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A B S T R A C T

When simulating pressure-driven fracture with the Finite Element Method (FEM), significant
difficulties can arise upon representing newly formed complex damage surfaces and their
concurrent crack face loading. Application of this loading can also be required when additional
physics is involved as in the case of hydraulic fracture where fluid physics inside a damage need
to be considered. This paper presents a new Finite Element based practical numerical framework
which can model pressure-driven fractures as they form on-the-fly without remeshing. The exact
location of physical discontinuities passing through the element domain can be represented
in the numerical model. The numerical framework can be implemented as a user-defined
element and can be integrated into any FE package. A new element (called pressure element) is
formulated with the capability to apply pressure and associated forces onto the crack surfaces
in an adaptive manner. This element is verified using relevant examples from literature. The
framework can also be configured for multi-physics problems where crack face loading is
dictated by an additional physics. The element formulation is then extended for multi-physics
problems involving fluid–solid interaction. The formulation provides the capability for multi-
physics coupling adaptively as the crack propagates. The element is used to successfully simulate
a test case from literature using different solution procedures (iterative and simultaneous). This
element is also used to model failure in different pressure vessel problems to demonstrate
its potential use in structural applications. A new higher-scale vessel element is developed
which can represent different size, partitioning and failure states of composite vessel systems
at element level. Composite vessel failure involving high number of pressurized cracks and
delaminations as well as their interaction is modelled, and burst pressures are predicted for
different vessel systems. The proposed numerical framework can be used towards designing
more damage-tolerant vessels critical for the sustainable propulsion technologies.

1. Introduction

1.1. Background and motivation

Hydraulic fracture is the process where a crack is propagated by a pressurized fluid acting on the crack surface. There are
various structures that are exposed to pressurized fluids such as fuel tanks and submarines which can lead to damage [1,2]. Damage
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analysis of these structures is important to account for the effect of the fluid behaviour on the design. Moreover, hydraulic fracture
has gained strong interest in recent years from the oil and gas industry [3,4]. One of the most prominent applications of pressure-
riven fracture problems involve pressure vessels. In accordance with the net zero emission targets set by various new sustainability

incentives, fuel systems involving compressed gas storage are gaining increased prominence in various industries such as automotive,
ransportation and aeronautics [1,2]. Particularly in aeronautics, hydrogen storage has become a promising technology for more

sustainable, non-fossil based propulsion. Pressure vessels are essential for the realization of these technologies. Understanding and
modelling pressure-driven failure of these structures are particularly crucial to design lighter and more damage-tolerant vessels.

There is a strong interest in literature to model pressure-driven failure using both analytical and numerical approaches [1–
13]. Particular interest lies in FE-based models for their capability to simulate complex pressure-driven fracture processes where
nalytical solutions can be difficult to attain. Significant amount of research is dedicated for pressure vessel failure modelling which

typically involves smeared damage approaches [3,5,6] and micromechanics failure models [7–9]. FE-based explicit crack modelling
approaches has also been explored for vessel failure applications [10–12].

The pressure-driven problems are also explored for multi-physics problems. Modelling hydraulic fracture is among the most
prominent of such problems and many approaches have been proposed in the literature that use different damage modelling
techniques such as FEM [3,14–24], Phase Field Method [25–28], Peridynamics [29–31], Boundary Element Method [32,33],
and Displacement Discontinuity Method [34–37]. These studies consider various aspects of multi-physics problems such as non-

ewtonian lubrication theory, non-planar fracture growth, and generalized asymptotes for different propagation regimes, each
aving their own advantages and disadvantages. Considering the academic and industrial significance of the Finite Element based
pproaches and particularly the advanced techniques that does not require remeshing (XFEM and PNM), they constitute the focus

of this study. Various techniques are proposed based on XFEM [3,14–18] and PNM [19,20] which provide important capabilities
and can be implemented using the available commercial FE packages. Furthermore, for more effective FE-based crack modelling,
zero-thickness elements are developed to capture the fluid physics inside the crack and deal with the associated fluid–solid
coupling [22,23,38,39]; here, one of the main purposes is to gain more accuracy by accounting the direct interaction between the
physical crack discontinuities and the fluid. There is a comprehensive multi-physics literature involving many papers that utilize
XFEM and PNM considering wide range of aspects. The use of XFEM and PNM enables hydraulic fracture modelling that does not
require re-meshing. However, these methods are unable to represent the exact location of physical discontinuities that can pass
through the element domain [40,41] and as a result, their integration with zero thickness elements for fluid–solid coupling is not
straightforward. As the crack and fluid propagates in an elastic medium, whose path is not known a priori, difficulties can arise
to deal with the evolving topology and multi-physics as well as associated new Degrees of Freedom (DoF) in an effective manner.
Considering the vast literature involving XFEM and PNM, exploring new FE-based approaches [40] is critical as they can provide
new practical numerical frameworks with significant advantages for pressure-driven fracture.

Exploring new methodologies and numerical frameworks is vital to develop versatile and robust methodologies for pressure-
driven fracture modelling of structures. Towards this end, ideally, a numerical framework should not need re-meshing as its
mplementation can be rather complex. It should have the capability to represent exact physical location of any discontinuity due to
amage whose position is not known a priori before a numerical analysis. Accounting exact physical discontinuity positions is critical

in non-remeshing techniques (XFEM, PNM) for better accuracy as demonstrated in the literature [40]. Moreover, the framework
eeds to be able to introduce zero thickness elements that can apply pressure to newly formed complex damage surfaces. It should
lso deal with the fluid physics and implement the solid–fluid coupling in an adaptive and practical manner as the pressure drives
he damage propagation. To achieve all these, the framework needs to be able introduce new DoFs on-the-fly for either the emerged
ew physics or discontinuities during a simulation. In this work, a new finite element (pressure element) is proposed capable of all
hese features. We explore a recent node technology named Floating Nodes [40] as a starting point to formulate models that has

the aforementioned capabilities to simulate pressure-driven fracture more effectively. In addition, the formulation is extended for
structural problems whereby a new higher-scale vessel element is developed. This element can provide a practical platform to model
pressure vessel failure considering different size, partitioning and failure scenarios. It can be applied in the simulation of pressure
essel systems considering a large number of damage and their concurrent crack face loading at element level.

1.2. Outline

In this paper, before formulating the proposed pressure element and the associated numerical framework, we establish the
background by introducing the FNM and its integration with fundamental damage modelling approaches i.e. Virtual Crack Closure
Technique (VCCT) and Cohesive Zones, formulations for cracked solid body and standard cohesive element in Section 2. This
section is followed by the formulation of the pressure element (Section 3) which enables adaptive crack face loading as the crack
merge on-the-fly during a numerical analysis. The developed pressure element inherently contains cohesive zones which can be
eactivated based on the analysed problem. This stage constitutes a first step towards the pressure element’s extended formulation
or multi-physics problems.

After this step, we extend pressure element formulation for multi-physics problems in Section 4. Considering its prominence
among various multi-physics problems, hydraulic fracture modelling is selected for verification of the multi-physics pressure element.
Such coupled multi-physics problems involving fluid–solid interaction can be solved by either iterative or simultaneous procedures.
The developed numerical framework can apply both of these procedures. In the iterative procedure, the solid and fluid parts of
he problem are solved separately (by constructing two different FE systems) and coupled via a Picard iteration scheme using

the solutions from the individual parts. In the simultaneous procedure, DoF are used for both pressure and displacement, and the
2 
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Fig. 1. Overview of the Floating node method, after [40].

problem is solved for all DoFs at the same time. Considering its suitability to develop multi-physics formulation for the pressure
element, simultaneous procedure is implemented in Section 4. Details of the implementation of the numerical solution procedures
are provided in Section 5.

These formulations are verified using several different problems that use different damage propagation approaches (VCCT or
cohesive zones) in Sections 6–9. In Section 6, we verify the adaptive crack face loading capability of pressure elements using VCCT.
After this step, we verify the multi-physics pressure elements using both of the solution procedures in Section 7. To demonstrate
the capability of pressure elements in a industrially relevant critical structural problem, we apply them in the failure modelling of
pressure vessels. In Section 8, we use pressure element to capture single crack propagation in a pressure vessel using VCCT. Then in
Section 9, we apply these elements to a more comprehensive failure analysis of pressure vessels involving high number of cohesive
cracks and delamination as well as their interaction. For this important class of structural problems, we also propose a novel vessel
element for practical modelling of vessel failure in Section 9 and provide valuable insights on vessel failure mechanisms. The paper
is finalized with the overall conclusions in Section 10.

