become crucial to high tem-
poral imbalances between electricity supply and demand. Energy storage systems (ESS)
are used for various purposes in the electricity system such as frequency regulation and
renewable energy smoothing. Application of batteries in these different usages have dif-
ferent requirements for integration with power systems [41]. The stability of the grid can
also be provided through the transmission of energy from other locations, mitigating the
intermittency. This increase in transmission capacity is a great remedy to the intermittency
of renewable power but should be combined with other solutions, due to the stress on the
grid this transmission represents, resulting in congestion of the electricity network [9].

There are two types of renewable energy smoothing that the storage component of a HPP
can provide. Smoothing of the HPP output is required since the frequency of the grid should
be maintained within prescribed limits. The first is the smoothing of the power output due
to the randomness of renewable sources, where the storage component compensates
when the output of the RES drops. An example of this is a sudden drop in wind speed re-
sulting in a low wind turbine output. The second type is a high-frequency smoothing of a
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power output resulting from operations such as the pumping cycle AWE. This pumping
cycle smoothing was described previously in section 2.1.

Both types of smoothing are defined by the prescribed limits of the grid. These limits are
defined in a ramp rate relative to the active power. In the case of most European countries,
the power ramps should remain within 10-20% of the active power within the timescale
of a minute [2]. In weaker regions, i.e. where the frequency is harder to maintain, Transmis-
sion System Operators (TSOs) often achieve stability by active power curtailment. The ramp
limits are adopted to not have to resort to these measures. Ramp limits are often assumed
at the 10% rated capacity/minute [42]. However, more recent studies in grid frequency
ramp rates and energy storage systems have concluded this value is too strict for the best
development in power systems [43].

For smaller power plants that can be connected to the distribution network, these ramp
limits depend on the regulations set by the relevant DSO. In the case of DSOs in the Nether-
lands, these regulations include considerations of the technical specifications of the energy-
producing unit. Agreements can be made between energy-producing plants and DSOs
that widen the ramp limit band to allow certain power fluctuations that occur to ensure
optimal exploitation of the energy production [44].

Studies have been conducted on the applicability of batteries for power smoothing of dif-
ferent sources when connected to the grid. System control strategies are developed to pro-
vide battery systems with a measure of smoothing response. These control strategies syn-
thesize the rotating mass and damping effect of large, high-mass generators [45]. Using
these strategies battery systems can be used for higher frequencies of power fluctuation.
In the case of smaller power plants connected to the distribution network, battery systems
are considered suitable for power smoothing. This is because many distribution networks
that connect renewable energy sources utilize a battery system at substations to further
smooth grid power [43].

In the application of batteries for smoothing power fluctuations in renewable energy out-
put there is a trade-off between battery effort and the degree to which the power is smoothed
[46]. Given the response times of certain batteries of less than 5milliseconds and the ramp
limits of the respective networks to which HPPs are connected, power smoothing of high
and low frequency can be performed by battery systems. It may even be that given the
low depth of discharge of power smoothing AWE energy, the resulting microcycles have a
positive effect on the battery lifetime. Soto et al [47], studied the impact of microcycles on
li-ion batteries and concluded that the microcycles have a negligent effect on battery per-
formance degradation. It was even found that in some cases these microcycles can have a
positive effect on the performance lifetime.
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2.3. Electricity markets

To identify possible maximization of market value for AWE systems a basic understanding
of the dynamics of electricity market trading is required. The goal of this section is to de-
scribe the different electricity markets. In this section, the detailed working of the markets
that allow for additional market value is discussed.

2.3.1. Electricity market types

Since the diffusion of renewable energy technologies in global energy production there
has been a large growth of the share these technologies have in the market. The cost of
producing electricity by ways of wind and solar plants have decreased significantly and
continues to do so. Due to this increased competitiveness in the market, there will be a
shift in the strategies that maximize the revenue of renewable plants [16]. The electricity
market is comprised of multiple types that work differently. The main difference is whether
the traded commodity is either produced electricity (at a particular moment) or available
capacity (over a certain time frame). Electricity producers exchange their produced power
on different market types, transmission of the power is handled by the transmission sys-
tem operator (TSO) and distribution of power to consumers is handled by the distribution
system operator (DSO). The following market types exist:

– Forward and Future market This market type involves parties that either supply
or demand energy and can agree upon trading a certain amount of produced
energy on a timeframe of years up to a day before the actual consumption of the
electricity. This type of trading provides certainty and reduces risk exposure to
availability and pricing.

– Day-ahead market As the name implies, the day-ahead market (DAM) contains
bids offered one day before the delivery time of the electricity. Suppliers offer
their expected produced electricity per hour over the next day for the price they
will sell for. Consumers submit their electricity needs per hour over the next day
and the price they are willing to pay. The hourly electricity price is the price at
which all demand is met by the supply. Every participant pays/receives this price
regardless of the offered/submitted willingness [37].

– Intra-day market This market handles bids offered within the 24-hour time-
frame of a day. The main function of this market is to react to any imbalance be-
tween agreed offers and demands. This market includes trades up to minutes
before delivery and varying electricity delivery duration.

– Balancing market Due to the nature of other markets being a reliance on the
prediction of future production and consumption of electricity, imbalance within
the system can occur. To avoid a failure of the electricity grid, the TSO is responsi-
ble for maintaining the frequency of the grid. To achieve this they maintain con-
tracts with entities that offer balancing capacity. The TSO passes on the costs of
fixing the imbalance to the party responsible for the imbalance [37]. Traditionally
renewable energy has not participated in this market type due to the intermit-
tency reducing the ability to offer stable capacity [16].

Within the context of this thesis, the focus is on the DAM. Participation in this market type
requires bids for all hours of the next day to be submitted at noon [48]. The minimum bid
volume is 0.1 MWh for most countries in the EU [49]. Power plants that produce energy
bids within the range of the DAM in Europe can be connected to the Transmission net-
work of high-voltage lines or the distribution network of middle-voltage lines. In the case
of the Netherlands, wind power plants of multi-MW rated powers are usually connected to
the transmission network, and wind power plants below 1 MW are connected to the distri-
bution network [50]. For DAM participation both network types can be considered.
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Supply and demand are matched in the DAM by dispatching generators that offer power
in the order ranging from lowest to highest price. The highest price offered by a genera-
tor that is dispatched is the market clearing price for that hour. The ordering of dispatch
based on price is known as the merit order. Renewable plants typically offer power for low
prices and therefore the share of renewable plants in a bidding one effects the clearing
price. As can be seen in Figure 2.8, the clearing price within the represented hour of the
DAM results in capacity offered at prices higher than the clearing price not being dispatched.

Electricity 
price

Capacity

Market 
clearing 

price

Demanded 
capacity

Figure 2.8: DAMmerit order market clearing price determination

2.3.2. Storage arbitrage

In addition to the internal storage of RE-generated energy, a HPP can generate revenue
by participating in energy arbitrage. Storage energy arbitrage involves the purchase of
energy from the market for charging the battery. At a moment when the price is higher
due to high demand, the battery can discharge to resell the energy at a gain. This capture
of these price differences over time is researched most often in the DAM [51]. Modeling
battery arbitrage is done under a set of assumptions, in the case of small capacities the as-
sumption is often that the system is a price taker. This means the energy traded does not
affect the price of said energy. The objective of these models is to maximize the revenue
of the system by ensuring the difference in income and cost between the bids is optimal.
These bids are modeled using an uncertainty factor between the predicted prices and the
actual prices [52]. A large number of studies focused on energy arbitrage assume perfect
foresight, meaning the aforementioned uncertainty is modeled as zero. This results in the
model operating on assumed knowledge of future prices [51].

Beyond the assumptions of the model there is a wide range of modeling methods em-
ployed to simulate the optimal dispatch of a battery system used in arbitrage. These in-
clude heuristics, linear programming (LP), mixed-integer linear programming (MILP), mixed-
integer non-linear programming (MINLP), and mixed-integer quadratically constrained
programming (MIQCP). These models determine optimal bids for each hour of the DAM
within the constraints of the storage system (energy and power limits, SoC limits). Heuris-
tic models use insights into market dynamics to determine an operational strategy that
would result in positive economic performance. One example of this is a model that oper-
ated the battery system at certain hours of the day for two cycles during the day [53]. An-
other case of a heuristic model is Mercier et al [54], where a heuristic model was used for
operating the BESS to research the effect of dynamic SoC limits on the performance when
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maximizing NPV. Heuristic models are often developed when optimization models are dif-
ficult to operate due to complex constraints.

The revenue from battery arbitrage depends on many factors, mainly the round-trip effi-
ciency and battery cost. The round-trip efficiency influences the difference in energy bought
and energy sold, limiting the net gain. A study researching the different storage arbitrage
methods found a large variance in performance [55]. This study reviewedmultiple bid-
ding zones over multiple years to assess the volatility of the value of arbitrage. An impor-
tant metric for comparing battery arbitrage performance is the value of storage arbitrage
(VoSA). This metric is the yearly revenue from arbitrage relative to the installed capacity, the
calculation of this metric can be seen in equation 2.1.

VoSA = 𝑅t
𝐸 ⋅ C (2.1)

where:

𝑅t = yearly revenue of arbitrage [k€]
𝐸 = storage total capacity
C = storage C rate or 𝑃/𝐸

By calculating this metric for different bidding zones and years, Mercier et al [55] found
that storage arbitrage has a lowmarginal value beyond storage durations of 4 to 6 hours.
For perfect foresight pricetaker simulated arbitrage, they found VoSA values of varying de-
grees but in the range of 1 - 135 k€/MW/year. In bidding zones and years deemed normal
DAM volatility the values range around 20 - 40 k€/MW/year.
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2.4. Problem analysis

Based on the literature review, this section contains the problem analysis. The previous sec-
tions of this chapter described the state of the art of research focused on the subjects un-
derlying this thesis topic. Section 2.4.1 describes the research elements that are found to
be missing. Following this Section 2.4.2 and Section 2.4.3 present the research question
andmethodology that result from the literature review respectively.

2.4.1. Research gap

The current research into the added value of AWE in a HPP is based on the optimization
of the LCoE and only considers the off-grid application of the HPP. Grid connection would
lead to different economic performance of the HPP due to exposure to fluctuating mar-
ket prices. On the subject of AWE systemmarket value capture, there is research focused
on the system design of the AWE in grid-connected applications. This shows promising re-
sults for AWE systems within price fluctuating revenue context. The added value of AWE
within the context of a grid-connected HPP has not been researched and could show a
different configuration of HPP than the current configuration derived from off-grid LCoE-
based HPP research. There is a need to investigate what AWE HPP configuration performs
best when exposed to price fluctuation. This area has not been explored in the literature.

The pumping cycle ground-gen AWE system, when connected to the grid, requires an in-
termediate storage solution to smooth the power oscillation. Current configurations make
use of ultracapacitor components for this application. From the literature study it is know
that battery technology development and distribution network dynamics are evolving and
power smoothing is increasingly viable using batteries. It is therefore beneficial to study
the opportunities that arise from using batteries for this power smoothing component in
the context of a grid-connected AWE battery HPP.

The literature study shows that in HPP configurations that contain battery systems, this
storage is used in multiple functions. These battery systems improve the overall stability
and dispatchability of the entire plant. Several AWE HPP systems exist, using battery sys-
tems to temporally shift the use of the AWE-generated energy. When the power smooth-
ing component is changed from an ultracapacitor to an oversized battery, the oversizing
results in an excess battery capacity that can be used much like a typical HPP battery com-
ponent. There has thus far not been research into such a combined use of the storage
component of a HPP. Determination of the value that can be obtained from using the
power smoothing excess battery capacity would be beneficial for insight into AWE system
design in grid connection.