2. Background formulations

2.1. Floating node method

In Fig. 1, FNM [40–48] technology is illustrated. Basically, in addition to standard nodes of a finite element, new nodes are
introduced to the element associated with different geometrical (topological) entities, such as edges, surfaces or volumes. These
floating nodes are not tied to an initial position. When a discontinuity passes through the element, additional Degrees of Freedom
(DoFs) are typically needed to represent the discontinuity. In FNM, these floating nodes are assigned to the positions of the
discontinuities and corresponding sub-elements are formed inside the main element (Fig. 1). Then, for all sub-elements, typical
finite element calculations are performed.

By utilizing different configuration of floating nodes, new enrichment schemes can be devised for various applications [40–48].
In the literature, FNM has been successfully integrated with the progressive damage simulation techniques such as cohesive elements
and Virtual Crack Closure Technique (VCCT) [40] which is detailed in the following section.

2.2. Implementation of progressive damage simulation techniques with FNM

2.2.1. Introduction
Cohesive zone models and VCCT are both very commonly used to represent crack growth numerically. The application of these

with FNM is explained in this section.

2.2.2. Application of cohesive zone models using FNM
Cohesive Zone Models (CZM) [49] introduce a cohesive zone around a crack tip region composed of initially coinciding surfaces

that are separated by applied tractions. The models impose a constitutive law which relates the tractions to the respective separation
of the initially-coinciding surfaces.

Using FNM, cohesive cracks can be integrated to a cracked element as shown in Fig. 1. Considering an element that has failed and
partitioned into two regions (𝛺A and 𝛺B), a cohesive sub-element can easily be introduced to the element along the discontinuity
𝛤𝛺c

(see Fig. 1). The overall stiffness matrix for the element then becomes

𝐊all = ∫𝛺A

𝐁T
A𝐃𝐁A d𝛺 + ∫𝛺B

𝐁T
B𝐃𝐁B d𝛺 + ∫𝛤𝛺c

𝐍T
CE𝐃CE𝐍CE d𝛤c, (1)

where 𝐁A and 𝐁B are strain–displacement matrices for the domains 𝛺A and 𝛺B. 𝐍CE refers to the shape function matrix for the
cohesive element that relates the nodal DoFs along 𝛤𝛺c

to the separations and 𝐃CE represents to the constitutive matrix that relates
the cohesive traction to the respective displacement jumps.
3 
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Fig. 2. Implementation of VCCT with FNM, from [40].

Thus, the floating nodes along the surface 𝛤𝛺c
can directly represent the physical discontinuity and interpolate the displacement

jumps across the cohesive interface. Finally, the stiffness matrix of the cohesive sub-element (or any other zero thickness element)
can be assembled to the stiffness matrix of the overall element, together with those of 𝛺A and 𝛺B as shown in Eq. (1).

For the cohesive zones in this study, a standard bi-linear law was used with a typical quadratic stress interaction initiation
criterion (using the normal strength 𝑌 and shear strength 𝑆). To determine the critical energy release rate 𝐺c of cohesive zones, we
use the B-K criterion

𝐺c = 𝐺Ic + (𝐺IIc − 𝐺Ic)(𝐺II∕𝐺I + 𝐺II)𝜂BK , (2)

where 𝐺I and 𝐺II are the calculated energy release rates in mode I and mode II from the numerical model, 𝐺Ic and 𝐺IIc are the
critical energy release rates in mode I and II, and 𝜂BK is the experimental interaction parameter.

2.2.3. Application of VCCT using FNM
The numerical representation of a crack is shown in Fig. 2. According to VCCT, the energy release rates for mode I and mode II

are given respectively by [50]:

𝐺I = 1
2𝐴W

𝐹n[[𝑞n]]
(

𝐴W
𝐴CT

)1∕2
, (3)

𝐺II = 1
2𝐴W

𝐹t [[𝑞t ]]
(

𝐴W
𝐴CT

)1∕2
, (4)

where 𝐹n and 𝐹t are the components of force 𝐅 in the normal and tangential directions, and [[𝑞n]] and [[𝑞t ]] are the components of
displacement jump [[𝐪]] in the normal and tangential directions of the crack, respectively [40]. In addition, 𝐴W represents the crack
surface area in the wake element (for a 2-dimensional problem, 𝐴W = 𝓁W𝑏, where 𝓁W is the length of the discontinuity in the wake
element as shown in Fig. 2 and 𝑏 is the thickness of the domain) and 𝐴CT is the crack surface area in the refinement element (for
a 2 dimensional problem, 𝐴CT = 𝓁CT𝑏, where 𝓁CT is the length of the discontinuity in the refinement element as shown in Fig. 2).
Using the energy release rates calculated with Eqs. (3) and (4), we can employ a criterion of the form

𝑓
(

𝐺I, 𝐺II, 𝐺Ic, 𝐺IIc, 𝜂
)

= 0, (5)

where 𝐺Ic, 𝐺IIc and 𝜂 are relevant material properties, to decide whether the crack should propagate. When crack propagation
occurs, the elements along the crack path can be partitioned accordingly using the FNM. To determine the critical energy release
rate of crack propagation, we use the B-K criterion whereby Eq. (5) becomes Eq. (2).

2.3. Modelling of a cracked solid body

2.3.1. Weak formulation
A solid body (with a domain 𝛺) containing a crack (with a domain 𝛤c) is shown in Fig. 3(a). Neumann and Dirichlet boundary

conditions are applied to the domain boundaries 𝛤N and 𝛤D, respectively. 𝝉N is the applied traction and 𝐮D is the applied
displacement. The crack domain 𝛤c contains initially-coinciding upper and lower surfaces, 𝛤+

c and 𝛤−
c , respectively. The crack

surfaces may be exposed to tractions 𝝉+c and 𝝉−c . Considering body forces 𝐛 applied to the solid domain, the weak formulation for
the static equilibrium of the solid body can be written as

∫𝛤N
δ𝐮T𝝉N d𝛤 + ∫𝛤+

c

(δ𝐮+)T𝝉+c d𝛤 + ∫𝛤−
c

(δ𝐮−)T𝝉−c d𝛤 − ∫𝛺
∇ ⋅ δ𝐮T𝝈 d𝛺 + ∫𝛺

δ𝐮T𝐛 d𝛺 = 0, (6)

where 𝝈 is the Cauchy stress tensor, δ𝐮 is the variation of displacements 𝐮 with δ𝐮+ and δ𝐮− referring to the variation of displacement
specifically on the upper and lower side of the cohesive crack.
4 
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Fig. 3. 2D medium with a crack exposed to crack face loading.

2.3.2. Weak formulation for a pressurized crack segment
Considering now the small segment of the crack with domain 𝛤c (see Fig. 3(b)) that is connected to the solid domain, both

surfaces of the segment will experience tractions. The surfaces of this isolated crack segment are exposed to tractions 𝝉+c and 𝝉−c
hich will be balanced by the tractions 𝝉+N and 𝝉−N due reaction forces of the subsequent elements in the solid body as shown in

Fig. 3(b). Then, the virtual work of these tractions acting on both surfaces can be written as

∫𝛤+
c

(δ𝐮+)T𝝉+N d𝛤 + ∫𝛤−
c

(δ𝐮−)T𝝉−N d𝛤 + ∫𝛤+
c

(δ𝐮+)T𝝉+c d𝛤 + ∫𝛤−
c

(δ𝐮−)T𝝉−c d𝛤 = 0. (7)

From equilibrium, we have 𝝉+N = −𝝉−N = 𝝉N and 𝝉+c = −𝝉−c = 𝝉c. Under the assumption of infinitesimal deformation, we can write
𝛤c ≈ 𝛤+

c ≈ 𝛤−
c . We can also define the variation of displacement jump over the crack as δ𝐰 = δ𝐮+ − δ𝐮−. Therefore, Eq. (7) yields

∫𝛤c
δ𝐰T𝝉N d𝛤 + ∫𝛤c

δ𝐰T𝝉c d𝛤 = 0. (8)

Based on Eq. (8), the next section presents the Finite Element implementation of a standard cohesive element and the following
ection proposes a novel formulation suitable for introducing pressure loading on the crack faces.

2.4. Standard cohesive element for the modelling of fracture

Consider the 2D cohesive element shown in Fig. 4(a). The element has 4 nodes, labelled 1 to 4. Each node 𝑖 has nodal
displacements, �̂�T𝑖 = [�̂�𝑖, �̂�𝑖], which are used to compose the DoF vector for the element �̂�T = [�̂�T1 , �̂�T2 , �̂�T3 , �̂�T4 ]. The displacement
jumps between pairs of corresponding nodes can be defined as �̂�T

14 = �̂�T4 − �̂�T1 and �̂�T
23 = �̂�T3 − �̂�T2 . Finally, the vector of displacement

jumps can be defined as �̂�T = [�̂�T
14, �̂�

T
23]. The cohesive element has a local and global coordinate system as shown in Fig. 4(a), and

 natural coordinate system as shown in Fig. 4(b). The separations over the cohesive element can be given as

𝐰 = 𝐍c�̂�. (9)

where 𝐍c is the shape function matrix that correlates displacements to cohesive separations. 𝐍c can be given as [51]

𝐍c =
[

−𝐶 𝑁1 −𝑆 𝑁1 −𝐶 𝑁2 −𝑆 𝑁2 𝐶 𝑁2 𝑆 𝑁2 𝐶 𝑁1 𝑆 𝑁1
𝑆 𝑁1 −𝐶 𝑁1 𝑆 𝑁2 −𝐶 𝑁2 −𝑆 𝑁2 𝐶 𝑁2 −𝑆 𝑁1 𝐶 𝑁1

]

, (10)

where 𝑁1 = (1 − 𝜉)∕2 and 𝑁2 = (1 + 𝜉)∕2 with 𝜉 denoting the natural coordinate (see Fig. 4(b)). 𝐶 and 𝑆 represent cos 𝜃 and sin 𝜃,
espectively, where 𝜃 is the angle between the global and the local coordinates (see Fig. 4(a)).

Substituting Eq. (9) in Eq. (8), we get

δ�̂�T
(

∫𝛤 𝑒
N

𝐍T
c 𝝉N d𝛤 + ∫𝛤 𝑒

c

𝐍T
c 𝝉c d𝛤

)

= 0. (11)

Since δ�̂� is generic, we have

∫𝛤 𝑒
N

𝐍T
c 𝝉N d𝛤 + ∫𝛤 𝑒

c

𝐍T
c 𝝉c d𝛤 = 𝟎. (12)

The cohesive traction 𝝉c in Eq. (12) can be expressed as
𝝉c = 𝐃c𝐰 = 𝐃c𝐍c�̂�, (13)

5 
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Fig. 4. Cohesive element with 4 nodes.

where 𝐃c is the constitutive relation between the separation and tractions. Substituting Eq. (13) into Eq. (12), we get

∫𝛤N
𝐍T
c 𝝉N d𝛤 + ∫𝛤c

𝐍T
c𝐃c𝐍c d𝛤 �̂� = 𝟎. (14)

Thus, the discrete equilibrium equations for the cohesive element becomes

𝐊c�̂� = 𝐟N, (15)

where cohesive secant stiffness 𝐊c is defined as

𝐊c = ∫𝛤c
𝐍T
c𝐃c𝐍c d𝛤 , (16)

and the external force vector of the cohesive element is given as

𝐟N = ∫𝛤N
𝐍T
c 𝝉N d𝛤 . (17)

3. A new adaptive element for damage surface loading — pressure elements

3.1. Introduction

Consider the case where fluid pressure is known inside a fracture in an elastic medium. To model this system, the pressure inside
the crack needs to be applied to the crack surfaces. The surfaces of the crack can move as a result of the crack propagation during the
numerical analysis, and their position is therefore not known a priori. In this case, an adaptive and versatile methodology to apply
evolving pressure to the surfaces of a crack is needed to accurately model the damage. This can be achieved by a new element type
called pressure element which has the capability to exert fluid pressure onto the crack surfaces in an adaptive manner and model
the cohesive behaviour of the medium. The integration of this element inside the FNM numerical framework can be achieved as in
standard cohesive elements and as a result, such fluid driven crack propagation problems can be handled effectively. This element
type constitutes the first step towards developing the pressure element which will have the capability to model the fluid physics and
the associated strong coupling problem.

3.2. Formulation

To account for the effect of fluid pressure acting on a solid body, an element with the same topology as the cohesive element in
Fig. 4 can be formulated (see Fig. 5). Considering the equilibrium equation given in Eq. (15) for the cohesive element formulation,
additional pressure forces 𝐟p with corresponding tractions 𝝉p can be acting on the crack surfaces different from the other external
forces 𝐟N. Then, the equilibrium equation for the this case can be written as

𝐊c�̂� = 𝐟p + 𝐟N, (18)

where the external force vector of the pressure element that acts on the crack surfaces can be written as

𝐟p = ∫𝛤N
𝐍T
c 𝝉

p d𝛤 . (19)

The stiffness matrix 𝐊c represents the cohesive behaviour of the crack in the medium. If the cohesive behaviour is not introduced,
then the constitutive matrix in the cohesive part becomes zero; in this case, the stiffness matrix would not contribute to the FE system
but the element would still enable evolving pressure loading of the crack surfaces. A verification of this element is demonstrated in
Section 6.
6 
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Fig. 5. Element schematic that contains applied pressure.

4. Application of pressure elements for multi-physics fracture problems

4.1. Hydraulic fracture theory

In hydraulic fracture problems, cracks propagate within a solid domain due to the injected fluid inside the fracture (Fig. 6).
Fig. 6 shows a crack in solid medium, 𝛺, propagating along a curvilinear coordinate 𝑠. An incompressible fluid with viscosity 𝜇 is
injected with a rate 𝑞0(𝑡) (area per unit time). At each coordinate 𝑠 inside the crack, the flow rate is 𝑞(𝑠, 𝑡), the pressure is 𝑝(𝑠, 𝑡),
and the opening of the crack is 𝑤𝐧(𝑠, 𝑡); i.e. 𝑤𝐧 = 𝐧T ⋅ (𝐮+ − 𝐮−) where 𝐧 is the normal to the crack, 𝐮+ is the displacement at the
upper surface and 𝐮− is the displacement at the lower surface of the crack. We seek to define the fluid behaviour in order to find
the forces that act on the crack surfaces. During the fluid injection, the elastic body can deform and the crack can propagate. The
flow rate 𝑞 is proportional to the pressure gradient 𝜕 𝑝

𝜕 𝑠 via [52]

𝑞 = − 𝑤3
𝐧

12𝜇
𝜕 𝑝
𝜕 𝑠 . (20)

Assuming incompressibility, the local mass conservation of the fluid can be expressed as [17]
𝜕 𝑤𝐧
𝜕 𝑡 +

𝜕 𝑞
𝜕 𝑠 = 0, (21)

where 𝑡 is the time. Then, combining Eqs. (20) and (21), the strong form of the fluid flow equation becomes
𝜕 𝑤𝐧
𝜕 𝑡 = 𝜕

𝜕 𝑠 (
𝑤3

𝐧
12𝜇

𝜕 𝑝
𝜕 𝑠 ). (22)

At the crack tip, 𝑠 = 𝓁, the flow rate and the pressure are zero. The boundary conditions therefore can be written as

𝑞(0, 𝑡) = 𝑞0(𝑡), 𝑞(𝓁, 𝑡) = 0, 𝑤𝐧(𝓁, 𝑡) = 0, 𝑝(𝓁, 𝑡) = 0, 𝑣𝐧(𝑠, 𝑡) = 0, (23)

where 𝑣𝐧 is the mid-plane displacements of the hydraulic fracture elements in the normal direction. The initial conditions can be
written as

𝑤𝐧(𝑠, 0) = 𝑤0(𝑠). (24)

Using Eq. (21), we can obtain an overall expression for the mass conservation:

∫

𝓁

0

[

𝑤𝐧(𝑠, 𝑡) −𝑤0(𝑠)
]

d𝑠 = ∫

𝑡

0
𝑞0(𝑡) d𝑡. (25)

The current study focuses on a propagation regime with the provided boundary conditions as explained and formulated in this
Section 4 to demonstrate the new capabilities of the proposed numerical framework. Other propagation regimes with different
assumptions and idealizations can also be modelled with appropriate modifications on the proposed framework by imposing either
new DoFs, Multi-Point Constraints, forces (due to the flux) or refinement schemes. Such investigations are left in the scope of future
studies that utilize this framework. Here, we have applied the framework to this case to demonstrate its applicability.