2.4.2. Research Questions

Following the gap in research as defined in the previous section, the following research
question is defined:

In a scenario of grid connection, how can the value of hybrid power systems
using airborne wind energy be maximized?

To answer this question, several sub-questions are defined as follows:

1. To what extent can grid-connected profitability be increased when replacing the ul-
tracapacitor intermediate storage with a battery system in the configuration of an Air-
borne Wind Energy system?

2. To what level can the excess capacity present in the battery power smoothing storage
be used to increase profitability?
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2.4.3. Methodology

To answer the research questions, a model will be developed for the operation of a grid-
connected AWE system with a storage component for use in both power smoothing and
battery arbitrage. The model will use wind andmarket resource data, as well as AWE per-
formance metrics. This model will be able to determine the economic performance of an
AWE-Batteries HPP in different configurations. Using the model, four scenarios consisting
of different configurations of the system will simulate the value of the energy sold in each
scenario.

The following steps will be taken to answer the research questions:

• Develop a model that simulates an AWE system using either a battery or ultracapaci-
tor component for power smoothing purposes to compute the excess battery capac-
ity and compare performance and cost.

• Develop a model for simulating a battery system participating in the electricity mar-
ket that can incorporate the combination of power smoothing operation andmarket
participation.

• Simulate the energy production, storage, and bidding of four different scenarios; an
AWE system using an ultracapacitor for smoothing, an AWE system using batteries for
smoothing, a battery system used in electricity market arbitrage, an AWE system us-
ing a battery system for smoothing and using the excess capacity in market arbitrage.



3| Model Development

This chapter describes the model developed to answer the research questions. Section
3.1 shows a high-level overview of the developed model, Section 3.2 describes the input
parameters used for the configurations, Section 3.3 explains the AWE component of the
model, Section 3.4.1 explains the battery performance model, Section 3.5 explains the
bidding operational strategy and Section 3.6 describes the outputs of the model and how
these are used for value assessment. The model alongside all corresponding input files will
be made available on the GitHub repository: https://github.com/awegroup/AWE-HPS-DAM.

3.1. Model overview

The model is developed in the MATLAB environment and has several distinct components.
The model has two main input types - AWE and storage specifications and the scenario
inputs for the four scenarios defined as described in Chapter 4.

The flowchart of the framework in Figure 3.1, shows the interface between the input data
and the desired output data. The left side represents the system inputs while the right side
represents the performance modelling. The Scenario parameters represent the configu-
ration components and the required inputs to simulate the performance. This consists of
wind andmarket price data, as well as system components used. These components are
described in detail in Section 3.2.

The AWE performance is acquired by inputting the AWE specifications of the scenario
into an AWE performance model developed by Joshi et al [21]. This model provides the
power curve, and respective power smoothing power and energy levels per wind speed.
The power curve is fitted and then used in combination with the wind speed data to calcu-
late the AWE energy yield. The power smoothing levels are used to calculate the interme-
diate storage system sizing for both UC and Battery components. This is described in more
detail in Section 3.3.

The storage performance determines the storage power and energy capacities based on
the requirements of AWE power smoothing. The storage technology selected in scenario
parameters determines the storage performance and capacities.

The bidding dispatcher determines the operation of the AWE-HPS in terms of bidding to
the DAMmarket. Considering the dynamic nature of the constraints on the battery avail-
able capacity and power due to combined power smoothing and DAM bidding applica-
tions, a heuristic model for arbitrage operation is developed for this research. The model
aims at operating arbitrage at local price peaks while maintaining power smoothing opera-
tion, the arbitrage operation is described in more detail in Section 3.5.1.

Using the performance previously described, the economic performance of the HPS sys-
tem is evaluated based on cost, profit and return on investment. The assessment is based
on the following performance metrics; the levelized cost of energy (LCoE), the levelized rev-
enue of energy (LRoE), the net present value (NPV), the internal rate of return (IRR) and the
value of storage arbitrage (VoSA). This assessment is described in more detail in Section
3.6.
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Figure 3.1: Overview of the HPP value assessment framework.
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3.2. Scenario parameters

The range of scenario parameters is discussed in this section. An overview of the four sce-
narios of this thesis is presented alongside the corresponding inputs. Following this, a de-
scription is given of how the wind andmarket data are obtained and analyzed. Locations
are selected based on the availability of data and suitability for HPP operation.

The simulated performance of the model operation is determined for each timestep of the
simulation throughout a full year. The discrete timestep of the model is one hour, based
on the DAM bids operating over one hour and the availability of wind environment data.
Wind data will consist of wind speed data from ERA5. Market data consists of DAM pricing
from ENTSO-E. To determine the levelized costs the lifetime of the project is assumed to
be 25 years, where the operation is based on 25 consecutive iterations of the same year in
terms of inputs used.

As described in Section 2.4.3, the model was developed to simulate and compare four dif-
ferent scenarios. These scenarios all consist of different configurations of power systems
simulated within the same wind andmarket environment. The different parameter inputs
of the four scenarios are shown in Table 3.1.

Scenario 1:
AWE + UC

Scenario 2:
AWE + Battery

Scenario 3:
Battery arbitrage

Scenario 4:
AWE + Battery arbitrage

AWE system 100 kW 100 kW - 100 kW

Storage system UC Battery Battery Battery

Storage
application

Smoothing Smoothing Arbitrage Smoothing
and Arbitrage

Table 3.1: Overview input parameters per scenario

Locations suitable for the HPP framework are based on the wind speed and DAM price
data. Initial location analysis based on current HPPs being operational at several locations
already. The location selected is Haringvliet, since this location has a HPP already in oper-
ation [56]. This HPP, called Haringvliet Hybrid Powerplant is operated by Vattenfall and is
a utility-scale plant used for gathering data to research the value synergy of wind power
and battery storage. As illustrated in the model overview in Figure 3.1, all scenarios require
wind speed andmarket data as inputs for the model. These time-series data were taken
for the year 2019 since for this year both resources had complete data sets and are rep-
resentative of a normal operating year. Others years since 2019 have in some instances
been less than representative due to political or other external influences on the market.
The DAM pricing from ENTSO-E was taken from the database and is consistent through-
out the whole bidding zone of the Netherlands [57]. The wind speed data taken from the
ERA5 database was taken for the coordinates of Haringvliet. Both these datasets can be
seen in Figure 3.2.

The ENTSOE-E Transparency platform was used to obtain the DAM price time-series data.
ENTSO-E stands for European network of transmission system operators for electricity. It is
comprised of transmission system operators from countries across Europe. The ENTSo-E
platform is responsible for publishing data related to electricity generation, transmission,
and consumption of the European market. The DAM price obtained for the NL bidding
zone in 2019 has moderate volatility, with a standard deviation of 0.11 €/MWH. The av-
erage price in this bidding zone in 2019 was 41.2 €/MWh. A trend can be seen on an an-
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nual basis, showing higher pricing in the winter months relative to the summer months.
The average price in winter is 43.9 €/MWh whereas the average summer price was 38.5
€/MWh.
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Figure 3.2: Day Ahead Market price hourly over 2019

The wind speed data is obtained from the ERA5 database [58]. The data represents the
hourly wind speeds at 100meters altitude over the year 2019 at the location of Haringvliet.
The location is filled in by using coordinates, Haringvliet is at 4.49 longitude and 51.92 lat-
itude. These coordinates were used to obtain the wind speeds which can be used to de-
termine AWE performance. The ERA5 database consists of reanalysis data, meaning past
observations and contemporary weather models are combined to simulate conditions for
a specific location and time. The wind speed data is therefore a realistic representation of
the wind speed at the selected location, regardless of measurements taken at the location
and time specified. ERA5 obtained data consists of wind speeds in both u- and v-direction.
This means these speeds have to be combined to calculate the hourly overall wind speed.
The combined wind speed is calculated by taking the square root of the sum of u and v di-
rectional wind speeds squared. This calculation can be seen in Equation 3.1.

𝑣w = √𝑣w, u2 + 𝑣w, v2 (3.1)

where:

𝑣w =Wind speed
𝑣w, u =Wind speed in u-direction
𝑣w, v =Wind speed in v-direction

As can be seen in Figure 3.3, the wind speed is highly variable with the sameminor sea-
sonal trend with higher average wind speeds in winter (8.2 m/s) and slightly lower wind
speeds in summer (6.3 m/s). The overall average wind speed at 100meters high was 7.2
m/s.
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Figure 3.3: Wind speed at 100m altitude hourly over 2019

3.3. Airborne Wind Energy Performance

This section describes and analyses the method of determining the performance of the
airborne wind energy component of the HPP. The system energy production and LCoE will
be evaluated.

3.3.1. Power curve

Fixed-wing AWE as a technology is still in the research and development phase. Consid-
ering this, no operational data is available since there are no commercially installed sys-
tems. Therefore power estimations of the AWE have to be made in order to simulate the
energy production of the AWE component. Due to the nature of the research questions,
mainly the focus on the power smoothing aspect of the AWE system, an AWEmodel that
computes multiple aspects of the performance is required. The power curve, being a set of
output power per wind speed, is required to simulate the AWE power at each hourly wind
speed at the specific location. In addition to that, certain data is needed on the system per-
formance at those wind speeds concerning the reeling power, as these will influence the
power smoothing requirements of a storage system. The AWE performance model devel-
oped by Joshi et al [21], was used to provide the necessary data.

The power output in the specified wind environment is generated using the AWE perfor-
mance model developed by Joshi et al [21]. This model provides estimations of the net
power output of a fixed-wing AWE system. Based on a multitude of inputs that can be set
for any number of system properties, the properties used for this research can be found
in the input file of the repository linked in this report. The most important of these prop-
erties are listed in Table 3.2. This model simulates a kite as a point mass operated in circu-
lar flight maneuvers while reeling out the tether. This operation is divided into segments
where for each segment the cycle power is maximized by optimising the operational pa-
rameters. These parameters are defined by the kite, tether, and drivetrain properties. This
cycle power is used to determine the power output for a wind environment and the reel-
ing power used to obtain this power output.



3.3. Airborne Wind Energy Performance 27

Parameter Description Value

𝑃rated Electrical rated power 100 kW

𝑃gen, rated
Electrical generator rated
power 200 kW

S Wing surface area 20m2

AR Aspect Ratio 10

𝐹t, max Maximum tether force 40 kN

𝑙t, max Maximum tether length 3500m

𝛼 Wind shear exponent 0.12

Table 3.2: Properties as input variables for AWE power estimations

The power curve, representing the power output per wind speed, provided by the perfor-
mance model given the properties set is shown in Figure 3.4. The model can be used to
generate power curves for different configurations of fixed/wing ground/gen AWE systems,
with the currently shown curve representing a 100 kW system defined by the inputs in
Table 3.2. These power curves can then be used in combination with wind speed data to
generate AWE component energy performance. As can be seen in Figure 3.4, the rated
power of 100 kW is attained at wind speeds of 10 m/s, close to the average wind speed at
the Haringvliet location.
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Figure 3.4: Power curve of 100 kW AWE system

The power curve represented in Figure 3.4 combined with the wind environment deter-
mined in Section3.2 can be used to generate the hourly AWE production. The power pro-
duction at each time point of the simulation is determined by assessing the wind speed
at each point of the hourly wind speed series and storing the corresponding power output
of that wind speed in a power time-series. Considering the resolution of the wind speed
data is in five significant figures, whereas the power curve output provides values for each
integer wind speed value, the power curve has been fitted to allow power output values
between integer wind speeds. The hourly power production series is shown in Figure 3.5.
Within the wind speed context of the chosen location, the AWE system has an Annual En-
ergy Production (AEP) of 492 MWh and a capacity factor (𝐶𝑓) of 0.56. The capacity factor
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is a metric of how optimally the AWE system is operated, the calculation of this metric is
shown in Equation 3.3. Equation 3.4 illustrates that within the simulations of this research,
the value of energy at any timepoint is equal to the power value. This is because the reso-
lution of the simulations is defined at one hour, meaning producing any value of kW over
one hour is equal to that value of energy in kWh.