4.2. Weak form of the lubrication equation

Using virtual pressures δ𝑝, the weak form of the fluid flow equation (Eq. (22)) can be formulated for 1D finite element
implementation as

∫𝛤
δ𝑝(

𝜕 𝑤𝐧
𝜕 𝑡 − 𝜕

𝜕 𝑠 (
𝑤3

𝐧
12𝜇

𝜕 𝑝
𝜕 𝑠 )) d𝑠 = 0. (26)

Applying integration by parts and rearranging the terms, we get

∫𝛤
𝜕(δ𝑝)
𝜕 𝑠

𝑤3
𝐧

12𝜇
𝜕 𝑝
𝜕 𝑠 d𝑠 = (δ𝑝 𝑤3

𝐧
12𝜇

𝜕 𝑝
𝜕 𝑠 ) ∣

𝓁
0 −∫𝛤

δ𝑝
𝜕 𝑤𝐧
𝜕 𝑡 d𝑠. (27)

Substituting the boundary conditions to Eq. (27), we have

∫𝛤
𝜕(δ𝑝)
𝜕 𝑠

𝑤3
𝐧

12𝜇
𝜕 𝑝
𝜕 𝑠 d𝑠 = δ𝑝𝑞 ∣𝓁0 −∫𝛤

δ𝑝
𝜕 𝑤𝐧
𝜕 𝑡 d𝑠. (28)

Using Eq. (28), the FE discretization can be implemented.
7 
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Fig. 6. 2D medium with a hydraulic fracture.

Fig. 7. Element schematic that contains pressures DoFs.

4.3. Extended formulation of pressure elements for multi-physics fluid–solid interaction problems

To model the solid and fluid behaviour concurrently, a new hydraulic fracture element can be formulated with similar topology
to the previously-presented cohesive element (Fig. 4(a)), but which contains additional pressure DoFs (see Fig. 7). The element
has 4 nodes labelled 1 to 4. Each one of the four nodes 𝑖 has nodal displacements, �̂�T𝑖 = [�̂�𝑖, �̂�𝑖], which are used to compose the
displacement DoF vector for the element, �̂�T = [�̂�T1 , �̂�T2 , �̂�T3 , �̂�T4 ]. In addition, there are two nodal pressures which are used to compose
he pressure DoF vector for the element, �̂�T = [�̂�14, �̂�23].

Similar to the cohesive element, the weak formulation for this element can be formulated by considering opening widths instead
f displacement jumps and pressures instead of cohesive tractions. As the pressures inside the element act in the normal direction,
he element will be in equilibrium with the external tractions in the normal direction 𝜏𝐧. Then, using Eq. (14), the weak formulation

for this element can be written as

∫𝛤c
δ𝑤𝐧𝜏𝐧 d𝛤 + ∫𝛤c

δ𝑤𝐧𝑝 d𝛤 = 0. (29)

To find the opening width 𝑤𝐧 using the nodal displacement DoFs, only the normal contribution of the global displacement jump
matrix 𝐍c is considered. Thus, the FE approximation for the opening width can be written as

𝑤𝐧 = 𝐍𝐧�̂�, (30)

where 𝐍𝐧 is the corresponding shape function given as (from Eq. (10))

𝐍𝐧 =
[

𝑆 𝑁1 −𝐶 𝑁1 𝑆 𝑁2 −𝐶 𝑁2 −𝑆 𝑁2 𝐶 𝑁2 −𝑆 𝑁1 𝐶 𝑁1
]

. (31)

The 1D pressure field inside the element can be discretized using a suitable shape function matrix 𝐍𝑝:

𝑝 = 𝐍𝑝�̂�, with (32)

𝐍𝑝 =
[

𝑁1 𝑁2
]

. (33)

Substituting Eqs. (30) and (32) in Eq. (29), we obtain

δ�̂�T
(

∫𝛤c
𝐍T
𝐧𝜏𝐧 d𝛤 + ∫𝛤c

(𝐍𝐧)T𝐍𝑝 d𝛤 �̂�
)

= 0. (34)

Then, Eq. (34) can be written in the following form:
−𝐐�̂� = 𝐟N, (35)

8 



E.S. Kocaman et al.

w
t

Computer Methods in Applied Mechanics and Engineering 433 (2025) 117482 
where 𝐐 is the coupling matrix between the fluid and solid parts and is given as

𝐐 = ∫𝛤c
𝐍T
𝐧𝐍𝑝 d𝛤 , (36)

and 𝐟N is the external force vector corresponding to the Neumann boundary conditions:

𝐟N = ∫𝛤c
𝐍T
𝐧𝜏𝐧 d𝛤 . (37)

Using the weak form of the lubrication equation (Eq. (28)), but applying it now to a single element (Fig. 7), we get

∫𝛤c

𝜕(δ𝑝)
𝜕 𝑠

𝑤3
𝐧

12𝜇
𝜕 𝑝
𝜕 𝑠 d𝑠 = δ𝑝𝑞 ∣𝜉2𝜉1 −∫𝛤c

δ𝑝
𝜕 𝑤𝐧
𝜕 𝑡 d𝑠, (38)

where 𝜉1 = −1 and 𝜉2 = 1 following Fig. 4(b). Substituting Eq. (32) to the weak formulation of the fluid part (Eq. (38)), we have

δ�̂�T
(

∫𝛤c
𝐍T
𝑝
𝜕 𝑤𝐧
𝜕 𝑡 d𝑠 − 𝐍T

𝑝 𝑞 ∣𝜉2𝜉1 +∫𝛤c

𝜕𝐍T
𝑝

𝜕 𝑠
𝑤3

𝐧
12𝜇

𝜕𝐍𝑝

𝜕 𝑠 d𝑠 �̂�
)

= 𝟎. (39)

Then, substituting Eq. (30) into Eq. (39), we obtain

∫𝛤c
𝐍T
𝑝𝐍𝐧

̇̂𝐮 d𝑠 + ∫𝛤c

𝜕𝐍T
𝑝

𝜕 𝑠
𝑤3

𝐧
12𝜇

𝜕𝐍𝑝

𝜕 𝑠 d𝑠 �̂� = 𝐍T
𝑝 𝑞 ∣𝜉2𝜉1= 𝐟𝑞 , (40)

where ̇̂𝐮 represents the nodal vector for time derivative of the displacements. We have also defined 𝐟𝑞 = 𝐍T
𝑝 𝑞 ∣𝜉2𝜉1 . Then, Eq. (40) can

be written in the following form:

𝐐T ̇̂𝐮 +𝐇�̂� = 𝐟𝑞 , (41)

where 𝐐T is the transpose of the coupling matrix

𝐐T = ∫𝛤c
𝐍T
𝑝𝐍𝐧 d𝛤 , (42)

and 𝐇 is the stiffness matrix for the fluid part of the element given as

𝐇 = ∫𝛤c

𝜕𝐍T
𝑝

𝜕 𝑠
𝑤3

𝐧
12𝜇

𝜕𝐍𝑝

𝜕 𝑠 d𝑠. (43)

Then, assembling the element matrices of fluid and solid parts, the discrete governing equations can be formulated as
[

𝟎 𝟎
𝐐T 𝟎

] ( ̇̂𝐮
̇̂𝐩

)

+
[

𝟎 −𝐐
𝟎 𝐇

] (
�̂�
�̂�

)

=
(

𝐟N
𝐟𝑞

)

. (44)

The time derivative of the displacements ̇̂𝐮 can be approximated using an implicit backwards Euler scheme as
̇̂𝐮𝑛 =

�̂�𝑛 − �̂�𝑛−1
𝛥𝑡

, (45)

where 𝑡 refers to the time and the time increment is 𝛥𝑡 = 𝑡𝑛 − 𝑡𝑛−1 where 𝑛 refers to the current time step. Then, inserting Eq. (45)
into Eq. (44), we have

[

𝟎 −𝐐
𝐐T 𝐇𝛥𝑡

] (
�̂�
�̂�

)

=
(

𝐟N
𝐟𝑞𝛥𝑡 −𝐐T�̂�𝑛−1

)

, (46)

where the subscripts 𝑛 for the variables in the current time step are omitted for simplicity. Note that Eq. (46) does not yet impose
the symmetry of the crack opening.

In fact, the formulation assumes that pressure acts on the two crack surfaces in a symmetric manner. Thus, initially-coinciding
surfaces of the crack open symmetrically at the nodal points. This information needs to be included in the formulation through
proper multi-point constraints to impose the complete relation between the opening widths and displacements.

The symmetric opening of the initially-coinciding surfaces implies that the mid-plane does not move in the normal (opening
idth) direction. The normal component of the mid-plane displacement can be related to the element nodal displacement vector �̂�

hrough the matrix 𝐋𝐧
m and then be set to zero:

𝐋𝐧
m�̂� = 0, (47)

with

𝐋𝐧
m = 1

2
[

−𝑆 𝑁1 𝐶 𝑁1 −𝑆 𝑁2 𝐶 𝑁2 −𝑆 𝑁2 𝐶 𝑁2 −𝑆 𝑁1 𝐶 𝑁1
]

(48)

derived using a similar approach as 𝐍𝐧 that relates element nodal displacement vector to the opening width.
Using a penalty stiffness formulation, the corresponding penalty energy can be written as

𝑈m = 1
2
𝑘p(𝐋𝐧

m�̂�) ⋅ (𝐋
𝐧
m�̂�) =

1
2
�̂�T𝑘p(𝐋𝐧

m)
T𝐋𝐧

m�̂�. (49)

The derivative with respect to the displacement DoFs �̂� lead to the stiffness matrix
𝐧 T 𝐧
𝐊m = 𝑘p(𝐋m) 𝐋m (50)
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Fig. 8. Flowchart for the numerical scheme to simulate pressure-driven fracture propagation.

which can be added to the overall formulation given in Eq. (46):
[

𝐊m −𝐐
𝐐T 𝐇𝛥𝑡

] (
�̂�
�̂�

)

=
(

𝐟N
𝐟𝑞𝛥𝑡 −𝐐T�̂�𝑛−1

)

. (51)

Using Eq. (51), a special finite element can be constructed to model the hydraulic fracture problem. The elements of this type can
then be assembled together with the continuum elements in the rest of the domain using the standard FNM procedure as in the case
of cohesive elements [40].

5. Numerical solution procedures

5.1. Introduction

The fluid–solid coupling problems can be solved either by iterative or simultaneous procedures. The numerical implementation
of the two methodologies are presented in this section.

5.2. Iterative procedure

In order to couple the individual solid and fluid FE systems, a Picard iteration scheme (see Fig. 8) can be used [3]. For solving
the structural part involving a crack as shown in Fig. 8, any appropriate method can be used such as XFEM or FNM. To implement
the scheme, the time step needs to be calculated at each iteration. This can be achieved by applying time discretization to Eq. (21)
and re-arranging the terms to solve for the time step 𝛥𝑡:

𝛥𝑡 = 1
𝑞0 ∫

𝑙

0
𝛥𝑤𝐧 d𝑠. (52)

The sequence of operations used by the Picard iteration is:
�̂�𝑟+1∕2 = 𝐇(�̂�𝑛)−1𝐅hf (�̂�𝑛)

�̂�𝑟+1 = α�̂�𝑟+1∕2 + (1 − α)�̂�𝑟
�̂�𝑟+1 = 𝐊−1𝐅st (�̂�𝑟+1)
�̂�𝑟+1 → (�̂�𝑛)𝑟+1,

(53)

where 𝑟 is the iteration number, α is the Picard iteration coefficient, 𝐊 represents the stiffness matrix for the structural part and 𝐅st

denotes the corresponding nodal force vector. The convergence of the algorithm is checked using the following criterion
∑𝑚f

𝑖=1
|

|

|

�̂�(𝑟)𝑖 − �̂�(𝑟−1)𝑖
|

|

|

∑𝑚f
𝑖=1

|

|

|

�̂�(𝑟)𝑖
|

|

|

≤ 𝜖 , (54)

where 𝜖 is the convergence tolerance and �̂�(𝑟)𝑖 is the pressure at node 𝑖 in iteration 𝑟. By solving the fluid part, the pressure distribution
along the crack is obtained.
10 



E.S. Kocaman et al.

i
T

f
o
c

w

𝑎

Computer Methods in Applied Mechanics and Engineering 433 (2025) 117482 
5.3. Simultaneous procedure

A Newton–Raphson scheme can be used to solve the hydraulic fracture system in a simultaneous fashion using the formulation
given in Eq. (51). As the system is non-linear, the scheme involves calculating the stiffness matrix and the residual force for several
terations until convergence is satisfied. Since the system is also time dependent, the iterations are carried out for each time step.
hus, for a given time step and iteration, the Newton–Raphson scheme solves:

[

𝟎 −𝐐
𝐐T 𝐇𝛥𝑡

]𝑖−1

𝑛

(

𝛥�̂�
𝛥�̂�

)𝑖

𝑛
=
(

𝟎
𝐟𝑞𝛥𝑡

)

𝑛
−
(

−𝐐�̂�𝑖−1𝑛
𝐐T�̂�𝑖−1𝑛 −𝐐T�̂�𝑖−1𝑛−1 +𝐇𝛥𝑡�̂�𝑖−1𝑛

)

, (55)

where 𝑖 is the iteration number and 𝑛 refers to the time step. The first part of the right hand side of Eq. (55) is the external force
vector whereas the second part is the internal force vector of the Newton–Raphson scheme. Notice that the only non-zero external
orce in this system is induced by the inlet flux as given in Eq. (44). In this scheme, the time step needs to be sufficiently small in
rder to attain accurate and converged solutions. By solving this system of equations, the pressure and displacement DoFs can be
alculated for a certain time step.

5.4. Numerical considerations

During the implementation stage of the proposed multi-physics pressure element as a user-defined element, several numerical
challenges have been encountered and addressed, as detailed here:

• the coupled mechanical-fluid problem has non-linearity, non-locality and time dependence —all of which make the system
difficult to solve. In order to solve this system, it is formulated as a quasi-static problem by introducing the implicit backward
Euler scheme for time dependence; to deal with the non-linearity, a Newton–Raphson scheme is used in the simultaneous
procedure. Thus, the time step needs to be small enough for accurate predictions; the results presented here were all verified
to be converged with respect to the time step.

• in the iterative procedure, the converged solutions can be attained only for certain instances in time determined by the Picard
iteration scheme. When solving this system numerically, a certain crack length needs to be set due to the discretization of the
model, i.e. a continuous change of the fracture length is not practical in a FE system. Thus, the DoFs can only be calculated
for discrete points in time with their associated crack length.

• in the iterative model, the time increment has to be determined via the Picard iteration scheme. This effectively means that the
displacements required to calculate the time derivative of the opening width are extracted using the solution of the previous
crack length.

• as the iterative scheme involves solving the individual elastic and fluid FE systems multiple times for convergence, it requires
significantly higher computational time than the simultaneous procedure where both are solved in a concurrent manner.

6. Verification of the pressure element for adaptive crack face loading

6.1. Introduction

In order to verify the pressure element, a case which involves calculating the stress intensity factors of a slant crack inside an
infinite elastic body for different crack angles is chosen. Given the equivalence between stress intensity factors due to remote stress
and due to pressure applied on the cracks faces [53], we ran two simulations: the first to obtain a benchmark solution with remote
loading, and the second one using the new pressure elements and crack face loading.