Capacity Factor = Annual Energy Production
Maximum Annual Output

(3.2)

𝐶f =
∑ t = 8760

t=1 𝐸e, avg
8760 ⋅ 𝐸rated

(3.3)

𝐸 = 𝑃 ⋅ t = 𝑃 (3.4)

where:

t = Time instant in hours
𝐶f = Capacity factor
𝑃e, avg = Electrical average power output at hour t
𝑃rated = Electrical rated power

As can be seen in Figure 3.5, the yearly overview clearly shows more frequent and higher
power output in the winter months. The close and high output in March is the clearest
example. The lower and more spread-out peaks in the summer months (June and July)
clearly show the relatively lower output in summer. This corresponds to the analysis of the
wind speed data in Section 3.2.
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Figure 3.5: Power output of 100 kW AWE system in specified wind context
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3.3.2. Intermediate storage

In addition to the power curve, the performance model also provides the cycle power and
total energy required for smoothing per wind speed. These can be used to determine the
power smoothing energy and power at each time point of the simulation. The maximum
needed energy and power of the smoothing can also be used to determine the required
specifications of the intermediate storage technology used. The power output needed for
smoothing is determined by the maximummismatch between the rated output and the
power produced or consumed by the AWE system. This mismatch can be seen in Figure
3.6, where the reeling power peaks 𝑃m, o, peak and 𝑃m, i, peak can be seen alongside the av-
erage power output 𝑃m, avg. This figure shows the reeling power at rated wind speed. The
smoothing power
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Figure 3.6: Reeling electrical power at rated wind speed 100 kW AWE system

The energy capacity needed for smoothing is determined by the difference in produced
energy during reel-out and consumed energy during reel-in, relative to the average cycle
energy. These energy levels can be seen in Figure 3.7, where the difference between av-
erage cycle energy (𝐸m, avg) and produced reel-out energy (𝐸m, o) can be seen represented
by the green area. The consumed reel-in energy (𝐸m, o) combined with the average cycle
energy (𝐸m, avg) can be seen as indicated by the orange area. Both these energy levels rep-
resent the excess or deficit relative to the average. Since the average cycle power is by def-
inition the average of the power throughout the cycle, the green and orange energies are
equal to each other. Both represent the smoothing energy needed at rated wind speed.
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Figure 3.7: Reeling energy at rated wind speed 100 kW AWE system

For this system, the maximum intermediate energy that needs to be stored is 0.93 kWh
and the maximum intermediate power output is 139 kW, both occur at cut-out wind speed.
In the case of an ultracapacitor being used the installed capacity is based on the smooth-
ing energy needed. The maximum energy needed to smooth the power of a cycle at cut-
out wind speeds is taken from the AWE performance model. In the case of a battery sys-
tem, the installed capacity is based on the maximum power needed. The battery C type
determines what capacity of the battery is required to be able to supply at minimum the
maximum power needed for smoothing. The calculations for the smoothing power i.e. the
power of a battery system can be seen in Equation 3.5 and 3.7.

𝑃sm, max = max [ 𝑃m, o, peak − 𝑃m, avg , | 𝑃m, i, peak − 𝑃m, avg | ] (3.5)

𝐸sm, max = 𝐸m, o −∫
to, end

to, start
𝑃m, avg 𝑑t = 𝐸m, i +∫

ti, end

ti, start
𝑃m, avg 𝑑t (3.6)

𝐸Batt, req = max [ 𝑃sm, max

C
, 𝐸sm, max ] (3.7)

where:
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𝑃sm, max =Maximum smoothing power
𝑃m, avg = Average cycle power
𝑃e, m, peak = Peak reel-out mechanical power
𝑃e, m, peak = Peak reel-in mechanical power
𝐸sm, max =Maximum intermediate smoothing storage
𝐸m, o = Produced energy during reel-out
𝐸m, i = Consumed energy during reel-in
𝐸batt, req = Required battery capacity
to, start = Start of reel-out phase
to, end = End of reel-out phase
ti, start = Start of reel-in phase
ti, end = End of reel-in phase
C = Battery C-rating or 𝑃/𝐸

3.3.3. Cost of Energy

The cost of producing energy using the AWE system can be calculated using an economic
model that works in tandem with the QSMmodel used to compute the AWE performance.
This cost model provides parametric costs that estimate CapEx and OpEx associated with
each component of the defined airborne wind energy system [22]. The components of the
AWE cost can be seen in Figure 3.8.

Figure 3.8: The four components of the AWE system; 1. Kite; 2. Tether; 3. Ground
station; 4. Intermediate storage

The Capital (CapEx) and operational (OpEx) expenditures of the 100 kW AWE system are
shown in Table 3.3, calculated using the economic model [22] set to the AWE specifica-
tions identical to those in Table 3.2. Power smoothing storage would generally be part of
the ground station costs but considering the importance of this cost component has been
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separately considered for this research. The cost of this fourth component, the intermedi-
ate storage, depends on the price per unit capacity and the frequency of replacement of
the storage over the lifetime of the project. The use of an optimistic and conservative cost
for battery systems and the replacement frequency that determines the OpEx will be dis-
cussed in detail in Section 3.4.1.

Component CapEx OpEx

(1) Kite 329 k€ 0 k€

(2) Tether 7.4 k€ 6.2 k€

(3) Ground station 88 k€ 0 k€

(4) Ultracapacitor 55 k€ 6.3 k€

(4) Battery optimistic 18.2 k€ 1.82 k€

(4) Battery conservative 31.5 k€ 3.15 k€

Table 3.3: Overview cost of AWE system

The total CapEx of the AWE system with ultracapacitor is 479 k€, and the total OpEx is
12.5 k€, also in the case of ultracapacitor use. Using these costs in addition to the AEP of
the AWE system and a discount rate, the levelized cost of energy can be calculated as fol-
lows:

Levelized Cost of Energy = Total lifetime costs
Total lifetime energy production

(3.8)

LCoE =
CapEx+ ∑ T

t=1
OpEx
(1+r)𝑡

∑ T
t=1

𝐸t
(1+r)𝑡

(3.9)

where:

t = Time instant
LCoE = Levelized cost of energy
T = Economic lifetime of the project
CapEx = Capital expenditures
OpEx = Operational expenditures
𝐸 = Energy produced
r = Discount rate

The LCoE of the AWE system with ultracapacitor is calculated using the CapEx and OpEx
values as seen in Table 3.3, the AEP of the simulated year taken as the production at each
year of the project lifetime and a discount rate of 10 %. The discount rate of 10 % was cho-
sen since this rate is generally used for the economic assessment of wind energy projects.
The LCoE of the AWE system is calculated as being 158 €/MWh, which is significantly high
when compared to the average DAM price of the simulated context (41.2 €/MWh). As the
costs modeled are not from a commercial AWE system but rather a conceptual model
they do not represent the costs of a system when installed. To assess the costs of produc-
ing relative to the value of the produced energy this factor will have to be compensated.
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This can be done by applying a learning curve compensation on the system costs, which
can be done for learning curves observed for horizontal axis wind turbines. An alternative
method is to apply a subsidy scheme to the DAM price data. To retain the cost model accu-
racy of the AWE cost used in this research, the subsidy schememethod is used. The appli-
cation of a subsidy scheme is described in further detail in Chapter 4.
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3.4. Storage Energy Performance

In this section, the component of the battery performance of the model is described. It ex-
plains the method to model the use of the battery component for smoothing and for arbi-
trage.

The previous section has described how the wind speed data time-series is used to obtain
hourly time-series for the AWE power, smoothing power, and smoothing energy. Combin-
ing these series with the DAM price time-series means the storage performance can be
obtained. The storage performance is modeled by calculating the state of charge (SoC),
the percentage of capacity used, at each time point. It is modeled as a calculation of the
SoC at the next time point where the rate at which it charges or discharges is defined by
the operation, with round trip efficiency taken into account at discharging the battery. This
operation of the storage system is defined by smoothing and/or DAM arbitrage and changes
the available capacity and power as well as the time points where the battery operates.
The performance metrics will be described first, then the calculation of the SoC will be de-
scribed, followed by detailed descriptions of the effect of each operation type.

Parameter Description Value

Cost Storage technology cost €/kWh

𝑁 cycles Lifetime of unit cycles

𝑁 years Lifetime of unit years

SoCmin State of charge lower limit %

SoCmax State of charge upper limit %

𝜂 round-trip efficiency %

Table 3.4: Scenario input parameters for Storage performance

3.4.1. Battery smoothing performance

The SoC of the battery as well as the rate at which it changes is limited by the specifica-
tions of the storage technology used. These specifications result in limits to the operation.
In the case of the storage system only being used for power smoothing, the energy capac-
ity of the battery used is defined by the smoothing energy per wind speed obtained in Sec-
tion 3.3.2. The power of the storage used is defined by the power per wind speed. Consid-
ering the smoothing energy is intermediate and cyclical it is calculated as a capacity of the
storage reserved for smoothing and taken as constant throughout a timestep. In addition
to this reserved capacity, the depth of discharge (DoD) of the smoothing energy is calcu-
lated. This is needed since the energy used for smoothing is intermediate but it is an en-
ergy level charged and discharged several times throughout a timestep. Also due to the
cyclical nature, the smoothing power per wind speed is a representation of the maximum
power required of the storage component within a cycle. As such the smoothing power
is calculated as the maximum power level needed for smoothing within a timestep but is
not related to the energy level of the storage component.

𝐸res, t = 𝐸sm (𝑣w, t) (3.10)
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𝑃res, t = 𝑃sm (𝑣w, t) (3.11)

𝐸sm, t =
𝐸res, t ⋅ 3600

tcycle
(3.12)

where:

t = Time instant hour
tcycle = Cycle trajectory time
𝐸res, t = Reserved smoothing energy at hour t
𝑃res, t = Reserved smoothing power at hour t
𝐸sm (𝑣w, t) = Smoothing energy at wind speed 𝑣w
𝑃sm (𝑣w, t) = Smoothing power at wind speed 𝑣w
𝐸sm, t = Total energy cycled through storage capacity at hour t

The intermediate storage sizing is described in Section 3.3.2, and the resulting component
sizing is shown in Table 3.5. An ultracapacitor smoothing storage is sized according to the
maximum energy required. This energy level is the intermediate storage required at rated
wind speeds, represented by 𝐸sm, max in Equation 3.6. A battery smoothing storage is sized
according to the maximum power required. This maximum required power is represented
by 𝑃sm, max in Equation 3.5.

Storage type C rating Power [kW] Energy [kWh]

Ultracapacitor 200 186 0.93

Battery 1 140 140

Table 3.5: Storage technology sizing for power smoothing

To assess the effect of using either of these technologies for the smoothing component of
the system the degradation of the storage system is modelled. Storage components are
deemed to need replacement when they are at a point where the capacity is at 80 % of
the original capacity. This moment is defined by the lifetime in terms of cycles. The cycles
represent the amount of full-capacity cycles the storage can run before being degraded
at 80 %. The battery degradation can therefore be calculated in terms of replacement fre-
quency per year using Equation 3.13.

𝑓repl =max [ 1
𝑁years

,
∑ t = 8760

t=1 𝐸sm, t

𝐸batt, max ⋅ 𝑁cycles
] (3.13)

where:



3.4. Storage Energy Performance 36

𝑓repl = Yearly replacement frequency
𝐸sm, t = Total energy cycled through storage capacity at hour t
𝐸batt, max = Capacity of storage system
𝑁cycles = Lifetime cycles
𝑁years = Lifetime years

The replacement of the storage system directly factors into the OpEx of the entire HPP sys-
tem and is affected by the storage technology used and the amount of energy that goes
through the battery system. As can be seen in Equation 3.13, the system is either replaced
after the lifetime of the technology is reached in years or after the amount of full load cy-
cles has reached the lifetime cycles, whichever is reached first. This calculation does not ac-
count for the effect of microcycles on the degradation of a storage system, this effect was
discussed in Section 2.2.2. The oversizing of the installed storage capacity to achieve the
charge rates required for AWE smoothing in the case of batteries results in the smoothing
discharge cycles for this smoothing being relatively small (<2% of total capacity), Section
2.2.2 described studies that show these type of cycles have a reducing effect on battery
degradation.

Using the calculations described in this section the time-series of the smoothing energy
and power is obtained. When looking at this battery operation with an ultracapacitor in-
stalled, it can be observed that given the specifications of the ultracapacitor, the smooth-
ing uses most of the available capacity at rated wind speeds, seen in Figure 3.9a, and about
70 % of the available power capacity (200 C) at rated wind speed, seen in Figure 3.9.
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(a) AWE smoothing energy stored in ultracapacitor
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(b) AWE smoothing power cycled through ultracapacitor

Figure 3.9: Smoothing Energy and Power performance through ultracapacitor

When looking at this battery operation with a battery system, it can be observed that given
the specifications of the battery, the smoothing uses an almost insignificant fraction of
the available capacity at rated wind speeds, seen in Figure 3.10a, and most of the avail-
able power capacity (1 C) at rated wind speed, seen in Figure 3.10b. This is the inverted
situation of the ultracapacitor version seen in Figure 3.9. It also shows that outside of rated
wind speeds there is significant excess energy and power capacity in the storage system.
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(b) AWE smoothing power cycled through battery

Figure 3.10: Smoothing Energy and Power performance through battery

3.4.2. Cost of Storage

The Capital (CapEx) and operational (OpEx) expenditures of the ultracapacitor and battery
storage systems as used in the case of power smoothing are shown in Table 3.6. In this use
case, the costs of the storage are part of the AWE system. The cost of storage can be mea-
sured in the levelized cost of storage (LCoS) and is defined as the cost of storage over the
discounted discharged energy of the battery. This can be calculated in the case of using
the battery for arbitrage as there is a certain amount of discharged energy traded.

Component CapEx OpEx

Ultracapacitor smoothing 55 k€ 6.3 k€

Battery optimistic smoothing 18.2 k€ 1.82 k€

Battery conservative smoothing 31.5 k€ 3.15 k€

Battery optimistic arbitrage 18.2 k€ 1 k€

Battery conservative arbitrage 31.5 k€ 1.85 k€

Table 3.6: Overview cost of storage system

The total CapEx of the storage system used for stand-alone arbitrage is 479 k€, and the to-
tal OpEx is 12.5 k€. Using these costs in addition to the Energy discharged by the battery
and a discount rate, the levelized cost of storage can be calculated as follows:

Levelized Cost of Storage = Total lifetime costs
Total lifetime energy discharged

(3.14)

LCoS =
CapEx+ ∑ T

𝑡=1
OpEx
(1+r)𝑡

∑ T
𝑡=1

𝐸dis, t
(1+r)𝑡

(3.15)
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where:

t = Time instant
LCoS = Levelized cost of storage
T = Economic lifetime of the project
CapEx = Capital expenditures
OpEx = Operational expenditures
𝐸dis, t = Energy discharged by storage system
r = Discount rate

The LCoS of the battery arbitrage system is calculated using the CapEx and OpEx values as
seen in table 3.6, the discharged energy of the simulated year taken as the production at
each year of the project lifetime and a discount rate of 10 %. The LCoS of the Battery sys-
tem is calculated as being 66 €/MWh in the optimistic case and 116 €/MWh in the real-
istic case. These values show the relative cost of storing the energy. However, within the
context of this research, the main interest is in the OpEx of the battery system since the
case of operating power smoothing and arbitrage combined relies on a context where the
battery system is required for smoothing and any added value will add to the revenue of
the investment. Therefore the main interest lies in the relation between OpEx and revenue,
which will be further described in Section 3.6.
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3.5. Bidding dispatcher

This research aimed to evaluate the added value that can be extracted from any excess ca-
pacity of a storage system. Section 3.4.1 explained how the battery performance modeling
lead to the evaluation of excess capacity that is available in the system. This section will fo-
cus on the operational strategy of that capacity that could lead to added DAM value cap-
ture. Section 3.5.1 explains the operational strategy of a battery system operating in DAM
arbitrage. Section 3.5.2 explains the operational strategy of an AWE system with a battery
component used for both power smoothing and DAM arbitrage. Section 3.5.3 describes
the tradeoffs and optimization of the storage arbitrage bidding.

3.5.1. Storage arbitrage bidding

In the case of the storage system only being used for energy arbitrage, the energy capacity
of the battery used is defined by a strategy set for buying and selling energy on the DAM.
This strategy is typically simulated using an optimization algorithm set to maximize the
net gain of trading energy by determining the optimal dispatch of bids. In this research,
the modeling of the battery arbitrage is set up to also be able to combine the operation of
arbitrage with the operation of power smoothing. It was therefore not within the scope of
this research to create an optimization algorithm for this combined operation. Instead, a
heuristic approximation of an optimal arbitrage bidding operation is created and used to
assess the added value of trading excess battery capacity on the DAM. In this section, the
operation of a stand-alone battery system of comparable sizing to the excess capacity of a
smoothing battery system is modelled. The arbitrage revenue will not be the optimal dis-
patch of trade but will show potential added value since it can show the relation between
added revenue and additional cost. This method of simulation provides a lower-bound
benchmark of storage value from arbitrage.

The participation in the DAM of the model is simulated under perfect-forecast and price-
taker assumptions. Perfect forecast results in the system hourly DAM prices being taken
as known in advance and with full certainty. The calculated timepoints and charge levels
at which the battery charges is therefore assumed to have been bid at noon the day be-
fore. The price-taker effect, meaning the energy bids of the battery are assumed not to af-
fect the prices themselves can be confidently made since this is a relatively small system.
The charge/discharge behavior of the model is defined by the decision to charge the max-
imum available capacity at DAM price minima and discharge the maximum available ca-
pacity at DAM price maxima. The selection of the hours that areconsidered to be minima
or maxima is based on the average and volatility bounds. These volatility bounds are de-
fined by the volatility of the market data, identical to the mathematical standard deviation.
Based on research into the value of storage arbitrage, these price points are searched for
within a short window of the price time-series, considering there is a lowmarginal value
of storing energy after 5-6 hrs [55]. The convention of positive power for charging is taken,
with storage round-trip losses taken into account at discharge. The storage operation can
be described by the following equations:

𝐸t + 1 − 𝐸t = {
𝑃max if p DAM, t < (1 − 𝜎DAM) ⋅ 𝜇 DAM, w

− 𝑃max if p DAM, t ≥ (1 + 𝜎DAM) ⋅ 𝜇 DAM, w t = 1, .., w
0 otherwise

(3.16)

𝐸min ≤ 𝐸t ≤ 𝐸max (3.17)
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𝜎DAM = √
1

8760 − 1

8760

∑
t=1

( p DAM, t − 𝜇 DAM )
2

(3.18)

where:

𝑡 = hour within window
𝐸t + 1 = Energy at next timepoint
𝐸t = Energy at current timepoint
𝑃max = upper limit storage power
𝐸max = upper limit storage energy
𝐸min = lower limit storage energy
p DAM, t = DAM price at current hour
𝜇 DAM = DAM price average yearly
𝜇 DAM, w = DAM price average within window
𝜎DAM = volatility of DAM price yearly
w = number of timesteps within window

An example of the arbitrage operation defined by Equation 3.16 can be seen in Figure
3.11. This example shows a window of 10 hours where two DAM price points result in ei-
ther charge or discharge behavior. In this figure, the black graph is the DAM price at each
hour. It can be observed at hours 0, 1, and 2 that the DAM price is within the volatility lim-
its determined by the average DAM price within the window and the volatility of the DAM
price over the whole year. At the third hour, the DAM price rises above the volatility up-
per limit and is determined as an hour to discharge the battery. The fourth hour is once
again within the volatility bounds and corresponds with the third term of Equation 3.16,
meaning the SoC does not change. At the fifth hour, the price is lower than the volatility
bounds and is determined as an hour to charge the battery. The sixth hour is once again
lower than the volatility bounds but due to the battery still being at charged capacity it is
not able to charge further. The remaining hours are within the volatility bounds and result
in no SoC change.
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Figure 3.11: Storage arbitrage operation of a 10 hr window.

This operation does not result in the optimal dispatch of the battery capacity for arbitrage.
Due to the volatility bounds, it does result in charging behavior that approximates dispatch
at local peaks. The inclusion of the window for which the operation is calculated is to oper-
ate within the storage duration of around 5-6 hours, which was found to result in the high-
est arbitrage revenue. The inclusion of the volatility bounds was to not excessively use the
battery capacity for hours at low price differences and thus low revenue. The resulting op-
eration provides arbitrage behavior that is sub-optimal in the yearly revenue but compa-
rable in its relation between battery use and revenue. Therefore the revenue is lower than
what is possible in the context but the relation between battery use cycles and revenue.

The calculations defined by equation 3.16 and 3.17 are done for all consecutive windows.
When For instance, if the window is 5 hours, then the calculation is done for all 1752 win-
dows within that year. Resulting in a time-series of battery charge operation. The operation
resulting from a window of 4 hours can be seen in figure 3.12. The line in the background
represents the DAM price, it can be seen the battery charges at local low price points and
discharges within a short window at a high price point. It can also be observed the dis-
charge output is lower than those of the charging hours, as these are subject to the round-
trip efficiency.

The battery charge and discharge behavior that occurs based on the operation defined in
Equation 3.16 can be seen in Figure 3.12. The DAM price over 12 hours can be seen at the
top with the battery charging behavior on the bottom. The arbitrage operation for these
12 hours was computed with the charge/discharge window set to four hours. It can be
seen that the four-hour window indicated by the dotted lines results in one charge/discharge
cycle. The battery discharges the available energy of the battery at a local high price point
and discharges at a lower price point later in the window. The operational strategy results
in the trading of energy within price fluctuation on a relatively short timescale.
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Local maxima

Local minima

Figure 3.12: Storage charging behavior operation

With the same parameters of operation as used in Figure 3.12, the operation of 6 consec-
utive windows can be seen in Figure 3.13. As can be seen here, the operational strategy
does not ideally capture all the peaks but only computes relative fluctuating time points
for the charging and discharging. Considering the perfect price forecast assumption a
more optimal charge/discharge behavior would be theoretically possible. However due
to the operational strategy being required to also take into account simultaneous power
smoothing and arbitrage the choice for a heuristic simulation instead of optimized was
chosen. The operational strategy of the combined storage applications is further explained
in Section 3.5.2.

The bidding strategy is based on the selection of local high and low price points to attain
revenue that outweighs the cost associated with the battery degradation due to the use of
the battery. This strategy and the relation between energy arbitrage revenue and battery
replacement due to the arbitrage cycling will be assessed in Chapter 4. The

3.5.2. Combined storage smoothing and arbitrage bidding

An alternative operation of the battery is one where the battery is simultaneously used for
both power smoothing and battery arbitrage. In this operation, the battery component
can be used as in the case of stand-alone battery arbitrage when the AWE component is
not producing power, while it is used in a limited capacity when the AWE is producing en-
ergy. When the AWE power is being smoothed there is excess energy available in the bat-
tery, but the power of the system is severely limited by the smoothing power. As such the
operation of the battery in combined smoothing and arbitrage can be described by the
following Equations 3.19 and 3.20.