6.2. Evaluation of stress intensity factors for a centre slant crack subject to remote and crack face loading

In this section, we calculate the SIF in mode I (𝐾I) and mode II (𝐾II) for a centre slant crack (Fig. 9(a)) with different orientations
𝜃 in a material medium with respect to remote and crack face loading [40]. The material medium is modelled as a large plate with
dimensions 𝐿 = 𝑊 = 10mm (Fig. 9(a)). In the remote loading case, this plate is exposed to tensile stresses 𝜎 = 1MPa as shown in
Fig. 9(a) to simulate the applied remote stress to the material medium. In the crack face loading case, instead of this tensile stress,

e apply the equivalent crack face loading for different crack orientations and calculate the corresponding energy release rates.
When modelling this plate, we assume plane stress in an isotropic medium with Young’s modulus and Poisson’s ratio 𝐸 = 200GPa

and 𝜈 = 0.3, respectively. The crack length is defined such that the horizontal projection of the crack stays constant with
cos 𝜃 = 0.1𝑊 (see Fig. 9(a)). The body is discretized with 80 elements across the width and 81 elements across the height. The

mesh is composed of first order quadrilateral, plane stress elements.
In the VCCT relations in Eqs. (3) and (4), here repeated for convenience,

𝐺I = 1
2𝐴W

𝐹n[[𝑞n]]
(

𝐴W
𝐴CT

)1∕2
(56)

𝐺 = 1 𝐹 [[𝑞 ]]
(

𝐴W
)1∕2

. (57)
II 2𝐴W
t t 𝐴CT
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Fig. 9. For this slant crack model, the FNM captures the SIF well in modes I and II for different angles 𝜃.

Fig. 10. Stress state on the crack faces equivalent to the remote application of the load.

The stress intensity factors are calculated using VCCT as explained in Section 2.2.3. The energy release rates in mode I and mode
II calculated using VCCT were then related to the corresponding SIFs using

𝐾I =
√

𝐺I𝐸 (58)

𝐾II =
√

𝐺II𝐸 . (59)

The FNM predictions for remote loading case (RL) presented in Fig. 9(b) show good agreement with the analytical solutions for
different orientations of the crack.

To verify the pressure element, this slant crack example is chosen. However, instead of applying remote loading, equivalent crack
face loading is applied to the elastic body using the pressure elements and the corresponding stress intensity factors are calculated
for comparison.

According to fracture mechanics, SIFs are equal when equivalent boundary conditions are applied remotely or onto the crack
faces. In the slant crack example, the same SIFs are obtained when a remote stress is applied (Fig. 10(a)) and when 𝜏n and 𝜏s are
applied to the crack faces (Fig. 10(b)) provided

𝜏n = 𝜎∞y2 = 𝜎∞ cos2 𝜃 , (60)
∞ ∞
𝜏s = 𝜏x2y2 = −𝜎 cos 𝜃 sin 𝜃 . (61)
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In order to calculate SIFs using VCCT considering crack face loading, the initial formulation needs to be modified. In addition to
he forces at the crack tip needed for the VCCT, the contribution of the tractions 𝝉p = [𝜏n 𝜏s]T applied by the fluid onto the crack

faces around the crack tip region 𝛤ct needs to be included in the fracture energy calculation. This region corresponds to the half
length between the nodes adjacent to the crack tip along fracture plane ((𝓁W + 𝓁CT)∕2). Then, the applied tractions 𝝉p lead to the
odal forces

𝐅p = ∫𝛤ct
𝐍T𝝉p d𝛤 (62)

where 𝐍 represents standard matrix of shape functions. These forces 𝐅p due to the fluid pressure can be separated in normal 𝐹 p
n and

angential 𝐹 p
t components as 𝐅p =

[

𝐹 p
n 𝐹 p

t
]T. The energy release rate calculation from VCCT then becomes

𝐺I = 1
2𝐴W

(𝐹n + 𝐹 p
n )[[𝑞n]]

(

𝐴W
𝐴CT

)1∕2
(63)

𝐺II = 1
2𝐴W

(𝐹t + 𝐹 p
t )[[𝑞t ]]

(

𝐴W
𝐴CT

)1∕2
. (64)

Using Eqs. (63) and (64), the VCCT calculations in the case of crack face loading can be performed.
Fig. 9(b) shows that the SIF results for the case of crack face loading match exactly with the SIF results of the remote loading.

This example demonstrates that accurate prediction of the SIFs can be achieved using the proposed pressure element which can
successfully apply hydraulic loads onto crack faces inside an elastic medium.

7. Verification and application of the pressure element for multi-physics problems

7.1. Introduction

In order to verify the coupling problem in hydraulic fracture, the Kristianovic-Geerstma-de Klerk (KGD) model [54] is used. This
model simulates the propagation of an edge-crack driven by a pressurized fluid inside it, in an infinite elastic medium (Fig. 6). The
fluid is assumed to have uniform pressure in the cross section perpendicular to the crack direction, and its distribution along the
fracture is dictated by the Newtonian flow resistance in a narrow channel. The KGD model [54] that we use assumes rectangular
hape through the thickness. Furthermore, this model also assumes that the viscous energy of the fluid is much greater than the
racture energy required to propagate the crack. This effectively means that the fracture length does not depend on the fracture

toughness. The elastic medium is isotropic and assumed to be under plane strain conditions.
In these conditions, the corresponding analytical formulation for the fracture length 𝓁, opening width 𝑤𝐧 and pressure 𝑝 at the

inlet in terms of Young’s modulus 𝐸, Poisson’s ratio 𝜈, the inlet flux 𝑞0, viscosity 𝜇 and time 𝑡 can be given as [55]

𝓁(𝑡) = 0.576
[

𝐸 𝑞30
𝜇(1 − 𝜈2)

]1∕6

𝑡2∕3 (65)

𝑤𝐧(0, 𝑡) = 2.425
[

𝜇 𝑞30 (1 − 𝜈2)
𝐸

]1∕6

𝑡1∕3 (66)

𝑝(0, 𝑡) = 1.246
[

𝜇 𝐸2

(1 − 𝜈2)2

]1∕3

𝑡−1∕3. (67)

7.2. Numerical model

The numerical model is composed of a 2D continuum mesh with an edge crack as shown in Fig. 11. The mesh dimensions and
boundary conditions were chosen such that the model can approximate an infinite medium, and a model size parametric study was
carried out to verify this. The mesh is composed of plane strain quadrilateral elements with linear shape functions. The dimensions
of each element is chosen as 40mm × 40mm around the crack region. Following Wu et al. [3], isotropic material properties are
assigned to the solid body with Young’s modulus and Poisson’s ratio being 30GPa and 0.2, respectively; the fluid has viscosity of
0.1 Pa⋅s with the inlet flux (pump rate) of 0.001 m2∕s.

An edge crack with an initial length of 400mm is placed to the centre left of the mesh using FNM. This problem was simulated
using both the iterative (Section 5.2) and simultaneous (Section 5.3) procedures presented previously.

7.3. Results

The numerical model is simulated to find the change of the opening width, pressure and fracture length at the fracture inlet in
time. These results are provided in Figs. 12(a), 12(b) and 12(c) for both the iterative and simultaneous procedures together with
the corresponding analytical solution (Eqs. (65)–(67)) and a numerical solution from Wang et al. [3].

In Figs. 13(a) and 13(b), the opening width and pressure profile along the fracture length at different time instances are shown.
he elliptic crack profile and its growth as it progresses in time and space can be observed together with the corresponding pressure
rofile.
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Fig. 11. Geometry and schematic of the problem.

Fig. 12. Simulation results with respect to time at the fracture inlet, compared against analytical (Eqs. (65), (66) and (67) [55]) and numerical [3] results.

7.4. Discussion

In Figs. 12(a), 12(b) and 12(c), the analytical solutions are well captured by the present approach for both iterative and
simultaneous procedures. When we compare the iterative and simultaneous solutions in Figs. 12(a), 12(b) and 12(c), we observe
that they match each other well. The small difference between the two can be attributed to the difference in the solution scheme:
in the iterative case, the time increment that is used to calculate the time derivative of the opening width is dictated by the Picard
14 
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Fig. 13. Opening width and pressure distribution along the fracture length together with the corresponding time 𝑡.

Fig. 14. Pressure vessel model in 2D with pre-crack.

iteration. Smaller time steps that would increase the accuracy in the solution cannot be applied directly; this is not the case in
the simultaneous procedure where the smaller time increments can be imposed directly. Nonetheless, we observe that both sets of
results compare well. This is due to the fact that the fracture length increment for each propagation of the crack is sufficiently small
to provide small time steps. As the time step is determined by the Picard iteration scheme and the fracture length, small fracture
lengths lead to smaller time steps.