𝐸t + 1 − 𝐸t = {
𝑃max − 𝑃sm if pDAM, t < (1 − 𝜎DAM) ⋅ 𝜇𝐷𝐴𝑀,𝑤
𝑃sm − 𝑃max if pDAM, t ≥ (1 + 𝜎DAM) ⋅ 𝜇𝐷𝐴𝑀,𝑤 t = 1, .., 𝑤
0 otherwise

(3.19)
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Figure 3.13: Storage charging behavior multiple windows

𝐸min + 𝐸sm ≤ 𝐸t ≤ 𝐸max − 𝐸sm (3.20)

where:

t = timestep within window
𝐸t + 1 = Energy at next timepoint
𝐸t = Energy at current timepoint
𝑃max = upper limit storage power
𝑃sm = upper limit storage power
𝐸max = upper limit storage energy
𝐸min = lower limit storage energy
𝐸sm = lower limit storage energy
pDAM, t = DAM price at current time
𝜇DAM, w = DAM price average within window
𝜎 = volatility of the DAM prices
w = number of timesteps within window

The calculations done using equation 3.19 and 3.20 are once again done for all consec-
utive storage windows. The operation resulting from a window of 4 hours can be seen in
figure 3.14. The plotted line at the top represents the DAM price, the bar graph at the bot-
tom represents the battery power sorted per application type. Throughout most of the
hours later in this week, it can be observed the kite is producing near rated power. This can
be observed through the smoothing power dominating the power to near capacity, rep-
resented by the horizontal line. At these hours the battery is almost exclusively operating
for smoothing. At the hours at the start of this week, it can be seen the kite is operating at
lower power outputs, leaving excess battery power capacity available for arbitrage use.
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Figure 3.14: Combined smoothing and arbitrage charging behavior relative to DAM
price

Figure 3.15 shows the same week of operation with the battery state of charge at the top.
This SoC clearly shows the battery operating within the set limits, namely 10 and 90%.
When the kite is operating below rated output at the start of the week the battery state
of charge is charged/discharged completely to these limits. This is comparable behavior to
that shown in Section 3.5.1. This is as expected since the operation of the battery when no
power smoothing is needed will be identical to the storage arbitrage case. The SoC limits
include the limit imposed by the smoothing energy that needs to be available at all times.
This is however hard to see in this figure due to the smoothing energy being very small
compared to the total capacity as explained in Section 3.4.1.
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Figure 3.15: Combined smoothing and arbitrage charging behavior with battery
capacity

A good example of the arbitrage operation with smoothing limits can be seen in Figure
3.16. In this figure the operation throughout the Friday represented in Figure 3.15 is fur-
ther delved into. This shows the operational strategy determined the first discharge in-
stance because of a profitable DAM price having been defined. Even thoughmore battery
power was available at this point, indicated by the distance between the smoothing power
and the horizontal 1C line, due to the state of charge level being limited to needing the
capacity for smoothing the full power capacity was not used for arbitrage. The inverted be-
havior can be seen at the charging point later in the week. At this point, the full capacity
of the battery was available for charging but due to nearly all of the available power being
used for smoothing the battery was only charged for a small amount.
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Figure 3.16: Combined smoothing and arbitrage charging behavior capacity limit
example

3.5.3. Arbitrage operation optimization

As described in Section 3.12, the operational strategy of the storage arbitrage depends
on certain parameters. These parameters are the time window and the volatility bounds.
These parameters should be set to values that ensure that trading increases revenue more
than the OpEx increases. Since battery degradation is taken into account in the simulation
of this research, there is a balance point in terms of battery use. If the amount of energy cy-
cled through the battery is high, the battery will need to be replaced sooner. The window
and volatility bounds can be set to either increase or decrease the arbitrage load hours. A
window that contains more hours will result in more frequent operation of the battery in
arbitrage. Higher volatility bounds will exclude more price points and therefore decrease
the frequency of arbitrage operations.

To optimize the arbitrage operation the tradeoff is the quantity of energy cycled through
the battery and the value of that energy at the moment of discharge. The optimal param-
eter values can be found by alternating the values and comparing the IRR value of the sys-
tem in the given wind andmarket environment. The IRR is a good metric for assessment
of the tradeoff since the difference in IRR for certain parameter values will show the aggre-
gated negative and positive effect on the cashflow. Any increase in arbitrage revenue will
increase the cashflow while the associated increase in replacement frequency will increase
the OpEx thus decreasing the cashflow. The IRR will therefore show the optimal parameter
values where the increase in revenue and OpEx are optimal.
Figure 3.17 shows alternating window sizes and the corresponding effect on the IRR and
energy cycled through the battery. As can be seen, windows containing more hours will
increase the energy cycled through the battery. The scenario depicted shows an AWE-
Battery system where the battery is used both for smoothing and arbitrage. At a window
size of 0 hours, the IRR represents the case where the battery is used solely for smoothing.
At window sizes from 1 upwards the battery is also used for arbitrage. The figure clearly
shows that there is an optimal point at a window size of 4 hours where the IRR is the high-
est. Any increase in window size will result in more frequent arbitrage operations but the
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IRR values show that at these sizes the increase in battery replacement is more costly than
the increase in revenue.
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Figure 3.17: Arbitrage operation window size effect on energy cycled through
storage and IRR

The volatility bounds work similarly to the window size in terms of an optimal value result-
ing in an optimal frequency of operation. This value is found to be the volatility or stan-
dard deviation of the yearly DAMmarket data. The optimal operation within the arbitrage
model developed in this research results in a relatively low load factor compared to storage
arbitrage research. This is because the model only takes into account operation at full bat-
tery power capacity. The discussion of optimal arbitrage operation compared to the strat-
egy proposed in this research will be described in Chapter 4.

Having defined the performance of the AWE component, the performance of the storage
component, and the operational strategies of the battery for multiple use cases, the assess-
ment of performance is possible. The metrics through which the system performance can
be assessed are described in the next section.
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3.6. Hybrid Power System value assessment

In a grid-connected context, the energy provided to the grid by a renewable power plant
is exposed to fluctuating prices of electricity. As such, the revenue of the plant depends on
the price of electricity on the DAM at the moment of production of RES energy. To assess
the economic performance of the plant, the value of the energy at the moment it is sold to
the grid is a key factor for investigation. The simulation of this research registers the energy
offered to the grid by the HPP and the price at that same time point. Using this informa-
tion, the revenue of capturing that value of energy combined with the costs of the system
used to generate the energy offered can be used to calculate certain economic indicators.
The LCoE and LCoS, representing the costs of the components of the HPP have been de-
scribed in section 3.3 and 3.4.1 respectively. The value of the energy sold by the HPP is
represented by the revenue of the plant over a year. Since the AWE production does not
use any type of fuel there is no direct cost associated with the revenue. For battery arbi-
trage, the revenue is defined by the price at the moment of offered to the grid subtracted
by the price at the moment where the battery was charged. The revenue of a power plant
is given by the following formula:

Revenue = Energy offered to Grid ⋅ Energy price (3.21)

in the case of the AWE energy,

𝑅 =
t = 8760

∑
t=1

( pDAM, t + psub ) ⋅ 𝐸AWE, t (3.22)

in the case of battery arbitrage,

𝑅 =
t = 8760

∑
t=1

pDAM, t ⋅ ( 𝜂 ⋅ 𝐸dis, t − 𝐸cha, t ) (3.23)

where:

𝑅 = yearly revenue
t = Time instant
pDAM, t = Energy price at current timepoint
psub = Subsidy scheme price
𝐸AWE, t = AWE produced power to grid
𝐸dis, t = Battery energy discharged to grid
𝐸cha, t = Battery energy charged from grid
𝜂 = Battery round-trip efficiency

The revenue provides information on the value of the energy sold over the year but to show
the performance of the plant the profit over the year is needed. The levelized profit of en-
ergy (LPoE) can be calculated by first calculating the levelized revenue of energy (LRoE)
and the subtracting the LCoE. The LRoE and LPoE are calculated using equations 3.24
and 3.25 respectively. In the case of storage arbitrage, the revenue relative to the installed
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storage capacity over a year is also an important indicator. This metric is called the value
of storage arbitrage (VoSA) and is used to compare the value of arbitrage of a storage sys-
tem to other systems and other market zones. This metric is calculated using equation 2.1,
described in chapter 2.

LRoE =
∑ T

t=1
𝑅t

(1+r)𝑡

∑ T
t=1

𝐸t
(1+r)𝑡

(3.24)

LPoE = LRoE− LCoE (3.25)

where:

LRoE = levelised revenue of Energy
LPoE = levelised profit of Energy
LCoE = levelised profit of Energy
𝑅t = yearly revenue
𝐸t = yearly energy sold to grid
r = discount rate

The LPoE is a revenue and cost-based metric and is levelized over the discounted energy
offered to the grid. This metric provides valuable information on the relation between the
revenue, cost, and energy exchanged to the grid. In the context of this research, however,
the economic performance of different configurations of HPP need to be compared. The
revenue of the AWE component is levelized over the AWE energy sold and the revenue of
arbitrage is levelized over energy discharged to the grid. To compare configurations that
combine these different HPP aspects, the LPoE while providing valuable insight into the
revenue is not directly applicable. The profit of the configurations could all be levelized over
their total energy discharged to the grid but this would show warped metrics that are not
directly comparable. A more appropriate metric is the value-based metric of net present
value (NPV) and the related metric internal rate of return (IRR). These metrics are not com-
prised of factors using discounted energy to the grid but are instead based on the net flow
of cash of the project. The NPV is the discounted value of the operation of the plant over its
lifetime relative to the initial investment. The IRR is the discount rate for which the NPV is
0, giving a metric for investment return independent of a discount rate assumption. These
metrics are given by the following equations:

NPV = − CapEx +
𝑇

∑
𝑡=1

𝑅𝑡 − OpEx
(1 + 𝑟)𝑡 (3.26)

0 = NPV = − CapEx +
𝑇

∑
𝑡=1

𝑅t − OpEx
(1 + IRR)𝑡 (3.27)

where:
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NPV = Net present value
IRR = Internal rate of return
CapEx = initial investment of project
OpEx = operational expenditures per year
𝑅t = yearly revenue
T = Project lifetime
r = dicount rate

The resulting economic indicators calculated for the different configurations of HPP an-
alyzed in this research are described in chapter 4. The results consist of combinations of
model components simulated using the methods described in this chapter. The economic
performance is then reported, discussed, and compared.



4| Results and Evaluation

In this chapter the results of the simulations as described in Section 3 will be analyzed.
Section 4.1 states the context of the four scenarios, Section 4.2 discusses the results of the
simulation of AWE + ultracapacitor scenario, Section 4.3 discusses the results of the simu-
lation of AWE + Battery scenario, Section 4.4 discusses the results of the simulation of the
Battery arbitrage scenario and Section 4.5 discusses the results of the simulation of AWE
+ Battery arbitrage scenario. Finally, a general discussion of the results and analysis of the
sensitivity of the simulations will be made in Section 4.6.

4.1. Scenario configurations

As identified in chapter 3, the chosen location of the scenarios is Haringvliet. This location
is based on the existence of a Wind - PV - Batteries HPP at this location. This HPP, built and
operated by Vattenfall was installed to research HPP grid net congestion. For the past two
years, it has been collecting data, potentially adding AWE units to this plant could be inter-
esting to research the spread of RES production at this location. The location wind environ-
ment and DAMmarket dynamics have been previously analyzed in section 3.2.
As stated in the research approach in chapter 3, the goal of the developed model is to be
used for the assessment of the economic value of different AWE-Storage HPP systems.
These scenarios are; an AWE + ultracapacitor for smoothing, an AWE + batteries for smooth-
ing, a battery system used in DAM arbitrage, an AWE system + battery system for smooth-
ing and using the excess capacity in DAM arbitrage. A suitable set of input parameters was
created for the different components within each scenario as described in their respective
sections in chapter 3. By varying one component in each scenario the relative addition in
economic value can be ascertained. The variance in components can be seen in Table ??.

Scenario 1:
AWE + UC

Scenario 2:
AWE + Battery

Scenario 3:
Battery arbitrage

Scenario 4:
AWE + Battery arbitrage

AWE system 100 kW 100 kW - 100 kW

Storage system UC Battery Battery Battery

Storage
application

Smoothing Smoothing Arbitrage Smoothing
Arbitrage

Table 4.1: Overview component configuration per scenario
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4.2. Scenario 1: AWE + UC

The first configuration scenario is the AWE component with an ultracapacitor for power
smoothing purposes. The AWE energy is directly sold to the DAM and revenue is based on
a subsidy scheme. This scenario provides a reference for the other scenarios as any change
in components will result in a change in performance. Given the many assumptions of the
model concerning costs and performance that are not easily verified, using scenario 1 as
a base case to which to compare other scenarios provides a relative performance assess-
ment within the same set of assumptions. An overview of the components of this first con-
figuration can be seen in figure 4.1.

Figure 4.1: Scenario 1 AWE ultra-capacitor overview

Table 4.2 states the inputs and assumptions for this scenario. The subsidy scheme is a feed-
in-tariff (FIT) that offers eligible renewable plants a fixed price independent of the DAM
price for all RE of the plant offered to the grid. This FIT is represented by the subsidy value
shown and is based on the potential AWE subsidy scheme in Germany. This subsidy scheme
proposes a subsidy level where AWE-produced energy gets 1.55 the value of the onshore
wind auctions which may lead to values of 10-11 ct/kWh [59]. For this research, a subsidy
of the maximum value of 11 ct/kWh or 110 €/MWh has been chosen. The assumptions
and specifications of the ultracapacitor are what define the performance of the smoothing
component.
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Parameter Description Value

AWE 𝑃rated Rated power of AWE component 100 kW

Subsidy AWE subsidy 110 €/MWh

Type Storage technology type UC

Storage capacity Installed storage capacity 0.93 kWh

Storage cost Storage technology cost 60 k€/kWh

𝑁 cycles Lifetime of unit 106 cycles

𝑁 years Lifetime of unit 15 years

SoCmin State of charge lower limit 0 %

SoCmax State of charge upper limit 100 %

𝜂 round-trip efficiency 100 %

Table 4.2: Parameter inputs scenario 1: AWE + UC

This configuration, consisting of the AWE system with the ultracapacitor component for in-
termediate smoothing, shows a certain economic prospect in the scenario context. Given
the economic performance seen in Table 4.3, it is immediately clear from the LPoE and
NPV that the system is profitable, the costs of the system are overcome by the sale of its
produced energy given the market context, though not by a large margin. The IRR shows
a rate slightly higher than the discount rate assumed in this research of 10%, which results
in the comparatively low return on investment represented by the NPV value of 7500 €.

The overall cost of the UC component in this scenario can also be seen in Table 4.3. It can
be observed that the initial investment of the ultracapacitor system is relatively high at
56 k€for the component, which represents roughly 12% of the entire AWE system. In the
wind environment of the scenario, the power smoothing operation results in a required re-
placement of 0.11 times per year, meaning it will have to be replaced at least two times
throughout the lifetime of the AWE system.

Metric Description Result

AEP Annual energy produced 492 MWh

LCoE Levelized cost of energy 148 €/MWh

LPoE Levelized profit of energy 1.7 €/MWh

NPV Net present value 7.55 k€

IRR Internal rate of return 10.2 %

𝑓repl Storage replacement frequency 0.11 /year

CapEx Storage capital expenditures 55.9 k€

OpEx Storage operational expenditures 6.73 k€

Table 4.3: Results scenario 1: AWE + UC
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The interaction with the DAM price fluctuation of the AWE energy results in a sub-optimal
value gained from bids. As can be seen clearly in figure 4.2, peaks in AWE energy produc-
tion do not necessarily coincide with high DAM prices. In the zones indicated by the dashed
lines, the high value of energy In the operation over two weeks shown it is observed that
the hours with production nearing 70 kW, the DAM prices are actually below the yearly
average. This results in a potential for using the hours at which low or no AWE power is pro-
duced to capture the higher value DAM hours.
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Figure 4.2: Smoothing Energy and Power performance through battery

The economic performance of the AWE + UC configuration indicates that the cost of the
AWE system is high compared to the revenue from DAM participation. Comparing the per-
formance of the configuration in this simulation with the performance of the same system
inputs in the cost model developed by Joshi and Trevisi [22], shows the effect of DAM par-
ticipation. That cost model determines economic performance based on a stable electric-
ity price, Weibull distribution of wind speeds, and a subsidy scheme. The LCoE of that sim-
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ulation is 154 €/MWh while the IRR is 12.6 %. The higher LCoE at the same system cost
means the AWE-produced energy yield is higher in the simulation of this research. The
higher IRR however, means that the profit of the system is lower in the simulation of this
research. This means that even thoughmore energy is bid on the DAM, the value of the
energy at the moment of production is lower overall.
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4.3. Scenario 2: AWE + battery

The second configuration scenario is the AWE system with a battery for power smoothing
applications. The AWE energy is directly sold to the DAM and revenue is based on a sub-
sidy scheme. This scenario provides insight on the performance of an AWE-HPS with a bat-
tery system for power smoothing sized according to the power and energy requirements
determined in CHapter 3. The storage performance of this scenario will show the differ-
ence in storage energy and power use due to power smoothing. The results from this sce-
nario also show the capacity of the battery component after power smoothing has been
performed, this is the excess capacity. An overview of the components of the scenario 2
configuration can be seen in figure 4.3.

Figure 4.3: Scenario 2 AWE Battery overview

Table 4.4 states the inputs and assumptions for this scenario. The subsidy scheme is identi-
cal to that of scenario 1. The assumptions and specifications of the battery are what define
the performance of the smoothing component. Due to the AWE input parameters being
identical to those of scenario 1, any changing results will be directly related to the differ-
ence in operation of the smoothing storage component. The results presented here are
simulated using the optimistic battery costs, the results for higher battery prices will be
presented in Section 4.6.2.
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Parameter Description Value

AWE 𝑃rated Rated power of AWE component 100 kW

Subsidy AWE subsidy 110 €/MWh

Type Storage technology type Battery

Storage capacity Installed storage capacity 140 kWh

Storage cost Storage technology cost 130 €/kWh

𝑁 cycles Lifetime of unit 105 cycles

𝑁 years Lifetime of unit 10 years

SoCmin State of charge lower limit 10 %

SoCmax State of charge upper limit 90 %

𝜂 round-trip efficiency 90 %

Table 4.4: Parameter inputs scenario 2: AWE + Battery

The second scenario, consisting of the AWE system with a battery component for interme-
diate smoothing, shows a positive economic prospect. Given the economic performance
seen in Table 4.5, it is immediately clear from the LCoE that in this scenario, the costs of
the system are lower due to the lower costs of the battery system. The LPoE, NPV, and IRR
show that this system is an investment with positive returns. When comparing the storage
component capital and operational investments in table 4.3 and table 4.5 respectively, it
is clear to see that the increase in profit stems from the significant decrease in investment
due to the alternative storage component. This combined with the simulation showing
that there is an excess of battery capacity after consideration of smoothing shows potential
for use in alternative activities.

The storage metrics of the second scenario can also be seen in Table 4.5. The battery as a
replacement for smoothing power has a much higher installed capacity that is required
to allow for the power capacity to be high enough for smoothing at rated wind speeds.
The replacement of the battery component is limited not by the lifetime cycles, but by the
lifetime years of the storage unit. This is because, at the oversizing needed to obtain the
power required, the capacity is largely unused throughout the project’s lifetime. While the
replacement frequency is near the same value as that of scenario 1, the actual OpEx stem-
ming from this frequency is lower due to the lower cost of the storage system.

Metric Description Result

AEP Annual energy produced 492 MWh

LCoE Levelized cost of energy 131 €/MWh

LPoE Levelized profit of energy 19.2 €/MWh

NPV Net present value 85.7 k€

IRR Internal rate of return 12.37 %

𝑓repl Storage replacement frequency 0.10 /year

CapEx Storage capital expenditures 18.2 k€

OpEx Storage operational expenditures 1.82 k€

Table 4.5: Results scenario 2: AWE + Battery
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The interaction with the DAM price fluctuation of the AWE energy results in the same sub-
optimal value gained from bids as in the first configuration. The hours of high production,
coincide at some points with low DAM price points. This results in a potential for using the
hours at which low or no AWE power is produced to capture the higher value DAM hours.
In this configuration, a battery component is used, which has an excess capacity through-
out its operation. The availability of this capacity can be seen in figure 4.4, where the ex-
cess capacity is compared to the AWE production and DAM price fluctuation. The periods
where the AWE system is not producing power, indicated by the dotted lines, convey the
market value that is not captured due to the dependency on the wind speeds of the sys-
tem.
Beyond these unused hours there are also hours where the AWE is producing power, but
below rated power. At these hours the battery power smoothing is using energy and power
but has an excess in both of these. Figure 4.4a shows that the oversizing of the storage sys-
tem results in almost no energy capacity being used for power smoothing. At all hours
throughout the year the excess energy capacity is near full battery capacity. Figure 4.4b
shows that at these hours where there is excess energy capacity, there is not always an ex-
cess of power capacity. The horizontal line indicated by ’1C’ shows the battery power limit.
At the hours when the power nears that 1C limit, no excess power capacity exists. At hours
when the smoothing power is below the 1C point, there is an excess power capacity.

Figure 4.4c shows the DAM price fluctuation throughout the two weeks illustrated in this
figure. During the windows indicated by the dotted lines, high DAM prices with relatively
high volatility occur. This suggests a high potential for market interaction using the excess
capacity of the battery at these hours.
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Figure 4.4: Smoothing Energy and Power performance through battery
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4.4. Scenario 3: Battery Arbitrage

The third configuration scenario is the battery system used for DAM arbitrage. The battery
is operated using the operation strategy defined in chapter 3. An overview of the compo-
nents of this first configuration can be seen in figure 4.5. This overview shows the context
of isolated battery DAM interaction. First, the scenario input and assumptions will be de-
scribed, after that the operational strategy will be evaluated for its performance in this sce-
nario and after that, the economic performance of the system is described.

Figure 4.5: Scenario 3 Battery arbitrage overview

The battery price for the system is the optimistic price defined in chapter 3. The inputs
of storage lifetime, round-trip efficiency, and usable capacity are what define the perfor-
mance when participating in DAM arbitrage. These input values can be seen in table 4.6.
The trading of energy is based on the operational strategy proposed in chapter 3. The im-
plementation of that operational strategy will be evaluated first.

Parameter Description Value

Type Storage technology type Battery

Storage capacity Installed storage capacity 140 kWh

Storage cost Storage technology cost 130 €/kWh

N cycles Lifetime of unit 105 cycles

N years Lifetime of unit 10 years

SoCmin State of charge lower limit 10 %

SoCmax State of charge upper limit 90 %

𝜂 round-trip efficiency 90 %

Table 4.6: Parameter inputs scenario 3: Battery arbitrage

In the third scenario, consisting of the Battery system used independently in arbitrage, the
performance is harder to compare to the other three scenarios. Considering that several
performance metrics of the costs and profits are levelized over discounted energy, where
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the energy is usually energy produced. In the case of storage technologies, the cost is usu-
ally levelized over discounted energy discharged to the grid. This means the results are not
directly relatable to the AWE HPS scenario. It becomes preferable in this case to focus on
the metrics that do not include total energy but rather total profit and costs. The NPV, for
instance, shows there is a net negative cash flow in this context.