Figs. 13(a) and 13(b) show the progression of the opening width and the pressure profiles in a hydraulic fracture process. The
general shape of the opening width and pressure profiles are retained throughout the simulation which is consistent with literature
[3,55]. The simultaneous procedure requires significantly less computational time than the iterative procedure (about 22%) as the
elastic and fluid parts are solved concurrently.

We infer from all the above that this new framework offers a versatile platform whereby coupled multi-physics problems can be
modelled in a practical manner with the capability to account physical discontinuities in their exact location and achieve coupling
at element level without resorting to remeshing.

8. Application to a crack propagation problem in a pressure vessel using VCCT

8.1. Introduction

In order to further test the proposed element for a case that involves crack propagation in a structure, a pressure vessel with a
pre-crack is simulated. A schematic for the test case is provided in Fig. 14. We assume that there are no variations along the length
of the pressure vessel. A pre-crack is introduced to the inner middle right section of the vessel as shown in Fig. 14. In this example,
VCCT-based crack propagation is followed (see Section 2.2.3). Upon pressure loading, the propagation of the crack is analysed and
the critical loads of propagation for different crack lengths are compared against the analytical solutions.

The analytical solution for this case can be derived using the formulation for the stress intensity factor at the crack tip 𝐾I of a
single-edge cracked plate under uniform far field tension stress 𝜎∞ [56]:

𝐾I = 1.12𝜎∞
√

𝜋 𝑎, (68)

where 𝑎 is the crack length.
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Fig. 15. Critical pressure vs. crack length.

Assuming that the crack is very small compared to the thickness of the vessel, the circumferential stress 𝜎v acting on the edges
as a result of the pressure loading can be assumed to act as the remote load 𝜎∞. The circumferential stress can be calculated using
the internal pressure 𝑝, the inner radius 𝑟v and thickness 𝑡v of the vessel as [57,58]

𝜎v =
𝑝(𝑟v + 𝑡v)

𝑡v
. (69)

The pressure loading on the crack faces can also be treated as a remote loading as discussed in Section 6.2. Thus, the total remote
oading 𝜎∞ can be given as

𝜎∞ =
𝑝(𝑟v + 𝑡v)

𝑡v
+ 𝑝 =

𝑝(𝑟v + 2𝑡v)
𝑡v

. (70)

Then, the critical pressure for crack propagation 𝑝c becomes

𝑝c =
𝐾I𝑡v

1.12(𝑟v + 2𝑡v)
√

𝜋 𝑎
. (71)

8.2. Numerical model

The model dimensions i.e. the inner radius 𝑟v and the thickness 𝑡v of the vessel are 40 mm and 1000 mm, respectively. For
the numerical model, a 2D mesh is constructed corresponding to the model geometry (see Fig. 14) composed of plane strain
uadrilateral elements with linear shape functions. A sufficiently refined, converged mesh is used to capture the stress state of
he system adequately. The elements have approximately 0.5 × 0.5mm size which can vary depending on the position of the element
0.5 mm is used for the mesh seeding on edges).

An isotropic material is assigned to the continuum mesh with Young’s Modulus, energy release rate (Mode-I) and Poison’s
ratio 200GPa, 1455 k J∕m2 and 0.3, respectively. The crack experiences Mode-I loading due to the applied pressures. The boundary
conditions are also shown in Fig. 14. They are imposed such that the clamping of the vessel to the surroundings are adequately
imulated.

To impose the pressure on the inner surfaces of the vessel, we calculate the corresponding loads for each element along the
vessel inner surface and apply them perpendicularly to the inner-most nodes of these elements. To apply the same vessel pressure to
the crack surfaces during the implementation, this pressure is stored in a global variable and then used to apply the corresponding
loads inside the pressure elements.

8.3. Results and discussion

The critical loads (where energy release rate is critical) for different crack lengths are provided in Fig. 15. As expected, the
critical load decreases with increased crack length. The results compare well with the analytical formulation (Eq. (71)). This
demonstrates that the elements can handle pressure application in practical manner on the crack surfaces for problems that has
industrial relevance.

The difference between the numerical and analytical solutions at the latter stages of crack propagation can be attributed to the
fact that the assumption made in the analytical formulation regarding the relative scales of the elastic medium and the crack does
hold less and less as the crack grows.

9. Modelling multi-damage failure of composite pressure vessel using adaptive pressure elements

9.1. Introduction

The proposed numerical framework’s capabilities are further investigated in another application case (Fig. 16) involving failure
of pressurized composite vessels with high number of cracking and delamination. In this application case, pressurized vessels with
16 
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Fig. 16. 2D benchmark model for the transverse cross section of a pressure vessel.

Table 1
Geometrical dimensions of simulated vessels.

Geometrical parameters Thin vessel (mm) Thick vessel (mm)

Ply thickness 𝑡𝑝 0.5 1.0
Vessel thickness 𝑡 4.5 9.0
Vessel inner radius 𝑟𝑖 300.0 300.0
Vessel outer radius 𝑟𝑜 304.5 309.0

Table 2
Elasticity related material properties for IM7-8552 [59].
𝐸11 (GPa) 𝐸22 = 𝐸33 (GPa) 𝜈12 = 𝜈13 𝜈23 𝐺12 = 𝐺13 (GPa) 𝐺23 (GPa)

161 11.38 0.32 0.44 5.17 3.98

Table 3
Fracture and strength related material properties for IM7-8552 [59,60].
𝐺Ic (kJ/m2) 𝐺IIc (kJ/m2) 𝜂 𝑌n (MPa) 𝑌t (MPa) 𝑆 (MPa) 𝑘 (N/mm3)

0.21 0.77 2.1 2724 60 90 106

different geometrical dimensions are simulated to model their failure and predict their associated burst pressure. The thickness
size with respect to the vessel cross-section radius can have a strong influence on the failure and burst pressure of the vessels.
Typically, analytical prediction of this relation is challenging particularly when considering extensive cracking and delamination.
Thus, FEM based failure modelling with adaptive capabilities is critical to capture the complexity of curved composite structural
failure. Moreover, the capability to integrate cohesive zone modelling is also critical particularly in capturing delamination along
the ply interfaces and their interaction with matrix cracks. Thus, pressure elements with cohesive zones placed along all the ply
interfaces to account for these failure mechanisms.

9.2. Numerical model

Representative schematic for this benchmark model of pressure vessel with the transverse cross-section is provided in Fig. 16.
Geometrical parameters i.e. vessel inner radius 𝑟𝑖 and thickness 𝑡 are also provided together with the boundary and loading
conditions. The vessels with thin and thick geometries are simulated (see Table 1). Uniform pressure loading on the inner vessel
surfaces was applied. Load was sequentially increased by 0.1 MPa during the numerical analysis. The properties of the vessel
omposite material are provided in Tables 2 and 3. The composite vessels are composed of 9 plies and the stacking sequence is
[(90∕0)2∕9̄0]𝑠.

For effective and versatile modelling of various vessel geometries with different refinement and partitioning schemes, a higher-
scale (through-the-thickness) element named the vessel element is developed capable of representing entire vessel thickness. This
element is composed of Floating Nodes assigned to element edges and internal regions (see Fig. 17). Depending on the failure case,
these nodes are activated to form various sub-elements for representing the damage inside the vessel along the thickness. Essentially,
1000 vessel elements are used to model the vessel circumferential/hoop direction (each having 18 continuum sub-elements along the
vessel thickness (2 per each ply, see Fig. 17) resulting in overall 18 000 continuum elements in the numerical model). Different
efinement schemes can be introduced with appropriate modification of the vessel element; here, each ply is modelled as in Fig. 18.

The 2D continuum elements used to simulate the vessel medium have plane strain formulation and full-integration scheme. Along the
ply interfaces and within the plies after fracture, there are pressure elements with cohesive zones. For these 1D pressure elements,
Gaussian integration was used. Different topologies of this element for the failure simulation are given in Fig. 17. The element
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Fig. 17. Vessel element topology and its corresponding states for the failure simulation; when the sub-elements fail depending on the thickness location of the
crack tip, vessel element topology is configured adaptively.