The market value capture of the configuration does not directly matter, since the aim of
this scenario is to provide a reference of the arbitrage modeling and the difference in oper-
ation when combining smoothing and arbitrage. As such it is the operational revenue we
are interested in and not as much the degree to which this operational profit relates to ini-
tial investment. This is because, in the case of storage used for combined smoothing and
arbitrage, the initial investment is a required cost of the AWE system.

The economic performance can be seen in table 4.7. These metrics clearly show the op-
eration of the battery in arbitrage is not profitable enough to recoup the installation cost.
It does show howmuch value can be gained from a battery system of the installed size
comparable to the size required for smoothing a 100 kW AWE system. This value captured
is expressed in the value of storage arbitrage (VoSA) which is explained in chapter 2. This
shows the market value captured by a storage system in this DAM environment using the
operational strategy proposed in this research. The VoSA is 7730 euros per year per MW
of installed capacity, which is on the lower side compared to other studies on storage arbi-
trage in the NL bidding zone in 2019. This arbitrage performance is further discussed in
section 4.6.

The battery system in scenario 3 is sized according to a battery system similar in size to the
power smoothing component for a 100 kW AWE system. As such the storage component
CapEx is the same as those in scenario 2 and 4. The replacement frequency in cycle life-
time is 0.067/year, however, due to the calendar year lifetime the replacement frequency
is 0.1 /year. This replacement frequency and the OpEx of the storage system show that us-
ing the arbitrage operation the use of the battery is low, leading to a situation where the
initial investment is not recouped over the project lifetime.

Metric Description Result

AED Annual energy discharged 48.7 MWh

LCoS Levelized cost of storage 60.4 €/MWh

LPoS Levelized profit of storage -38.2 €/MWh

VoSA Value of storage arbitrage 7.7 k€/MW/year

NPV Net present value -20.2 k€

𝑓repl Storage replacement frequency 0.10 /year

CapEx Storage capital expenditures 18.2 k€

OpEx Storage operational expenditures 1.82 k€

Table 4.7: Results scenario 3: Battery arbitrage

In terms of the operational strategy of the battery in arbitrage, Figure 4.6b and 4.6c show
the charging and discharging at certain DAM prices. The behavior is similar to the exam-
ple operation shown in Section 3.5.1. It also clearly shows it is not an optimal dispatch of
bids since the battery does not charge at all hours and at all peaks. The charging and dis-
charging power levels remain well below the 1 C limit, due to the SoC limits imposed on
the system. While the battery can theoretically sustain 140 kW over a full hour, due to the
SoC limits the battery can only store 80 % of 140 kWh. This results in a power level of 112
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kW, due to the usable battery capacity of 112 kWh.

Figure 4.6b and 4.6c show that the arbitrage modeling does result in more trading when
the price is volatile. At the start of the week the battery charges and discharges more of-
ten due to the high and volatile prices, in the middle the battery is used less due to the low
and less volatile prices. However, the limitations can also clearly be seen since the battery
still charges and discharges the full capacity later in the week, when the prices are lower
and less volatile than at the start.
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Figure 4.6: Arbitrage Energy and Power performance through battery



4.5. Scenario 4: AWE + Battery arbitrage 63

4.5. Scenario 4: AWE + Battery arbitrage

The fourth and final configuration scenario is the AWE component with a battery system
for combined power smoothing and arbitrage purposes. The AWE energy is directly sold
to the DAM and revenue is based on a subsidy scheme. The Battery energy is sold to the
DAM at moments directed by the arbitrage operational strategy. An overview of the com-
ponents of this fourth configuration can be seen in figure 4.3.

Figure 4.7: Scenario 4 AWE Battery arbitrage overview

Table 4.8 states the inputs and assumptions for this scenario. The subsidy scheme is identi-
cal to that of scenario 1. The assumptions and specifications of the battery are what define
the performance of the smoothing component. Since the battery input parameters are
identical to those in scenario 2, the added application of arbitrage will show the relation
between the added revenue and the added use of the battery. The IRR compared to that
of scenario 2 will therefore show whether the added value of arbitrage is more than the
added replacement of the battery due to its higher use.
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Parameter Description Value

AWE 𝑃rated Rated power of AWE component 100 kW

Subsidy AWE subsidy 110 €/MWh

Type Storage technology type Battery

Storage capacity Installed storage capacity 140 kWh

Storage cost Storage technology cost 130 €/kWh

N cycles Lifetime of unit 105 cycles

N years Lifetime of unit 10 years

SoCmin State of charge lower limit 10 %

SoCmax State of charge upper limit 90 %

𝜂 round-trip efficiency 90 %

Table 4.8: Parameter inputs scenario 4: AWE + Battery arbitrage

The fourth scenario combines all operation types in the battery component. That com-
bined operation results in a higher OpEx of the storage component as can be seen in ta-
ble 4.9. The CapEx remains the same as in scenario 2 since the installed capacity remains
the same. The OpEx increased by 540 euros per year due to the arbitrage operation. This
is however not the full representation of the additional stress on the battery system due
to the arbitrage operation. Since the battery replacement is defined as either the lifetime
in calendar years or the lifetime in cycles, one is leading in the replacement. In the case
of only power smoothing operation, the battery is replaced according to the calendar life-
time, whereas in the case of combined smoothing and arbitrage operation, the lifetime is
defined by the cycle lifetime. The difference in replacement frequency in scenario 2 and
scenario 4 is therefore smaller than the difference in stress on the battery system.

The storage result metrics of the fourth scenario can also be seen in table 4.9. The bat-
tery as a replacement for smoothing power has a much higher installed capacity that is
required to allow for the power capacity to be high enough for smoothing at rated wind
speeds. The replacement of the battery depends on the combined cycles of soothing and
arbitrage. As such the battery system will have to be replaced more often due to the added
use of its capacity. The replacement frequency of scenario 4 is slightly higher (0.101) than
that of scenario 2 (0.10), however, the value of the system is increased overall, at an IRR of
12.43% compared to the 12.37% of scenario 2. The slight difference in replacement fre-
quency is due to the lifetime years being the dominant factor, this will be analyzed further
in Section 4.6.
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Metric Description Result

AEP Annual energy produced 492 MWh

AEP Annual energy stored 17.5 MWh

LCoE Levelized cost of energy 127 €/MWh

LPoE Levelized profit of energy 19 €/MWh

NPV Net present value 87.9 k€

IRR Internal rate of return 12.43 %

VoSA Value of storage arbitrage 1.86 k€/MW/year

𝑓repl Storage replacement frequency 0.10 /year

CapEx Storage capital expenditures 18.2 k€

OpEx Storage operational expenditures 2.36 k€

Table 4.9: Results scenario 4: AWE + Battery arbitrage

The combined operation of the battery system can be seen in figure 4.8. This figure shows
the operation of the battery over two weeks. In figure 4.8a the capacity use can be seen. As
can be expected from the analysis of the battery capacity used for smoothing in section
4.3, the capacity used for smoothing is insignificant compared to the total battery capac-
ity. As such it is barely noticeable when graphing the battery capacity use. In figure 4.8b,
the power use of the battery is depicted. In this graph, the smoothing power can be seen
to take upmost of the power capacity of the battery when it is operating near rated kite
power. This figure also shows that in the time windows indicated by the dotted lines, when
the kite is not operational the battery can be fully utilized for arbitrage operation. At mo-
ments where the kite power is between cut-in and rated power, the battery is occasionally
also used for arbitrage, making use of the remaining power capacity.

As can be observed from the horizontal line indicating the 1 C power limit of the battery,
when the battery is not used for smoothing and only for arbitrage, the power output of the
battery is not fully used for arbitrage. This is because the capacity limit of using the battery
is between 10 and 90% resulting in the power of charging the battery being lower than
the maximum to charge the battery to full capacity within the hour.
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Figure 4.8: Smoothing Energy and Power performance through battery

In terms of the relative use of the battery system, it is interesting to evaluate the replace-
ment of the battery and the effect of combined interaction. Figure 4.9 shows the relation
between battery replacement and operation use. The power smoothing cycles are identi-
cal to those in scenario 2 but the overall higher frequency due to combined operation re-
sults in a ratio between the two. Arbitrage takes up 26% of the overall replacement in this
scenario, representing a use where power smoothing still dominates the rate at which the
battery has to be replaced. This share of battery replacement could end up higher if the ar-
bitrage would use more cycles when it is bid more often. This could happen in a scenario
of an alternative arbitrage operational strategy.
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4.6. Discussion of results

A study of three different configurations of AWE HPP and one Battery system has been an-
alyzed using the developed simulations. The study was comprised of four different types of
power system configurations; AWE + Ultracapacitor, AWE + Battery, Battery arbitrage, and
AWE + Battery arbitrage. The scenarios have been analyzed for DAM-based revenue gener-
ation. The main aim of this study was to use the simulations to understand the difference
in the market value capture. The model is used to compare the configurations based on
their LCoE, LRoE, NPV, and IRR. Special focus is given to the CapEx, OpEx, and storage re-
placement frequency due to the unique situation of shared CapEx for multiple operation
types influencing replacement frequency. The LCoE is calculated by levelizing over all en-
ergy discharged to the grid, to include battery arbitrage energy levels. The subsidy scheme
for AWE-produced energy is taken into account for the directly sold AWE energy, but not
for the battery arbitrage energy.

4.6.1. Comparison value assessment

This research aimed to find the addedmarket value of sizing a battery system that could
be implemented to serve the purpose of power smoothing for an AWE system and to iden-
tify the possibility and potential of using the excess capacity of this battery system in arbi-
trage. Table 4.10 shows the qualitative comparison of the scenarios evaluated in order to
find the market value capture of each scenario. This overview shows the relative advantage
of the battery smoothing of the AWE Battery configuration due to its drastically lower stor-
age costs. Furthermore, it shows the addedmarket value capture when using this same
system in arbitrage, even though this use case decreases the replacement performance of
the system.

Criteria AWE
ultracapacitor

AWE
Battery

Battery
Arbitrage

AWE
Battery Arbitrage

LCoE ≅ ↑ ↓↓ ↑
LPoE ↓ ≅ ↓↓ ≅
NPV ↓↓ ≅ ↓ ↑
IRR ↓↓ ≅ ↓ ↑

Replacement
frequency

≅ ≅ ↑ ↓

Storage CapEx ↓↓ ≅ ≅ ≅

Storage OpEx ↓↓ ↑↑ ↑↑ ↑

≅ = comparable ↑ = advantageous ↓ = disadvantageous

Table 4.10: Qualative comparison of scenario configuration performance
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Table 4.10 provides a qualitative comparison of the scenarios, which relates the relative
performance to the other scenarios. This is a good method to indicate the performance as
the metrics are rather difficult to compare. This is perhaps best illustrated by Figure 4.10,
where the LCoE values are given for each scenario. The bars and axis on the left represent
the LCoE values, with the cost levelized over the discounted energy discharged to the grid.
The line and right axis represent the discharged total energy. This clearly shows that the
LCoEmetric is hard to use to compare the scenarios since the values don’t directly relate
due to the different energy values over which they are levelized.
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Figure 4.10: LCoE values and energy discharged to grid of the four scenarios

The net present value represents the value of the project over the lifetime compared to the
initial investment. The NPV values can be seen in Figure 4.11, the bar graph and left axis
represent the NPV. The blue line and right axis represent the CapEx of the scenario. This
clearly shows the negative economic prospects of scenarios 1 and 3. The investment in
scenario 3 is especially negative, given the low CapEx value combined with the low NPV.
The NPV values rely on the assumed discount rate of 10%. The CapEx values of scenarios 3
and 4 are identical but the NPV of scenario 4 is slightly higher, concluding that the return
on investment is higher for the scenario combining AWE and arbitrage.
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Figure 4.11: NPV values and CapEx of the four scenarios

The IRR shows the rate at which the initial investment is recovered at the end of the life-
time, the higher the rate the better the return on investment. Compared to the NPV this
metric shows more clearly the return on investment since no discount rate assumption is
made. Figure 4.12 shows the IRR values of scenarios 1, 2, and 4. Scenario 3 was excluded
since the IRR is incredibly low, as indicated by the NPV relative to the CapEx seen in Figure
4.11. Figure 4.12 also shows the assumed discount rate of this thesis, showing once again
that scenario 1 results in the lowest return on investment, since the IRR is only slightly
above the discount rate of 10%. The IRR values for scenarios 3 and 4 show a slightly higher
IRR with the addition of storage arbitrage.
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Figure 4.12: IRR values of scenario 1, 2, and 4 and the discount rate assumed in this
thesis

The payback year shows the year at which the project breaks even based on the cashflow
and the initial investment. The lower the payback year, the higher the return on invest-
ment will be. Figure 4.13 shows the payback year values of scenarios 1, 2, 3, and 4. Sce-
nario 3 has no payback year since the cashflow of this scenario is too low to break even
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with the initial investment. The payback year shows clearly that the difference in cashflow
between scenarios 2 and 4 is not enough to make a difference in the payback year. The
payback year of scenario 1 is a year later than those of scenarios 2 and 4 due to the lower
cost due to the cheaper battery storage component.
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Figure 4.13: Payback year of each project, from top to bottom: scenario 4, 3, 2 and 1

The replacement frequency of the storage component shows when the storage compo-
nent has to be replaced due to battery degradation. A higher replacement frequency re-
sults in a higher OpEx since the component needs to be replaced more often. The replace-
ment frequency depends on either the lifetime in terms of years or the lifetime in terms of
cycles. The higher frequency is dominant since that determines the actual moment of re-
placement. Figure 4.14 shows the replacement frequencies both in terms of lifetime years,
and lifetime cycles. This indicates a more significant difference in battery use between sce-
narios than appears from just the dominant frequencies. The storage component in sce-
nario 1, being the UC, is replaced based on lifetime cycles, since this results in a higher fre-
quency. The same is true for scenario 4, though this difference is significantly lower. The
replacement frequencies of scenarios 2 and 4 show that the arbitrage operation increases
the replacement frequency by 0.03 per year. The actual difference is low, however, since
the lifetime in years dominates the replacement of scenario 2.
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Figure 4.14: Storage component replacement frequency breakdown by factors of
lifetime years and lifetime cycles per scenario

Comparing the economic performance of the different scenarios requires attention to
the limits of the simulation. As can be seen in Table 4.7, the value of storage arbitrage is
near 7.7 k€/MW/year. As can be expected the value of storage arbitration of scenario four
is lower, around 1.87 k€/MW/year. This can be explained due to the smoothing applica-
tion of the same battery system limiting howmuch the battery can be used. While the IRR
results show that at these values of the exploitation of the battery results in a net gain for
using the excess capacity for arbitrage in scenario four, the potential value increase is likely
higher.

Research into battery arbitration has shown that even though profit depends on many
variables in most cases they are expected to be closer to 50 k€/MW/year [55]. This value
of arbitrage depends in large part on the volatility of the market prices since this deter-
mines the price difference amplitude to be exploited. In the price data of the simulation,
the volatility of the price was 11.3, which compared to other periods and zones is on the
lower end of the average. This shows that the simulated arbitrage underperforms by some
degree, but does show the connection between DAM profit and additional battery replace-
ment costs.

4.6.2. Sensitivity analysis

Many factors influence the economic performance of the different systems within the sce-
narios. A sensitivity analysis is made to investigate how the IRR of the scenarios is affected
by changing certain variables. First, the sensitivity of the simulated performance to the
price of batteries is analyzed. Then the round-trip efficiency of the batteries is varied to in-
vestigate how this affects the profitability.

The simulated scenarios are compared based on the IRR, the difference in IRR shows which
configuration is more profitable. Since the profitability of the configurations using batteries
depend on the revenue being comparatively larger than the costs of the battery system,
the costs factor into this to a large degree.
Table 4.11 shows the sensitivity of the economic performance to the battery price. Sce-
nario three was not taken into consideration as the configuration of battery use in arbi-
trage was mainly used to compare arbitrage revenue possibilities but due to it’s signifi-
cantly lower profitability in any use case does not provide additional insight in comparing
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the scenarios. It can be seen that the AWE ultracapacitor scenario has no sensitivity to the
battery price, as can be expected due to it not using any battery capacity. The Profitabil-
ity of scenario two and four do show a relation to the battery price. Both the profitability
values, represented by the IRR decrease at higher battery prices. This is due to the initial
investment being higher as well as the subsequent battery replacements costing more.
Scenarios two and four present a linear regression based on the battery price, further defin-
ing the extra battery replacement due to arbitrage being compensated by the additional
revenue.

Battery price
€/kWh

Scenario 1:
AWE + Ultracapacitor

Scenario 2:
AWE + Battery

Scenario 4:
AWE + Battery arbitrage

130 10.2 12.37 12.43

145 10.2 12.26 12.31

160 10.2 12.14 12.20

175 10.2 12.02 12.08

190 10.2 11.90 11.96

205 10.2 11.79 11.85

220 10.2 11.68 11.73

Table 4.11: Sensitivity IRR to battery price

Figure 4.15 further illustrates the relative decline in profitability as battery price increases.
The IRR values for both scenarios experience the same inclination. This shows that an in-
crease in battery price does not change the relative added value of arbitrage. This may dif-
fer for alternative arbitrage operation strategies where the relation between battery use
and arbitrage revenue is different. In the operational strategy used in this study, the arbi-
trage is based on maximum capacity charge/discharge at local price extrema. In a more
optimal dispatch, the traded capacity could differ from none or all of the capacity, which
could change the overall battery use and effect on battery replacement.
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Figure 4.15: Sensitivity IRR to battery price scenario 2 and 4

Figure 4.16 shows the sensitivity of scenario 4 IRR values to the round-trip efficiency of the
battery. Studies related to battery arbitrage have concluded a significant relationship be-
tween arbitrage revenue and battery efficiency. As the figure shows, higher efficiencies re-
sult in higher IRR values and also more energy cycled through the battery.
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Figure 4.16: Sensitivity IRR to battery round-trip efficiency scenario 4

Figure 4.17 shows the sensitivity of scenario 4 IRR values to the battery installed capac-
ity or size. As can immediately be seen an increase in battery size results in a decrease in
IRR. This is because at the size of 140 kWh required for power smoothing in this context,
the initial investment is shared over multiple applications. At any size over this value the
initial investment increases which is not recouped by the increased arbitrage use. This in-
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crease in arbitrage use can be seen by the energy discharged by the battery increasing as
the size increases. The resulting sensitivity shows that at the battery price point of this anal-
ysis, the arbitrage is not economically viable for any additional capacity but does result in
an increase in value of the system when the excess capacity is used.
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Figure 4.17: Sensitivity IRR to battery size efficiency scenario 4



5| Conclusion

The literature review led to the following research questions: In a scenario of grid connec-
tion, In a scenario of grid connection, how can the value of hybrid power systems (HPS) us-
ing airborne wind energy (AWE) be maximized? The answer to that question will be pro-
vided in this section.

5.1. Key findings

The literature review was conducted to find the essential information needed to conduct
this study. In a grid-connected scenario, revenue generation on the day ahead market
(DAM) depends on the value of the energy bid to the grid. It was identified that combining
an airborne wind energy (AWE) system with batteries to provide power smoothing applica-
tion was beneficial to the system profitability. Studying the power smoothing capabilities
of ultracapacitors (UCs) and batteries as well as the ramping limitations of the DAM indi-
cated the possibility of incorporating battery power smoothing in the AWE system. It was
then identified how to determine the system sizing of the replacement power smoothing
component. The level of increased DAM-generated profit was then identified using simula-
tions.

• The value of grid-connected fixed-wing AWE systems in DAM participation is increased
when batteries are used for power smoothing.

The simulated profitability of the UC and battery configurations identified the answer to
the first research subquestion; to what extent can grid-connected profitability be increased
when replacing the UC intermediate storage with a battery system in the configuration
of an Airborne Wind Energy system? To answer this a model was developed that could
simulate the market value captured by an AWE system and determine the performance
and replacement of the power smoothing component. The results confirmed the battery
smoothing component performed similarly to the UC in terms of power output but at sig-
nificantly lower system lifetime costs. The internal rate of return of the AWE + battery sys-
tem was 2.17% higher than the AWE + UC system, showing a higher return on investment
over the project lifetime. Simulations also showed a significant excess storage capacity be-
ing present in the battery system due to over-sizing.

• The value is further increased when batteries are used for combined power smooth-
ing and arbitrage operation.

The excess power and energy capacity of the storage component were analyzed to deter-
mine the increase in system value. This leads to an answer to the second research subques-
tion; to what level can the excess capacity present in the battery power smoothing storage
be used to increase profitability? A model was developed to simulate the excess capacity
and a strategy was created to operate the arbitrage. The additional operation of the excess
power smoothing capacity in DAM arbitrage resulted in an increase in IRR of 0.06% com-
pared to the AWE + battery system without using arbitrage. This shows the added battery
degradation due to increased battery use is offset by the additional revenue due to storage
arbitrage.

• The use of batteries in DAM storage arbitrage is not profitable at the projected cost
but when combined with AWE systems will result in profit.

Simulations of a battery system operating in storage arbitrage on the DAM environment
defined in this research resulted in a negative economic prospect. The revenue generated

76
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using the arbitrage operation proposed in this thesis was insufficient to recover the initial
investment and battery replacement cost. The combination of DAM arbitrage and AWE
power smoothing results in combined revenue that is sufficient to recover the initial in-
vestment and battery replacement cost as well as generate profit. Sensitivity analysis of
the battery size showed no increased profit beyond the minimum required battery size for
AWE power smoothing. This further determines the optimal profit of battery arbitrage at
current cost projections to be at the capacity sized for smoothing, only using the excess
capacity for arbitrage.

5.2. Reflections and recommendations

This research was conducted to provide insight into the possibilities of increasing the value
of AWE systems combined with battery storage. It shows that when the batteries are used
for arbitrage on the DAM, the initial investment of the system is used more efficiently for
multiple purposes. The current developed model shows a good foundation for identifying
areas where additional value can be gained. The arbitrage operational strategy does rely
on assumptions of perfect forecast and was shown to not result in revenues comparable
to those found in similar market price environments. Instead of heuristics, the use of opti-
mization algorithms could be used to compute more theoretically ideal arbitrage bids.

Additional inputs, such as wind andmarket data forecast error, could be used to research
alternative use cases for the excess capacity. The imbalance between generated power
and bid power resulting from wind forecasting errors could be compensated by the bat-
tery capacity. It has been shown in the past that such application of batteries is possible at
comparable rated power/installed battery capacity ratios. Beyond this internal imbalance,
the imbalance market could also prove profitable for the system analyzed in this study. By
including these alternative applications the optimal use of the excess capacity can be iden-
tified.

This research identifies the beneficial effect of arbitrage using a battery system also used
for power smoothing. The simulated scenarios could be expanded to include other renew-
able energy sources such as solar PV. Within that context, the complementary intermit-
tency could perhaps be used efficiently by a battery system of the size required for AWE
power smoothing.

The battery system size identified as the required capacity for smoothing proved the op-
timal sizing for profitability, since at that capacity the initial investment was recouped by
multiple applications of the battery. Combining this inherent battery capacity with a long-
term storage component could provide insight into the benefits of long-term storage in
addition to the present short-term storage.
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