Fig. 18. Various sub-element topologies of the vessel element for each ply during the vessel failure simulation; when the continuum sub-elements fail, their
topologies are configured adaptively based on the new location of the crack tip.

topologies and partitioning scheme for the failure simulation was provided in Fig. 18. Further illustrations on the vessel element
implementation, application of pressure elements and associated adaptive crack face loading scheme are provided in Figs. 19(a) and
19(b). Here, a 2D application case is used to demonstrate the aforementioned capabilities of the framework; however, the proposed
formulation can also be extended to 3D models using the presented approach.

In the numerical model of the vessel element, the intact sub-elements (which are exposed to stresses predominantly in the normal
circumferential direction 𝜎h) fracture based on a maximum stress criteria (𝜎h > 𝑌n or 𝑌t depending on the ply fibre angle 0◦ or 90◦,
respectively). This fracture starts at the first ply as they are exposed to highest stresses and radially propagates towards the outer
surface. If any of the integration points experience failure, the vessel element automatically inserts a pressure element with cohesive
zones at the middle of the sub-element domain in that particular ply simulating the emergence of cohesive matrix cracks (see
Figs. 17 and 19(a) for state changes). The matrix cracks of the 0◦ plies experience Mode-I loading, whose critical energy release
rate is 91.6 k J∕m2 [61]. The crack tip essentially lies at the interface between this cracked ply and the ply above (see Fig. 17). Then,
the pressure elements capturing the matrix cracks and the ply interface above (at the crack tip level) are all pressurized representing
the fluid or gas reaching to that point. This pressure acting on the crack faces is essentially the same inner vessel pressure (stored
in a global variable during the implementation). The pressure elements above the crack tip are not pressurized.

During the numerical analysis, elements that has severe cohesive damage along the interface with the upper plies are removed
(Figs. 19(a) and 19(b)). Removal of these ‘loose’ elements from the rest of the model is essential; otherwise, these elements are split
and cause numerical convergence problems leading to premature crash of the simulation. Load applied on the bottom face of these
elements is not transferred to the upper plies due to the delamination at the element upper interface and artificial high stresses can
emerge. Thus, during iterations in an incrementation of the numerical analysis, if the cohesive cracks experience failure subsequently
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Fig. 19. Vessel failure simulation using the vessel and pressure elements.

for 5 iterations, it is removed from the model. In the numerical model, cracks start from inner vessel surface and then, propagate
radially to the outer regions. This is accomplished with the introduced partitioning scheme (Fig. 19(a)). The ‘loose’ element removal
is sequentially applied in the radial direction as the cohesive ply interfaces fail from bottom to top plies. Concurrently, crack face
loading is also applied to the subsequent ply interfaces and matrix cracks to simulate the pressure-driven propagation of the liquid
or gas through the thickness.

9.3. Results and discussion

The deformations of the thin and thick pressure vessels are provided in Figs. 20 and 21. The burst pressure corresponds to
the pressure loading at which collective element explosion in the mesh occur due to the extensive cohesive matrix crack and
delamination failure. The burst pressure is predicted to be 18.4 MPa and 35.5 MPa for thin and thick vessels, respectively.

The sequential element removal and crack face loading in the radial direction is critical to simulate crack propagation through
the thickness without early simulation crash. This procedure is applied as the plies and corresponding interfaces fail through the
thickness. However, model can still explode before the last (top-most) plies are removed as the ply interfaces extensively fail
throughout the model compromising the structural integrity. Investigations reveal that crack propagation become unstable when
the bottom-most 0◦ ply fails. Then, all laminate and ply interfaces fail in an unstable manner as the model cannot sustain higher
pressure loads. The modelling of delamination between the plies as well as their interaction with matrix cracks with cohesive
zones are crucial in comprehensive vessel failure assessment; the proposed approach can achieve this thanks to its practical and
straightforward framework.

This failure modelling versatility emerges as a distinct capability compared to the other methodologies that does not require
re-meshing such as PNM and XFEM. The use of floating nodes based formulation represents exact physical locations of disconti-
nuities that can emerge at different parts of the model on-the-fly without remeshing. Direct physical representation of evolving
discontinuities is critical in non-remeshing techniques (XFEM, PNM) for improved accuracy [40]. Complex interaction mechanisms
such as matrix crack-delamination interaction can be captured and associated pressure loading (due to liquid or compressed gas) to
the exact physical locations of damage surfaces for such complex failure cases can be applied.

The proposed numerical framework also enables modelling of the vessel thickness using only one higher-scale element (vessel
element). This enables ready information transfer between the sub-elements to model failure. Complex damage scenarios involving
matrix and delamination interaction and concurrent application of damage surface loading accounting for this complexity can
be achieved through the vessel thickness at element-level in a practical platform. Vessel elements with various partitioning and
refinement schemes with different sizes can be practically represented using one numerical framework and even modelled in one
numerical simulation. Corresponding burst pressure values for each vessel are also determined which can be used as a guideline
to design more damage-tolerant vessels. This feature emerges as distinct a capability of the proposed numerical framework when
handling pressure-driven fracture compared to the other FEM-based techniques i.e. XFEM and PNM. Valuable insights on vessel
failure mechanisms involving high number of cracking and delamination as well as their interaction is attained thanks to this
methodology.

10. Conclusions

A new pressure element with floating nodes is formulated for modelling pressure-driven fracture and validated with respect to
test cases from literature. The key conclusions associated to the developed numerical framework and its capabilities are:
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Fig. 20. Deformations and cohesive failure for the thin pressure vessel with 300 mm radius and 0.5 mm ply thickness; damage of the cohesive zones is presented
with a colour bar (failed cohesive zones are shown with grey colour).

• the numerical framework provided with the element formulation can integrate pressure elements to the physical location of
fractures in FE models without remeshing as a user-defined element; it can adaptively apply pressure onto fracture surfaces
considering their exact location inside element domains and accurately capture the energy release rates of various slanted
cracks exposed to crack face loading;

• the element can also be used in multi-physics problems which is demonstrated in a hydraulic fracture modelling using different
numerical solution schemes (iterative and simultaneous); this extended multi-physics framework is verified using a KGD model
where associated fracture length, opening width and pressure of hydraulic crack propagation are captured using both solution
schemes;

• the numerical framework can inherently enable the application of different solution schemes (iterative and simultaneous);
various numerical insights are provided with regards to the implementation of these solution schemes; the results show that
higher computational efficiencies can be gained with the simultaneous scheme when multi-physic pressure element is used
where displacement and pressure DoFs are fully-coupled;

• the proposed numerical framework is also applied in modelling of a key structural problem involving pressure vessel failure;
for more effective modelling of vessel systems, a higher-scale vessel element is also developed; this element can represent
different vessel systems in the thickness direction with the capability to introduce various failure, partitioning and refinement
schemes at element level; the sub-elements of this element can easily share information to simulate the damage propagation,
introduce required crack face loading and refinement schemes;

• using the numerical framework, methodologies to simulate evolving pressurized cracks and delaminations are presented and
burst pressures of different vessels are predicted; investigations reveal the unstable nature of crack propagation particularly
after the inner-most 0◦ ply failure in cohesive modelling of composite vessels;

• this numerical framework can handle evolving complex discontinuities resultant from cohesive cracks and delaminations as
well as their interaction in a practical manner; it can adaptively apply pressure to the exact physical locations of newly formed
damage surfaces as the pressure-driven fracture propagates; and

• the floating node-based framework can significantly reduce the implementation challenges associated to representing complex
evolving discontinuities and their associated crack face loading; it provides a versatile platform which enables more practical
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Fig. 21. Deformations and cohesive failure for the thick pressure vessel with 300 mm radius and 1 mm ply thickness; damage of the cohesive zones is presented
with a colour bar (failed cohesive zones are shown with grey colour).

and simpler numerical implementation; thanks to this, various element topologies can be engineered such as the higher-scale
vessel element for more effective modelling of vessel systems.

Overall, this work provides a new practical numerical framework for modelling of pressure-driven failure. Floating node-based
approaches can enable simpler platforms to design more-damage tolerant pressurized vessel systems that can be used in sustainable
propulsion technologies.
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